
Chapter 28
Phase Transitions of Regular
Schwarzschild-anti-deSitter Black Holes

Antonia M. Frassino

Abstract We study a solution of the Einstein’s equations generated by a self-
gravitating, anisotropic, static, non-singular matter fluid. The resulting Schwarz-
schild like solution is regular and accounts for smearing effects of noncommutative
fluctuations of the geometry. We call this solution regular Schwarzschild spacetime.
In the presence of an Anti-deSitter cosmological term, the regularized metric offers
an extension of the Hawking-Page transition into a van der Waals-like phase dia-
gram. Specifically the regular Schwarzschild-Anti-deSitter geometry undergoes a
first order small/large black hole transition similar to the liquid/gas transition of
a real fluid. In the present analysis we have considered the cosmological constant
as a dynamical quantity and its variation is included in the first law of black hole
thermodynamics.

28.1 Regular Schwarzschild-anti-deSitter Spacetime

The regular Schwarzschild anti-deSitter (AdS) metric is a static, spherically sym-
metric solution of the Einstein’s equations with negative cosmological constant
Λ = −3/b2 and a Gaussian matter source [1–4]. To obtain this metric we replace
the vacuum with a Gaussian distribution having variance equivalent to the parameter√

θ

ρ (r) ≡ M

(4πθ)3/2
e−r2/4θ . (28.1)
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This type of matter distribution emulates non-commutativity of space-time through
the parameter θ that corresponds to the area of the elementary quantum cell, account-
ing for a natural ultraviolet spacetime cut-off (see [2] and references therein). The
resulting energy momentum tensor describes an anisotropic fluid, whose compo-
nents, fixed by ∇μT μν = 0 and the condition g00 = −g−1

rr , read

T 0
0 = T r

r = −ρ (r) T φ
φ = T θ

θ = −ρ (r) − r

2

∂ρ (r)

∂r
. (28.2)

The spherically symmetric solution of the Einstein’s equations with this energy
momentum tensor and the cosmological constant Λ is given by the line element

ds2 = −V (r) dt2 + dr2

V (r)
+ r2dΩ2 (28.3)

where dΩ2 = dϑ2 + sin2 ϑdϕ2 and

V (r) = 1 + r2

b2
− ωM

r
γ

(
3

2
,

r2

4θ

)
. (28.4)

Here ω = 2GN/Γ (3/2), GN is the four-dimensional Newton’s constant and b is the

curvature radius of the AdS space. The function γ
(
3
2 ,

r2
4θ

)
is the incomplete gamma

function defined as γ (n, x) ≡
x∫
0

dt tn−1e−t . The line element (28.3) has an event

horizon at r = r+, where r+ is solution of the horizon equation V (r) = 0. The event
horizon radius coincides with the Schwarzschild radius in the limit

√
θ/r+ → 0. The

metric (28.3) admits an inner horizon r− < r+, that coalesces with r+ in the extremal
black hole configuration at r0 = r+ = r−. Such a degenerate horizon occurs even
without charge or angular momentum.

28.2 Thermodynamics and Equation of state

The temperature associated to the event horizon r+ can be computed through the
formula T = 1

4π V ′ (r)
∣∣
r=r+ and reads

T = 1

4πr+

{
1 + r2+

b2

(
3 − r+

γ ′ (r+)

γ (r+)

)
− r+

γ ′ (r+)

γ (r+)

}
, (28.5)

where γ (r+) ≡ γ

(
3
2 ,

r2+
4θ

)
, γ ′ (r+) = r2+

4θ3/2
e−r2+/4θ is its derivative with respect to

r+. In contrast to the standard Schwarzschild-anti-deSitter case, extremal solution
exists with vanishing Hawking temperature (28.5).
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Recently, the idea of including the variation of the cosmological constant in the
first law of black hole thermodynamics has been considered [5–7] with interesting
consequences: If the cosmological constant Λ behaves like a pressure, we have that
for negative cosmological constant the pressure turns to be positive [6, 8], i.e.,

1

b2
= −Λ

3
≡ 8π P

3
, (28.6)

giving rise to several effects (see for example [9–11]). In such a case the equation of
state P (V, T ) for the regular AdS black hole becomes

P = 3γ (r+)

(3γ (r+) − r+γ ′ (r+))

{
T

2r+
− 1

8πr2+
+ γ ′ (r+)

8πr+γ (r+)

}
. (28.7)

Here T is theHawking temperature of the black hole, i.e. (28.5). Using the equation of
state (28.7) it is possible to plot the isotherm functions in a P-V diagram for a regular
black hole that resembles the van der Waals pressure-volume diagram (Fig. 28.1).

28.2.1 Gibbs Free Energy

In order to complete the analogy between the regular black hole and a van der Waals
gas, we proceed by calculating the Gibbs free energy [6, 7]. This can be done by
calculating the action of the Euclidean metric (see for example [12]). Such an action
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Fig. 28.1 The inverse temperature as function of r+ (with θ = 1). When P < Pc, there are
three branches. The middle branch is unstable, while the branch with the smaller radii and the one
with bigger radii are stable. This graph reproduces the pressure-volume diagram of the van der
Waals theory, provided one identifies the black hole thermodynamic variables β ≡ 1/T , r+ and P
respectively with pressure, volume and temperature of the van der Waals gas
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provides the Gibbs free energy via G = I/β where β is the period of the imaginary
timeβ ≡ 1/T . Then, theGibbs free energy can be expressed as a function of pressure
and temperature. The Hawking-Page transition [13] for the standard Schwarzschild-
AdS black hole is first order phase transition between a large black hole phase and
the purely thermal AdS spacetime. Such a transition takes place when the Gibbs
energy changes its sign from positive to negative. In the regular black hole case and
considering the cosmological constant as a pressure we find

