
189© Springer International Publishing Switzerland 2015
N.S. Voros, C.P. Antonopoulos (eds.), Cyberphysical Systems for Epilepsy
and Related Brain Disorders, DOI 10.1007/978-3-319-20049-1_10

 Chapter 10
 System Middleware

 André Bideaux , Stefan Hey , Panagiota Anastasolpoulou ,
 Alberto Fernandez , Christos P. Antonopoulos ,
and Nikolaos S. Voros

 Abstract This document defi nes the middleware of a cyberphysical monitoring
system for epilepsy and related brain disorders. Taking into account requirements,
this document provides insights about the service functionalities of the middleware
and the interfaces connecting the different technologies in place within the system
middleware.

 The document is divided into two main parts, the fi rst part describes the func-
tional, non-functional and security aspects of the middleware, while the second part
is all necessary information about the middleware architecture.

 The middleware runs within the Home Gateway, it is the ICT part responsible to
connect sensor data to upper software layers (like personal health record service and
the tele-alarm and messaging manager). Furthermore it provides the necessary
infrastructure (thanks to the inclusion of a data stream management system) for the
development of on-line multi-parametric data processing. Upper software layers
connected are the Tele-alarm and Messaging Manager and the Personal Health
Record. All middleware components follow a SOA (service oriented architecture)
paradigm that allows easy scalability of the system.

 A. Bideaux (*) • S. Hey • P. Anastasolpoulou
 KIT Karlsruhe Institute of Technology, Institute for Information Technology ,
 Karlsruhe , Germany
 e-mail: andre.bideaux@kit.edu

 A. Fernandez
 Sensing and Control Systems S.L. , Barcelona , Spain

 C.P. Antonopoulos • N. S. Voros
 Embedded System Design and Application Laboratory, Computer and Informatics
Engineering Department , Technological Educational Institute of Western Greece ,
 Antirio , Greece

mailto:andre.bideaux@kit.edu

190

10.1 Middleware Requirements

10.1.1 Introduction

 This chapter defi nes the requirements related to the middleware platform. From sen-
sors devices to electronic health record interface and notifi cation applications, the
middleware address the needs of the interoperability that is required among the dif-
ferent technologies in place within cyberphysical monitoring for epilepsy and
related brain disorders and its functional goals.

 The main source of information used to develop middleware requirements are
user and sensor requirements, with main focus on the description of the services to
be delivered to the users; patients and healthcare professionals, and the specifi cation
of the scenarios and use cases.

 Specifi c privacy and security requirements have been devoted to security issues,
extracting main objectives to be accomplished at sensor/WSN and extrapolating the
implications to be developed at middleware level.

10.1.2 Functional Requirements

 The main purpose of Middleware is to create an isolation layer between the physical
world (sensors/fi eld devices) and high level applications.

 Due to the heterogeneous nature of the physical world, it is expected to have
many different fi eld devices (which likely will include sensors and a communica-
tion system) running different protocols and communication interfaces (serial, ip
(udp or tcp), etc.).

 At high level applications side, the creation of a standardised way of accessing
sensor data for online/offl ine processing is important for the application developers.
Application developers are managing the information from the service creation
point of view, hence isolating data access from underlying communication and
commissioning of fi eld sensors is mandatory.

 The communication between physical and application worlds is accomplished at
intermediate level between the two defi ned interfaces (online and offl ine). In this
middle layer several functions supported by a database will run to match the ser-
vices necessities. The description of the functional requirements is divided into the
following four parts: Functional Sensor Requirements, Functional Requirements of
Data Stream Management System (DSMS), Functional Requirements of Application
programming interfaces (API) and Functional Requirements of Notifi cation
services.

A. Bideaux et al.

191

10.1.2.1 Functional Sensor Requirements

 Within this section, all the functional requirements for/from sensors involved in the
whole System and related to the middleware are described. The following require-
ments are related to acquiring, processing and storing data from sensors described
in Chap. 8 :

• All the data must be time stamped appropriately, at a suffi cient level to perform
synchronisation among separate data modalities, e.g. EEG & ECG

• Data from Sensors must be streamed to the middleware
• Middleware drivers must collect the chunks of data from Sensor and pass them

to the online data stream management system (DSMS)
• Middleware can pull previously recorded data from the sensors.
• Middleware supports data input from sensors specifi ed in Chap. 8
• Middleware is able to store the data locally on the Home Gateway
• Alarms/Warnings can be originated by sensors (i.e. push button)

10.1.2.2 Functional Requirements of Data Stream Management
System (Online Analysis)

 The Data Stream Management System (DSMS) is the backbone for online analysis.
The following functional requirements describe the methods for online manage-
ment, fusion and analysis of sensor data:

• Detection of abnormal values: The system must detect abnormal values due to
improper use (e.g. motion artefacts) of sensors.

