
On Distributed Monitoring and Synthesis

Anca Muscholl(B)

LaBRI, University of Bordeaux, Talence, France
anca@labri.fr

1 Context

Modern computing systems are increasingly distributed and heterogeneous. Soft-
ware needs to be able to exploit these advances, providing means for applications
to be more performant. Traditional concurrent programming paradigms, as Java
for example, are based on threads, shared-memory, and locking mechanisms that
guard access to common data. More recent paradigms, such as the reactive pro-
gramming model of Erlang [2] and Scala/Akka [1,3] replace shared memory by
asynchronous message passing, where sending a message is non-blocking.

In all these concurrent frameworks, writing reliable software is a big chal-
lenge because programmers tend to think about code mostly in a sequential
way, and have difficulties in overviewing all possible interleavings of executions
by different entities. For the same reason, formal verification and analysis of
concurrent programs is very challenging. Testing, which is still the main method
for error detection in software, has low coverage for concurrent programs. The
reason is that bugs in such programs are difficult to reproduce: they may happen
under very specific thread schedules and the likelihood of taking such corner-
case schedules is very low. Formal verification, such as model-checking and other
traditional exploration techniques, can handle very limited instances of concur-
rent programs, mostly because of the very large number of possible states and
of possible interleavings of executions.

Formal verification of programs requires as a pre-requisite a clear mathe-
matical model for programs. Usually, verification of sequential programs starts
with an abstraction step – reducing the value domains of variables to finite
domains, viewing conditional branching as non-determinism, etc. Another major
simplification consists in disallowing recursion. This leads to a very robust com-
putational model, namely finite-state automata and regular languages. Regular
languages of words (and trees) are particularly well understood notions. The deep
connections between logic and automata revealed by the foundational work of
Büchi, Rabin and others, are crucial pieces in automata-based verification and
synthesis.

Synthesis means to translate a specification into a program that conforms
with the specification, and thus can provide solutions that are correct by con-
struction. Synthesis of reactive systems, that is of systems that interact with
an environment, started as a problem in logics. In the sixties, A. Church asked
for an algorithm to construct devices that transform sequences of input bits
into sequences of output bits in a way required by a logical formula [9]. Later,
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Ramadge and Wonham proposed the supervisory control formulation [33], where
a plant and a specification are given; a controller should be designed such that its
product with the plant satisfies the specification. Thus, control means restricting
the behavior of the plant. Synthesis is the particular case of control where the
plant allows for every possible behavior. Rabin’s result about the decidability of
monadic second-order logic over infinite trees solved Church’s question for MSO
specifications [32].

When adding concurrency, the landscape of verification and automated syn-
thesis becomes much more complicated. First, there is no canonical model for
concurrent systems, simply because there can be very different kinds of inter-
action between processes. Compare for example multi-threaded shared memory
systems and programs with asynchronous function calls. A second serious obsta-
cle for developing automata-based verification techniques for concurrent systems
is the lack of a general framework for distributed synthesis, and this even for
systems without environment. The question whether a sequential specification
can be turned into a distributed implementation over a given distributed archi-
tecture was first raised in the context of Petri nets. Ehrenfeucht and Rozenberg
introduced the notion of regions to describe how to associate places of nets with
states of a transition system [12].

Inspired by Petri nets, Mazurkiewicz proposed in the late seventies the theory
of Mazurkiewicz traces [27], that we present in the next section. Within this
theory, Zielonka’s theorem [36] is a prime example for distributed synthesis. Our
survey aims at introducing Mazurkiewicz traces and Zielonka’s theorem, and
describe how this theory can help to verify and design concurrent programs.

2 Mazurkiewicz Traces and Zielonka Automata

Mazurkiewicz traces [27] are one of the simplest formalisms able to describe con-
currency. To define the model we fix an alphabet of actions Σ and a dependence
relation D ⊆ Σ ×Σ on actions, that is reflexive and symmetric. The idea behind
this definition is that two dependent actions are always ordered and cannot be
permuted. For instance, in a multi-threaded program all actions belonging to one
thread must be ordered according to the program order. The actions of acquiring
or releasing the same lock are also ordered, since a thread needs to wait that
a lock is released before acquiring it. By contrast, independent actions can be
permuted.

