
Chapter 24
Black Holes in Supergravity

Kellogg S. Stelle

Abstract A brief review is given of the use of duality symmetries to form orbits of
supergravity black-hole solutions and their relation to extremal (i.e. BPS) solutions
at the limits of such orbits. An important technique in this analysis uses a timelike
dimensional reduction and exchanges the stationary black-hole problem for a nonlin-
ear sigma-model problem. Families of BPS solutions are characterized by nilpotent
orbits under the duality symmetries, based upon a tri-graded or penta-graded decom-
position of the corresponding duality group algebra.

24.1 Introduction

Aside from the general mathematical interest in classifying black hole solutions of
any kind, the study of families of such solutions is also of current interest because it
touches other important issues in theoretical physics. For example, the classification
of BPS and non-BPS black holes forms part of a more general study of branes in
supergravity and superstring theory. Branes and their intersections, as well as their
worldvolumemodes and attached string modes, are key elements in phenomenologi-
cal approaches to the marriage of string theory with particle physics phenomenology.
The related study of nonsingular and horizon-free BPS gravitational solitons is also
central to the “fuzzball” proposal of BPS solutions as candidate black-hole quantum
microstates.

The search for supergravity solutions with assumed Killing symmetries can be
recast as a Kaluza-Klein problem [1–4]. To see this, consider a 4D theory with a
nonlinear bosonic symmetry G4 (e.g. the “duality” symmetry E7 for maximal N = 8
supergravity). Scalar fields take their values in a target space Φ4 = G4/H4, where
H4 is the corresponding linearly realized subgroup, generally the maximal compact
subgroup of G4 (e.g. SU(8) ⊂ E7 for N = 8 SG). The search will be constrained by
the following considerations:
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• We assume that a solution spacetime is asymptotically flat or asymptotically Taub-
NUT and that there is a ‘radial’ function r which is divergent in the asymptotic
region, gμν∂μr∂νr ∼ 1 + O(r−1).

• Searching for stationary solutions amounts to assuming that a solution possesses a
timelike Killing vector field κμ(x). Lie derivatives with respect to κμ are assumed
to vanish on all fields. The Killing vector κμ will be assumed to have W :=
−gμνκ

μκν ∼ 1 + O(r−1).
• We also assume asymptotic hypersurface orthogonality, i.e. κν(∂μκν − ∂νκμ) ∼
O(r−2). In any vielbein frame, the curvature will then fall off as Rabcd ∼ O(r−3).

The 3D theory obtained after dimensional reduction with respect to a timelike
Killing vector κμ will have an Abelian principal bundle structure, with a metric

ds2 = −W (dt + Bi dxi )2 + W −1γi j dxi dx j (24.1)

where t is a coordinate adapted to the timelike Killing vector κμ and γi j is the metric
on the 3-dimensional hypersurfaceM3 at constant t . If the 4D theory also hasAbelian
vector fields Aμ, they similarly reduce to 3D as

4
√
4πGAμdxμ = U (dt + Bi dxi ) + Ai dxi (24.2)

The timelike reduced 3D theory will have a G/H∗ coset space structure similar to
the G/H coset space structure of a 3D theory reduced with a spacelike Killing vector.
Thus, for the spacelike reduction of maximal supergravity down to 3D, one obtains
an E8/SO(16) theory from the sequence of dimensional reductions descending from
D = 11 [5]. The resulting 3D theory has this exceptional symmetry because 3D
Abelian vector fields can be dualized to scalars; this also happens for the analogous
theory subjected to a timelike reduction to 3D. The resulting 3D theory contains 3D
gravity coupled to a G/H∗ nonlinear sigma model.

Although the numerator group G for a timelike reduction is the same as that
obtained in a spacelike reduction, the divisor group H∗ for a timelike reduction is
a noncompact form of the spacelike divisor group H [2]. A consequence of this
H → H∗ change and the dualization of vectors is the appearance of negative-sign
kinetic terms for some 3D scalars.

