
Chapter 1
ODE Models for Systems Biological Networks

This chapter presents basics of mathematical modelling in systems biology. In
Sect. 1.1, a brief introduction to the topic is given, mainly in terms of examples such
as problems from population dynamics or from drug administration. In Sect. 1.2, the
assembly of large ODE networks from simple chemical and physiological mecha-
nisms, given in terms of chemical reaction modules, is described. Reasons are given,
why the so-called Michaelis-Menten kinetics is no longer needed in the numerical
simulation of such systems. For reaction diagram parts, where only the properties
“stimulating” or “inhibiting” are known, the formulation in terms of Hill functions
is presented. Finally, in Sect. 1.3, necessary mathematical background material is
collected as far as it seems important for the class of applications in question. Main
topics are the uniqueness and sensitivity of solutions as well as asymptotic stability.
Mathematical contents are typically explained by examples rather than by theorems,
while emphasis is laid on consequences for practical calculations.

1.1 Introduction

To start with, Sect. 1.1.1 gives a short overview about ODE initial value problem
types that occur in systems biology. Next, two simple model problems are worked
out in some detail, one from population dynamics (Sect. 1.1.2), one on multiple dose
administration of drugs (Sect. 1.1.3).

1.1.1 Problem Types in Systems Biology

Let us first give a brief list of problems that typically come up in systems biology.
In the subsequent Sects. 1.1.2 and 1.1.3 we will present a few elementary examples.
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2 Introduction

Non-autonomous Initial Value Problems

This book predominantly focuses on initial value problems for systems of d ordinary
differential equations (ODEs)

y0 D f .t; y/; y.t0/ D y0 2 R
d (1.1)

for given initial values y0. The notation indicates that the time variable t appears
explicitly in the right-hand side f ; in this case we speak of a non-autonomous
problem. However, apart from special problems of drug administration where the
time point of administration enters crucially into the modelling, this case is the non-
standard case in systems biology.

Autonomous Initial Value Problems

Throughout the book we will mainly deal with the case, when the time variable t
does not explicitly enter into the right-hand side f . Then we have

y0 D f .y/; y.0/ D y0 2 R
d : (1.2)

A specialty of this type of problem is that for any given solution trajectory y.t/
satisfying (1.2) there exists a continuum of further solution trajectories z.t/ D y
.t � �/ with time shift � satisfying the same ODE

z0.t/ D y0.t � �/ D f .y.t � �// D f .z.t//

and the same initial condition

z.t0 C �/ D y.t0 C � � �/ D y.t0/ D y0 :

Due to this so-called translation invariance the initial point t0 can be chosen
arbitrarily, so that we are free to set t0 D 0 in (1.2).

Parameter Dependent Problems

In the majority of problems in systems biology, a (possibly large) number of
unknown parameters p D .p1; : : : ; pq/ enters in the form

y0 D f .y; p/; y.0/ D y0 2 R
d; p 2 R

q : (1.3)

Of course, one would like to identify such parameters by matching the above type
of model with given experimental data. The corresponding mathematical problem is
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far more subtle than often recognized in systems biology literature. Because of its
central importance in modelling, it will be carefully elaborated in Chap. 3 below.

Linear ODEs

In the non-autonomous case, a linear system may be written as

y0 D A.t/y C b.t/ y.t0/ D y0; A 2 R
d�d ;

where A.t/ denotes a time dependent .d; d/-matrix and b.t/ 2 R
d a corresponding

vector function. In the autonomous case, we will most often encounter the homoge-
neous situation b D 0 so that

y0 D A y; y.0/ D y0

in terms of some time-independent .d; d/-matrix. This kind of system plays a role
in stability analysis of general ODE systems, see Sect. 1.3.3.

Singularly Perturbed Systems

In the mathematical literature for systems biology, now and then so-called singularly
perturbed problems of the kind

y0 D f .y; z/; 0 D g.y; z/; (1.4)

arise. Such systems have been designed in the early days of computational science
to be able to solve them by standard explicit integrators. The approach is more or
less dispensable, since today efficient so-called stiff integrators are available that
solve such problems, see Sect. 1.3.4 for a more detailed discussion.

Delay or Retarded Differential Equations

Quite often processes do not just depend on the current state but also on the “history”
of the system. Such systems also arise as a phenomenological description, when not
enough information about a chain of intermediate processes is at hand.

In the simplest case such a differential system contains a retardation or delay
time � > 0 so that

y0 D f .y.t/; y.t � �// ; y.t/ D �.t/ for Œ��; 0� (1.5)
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with a given initial function �. In contrast to the standard ODE case we typically
have

y0.0�/ D �0.0/ ¤ f .y.0/; y.��// D y0.0C/ ;

i.e., the derivative of the solution is discontinuous at the initial point t D 0.
The discontinuity propagates along the trajectory, but is gradually smoothed. This
feature has to be taken into account in the numerical simulation! Typical for systems
biology is the fact, that the delay may depend on the solution, too, which means that
one should write �.y/ above instead of just � . Throughout the book we will not
go into too much detail of this problem type, but give a hint on available codes in
Sect. 2.5.1.

Periodic ODE Problems

In systems biological modelling, internal clocks or circadian rhythms play an
important role. The modelling of such processes leads to ODE problems of the kind
(mostly autonomous)

y0 D f .y/; y.T/ D y.0/ ; (1.6)

with unknown period T. In contrast to the initial value problems mentioned so
far, this problem is of boundary value type, which is more complex and beyond
the scope of this book. Interested readers may want to look up theoretical and
algorithmic details in the textbook [15, Section 7.3].

1.1.2 Example: Population Dynamics

This kind of mathematical model describes the dynamics of populations. Let p.t/
denote the number of individuals at time t and �t some finite time step. Then the
change of population p within time interval Œt; t C �t� will be

p.t C �t/ � p.t/ D g�t; g 2 R ;

which means that the longer the time interval, the greater the change will be. Note
that g > 0 represents growth, g < 0 decay. The typical derivation step now is
to write down the above relation as a difference equation and pass to the limit as
follows:

p.t C �t/ � p.t/

�t
D g

„ ƒ‚ …

difference equation

�t!0�! dp.t/

dt
D g

„ ƒ‚ …

differential equation
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This differential equation (ODE) may also be written as p0 D g. Note that here we
have tacitly applied some continuum hypothesis assuming that p.t/ 2 R

C, even
though p.t/ 2 N, since the number of individuals can be counted. In addition,
ODE models are based on the assumption of well-mixing, i.e. individuals are
homogeneously distributed in space such that spatial gradients can be neglected
in the model. We now turn to some special cases for the rate coefficient g D g.t; p/.

