
Chapter 6
A Physical Derivation of the Kerr–Newman
Black Hole Solution

Reinhard Meinel

Abstract According to the no-hair theorem, the Kerr–Newman black hole solution
represents the most general asymptotically flat, stationary (electro-) vacuum black
hole solution in general relativity. The procedure described here shows how this solu-
tion can indeed be constructed as the unique solution to the corresponding boundary
value problem of the axially symmetric Einstein–Maxwell equations in a straight-
forward manner.

6.1 Introduction: From Schwarzschild to Kerr–Newman

The Schwarzschild solution, depending on a single parameter (mass M), represents
the general spherically symmetric vacuum solution to the Einstein equations. Simi-
larly, theReissner–Nordström solution, depending on two parameters (M and electric
charge Q), is the general spherically symmetric (electro-) vacuum solution to the
Einstein–Maxwell equations. In contrast, the Kerr–Newman solution, depending on
three parameters (M , Q and angular momentum J ), is only a particular station-
ary and axially symmetric electro-vacuum solution to the Einstein–Maxwell equa-
tions. However, one can show under quite general conditions that the Kerr–Newman
solution represents the most general asymptotically flat, stationary electro-vacuum
black hole solution (“no-hair theorem”). Important contributions to the subject of
black hole uniqueness were made by Israel, Carter, Hawking, Robinson and Mazur
(1967–1982), for details see the recent review [3].

Assuming stationarity and axial symmetry, it is indeed possible to derive theKerr–
Newman black hole solution in straightforwardmanner, by solving the corresponding
boundary value problem of the Einstein–Maxwell equations [7]. In the following
sections, an outline of this work will be given. The method is a generalization of the
technique developed for solving a boundary value problem of the vacuum Einstein
equations leading to the global solution describing a uniformly rotating disc of dust in
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terms of ultraelliptic functions [12, 13], see also [9]. It is based on the “integrability”
of the stationary and axisymmetric vacuum Einstein and electro-vacuum Einstein–
Maxwell equations via the “inverse scattering method”, see [1]. In the pure vacuum
case, the method was also used to derive the Kerr black hole solution [9, 10, 13].

6.2 Einstein–Maxwell Equations and Related
Linear Problem

The stationary and axisymmetric, electro-vacuum Einstein–Maxwell equations are
equivalent to the Ernst equations [4]

f ΔE = (∇E + 2Φ̄∇Φ) · ∇E , f ΔΦ = (∇E + 2Φ̄∇Φ) · ∇Φ (6.1)

with f ≡ �E + |Φ|2 , Δ = ∂2

∂ρ2 + 1

ρ

∂

∂ρ
+ ∂2

∂ζ 2 , ∇ = (
∂

∂ρ
,

∂

∂ζ
). (6.2)

The line element reads

ds2 = f −1[ h(dρ2 + dζ 2) + ρ2dφ2] − f (dt + A dφ)2, (6.3)

where the coordinates t and φ are adapted to the Killing vectors corresponding to
stationarity and axial symmetry:

ξ = ∂

∂t
, η = ∂

∂φ
. (6.4)

We assume an asymptotic behaviour as r → ∞ (ρ = r sin θ , ζ = r cos θ ) given
by

�E = 1 − 2M

r
+ O(r−2) , �E = −2J cos θ

r2
+ O(r−3) , Φ = Q

r
+ O(r−2)

(6.5)
corresponding to asymptotic flatness and the absence of a magnetic monopole term
(Q real). The metric functions h and A can be calculated from the complex Ernst
potentials E (ρ, ζ ) and Φ(ρ, ζ ) according to

(ln h),z = ρ

f 2
(E,z + 2Φ̄Φ,z)(Ē,z + 2ΦΦ̄,z) − 4ρ

f
Φ,zΦ̄,z , (6.6)

A,z = iρ

f 2
[(�E ),z − iΦ̄Φ,z + iΦΦ̄,z] (r → ∞ : h → 1, A → 0). (6.7)
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Here complex variables
z = ρ + iζ, z̄ = ρ − iζ (6.8)

have been used instead of ρ and ζ . Note that f has already been given in (6.2). The
electromagnetic field tensor

Fik = Ak,i − Ai,k , Ai dxi = Aφdφ + Atdt (6.9)

can also be obtained from the Ernst potentials:

At = −�Φ, Aφ,z = A At,z − iρ

f
(�Φ),z (r → ∞ : Aφ → 0). (6.10)