A by now classical way to express such dependencies is Lamport’s happens-
before partial order [25]. Mazurkiewicz traces capture this partial order through
the dependence relation: from a linear execution w = a1 . . . an ∈ Σ∗ a partial
order T (w) = 〈E,�〉 is defined, where:

– E = {a1, . . . , an} is the set of events, in one-to-one relation with the positions
of w,

– � is the reflexive-transitive closure of {(ai, aj) | i < j, ai D aj}.

Partial orders T (w) as above are called Mazurkiewicz traces.
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Example 1. As an example consider a concurrent program with threads T ∈ T
that have read/write access to shared variables x ∈ X. The dependence relation
D over the alphabet of actions Σ = {r(T, x), w(T, x) | T ∈ T , x ∈ X} is given
by a D b if

– a, b are actions of the same thread T , or
– a, b access to the same variable x ∈ X and at least one of them is a write.

This dependence relation simply describes that two actions are independent
only if they belong to different threads. Moreover, if they access the same shared
variable, then they must be both read actions.

From a language-theoretical viewpoint, traces are almost as attractive as words,
and a rich body of results on automata and logics over finite and infinite traces
exists, see the handbook [11]. One of the cornerstone results in Mazurkiewicz
trace theory is based on a simple notion of finite-state distributed automata,
Zielonka automata, that we present in the remaining of the section.

Informally, a Zielonka automaton [36] is a finite-state automaton with control
distributed over several processes that synchronize on shared actions. There is
no global clock, for instance between two synchronizations, two processes can
do a different number of actions. Because of this, Zielonka automata are also
known as asynchronous automata. Sharing of actions is defined through a fixed
distributed action alphabet.

A distributed action alphabet on a finite set P of processes is a pair (Σ, dom),
where Σ is a finite set of actions and dom : Σ → (2P \ ∅) is a location function.
The location dom(a) of action a comprises all processes that synchronize in order
to perform this action. The location induces a natural dependence relation D
over Σ by letting a D b if dom(a) ∩ dom(b) 
= ∅.

Example 2. As an example of distributed alphabet reconsider Example 1. A
pair (Σ, dom) corresponding to the dependence relation D defined above can be
obtained from the set of processes: P = T ∪ {〈T, x〉 | T ∈ T , x ∈ X}. Informally
each thread represents a process, and there is a process for each pair 〈T, x〉,
representing the cached value of x in thread T .

The location function defined below satisfies a D b iff dom(a) ∩ dom(b) 
= ∅:

dom(a) =

{
{T, 〈T, x〉} if a = r(T, x)
{T, 〈T ′, x〉 | T ′ ∈ T } if a = w(T, x)

Formally, a Zielonka automaton A = 〈(Sp)p∈P, (sinitp )p∈P, δ〉 over (Σ, dom) con-
sists of:

– a finite set Sp of (local) states with an initial state sinitp ∈ Sp, for every process
p ∈ P,

– a partial transition relation δ ⊆
⋃

a∈Σ

( ∏
p∈dom(a) Sp × {a} ×

∏
p∈dom(a) Sp

)
.

As usual, an automaton is called deterministic if the transition relation is a
(partial) function. The reader may be more familiar with synchronous products



On Distributed Monitoring and Synthesis 57

of finite automata, where a joint action means that every automaton having
this action in its alphabet executes it according to its transition relation. Joint
transitions in Zielonka automata follow a rendez-vous paradigm, meaning that
the processes having action a in their alphabet can exchange information via the
execution of a. The following example illustrates this effect:

Example 3. The CAS operation is available as atomic operation in the JAVA
package java.util.concurrent.atomic, and supported by many architectures. It
takes as parameters the thread identifier T , the variable name x, and two values,
old and new. The effect of the instruction y = CAS(T,x,old,new) is conditional:
the value of x is replaced by new if it is equal to old, otherwise it does not change.
The method returns true if the value was swapped, and false otherwise.

