
Chapter 8
The Near-Horizon Limit

Jiří Daněk

Abstract We present a new analytic coordinate system covering the whole global
extension of the ultra-extreme Reissner-Nordström-de Sitter spacetime, analyse
radial motions of two particles of different charges and demonstrate our results in
an exact Penrose diagram. Further, we use the near-horizon limit to analyse the
energy of particles’ collisions near the ultra-extreme horizon, which lead to unbound
collision energy in the center of mass system, and relate our results to the previ-
ously established behavior on simple and extreme horizon of Reissner-Nordström
black hole.

8.1 Introduction

In the past black hole horizons enjoyed great attention because of the misunderstand-
ing of coordinate singularities located on them in the original coordinate systems.
With the understanding of coordinates’ properties and discovery of equivalent non-
singular coordinate systems, the peculiarity of the horizons faded a bit, but black hole
horizons are still drawing attention due to their role in the global causal and geomet-
ric properties of spacetimes. The near-horizon limit is one way of investigating the
direct proximity of an arbitrary horizon and lets us forget about the distant regions we
are not interested in. Behaviour of free test particles can also reveal many interesting
features of spacetimes and is another tool for investigating the near-horizon regions.

Recently, collision processes leading to unbound collision energies in the center
of mass system were found to occur in the direct proximity of the extreme horizon of
Kerr black hole [1]. Later it was proven that the extreme horizon of the static charged
Reissner-Nordström black hole (RN) can also exhibit unbound collision energy and
serve as a particle accelerator as well [7]. Similar investigation was also performed
for the single inner horizon [6] of RN or for the single cosmological horizon of
Reissner-Nordström-de Sitter spacetime (RNdS) [8].
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Article is to search for unbound collision energy near the so far neglected ultra-
extreme (U-E) horizon of the U-E RNdS (i.e., 9M2 = 8Q2 = 2/Λ [2]), the metric
of which can be written as

ds2 = −f (r) dt2 + 1

f (r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (8.1)

with the lapse function f (r) = − Λ
3r2

(r − N )(r − rt )
3 where N = −3rt , rt =

(2Λ)−1/2.
This paper is organized as follows: In Sect. 8.2 we will find a new continuous

coordinate patch covering the whole global extension of RNdS. The geodesics of
radial charged test particles will be investigated in Sect. 8.3. In Sect. 8.4 we will
use the near-horizon limit to investigate the collision energy near the U-E horizon.
Finally, we will demonstrate our results and collision in an exact Penrose diagram
(Fig. 8.1).

8.2 Analytic Coordinates of Ultra-Extreme RNdS

Since the case of the U-E horizon is not sufficiently explored in the literature we
suggest a new coordinate system of compact coordinates (U, V ) continuous across
the triple horizon. We will adapt a method used for Schwarzschild in [4].

Firstly, we need to give the relation for the tortoise coordinate r�
u . Due to the

definition dr�
u

dr = 1
f(r) one gets the following partial fraction decomposition

dr�
u

dr
= Au

(r − rt )3
+ Bu

(r − rt )2
+ Cu

r − rt
+ Du

r − N
, (8.2)

with constants

Au = − 3r3t
2 , Bu = − 21r2t

8 , Cu = − 27rt
32 and Du = + 27rt

32 . (8.3)

Now we can solve the differential equation (8.2) and find a solution

r�
u = −1

2

Au

(r − rt )2
− Bu

(r − rt )
+ Cu ln

∣∣∣∣
r

rt
− 1

∣∣∣∣ + Du ln
∣∣∣ r

N
− 1

∣∣∣ . (8.4)

Secondly, we will implicitly define new variables
(

Û , V̂
)
as

r�
u = +h(Û ) + h(V̂ ),

t = −h(Û ) + h(V̂ ),
(8.5)
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Fig. 8.1 Weplotted the paths of four critical and two special particles in the global Penrose diagram
of the U-E RNdS with crosses denoting equidistant values of proper time. We distinguish between
critical particles with dt

dr < 0 and dt
dr > 0. As we can see, the points become denser as the critical

particles approach the triple horizon, which demonstrates the inability of critical particles to reach
the U-E horizon at a finite value of their proper time. On the other hand, special particles cross
the horizon with a finite value of their proper time. All special particles have Xsp > 0 along their
paths. In region I collision energy of special particle and critical particle with dt

dr < 0 diverges more
strongly than in the case dt

dr > 0. The stronger divergence does not appear in region II since all
future-oriented particles have Xi > 0 there and the PS effect is causally prohibited. Two special
particles in the diagram differ only in their time of release and the differences in their paths originate
from the nontrivial new coordinate path (U, V ). Critical particles would reach infinities and the
singularity, but we stopped their trajectories at suitable values of the radial coordinate r

where h(x) is a suitable function, which will be discussed later. The new coordinates
are directly connected to the classical Eddington-Finkelstein null coordinates u =
t − r�

u = −2h(Û ) and v = t + r�
u = 2h(V̂ ).
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Thirdly, we rewrite the metric of the U-E case as

ds2 = 4f (r) h′(Û )h′(V̂ )dUdV + r2dΩ2
2 , (8.6)

where prime denotes derivative with respect to the variable of a function.
At last, we have to determine the form of the function h(x) in order to keep the

metric elements smooth and nonzero on the horizon. There is no unique form of h(x)

ensuring our requirements, therefore, we define h(x), which is injective on each of
the distinct intervals x ∈ (−π

2 , 0
)
and x ∈ (

0, π
2

)
separately, to be of the form

h(x) = −1

2

Au

tan2(x)
− Bu

tan(x)
+ Cu ln |tan(x)| − tan2(x). (8.7)

Introduction of tangents ensures compactness of the new coordinates
(

Û , V̂
)
.