Exponential Growth

We start with the assumption of a constant fertility rate �0 (interpretation: the more
individuals, the higher the birth rate):

p0 D �p; p.0/ D p0 � 0 : (1.7)

This is a linear ODE, which can be solved to yield

p.t/ D p0 exp.�t/ :

The case of growth occurs with �0 > 0. In this case, there would be only members
of this species after some time in the corresponding local neighborhood – obviously
ignoring the limited nutrition basis or any other environmental constraints.

Saturation Model

The insufficiency of a purely linear model has already been pointed out 1838 by
P.-F. Verhulst [61], who suggested to modify the ODE in the form

p0 D �p.pmax � p/; p.0/ D p0 � 0; � > 0 : (1.8)

Obviously, this is a nonlinear ODE, often also called logistic equation. The
associated dynamics has two fixed or stationary points with p0 D 0, namely p � 0,
which can only occur for p0 D 0, and p � pmax, which is approached by any
trajectory with 0 < p0 � pmax. An illustration is given in Fig. 1.1.

As one of the rare examples, the initial value problem (1.8) can be solved
analytically by separation of variables (let t0 D 0, since we have an autonomous
ODE):

�

Z t

0

dt D
Z p

p0

dp

p.pmax � p/

�pmaxt D
Z p

p0

�

1

p
C 1

pmax � p

�

dp (partial fraction decomposition)
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Fig. 1.1 Logistic growth
(p0 D 1; � D 2; pmax D 5)
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�pmaxt D .ln p � ln.pmax � p//
ˇ
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p0
D ln

p.pmax � p/

p0.pmax � p0/

After some short calculation we obtain the analytic solution

p.t/ D p0

pmax

p0 C .pmax � p0/ exp.��pmaxt/
(1.9)

This function is often also called the logistic law of growth. Note that for t D 0

one actually obtains the initial value p.0/ D p0. Moreover, one easily verifies that
p.t/ � pmax and limt!1 p.t/ D pmax, if 0 < p0 < pmax.

Predator-Prey Model

Consider the dynamics of a closed ecological system, in which two species interact,
predators (number N2) and prey (number N1); as an example, you may take fox for
the predator and hare for the prey. The behavior can be described by the model

N0
1 D N1.˛ � ˇN2/; N0

2 D �N2.� � ıN1/ (1.10)

with prescribed positive parameters ˛; ˇ; �; ı. This pair of first-order nonlinear
differential equations is known as Lotka-Volterra model, named after A. J. Lotka
and V. Volterra, who independently developed these equations already in 1925/1926,
see, e.g., the textbook [45] by J. D. Murray.

The nonlinear terms N1N2 enter, since the prey population would grow unbound-
edly, if the predator population were zero, while the predator population would die
out, if the prey population were zero. The meaning of the parameters is:

• ˛: prey reproduction rate (with unbounded nutrition resources),
• ˇ: rate at which prey is eaten by predators (per unit prey), which is equivalent to

mortality rate of prey per unit predator,
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Fig. 1.2 Predator-prey model (1.10) for parameters ˛ D 1; ˇ D 2; � D 1; ı D 1; and initial
value .N1.0/; N2.0// D .1:25; 0:66/

• � : mortality rate of predators in the absence of prey,
• ı: reproduction rate of predators per unit prey.

A short calculation yields

dN1

dN2

D N1.˛ � ˇN2/

�N2.� � ıN1/
)

Z �� C ıN1

N1

dN1 D
Z

˛ � ˇN2

N2

dN2 :

Upon integrating both sides, we arrive at

�� ln.N1/ C ıN1 D ˛ ln.N2/ � ˇN2 C constant :

As a consequence, the quantity

H.N1; N2/ D �� ln.N1/ C ıN1 � ˛ ln.N2/ C ˇN2 D H.N1.0/; N2.0//

is an invariant along any trajectory. In Fig. 1.2, left, two oscillatory solution curves
N1.t/; N2.t/ are depicted. Figure 1.2, right, shows H.N1; N2/ D const in an .N1; N2/-
plane, also called phase plane, where a closed orbit arises for each initial value.

In Sect. 3.5.1 below we treat the identification of parameters from given data of
the Canadian lynx (predator) and snowshoe hare (prey).

1.1.3 Example: Multiple Dose Administration of Drugs

We follow the presentation in the illustrative book of D. S. Jones et al. [40] to show
how drug concentrations in body fluids can be described by differential equations.
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Fig. 1.3 Typical plasma
concentration of a drug in
multiple dose treatment
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Assume that the drug concentration c.t/ within the blood plasma can be described
by the following simple law:

c0 D �c=�:

In this linear ODE, the constant � , often called relaxation time, characterizes the
decay rate of the concentration

c.t/ D c0 exp.�t=�/ :

Suppose now that some prescribed constant dose c0 is administered regularly at
times tn D nt0; n D 0; 1; : : :. Then the concentration will grow in a sawtooth
pattern, which is illustrated in Fig. 1.3.

