
Immune Systems in Computer Virology

Guillaume Bonfante1,2(B), Mohamed El-Aqqad2, Benjamin Greenbaum3,4,
and Mathieu Hoyrup1

1 Loria, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
Guillaume.Bonfante@loria.fr, Mathieu.Hoyrup@inria.fr

2 École Nationale Supérieure des Mines de Nancy,
Université de Lorraine, Nancy, France

Mohamed.El-aqqad1@etu.univ-lorraine.fr
3 Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

Benjamin.Greenbaum@mssm.edu
4 Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

The analogy between computer viruses and biological viruses, from which com-
puter viruses get their name [7], has been clear for the past several decades.
During that time there has been progress in both understanding the vast diver-
sity of biological viruses, and in abstract approaches to understanding computer
viruses. However, there has not been a great deal of effort to see if the formal
efforts in theoretical computer science can be of any use to our understanding
of biological viruses.

In this work, we use biological viruses as a motivation to extend some well-
known results in theoretical computers viruses. In Cohen’s [7], a virus is a string
which–read by a Turing Machine–reproduces either itself or a variant form of
itself. In Adelman’s [1] initial formalism, the theory of computer viruses was
placed in the theory of recursive functions. One well known result from both
theories is that the general problem of viral detection is undecidable, implying
that general computer immune systems based on viral detection can always be
circumvented and there are no robust ways to modify a detector successfully [5].

In biological systems, there is some notion that a biological virus is less
powerful, computationally, than the host it infects. Motivated by that analogy,
here we show two cases where viruses, due to diminished computational capacity
relative to their hosts, will not always win. But, first, what is a virus? We state
after Adelman [1] and Bonfante, Kaczmarek, Marion [3] that a virus v is a fix
point in the sense of Kleene’s Second Recursion Theorem:

[[v]](x) = f(v, x)

where f is called the propagation function which defines a viruses behavior in
regard to its first argument. As justified in [3] or by Case and Moelius in [6], the
model is strong enough to capture the virus mutability or even virus “factories”.
It is shown that the different versions of the Recursion Theorem–weak, strong,
extended, double, see Smullyan’s [12] for a precise terminology–correspond to
different aspects of computer viruses.

G. Bonfante—The first author received the support of ANR-12-INSE-002.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 127–136, 2015.
DOI: 10.1007/978-3-319-20028-6 13

128 G. Bonfante et al.

Fixed points exist as long as the framework is universal [11], that is Turing
complete, with a universal function and a specializer. Thus the following defense
strategy: to block viruses, one may simply prevent the existence of fixed points.
As we will see, the Recursion Theorem holds as long as there is a specializer,
projections and composition. It is hard to avoid the two latter criteria. Thus, we
focus on systems without specializers. We provide a solution based on cons-free
programs as it has been developed in the past by Jones [9]. Whatever the choice
of enumeration of programs, there is no specializer for cons-free programs. It
is worth noticing that the language is logspace-complete making it relatively
powerful computationally speaking.

We develop an other scenario, perhaps closer to the analogy with biology. Our
idea is to strengthen the defense against viruses, not to avoid their existence.
Indeed, biological viruses exist, but their hosts have some defense capabilities. In
this scenario, we suppose that there is a (finite) set of known viruses. Then, each
time a program enters the system, it is submitted to a program (an immune cell)
which verifies whether it behaves like one of the viruses and remove it accordingly.
Our scenario is close to the strategy of anti-virus software: they (are supposed to)
recognize infected programs relative to a malware database which contains the
(finite) set of known viruses. The existence of such a detector infringes Rice’s
Theorem. Indeed, it corresponds to the decidability of program equivalence.
Thus, and again, to get such a language, we will loose Turing completeness.

To our knowledge, in computer virology, only “negative” results have been
established so far. They state more or less that there is no defenses against
viruses. On the theoretical side, we refer the reader to the aforementioned
work [1,7] which where followed by Zuo and Zhou [13] and then by Case and
Moelius [5]. On a more practical side, there are also many interesting approaches.
For instance, Borello and Mé [4] showed how metamorphism can trick anti-virus
software. Other escaping techniques involve encryption, self-reproduction and
feints, see [8] for a full survey. This contribution is a first attempt to provide
“positive” solutions.

1 Introduction

An alphabet is a finite set Σ of letters. Given an alphabet Σ, let TΣ be the
set of binary trees with leaves in Σ, that is the smallest set containing Σ and
(t1 · t2) whenever t1, t2 ∈ TΣ . The two functions π1 and π2 are the projections:
πi(t1 · t2) = ti and πi(c) = c with i ∈ {1, 2} and c ∈ Σ. The size of a tree t is
denoted |t| and is defined by |c| = 1, c ∈ Σ, and |(t · u)| = |t| + |u| + 1.

A word a1·a2 · · · ak in Σ∗ is encoded in TΣ∪{nil} as (a1·(a2·(· · · (ak·nil) · · ·)))
where nil is an atom used as an end-marker. This relates computations over
words to the ones over trees.

