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Abstract. We give solutions to two of the questions in a paper by
Brendle, Brooke-Taylor, Ng and Nies. Our examples derive from a 2014
construction by Khan and Miller as well as new direct constructions
using martingales.

At the same time, we introduce the concept of i.o. subuniformity and
relate this concept to recursive measure theory. We prove that there are
classes closed downwards under Turing reducibility that have recursive
measure zero and that are not i.o. subuniform. This shows that there
are examples of classes that cannot be covered with methods other than
probabilistic ones. It is easily seen that every set of hyperimmune degree
can cover the recursive sets. We prove that there are both examples of
hyperimmune-free degree that can and that cannot compute such a cover.

1 Introduction

An important theme in set theory has been the study of cardinal characteristics.
As it turns out, in the study of these there are certain analogies with recur-
sion theory, where the recursive sets correspond to sets in the ground model. In
a recent paper by Brendle, Brooke-Taylor, Ng and Nies [1], the authors point
out analogies between cardinal characteristics and the study of algorithmic ran-
domness. We address two questions raised in this paper that are connected to
computing covers for the recursive sets.

In the following, we will assume that the reader is familiar with various
notions from computable measure theory, in particular, with the notions of
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Martin-Löf null, Schnorr null and Kurtz null set. For background on these notions
we refer the reader to the books of Downey and Hirschfeldt [4], Li and Vitányi
[12] and Nies [14].

Our notation from recursion theory is mostly standard. The natural numbers
are denoted by ω, and 2ω denotes the Cantor space and 2<ω the set of all finite
binary sequences. We denote the concatenation of strings σ and τ by στ . The
notation σ � τ denotes that the finite string σ is an initial segment of the (finite
or infinite) string τ . We identify sets A ⊆ ω with their characteristic sequences,
and A�n denotes the initial segment A(0) . . . A(n − 1). We use λ to denote the
empty string. Throughout, μ denotes the Lebesgue measure on 2ω.

Definition 1. A function M : 2<ω → R�0 is a martingale if for every x ∈ 2<ω,
M satisfies the averaging condition

2M(σ) = M(σ0) + M(σ1), (1)

A martingale M succeeds on a set A if

lim sup
n→∞

M(A�n) = ∞.

The class of all sets on which M succeeds is denoted by S[M ].

The following definition is taken from Rupprecht [17].

Definition 2. An oracle A is Schnorr covering if the union of all Schnorr null
sets is Schnorr null relative to A. An oracle A is weakly Schnorr covering if the
set of recursive reals is Schnorr null relative to A.

Definition 3. A Kurtz test relative to A is an A-recursive sequence of closed-
open sets Gi such that each Gi has measure at most 2−i; these closed-open sets
are given by explicit finite lists of strings and they consist of all members of
{0, 1}ω extending one of the strings. Note that i → μ(Gi) can be computed
relative to A. The intersection of a Kurtz test (relative to A) is called a Kurtz
null set (relative to A). An oracle A is Kurtz covering if there is an A-recursive
array Gi,j of closed-open sets such that each i-th component is a Kurtz test
relative to A and every unrelativized Kurtz test describes a null-set contained in
∩jGi,j for some i; A is weakly Kurtz covering if there is such an array and each
recursive sequence is contained in some A-recursive Kurtz null set ∩jGi,j .

Brendle, Brook-Taylor, Ng and Nies [1] called the notion of (weakly) Schnorr
covering in their paper (weakly) Schnorr engulfing . In this paper, we will use the
original terminology of Rupprecht [17]. We have analogous notions for the other
notions of effective null sets. For example, a set A is weakly Kurtz covering if
the set of recursive reals is Kurtz null relative to A. We also have Baire category
analogues of these notions of covering: A set A is weakly meager covering if it
computes a meager set that contains all recursive reals. Recall that a set A is
diagonally nonrecursive (DNR) if there is a function f �T A such that, for all
x, if ϕx(x) is defined then ϕx(x) �= f(x). A set A has hyperimmune-free Turing
degree if for every f �T A there is a recursive function g with ∀x [f(x) � g(x)].
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2 Solutions to Open Problems

In [1, Question 4.1], Brendle, Brooke-Taylor, Ng and Nies posed three questions,
(7), (8) and (9). In this section, we will provide the answers to the questions (7)
and (9). For this we note that by [1, Theorem 3] and [9, Theorem 5.1] we have
the following result.

