A Note on the Computable Categoricity of ℓ^p Spaces

Timothy H. McNicholl^(\boxtimes)

Iowa State University, Ames, IA 50011, USA mcnichol@iastate.edu

Abstract. Suppose that p is a computable real and that $p \geq 1$. We show that in both the real and complex case, ℓ^p is computably categorical if and only if $p = 2$. The proof uses Lamperti's characterization of the isometries of Lebesgue spaces of σ -finite measure spaces.

1 Introduction

When p is a positive real number, let ℓ^p denote the space of all sequences of complex numbers $\{a_n\}_{n=0}^{\infty}$ so that

$$
\sum_{n=0}^{\infty} |a_n|^p < \infty.
$$

 ℓ^p is a vector space over $\mathbb C$ with the usual scalar multiplication and vector addition. When $p \geq 1$ it is a Banach space under the norm defined by

$$
\|\{a_n\}_n\| = \left(\sum_{n=0}^{\infty} |a_n|^p\right)^{1/p}.
$$

Loosely speaking, a computable structure is *computably categorical* if all of its computable copies are computably isomorphic. In 1989, Pour-El and Richards showed that ℓ^1 is not computably categorical [\[10](#page-7-0)]. It follows from a recent result of A.G. Melnikov that ℓ^2 is computably categorical [\[8\]](#page-7-1). At the 2014 Conference on Computability and Complexity in Analysis, A.G. Melnikov asked "For which computable reals $p \geq 1$ is ℓ^p computably categorical?" The following theorem answers this question.

Theorem 1. *Suppose* p *is a computable real so that* $p \ge 1$ *. Then,* ℓ^p *is computably categorical if and only if* $p = 2$ *.*

We prove Theorem [1](#page-0-0) by proving the following stronger result.

Theorem 2. *Suppose* p *is a computable real so that* $p \ge 1$ *and* $p \ne 2$ *. Suppose* C *is a c.e. set. Then, there is a computable copy of* ℓ^p , \mathcal{B} *, so that* C *computes a linear isometry of* ℓ^p *onto* \mathcal{B} *. Furthermore, if an oracle* X *computes a linear isometry of* ℓ^p *onto* \mathcal{B} *, then* X *must also compute* C *.*

A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 268–275, 2015. DOI: 10.1007/978-3-319-20028-6 27

c Springer International Publishing Switzerland 2015

These results also hold for ℓ^p -spaces over the reals. In a forthcoming paper it will be shown that ℓ^p is Δ_2^0 -categorical.

The paper is organized as follows. Section [2](#page-1-0) covers background and motivation. Section [3](#page-4-0) presents the proof of Theorem [2.](#page-0-1) Concluding remarks are presented in Sect. [4.](#page-6-0)

2 Background

2.1 Background from Functional Analysis

Fix p so that $1 \leq p < \infty$. A *generating set* for ℓ^p is a subset of ℓ^p with the property that ℓ^p is the closure of its linear span.

Let e_n be the vector in ℓ^p whose $(n + 1)$ st component is 1 and whose other components are 0. Let $E = \{e_n : n \in \mathbb{N}\}\$. We call E the *standard generating* set for ℓ^p .

Recall that an *isometry* of ℓ^p is a norm-preserving map of ℓ^p into ℓ^p . We will use the following classification of the surjective linear isometries of ℓ^p .

Theorem 3. (Banach/Lamperti). Suppose p is a real number so that $p \geq 1$ $and p \neq 2.$ Let T be a linear map of ℓ^p into ℓ^p . Then, the following are equivalent.

- *1.* T *is a surjective isometry.*
- 2. There is a permutation of N, ϕ , and a sequence of unimodular points, $\{\lambda_n\}_n$, *so that* $T(e_n) = \lambda_n e_{\phi(n)}$ *for all n.*
- *3.* Each $T(e_n)$ is a unit vector and the supports of $T(e_n)$ and $T(e_m)$ are disjoint *whenever* $m \neq n$ *.*

In his seminal text on linear operators, S. Banach stated Theorem [3](#page-1-1) for the case of ℓ^p spaces over the reals [\[2](#page-7-2)]. He also stated a classification of the linear isometries of $L^p[0, 1]$ in the real case. Banach's proofs of these results were sketchy and did not easily generalize to the complex case. In 1958, J. Lamperti rigorously proved a generalization of Banach's claims to real and complex L^p -spaces of σ -finite measure spaces [\[7\]](#page-7-3). Theorem [3](#page-1-1) follows from J. Lamperti's work as it appears in Theorem 3.2.5 of [\[4](#page-7-4)]. Note that Theorem [3](#page-1-1) fails when $p = 2$. For, ℓ^2 is a Hilbert space. So, if $\{f_0, f_1, \ldots\}$ is any orthonormal basis for ℓ^2 , then there is a unique surjective linear isometry of ℓ^2 , T, so that $T(e_n) = f_n$ for all n.