The new coordinate system covers the whole U-E RNdS and even its global
extension despite the usual pathological points

(
i π
2 , j π

2

)
, where i, j ∈ {−1, 0, 1}.

Definitions U =
√
2
2

(
Û − V̂

)
and V =

√
2
2

(
Û + V̂

)
only rotate the final Pen-

rose diagram.

8.3 Test Particles in the Ultra-Extreme RNdS

The path of a general radial, massive and charged particle in U-E RNdS spacetime
is given by the differential equation

dt

dr
= ±

(
E − Qε

r

)
×

⎛
⎝f (r)

√(
E − Qε

r

)2

− f (r)

⎞
⎠

−1

, (8.8)

where the sign sets the direction of motion, E is the constant of motion connected
to the time-like Killing vector and ε is the specific charge of the particle [5].

The equation simplifies enough to be solvable for two special particles listed in
the following subsections.

The solutions involve integrals of the form Intn(r, p) = ∫ (
(r − p)n

√
r2 + Br + A

)−1

dr , the solutions of which are given as
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Int1(r, p) = − 1√
a
ln

∣∣∣∣∣
2a + b(r − p) + 2

√
a R

r − p

∣∣∣∣∣ for a > 0, (8.9)

Int2(r, p) =
√

R

a(r − p)
− b

2a
Int1(r, p),

Int3(r, p) =
( −1

2a(r − p)2
+ 3b2

4a2(r − p)

) √
R +

(
3b2

4a2 − c

2a

)
Int1(r, p),

with R = r2 + Br + A, b = 2p + B and a = p2 + Bp + A according to [3].

8.3.1 Special Particle

The special particle is defined by its specific values E = M
Qε

and ε = ±1 where sigh
is chosen to satisfy condition Qε > 0. The trajectory

± t sp
u (r) = Asp

u Int3(r, rt ) + Bsp
u Int2(r, rt ) + Csp

u Int1(r, rt ) + Dsp
u Int1(r, N ) + Esp

u ,

(8.10)
solves (8.8), where Esp

u is one arbitrary constant,

Asp
u = −

√
3r4t
2 Bsp

u = − 19
√
3r3t
8 , Csp

u = − 45
√
3r2t

32 , and Dsp
u = + 45

√
3r2t

32 . (8.11)

We also substituted A = − 2r2t
3 ,B = 0 into the integrals (8.9).

8.3.2 Critical Particle

The critical particle is characterized by a fine-tuned value of its specific charge
ε = Ert

Q , for which (8.8) can be solved as

± tcr
u (r) = Acr

u Int3(r, rt ) + Bcr
u Int2(r, rt ) + Ccr

u Int1(r, rt ) + Dcr
u Int1(r, N ) + Ecr

u ,

(8.12)
with one arbitrary constant Ecr

u , constants Acr
u = E√

6rt
Au , Bcr

u = E√
6rt

Bu , etc.

Expressions A = 3r2t (2E2 − 1), B = 2rt must be substituted into (8.9).
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8.4 Collision with Unbound Collision Energy in C.M.S

A radial charged particle has a 4-velocity uμ
i =

(
Xi

f(r) ,∓Zi , 0, 0
)
, where Xi =(

Ei − Qεi
r

)
and Zi =

√
X2

i − f (r). Let us examine the collision energy of two

particles in their center of mass system. Let particle i = 1 be critical and particle
i = 2 non-critical (e.g., special).

The total energy in the center ofmass frame of the two colliding particles E2
C.M. =

− (
m1u1μ + m2u2μ

) (
m1uμ

1 + m2uμ
2

)
. If we assume both particles to have the same

rest mass m1 = m2 = m, we can write the last formula as
E2

C.M.

2m2 = 1 + X1X2−Z1Z2
f(r) .

In the near-horizon limit (i.e., r ∼ rt ) we can expand these terms as

Z1 ≈ ∣∣1 − rt
r

∣∣ [|E1| + Λr2
6|E1|

(
1 − N

r

) (
1 − rt

r

)]
, Z2 ≈ |X2(H)| − f(r)

2|X2(H)| ,
(8.13)

with X2(H) = X2(r = rt ) �= 0. Introducing a new near-horizon coordinate εt :=
r−rt

rt
and substituting the above expressions into

E2
C.M.

2m2 , we are led to the expression

E2
C.M.

2m2 ≈ 3

∣∣E1X2(H)

∣∣ (1 + εt )δs1,−s2

sign(εt )ε
2
t

+ 1

2

∣∣∣∣
X2(H)

E1εt

∣∣∣∣ + O(ε0t ), (8.14)

where s1 := signX1, s2 := signX2(H) and δi, j is the Kronecker delta. There is a
problem for X1X2 < 0 on the static side as the location of the collision approaches
the horizon (i.e., εt → 0−), since then E2

C.M. → −∞. Fortunately, the so-called
PS process with X1X2 < 0 is prohibited here by a causality violation. Particle with
Xi > 0 would move towards the future while particle with X j < 0 would be past-
oriented. On the nonstatic side, t is not a time-like coordinate and motions with
X1X2 < 0 can occur.

8.5 Conclusions

We have examined paths of radial charged particles and discovered that special
particles are repulsed by the black hole charge and do not fall into the singularity.
They can even reach three regions of globally extended U-E RNdSwith a finite value
of their proper time. Particle collisions involving the critical particle in the proximity
of the U-E horizon exhibit resemblance to the collisions near an extreme horizon and
result in infinite collision energies in C.M. The U-E horizon possesses properties of
the inner and cosmological non-extreme horizons, since the order of collision energy
divergence is not the same on both sides of the triple horizon.
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