The Ernst equations (6.1) can be formulated as the integrability condition of a
related Linear Problem (LP). We use the LP of [11] in a slightly modified form,
which is advantageous in the presence of ergospheres:

Y,z =
⎡
⎣

⎛
⎝

b1 0 c1
0 a1 0
d1 0 0

⎞
⎠ + λ

⎛
⎝

0 b1 0
a1 0 −c1
0 d1 0

⎞
⎠

⎤
⎦ Y, (6.11)

Y,z̄ =
⎡
⎣

⎛
⎝

b2 0 c2
0 a2 0
d2 0 0

⎞
⎠ + 1

λ

⎛
⎝

0 b2 0
a2 0 −c2
0 d2 0

⎞
⎠

⎤
⎦ Y (6.12)

with

λ =
√

K − iz̄

K + iz
, (6.13)

a1 = b̄2 = E,z + 2Φ̄Φ,z

2 f
, a2 = b̄1 = E,z̄ + 2Φ̄Φ,z̄

2 f
, (6.14)

c1 = f d̄2 = Φ,z , c2 = f d̄1 = Φ,z̄ . (6.15)

The integrability condition
Y,zz̄ = Y,z̄z (6.16)

is equivalent to the Ernst equations. The following points are relevant for the appli-
cation of soliton theoretic solution methods:

• The 3× 3 matrix Y depends not only on the coordinates ρ and ζ (or z and z̄), but
also on the additional complex “spectral parameter” K .

• Since K̄ does not appear,we can assumewithout loss of generality that the elements
of Y are holomorphic functions of K defined on the two-sheeted Riemann surface
associated with (6.13), except from the locations of possible singularities.
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• Each column ofY is itself a solution to the LP.We assume that these three solutions
are linearly independent.

• For a given solution E , Φ to the Einstein–Maxwell equations, the solution to the
LP can be fixed (normalized) by prescribing Y at some point ρ0, ζ0 of the ρ-ζ
plane as a (matrix) function of K in one of the two sheets of the Riemann surface.

• Y can be discussed in general as a unique function of ρ, ζ and λ.

Three interesting relations result directly from the structure of the LP (6.11), (6.12):

[ f (ρ, ζ )]−1det Y(ρ, ζ, λ) = C0(K ), (6.17)

Y(ρ, ζ,−λ) =
⎛
⎝
1 0 0
0 −1 0
0 0 1

⎞
⎠ Y(ρ, ζ, λ)C1(K ), (6.18)

[
Y(ρ, ζ, 1/λ̄)

]†
⎛
⎝

[ f (ρ, ζ )]−1 0 0
0 −[ f (ρ, ζ )]−1 0
0 0 −1

⎞
⎠ Y(ρ, ζ, λ) = C2(K ), (6.19)

where C0(K ) as well as the matrices C1(K ) and C2(K ) do not depend on ρ and ζ .

6.3 Solving the Black Hole Boundary Value Problem

After formulating the black hole boundary value problem, we will use the LP to find
its solution. The most important part comprises deriving the Ernst potentials on the
axis of symmetry [7]. It is well known that these “axis data” uniquely determine the
solution everywhere, see [5, 14]. A straightforward method for obtaining the full
solution from the axis data is based on the analytical properties of Y as a function of
λ [8].

6.3.1 Boundary Conditions

The event horizon H of a stationary and axisymmetric black hole is characterized
by the conditions

H : χ iχi = 0 , χ iηi = 0 , (6.20)

where χ i ≡ ξ i + Ωηi and the constant Ω is the “angular velocity of the horizon”
[2, 6]. Because of

ρ2 = (ξ iηi )
2 − ξ iξiη

kηk = (χ iηi )
2 − χ iχiη

kηk (6.21)
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Fig. 6.1 In Weyl coordinates, the horizon is either a finite interval or a point on the ζ -axis (adapted
from [7])

the horizon must be located on the ζ -axis of our Weyl coordinate system:

H : ρ = 0. (6.22)

This results in two possibilities for a connected horizon1: (i) a finite interval on the ζ -
axis and (ii) a point on the ζ -axis, see Fig. 6.1. Note that the two parts of the symmetry
axis, A + and A −, where the Killing vector η vanishes, are also characterized by
ρ = 0. The black hole boundary value problem consists of finding a solution that is
regular everywhere outside the horizon and satisfies (6.20) and (6.5).