2.2 Background from Computable Analysis

We assume the reader is familiar with the fundamental notions of computability theory as covered in [\[3](#page-7-5)].

Suppose $z_0 \in \mathbb{C}$. We say that z_0 is *computable* if there is an algorithm that given any $k \in \mathbb{N}$ as input computes a rational point q so that $|q-z_0| < 2^{-k}$. This is equivalent to saying that the real and imaginary parts of z_0 have computable decimal expansions.

Our approach to computability on ℓ^p is equivalent to the format in [\[10\]](#page-7-0) wherein a more expansive treatment may be found.

Fix a computable real p so that $1 \leq p < \infty$. Let $F = \{f_0, f_1, ...\}$ be a generating set for ℓ^p . We say that F is an *effective generating set* if there is an algorithm that given any rational points $\alpha_0, \ldots, \alpha_M$ and a nonnegative integer k as input computes a rational number q so that

$$
q - 2^{-k} < \left\| \sum_{j=0}^{M} \alpha_j f_j \right\| < q + 2^{-k}.
$$

That is, the map

$$
\alpha_0, \ldots, \alpha_M \mapsto \left\| \sum_{j=0}^M \alpha_j f_j \right\|
$$

is computable. Clearly the standard generating set is an effective generating set.

Suppose $F = \{f_0, f_1, \ldots\}$ is an effective generating set for ℓ^p . We say that a vector $g \in \ell^p$ is *computable with respect to* F if there is an algorithm that given any nonnegative integer k as input computes rational points $\alpha_0, \ldots, \alpha_M$ so that

$$
\left\|g - \sum_{j=0}^{M} \alpha_j f_j\right\| < 2^{-k}.
$$

Suppose $g_n \in \ell^p$ for all n. We say that $\{g_n\}_n$, is *computable with respect to* F if there is an algorithm that given any $k, n \in \mathbb{N}$ as input computes rational points α_0,\ldots,α_M so that

$$
\left\|g_n - \sum_{j=0}^M \alpha_j f_j\right\| < 2^{-k}.
$$

When $f \in \ell^p$ and $r > 0$, let $B(f;r)$ denote the open ball with center f and radius r. When $\alpha_0, \ldots, \alpha_M$ are rational points and r is a positive rational number, we call $B\left(\sum_{j=0}^M \alpha_j f_j; r\right)$ a *rational ball*.

Suppose $F = \{f_0, f_1, \ldots\}$ and $G = \{g_0, g_1, \ldots\}$ are effective generating sets for ℓ^p . We say that a map $T : \ell^p \to \ell^p$ is *computable with respect to* (F, G) if there is an algorithm P that meets the following three criteria.

- **Approximation:** Given a rational ball $B(\sum_{j=0}^{M} \alpha_j f_j; r)$ as input, P either does not halt or produces a rational ball $B(\sum_{j=0}^{N} \beta_j g_j; r')$.
- **Correctness:** If $B(\sum_{j=0}^{N} \beta_j g_j; r')$ is the output of P on input $B(\sum_{j=0}^{M} \beta_j g_j; r')$ $\alpha_j f_j; r$, then $T(f) \in B(\sum_{j=0}^N \beta_j g_j; r')$ whenever $f \in B(\sum_{j=0}^M \alpha_j f_j; r)$.
- **Convergence:** If U is a neighborhood of $T(f)$, then f belongs to a rational ball $B_1 = B(\sum_{j=0}^{M} \alpha_j f_j; r)$ so that P halts on B_1 and produces a rational ball that is included in U .

When we speak of an algorithm accepting a rational ball $B(\sum_{j=0}^{M} \alpha_j f_j; r)$ as input, we of course mean that it accepts some representation of the ball such as a code of the sequence $(r, M, \alpha_0, \ldots, \alpha_M)$.