Definition 1. Let � be the sub-tree relation on TΣ, that is the smallest order
(reflexive-transitive relation) such that for all t, u ∈ TΣ:

Immune Systems in Computer Virology 129

– t � t,
– t � (t · u),
– t � (u · t).
The embedding relation on TΣ is defined to be the smallest order such that t �
u ⇒ t � u, and closed by context: t � t′ ∧ u � u′ ⇒ (t · u) � (u · u′).

Observe that nil � (nil ·nil). The difference between the sub-tree relation and
the embedding one is exemplified by (nil ·(nil ·nil)) � ((nil ·nil) ·(nil ·nil))
but (nil · (nil · nil)) �� ((nil · nil) · (nil · nil)).

Let � and � denote respectively the strict order relative to � and �. From
the definition, first, it is clear that if t � u, then u �� t. And, second, if |t| > |u|,
then t �� u.

We present (a slight variant of) While, a generic imperative language intro-
duced by Jones [9]. We suppose a given alphabet Σ contains an atom nil.
Moreover, we suppose given (a denumerable set of) variables Var � X0, X1,
In the following, X, Y serve as generic variables. The syntax of While is given by
the following grammar:

Expressions � E, F : : = X | t | cons E F | hd E | tl E | =? E F
Commands � C, D : : = X := E | C ; D | while E do C
Programs � P : : = read X1, . . . , Xn; C; write Y

where t ∈ TΣ .

1.1 Semantics of While

A configuration, next called a store, is a function σ : Var → TΣ . The set of
stores is denoted SΣ , or shorter, S when Σ is clear from the context. Given a
configuration σ ∈ S a variable X and t ∈ TΣ , σ[X �→ t] is the store equal to σ
on all variables but X for which it is set equal to t.

The semantics of an expression E applied on a configuration σ is denoted
[[E]]σ and defined by the equations:

[[X]]σ = σ(X) [[hd E]]σ = π1([[E]]σ) [[cons E F]]σ = ([[E]]σ · [[F]]σ)
[[t]]σ = t [[tl E]]σ = π2([[E]]σ) [[=? E F]]σ = [[E]]σ 	 [[F]]σ

where for equality 	, nil serves as false and (nil · nil) as true. Each command
C ∈ Commands updates the store, that is [[C]] : S → S which is defined recursively
as follows:

[[X := E]]σ = σ[X �→ [[E]]σ]
[[C; D]]σ = [[D]]([[C]]σ)

[[while E do C]]σ = σ if [[E]]σ = nil

[[while E do C]]σ = [[C ; while E do C]]σ otherwise

The program p � read X1, . . . , Xn C ; writeY computes the following func-
tion. Given t1, . . . , tn, in the initial configuration σ0(t1, . . . , tn), all variables
are set to nil, except X1, . . . , Xn which are respectively set to t1, . . . , tn. Then
[[p]](t1, . . . , tn) is defined to be ([[C]]σ0(t1, . . . , tn))(Y).

130 G. Bonfante et al.

1.2 While as an Acceptable Language

Let {assign, seq,while, Var,quote, cons,hd, tl, iseq, nil} denote 10 distinct
elements of TΣ . The representation p of a program in While is defined recur-
sively:

0 = nil Xi = (Var · i)
n + 1 = (nil · n) t = (quote · t)

() = nil hd E = (hd · E)
(x1, . . .) = (x1 · (. . .)) tl E = (tl · E)
Xi := E = (assign · (Xi · E)) cons E F = (cons · (E · F))

C; D = (seq · (C · D)) =? E F = (iseq · (E · F))
while E do C = (while · (E · C))

and for a program, we define read X1, . . . , Xn; C; write Y = ((X1, . . . , Xn)·(C·Y)).
More generally speaking, the representation of a programming language is

an injective function from the set of programs (here While) to its corresponding
data set (here TΣ).

As shown by Jones [9], there is a universal program u ∈ While, that is
a program u such that for any program p ∈ While and any data t ∈ TΣ :
[[u]](p, t) = [[p]](t). For all m,n ∈ N, there is a specializer s m n, that is a
program s m n such that for all m + n-ary program p, for all t1, . . . , tm+n ∈
TΣ ,

[[s m n]](p, t1, . . . , tm)��(tm+1, . . . , tm+n) = [[p]](t1, . . . , tm+n). Finally, it
is Turing-complete. Such a language is said to be acceptable in Jones/Roger’s
terms. As such, it is isomorphic to any other acceptable language as shown by
Rogers:

Theorem 1 (Rogers [11]). Two acceptable languages are isomorphic.

That is there is a bijective computable function transforming programs in the
first language to programs in the second one with equivalent semantics.

For any acceptable language, Kleene’s second recursion theorem is known to
hold. We recall:

Theorem 2 (Kleene’s Second Recursion Theorem). For any k + 1-ary
program p, there is a k-ary program e satisfying for all inputs t1, . . . , tk ∈ TΣ:
[[e]](t1, . . . , tk) = [[p]](e, t1, . . . , tk).