Theorem 4. A set A is weakly meager covering iff it is high or of DNR degree.

We recall the following well-known definitions and results.

Definition 5. A function ψ, written e 
→ (n 
→ ψe(n)), is a recursive numbering
if the function (e, n) 
→ ψe(n) is partial recursive. For a given recursive num-
bering ψ and a function h, we say that f is DNRψ

h if for all n, f(n) �= ψn(n)
and f(n) ≤ h(n). An order function is a recursive, nondecreasing, unbounded
function.

Theorem 6 (Khan and Miller [8, Theorem 4.3]). For each recursive num-
bering ψ and for each order function h, there is an f ∈ DNRψ

h such that f
computes no Kurtz random real.

Wang (cf. [4, Theorem 7.2.13]) gave a martingale characterization of Kurtz ran-
domness. While it is obvious that weakly Kurtz covering implies weakly Schnorr
covering for the martingale notions, some proof is needed in the case that one
uses tests (as done here).

Proposition 7. If A is weakly Kurtz covering then A is weakly Schnorr covering.

Proof. Suppose A is weakly Kurtz covering, as witnessed by the A-recursive array
of closed-open sets Gi,j . Then the sets Fj = ∪iGi,i+j+1 form an A-recursive
Schnorr test, as each Fj has at most the measure

∑
j 2−i−j−2 = 2−i−1 and

the measures of the Fj is uniformly A-recursive as one can relative to A com-
pute the measure of each Gi,i+j+1 and their sum is fast converging. As for each
recursive set there is an i such that all Gi,i+j+1 contain the set, each recursive
set is covered by the Schnorr test. �

Theorem 8. There is a recursive numbering ψ and an order function h such
that for each set A, if A computes a function f that is DNRψ

h then A is weakly
Kurtz covering.

Proof. Fix a correspondence between strings and natural numbers num : 2<ω →
ω such that

2|σ| − 1 ≤ num(σ) ≤ 2|σ|+1 − 2.

For instance, num(σ) could be the position of σ in the length-lexicographically
lexicographic ordering of all strings as proposed by Li and Vitányi [12]. Let
str(n) = num−1(n) be the string representation of the number n. Thus

2|str(n)| − 1 ≤ num(str(n)) = n ≤ 2|str(n)|+1 − 2.
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Let ϕ be any fixed recursive numbering, let

〈a, b〉 = num(1|str(a)|0str(a)str(b))

in concatenative notation. Let ψ2〈e,n〉(x) = ϕe(n) for any x and ψ2y+1 = ϕy.
Note that ψ is an acceptable numbering. Let s(e, n) = 2〈e, n〉. Then if f is DNR
with respect to ψ then f has the following property with respect to ϕ:

f(s(e, n)) �= ϕe(n).

Indeed,
f(s(e, n)) = f(2〈e, n〉) �= ψ2〈e,n〉(2〈e, n〉) = ϕe(n).

Moreover,

s(a, b) = 2〈a, b〉 ≤ 2(2|1|str(a)|0str(a)str(b)|) = 4(2|1|str(a)||2|str(a)|2|str(b)|)

= 4(2|str(a)|2|str(a)|2|str(b)|) ≤ 4(a + 1)2(b + 1).

Consider a partition of ω into intervals Im such that |Im| is 2 + log(m + 1)
rounded down, and let h(m) = |Im|. If f is DNRψ

h then we have

∀ϕe ∀n (f(s(e, n)) ∈ {0, 1}Is(e,n) and f(s(e, n)) �= ϕe(n)).