G = r+
12 G N

[
3 − 8Pπr2+ + r+

(
3 + 8Pπr2+

)
γ ′ (r+)

γ (r+)

]
(28.8)

and the Gibbs free energy (28.8) exhibits a characteristic swallowtail behavior (see
Fig. 28.2). This usually corresponds to a small black hole/large black hole first-order
phase transition [7, 14]. By performing the classical limit for r � θ we get the usual
result for a classical uncharged Schwarzschild-AdS black hole that is G (T, P) =
(1/4G N )

(
r+ − 8π

3 P r3+
)
[7]. Remarkably, in the regular Schwarzschild-AdS black

hole case, as in the Reissner-Nordström-AdS (RN-AdS) black hole spacetime, there
is a phase transition that occurs at positive Gibbs energy. This fact is visible from the
presence of the swallowtail in Fig. 28.2. To investigate this aspect we need to study
the sign of the heat capacity. As underlined in [6], the specific heat related to the

Fig. 28.2 Gibbs free energy as function of the black hole pressure and temperature. The Gibbs free
energy G changes its sign at a specific T and P (intersection of the function with the T -P-plane).
As in the van der Waals case, the phases are controlled by the universal ‘cusp’, typical of the theory
of discontinuous transitions [14]. The Gibbs free energy shows the “swallowtail” shape, a region
where G(T, P) is a multivalued function. This region ends in a point (Tc, Pc). In the region with
P < Pc and T < Tc we can see a transition between small black hole/large black hole. Note that
r+ is a function of temperature and pressure via the equation of state (28.7). For large value of P
(or T ) there is only one branch allowed
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black hole is calculated at constant pressure

C p =
(

∂ H

∂T

)
P

=
(

∂ H

∂r+

)
P

(
∂r+
∂T

)
P

, (28.9)

where the enthalpy H is identifiedwith the black holemass M [6]. Nowone can study
the phase transitions from the change of the sign of the specific heat: the stability
requires that the specific heat at fixed pressure isC p ≥ 0 and the specific heat at fixed
volume is Cv ≥ 0. In the case under investigation Cv is always equal to zero because
the entropy is only volume dependent. This means that the heat capacity Cv does not
diverge at the critical point and its critical exponent is α = 0. By studying the sign of
the function C p, we can see that for P > Pc the quantity C p is always positive and
the black hole is stable. In the limit P → Pc there is a critical value for r+ for which
C p diverges. For P < Pc there are two discontinuities of the specific heat and the
situation is the same as in the Reissner-Nordström-AdS black holes [15]. Thus, in the
regular Schwarzschild-AdS case for P < Pc it seems that a different phase transition
is allowed because the heat capacity changes again from positive values to negative
values. For large r+ we have the Hawking-Page behavior in which the branch with
negative specific heat has lower mass and thus falls in an unstable phase, while the
branch with larger mass is locally stable and corresponds to a positive specific heat.
Thus, the resulting phase diagram presents a critical point at a critical cosmological
constant value in Plank units and a smooth crossover thereafter.

28.2.2 Critical Exponent

We already determined α = 0 in the previous section. Now, by defining the variable
t ≡ (T − Tc) /Tc, we can compute the critical exponent ofC p by evaluating the ratio
ln

(
C p (t)

)
/ ln (t) in the limit t → 0. We find that the limit exists and the critical

exponent is γ = 1. This result implies that the heat capacity diverges near the critical
point like C p ∝ |t |−1. Then using the scaling relations

α + 2β + γ = 2 (28.10)

α + β (1 + δ) = 2 (28.11)

is possible to calculate the other two exponents, i.e., δ that determines the behaviour
of the isothermal compressibility of aVdWsystem andβ that describes the behaviour
of the difference between of the volume of the gas phase and the liquid phase. For
the regular black hole, the scaling relations give δ = 3 and β = 1/2, result that
coincides with the case of charged black holes [7]. These critical exponents are
consistent with the Ising mean field values (α, β, γ, δ) = (0, 1/2, 1, 3) allowing for
an efficient mean field theory description. Since it is believed that the determination
of critical exponents define universality classes , i.e., they do not depend on the details
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of the physical system (exept the number of dimensions), we can say that the phase
transitions in the regular Schwarzschild-AdS black holes and in the RN-AdS black
holes in four-dimensional spacetime have the same nature.

28.3 Final Remarks

After almost hundred years since the Karl Schwarzschild’s exact solution of Ein-
stein’s equation, black hole physics is nowadays at the forefront of current research
in several branches of theoretical physics. Specific interest has been developed in the
thermodynamics of charged black holes in asymptotically AdS spacetime, largely
because they admit a gauge duality description via a dual thermal field theory [12].
In recent studies it has been shown that charged Reissner-NordströmAdS black holes
exhibit critical behaviour similar to a van der Waals liquid gas phase transition [7].
This analogy become “complete” if the cosmological constant Λ is considered as a
dynamical quantity and its variation is included in the first law of black hole thermo-
dynamics [7, 9]. This extended phase space shows new insights with respect to the
conventional phase space of a four dimensional black hole in AdS background con-
sisting only of two variables: entropy and temperature. In this work the cosmological
constant has been considered as a thermodynamical pressure and its conjugate quan-
tity as a thermodynamical volume. The black hole equation of state (28.7) obtained
by considering the regular Schwarzschild-AdS solution shows analogy with the van
der Waals liquid-gas system where the parameter θ plays an analogue role of the
charge. Note that a detailed description of the not-extended phase space has been
presented in [3].
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