6.3.2 Axis Data

At ρ = 0, the branch points K = iz̄ and K = −iz of (6.13) merge to K = ζ and for
K �= ζ holds λ = ±1. Consequently, the solution to the LP, for λ = +1, is of the
form

A ± : Y± =
⎛
⎝
Ē + 2|Φ|2 1 Φ

E −1 −Φ

2Φ̄ 0 1

⎞
⎠ C±, (6.23)

H : Yh =
⎛
⎝
Ē + 2|Φ|2 1 Φ

E −1 −Φ

2Φ̄ 0 1

⎞
⎠ Ch. (6.24)

1A connected horizon means a single black hole. We are not interested here in the problem of
multi-black-hole equilibrium states.
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We fix C+(K ) by the normalization condition

lim
K→ζ

Y+(ζ, K ) =
⎛
⎝
1 1 0
1 −1 0
0 0 1

⎞
⎠ ⇒ C+ =

⎛
⎝

F 0 0
G 1 L
H 0 1

⎞
⎠ (6.25)

and the functions F(K ), G(K ), H(K ) and L(K ), for K = ζ , are given by the
potentials E = E+, Φ = Φ+ on A +:

F(ζ ) = [ f+(ζ )]−1, G(ζ ) =
[
|Φ+(ζ )|2 + i�E+(ζ )

]
[ f+(ζ )]−1, (6.26)

H(ζ ) = −2Φ̄+(ζ )[ f+(ζ )]−1, L(ζ ) = −Φ+(ζ ) (6.27)

and, vice versa,

E+(ζ ) = 1 − Ḡ(ζ )

F(ζ )
, Φ+(ζ ) = − H̄(ζ )

2F(ζ )
. (6.28)

We can calculate C0(K ), C1(K ) and C2(K ) of relations (6.17)–(6.19) for our nor-
malization:

C0 = −2F, C1 =
⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠ , C2 =

⎛
⎝

0 2F 0
2F 0 0
0 0 −1

⎞
⎠ . (6.29)

On A +, (6.19) reads

[
C+(K̄ )

]†
⎛
⎝
0 2 0
2 0 0
0 0 −1

⎞
⎠ C+(K ) =

⎛
⎝

0 2F 0
2F 0 0
0 0 −1

⎞
⎠ . (6.30)

From continuity conditions at the “poles” of the horizon (ρ = 0, ζ = ±l or
r = 0, θ = 0, π ; see Fig. 6.1) and using the boundary conditions, one can calculate
Ch(K ) and C−(K ) in terms of C+(K ), for details I refer to [7]. Closing the path
of integration via infinity (curve C : ρ = R sin θ , ζ = R cos θ with 0 ≤ θ ≤ π ,
R → ∞), where Y is constant because of the LP and (6.5), but λ changes from ±1
at θ = 0 to ∓1 at θ = π , we obtain with (6.18) and (6.29) an explicit expression
for C+(K ) in terms of the parameters Ω , l (with l = 0 for a horizon at r = 0) and
the values of the Ernst potentials at the poles. Using (6.28), we can calculate E+ and
Φ+. The number of free real parameters is reduced to four as a consequence of the
constraint (6.30) and to three if no magnetic monopole is allowed. The final result is

F(K ) = (K − L1)(K − L2)

(K − K1)(K − K2)
, G(K ) = Q2 − 2iJ

(K − K1)(K − K2)
, (6.31)
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H(K ) = − 2Q(K − L1)

(K − K1)(K − K2)
, L(K ) = − Q

K − L1
(6.32)

with L1/2 = −M ± i
J

M
, K1/2 = ±

√
M2 − Q2 − J 2

M2 (6.33)

and, correspondingly,

E+(ζ ) = 1 − 2M

ζ + M − iJ/M
, Φ+(ζ ) = Q

ζ + M − iJ/M
(6.34)

together with the parameter relations

l2

M2 + Q2

M2 + J 2

M4 = 1 and Ω M = J/M2

(1 + l/M)2 + J 2/M4 . (6.35)

6.3.3 Solution Everywhere Outside the Horizon

Relation (6.18) together with the expression for C1(K ) in (6.29) is equivalent to the
following structure of Y:

Y(ρ, ζ, λ) =
⎛
⎝

ψ(ρ, ζ, λ) ψ(ρ, ζ,−λ) α(ρ, ζ, λ)

χ(ρ, ζ, λ) −χ(ρ, ζ,−λ) β(ρ, ζ, λ)

