
Chapter 19
The Black Hole Uncertainty Principle
Correspondence

Bernard J. Carr

Abstract The Black Hole Uncertainty Principle correspondence proposes a con-
nection between the Uncertainty Principle on microscopic scales and black holes
on macroscopic scales. This is manifested in a unified expression for the Compton
wavelength and Schwarzschild radius. It is a natural consequence of the General-
ized Uncertainty Principle, which suggests corrections to the Uncertainty Principle
as the energy increases towards the Planck value. It also entails corrections to the
event horizon size as the black hole mass falls to the Planck value, leading to the
concept of a Generalized Event Horizon. One implication of this is that there could
be sub-Planckian black holes with a size of order their Compton wavelength. Loop
quantum gravity suggests the existence of black holes with precisely this feature.
The correspondence leads to a heuristic derivation of the black hole temperature and
suggests how the Hawking formula is modified in the sub-Planckian regime.

19.1 Introduction

A key feature of the microscopic domain is the Heisenberg Uncertainty Principle
(HUP) which implies that the uncertainty in the position and momentum of a particle
must satisfy Δx > �/(2Δp). It is well known that one can heuristically understand
this result as reflecting the momentum transferred to the particle by the probing
photon. Since themomentumof a particle ofmass M is boundedby Mc, an immediate
implication is that one cannot localize a particle of mass M on a scale less �/(2Mc).
An important role is therefore played by the reduced Compton wavelength, RC =
�/(Mc), which can be obtained from the HUP with the substitution Δx → R and
Δp → cM but without the factor of 2. In the (M, R) diagram of Fig. 19.1, the region
corresponding to R < RC might be regarded as the “quantum domain” in the sense
that the classical description breaks down there. A key feature of the macroscopic
domain is the existence of black holes. General relativity implies that a spherically
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Fig. 19.1 The division of
the (M, R) diagram into the
classical, quantum,
relativistic and quantum
gravity domains

symmetric object ofmass M forms an event horizon if it fallswithin its Schwarzschild
radius, RS = 2G M/c2. The region R < RS might be regarded as the “relativistic
domain” in the sense that there is no stable classical configuration in this part of
Fig. 19.1.

The Compton and Schwarzschild lines intersect at around the Planck scales,
RP = √

�G/c3 ∼ 10−33 cm, MP = √
�c/G ∼ 10−5 g, and they divide the

(M, R) diagram in Fig. 19.1 into three regimes (quantum, relativistic, classical).
There are several other interesting lines in this diagram. The vertical line M = MP

is often assumed to mark the division between elementary particles (M < MP ) and
black holes (M > MP ), because one usually requires a black hole to be larger than
its own Compton wavelength. The horizontal line R = RP is significant because
quantum fluctuations in the metric should become important below this. Quantum
gravity effects should also be important whenever the density exceeds the Planck
value, ρP = c5/(G2

�) ∼ 1094 g cm−3, corresponding to the sorts of curvature sin-
gularities associated with the big bang or the centres of black holes. This implies
R < (M/MP )1/3RP , which iswell above the R = RP line in Fig. 19.1 for M � MP ,
so one might regard the shaded region as specifying the “quantum gravity” domain.

Although the Compton and Schwarzschild boundaries correspond to straight lines
in the logarithmic plot of Fig. 19.1, this formpresumably breaks down near the Planck
point. As one approaches the Planck point from the left, Adler [1–4] and many others
have argued that the HUP should be replaced by a Generalized Uncertainty Principle
(GUP) of the form

Δx > �/Δp + αR2
P (Δp/�) . (19.1)

Here α is a dimensionless constant (usually assumed positive) which depends on the
particular model and the factor of 2 in the first term has been dropped. A heuristic
argument for the second term in (19.1) is that it represents the gravitational effect
of the probing photon rather than its momentum effect. This form of the GUP is
indicated by the upper curve in Fig. 19.2. Variants of (19.1) can be found in other
approaches to quantum gravity, such as non-commutative quantum mechanics or
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Fig. 19.2 Δx versus Δp for
the GUP in its linear (upper
curve) and quadratic (lower
curve) forms. For α negative,
the smooth minimum is
replaced by a cusp at Δx = 0
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general minimum length considerations [5–7]. The GUP can also be derived in loop
quantum gravity because of polymer corrections in the structure of spacetime [8, 9]
and it is implicit in some approaches to the problemof quantumdecoherence [10, 11].
Finally, an expression resembling (19.1) arises in string theory [12–17], although it is
usually assumed that the second term cannot correspond to a black hole for M � MP

because the string is too elongated to form an horizon.
The second term on the right of (19.1) is much smaller than the first term for