Let us now try to model this situation quantitatively. For that purpose, we
introduce the notation cn D c.tn/. Due to the above decay law, we get

c.t�n / D cn�1 exp .�t0=�/

and with the regular administration eventually

cn D c.t�n / C c0 D cn�1 exp .�t0=�/ C c0 :

For convenience of writing we introduce the quantity q D exp .�t0=�/ < 1 and thus
arrive at the recursion

cn D cn�1q C c0 ;
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from which we obtain (check yourself)

cn D c0 .1 C q C q2 C : : : C qn/ D c0

1 � qnC1

1 � q

or, in the original notation,

cn D c0

1 � exp.�.n C 1/t0=�/

1 � exp.�t0=�/
:

In addition, we obtain the so-called concentration residue

rn D c.t�n�1/ D c0 exp.�t0=�/
1 � exp.�nt0=�/

1 � exp.�t0=�/
:

Taking the limit n ! 1, we observe that the concentration never exceeds

cmax D c0

1 � exp.�t0=�/
;

and that the residue approaches

r D cmax exp.�t0=�/ D c0

exp.t0=�/ � 1
:

Usually, the therapeutic goal is to reach cmax in only a few dose steps (t0=� large),
whereas r should be kept above a certain level (t0=� small). Obviously, these two
goals are in contradiction to each other. One strategy is to avoid the sawtooth build-
up by giving an initial large dose of c0 C r or cmax and thereafter again doses of
c0. The optimal treatment strategy, however, usually depends on several factors like
production costs and patterns of human behavior.

1.2 ODE Systems from Chemical or Physiological Networks

In systems biology, typical ODE systems originate from chemical kinetics. Apart
from these, so-called compartment models arise, which we will explain in Exam-
ple 1 below and, in a more realistic setting, subsequently in Sect. 2.5.3. In Sect. 1.2.1,
we start with isolated simple chemical mechanisms and their translation into ODE
models. Such models will comprise the building blocks of large networks whose
construction we will discuss in Sect. 1.2.3 below. In between, in Sect. 1.2.2, we
discuss some traditional model type for enzyme kinetics called Michaelis-Menten
kinetics, which is still around in the literature, but is no longer needed nowadays.
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1.2.1 Elementary Chemical Mechanisms

Part of the presentation here closely follows Section 1.3 in the textbook [16].

Monomolecular Reaction

In chemical language, this reaction is written in terms of two chemical species A; B
as

A GGGA B

In a particle model we may denote nA;B as the number of particles of A; B. In
Boltzmann’s kinetic gas theory, which needs to be carefully discussed when applied
within the human body (under the assumptions of constant pressure, volume V , and
temperature T!), one obtains for the changes �nA;B of particle numbers nA;B within
some time interval �t

�nA � �nA�t; �nB D ��nA

where the second equation is the conservation of particles. In a continuum model,
the associated concentrations are defined as

cA D nA

V
; cB D nB

V
:

For ease of writing, one usually identifies the names for the concentrations with
the names of the corresponding chemical species, i.e. cA ! A; cB ! B etc. Upon
defining k as a reaction rate coefficient, we thus arrive at the ODEs

A0 D �kA; B0 D kA : (1.11)

If we set initial conditions

A.0/ D A0; B.0/ D 0 ;

then we can solve these simple equations analytically to obtain

A.t/ D A0 exp.�kt/; B.t/ D A0.1 � exp.�kt//

In passing we note that mass conservation still holds in the two equivalent forms

A0.t/ C B0.t/ D 0 , A.t/ C B.t/ D A.0/ C B.0/ D A0 : (1.12)
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Bimolecular Reaction

In chemical language, this reaction reads

A C B
k1

GGGGGBF GGGGG

k2

C C D :

Using the same kinetic reaction principles as before, one is led to the ODE model
(again identifying species and concentration names)

A0 D B0 D �k1AB C k2CD; C0 D D0 D Ck1AB � k2CD : (1.13)

In passing we again note that conservation of mass holds:

A0 C B0 C C0 C D0 D 0: (1.14)

Important special cases of this mechanism to arise in systems biology are

• catalysis: B D C
• autocatalysis: B D C D D,

e.g., DNA replication: nucleotide C DNA GGGBF GGG 2 DNA

Stationary state. The equilibrium phase, also called the stationary state, is charac-
terized by

A0 D B0 D C0 D D0 D 0 :

From this we arrive at the classical law of mass action kinetics (often called the
Arrhenius law) :

AB

CD
D k2

k1

D exp

�

��E

RT

�

DW k21 (1.15)

where we have already inserted the Boltzmann formula with �E the activation
energy, which is the energy difference between reactants and products, R the
universal gas constant, and T the temperature (as above). If only the equilibrium
phase of this reaction is to be modeled, then the above equilibrium coefficient
k21 D k2=k1 is the only degree of freedom that is well-defined. In this case, a model
reduction is possible. A simple illustrative example for this phenomenon will be
worked out in Sect. 3.5.2.
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General Reaction Scheme

For the sake of completeness, we mention that a reaction of the general type

mAA C mBB
k1

GGGGGBF GGGGG

k2

mCC C mDD

would give rise to the equilibrium relation (the general law of mass action kinetics)

AmA BmB

CmC DmD
D k2

k1

D exp

�

��E

RT

�

: (1.16)

A general reaction of the type

min
1 A1 C min

2 A2 C : : : C min
d Ad

k
GGGGA mout

1 A1 C mout
2 A2 C : : : C mout

d Ad

results in the reaction rate equation

y0 D k	

d
Y

iD1

y
min

i
i .t/

min
i Š

;

where

y D .A1; : : : ; Ad/T ; 	 D .mout
1 � min

1 ; : : : ; mout
d � min

d /T :

Remark 1 Often, the factorials in the above denominators are absorbed into the
constant k, giving rise to a reaction rate equation in the form

y0 D k	

d
Y

iD1

y
min

i
i .t/:

Both forms can be found in the literature; note that the value of the reaction rate
coefficient will vary accordingly.

Remark 2 Whenever the copy numbers of species involved in a chemical reaction
get small, random fluctuations come into play. In this case, the ODE models
based on mass action kinetics must be replaced by the chemical master equation
(CME). The CME is the fundamental equation of stochastic chemical kinetics. This
differential-difference equation (continuous in time and discrete in the state space)
describes the temporal evolution of the probability density function for the states of a
chemical system. The state of the system represents the copy numbers of interacting
species, which are changing according to a list of possible reactions. The solution of
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the CME in higher dimensions is mathematical challenging and the topic of ongoing
research. A detailed discussion would go beyond the scope of this book.