• The system need to use a variety of algorithms, to be able to deal with the stream-
ing nature of data in order to perform the online analysis effi ciently.

• The DSMS has to be confi gured to perform the desired analysis.
• Application errors need to be logged for effi cient error handling.
• The online algorithms must be able to detect epileptic seizures and their

patterns.
• Alarms/Warnings need to be originated by DSMS.
• Changing the confi guration parameters must be possible.
• Detection of modalities including a preset range of normal values (i.e. excessive

tachycardia and oxygen level excursions) for each patient individually.
• Use of activity sensor for diagnostic purposes involving cardiogenic triggers of

seizures.

10 System Middleware

http://dx.doi.org/10.1007/978-3-319-20049-1_8
http://dx.doi.org/10.1007/978-3-319-20049-1_8

192

10.1.2.3 Functional Requirements of the Application
Programming Interface (API)

 How do we interact with the middleware? What are the different integrations
between systems and middleware for user services? These functional requirements
are described as follow:

• Middleware will initiate the uploading of sensor data to the PHR via PHR-API
by notifying the upper layers.

• Middleware will send the raw data from sensors to the PHR-API by notifying the
upper layers.

• Confi guration parameters related to sensors are provided by upper layers (GUI/
PHR).

• Middleware will receive Patient ID from underlayed processes and services
which are controlled by the GUI.

• Alarms/Warnings can be originated by the upper layers.

10.1.2.4 Functional Requirements of Notifi cation services

 The middleware must ensure the communication between components. All the
requirements needed to communicate events, intercommunication processes and
send data to other managed systems are described as follow:

• Alarm notifi cation: Middleware must be able to pass alarms to the upper layers.
• Middleware will receive the confi guration parameters from the upper layers

(GUI).
• Middleware will be able to send the status of operations to the upper layers

(Upload progress, performing analysis, data sent, data error, etc.).
• Application errors can be send as notifi cations to the upper layers (GUI).
• Middleware will receive a ‘send sensor data’ trigger from the upper layers (GUI).
• Middleware will notify upper layers (GUI) whether the function used is in the

ON or OFF mode.
• Middleware will receive a ‘capture sensor data’ trigger from the upper layers

(GUI).
• Middleware will receive a ‘pause’ and ‘resume’ trigger from the upper layers

(GUI).

10.1.3 Non-functional Requirements

 Non-functional requirements for the middleware are qualities or standards that the
system has, but which are not tasks or features automated by the platform.

A. Bideaux et al.

193

 Non-functional requirements need to be made precise and actionable. “SMART”
requirements [1] have the following characteristics:

• Specifi c: without ambiguity, using consistent terminology, simple and at the
appropriate level of detail.

• Measurable: it is possible to verify that this requirement has been met.
• Attainable: technically feasible.
• Realizable: realistic, given the resources.
• Traceable: linked from its conception through its specifi cation to its subsequent

design, implementation and test.

 Regarding this set of characteristics, non-functional specifi cations for the mid-
dleware are described following the next areas:

10.1.3.1 Physical Technology

 The following technologies are used to ensure correct operation of the middleware
and they form the nucleus of all installations within the Home Gateway:

• Windows Web Server 2008 R2 64 bits
• SQL Server 2008 R2
• StreamInsigth™

10.1.3.2 Security

 The security aspects of middleware follow the requirements and specifi cations
which are documented in Chaps. 9 and 11 . The following points give an overview
about the most important requirements:

• Storing the activity for auditing.
• Anonymization of patient data (only the Middleware knows the patient ID).
• Using cryptographic random number generators to generate session IDs.
• Store credentials in a secure manner.
• Use Strong password policies.
• Encrypt communication channels to secure the authentication tokens.
• Authenticated API commands should be supported.

10.1.3.3 Compatibility/Interoperability

 Middleware establishes an outgoing applicative connection (TCP, UDP, SOAP, and
REST) towards the platform.

10 System Middleware

http://dx.doi.org/10.1007/978-3-319-20049-1_9
http://dx.doi.org/10.1007/978-3-319-20049-1_11

194

10.1.3.4 Reliability/Adaptivity

 New types of sensor networks and dynamical (re-) confi guration of data sources are
supported in the middleware through xAffect and unisens format. Additionally, the
middleware provides the basic building blocks for data communication between
different components like PHR, DSMS and SHACU. The particularities of the
information sent between those components are unknown by the middleware.