Δp � MP c. Since it can be written as αG(Δp)/c3, it roughly corresponds to the
Schwarzschild radius for an object of mass Δp/c. Indeed, if we rewrite (19.1) using
the same substitution Δx → R and Δp → cM as before, it becomes

R > R′
C = �/(Mc) + αG M/c2 = �

Mc

[
1 + α(M/MP )2

]
. (19.2)

The lower limit on R might be regarded as a generalized Compton wavelength, the
last term representing a small correction as one approaches the Planck point from
the left. However, one can also apply (19.2) for M � MP and it is interesting
that in this regime it asymptotes to the Schwarzschild form, apart from a numerical
factor [18]. This suggests that there is a different kind of positional uncertainty for
an object larger than the Planck mass, related to the existence of black holes. This
is not unreasonable since the Compton wavelength is below the Planck scale (and
hence meaningless) here and also an outside observer cannot localize an object on a
scale smaller than its Schwarzschild radius.

The GUP also has important implications for the black hole horizon size, as can
be seen by examining what happens as one approaches the intersect point from the
right. In this limit, it is natural to write (19.2) as

R > R′
S = αG M

c2

[
1 + 1

α
(MP/M)2

]
(19.3)

and this represents a small perturbation to the Schwarzschild radius for M � MP

if one assumes α = 2. However, there is no reason for anticipating α = 2 in the
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heuristic derivation of the GUP. Nor is it clear why amore precise calculation (within
the context of a specific theory of quantum gravity) would yield this value.

This motivates an alternative approach in which the free constant in (19.2) is
associated with the first term rather than the second. After all, the factor of 2 in the
expression for the Schwarzschild radius is precise, whereas the coefficient associated
with the Compton term is somewhat arbitrary. Thus one might rewrite (19.2) and
(19.3) using the expressions

R′
C = β�

Mc

[
1 + 2

β
(M/MP )2

]
, R′

S = 2G M

c2

[
1 + β

2
(MP/M)2

]
. (19.4)

for some constant β, with the latter being regarded as a Generalized Event Horizon
(GEH). The mathematical equivalence of R′

C and R′
S underlies what we have termed

the BHUP correspondence.
An important caveat is that (19.1) assumes the two uncertainties add linearly. On

the other hand, since they are independent, it might be more natural to assume that
they add quadratically:

Δx >

√
(�/Δp)2 + (αR2

PΔp/�)2 . (19.5)

This corresponds to the lower curve in Fig. 19.2. While the heuristic arguments
indicate the form of the two uncertainty terms, they do not specify how one combines
them. We refer to (19.1) and (19.5) as the linear and quadratic forms of the GEP.
Adopting the β formalism, as before, then gives a unified expression for generalized
Compton wavelength and event horizon size

R′
C = R′

S =
√

(β�/Mc)2 + (2G M/c2)2 , (19.6)

leading to the approximations

R′
C ≈ β�

Mc

[
1 + 2

β2 (M/MP)4
]

, R′
S ≈ 2G M

c2

[
1 + β2

8
(MP/M)4

]
(19.7)

for M � MP and M � MP , respectively. These might be compared to the exact
expressions in the linear case, given by (19.4). As shown below, the horizon size of
the black hole solution in loop quantum gravity has precisely the form (19.6).

More generally, the BHUP correspondence might allow any unified expression
for R′

C (M) ≡ R′
S(M) which has the asymptotic behaviour β�/(Mc) for M � MP

and 2G M/c2 for M � MP . One could envisage many other unified expressions
satisfying this condition but they would only be well motivated if based upon some
final theory of quantum gravity. One could also consider models with α < 0, so that
one has a cusp rather than a smooth minimum in Fig. 19.2. Indeed, this may be a
feature of loop quantum gravity [8, 9]. It is intriguing that α < 0 models could have
G → 0 (no gravity) and � → 0 (no quantum discreteness) at the cusp. This relates
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to models, discussed at this meeting, involving “asymptotic safety” [19] and “world
crystals” [20].

