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Abstract. We present new parallel sorting networks for 17 to 20 inputs.
For 17, 19, and 20 inputs these new networks are faster (i.e., they require
fewer computation steps) than the previously known best networks.
Therefore, we improve upon the known upper bounds for minimal depth
sorting networks on 17, 19, and 20 channels. Furthermore, we show that
our sorting network for 17 inputs is optimal in the sense that no sort-
ing network using less layers exists. This solves the main open problem of
[D. Bundala & J. Závodný. Optimal sorting networks, Proc. LATA 2014].

1 Introduction

Comparator networks are hardwired circuits consisting of simple gates that sort
their inputs. If the output of such a network is sorted for all possible inputs,
it is called a sorting network. Sorting networks are an old area of interest, and
results concerning their size date back at least to the 50’s of the last century.

The size of a comparator network in general can be measured by two different
quantities: the total number of comparators involved in the network, or the
number of layers the network consists of. In both cases, finding optimal sorting
networks (i.e., of minimal size) is a challenging task even when restricted to few
inputs, which was attacked using different methods.

For instance, Valsalam and Miikkulainen [11] employed evolutionary algo-
rithms to generate sorting networks with few comparators. Minimal depth sort-
ing networks for up to 16 inputs were constructed by Shapiro and Van Voorhis
in the 60’s and 70’s, and by Schwiebert in 2001, who also made use of evolu-
tionary techniques. For a presentation of these networks see Knuth [8, Fig. 51].
However, the optimality of the known networks for 11 to 16 channels was only
shown recently by Bundala and Závodný [4], who partitioned the set of first two
layers into equivalence classes and reduced the search to extensions of one rep-
resentative of each class. They then expressed the existence of a sorting network
with less layers extending these representatives in propositional logic and used a
SAT solver to show that the resulting formulae are unsatisfiable. Codish, Cruz-
Filipe, and Schneider-Kamp [5] simplified the generation of the representatives
and independently verified Bundala and Závodný’s result.

For more than 16 channels, not much is known about the minimal depths of
sorting networks. Al-Haj Baddar and Batcher [2] exhibit a network sorting 18
inputs using 11 layers, which also provides the best known upper bound on the
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minimal depth of a sorting network for 17 inputs. The lowest upper bound on
the size of minimal depth sorting networks on 19 to 22 channels also stems from
a network presented by Al-Haj Baddar and Batcher [1]. For 23 and more inputs,
the best upper bounds to date are established by merging the outputs of smaller
sorting networks with Batcher’s odd-even merge [3], which needs �log n� layers
for this merging step.

The known lower bounds are due to Parberry [10] and Bundala and Závodný.
A new insight by Codish, Cruz-Filipe, and Schneider-Kamp [6] into the struc-
ture of the last layers of sorting networks lead to a significant further reduction
of the search space. Despite all this recently resparked interest in sorting net-
works, the newly gained insights were insufficient to establish a tight lower bound
on the depth of sorting networks for 17 inputs.

We use the SAT approach by Bundala and Závodný to synthesize new sorting
networks of small depths, and thus provide better upper bounds for 17, 19, and
20 inputs. Furthermore, our improvements upon their method allow us to raise
the lower bound for 17 inputs. Therefore, for the first time after the works of
Shapiro, Van Voorhis, and Schwiebert, we present here a new optimal depth
sorting network.

An overview of the old and new upper and lower bounds for the minimal
depth of sorting networks for up to 20 inputs is presented in Table 1.

Table 1. Bounds on the minimal depth of sorting networks for up to 20 inputs.

Number of inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Old upper bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 11 11 12 12

New upper bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 10 11 11 11

Old lower bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 9 9 9 9

New lower bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 10 10 10 10

2 Preliminaries

A comparator is a gate with two inputs in1 and in2 and two outputs outmin

and outmax, that compares, and if necessary rearranges its inputs such that
outmin = min{in1, in2} and outmax = max{in1, in2}. Combining zero or more
comparators in a network yields a comparator network. Comparator networks
are usually visualized in a graphical manner in a so-called Knuth diagram as
depicted in Fig. 1. Here a comparator connecting two channels is drawn as ,
where by convention the upper output is outmin and the lower output is outmax.
A maximal set of comparators with respect to inclusion that can perform parallel
comparisons in a comparator network is called a layer. The number of layers of a
network is called the depth of the network. A useful tool to verify that a network
is a sorting network is the “0-1-principle” [8], which states that a comparator
network is a sorting network, if and only if it sorts all binary inputs.