10.1.3.5 Robustness

 Periodical retrieval/upload of data is automated by the drivers and all the transfers
are reliable. Any failure in the system triggers automatic events to the administrator
in order to be monitored and recovered.

10.1.3.6 Connectivity

 The middleware needs a permanent or part time available, internet connection, to
upload the data and event notifi cations to the PHR.

10.1.3.7 Scalability

 The middleware is designed as a SOA (Service Oriented Architecture) platform.
The architecture is extremely loosely coupled and well distributed to provide full
scalability and effi ciency.

10.1.3.8 Deployment

 The middleware is tailored to be deployed locally at the Home Gateway. However,
the technology used allows it to be ready to be deployed on Fully Managed Web
Clusters. Therein supporting Software as a Service (SaaS) model with small modi-
fi cations, so being ready to scale on the cloud (making use of the massive scalability
of the cloud environment), and designed for fault tolerance, including management
and monitoring software components.

10.2 Middleware Architecture

 The principal objective of this Chapter is presenting an overview of the middleware
package. The document will provide insights on the functional and non-functional
aspects of the middleware. The architecture is based on ICT components which are
described in Fig. 10.1 . It highlights the middleware architecture within the overall
system.

A. Bideaux et al.

195

 As can be interpreted from Fig. 10.1 , middleware will be installed in a local per-
sonal computer (the Home Gateway). Data from the different modalities (EEG,
GSR, SPO2, etc…) will be acquired to the personal computer throughout an
encrypted wireless channel. Data will be stored and uploaded to PHR server in a
time confi gurable way (mainly in a daily basis scheme), from where data will be
accessible and presented in a friendly manner to authorized persons (doctors, care-
givers, etc…). When the on-line processing takes place, an event notifi cation trigger
can occur, by pressing the push button or by any event detection algorithm in the
DSMS component. Depending on the severity of the event, immediate notifi cation
to a caregiver will be triggered using the MS (Management Service—SHACU) and
immediate sensor data plus event information will be uploaded to PHR. Notice that
to allow upload of data a broadband connection at home is required.

10.2.1 Secure Incoming Data

 Security and privacy of patient data is of big concern in these cyberphysical systems
which have been addressed in Chap. 9 .

 Regarding the communication, part of the efforts in the project is being concen-
trated to secure communications at RF level between the sensors and the home
gateway by the provision of encryption/decryption engines.

 To provide a secure communication between sensor (modalities) and home gate-
way, both hardware and software solutions are possible. While Chap. 9 explains the
encryption phase, the following subsections describe two alternatives for the decryp-
tion of sensor data being sent through RF channels. The encrypted data reaching the
middleware needs to be decrypted for online processing. There are two ways of
decrypting the data, which are described within this chapter, hardware and software
decryption.

Tele alarm
and Messaging
Manager I/F

PHR I/FPHR API

Service Bus

RabbitMQ TM

(server)

Sensor RAW
data sets

Streamlnsight TM

Middleware

Middleware Orchestration

Alarms/Events

Config/Parameters

Start/Stop

Data Stream Management System

Metadata DataBase
&

Config

xAffect
Driver

Communication
Handlers

Parsers

xAffect

Modalities

 Fig. 10.1 Middleware architecture

10 System Middleware

http://dx.doi.org/10.1007/978-3-319-20049-1_9
http://dx.doi.org/10.1007/978-3-319-20049-1_9

196

10.2.1.1 Hardware Decryption Engine

 Hardware decryption module follows the same 8-bit architecture presented in
Chap. 9 . As done in encryption phase, decryption commences by executing the
expansion operation in order to produce all intermediate requires keys. After the
completion of the key expansion phase the decryption module is ready for the 128-
bit data blocks processing. Due to the 8-bit data-path architecture that is used, 16
clock cycles are required to load/unload the 128-bit ciphertext/plaintext block. The
input block is decrypted by performing four different byte-oriented transforma-
tions, which are executed sequentially and repeatedly (as rounds); the transforma-
tions are: Add Round Key, InvSubstitute Bytes, InvShift Rows and InvMix
Columns. The resulted intermediate decipher result, known as state, is stored and
updated at the end of each round. The number of rounds depends on the size of the
key. The actual key size and the number of rounds are confi gured via the KEY_
SIZE input as shown in Table 10.1 . Note that, since the key size determines the
number of rounds, it also affects the latency of the decryption module. Respective
delay and throughput performance is presented in Table 10.1 .