We can view the CAS instruction as a synchronization between two processes,
PT associated with the thread T and Px associated with the variable x. The
states of PT are valuations of the local variables of T . The states of Px are the
values x can take. An instruction a of the form y = CAS(T,x,old,new) becomes
a synchronization action between PT and Px with the following two transitions
(represented for convenience as Petri net transitions; places on the left represent
states of PT , and on the right of Px):

s old

a

s′ new

s v

a

s′′ v

On the left side of the figure we have the case where the value of x is old, and
on the right half when it is different from old. Notice that in state s′ the value
of y is true, whereas in s′′, it is false.

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP .
Notice that a Zielonka automaton can be seen as a usual finite-state automa-

ton with the state set S =
∏

p∈P
Sp given by the global states, and transitions

s
a−→ s′ if (sdom(a), a, s′

dom(a)) ∈ δ, and sP\dom(a) = s′
P\dom(a). Thus states of this

automaton are the tuples of states of the processes of the Zielonka automaton.
As a language acceptor, a Zielonka automaton A accepts a trace-closed language
L(A), that is, a language closed under permutation of adjacent independent
symbols.

3 Distributed Synthesis

A cornerstone result in the theory of Mazurkiewicz traces is a construction that
transforms sequential automata into deterministic Zielonka automata, whenever
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the language is trace-closed. This important result is one of the rare examples
of distributed synthesis, next to Ehrenfeucht and Rozenberg’s theory of regions.

Theorem 1 ([36]). For a given distributed alphabet (Σ, dom), and a regular
trace-closed language L ⊆ Σ∗ over (Σ, dom), a deterministic Zielonka automaton
A can be effectively constructed with L(A) = L.

The intricacy of Zielonka’s construction is such that there has been a lot of
work to simplify it and to improve its complexity, see e.g. [10,16,19,28]. The
most recent construction produces deterministic Zielonka automata of size that
is exponential only in the number of processes. It was shown in [16] that the
construction is optimal modulo a technical assumption (that is actually required
for monitoring).

Theorem 2 ([16]). There is an algorithm that takes as input a distributed alpha-
bet (Σ, dom) over n processes and a DFA A accepting a trace-closed language
over (Σ, dom), and computes an equivalent deterministic Zielonka automaton B
with at most 4n4 · |A|n2

states per process. Moreover, the algorithm computes
the transitions of B on-the-fly in polynomial time, and checks whether a state is
final in polynomial time as well.

Besides a theoretical interest of having an algorithm constructing deterministic
Zielonka automata, there is also a strong practical motivation, namely to moni-
tor distributed programs or systems at runtime. Of course, monitoring a system
offline is also possible, however it can be done only a posteriori or by a cen-
tralized monitor that requires additional communication. If we want to monitor
a distributed system at runtime, we need a decentralized monitor. The idea is
simple: we have some trace-closed, regular property φ that should be satisfied by
every execution of the program or system. To detect possible violations of φ at
runtime, we construct a monitor for φ and run it in parallel with the program.
Assuming that we model our program P by a Zielonka automaton AP , running
monitor M , that is also a Zielonka automaton AM , amounts to build the usual
product automaton on each process between AP and AM .

It is worth noting that the properties one would like to monitor on dis-
tributed programs can be often expressed in terms of the partial order between
specific events. To illustrate this, consider as an example the race detection prob-
lem for multi-threaded programs. Informally, a race occurs whenever there are
conflicting accesses to the same shared variable without proper lock synchro-
nization. Detecting races is important since executions with races may yield
non-deterministic, unexpected behaviors. Two accesses to the same variable are
called conflicting, if at least one of them is a write. A race is given by two con-
flicting accesses that are unordered in the happens-before relation. This relation
is a dependence relation in terms of Mazurkiewicz traces, that orders the events
of each thread and lock access operations for each lock. So a violation of the
“no-race” safety property consists in monitoring for two unordered occurrences
of such conflicting accesses.



On Distributed Monitoring and Synthesis 59

The construction of a deterministic Zielonka automata for properties asking
for the partial ordering between specific events is in fact very close to the critical
part of all available proofs of Zielonka’s theorem. This critical part is known as
the gossip automaton [28], and the name reflects already its rôle: it computes
what a process knows about the knowledge of other processes.

