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Abstract. Suppose that p is a computable real and that p ≥ 1. We show
that in both the real and complex case, �p is computably categorical if
and only if p = 2. The proof uses Lamperti’s characterization of the
isometries of Lebesgue spaces of σ-finite measure spaces.

1 Introduction

When p is a positive real number, let �p denote the space of all sequences of
complex numbers {an}∞

n=0 so that

∞∑

n=0

|an|p < ∞.

�p is a vector space over C with the usual scalar multiplication and vector addi-
tion. When p ≥ 1 it is a Banach space under the norm defined by

‖{an}n‖ =

( ∞∑

n=0

|an|p
)1/p

.

Loosely speaking, a computable structure is computably categorical if all of
its computable copies are computably isomorphic. In 1989, Pour-El and Richards
showed that �1 is not computably categorical [10]. It follows from a recent result
of A.G. Melnikov that �2 is computably categorical [8]. At the 2014 Conference
on Computability and Complexity in Analysis, A.G. Melnikov asked “For which
computable reals p ≥ 1 is �p computably categorical?” The following theorem
answers this question.

Theorem 1. Suppose p is a computable real so that p ≥ 1. Then, �p is com-
putably categorical if and only if p = 2.

We prove Theorem 1 by proving the following stronger result.

Theorem 2. Suppose p is a computable real so that p ≥ 1 and p �= 2. Suppose
C is a c.e. set. Then, there is a computable copy of �p, B, so that C computes
a linear isometry of �p onto B. Furthermore, if an oracle X computes a linear
isometry of �p onto B, then X must also compute C.
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 268–275, 2015.
DOI: 10.1007/978-3-319-20028-6 27



A Note on the Computable Categoricity of �p Spaces 269

These results also hold for �p-spaces over the reals. In a forthcoming paper it
will be shown that �p is Δ0

2-categorical.
The paper is organized as follows. Section 2 covers background and motiva-

tion. Section 3 presents the proof of Theorem 2. Concluding remarks are pre-
sented in Sect. 4.

2 Background

2.1 Background from Functional Analysis

Fix p so that 1 ≤ p < ∞. A generating set for �p is a subset of �p with the
property that �p is the closure of its linear span.

Let en be the vector in �p whose (n + 1)st component is 1 and whose other
components are 0. Let E = {en : n ∈ N}. We call E the standard generating
set for �p.

Recall that an isometry of �p is a norm-preserving map of �p into �p. We will
use the following classification of the surjective linear isometries of �p.

Theorem 3. (Banach/Lamperti). Suppose p is a real number so that p ≥ 1
and p �= 2. Let T be a linear map of �p into �p. Then, the following are equivalent.

1. T is a surjective isometry.
2. There is a permutation of N, φ, and a sequence of unimodular points, {λn}n,

so that T (en) = λneφ(n) for all n.
3. Each T (en) is a unit vector and the supports of T (en) and T (em) are disjoint

whenever m �= n.

In his seminal text on linear operators, S. Banach stated Theorem 3 for the case of
�p spaces over the reals [2]. He also stated a classification of the linear isometries
of Lp[0, 1] in the real case. Banach’s proofs of these results were sketchy and did
not easily generalize to the complex case. In 1958, J. Lamperti rigorously proved
a generalization of Banach’s claims to real and complex Lp-spaces of σ-finite
measure spaces [7]. Theorem 3 follows from J. Lamperti’s work as it appears in
Theorem 3.2.5 of [4]. Note that Theorem 3 fails when p = 2. For, �2 is a Hilbert
space. So, if {f0, f1, . . .} is any orthonormal basis for �2, then there is a unique
surjective linear isometry of �2, T , so that T (en) = fn for all n.

2.2 Background from Computable Analysis

We assume the reader is familiar with the fundamental notions of computability
theory as covered in [3].

Suppose z0 ∈ C. We say that z0 is computable if there is an algorithm that
given any k ∈ N as input computes a rational point q so that |q−z0| < 2−k. This
is equivalent to saying that the real and imaginary parts of z0 have computable
decimal expansions.