10.2.1.2 Software Decryption Engine

 A decryption module can be developed within xAffect. Its deciphering process can
be abstracted as much as possible providing wide algorithm customization.

 This module should be designed to be fl exible and adaptable which results a
highly reusable ciphering/deciphering component that can be used within all the
functionalities that xAffect provides, like data collection, data logging, data send-
ing, etc.

10.2.2 Data Fusion

 Data Fusion is a process dealing with the association, correlation, and combination
of data and information from single and multiple sources. Multi sensor data fusion
refers to the acquisition, processing and synergistic combination of information
gathered by various knowledge sources and sensors to provide better understanding
of a phenomenon.

 Table 10.1 Decryption module processing delay and throughput rate (@200 MHz operating
frequency)

 Key size (bits) Processing delay (in clock cycles) Throughput rate (Mbps)

 128 480 53.3
 192 582 44.4
 256 684 37.4

A. Bideaux et al.

http://dx.doi.org/10.1007/978-3-319-20049-1_9

197

 The most important part of data fusion is, the data itself. Therefore, it is crucial
to take care during the capturing in order to minimize uncertainties. However, there
is one aspect that is sometimes left behind and in some cases it is the most relevant:
adapt metadata in a common format in order to simplify the process.

 The data fusion can be classifi ed as low level fusion of data, high level variable
fusion and mixture level fusion. When the data fusion is performed before analysis,
it is classifi ed as low level. When the data fusion is performed after some data analy-
sis, it is classifi ed as high level variable fusion. There are some situations where we
can fuse data and variables.

 The overall system architecture, depicted in Fig. 10.1 , shows the two paths where
processing of sensor data takes place. On-line multi-parametric data processing and
analysis takes place at the Home Gateway, while the off-line multi-parametric data
processing takes place in different server/database, by (i) accessing/acquiring sen-
sor data from the PHR (previously captured by the system) or by (ii) accessing/
acquiring sensor data from external databases not belonging to the system itself.
The data fl ow is depicted in Fig. 10.2 .

 An interesting relation in Fig. 10.2 is between off and on line processing. The goal
of Off-line processing is to detect relations between different modalities throughout
extensive data analysis. Online processing on the other hand is used to detect events
of special interest and reduce the data amount by processing the raw data.

PHR
Sensor

Raw
DataBase

KCL
Sensor

Raw
DataSets

UoP
Sensor

Raw
Data Sets

AAISCS
Sensor

Raw
Data Sets

xAffect On-Line
Processing

Home Gateway

3rd Party
Sensor

Raw
DataSets

Off-Line
Sensor

Raw
DataBase

Off-Line
Processing

Algorithms

PHR Profiles

 Fig. 10.2 Data fusion within the system

10 System Middleware

198

10.2.2.1 xAffect Framework

 To connect all the data online, synchronize and handle it a lean and open framework,
which can be personalized and reconfi gured for each patient, is needed. xAffect is a
software framework developed by the Research Center for Information Technology,
Karlsruhe, Germany. It was developed in Java to fulfi ll real-time data processing,
easy integration of different data sources, easy integration of algorithms and data
logging of raw as well as derived data [2]. Libraries for some common sensors
already exist in xAffect. To use a broad spectrum of bio-signals, additional libraries
need to be implemented. The data format which is being used is the unisens- format.
This is a universal and generic format suitable for recording and archiving sensor
data from various recording systems and with various sampling frequencies [3].

 The current version of xAffect can be modifi ed in order to customize the inter-
face for the middleware, which is necessary to achieve the performance and the
required functionality for the system.

 The changes that need to be made are:

• Additional libraries for sensors (To use a broad spectrum of sensors, non-existing
libraries had to be written).

• Decryption module (data from sensors need to be ciphered).
• Data acquisition pause/resume to achieve the needs for the control of the sensor

data acquisition.
• A custom notifi cation module for communicating xAffect state to middleware

DSMS.
• Extended data recording functionalities to provide confi gurable fi le splitting (in

order to reduce high network consumption during heavy data uploads), alarm
signal detection and a communication system with middleware and PHR.

• Extended data streaming functionalities to provide hot-plug client connections
and custom xml output data formats (including gzip for network traffi c
optimization).

10.2.3 Graphical User Interface (GUI)

 The Graphical User Interface handles the communication between the components
and the User.