Given a recursive set R, there is, by the fixed-point theorem, an index e such
that, for all n, ϕe(n) = R � Is(e,n) and f(s(e, n)) �= R � Is(e,n). Note that for
every fixed e,

∞∏

n=0

(1 − 2−|Is(e,n)|) �
∞∏

n=e+2

(1 − 2−(2+log(4(e+1)2(n+1)+1))) �

∞∏

n=e+2

(1 − 2−(3+log(4(e+1)2(n+1)))) =
∞∏

n=e+2

(1 − 2−(5+2 log(e+1)+log(n+1))).

The last product in this formula is 0, as the sum

∞∑

n=e+2

2−(5+2 log(e+1)+log(n+1)) = 1/32 · (e + 1)−2 ·
∞∑

n=e+2

1/(n + 1)

diverges. Thus

μ({B : ∃e∀n [B � Is(e,n) �= f(s(e, n))]}) �
∑

e

∞∏

n=0

(1 − 2−|Is(e,n)|) = 0

So if f is computable from A then we have a Σ0
2(A) null set that contains all

recursive sets, as desired. �

Theorem 9 (Affirmative answer to Brendle, Brooke-Taylor, Ng and
Nies [1, Question 4.1(7)]). There exists a set A such that
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1. A is weakly meager covering,
2. A does not compute any Schnorr random set,
3. A is of hyperimmune-free degree,
4. A is weakly Schnorr covering.

Proof. Let h and ψ as in Theorem 8. By Theorem 6, there is an f ∈ DNRψ
h such

that f computes no Kurtz random real. Let A be a set Turing equivalent to f .

1. By Theorem 4, A is weakly meager covering. Alternatively, one could use the
fact that every weakly Kurtz covering oracle is also weakly meager covering
and derive the item 1 from the proof of item 4.

2. Since each Schnorr random real is Kurtz random, A does not compute any
Schnorr random real.

3. Since A does not compute any Kurtz random real, A is of hyperimmune-free
degree.

4. By Theorem 8, A is weakly Kurtz covering. In particular, by Proposition 7,
A is weakly Schnorr covering.

This completes the proof. �

Franklin and Stephan [6] characterised that a set A is Schnorr trivial iff for
every f �tt A there is a recursive function g such that, for all n, f(n) ∈
{g(n, 0), g(n, 1), . . . , g(n, n)}; this characterisation serves here as a definition.

Theorem 10 (Affirmative answer to Brendle, Brooke-Taylor, Ng and
Nies [1, Question 4.1 (9)]). There is a hyperimmune-free oracle A which is
not DNR (and thus low for weak 1-genericity) and which is not Schnorr trivial
and which does not Schnorr cover all recursive sets.

Remark 11. The reader may object that the original question in [1] asked for a
set that was not low for Schnorr tests rather than not Schnorr trivial. However,
we can recall the following facts:

– Kjos-Hanssen, Nies and Stephan [10] showed that if A is low for Schnorr tests
then A is low for Schnorr randomness;

– Franklin [5] showed that if A is low for Schnorr randomness then A is Schnorr
trivial.

3 Infinitely Often Subuniformity and Covering

Let 〈. , .〉 denote a standard recursive bijection from ω × ω to ω. For a function
P : ω → ω define

Pn(m) = P (〈n,m〉)
and say that P parametrizes the class of functions {Pn : n ∈ ω}. We identify sets
of natural numbers with their characteristic functions. A class A is (recursively)
uniform if there is a recursive function P such that A = {Pn : n ∈ ω}, and
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(recursively) subuniform if A ⊆ {Pn : n ∈ ω}. These notions relativize to any
oracle A to yield the notions of A-uniform and A-subuniform.

It is an elementary fact of recursion theory that the recursive sets are not
uniformly recursive. The following theorem, as cited in Soare’s book [18, p. 255],
quantifies exactly how difficult it is to do this:

Theorem 12 (Jockusch). The following conditions are equivalent:

(i) A is high, that is, A′ �T ∅′′,
(ii) the recursive functions are A-uniform,
(iii) the recursive functions are A-subuniform,
(iv) the recursive sets are A-uniform.

If A has r.e. degree then (i)–(iv) are each equivalent to:
(v) the recursive sets are A-subuniform.