ϕ(ρ, ζ, λ) ϕ(ρ, ζ,−λ) γ (ρ, ζ, λ)

⎞
⎠ , (6.36)

where α(ρ, ζ, λ) = α(ρ, ζ,−λ), β(ρ, ζ, λ) = −β(ρ, ζ,−λ) and γ (ρ, ζ, λ) =
γ (ρ, ζ,−λ). The general solution of the LP for K → ∞ and λ = +1 reads

Y(ρ, ζ, 1) =
⎛
⎝
Ē + 2|Φ|2 1 Φ

E −1 −Φ

2Φ̄ 0 1

⎞
⎠ C, (6.37)

where C is a constant matrix. Equations (6.23), (6.25), (6.31), (6.32) imply C = 1
and lead to the ansatz

ψ = 1 + k1

(
1

κ1 − λ
− 1

κ1 + 1

)
+ k2

(
1

κ2 − λ
− 1

κ2 + 1

)
, (6.38)

χ = 1 + l1

(
1

κ1 − λ
− 1

κ1 + 1

)
+ l2

(
1

κ2 − λ
− 1

κ2 + 1

)
, (6.39)

ϕ = m1

(
1

κ1 − λ
− 1

κ1 + 1

)
+ m2

(
1

κ2 − λ
− 1

κ2 + 1

)
, (6.40)



60 R. Meinel

α = Φ + α0

K − L1
, β = −Φ

λ(K + iz)

K − L1
, γ = 1 + γ0

K − L1
, (6.41)

where

κμ =
√

Kμ − iz̄

Kμ + iz
(A + : κμ = +1) . (6.42)

According to the LP, Y,zY−1 and Y,z̄Y−1 must be holomorphic functions of λ

for all λ �= 0,∞. The regularity at λ = ±κμ (μ = 1, 2), the poles of the first two
columns of Y, is automatically guarantied, whereas regularity at λ = ±λμ with
λμ = √

(Lμ − iz̄)/(Lμ + iz) (A +: λμ = +1), where poles of the third column
(μ = 1) and zeros of det Y (μ = 1, 2) occur, see (6.17), (6.29), (6.31), is equivalent
to a set of linear algebraic equations, which together with (6.23), (6.25), (6.31), (6.32)
uniquely determine the unknowns kμ(ρ, ζ ), lμ(ρ, ζ ), mμ(ρ, ζ ), α0(ρ, ζ ), γ0(ρ, ζ )

and Φ(ρ, ζ ). With E (ρ, ζ ) = χ(ρ, ζ, 1), see (6.37), this leads to the result

E = 1 − 2M

r̃ − i(J/M) cos θ̃
, Φ = Q

r̃ − i(J/M) cos θ̃
(6.43)

with ρ =
√

r̃2 − 2Mr̃ + J 2/M2 + Q2 sin θ̃ , ζ = (r̃ − M) cos θ̃ . (6.44)

The “domain of outer communication” (the region outside the event horizonH )
is given by r̃ > r̃h = M +√

M2 − J 2/M2 − Q2. The horizon itself is characterized
by r̃ = r̃h, and the axis of symmetry is located at θ̃ = 0 (A +) and θ̃ = π (A −).
Note that (6.35) implies Q2 + J 2/M2 ≤ M2. The equality sign, corresponding to
l = 0, is valid for the extremal Kerr–Newman black hole.

6.3.4 Full Metric and Electromagnetic Field

Using (6.2), (6.6), (6.7), (6.10) we can calculate the full metric and the electromag-
netic four-potential:

ds2 = Σ

Δ
dr̃2 + Σ dθ̃2 +

(
r̃2 + a2 + (2Mr̃ − Q2)a2 sin2 θ̃

Σ

)
sin2 θ̃ dφ2 (6.45)

− (2Mr̃ − Q2)2a sin2 θ̃

Σ
dφ dt −

(
1 − 2Mr̃ − Q2

Σ

)
dt2 (6.46)

with Δ = r̃2 − 2Mr̃ + a2 + Q2, Σ = r̃2 + a2 cos2 θ̃ , a ≡ J/M (6.47)
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and

Ai dxi = Qr̃

Σ
(a sin2 θ̃ dφ − dt). (6.48)

This is thewell-knownKerr–Newman solution in Boyer–Lindquist coordinates r̃ and
θ̃ . For Q = 0 it reduces to the Kerr solution, J = 0 gives the Reissner–Nordström
solution and Q = J = 0 leads back to the Schwarzschild solution.
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