In general, the gossip automaton is already responsible for the exponential
complexity of the Zielonka construction. Thus, an important practical question
is whether the construction of the gossip automaton can be avoided, or at least
simplified. As the theorem below shows, gossiping is not needed when the com-
munication structure is hierarchical.

A distributed alphabet (Σ,dom) is called acyclic if all actions have unary
or binary domains, and the following graph G(Σ,dom) (called communication
graph) is acyclic: the set of nodes of G(Σ,dom) is the set P of processes and the
set of edges is {(p, q) | ∃a ∈ Σ : dom(a) = {p, q}}.

Theorem 3 ([22]). Let (Σ, dom) be a distributed alphabet whose communication
graph is acyclic. Then every regular, trace-closed language L over Σ can be
recognized by a deterministic Zielonka automaton with O(s2) states per process,
where s is the size of the minimal DFA for L.

We need to stress that the practical use of Zielonka automata for e.g. monitoring
properties does not depend exclusively on the efficiency of the constructions from
the above theorems. Further properties are required for a monitoring automaton
AM besides determinism. A first requirement is that violations of the property
to monitor should be detectable locally, i.e., by at least one thread. The reason is
that local detection enables a thread to start some recovery actions, like rollback
of a transaction and a new try. A Zielonka automaton A with this property is
called locally rejecting [16]. More formally, each process p has a subset of states
Rp ⊆ Sp, and an execution leads a process p into a state from Rp if and only if the
causal past of p cannot be extended to a trace in L(A). A second requirement is
that the monitoring automaton should not block the monitored system AP . This
can be achieved by asking that in every global state of AM such that no process
is a rejecting state, every action is enabled. A related discussion of desirable
properties of Zielonka automata and on an implementation of the construction
of [16] is reported in [5] (see also [34]).

4 Related Work

This brief overview aimed at presenting the motivation behind distributed syn-
thesis and how Mazurkiewicz trace theory can be useful in this respect. In the
following we point out some related results.

Synthesis. Zielonka’s algorithm has been applied for solving the synthesis prob-
lem, for models that go beyond Mazurkiewicz traces. One example is synthe-
sis of communicating automata from graphical specifications known as message
sequence charts. Communicating automata are distributed finite-state automata
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communicating over point-to-point FIFO channels. As such, the model is Tur-
ing powerful. However, if the communication channels are bounded, there is a
strong link between execution sequences of the communicating automaton and
Mazurkiewicz traces [21]. Actually we can even handle even the case where
the assumption about bounded channels is relaxed by asking that they are
are bounded for at least one scheduling of message receptions [18]. Producer-
consumer behaviors are captured by this second setting.

Multiply nested words with various bounds on stacks [23,24,31] are an
attractive model for concurrent programs with recursion, because of their decid-
ability properties and expressiveness. In [7] the model is extended to nested
Mazurkiewicz traces and Zielonka’s construction is lifted to this setting.

We do not survey here recent results on synthesis of open systems and control
for Zielonka automata. The interested reader is referred to [14,15,17,26,29].

Verification. As we already mentioned, automated verification of concurrent
systems encounters major problems due to state explosion. One particularly
efficient technique able to addresses these problems is known as partial order
reduction (POR) [20,30,35]. It consists of restricting the exploration of the state
space by avoiding the execution of similar, or equivalent runs. The notion of
equivalence of runs used by POR is based on the model of Mazurkiewicz traces.
The efficiency of POR methods depends of course on the precise equivalence
notion between executions. More recent methods such as dynamic POR work
without storing explored states explicitly and aim at improving the precision by
computing additional information about (non)-equivalent executions [4].

There are many other contexts in verification where analysis can be made
more efficient using equivalences based on Mazurkiewicz traces. One such exam-
ple is counter-example generation based on partial (Mazurkiewicz) traces instead
of linear traces, as done in [8]. Another example is the detection of concurrency
bugs such as atomicity violations [13], non-linearizability and sequential incon-
sistency [6].
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