For more details about sorting networks we refer to Knuth [8, Sect. 5.3.4].
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Fig. 1. A comparator network of depth 3 with 5 comparators

3 Improved Techniques

In this section we introduce the new techniques and improvements on exist-
ing techniques we used to gain our results. We will stick to the formulation by
Bundala and Závodný [4], and introduce new variables if necessary. Furthermore,
we will extend a technique introduced in their paper, called subnetwork optimiza-
tion. It is based on the fact that a sorting network must sort all its inputs, but
in order to prove non-existence of sorting networks of a certain depth, it is often
sufficient to consider only a subset of all possible inputs, which are not all sorted
by any network of this restricted depth. Bundala and Závodný chose subsets of
the form T r =

{
0ax1b | |x| = r and a + b + |x| = n

}
for r < n, which are inputs

having a window of size r. For an input 0ax1b from this set the values on the
first a channels at any point in the network will always be 0, and those on the
last b channels will always be 1, which significantly reduces the encoding size for
these inputs if a and b are sufficiently large.

3.1 Prefix Optimization

It is a well-known fact that permuting the channels of a sorting network, fol-
lowed by a repair-procedure called untangling yields another feasible sorting
network [10]. In fact, Parberry [10] used a first layer with comparators of the
form (2i − 1, 2i), 1 ≤ i ≤ �n

2 �, which we will call Pb-style whereas Bundala and
Závodný used comparators (i, n + 1 − i), 1 ≤ i ≤ �n

2 � in the first layer, which
we call BZ-style; see Fig. 2. Both versions are equivalent in the sense that if
there exists a sorting network Cd

n, then there exist sorting networks of the same
depth with either of these prefixes. Nevertheless, for creating networks obeying a
certain prefix as well as proving their non-existence, a given prefix may be hard-
coded into the SAT formula. Given a prefix P of depth |P |, the remaining SAT
formula encodes the proposition “There is a comparator network on n channels
of depth d − |P | which sorts all outputs of P”. Interestingly, the outputs of dif-
ferent prefix styles are not equally handy for the SAT encoding. A Pb-style first
layer performs compare-and-swap operations between adjacent channels, thus
the presorting performed here is more local than the one done by BZ-style first

Fig. 2. Pb-style first layer (left), and BZ-style (right) for 6 channels
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layers. Let out(P ) denote the set of outputs of a prefix P on n layers. Then,
the number of channels that actually must be considered in the SAT formula is
given by

∑

x∈out(P )

(
n − max{a | x = 0ax′} − max{b | x = x′1b})

,

i.e., the sum of window-sizes of all outputs of P .
Table 2 shows the impact of these previous deliberations when using a 1-

layer-prefix for 2 ≤ n ≤ 17 channels.

Table 2. Number of channels to consider in the encoding after the first layer

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pb-style 0 5 12 44 84 233 408 1016 1704 4013 6564 14948 24060 53585 85296 186992

BZ-style 0 4 10 36 72 196 358 876 1524 3532 5962 13380 22128 48628 79246 171612

Table 3. Impact of prefix style when proving that no sorting network for 16 channels
with at most 8 layers exists.

Prefix style Overall time (s) Maximum time (s)

Pb 22,241 326

BZ 10,927 150

Opt 5,492 36

Table 3 shows running times when proving that no sorting network on 16
channels with 8 layers exists. In this case, we used 2-layer-prefixes according
to [5], and proved unfeasibility for each of the 211 distinct prefixes. In the first
case, they were permuted and untangled such that the first layer is in Pb-style,
whereas the second case has BZ-style first layers. In the third case, we used
an evolutionary algorithm to find a prefix such that the number of channels to
consider when using 800 distinct outputs of the respective prefix was minimized.
As we have d − |P | Boolean variables for each channel which cannot be hard-
coded, this procedure minimizes the number of variables in the resulting SAT
formula.

This technique reduced the overall running time by factors of 4.05 and 1.99,
and the maximum running times by 9.0 and 4.1, respectively.

3.2 Iterative Encoding

As mentioned above, it is usually not necessary to use all 2n input vectors to
prove lower bounds. In order to take advantage of this fact, we implemented an
iterative approach. We start with a formula which describes a feasible comparator
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network and a (potentially empty) set of initial inputs, and iteratively add inputs
until either a feasible sorting network has been found, or no network can be
found which is able to sort the given set of inputs, as depicted in Fig. 3. During
the iterative process, counter-examples (i.e., inputs that are not sorted by the
network created so far) of minimal window-size are chosen.

SAT: Network found

SAT: Counterexample found

UNSAT: No network found UNSAT: Network is feasible

Network Creation Network Check

Fig. 3. Iterative generation of new inputs

Using this technique, we tested the impact of different prefix style on both
running time, and the number of inputs required. Table 4 shows results for one
2-layer-prefix for 16 channels, used to prove that this cannot be extended to a
sorting network with 8 layers. Here, more inputs are required to prove that a
BZ-style prefix cannot be extended when compared to a Pb-style prefix. Never-
theless, BZ-style prefixes are superior in terms of running time. Interestingly, the
process becomes faster when more inputs than actually required were chosen,
this is, using slightly more inputs is beneficial.