Our approach to computability on �p is equivalent to the format in [10]
wherein a more expansive treatment may be found.
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Fix a computable real p so that 1 ≤ p < ∞. Let F = {f0, f1, . . .} be a
generating set for �p. We say that F is an effective generating set if there is an
algorithm that given any rational points α0, . . . , αM and a nonnegative integer
k as input computes a rational number q so that

q − 2−k <

∥∥∥∥∥∥

M∑

j=0

αjfj

∥∥∥∥∥∥
< q + 2−k.

That is, the map

α0, . . . , αM �→
∥∥∥∥∥∥

M∑

j=0

αjfj

∥∥∥∥∥∥

is computable. Clearly the standard generating set is an effective generating set.
Suppose F = {f0, f1, . . .} is an effective generating set for �p. We say that a

vector g ∈ �p is computable with respect to F if there is an algorithm that given
any nonnegative integer k as input computes rational points α0, . . . , αM so that

∥∥∥∥∥∥
g −

M∑

j=0

αjfj

∥∥∥∥∥∥
< 2−k.

Suppose gn ∈ �p for all n. We say that {gn}n, is computable with respect to F if
there is an algorithm that given any k, n ∈ N as input computes rational points
α0, . . . , αM so that ∥∥∥∥∥∥

gn −
M∑

j=0

αjfj

∥∥∥∥∥∥
< 2−k.

When f ∈ �p and r > 0, let B(f ; r) denote the open ball with center f
and radius r. When α0, . . . , αM are rational points and r is a positive rational
number, we call B

(∑M
j=0 αjfj ; r

)
a rational ball.

Suppose F = {f0, f1, . . .} and G = {g0, g1, . . .} are effective generating sets
for �p. We say that a map T : �p → �p is computable with respect to (F,G) if
there is an algorithm P that meets the following three criteria.

– Approximation: Given a rational ball B(
∑M

j=0 αjfj ; r) as input, P either
does not halt or produces a rational ball B(

∑N
j=0 βjgj ; r′).

– Correctness: If B(
∑N

j=0 βjgj ; r′) is the output of P on input B(
∑M

j=0

αjfj ; r), then T (f) ∈ B(
∑N

j=0 βjgj ; r′) whenever f ∈ B(
∑M

j=0 αjfj ; r).
– Convergence: If U is a neighborhood of T (f), then f belongs to a rational

ball B1 = B(
∑M

j=0 αjfj ; r) so that P halts on B1 and produces a rational ball
that is included in U .

When we speak of an algorithm accepting a rational ball B(
∑M

j=0 αjfj ; r) as
input, we of course mean that it accepts some representation of the ball such as
a code of the sequence (r,M,α0, . . . , αM ).
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All of these definitions have natural relativizations. For example, if F =
{f0, f1, . . .} is an effective generating set, then we say that X computes a vector
g ∈ �p with respect to F if there is a Turing reduction that given the oracle X and
an input k computes rational points α0, . . . , αM so that

∥∥∥g − ∑M
j=0 αjfj

∥∥∥ < 2−k.

2.3 Background from Computable Categoricity

For the sake of motivation, we begin by considering the following simple example.
Let ζ be an incomputable unimodular point in the plane. For each n, let fn =
ζen. Let F = {f0, f1, . . .}. Thus, F is an effective generating set. However, the
vector ζe0 is computable with respect to F even though it is not computable
with respect to the standard generating set E. In fact, the only vector that
is computable with respect to E and F is the zero vector. The moral of the
story is that different effective generating sets may yield very different classes of
computable vectors and sequences. However, there is a surjective linear isometry
of �p that is computable with respect to (E,F ); namely multiplication by ζ. Thus,
E and F give the same computability theory on �p even though they yield very
different classes of computable vectors. This leads to the following definition.

Definition 4. Suppose p is a computable real so that p ≥ 1. We say that �p is
computably categorical if for every effective generating set F there is a surjective
linear isometry of �p that is computable with respect to (E,F ).