Consequently, maximal supergravity, after a timelike reduction to 3D and the
subsequent dualization of 29 vectors to scalars, has a bosonic sector containing 3D
gravity coupled to a E8/SO∗(16) nonlinear sigma model with 128 scalar fields. As a
consequence of the timelike dimensional reduction and vector dualizations, however,
the scalars do not all have the same signs for their “kinetic” terms:

• There are 72 positive-sign scalars: 70 descending directly from the 4D theory, one
emerging from the 4D metric and one more coming from the D = 4 → D = 3
Kaluza-Klein vector, subsequently dualized to a scalar.

• There are 56 negative-sign scalars: 28 descending directly from the time compo-
nents of the 28 4D vectors, and another 28 emerging from the 3D vectors obtained
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from spatial components of the 28 4D vectors, becoming then negative-sign scalars
after dualization.

The sigma-model structure of this timelike reduced maximal theory is E8/

SO∗(16). The SO∗(16) divisor group is not an SO(p, q) group defined via preser-
vation of an indefinite metric. Instead it is constructed starting from the SO(16)
Clifford algebra {Γ I , Γ J } = 2δ I J and then by forming the complex U(8)-covariant
oscillators ai := 1

2 (Γ2i−1 + iΓ2i ) and ai ≡ (ai )
† = 1

2 (Γ2i−1 − iΓ2i ). These satisfy
the standard fermi oscillator annihilation/creation anticommutation relations

{ai , a j } = {ai , a j } = 0, {ai , a j } = δi
j (24.3)

The 120 SO∗(16) generators are then formed from the 64 hermitian U(8) gen-
erators ai

j plus the 2 × 28 = 56 antihermitian combinations of ai j ± ai j . Under
SO∗(16), the vector representation and the antichiral spinor are pseudo-real, while
the 128-dimensional chiral spinor representation is real. This is the representation
under which the 72 + 56 scalar fields transform in the E8/SO∗(16) sigma model.

The 3D classification of extended supergravity stationary solutions via timelike
reduction generalizes the 3D supergravity systems obtained from spacelike reduction
[6]. This also connects with N = 2models with coupled vectors [7] and N = 4mod-
els with vectors, where solutions have also been generated using duality symmetries
[8, 9]

The process of timelike dimensional reduction down to 3 dimensions togetherwith
dualization of all form-fields to scalars produces an Euclidean gravity theory coupled
to aG/H∗ nonlinear sigmamodel, Iσ = ∫

d3x
√

γ (R(γ )− 1
2G AB(φ)∂iφ

A∂ jφ
Bγ i j ),

whereG AB(φ) is theG/H∗ sigma-model target-spacemetric andγi j is the 3Dmetric.
Varying this action produces the 3D field equations

1√
γ

∇i (
√

γ γ i j G AB(φ)∂ jφ
B) = 0 (24.4)

Ri j (γ ) = 1
2G AB(φ)∂iφ

A∂ jφ
B (24.5)

where ∇i is a doubly covariant derivative (for the 3D space M3 and for the G/H∗
target space).

Now one can make the simplifying assumption that φA(x) = φA(σ (x)), with a
single intermediatemap σ(x). Subject to this assumption, the field equations become

∇2σ
dφA

dσ
+ γ i j∂iσ∂ jσ [∂

2φA

dσ 2 + Γ A
BC (G)

dφB

dσ

dφC

dσ
] = 0 (24.6)

Ri j =
(

1
2G AB(φ)

dφA

dσ

dφB

dσ

)

∂iφ
A∂ jφ

B (24.7)

Now one uses the gravitational Bianchi identity ∇ i (Ri j − 1
2γi j R) ≡ 0 to obtain

1
4

d
dσ

(G AB(φ)
dφA

dσ
dφB

dσ
)(∇ iσ∂iσ) = 0. Requiring separation of the σ(x) properties
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from the d
dσ

properties leads to the conditions

∇2σ = 0 (24.8)

d2φA

dσ 2 + Γ A
BC (G)

dφB

dσ

dφC

dσ
= 0 (24.9)

d

dσ

(

G AB(φ)
dφA

dσ

dφB

dσ

)