In the following we study infinitely often parametrizations and the relation to
computing covers for the recursive sets.

3.1 Infinitely Often Subuniformity

Definition 13. We say that a set X covers a class A if there is an X-recursive
martingale M such that A ⊆ S[M ].

Note that for X recursive this is just the definition of recursive measure zero.
For basics about computable martingales see [4, p. 207].

Definition 14. A class A ⊆ 2ω is called infinitely often subuniform (i.o. sub-
uniform for short) if there is a recursive function P ∈ {0, 1, 2}ω such that

∀A ∈ A ∃n
[∃∞x

(
Pn(x) �= 2

) ∧ ∀x
(
Pn(x) �= 2 → Pn(x) = A(x)

)]
. (2)

That is, for every A ∈ A there is a row of P that computes infinitely many
elements of A without making mistakes. Again, we can relativize this definition
to an arbitrary set X: A class A is i.o. X-subuniform if P as above is X-recursive.

Let REC denote the class of recursive sets. Recall that A is a PA-complete
set if A can compute a total extension of every {0, 1}-valued partial recursive
function. Note that if a set A is PA-complete then REC is A-subuniform (cf.
Proposition 15 below).

For every recursive set A there is a recursive set Â such that A can be recon-
structed from any infinite subset of Â. Namely, let Â(x) = 1 precisely when x
codes an initial segment of A. So it might seem that any i.o. sub-parametrization
of REC can be converted into a subparametrization in which every recursive set
is completely represented. However, we cannot do this uniformly (since we can-
not get rid of the rows that have Pn(x) = 2 a.e.) and indeed the implication
does not hold.
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Proposition 15. We have the following picture of implications:

A is PA-complete ⇒ REC isA-subuniform ⇒ REC is i.o.
A -subuniform

⇑ ⇑
A is high ⇒ A has hyperimmune degree

No other implications hold than the ones indicated.

Proposition 16. Every i.o. subuniform class has recursive measure zero. This
relativizes to: If A is i.o. X-subuniform then X covers A.

Proof. The ability to compute infinitely many bits from a set clearly suffices to
define a martingale succeeding on it. The uniformity is just what is needed to
make the usual sum argument work. �

Proposition 17. There exists a class of recursive sets that has recursive mea-
sure zero and that is not i.o. subuniform.

Proof. The class of all recursive sets A satisfying ∀x [A(2x) = A(2x + 1)] has
recursive measure 0 but is not i.o. subuniform: If P would witness this class to
be i.o. subuniform then Q defined as Qi(x) = min{Pi(2x), Pi(2x + 1)} would
witness REC to be i.o. subuniform, a contradiction. �

Above the recursive sets, the 1-generic sets are a natural example of such a class
that has measure zero but that is not i.o. subuniform: It is easy to see that the
1-generic sets have recursive measure zero because for every such set A there are
infinitely many n such that A ∩ [n, 2n] = ∅. On the other hand, a variation of
the construction in the proof of Proposition 17 shows that the 1-generic sets are
not i.o. X-subuniform for any X:

Proposition 18. The 1-generic sets are not i.o. X-subuniform for any set X.

Proof. Let P ⊆ {0, 1, 2}ω be an X-recursive parametrization and let A be 1-
generic relative to X (so that A is in particular 1-generic). Then for every n, if
Pn(x) �= 2 for infinitely many x then

{
σ ∈ 2<ω : ∃x [Pn(x) �= 2 ∧ Pn(x) �= σ(x)]

}

is X-recursive and dense, hence A meets this set of conditions and consequently
P does not i.o. parameterize A. �

Now both the example from Proposition 17 and the 1-generic sets are coun-
terexamples to the implication “measure 0 ⇒ i.o. subuniform” because of the
set structure of the elements in the class. One might think that for classes closed
downwards under Turing reducibility (i.e. classes defined by information content
rather than set structure) the situation could be different, i.e. that for A closed
downwards under �T the implication “X covers A ⇒ A i.o. X-subuniform”
would hold. Note that for X recursive this is not interesting, since any nonempty
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class closed downwards under Turing reducibility contains REC and REC does
not have recursive measure zero. However, this is also not true: Let A be the class

{A : A �T G for some 1-genericG}.