Table 4. Impact of prefix style on running time and number of iterations

Initial inputs 0 100 200 300 400 500 600 700 800 900

Pb Time 157 139 128 86 61 56 45 52 54 59

Iterations 264 174 72 4 1 1 1 1 1 1

BZ Time 88 75 64 47 28 14 14 13 13 19

Iterations 358 259 165 66 10 1 1 1 1 1

Next, we turn to improve the SAT encoding.

3.3 Improved SAT Encoding

We modified the SAT encoding of Bundala and Závodný [4], significantly reduc-
ing the number of clauses. A variable gki,j , with i < j, encodes the fact that
there is a comparator comparing channels i and j in layer k in the network.
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Furthermore, the variable vki stores the value on channel i after layer k. For
completeness’ sake we list the original encoding completely:

onceki (C
d
n) =

∧

1≤i�=j �=l≤n

(
¬gkmin(i,j),max(i,j) ∨ ¬gkmin(i,l),max(i,l)

)

valid(Cd
n) =

∧

1≤k≤d,1≤1≤n

onceki (C
d
n)

usedki (C
d
n) =

∨

j<i

gkj,i ∨
∨

i<j

gki,j

updateki (C
d
n) =

(¬usedki (Cd
n) → (vki ↔ vk−1

i )
) ∧

∧

1≤j<i

(
gkj,i → (

vki ↔ (vk−1
j ∨ vk−1

i )
)) ∧

∧

i<j≤n

(
gki,j → (

vki ↔ (vk−1
j ∧ vk−1

i )
))

Here, once encodes the fact that each channel may be used only once in one
layer, and valid encodes this constraint for each channel and each layer. The
update-formula describes the impact of comparators on the values stored on
each channel after every layer.

sorts(Cd
n, x) =

∧

1≤i≤n

(v0i ↔ xi) ∧
∧

1≤k≤d,1≤i≤n

updateki (C
d
n) ∧

∧

1≤i≤n

(vdi ↔ yi)

The constraint sorts encodes if a certain input is sorted by the network Cd
n.

For this purpose, the values after layer d (i.e., the outputs of the network) are
compared to the vector y, which is a sorted copy of the input x. A sorting
network for n channels on d layers exists iff valid(Cd

n) ∧ ∧
x∈{0,1}n sorts(Cd

n, x)
is satisfiable.

Consider an input x = 0ax′1b, and a comparator gki,j with i ≤ a. This is,
we have vki ↔ 0 ∧ vk−1

j ≡ 0, and vkj ↔ 0 ∨ vk−1
j ≡ vk−1

j . As the same holds
for j > n − b, we have that comparators “leaving” a subnetwork need not be
considered for sorting the respective inputs. Furthermore, if vk−1

i ↔ 1 for some
k and i, using any comparator gkj,i will cause vki ↔ 1. Thus, for every channel i
we introduce oneDownk

i,j- and oneUpki,j-variables which indicate whether there
is a comparator gkl,j for some i ≤ l < j or gki,l for some i < l ≤ j, respectively.

oneDownk
i,j ↔

∨

i<l≤j

gki,l noneDownk
i,j ↔ ¬oneDownk

i,j

oneUpki,j ↔
∨

i≤l<j

gkl,j noneUpki,j ↔ ¬oneUpki,j
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To make use of these new predicates, given an input x = 0ax′1b, for all a < i ≤
n − b we add

vk−1
i ∧ noneDownk

i,n−b → vki

¬vk−1
i ∧ noneUpka+1,i → ¬vki ,

to the formula and remove all update-constraints that are covered by these con-
straints. This offers several advantages: Firstly, it reduces the size of the resulting
formula in terms of both the number of clauses, and the overall number of liter-
als. Secondly, this encoding allows for more propagations, thus, conflicts can be
found earlier. Thirdly, it offers a more general perspective on the reasons of a
conflict. Table 5 shows the impact of both the new encoding and permuting the
prefix, which results in an average speed-up of 8.2, and a speed-up of 17.1 for
the hardest prefixes.