= 0 (24.10)

The first equation (24.8) above implies that σ(x) is a harmonic map from the 3D
spaceM3 into a curve φA(σ ) in the G/H∗ target space. The second equation (24.9)
implies that φA(σ ) is a geodesic in G/H∗. The third equation (24.10) implies that
σ is an affine parameter. The decomposition of φ : M3 → G/H∗ into a harmonic
map σ : M3 → R and a geodesic φ : R → G/H∗ is in accordance with a general
theorem on harmonic maps [10] according to which the composition of a harmonic
map with a totally geodesic one is again harmonic. Such factorization into geodesic
and harmonic maps is also characteristic of general higher-dimensional p-brane
supergravity solutions [1, 3, 4].

Here is a sketch of the map composition:

xi

σ(x)

∇ σ = 02

GH*/
D=3 Space M

3

φ
(σ

)
ge

od
es

icΑ

Now define the Komar two-form K ≡ ∂μκνdxμ ∧dxν . This is invariant under the
action of the timelike isometry and, by the asymptotic hypersurface orthogonality
assumption, is asymptotically horizontal. This condition is equivalent to the require-
ment that the scalar field B dual to the Kaluza-Klein vector arising out of the 4D
metric must vanish like O(r−1) as r → ∞. In this case, one can define the Komar
mass and NUT charge by (where s∗ indicates a pull-back to a section) [11]

m ≡ 1

8π

∫

∂M3

s∗ � K n ≡ 1

8π

∫

∂M3

s∗K (24.11)

TheMaxwell field also defines charges. Using theMaxwell field equation d�F =
0, where F ≡ δL /δF is a linear combination of the two-form field strengths F
depending on the 4D scalar fields, and using theBianchi identity d F = 0, one obtains
conserved electric and magnetic charges:

q ≡ 1

2π

∫

∂M3

s∗ � F p ≡ 1

2π

∫

∂M3

s∗F . (24.12)

Now consider these charges from the three-dimensional point of view in order
to clarify their transformation properties under the 3D duality group G The three-
dimensional theory is described in terms of a coset representative V ∈ G/H∗. The
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Maurer–Cartan form V −1dV for g decomposes as

V −1dV = Q + P , Q ≡ Qμdxμ ∈ h∗ , P ≡ Pμdxμ ∈ g � h∗ . (24.13)

Then the three-dimensional scalar-field equation of motion can be rewritten as d �

V PV −1 = 0, so the g-valued “Noether current” is �V PV −1. Since the three-
dimensional theory is Euclidean, one cannot properly speak of a conserved charge.
Nevertheless, since �V PV −1 is d-closed, the integral of this 2-form over a given
homology cycle does not depend on the particular representative of that cycle.

As a result, for stationary solutions, the integral of this three-dimensional 2-form
current, taken over any spacelike closed surface ∂M3 containing in its interior all the
singularities and topologically non-trivial subspaces of a solution, defines a g � h∗-
valued Noether-charge matrix C :

C ≡ 1

4π

∫

∂M3

�V PV −1 (24.14)

This transforms in the adjoint representation of the duality group G in accordance
with the standard non-linear action of G on V ∈ G/H∗. For asymptotically-flat
solutions, V can be arranged to tend asymptotically at infinity to the identity matrix;
the charge matrix C in that case is simply given by the asymptotic value of the
one-form P:

P = C
dr

r2
+ O(r−2) . (24.15)

Now follow the evolution of the duality group G down a couple of steps in dimen-
sional reduction. In D = 5, maximal supergravity has the maximally noncompact
duality group E6,6, with the 42 D = 5 scalar fields taking their values in the coset
space E6,6/USp(8), while the 1-form (i.e. vector) fields transform in the 27 of E6,6.