19.2 Loop Black Holes

Loop quantum gravity (LQG) is based on a canonical quantization of the Einstein
equations written in terms of the Ashtekar variables [21–25]. One important conse-
quence of this is that the area is quantized, with the smallest possible value being

ao ≡ Amin/8π = √
3 γ ζ R2

P/2 , (19.8)

where γ is the Immirzi parameter and ζ is another constant, both being of order
1. The other relevant constant is the dimensionless polymeric parameter δ, which
(together with a0) determines the deviation from classical theory.

One version of LQG gives a black hole solution, known as the loop black hole
(LBH) [26–30], which exhibits self-duality and replaces the singularity with another
asymptotically flat region. The metric in this solution depends only on the dimen-
sionless parameter ε ≡ δγ , which must be small, and can be expressed as [26–30]

ds2 = −G(r)c2dt2 + dr2/F(r) + H(r)(dθ2 + sin2 θdφ2) , (19.9)

H = r2 + a2
o

r2
, G = (r − r+)(r − r−)(r + r∗)2

r4 + a2
o

, F = (r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
o)

.

Here r+ = 2Gm/c2 and r− = 2Gm P2/c2 are the outer and inner horizons, respec-
tively, and r∗ ≡ √

r+r− = 2Gm P/c2, where m is the black hole mass and

P ≡
√
1 + ε2 − 1√
1 + ε2 + 1

(19.10)

is the polymeric function. For ε � 1, we have P ≈ ε2/4 � 1, so r− � r∗ � r+.
In the limit r → ∞, H(r) ≈ r2, so r is the usual radial coordinate and F(r) ≈

G(r) ≈ 1 − 2G M/(c2r) where M = m(1 + P)2 is the ADM mass. However,
the exact expression for H(r) shows that the physical radial coordinate R = √

H
decreases from ∞ to a minimum

√
2a0 at r = √

a0 and then increases again to ∞
as r decreases from ∞ to 0. In particular, the value of R associated with the event
horizon is

RE H = √
H(r+) =

√(
2Gm

c2

)2

+
(

aoc2

2Gm

)2

. (19.11)
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Apart from P terms, relating m and M , this is equivalent to (19.6), asymptoting to
the Schwarzschild radius for m � MP and the Compton wavelength for m � MP

if we put β = √
3γ ζ/4.

The important point is that central singularity of the Schwarzschild solution is
replaced with another asymptotic region, so the black hole becomes a wormhole.
Metric (19.9) has three other important consequences: (1) it permits the existence of
blackholeswithm � MP ; (2) it implies a duality between them < MP andm > MP

solutions; (3) it involves a unified expression for the Compton and Schwarzschild
scales, with expression (19.11) suggesting the quadratic GUP. Further details can be
found in [18] and [26–30].

19.3 GUP and Black Hole Thermodynamics

Let us first recall the link between black hole radiation and the HUP [31, 32]. This
arises because we can obtain the black hole temperature for M � MP by identi-
fying Δx with the Schwarzschild radius and Δp with a multiple of the black hole
temperature:

kT = ηcΔp = η�c

Δx
= η�c3

2G M
. (19.12)

This gives the precise Hawking temperature if we take η = 1/(4π). The second
equality in (19.12) relates to the emitted particle and assumes thatΔx andΔp satisfy
the HUP. The third equality relates to the black hole and assumes that Δx is the
Schwarzschild radius. Both these assumptions require M � MP but the GUP and
GEH suggest how they should be modified for M � MP .