All of these definitions have natural relativizations. For example, if $F =$ ${f_0, f_1,...}$ is an effective generating set, then we say that X computes a vector $g \in \ell^p$ with respect to F if there is a Turing reduction that given the oracle X and an input k computes rational points $\alpha_0, \ldots, \alpha_M$ so that $||g - \sum_{j=0}^M \alpha_j f_j|| < 2^{-k}$.

2.3 Background from Computable Categoricity

For the sake of motivation, we begin by considering the following simple example. Let ζ be an incomputable unimodular point in the plane. For each n, let $f_n =$ ζe_n . Let $F = \{f_0, f_1, \ldots\}$. Thus, F is an effective generating set. However, the vector ζ_{e_0} is computable with respect to F even though it is not computable with respect to the standard generating set E . In fact, the only vector that is computable with respect to E and F is the zero vector. The moral of the story is that different effective generating sets may yield very different classes of computable vectors and sequences. However, there is a surjective linear isometry of ℓ^p that is computable with respect to (E, F) ; namely multiplication by ζ . Thus, E and F give the same computability theory on ℓ^p even though they yield very different classes of computable vectors. This leads to the following definition.

Definition 4. Suppose p is a computable real so that $p \ge 1$. We say that ℓ^p is computably categorical *if for every effective generating set* F *there is a surjective linear isometry of* ℓ^p *that is computable with respect to* (E, F) *.*

The definitions just given for ℓ^p can easily be adapted to any separable Banach space. Suppose $G = \{g_0, g_1, \ldots\}$ is an effective generating set for a Banach space B. The pair (\mathcal{B}, G) is called a *computable Banach space*. Suppose that B is linearly isometric to ℓ^p , and let T denote a linear isometric mapping of B onto ℓ^p . Let $f_n = T(g_n)$, and let $F = \{f_0, f_1, \ldots\}$. Then, F is an effective generating set for ℓ^p , and T is computable with respect to (G, F) . Thus, Theorem [2](#page-0-1) can be rephrased as follows.

Theorem 5. *Suppose* p *is a computable real so that* $p \ge 1$ *and* $p \ne 2$ *. Suppose* C *is a* c.e. *set.* Then, there is an effective generating set for ℓ^p , F , so that with *respect to* (E, F) , C *computes a surjective linear isometry of* ℓ^p . Furthermore, any oracle that computes a surjective linear isometry of ℓ^p with respect to (E, F) *must also compute* C*.*

A.G. Melnikov and K.M. Ng have investigated computable categoricity questions with regards to the space $C[0, 1]$ of continuous functions on the unit interval with the supremum norm $[8,9]$ $[8,9]$ $[8,9]$. The study of computable categoricity for countable structures goes back at least as far as the work of Goncharov [\[5](#page-7-7)]. The text of Ash and Knight has a thorough discussion of the main results of this line of inquiry [\[1\]](#page-7-8). The survey by Harizanov covers other directions in the countable computable structures program [\[6\]](#page-7-9).

3 Proof of Theorems [1](#page-0-0) and [2](#page-0-1)

We begin by noting the following easy consequence of the definitions and Theorem [3.](#page-1-1)

Proposition 6. *Suppose* p *is a computable real so that* $p \ge 1$ *and so that* $p \ne 2$ *.* Let F be an effective generating set for ℓ^p . Then, the following are equivalent.

- *1. There is a surjective linear isometry of* ℓ^p *that is computable with respect to* (E,F)*.*
- *2. There is a permutation of* N, ϕ , and a sequence of unimodular points $\{\lambda_n\}_n$, *so that* $\{\lambda_n e_{\phi(n)}\}_n$ *is computable with respect to F.*
- *3. There is a sequence of unit vectors* ${g_n}_n$ *so that* ${g_n}_n$ *is computable with respect to* $F, G = \{g_0, g_1, \ldots\}$ *is a generating set for* ℓ^p *, and so that the* supports of g_n and g_m are disjoint whenever $n \neq m$.

Proof. Parts (2) and (3) just restate each other. It follows from Theorem [3](#page-1-1) that (1) implies (2).