Proceeding on down to 4D, the 27 D = 5 vectors produce new scalars upon
dimensional reduction, and one also gets a new Kaluza-Klein scalar emerging from
the D = 5 metric, making up the total of 70 scalars in the 4D theory. These take
their values in E7,7/SU(8), while the 4D vector field strengths transform in the 56
of E7,7. The new KK scalar corresponds to a gl1 grading generator of E7,7, leading
to a tri-graded decomposition of the E7,7 algebra as follows:

e7,7 
 27
(−2) ⊕ (gl1 ⊕ e6,6)

(0) ⊕ 27(2) (24.16)

where the superscripts indicate the gl1 grading.
Continuing on down to 3D via a timelike reduction, one encounters a newphenom-

enon: 3D vectors can now be dualized to scalars. This is already clear in the timelike
reduction of pure 4D GR to 3D, where one obtains a two-scalar system taking values
in SL(2,R)/SO(2), where SL(2,R) is the Ehlers group [12]. Its generators can be
written
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γ h ⊕ εe ⊕ ϕ f =
(

γ ε

ϕ −γ

)

(24.17)

and its Lie algebra is [h, e] = 2e, [h, f ] = −2 f , [e, f ] = h.
Accordingly, in reducing from 4D to 3D a supergravity theory with 4D symmetry

group G4, with corresponding Lie algebra g4 and with vectors transforming in the
l4 representation of g4, one obtains a penta-graded structure for the 3D Lie algebra
g, with the Ehlers h now acting as the grading generator 1(0):

g 
 1(−2) ⊕ l4
(−1) ⊕ (1 ⊕ g4)

(0) ⊕ l
(+1)
4 ⊕ 1(2) (24.18)

For example, in 3D maximal supergravity one obtains in this way e8,8:

e8,8 
 1(−2) ⊕ 56
(−1) ⊕ (1 ⊕ e7,7)

(0) ⊕ 56(+1) ⊕ 1(2) (248 generators) (24.19)

Now apply this to the decomposition of the coset-space structure for the 3D scalar
fields and the chargematrixC . In 4D, the scalars are associated to the coset generators
g4 � h4, where h4 is the Lie algebra of the 4D divisor group H4. The representation
carried by the 4D electric and magnetic charges q and p is l4. Then the 3D scalars
and the charge matrix C can be decomposed into three irreducible representations
with respect to so(2) ⊕ h4 according to

g � h∗ ∼= (
sl(2,R) � so(2)

) ⊕ l4 ⊕ (
g4 � h4

)
(24.20)

The metric induced by the g algebra’s Cartan-Killing metric on this coset space
is positive definite for the first and last terms, but is negative definite for λ4. One
associates the sl(2,R)�so(2) componentswith theKomarmass and theKomarNUT
charge, while the l4 components are associatedwith the electromagnetic charges. The
remaining g4 � h4 charges belong to the Noether current of the 4D theory.

Breitenlohner et al. [2] proved that if G is simple, all the non-extremal single-
black-hole solutions of a given theory lie on the H∗ orbit of aKerr solution.Moreover,
all static solutions regular outside the horizonwith a chargematrix satisfyingTrC 2 >

0 lie on the H∗-orbit of a Schwarzschild solution. (Turning on and off angular
momentum requires consideration of the D = 2 duality group generalizing the
Geroch A1

1 group.)
Using Weyl coordinates, where the 4D metric takes the form

ds2 = f (x, ρ)−1[e2k(x, ρ)(dx2 + dρ2) + ρ2dφ2] + f (x, ρ)(dt + A(x, ρ)dφ)2 ,

(24.21)
the coset representative V associated to the Schwarzschild solution with mass m can
be written in terms of the non-compact generator h of the Ehlers sl(2,R) only, i.e.