Table 5. Results for different settings when proving the non-existence of 8-layer
sorting-networks for 16 channels

Encoding Prefix-style Overall time (s) Max. time (s) Variables Clauses Literals

Old Pb 22,241 326 108,802 4,467,201 13,977,393

BZ 10,927 150 99,850 3,996,902 12,442,522

Opt 5,492 36 84,028 3,183,363 9,879,588

New Pb 11,766 196 110,398 2,443,186 8,108,501

BZ 4,359 54 101,404 2,049,744 6,799,486

Opt 2,702 19 85,652 1,504,177 4,981,882

4 Obtaining New Lower Bounds

In a first test, we tried to prove that there is no sorting network on 17 channels
using at most 9 layers by using a SAT encoding which was almost identical to
the one introduced in [4], enriched by constraints on the last layers [6]. Before
we broke up this experiment after 48 days, we were able to prove that 381 out
of 609 prefixes cannot be extended to sorting networks of depth 9. Showing
unsatisfiability of these formulae took 353 · 106 s of CPU time, with a maximum
of 3 · 106 s.

In a new attempt, we used a modified encoding as described in the previous
section. For every equivalence class of 2-layer-prefixes, we chose a representative
which minimizes the number of variables in the SAT encoding when using 2, 000
distinct inputs. This time, we were able to prove that none of the prefixes can
be extend to a sorting network using 9 layers. The overall CPU time for all 609
equivalence classes was 27.63 · 106 s with a maximum running time of 97, 112 s.
This is a speed up of at least 42.7 concerning the maximum running time, and
20.4 for the average running time. Since the result for all 2-layer-prefixes was
unsat, we conclude:

Theorem 1. Any sorting network for n ≥ 17 channels has at least 10 layers.
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5 Finding Faster Networks

Even though SAT encodings for sorting networks as well as SAT solvers them-
selves have become much better within the last years, generating new, large
sorting networks from scratch is still out of their scope. Hence, we extended
ideas by Al-Haj Baddar and Batcher [2].

5.1 Using Hand-Crafted Prefixes

A well-known technique for the creation of sorting networks is the generation
of partially ordered sets for parts of the input in the first layers. Figure 4 shows
comparator networks which create partially ordered sets for 2, 4 and 8 input
bits. In the case of n = 2, the output will always be sorted. For n = 4 bits, the
set of possible output vectors is given by

{(
0 0 0 0

)T
,
(
0 0 0 1

)T
,
(
0 0 1 1

)T
,
(
0 1 0 1

)T
,
(
0 1 1 1

)T
,
(
1 1 1 1

)T}
,

i.e., there are 6 possible outputs. Furthermore, the first output bit will equal
zero unless all input bits are set to one, and the last output bit will always be
set to one unless all input bits equal zero. Similarly, the network for n = 8 inputs
allows for 20 different output vectors. Prefixes of sorting networks which consist
of such snippets are referred to as Green filters [7].

Fig. 4. Generating partially ordered sets for n ∈ {2, 4, 8} inputs.

5.2 Results

We present two sorting networks improving upon the known upper bounds on
the minimal depth of sorting networks. The networks presented in Fig. 5 are
sorting networks for 17 channels using only 10 layers, which outperform the
currently best known network due to Al-Haj Baddar and Batcher [2]. The first
three layers of the network on the left are a Green filter on the first 16 channels,
the remainder of this network was created by a SAT solver. To create the network
on the right, we applied the prefix optimization procedure described earlier to
the Green filter prefix. The first version of our solver required 29921 s to find
this network, whereas our current solver can find these networks in 282 s, when
using the Green filter, and 60 s when using the optimized prefix.

Thus, we can summarize our results in the following theorem:



New Bounds on Optimal Sorting Networks 175

Fig. 5. Sorting networks for 17 channels of depth 10.

Theorem 2. The optimum depth for a sorting network on 17 channels is 10.

The network displayed in Fig. 6 sorts 20 inputs in 11 parallel steps, which beats
the previously fastest network using 12 layers [1]. In the first layer, partially
ordered sets of size 2 are created. These are merged to 5 partially ordered sets
of size 4 in the second layer. The third layer is used to create partially ordered
sets of size 8 for the lowest and highest wires, respectively. These are merged in
the fourth layer.

Fig. 6. A sorting network for 20 channels of depth 11.

The wires in the middle of the network are connected in order to totally
sort their intermediate output. Using this prefix and the necessary conditions
on sorting networks depicted above, we were able to create the remaining layers
using our iterative, SAT-based approach. Interestingly, the result was created in
588 iterations, thus 587 different input vectors were sufficient.

6 Tools

Our software is based on the well-known SAT solver MiniSAT 2.20. Before start-
ing a new loop of our network creation process, we used some probing-based
preprocessing techniques [9] as they were quite successful on this kind of SAT
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formulae. MiniSAT uses activity values for clauses which are used for managing
the learnt clause database. Here, we changed the value “cla-decay” to 0.9999,
which leads to better control on learnt clauses that were not used for a long
time. Our experiments were performed on Intel Xeon E5-4640 CPUs clocked at
2.40 GHz. The software used for our experiments can be downloaded at http://
www.informatik.uni-kiel.de/∼the/SortingNetworks.html.
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