The definitions just given for �p can easily be adapted to any separable Banach
space. Suppose G = {g0, g1 . . . , } is an effective generating set for a Banach
space B. The pair (B, G) is called a computable Banach space. Suppose that B is
linearly isometric to �p, and let T denote a linear isometric mapping of B onto
�p. Let fn = T (gn), and let F = {f0, f1, . . .}. Then, F is an effective generating
set for �p, and T is computable with respect to (G,F ). Thus, Theorem 2 can be
rephrased as follows.

Theorem 5. Suppose p is a computable real so that p ≥ 1 and p �= 2. Suppose
C is a c.e. set. Then, there is an effective generating set for �p, F , so that with
respect to (E,F ), C computes a surjective linear isometry of �p. Furthermore,
any oracle that computes a surjective linear isometry of �p with respect to (E,F )
must also compute C.

A.G. Melnikov and K.M. Ng have investigated computable categoricity questions
with regards to the space C[0, 1] of continuous functions on the unit interval with
the supremum norm [8,9]. The study of computable categoricity for countable
structures goes back at least as far as the work of Goncharov [5]. The text of
Ash and Knight has a thorough discussion of the main results of this line of
inquiry [1]. The survey by Harizanov covers other directions in the countable
computable structures program [6].
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3 Proof of Theorems 1 and 2

We begin by noting the following easy consequence of the definitions and Theo-
rem 3.

Proposition 6. Suppose p is a computable real so that p ≥ 1 and so that p �= 2.
Let F be an effective generating set for �p. Then, the following are equivalent.

1. There is a surjective linear isometry of �p that is computable with respect to
(E,F ).

2. There is a permutation of N, φ, and a sequence of unimodular points {λn}n,
so that {λneφ(n)}n is computable with respect to F .

3. There is a sequence of unit vectors {gn}n so that {gn}n is computable with
respect to F , G = {g0, g1, . . .} is a generating set for �p, and so that the
supports of gn and gm are disjoint whenever n �= m.

Proof. Parts (2) and (3) just restate each other. It follows from Theorem 3 that
(1) implies (2).

Suppose (3) holds. Let T be the unique linear map of the span of E onto
the span of G so that T (en) = gn for all n. Since the supports of g0, g1, . . . are
pairwise disjoint, and since each gn is a unit vector, T is isometric. It follows that
there is a unique extension of T to a unique linear isometry of �p; denote this
extension by T as well. We claim that T is computable with respect to (E,F ).
For, suppose a rational ball B(

∑M
j=0 αjej ; r) is given as input. Since {gn}n is

computable with respect to F , it follows that we can compute a non-negative
integer N and rational points β0, . . . , βN so that

∥∥∥
∑M

j=0 αjgj − ∑N
j=0 βjfj

∥∥∥ < r.

We then output B(
∑N

j=0 βjgj ; 2r). It follows that the Approximation, Correct-
ness, and Convergence criteria are satisfied and so T is computable with respect
to (E,F ). 
�
We now turn to the proof of Theorem 5 which, as we have noted, implies
Theorem 2. Our construction of F is a modification of the construction used
by Pour-El and Richards to show that �1 is not computably categorical [10]. Let
C be an incomputable c.e. set. Without loss of generality, we assume 0 �∈ C. Let
{cn}n∈N be an effective one-to-one enumeration of C. Set

γ =
∑

k∈C

2−k.

Thus, 0 < γ < 1, and γ is an incomputable real. Set:

f0 = (1 − γ)1/pe0 +
∞∑

n=0

2−cn/pen+1

fn+1 = en+1

F = {f0, f1, f2, . . .}
Since 1 − γ > 0, we can use the standard branch of p

√ .
We divide the rest of the proof into the following lemmas.



A Note on the Computable Categoricity of �p Spaces 273

Lemma 7. F is an effective generating set.

Proof. Since

(1 − γ)1/pe0 = f0 −
∞∑

n=1

2−cn−1/pfn

the closed linear span of F includes E. Thus, F is a generating set for �p. Note
that ‖f0‖ = 1.