Inhibitory or Stimulatory Impact

In quite a number of chemical reactions in biology detailed knowledge about the
individual reaction mechanisms is not available, but only some information of the
kind “inhibitory or stimulatory impact”. This qualitative insight is usually captured
quantitatively in terms of so-called Hill functions. Let S denote some input substrate
concentration and P the corresponding output product concentration. Then, in terms
of threshold values T; T�; TC and Hill coefficients n, the following modelling
schemes are in common use (see Fig. 1.4):

• Inhibitory processes. These are described by negative feedback Hill functions
(with the notation X D S=T)

h�.S; T; n/ D 1

1 C Xn
; P0 D p�h�.S; T; n/ ; (1.17)

where p� denotes some reaction rate coefficient.
• Stimulatory processes. These are described by positive feedback Hill functions

(with the notation X D S=T)

hC.S; T; n/ D Xn

1 C Xn
; P0 D pChC.S; T; n/ ; (1.18)

where pC is again some reaction rate coefficient.
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Fig. 1.4 Hill functions for variable parameter n. Left: negative feedback (T D 0:5). Center:
positive feedback (T D 0:5). Right: switch behavior between mutually independent process
directions (T� D 0:2; TC D 0:8; Ts D 0:4)
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• Switch processes. Whenever two process directions are mutually independent,
then they can be modeled by biphasic Hill functions

h˙.S; T�; TC; n/ D h�.S; T�; n/ C hC.S; TC; n/ ; (1.19)

which gives rise to the ODE parts

P0 D p˙h˙.S; T�; TC; n/ ;

with p˙ as reaction rate coefficient. The switch takes place at Ts D p
T�TC,

compare Fig. 1.4. In passing we note that

h�.S; T; n/ C hC.S; T; n/ D 1 :

Whenever the two process directions are mutually dependent, they should be
coupled multiplicatively, i.e.

h˙.S; T�; TC; n/ D h�.S; T�; n/ � hC.S; TC; n/ : (1.20)

1.2.2 Enzyme Kinetics

A special case of reaction mechanism is the case of enzyme kinetics, which we here
give in some detail, since this mechanism can be treated numerically in different
ways. This mechanism involves four chemical species: substrate S, product P,
enzyme E, and complex C. In chemical language, this kind of reaction scheme is
written as

E C S
k1

GGGGGBF GGGGG

k�1

C
k2

GGGA E C P :

The corresponding mathematical formulation in terms of an ODE system is:

S0 D �k1ES C k�1C

E0 D �k1ES C k�1C C k2C

C0 D k1ES � k�1C � k2C

P0 D k2C

Observe that all parameters above enter linearly, compare the remarks in Sect. 3.4 in
the context of parameter sensitivity analysis. As initial conditions we typically have

E.0/ D E0; S.0/ D S0; C.0/ D 0; P.0/ D 0 :
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Fig. 1.5 Numerical
simulation of an enzyme
reaction (substrate S, product
P, enzyme E, complex C)
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As for mass conservation, we now have two chemical reactions:

E0 C C0 D 0 ) E C C D const D E0

S0 C C0 C P0 D 0 ) S C C C P D const D S0 :

Upon eliminating E D E0 � C and P D S0 � S � C from the above four ODEs, we
obtain a reduced model with only two ODEs

S0 D �k1.E0 � C/S C k�1C (1.21)

C0 D k1.E0 � C/S � .k�1 C k2/C (1.22)

to be completed by the two above initial conditions S.0/ D S0; C.0/ D 0. In
Fig. 1.5, we show the results of numerical simulations.
Michaelis-Menten kinetics. We continue with an analysis of the above enzyme
reaction mechanism by introducing the so-called quasi-steady state approximation,
in short: QSSA. In this framework, we set

C0 D 0 :

Insertion into the ODE (1.22) then yields

C.t/ D E0S.t/

Km C S.t/
; Km WD .k�1 C k2/=k1
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where Km denotes the so-called Michaelis constant. Inserting this expression
into (1.21) leads to

S0.t/ D �k2E0

S.t/

Km C S.t/
: (1.23)

The ODE (1.23) is called Michaelis-Menten kinetics.
Generally speaking, the advent of modern stiff integrators (see Sects. 2.3 and 2.4)

has made the QSSA including the Michaelis-Menten kinetics superfluous. Neverthe-
less such models have survived even in recent literature, which is why they are also
accepted as possible mechanisms in the modelling language SBML [11].

1.2.3 Assembly of Large ODE Networks

The previous two sections have shown that there exists a one-to-one correspondence
between elementary chemical reactions and ODE schemes. In actual systems
biological modelling such small blocks will have to be assembled to large chemical
reaction networks. For this purpose, it is convenient to construct a so-called
chemical compiler that automatically generates the ODE system. (We deliberately
skip here the possible addition of further physiological mechanisms that give rise to
ODEs of different kind; they will need an extra treatment.)

Chemical Compiler

Such a programming tool generates the right-hand sides f of an ODE system (1.2)
from elementary pieces. This is a comparatively easy task, since the mechanisms of
Sect. 1.2.1 lead to known functions such as polynomials or Hill functions. Simulta-
neously, anticipating Sect. 1.3.2 below, the Jacobians fy; fp (with respect to variables
y and parameters p) will be needed. In the polynomial terms the parameters usually
enter linearly, which is why we explicitly advise users to avoid any Michelis-Menten
kinetics (see (1.23)) wherever possible, since they would give rise to parameters
entering nonlinearly. Of course, any additional right-hand sides originating from
other source terms should be treated aside. In particular, approximation of the
Jacobians fy; fp by numerical differentiation might be applicable, which requires
special software, see [5].

Such a compiler permits a user to concentrate on modelling questions without
getting too much involved with the arising ODE system. At the same time it helps
to reduce programming errors. That is why already in the 1980s FORTRAN codes
like CHEMKIN due to [41] or LARKIN due to [4, 22] have been developed, mainly
oriented towards physical chemistry. Nowadays, CHEMKIN is developed by the
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Fig. 1.6 Compartment
model for the human
menstrual cycle. The model
maps the hypothalamic-
pituitary-gonadal (hpg) axis,
along which the various
hormones act
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company ReactionDesign,1 whereas an open-source version, named Cantera,2 is
developed by the group of Dave Goodwin at the California Institute of Technology.
More recent developments oriented towards systems biology are the SBML package
[46] to be combined with numerical codes like Copasi due to [39] or BioPARKIN
due to [25].