V = exp

(
1

2
ln

r − m

r + m
h
)

→ C = mh (24.22)
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For the maximal N = 8 theory with symmetry E8(8) (and also for the excep-
tional ‘magic’ N = 2 supergravity [13] with symmetry E8(−24)), one has h =
diag[2, 1, 0,−1,−2], so

h5 = 5h3 − 4h (24.23)

Consequently, the charge matrix C satisfies in all cases the characteristic equation

C 5 = 5c2C 3 − 4c4C (24.24)

where c2 ≡ 1
Tr h2

Tr C 2 is the extremality parameter (c2 = 0 for extremal static

solutions; c2 = m2 for Schwarzschild). Moreover, for all but the two exceptional E8
cases, a stronger constraint is actually satisfied by the charge matrix C :

C 3 = c2C (24.25)

The characteristic equation selects acceptable orbits of solutions, i.e. orbits not exclu-
sively containing solutions with naked singularities. It determines C in terms of the
mass and NUT charge and the 4D electromagnetic charges.

The parameter c2 is the same as the (target space velocity)2 of the harmonic-
map discussion: c2 = v2. The Maxwell-Einstein theory is the simplest example
with an indefinite-signature sigma-model metric, for the scalar-field target space
G/H∗ = SU(2, 1)/S(U(1, 1) × U(1)). The Maxwell-Einstein charge matrix is

CME =
⎛

⎝
m n −z/

√
2

n −m iz/
√
2

z̄/
√
2 iz̄/

√
2 0

⎞

⎠ ∈ su(2, 2) � u(1, 1) (24.26)

where z = q + ip is the complex electromagnetic charge. The Maxwell-Einstein
extremality parameter is c2 = m2 + n2 − zz̄. Solutions fall into three categories:
c2 > 0 nonextremal, c2 = 0 extremal and c2 < 0 hyperextremal. The hyperextremal
solutions have naked singularities, while the nonextremal and extremal solutions
have their singularities cloaked by horizons.

Extremal solutions have c2 = 0, implying that the charge matrix C becomes
nilpotent: C 5 = 0 in the E8 cases and C 3 = 0 otherwise.

For N extended supergravity theories, one finds H∗ ∼= Spin∗(2N ) × H0 and
the charge matrix C transforms as a Weyl spinor of Spin∗(2N ) also valued in
a representation of h0 (where h0 acts on the matter content of reducible N = 4
theories). As in the SO∗(16) case considered earlier, one defines the Spin∗(2N )

fermionic oscillators

ai := 1

2

(
Γ2i−1 + iΓ2i

)
ai ≡ (ai )

† = 1

2

(
Γ2i−1 − iΓ2i

)
(24.27)

for i, j, . . . = 1, . . . ,N . These obey standard fermionic annihilation and cre-
ation anticommutation relations. Using this annihilation/creation oscillator basis,
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the charge matrix C can be represented as a state (where ai |0 >= 0)

|C >≡
(

W + Zi j a
i a j + Σi jkla

i a j akal + · · ·
)

|0〉 (24.28)

From the requirement that the dilatino fields be left invariant under the unbroken
supersymmetry of a BPS solution, one derives a ‘Dirac equation’ for the charge state
vector, (

εi
αai + Ωαβε

β
i ai

)
|C 〉 = 0 (24.29)

where (εi
α, εα

i ) is the asymptotic (for r → ∞) value of the Killing spinor and Ωαβ

is a symplectic form on C2n in cases with n/N preserved supersymmetry.
Note that c2 = 0 ⇐⇒ 〈C |C 〉 = 0 is a weaker condition than the supersymmetry

Dirac equation. Extremal and BPS are not always synonymous conditions, although
they coincide forN ≤ 5 pure supergravities. They are not synonymous forN = 6
and 8 or for theories with vector matter coupling.

Earlier analysis of the orbits of the 4D symmetry groups G4 [14] heavily used the
Iwasawa decomposition

g = u(g,Z) exp
(
ln λ(g,Z) z

)
b(g,Z) (24.30)

with u(g,Z) ∈ H4 and b(g,Z) ∈ BZ where BZ ⊂ G4 is the parabolic subgroup that
leaves the charges Z invariant up to a multiplicative factor λ(g,Z). This multiplica-
tive factor can be compensated for by ‘trombone’ transformations combining Weyl
scalings with compensating dilational coordinate transformations, leading to a for-
mulation of active symmetry transformations that map solutions into other solutions
with unchanged asymptotic values of the spacetime metric and scalar fields.