Suppose α0, . . . , αM are rational points. When 1 ≤ j ≤ M , set

Ej = |α02−cj−1/p + αj |p − |α0|p2−cj−1 .

It follows that

‖α0f0 + . . . + αMfM‖p = |α0|p ‖f0‖p + E1 + . . . + EM

= |α0|p + E1 + . . . + EM .

Since E1, . . ., EM can be computed from α0, . . . , αM , ‖α0f0 + . . . + αMfM‖ can
be computed from α0, . . . , αM . Thus, F is an effective generating set. 
�
Lemma 8. Every oracle that with respect to F computes a scalar multiple of e0
whose norm is 1 must also compute C.

Proof. Suppose that with respect to F , X computes a vector of the form λe0
where |λ| = 1. It suffices to show that X computes (1 − γ)−1/p.

Fix a rational number q0 so that (1 − γ)−1/p ≤ q0. Let k ∈ N be given as
input. Compute k′ so that 2−k′ ≤ q02−k. Since X computes λe0 with respect to
F , we can use oracle X to compute rational points α0, . . . , αM so that

∥∥∥∥∥∥
λe0 −

M∑

j=0

αjfj

∥∥∥∥∥∥
< 2−k′

. (1)

We claim that |(1−γ)−1/p −|α0|| < 2−k. For, it follows from (1) that |λ−α0(1−
γ)1/p| < 2−k′

. Thus, |1 − |α0|(1 − γ)1/p| < 2−k′
. Hence,

|(1 − γ)−1/p − |α0|| < 2−k′
(1 − γ)−1/p ≤ 2−k′

q0 ≤ 2−k.

Since X computes α0 from k, X computes (1 − γ)−1/p. 
�
Lemma 9. If X computes a surjective linear isometry of �p with respect to
(E,F ), then X must also compute C.

Proof. By Lemma 8 and the relativization of Proposition 6. 
�
Lemma 10. With respect to F , C computes e0.
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Proof. Fix an integer M so that (1 − γ)−1/p < M .
Let k ∈ N. Using oracle C, we can compute an integer N1 so that N1 ≥ 3 and

∥∥∥∥∥

∞∑

n=N1

2−cn−1/pen

∥∥∥∥∥ ≤ 2−(kp+1)/p

2−(kp+1)/p + M
.

We can use oracle C to compute a rational number q1 so that |q1−(1−γ)−1/p| ≤
2−(kp+1)/p. Set

g = q1

[
f0 −

N1−1∑

n=1

2−cn−1/pfn

]
.

It suffices to show that ‖e0 − g‖ < 2−k. Note that since 1−γ < 1, |q1(1−γ)1/p −
1| ≤ 2−(kp+1)/p. Note also that |q1| < M + 2−(kp+1)/p. Thus,

‖e0 − g‖p =

∥∥∥∥∥e0 − q1(1 − γ)1/pe0 − q1

∞∑

n=N1

2−cn−1/pen

∥∥∥∥∥

p

≤ |q1(1 − γ)1/p − 1|p + |q1|p
∥∥∥∥∥

∞∑

n=N1

2−cn−1/pen

∥∥∥∥∥

p

< 2−(kp+1) + 2−(kp+1) = 2−kp

Thus, ‖e0 − g‖ < 2−k. This completes the proof of the lemma. 
�
Lemma 11. With respect to (E,F ), C computes a surjective linear isometry
of �p.

Proof. By Lemma 10 and the relativization of Proposition 6. 
�

4 Concluding Remarks

We note that all of the steps in the above proofs work just as well over the real
field.

Lamperti’s result on the isometries of Lp spaces hold when 0 < p < 1. For
these values of p, �p is a metric space under the metric

d({an}n, {bn}n) =
∞∑

n=0

|an − bn|p.

The steps in the above proofs can be adapted to these values of p as well.
In a forthcoming paper it will be shown that �p is Δ0

2-categorical.
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