Compartment Modelling

This modelling technique is quite popular in computational biology. It consists
in splitting the system under consideration into separate compartments, which
are coupled by ODEs that describe the quantitative connections between these
parts of the model. Within each of the compartments, concentrations are assumed
to be uniformly distributed. Rather than discussing this technique abstractly, we
illustrate it below by a recent elaborate example. In addition, we present the results
of assembling chemical reaction mechanisms. Thus it may stand for a class of
typical examples in systems biology. Moreover, in Sect. 2.5.3, we work out a larger
compartment model concerning cancer cells.

Example 1 In [53], a model of the human menstrual cycle has been worked out
in detail. The selected compartments are: the hypothalamus, the pituitary, and the
ovaries, connected by the blood stream, as illustrated in Fig. 1.6.

In Fig. 1.7, part of the corresponding chemical model is presented in the usual
form of a reaction diagram. The species have been colored according to their
occurrence in different compartments. The full model comprises 33 chemical
species (and, of course, the same number of ODEs) as well as 76 chemical reactions
and physiological processes. For mere illustration purposes, we just give a selection
out of the rather large compiled ODE system.

Luteinizing Hormone (LH):

SynLH.t/ D .bLH
Syn C kLH

E2 � hC.E2.t/; TLH
E2 I nLH

E2 // � h�.P4.t/; TLH
P4 I nLH

P4 /

(1.24)

1http://www.reactiondesign.com/
2http://cantera.github.io/docs/sphinx/html/index.html

http://www.reactiondesign.com/
http://cantera.github.io/docs/sphinx/html/index.html
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Fig. 1.7 Flowchart of a model for the human menstrual cycle. Dashed lines: transitions, elim-
ination, or chemical reactions. Solid lines with filled arrows: stimulatory effects (Hill functions
hC). Solid lines with unfilled arrows: inhibitory mechanisms (Hill functions h�). Compare this
flowchart with the ODEs presented below

RelLH.t/ D �

bLH
Rel C kLH

G-R � hC.G-R.t/ C Ago-R.t/; TLH
G-RI nLH

G-R/
� � LHpit.t/

(1.25)

d

dt
LHpit.t/ D SynLH.t/ � RelLH.t/ (1.26)

d

dt
LHblood.t/ D 1

Vblood
� RelLH.t/ � .kLH

on � RLH.t/ C kLH
cl / � LHblood.t/ (1.27)

LH receptor binding:

d

dt
RLH.t/ D kLH

recy � RLH;des.t/ � kLH
on � LHblood.t/ � RLH.t/ (1.28)

d

dt
LH-R.t/ D kLH

on � LHblood.t/ � RLH.t/ � kLH
des � LH-R.t/ (1.29)

d

dt
RLH;des.t/ D kLH

des � LH-R.t/ � kLH
recy � RLH;des.t/ (1.30)

We deliberately dropped the equations for the gonadotropin releasing hormone
(GnRH, already left out in Fig. 1.7), for the follicle stimulating hormone (FSH),
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the physiological mechanisms for the development of various stages of follicles and
corpus luteum as well as the reaction mechanisms for estradiol (E2), progesterone
(P4) and the two inhibins (IhA,IhB). Readers interested in all details may want to
look up the original paper [53].

1.3 Mathematical Background for Initial Value Problems

From the vast mathematical background material concerning ODE initial value
problems we here want to select only such items that need to be understood when
modelling and simulating networks in systems biology. In the following we will treat
questions of uniqueness, sensitivities, condition numbers, and asymptotic stability.

1.3.1 Uniqueness of Solutions

Given an ODE model, it should be clear whether this model has a unique solution. If
this were not the case, then any “good” numerical integrator will run into difficulties.
That is why we discuss the topic here. Let y�.t/; t 2 Œt0; tCŒ denote a unique solution
existing over the half-open interval t0 � t < tC.

Uniqueness Criteria

As worked out in mathematical textbooks (see again, e.g., [16, Section 2.2]), there
are three cases that may occur, from which we select two that may come up in
systems biological modelling:

(a) The solution y� exists “forever”, i.e. tC D 1.
(b) The solution “blows up” after finite time, i.e. tC < 1.

Case (a) essentially requires that the right-hand side f satisfies a global Lipschitz
condition

k f .x/ � f .y/k � Lkx � yk for all x; y;

wherein the term ‘global’ means that it holds for all arguments x; y. Typically, this
so-called Lipschitz constant L is identified via the derivative of the right-hand side,
to be denoted by

fy.y/ D Dyf .y/ D @f

@y
:
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The expression fy is often called the Jacobian (matrix) of the right-hand side. With
this definition the Lipschitz constant can be calculated as

L D sup
y

j fy.y/j ; (1.31)

where the maximum (supremum sup) is taken over all possible arguments y. This
seemingly only theoretical quantity will play an important role later in connection
with the definition of “stiffness” of ODEs, see Sect. 2.1.4. For illustration purposes,
we give two scalar examples of the above cases.

Example 2 (Case (a)) Consider an example similar to the monomolecular reac-
tion (1.11),

y0 D �ky; y.0/ D y0; k > 0 :

The right-hand side is linear so that jfy.y/j D k. There exists a global Lipschitz
constant L D k and thus a unique solution over all times, in the special case

y�.t/ D y0 exp.�kt/ :

As k > 0, the solution is bounded for all t � 0.

Example 3 (Case (b)) Consider the nonlinear example,

y0 D y2; y.0/ D 1 ;

similar to the bimolecular reaction (1.13). Here we obtain jfy.y/j D 2jyj, which
is only bounded, if we restrict the values of y. Thus we have only local Lipschitz
continuity of f . In fact, by solving this equation analytically (using separation of
variables), we see that there exists a unique solution

y�.t/ D 1

1 � t
; �1 < t < 1;

only up to some finite time tC D 1. In Fig. 1.8 we give the graph of the solution.