Suppose (3) holds. Let T be the unique linear map of the span of E onto the span of G so that $T(e_n) = g_n$ for all n. Since the supports of g_0, g_1, \ldots are pairwise disjoint, and since each g_n is a unit vector, T is isometric. It follows that there is a unique extension of T to a unique linear isometry of ℓ^p ; denote this extension by T as well. We claim that T is computable with respect to (E, F) . For, suppose a rational ball $B(\sum_{j=0}^{M} \alpha_j e_j; r)$ is given as input. Since $\{g_n\}_n$ is computable with respect to F , it follows that we can compute a non-negative integer N and rational points β_0, \ldots, β_N so that $\left\| \sum_{j=0}^M \alpha_j g_j - \sum_{j=0}^N \beta_j f_j \right\| < r$. We then output $B(\sum_{j=0}^{N} \beta_j g_j; 2r)$. It follows that the Approximation, Correctness, and Convergence criteria are satisfied and so T is computable with respect to (E, F) . П

We now turn to the proof of Theorem [5](#page-3-0) which, as we have noted, implies Theorem [2.](#page-0-1) Our construction of F is a modification of the construction used by Pour-El and Richards to show that ℓ^1 is not computably categorical [\[10](#page-7-0)]. Let C be an incomputable c.e. set. Without loss of generality, we assume $0 \notin C$. Let ${c_n}_{n\in\mathbb{N}}$ be an effective one-to-one enumeration of C. Set

$$
\gamma = \sum_{k \in C} 2^{-k}.
$$

Thus, $0 < \gamma < 1$, and γ is an incomputable real. Set:

$$
f_0 = (1 - \gamma)^{1/p} e_0 + \sum_{n=0}^{\infty} 2^{-c_n/p} e_{n+1}
$$

$$
f_{n+1} = e_{n+1}
$$

$$
F = \{f_0, f_1, f_2, \ldots\}
$$

Since $1 - \gamma > 0$, we can use the standard branch of $\sqrt[p]{\cdot}$.

We divide the rest of the proof into the following lemmas.

Lemma 7. F *is an effective generating set.*

Proof. Since

$$
(1 - \gamma)^{1/p} e_0 = f_0 - \sum_{n=1}^{\infty} 2^{-c_{n-1}/p} f_n
$$

the closed linear span of F includes E. Thus, F is a generating set for ℓ^p . Note that $|| f_0 || = 1$.

Suppose $\alpha_0, \ldots, \alpha_M$ are rational points. When $1 \leq j \leq M$, set

$$
\mathcal{E}_j = |\alpha_0 2^{-c_{j-1}/p} + \alpha_j|^p - |\alpha_0|^p 2^{-c_{j-1}}.
$$

It follows that

$$
\begin{aligned} \|\alpha_0 f_0 + \ldots + \alpha_M f_M\|^p &= |\alpha_0|^p \, \|f_0\|^p + \mathcal{E}_1 + \ldots + \mathcal{E}_M \\ &= |\alpha_0|^p + \mathcal{E}_1 + \ldots + \mathcal{E}_M. \end{aligned}
$$

Since $\mathcal{E}_1, \ldots, \mathcal{E}_M$ can be computed from $\alpha_0, \ldots, \alpha_M$, $\|\alpha_0 f_0 + \ldots + \alpha_M f_M\|$ can be computed from $\alpha_0, \ldots, \alpha_M$. Thus, F is an effective generating set. \Box

Lemma 8. *Every oracle that with respect to* F *computes a scalar multiple of* e_0 *whose norm is* 1 *must also compute* C*.*

Proof. Suppose that with respect to F, X computes a vector of the form λe_0 where $|\lambda| = 1$. It suffices to show that X computes $(1 - \gamma)^{-1/p}$.

Fix a rational number q_0 so that $(1 - \gamma)^{-1/p} \leq q_0$. Let $k \in \mathbb{N}$ be given as input. Compute k' so that $2^{-k'} \leq q_0 2^{-k}$. Since X computes λe_0 with respect to F, we can use oracle X to compute rational points $\alpha_0, \ldots, \alpha_M$ so that

$$
\left\| \lambda e_0 - \sum_{j=0}^M \alpha_j f_j \right\| < 2^{-k'}.
$$
\n⁽¹⁾

We claim that $|(1-\gamma)^{-1/p}-|\alpha_0|| < 2^{-k}$. For, it follows from [\(1\)](#page-5-0) that $|\lambda-\alpha_0(1-\gamma)|$ $|\gamma|^{1/p}| < 2^{-k'}$. Thus, $|1 - |\alpha_0|(1 - \gamma)^{1/p}| < 2^{-k'}$. Hence,

$$
|(1 - \gamma)^{-1/p} - |\alpha_0|| < 2^{-k'} (1 - \gamma)^{-1/p} \le 2^{-k'} q_0 \le 2^{-k}.
$$

Since X computes α_0 from k, X computes $(1 - \gamma)^{-1/p}$.