 The GUI, shown in Fig. 10.3 is an example of how this part could look like.
In the GUI, the user enters username and password and the patient-id. With the
patient- id, the middleware will download the personalized profi le from the
PHR. Afterwards the user can press the confi gure button to initialize the communi-
cation with the sensors. Furthermore the profi le contains information about the
alarm settings. This enables the middleware to set up the DSMS with the custom-
ized alarm set [4].

A. Bideaux et al.

199

 When the confi guration process fi nished successfully the user is able to start the
measurement by pressing the record button. During recording the data is streamed
from the sensors through xAffect towards the DSMS and the storage. The middle-
ware takes the data from the storage and uploads it in junks to the PHR. In case an
Event occurs the data will be uploaded immediately. This ensures that when an
alarm will be send to a clinician, the data will be ready for downloading and view-
ing. Furthermore, the GUI allows users to pause or resume the measurement. This
allows the subject to interrupt the data acquisition and move out of the systems
Bluetooth range.

10.2.4 Data Stream Management System (DSMS)

 DSMS function takes place in on-line scenario, where real time processing of
modalities is performed. In order to achieve it, minor adaptation of the xAffect™
stream connector of the sensor data being delivered to Middleware has been intro-
duced in order to assure no sensor data is lost.

 DSMS is based on Microsoft™ StreamInsight™ platform created for the
development and deployment of complex event processing (CEP) applications.

 Fig. 10.3 Example of a graphical user interface for a system middleware

10 System Middleware

200

It’s a high-throughput stream processing architecture that uses .Framework-based
development platform.

 The development of DSMS allows sensor data to be received from xAffect™ in
real time, synchronize it in a lossless way and feed it to computation algorithms.
At the end, a framework is provided that enables the creation of own queries and
policies over data (from now on Middleware Framework).

 In order to explain data workfl ow within Middleware, we need to introduce some
concepts related to StreamInsight™ as follow:

• Sources : They are data providers and can be implemented with adapters,
IEnumerable or IObservable objects. They are in charge of collecting data, fi t it
into a payload, generate an appropriate timestamp (if needed) and redirect it to
StreamInsight’s core adding appropriate CTI (Current Time Increment) inser-
tions. Sources are IObservable objects built with information coming from xAf-
fect through TCP sockets.

• Queries : All data from sources goes directly to StreamInsight core (in any num-
ber of streams) where it’s processed in order to satisfy one or more queries
(LINQ). That will produce an output that will go to the data consumers (observ-
ers) where custom operations can be defi ned. It can also compute different opera-
tions depending on query such as aggregation, unions, max/min etc.

• Consumers : They are pieces of software which main function is processing data
output from StreamInsight™ queries. They are usually implemented with the
observer interface so it can be easy to notify them when new data is available.

 Lossless stream between xAffect and DSMS can be achieved by using TCP
channels. Then synchronized sensor data can be provided by using the built-in
architecture of StreamInsight™ available through the highly fl exible and confi gu-
rable Insight framework which allows researchers to gather and analyze customized
data structures derived from StreamInsight™ output.

10.2.4.1 Push Button Processing

 One of the services provided by middleware is the processing of the marker button
in the Bioplux™ device if it is confi gured as alarm push button.

 When the user press the Bioplux™ push button, xAffect™ captures the event and
records it. Additionally it sends the push button raw data through the IP connection
to Middleware DSMS.

 Middleware DSMS canalizes the push button raw data to StreamInsight™ core.
The Middleware Framework contains a developed query to detect alarm signals, if
it successfully detects an alarm condition. It notifi es the event manager which builds
and sends a XML message to the upper layers of the software (as can be seen in
Fig. 10.1). Also if the user has defi ned more queries to detect alarms they would
produce appropriate output that would be handled within a defi ned observer.
Figure 10.4 depicts the complete data workfl ow.

A. Bideaux et al.

201

10.2.5 Event Notifi cation

 One of the objectives of Middleware DSMS is to be able to deliver alarm/warning
events to high level applications. One of these events is the push button detection.
Further events are for example alpha rhythm detection or seizure detection. The
workfl ow of the event notifi cation is shown in Fig. 10.5 .

 The module that communicates events within the middleware is called the
Notifi cation Manager which is explained in the next subsection.

10.2.5.1 Event Observer Output Format

 In order to have a common way of communicating alarm/warning events from the
observers to the notifi cation manager, a guideline has been established. This guide-
line specifi es the usage of a common Alarm data structure defi ned inside the
Middleware Framework.