Remark 3 In systems biology, such a Lipschitz condition will typically only hold
locally, i.e. for restricted arguments y, which would formally allow for case (b) as
well. However, due to mass conservation (see the examples (1.12) or (1.14)) case
(b) can be excluded, since any bounded sum of positive terms assures that each term
is bounded. In actual modelling, some scientists ignore mass conservation – with
the danger that then solutions may “blow up”. In addition, note that in numerical
simulation things turn already to be bad when the solution only “nearly” blows up.
Such events occur, e.g., in the realistic example in Sect. 3.5.3, where there is no mass
conservation in the model.
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Fig. 1.8 Solution graph for
Example 3
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Phase Flow and Evolution

Suppose a linear system of equations were given, say Ax D b. If it has a unique
solution, say x�, then this can be written as x� D A�1b. The definition of the matrix
inverse A�1 is just a clean notation to indicate the uniqueness of the solution; by no
means should the linear equation be solved by first computing the matrix inverse
and then multiply it to the right-hand side b.

In a similar way, a notation to indicate that an ODE initial value problem has a
unique solution, say y�, has emerged. For an autonomous initial value problem

y0 D f .y/; y.0/ D y0 ; (1.32)

we write

y�.t/ D ˚ ty0

in terms of some phase flow (often just called flow) ˚ t satisfying a semigroup
property

˚ t�t1 ˚ t1 y0 D ˚ ty0; t1 2 Œ0; t� :

For a non-autonomous IVP

y0 D f .t; y/; y.t0/ D y0

the unique solution y� is defined via the evolution ˚ t;t0 as

y�.t/ D ˚ t;t0 y0 :
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The evolution satisfies the semigroup property

˚ t;t1 ˚ t1;t0 y0 D ˚ t;t0 y0; t1 2 Œt0; t� : (1.33)

The notations ˚ ty0 and ˚ t;t0 y0 should not be misunderstood: these mappings are
nonlinear functions of the initial values y0. As in the case of the matrix inverse for
linear equations, these notations should not be regarded as a recipe to solve the given
ODE problem.

1.3.2 Sensitivity of Solutions

In a first step, we want to study the effect of a perturbation of the initial value y0 in
the form

y0 7! y0 C ıy0 :

Propagation Matrices

In the autonomous case, the question is how this deviation propagates along the
solution y.t/ D ˚ ty0. In order to study this propagation, let us start with Taylor’s
expansion with respect to the initial perturbation ıy0, i.e.

˚ t.y0 C ıy0/ � ˚ ty0 D Dy˚
tyjyDy0ıy0 C D2

y˚ tyjyDy0 Œıy0; ıy0� C : : : :

Upon dropping terms of second and higher order in ıy0, we arrive at some linearized
perturbation theory

˚ t.y0 C ıy0/ � ˚ ty0
:D Dy˚

tyjyDy0ıy0 DW ıy.t/ ;

wherein the notation
:D denotes the linearization. The thus defined perturbation ıy.t/

is given by the linear mapping

ıy.t/ D W.t/ıy0 (1.34)

in terms of the .d; d/-matrix

W.t/ WD Dy˚
tyjyDy0 D @y.t/

@y0

) W.0/ D Id

called the propagation matrix or Wronskian matrix. This matrix can be interpreted
as the sensitivity of the nonlinear mapping ˚ t with respect to the initial value y0.
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Just like in the nonlinear case (1.33), we get some semigroup property

W.t � t1/W.t1/ D W.t/; t1 2 Œ0; t� : (1.35)

For non-autonomous IVPs, we merely modify the definition of the Wronskian
matrix by expanding the notation to

W.t; t0/ WD Dy˚
tyjyDy0 D @y.t/

@y.t0/
) W.t; t/ D Id for all t

and thus obtain the analogous linear relation

ıy.t/ D W.t; t0/ıy0 : (1.36)

The corresponding semigroup property reads

W.t; t1/W.t1; t0/ D W.t; t0/; t1 2 Œt0; t� : (1.37)

Variational Equation

Starting from (1.34) we may derive an ODE for the perturbation according to

ıy0 D W 0.t/ıy0 :

Upon recalling the definition of the propagation matrix, we find that

W 0.t/ D fy.˚
ty0/W.t/; W.0/ D Id : (1.38)

Insertion of this ODE above then yields

ıy0 D fy.˚
ty0/W.t/ıy0 D fy.˚

ty0/ıy

The thus arising linear ODE

ıy0 D fy.˚
ty0/ıy; ıy.0/ D ıy0 (1.39)

is called the variational equation. Note that this equation is non-autonomous due to
the time dependent argument in the derivative matrix fy. Its formal solution is (1.34),
which shows that the Wronskian matrix is just the flow (or evolution, respectively)
of the variational equation. Note that (1.38) is just the variational equation for the
Wronskian matrix itself.

For the non-autonomous case y0 D f .t; y/, we would obtain the modified
variational equation

ıy0 D fy.˚
ty0; t/ıy C ft.˚

ty0; t/; ıy.0/ D ıy0 : (1.40)
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Analogously to the autonomous case, Eq. (1.36) supplies the solution of this non-
autonomous variational equation.

Condition Numbers

With the above preparations, we are now ready to define the condition of initial
value problems. Recall from introductory textbooks on Numerical Analysis (such
as [17]) that the condition of a problem is independent of any algorithm applied to
solve it. There are two basic possibilities depending on the focus of interest. For
notation, we introduce j � j as the modulus of the elements of a vector or matrix to
be well distinguished from k � k, the norm of a vector or matrix.

(a) Assume one is interested only in the solution y.t/ at a specific time t. Then
the pointwise condition number �0.t/ may naturally be defined as the smallest
number for which

jıy.t/j � �0.t/ � jıy0j : (1.41)

On the basis of (1.34), we thus arrive at the definition

�0.t/ D kW.t/k ; �0.0/ D 1 : (1.42)

(b) If one is interested in the entire course of the solution y.t/ on the whole time
interval Œ0; t�, then the interval condition number �Œ0; t� may be defined as the
smallest number for which

max
s2Œ0;t�

jıy.s/j � �Œ0; t� � jıy0j

which then implies

�Œ0; t� D max
s2Œ0;t�

�0.s/ : (1.43)

The above semigroup property (1.37) directly leads to the following relations:

(i) �Œ0; 0� D 1,
(ii) �Œ0; t1� � 1,

(iii) �Œ0; t1� � �Œ0; t2�; 0 � t1 � t2
(iv) �Œ0; t2� � �Œ0; t1� � �Œt1; t2�; 0 � t1 � t2

The role of the local condition number can be seen in the following example.