The 4D ‘trombone’ transformation finds a natural home in the parabolic subgroup
of the 3D duality group G. The 3D structure is characterized by the fact that the
Iwasawa decomposition breaks down for noncompact divisor groups H∗.

The Iwasawa decomposition does, however work “almost everywhere” in the 3D
solution space. The places where it fails are precisely the extremal suborbits of the
duality group. This has the consequence that G does not act transitively on its own
orbits. There are G transformations which allow one to send c2 → 0, thus landing
on an extremal (generally BPS) suborbit. However, one cannot then invert the map
and return to a generic non-extremal solution from the extremal solution reached on
a given G trajectory.

The above framework applies equally tomulti-centered as to single-centered solu-
tions [15, 16]. One may start from a general ansatz

V (x) = V0 exp(−
∑

n

H n(x)Cn) (24.31)
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with Lie algebra elementsCn ∈ g�h∗ and functionsH n(x) to be determined by the
equations ofmotion.Defining as aboveV −1dV = Q+P and restricting P to depend
linearly on the functionsH n(x), one finds the requirement [Cm, [Cn,Cp]] = 0. The
Einstein and scalar equations of motion then reduce to

Rμν − 1

2
gμν R =

∑

mn

∂μH
m∂νH

n Tr CmCn d � dH n = 0 (24.32)

Restricting attention to solutionswhere the 3-space is flat then requires TrCmCn = 0.
The resulting system generalizes that found in [3, 4]. Solving [Cm, [Cn,Cp]] = 0 =
Tr CmCn is now reduced to an algebraic problem amenable to the above nilpotent-
orbit analysis: non-extremal and extremal stationary solutions can be formed from
extremal single-hole constituents.

In summary, what has been developed here is a quite general framework for
the analysis of stationary supergravity solutions using duality orbits. The Noether
charge matrix C satisfies a characteristic equation C 5 = 5c2C 3 − 4c4C in the
maximal E8 cases and C 3 = c2C in the non-maximal cases, where c2 ≡ 1

Tr h2
Tr C 2

is the extremality parameter. Extremal solutions are characterized by c2 = 0, and C
becomes nilpotent (C 5 = 0 or C 3 = 0) on the corresponding extremal suborbits.
BPS solutions have a charge matrix C satisfying an algebraic ‘supersymmetry Dirac
equation’ which encodes the general properties of such solutions. This is a stronger
condition than the c2 = 0 extremality condition. The orbits of the 3D duality group
G are not always acted upon transitively by G. This is related to the failure of the
Iwasawa decomposition for noncompact divisor groups H∗. The Iwasawa failure set
corresponds to the extremal suborbits.

References

1. G. Neugebaur, D. Kramer, Ann. Phys. (Leipzig) 24, 62 (1969)
2. P. Breitenlohner, D. Maison, G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein

theories. Commun. Math. Phys. 120, 295 (1988)
3. G. Clement, D. Gal’tsov, Stationary BPS solutions to dilaton-axion gravity. Phys. Rev. D 54,

6136 (1996) arXiv:hep-th/9607043
4. D.V. Gal’tsov, O.A. Rytchkov, Generating branes via sigma-models. Phys. Rev. D 58, 122001

(1998) arXiv:hep-th/9801160
5. E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B 159, 141 (1979)
6. B. de Wit, A.K. Tollsten, H. Nicolai, Locally supersymmetric D = 3 nonlinear sigma models.

Nucl. Phys. B 392, 3 (1993) arXiv:hep-th/9208074
7. P. Meessen, T. Ortin, The Supersymmetric configurations of N = 2, D = 4 supergravity coupled

to vector supermultiplets. Nucl. Phys. B 749, 291 (2006) arXiv:hep-th/0603099
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