Adler et al. [1–4] calculate the modification required if Δx is still associated with
the Schwarzschild radius but Δp and Δx are related by the linear form of the GUP.
In this case, one obtains a temperature

T = ηMc2

αk

⎛

⎝1 −
√

1 − αM2
P

M2

⎞

⎠ ≈ η�c3

2Gk M

[

1 + αM2
P

4M2

]

, (19.13)

where the last expression applies for M � MP and just represents a small per-
turbation to the standard Hawking temperature. However, as indicated in Fig. 19.3,
the exact expression becomes complex when M falls below

√
α MP , indicating a

minimum mass. If we adopt the quadratic form of the relationship between Δp and
Δx , the temperature becomes

T =
√
2 ηMc2

αk

⎛

⎝1 −
√

1 − α2

4

(
MP

M

)4
⎞

⎠

1/2

≈ η�c3

2Gk M

[

1 + α2

32

(
MP

M

)4
]

,

(19.14)
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Fig. 19.3 Comparing black
hole temperature predicted
by Hawking, linear and
quadratic GUP, BHUP
correspondence
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so the deviation from the Hawking prediction is smaller than implied by (19.13)
but the exact expression still goes complex for M <

√
α/2 MP . In either case,

evaporation ceases at about the Planck mass. So the GUP stabilizes the ground state
of a black hole just as the HUP stabilizes the ground state of a hydrogen atom.

The BHUP correspondence suggests that the Alder et al. argument must be modi-
fied sinceΔx is given by (19.11) rather than 2G M/c2. Thismakes amajor qualitative
difference for M � MP becauseΔx then scales as M−1 rather than M and thismeans
that the temperature no longer goes complex. As shown in Fig. 19.3, one obtains the
exact solution

kT = min

[
�ηc3

2G M
,
2ηMc2

α

]
. (19.15)

Thefirst expression is the exactHawking temperature,with no small correction terms.
However, one must cross over to the second expression below M = √

α/4 MP

in order to avoid the temperature going above the Planck value TP . The second
expression can be obtained by putting Δx ≈ �/(Mc) in (19.12). Since this is always
less than TP , the second equality in (19.12) still applies to a good approximation.
The different M-dependences for M < MP and M > MP arise because there are
two different asymptotic spaces in the LBH solution, corresponding to the R and r
coordinates, so the quantity Δx needs to be specified more precisely. Putting r =
2G M/c2 implies (Δx)R/(Δx)r ≈ 1 for M � MP and (M/MP )−2 for M � MP .

Note that one can use another argument which gives a different temperature in the
sub-Planckian regime. If the temperature is determined by the black hole’s surface
gravity [31, 32], (19.11) suggests T ∝ G M/R′2

S ∝ M3 rather than M for M � MP .
The discrepancy arises because the temperature differs in the two asymptotic spaces
by a factor (M/MP )2. The GUP argument only gives the temperature in the same
space as the black hole event horizon, which is our space for M > MP but the other
space for M < MP . So the temperature of a sub-Planckian hole scales as M3 in our
space, as predicted by the surface gravity argument, and as M in the other space, as
predicted by the GUP argument [18]. Although there is no value of M for which T
becomes zero, there are still effectively stable relics since the temperature falls below
the background radiation density—suppressing evaporation altogether—below some
critical mass and such relics might provide the dark matter [30].
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Fig. 19.4 Modification to
Fig. 19.1 for various numbers
of spatial dimensions with
same scale
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19.4 Changing the Dimensionality

The black hole boundary in Fig. 19.1 assumes there are three spatial dimensions
but many theories suggest that the dimensionality could increase on small scales.
Either the extra dimensions are compactified or matter is confined to a brane of finite
thickness in the extra dimensions due to warping. In both cases, the extra dimensions
are associated with some scale RC . If there are n extra dimensions and the black
holes with mass below MC = c2RC/(2G) are assumed to be spherically symmetric
in the higher dimensional space, then the Schwarzschild radius must be replaced
with

RS = RC

(
M

MC

)1/(n+1)

(19.16)

for M < MC , so the slope of the black hole boundary in Fig. 19.1 becomes shallower,
as indicated in Fig. 19.4 for various values of n. The new intersect with the Compton
boundary just corresponds to the revised Planck scales. We note that RS ∝ M−1

for 2-dimensional holes (n = −2). This suggests some link with the idea that
physics becomes 2-dimensional (rather than higher dimensional) close to the Planck
scale [33, 34], which offers an intriguing alternative interpretation of the BHUP
correspondence.
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