Example 4 For the famous Kepler problem, which describes the motion of two
bodies (say Earth-Moon) in a gravitational field, one may show that

�
Kepler
0 .t/ � t ; (1.44)
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which is a mild increase. The situation is very different in molecular dynamics, see,
e.g., [16, Section 1.2], where one obtains

�
molecular dynamics
0 .t/ � exp.t=tcrit/; tcrit 	 100 fs D 10�13 s : (1.45)

This means that after some very small critical time tcrit the initial value problems
turn to get ill-posed. As a consequence, a different type of computational approach
is necessary, called conformation dynamics, more recently also Markov state
modelling, see, e.g., the survey article by P. Deuflhard and C. Schütte [21] and
references therein.

The just introduced two different condition numbers will be needed below in
Sect. 2.1.2, where we discuss error concepts in the numerical simulation, and in
the following Sect. 1.3.3.

Parameter Sensitivities

In the majority of problems in systems biology, parameter dependent systems arise
in the form

y0 D f .y; p/; y.0/ D y0 2 R
d; p 2 R

q :

Here we are naturally interested in the effect of perturbations

p 7! p C ıp :

with respect to p D .p1; : : : ; pq/. For this purpose we define the parameter
sensitivities

yp D @y

@p
2 R

d�q : (1.46)

Upon application of the chain rule of differentiation, this quantity can be seen to
satisfy a modified variational equation for each parameter component

y0
p D fy.y.t/; p/yp C fp; yp.0/ D 0 : (1.47)

Remark 4 The actual numerical solution of any of the variational equa-
tions (1.39), (1.40), or (1.47) requires to treat an extended ODE system including
the original ODE (1.32) to compute the argument within the Jacobians fy or fp,
respectively. For certain algorithmic details see Sect. 2.5.1 below.
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Fig. 1.9 Example 5 for an equilibrium solution g D sin.t/; t 2 Œ0; 1:5�. Left: asymptotically stable
problem (here: � D �16; 
0 D 1). Right: inherently unstable problem (here: � D 3; 
0 D 0:05)

1.3.3 Asymptotic Stability

In order to sharpen our mathematical intuition, we analyze the two types of
condition numbers as introduced in the previous section for a notorious scalar ODE
problem.

Example 5 Despite its simplicity this problem yields deep insight into the structure
of ODEs. Let � 2 R denote some parameter in the initial value problem

y0.t/ D g0.t/ C �.y � g.t//; y.0/ D g.0/ C ıy0 : (1.48)

The general solution may be written in the form

ıy.t/ WD y.t/ � g.t/ D exp.�t/ıy0 :

Obviously, there exists an equilibrium solution y.t/ D g.t/ for all t where g is
defined. In Fig. 1.9, we give two examples for the above model problem. Upon
varying the initial values y0, we may clearly distinguish two qualitatively different
situations, asymptotic stability versus inherent instability.
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Condition numbers. Let us exemplify the two condition numbers defined above.
From definition (1.41) and (1.42) we immediately obtain the pointwise condition
number

�0.t/ D j exp.�t/j ;

from which (1.43) yields the interval condition number, say �Œ0; T� over an interval
Œ0; T�. There are three qualitatively different situations for the two characteristic
numbers:

(a) � < 0: Here we get

�0.t/ D exp.�j�jt/ t!1�! 0 ; �Œ0; T� D �0.0/ D 1;

i.e. any initial perturbation will decay over sufficiently large time intervals,
see Fig. 1.9, left; in this case, the equilibrium solution y D g is said to be
asymptotically stable;

(b) � D 0: here we obtain

�Œ0; T� D �0.T/ D 1; for all T � 0 ;

i.e. any initial perturbation is preserved;
(c) � > 0: here we get

�Œ0; T� D �0.T/ D exp.�T/
T!1�! 1 ;

i.e. any perturbation grows exponentially with time, the equilibrium solution
y D g is inherently unstable, see Fig. 1.9, right.

The same three cases also appear for complex valued � 2 C, if we replace � by <�

in (a), (b), (c) above.

Next, we want to study a characterization of the stability properties for two more
general cases.

Matrix Exponential

Suppose we have to solve the linear homogeneous autonomous initial value problem

y0 D Ay; y.0/ D y0 2 R
d : (1.49)

Its formal solution is often written in terms of the matrix exponential

y.t/ D exp.tA/y0 :
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The careful reader will observe that the matrix exponential is just the Wronskian
matrix for the special case (1.49), i.e.

W.t/ D exp.tA/

In [57], a list of algorithms for the evaluation of exp.tA/y0 is collected. We want to
emphasize, however, that the matrix exponential, just like any phase flow in general,
should preferably be understood as a formal representation of the solution of (1.49),
not as a basis for actual computation.

The following property of the matrix exponential is most important. Let M be an
arbitrary nonsingular matrix. Then one can show that

exp.tMAM�1/ D M exp.tA/M�1 (1.50)

For principal reasons, we briefly outline the proof. Upon multiplying (1.49) by M,
we get

My0
„ƒ‚…

DWNy0

D MAM�1

„ ƒ‚ …

DWNA
My

„ƒ‚…

DNy
, Ny0 D NANy; Ny.0/ D My0 :

This yields the formal solution

Ny.t/ D exp.t NA/Ny.0/

and, after insertion of the definitions,

M exp.tA/y0 D exp.tMAM�1/My0 ;

which holds for every y0 so that (1.50) is proven.

Warning. Note that generally

exp.t.A C B// ¤ exp.tA/ exp.tB/ ;

unless the so-called commutator ŒA; B�� D AB � BA vanishes.