Clearly A is closed downwards under Turing reducibility and it follows from
proofs by Kurtz [11] and by Demuth and Kučera [2] (a proof is also given by
Terwijn [19]), that A is a Martin-Löf nullset, and that in particular ∅′ covers A.
However, by Proposition 18 the 1-generic sets are not i.o. ∅′-subuniform so that
in particular A is not i.o. ∅′-subuniform.

3.2 A Nonrecursive Set that Does Not Cover REC

It follows from Proposition 15 and Proposition 16 that if A is of hyperimmune
degree then A covers REC. In particular every nonrecursive set comparable
with ∅′ covers REC. We see that if A cannot cover REC then A must have
hyperimmune-free degree. We now show that there are indeed nonrecursive sets
that do not cover REC. Indeed, the following result establishes that there are
natural examples of such sets.

Theorem 19. If A is Martin-Löf random then there is no martingale M �tt A
which covers REC. In particular if A is Martin-Löf random and of hyperimmune-
free Turing degree then it does not cover REC.

Proof. Let A be Martin-Löf random and MA be truth-table reducible to A by
a truth-table reduction which produces on every oracle a savings martingale,
that is, a martingale which never goes down by more than 1. Without loss of
generality, the martingale starts on the empty string with 1 and is never less
than or equal to 0. Note that because of the truth-table property, one can easily
define the martingale N given by

N(σ) =
∫

E⊆ω

ME(σ) dE.

As one can replace the E by the strings up to use(|σ|) using the recursive use-
function use of the truth-table reduction, one has that

N(σ) =
∑

τ∈{0,1}use(|σ|)

2−|τ |Mτ (σ)

and N is clearly a recursive martingale. Let B be a recursive set which is adver-
sary to N , that is, B is defined inductively such that

∀n [N(B�(n + 1)) � N(B�n)].

Define the uniformly r.e. classes Sn by

Sn = {E : ME reaches on B a value beyond 2n + 1}.
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By the savings property, once ME has gone beyond 2n + 1 on B, ME will stay
above 2n afterwards. It follows that the measure of these E can be at most 2−n.
So μ(Sn) � 2−n for all n and therefore the Sn form a Martin-Löf test. Since A
is Martin-Löf random, there exists n such that A /∈ Sn, and hence MA does not
succeed on B. �
We note that the set

{
A ∈ 2ω : A covers REC

}
has measure 1. This follows

from Proposition 15 and the fact that the hyperimmune sets have measure 1
(a well-known result of Martin, cf. [4, Theorem 8.21.1]). We note that apart
from the hyperimmune degrees, there are other degrees that cover REC:

Proposition 20. There are sets of hyperimmune-free degree that cover the
class REC.

Proof. As in Proposition 15, take a PA-complete set A of hyperimmune-
free degree. Then the recursive sets are A-subuniform, so by Proposition 16
A covers REC. �

3.3 Computing Covers Versus Uniform Computation

We have seen above that in general the implication “X covers A ⇒ A i.o. X-
subuniform” does not hold, even if A is closed downwards under Turing reducibil-
ity. A particular case of interest is whether there are sets that can cover REC
but relative to which REC is not i.o. subuniform.

Theorem 21. There exists a set A that covers REC but relative to which REC
is not i.o. A-subuniform.

Theorem 22. We have the following picture of implications:

A is PA-complete
⇓

A is high ⇒ REC isA − subuniform
⇓ ⇓

A has hyperimmune degree ⇒ REC is i.o.A − subuniform
⇓

A is nonrecursive ⇐ A covers REC
⇓

A has hyperimmune degree or A is not Martin-Löf random

No other implications hold than the ones indicated.

The following interesting question is still open.

Question 23. Are there sets A such that A covers REC, but not the class of
recursively enumerable sets RE?

Acknowledgements. The authors would like to thank George Barmpalias andMichiel
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