 Fig. 10.4 Middlewaredata work fl ow

 Fig. 10.5 Middleware DSMS notifi cation manager module workfl ow

10 System Middleware

202

 This data structure defi nes three common fi elds which must be specifi ed in order
to generate a valid notifi cation:

• ID: Identifi es the event (for instance, 129 = push button)
• Type: Describe the kind of notifi cation (ALARM/WARNING)
• Timestamp: Describes the event detection time

 With this data the Notifi cation Manager will be able to generate valid alert
 messages for each defi ned interface. An example can be found in Table 10.2 for the
push button event.

10.2.5.2 Notifi cation Manager

 The Notifi cation Manager module is mainly designed to detect anomalies or special
situations in DSMS input-output raw data. It generates custom messages and for-
wards them to the specifi ed endpoints. We can see in Fig. 10.5 how it is integrated
within Middleware Data workfl ow.

 After detecting an event that requires to be notifi ed, the Notifi cation Manager
generates a suitable message (according to its confi guration rules) and queues it.
Then an automatic process takes the message and sends it through many interfaces
as needed using any specifi c communication channel or protocol that each interface
requires.

 Table 10.2 Example XML notifi cation for push-button event

A. Bideaux et al.

203

 By default this module is confi gured to send XML messages related to alarms/
events. The XML basic structure is defi ned to identify when the event happened, the
event type and to which ID it is related. Table 10.2 shows an example of xml packet
related to a notifi cation of an alert event.

10.3 Conclusions

 Sets of multiple sensors are required to acquiring the data needed to handle patient’s
epileptic disorders. That’s why the middleware is the most important part of the
whole system. The encrypted data streams will be decrypted, fused and streamed to
the DSMS. The DSMS handles the live data analysis and will detect events of spe-
cial interest. These events will then be reported via PHR to the clinicians, who will
have direct access to the important data.

 Tests under clinical conditions showed that the described system is able to han-
dle online analysis with the sensor data. Events like a push button or the detection
of alpha rhythms can be detected reliably and sent from the notifi cation manager
towards the PHR.

 References

 1. Mannion M, Keepence B (1995) SMART requirements. ACM SIGSOFT Software Engineering
Notes 20(2): 42–47. http://www.win.tue.nl/~wstomv/edu/2ip30/references/smart- requirements.
pdf

 2. Schaaff K, Mueller L, Kirst M. http://www.xaffect.org
 3. Kirst M, Ottenbacher J. www.unisens.org
 4. Bideaux A, Anastasopoulou P, Hey S, Cañadas A, Fernandez A (2014) Mobile monitoring of

epileptic patients using a reconfi gurable cyberphysical system that handles multi-parametric
data acquisition and analysis. In: Proceedings of the 2014 EAI international conference on
wireless mobile communication and healthcare (MobiHealth), Athens, pp 377–380

10 System Middleware

http://www.win.tue.nl/~wstomv/edu/2ip30/references/smart-requirements.pdf
http://www.win.tue.nl/~wstomv/edu/2ip30/references/smart-requirements.pdf
http://www.xaffect.org/
http://www.unisens.org/

	Chapter 10: System Middleware
	10.1 Middleware Requirements
	10.1.1 Introduction
	10.1.2 Functional Requirements
	10.1.2.1 Functional Sensor Requirements
	10.1.2.2 Functional Requirements of Data Stream Management System (Online Analysis)
	10.1.2.3 Functional Requirements of the Application Programming Interface (API)
	10.1.2.4 Functional Requirements of Notification services

	10.1.3 Non-functional Requirements
	10.1.3.1 Physical Technology
	10.1.3.2 Security
	10.1.3.3 Compatibility/Interoperability
	10.1.3.4 Reliability/Adaptivity
	10.1.3.5 Robustness
	10.1.3.6 Connectivity
	10.1.3.7 Scalability
	10.1.3.8 Deployment

	10.2 Middleware Architecture
	10.2.1 Secure Incoming Data
	10.2.1.1 Hardware Decryption Engine
	10.2.1.2 Software Decryption Engine

	10.2.2 Data Fusion
	10.2.2.1 xAffect Framework

	10.2.3 Graphical User Interface (GUI)
	10.2.4 Data Stream Management System (DSMS)
	10.2.4.1 Push Button Processing

	10.2.5 Event Notification
	10.2.5.1 Event Observer Output Format
	10.2.5.2 Notification Manager

	10.3 Conclusions
	References