Stability of Linear Homogeneous Autonomous ODEs

For simplicity, let us assume now that A is diagonalizable. The results also hold
in the non-diagonalizable case, which, however, is skipped here, since it is rather
technical. In this case there exists a matrix M such that

NA D M diag.�1; : : : ; �d/M�1 :
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Then, with Ny D My, the ODE y0 D Ay decomposes into d one-dimensional ODEs

Ny0
i D �i Nyi; i D 1; : : : ; d ; (1.51)

from which we obtain

Nyi.t/ D exp.t�i/Nyi.0/ ) jNyi.t/j D exp.t<.�i//jNyi.0/j :

This gives rise to the following classification:

(a) <.�i/ < 0 ) jNyi.t/j ! 0 for t ! 1,
i.e. the solution component Nyi dies out asymptotically,

(b) <.�i/ � 0 ) jNyi.t/j � jNyi.0/j,
i.e. the solution component Nyi remains bounded for all t � 0,

(c) <.�i/ > 0 ) jNyi.t/j > jNyi.0/j,
i.e. the solution component Nyi blows up for t ! 1.

Of course, for systems, different components of Ny may fall into different classes and
may be mixed via the transformation matrix M. Hence, we arrive at the following
stability criteria:

(a) The solution y is stable, if <.�i/ � 0 for all i.
(b) The solution y is asymptotically stable, if <.�i/ < 0 for all i.
(c) The solution is unstable, if the condition <.�i/ > 0 holds for at least one index

i; in this case, the instability will occur in at least one direction.

Stability of Nonlinear ODEs Around Fixed Points

We now consider general nonlinear autonomous ODEs. As shown above, linearized
perturbations ıy are governed by the variational equation (1.39). This equation is
linear, but non-autonomous, i.e. of the type

ıy0 D A.t/ıy; where A.t/ D fy.y.t//

with y.t/ the given solution to be studied. As a consequence, the above stability
classification does not apply. Counter-examples, where the eigenvalues of some
matrix A.t/ satisfy the above stability criterion for all t, but the perturbations ıy.t/
nevertheless blow up, can be found in the literature (see the notorious example of
H. O. Kreiss, e.g., [16, Remark 3.29]).

For this reason, a simpler approach studies the behavior of the solution around
some fixed point y� 2 R

d defined by f .y�/ D 0. Upon defining initial values

y.0/ D y� C ıy0
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we arrive at the variational equation,

ıy0 D fy.y
�/ıy; ıy.0/ D ıy0 :

Obviously, in this case the Jacobian matrix A WD fy.y�/ is autonomous so that the
above stability theory applies.

Recall, however, that we have used a linearized perturbation analysis. Caution
against blind application of such a theory is strongly advised. For illustration, we
give the following warning example.

Example 6 We compare two simple nonlinear initial value problems.

(a) The ODE is given by

y0 D �y3 :

Its solution for arbitrary initial value y0 is

y.t/ D
�

1

y2
0

C 2t

��1=2
t!1�! 0 ;

i.e. the system returns from any given y0 to the fixed point y� D 0. Hence, it is
asymptotically stable.

(b) This time the ODE is given by

y0 D y3 :

Its solution is

y.t/ D
�

1

y2
0

� 2t

��1=2
t!t

C�! 1 ;

i.e. the system blows up at tC D 1=.2y2
0/. Hence, it is unstable.

Observe, however, that both systems have the same variational equation ıy0 D 0

around the fixed point y� D 0, which implies that ıy.t/ D const, even though the
qualitative behavior of the two ODEs is very different. Consequently, the linearized
perturbation analysis may be misleading in predicting the qualitative behavior of a
nonlinear initial value problem.

1.3.4 Singularly Perturbed Problems

Assume that a given ODE system has a solution y D .u; v/ that naturally splits into
a “slow” component u and a “fast” component v. Such a system may be written as
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Fig. 1.10 Singular
perturbation problem:
Immediate approach from
arbitrary starting value v0.0/

to a point v0 on the manifold
g.u; v/ D 0

g(u, v) = 0

ε → 0+

v0

a two-component system of the kind

u0
" D f .u"; v"/; " v0

" D g.u"; v"/ (1.52)

where some “fast” time scale � D t=" with 0 < " 
 1 has been introduced such
that

dv

d.�/
D dv

d.t="/
D "

dv

dt
D " v0

Assume further that

<.�.gv// < 0 (1.53)

and let " ! 0C. Then, in the quasi-steady state approach (abbreviated: QSSA), we
obtain the differential-algebraic equation (DAE)

u0
0 D f .u0; v0/; 0 D g.u0; v0/ (1.54)

for some two-component solution y0 D .u0; v0/. Due to (1.53) we may interpret the
limit in such a way that, for arbitrary starting value v0.0/, the solution component
v0 “immediately” approaches a near-by value on the constraint manifold. For
illustration, see Fig. 1.10.

With the availability of modern adaptive stiff integrators (see Chap. 2 below),
there typically is no visible performance difference between the numerical solution
of the ODE (1.52) and of the DAE (1.54). In fact, while the ODE system usually
has a unique solution, the DAE may not have a unique solution, unless further
assumptions hold. Instead of diving into theoretical details (to be found, e.g., in the
textbook [16] and references therein) we give an illustrative example from reaction
kinetics.

Example 7 This example treats a chemical network that models the thermal
decomposition of n-hexane. The system comprises 47 chemical reactions for 25
chemical species, i.e. there are d D 25 ODEs. Among the 25 species, chemical
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insight may identify 13 species as chemically stable, while 12 are so-called “free
radicals”. Hence, in a first QSSA treatment of the kind (1.54) (reported in [18]),
one might be tempted to come up with 13 ODEs and 12 algebraic equations. In this
case there exists no unique solution – as can be proven mathematically precisely;
this result also came out by application of the stiff integrator LIMEX, which is
equipped with a special uniqueness monitor (skipped here). If only 7 of the radicals
are selected for the algebraic equations (after some trial and error), then a unique
solution exists. However, the computing times are the same as without any QSSA
preprocessing. These results are arranged in Table 1.1.

Table 1.1 Computing time comparison of two
QSSA approaches for an ODE system originat-
ing from 47 chemical reactions for d D 25

species (due to [18]). Chemical insight would
indicate a subset of 12 species regarded as “free
radicals”, which mathematically leads to a prob-
lem that does not have a unique solution

25 ODE’s 0.48 sec.

13 ODE’s, 12AE’s no unique solution exists

18 ODE’s, 7 AE’s 0.49 sec.
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