Lemma 9. If X computes a surjective linear isometry of ℓ^p with respect to (E,F)*, then* X *must also compute* C*.*

Proof. By Lemma [8](#page-5-1) and the relativization of Proposition [6.](#page-4-1) \Box

Lemma 10. With respect to F, C computes e_0 .

 \Box

Proof. Fix an integer M so that $(1 - \gamma)^{-1/p} < M$.

Let $k \in \mathbb{N}$. Using oracle C, we can compute an integer N_1 so that $N_1 \geq 3$ and

$$
\left\| \sum_{n=N_1}^{\infty} 2^{-c_{n-1}/p} e_n \right\| \le \frac{2^{-(kp+1)/p}}{2^{-(kp+1)/p} + M}.
$$

We can use oracle C to compute a rational number q_1 so that $|q_1-(1-\gamma)^{-1/p}| \leq$ $2^{-(kp+1)/p}$. Set

$$
g = q_1 \left[f_0 - \sum_{n=1}^{N_1 - 1} 2^{-c_{n-1}/p} f_n \right].
$$

It suffices to show that $||e_0 - g|| < 2^{-k}$. Note that since $1 - \gamma < 1$, $|q_1(1 - \gamma)^{1/p} 1| \leq 2^{-(kp+1)/p}$. Note also that $|q_1| < M + 2^{-(kp+1)/p}$. Thus,

$$
||e_0 - g||^p = ||e_0 - q_1(1 - \gamma)^{1/p}e_0 - q_1 \sum_{n=N_1}^{\infty} 2^{-c_{n-1/p}}e_n||^p
$$

\n
$$
\leq |q_1(1 - \gamma)^{1/p} - 1|^p + |q_1|^p \left\| \sum_{n=N_1}^{\infty} 2^{-c_{n-1}/p}e_n \right\|^p
$$

\n
$$
< 2^{-(kp+1)} + 2^{-(kp+1)} = 2^{-kp}
$$

Thus, $||e_0 - g|| < 2^{-k}$. This completes the proof of the lemma.

Lemma 11. *With respect to* (E,F)*,* C *computes a surjective linear isometry* of ℓ^p .

Proof. By Lemma [10](#page-5-2) and the relativization of Proposition [6.](#page-4-1) \Box

4 Concluding Remarks

We note that all of the steps in the above proofs work just as well over the real field.

Lamperti's result on the isometries of L^p spaces hold when $0 < p < 1$. For these values of p , ℓ^p is a metric space under the metric

$$
d({a_n}_n, {b_n}_n) = \sum_{n=0}^{\infty} |a_n - b_n|^p.
$$

The steps in the above proofs can be adapted to these values of p as well.

In a forthcoming paper it will be shown that ℓ^p is Δ_2^0 -categorical.

Acknowledgement. The author thanks the anonymous referees who made helpful comments. The author's participation in CiE 2015 was funded by a Simons Foundation Collaboration Grant for Mathematicians.

 \Box

References

- 1. Ash, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 144. North-Holland Publishing Co., Amsterdam (2000)
- 2. Banach, S.: Theory of Linear Operations. North-Holland Mathematical Library, vol. 38. North-Holland Publishing Co., Amsterdam (1987). Translated from the French by F. Jellett, With comments by A. Pełczyński and Cz. Bessaga
- 3. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)
- 4. Fleming, R.J., Jamison, J.E.: Isometries on Banach Spaces: Function Spaces. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 129. Chapman & Hall/CRC, Boca Raton (2003)
- 5. Goncharov, S.: Autostability and computable families of constructivizations. Algebr. Log. **17**, 392–408 (1978). English translation
- 6. Harizanov, V.S.: Pure computable model theory. Handbook of Recursive Mathematics. Volume 1, Studies in Logic and the Foundations of Mathematics, vol. 138, pp. 3–114. North-Holland, Amsterdam (1998)
- 7. Lamperti, J.: On the isometries of certain function-spaces. Pac. J. Math. **8**, 459–466 (1958)
- 8. Melnikov, A.G.: Computably isometric spaces. J. Symb. Log. **78**(4), 1055–1085 (2013)
- 9. Melnikov, A.G., Ng, K.M.: Computable structures and operations on the space of continuous functions. Available at [https://dl.dropboxusercontent.com/u/4752353/](https://dl.dropboxusercontent.com/u/4752353/Homepage/C(0,1)_final.pdf) $Homepage/C[0,1]$ final.pdf
- 10. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Berlin (1989)