Proof. For later use, we give a proof for k = 1. The proof for k > 1 follows
the same schema. For the specializer s 1 1 � read X0, X1; Cs 1 1; write Y, for
all binary program p ∈ P and t, t′ ∈ TΣ ,

[[s 1 1]](p, t)��(t′) = [[p]](t, t′). Let
p = read X′

0, X
′
1; Cp; write Y′. By renaming variables, we suppose without loss

of generality that it does not share variables with s 1 1. Then, let rp be the
program:

read X′′
0 , X′′

1 ;
X0 := X′′

0 ; X1 := X′′
0 ;

Cs 1 1;
X′
0 := Y; X′

1 := X′′
1 ;

Cp;
write Y′

Immune Systems in Computer Virology 131

with X′′
0 , X′′

1 some fresh variables. Then, it is clear that for all q ∈ P and all
t ∈ TΣ , [[rp]](q, t) = [[p]]([[s 1 1]](q,q), t). Let e � [[s 1 1]](rp, rp), we get:

[[e]](t) =

[[s 1 1]](rp, rp)��(t) by def. of

.��
= [[rp]](rp, t) by def. of s 1 1
= [[p]]([[s 1 1]](rp, rp), t) by remark above
= [[p]](e, t) since [[s 1 1]](rp, rp) = [[s 1 1]](rp, rp)

As justified by Bonfante, Kaczmarek and Marion in [3], a virus can be formalized
as follows:

Definition 2 (Computer Virus). Given a computable function B called the
propagation function, a virus is a program v such that [[v]](t) = B(v, t) for all
t ∈ TΣ.

In other words, it is a fixed point for a propagation function. Thus, as shown
in [3], the second recursion theorem of Kleene implies that for any propagation
function there is a corresponding virus. In other words, the theorem provides a
virus compiler, and there are no general ways to avoid them. In the remaining,
we restrict While to get around computer viruses. We propose two strategies to
that end. First, we delineate a programming language in which the Recursion
Theorem does not hold. As shown by the proof of the Recursion Theorem, the
existence of a specializer, of composition and projection is sufficient to prove the
Theorem. Thus, we find a programming language without specializer.

The second strategy consists in finding a language for which fixed point
exists, but viruses can be detected. By detection we mean program equivalence
as justified by Adleman in [1].

2 On Cons-Free Programs

While\{cons} is the language while restricted to expressions of the shape:

Expressions � E, F : : = X | t | hd E | tl E | E =? F

Such programs where initially considered by Jones under a complexity per-
spective. He proved that they compute exactly logspace predicates. We show
that the Second Recursion Theorem does not hold in While\{cons}.

In this section, when t ∈ TΣ and S ⊆ TΣ , the notation t � S means
∃t′ ∈ S : t � t′. When S, S′ are two sets, the notation S � S′ states for
∀t ∈ S,∃t′ ∈ S′ : t � t′. For a store σ, let Rg(σ) = {σ(X) | X ∈ Var}.

Definition 3. Let E be an expression, we denote by c(E) the set of all constants
occurring in E; formally, by induction: c(X) = ∅, c(t) = {t}, c(hd E) = c(tl E) =
c(E) and c(cons E F) = c(E=? F) = c(E) ∪ c(F).

The definition is extended to commands: c(X := E) = c(E), c(C ; D) = c(C) ∪
c(D), c(while E do C) = c(E) ∪ c(C) and finally to programs by the equation
c(read X1, . . . , Xn; C; writeY) = c(C).

132 G. Bonfante et al.

Proposition 1. Given a program p ∈ While\{cons} of arity n and t1, · · · , tn

some elements of TΣ, [[p]](t1, · · · ,tn) � c(p)∪{t1, · · · ,tn}∪{(nil ·nil)} when-
ever [[p]](t1, . . . , tn) is defined.

Proof. A very similar result occurs in Jones [9]. It is by induction on the structure
of programs.

Proposition 2. Given a program p ∈ While\{cons} and t ∈ TΣ if p computes
the constant function equal to t, then either:

t � (nil · nil) or t � c(p)

Proof. Applying Proposition 1 to the program p: [[p]](nil) � c(p) ∪ {nil, (nil ·
nil)}. But, again, nil � (nil · nil), thus [[p]](nil) � c(p) ∪ {(nil · nil)}.

2.1 While\{cons} Does Not Contain a Specializer

Theorem 3. Whatever the choice of a representation, and in particular for the
one given in the preceding section, there is no specializer in While\{cons}.

Proof. We assume the existence of a specializer s 1 1. Let us define two programs
p and q: p � read X1, X2; Y = X1; write Y and q � read X1, X2; if (X2 =
? nil) Y := X1 else Y := X2; write Y.

Consider some t ∈ TΣ , we apply Proposition 1 to the program s 1 1 and the
inputs p, t we obtain: {

[[s 1 1]](p, t) � C or
[[s 1 1]](p, t) � t

with C = ((nil · nil) · p · c1 · · · cm) and c(s 1 1) = {c1, · · · , cm}.
Given t �= t′,

[[s 1 1]](p, t)��(nil) = t �= t′ =

[[s 1 1]](p, t′)��(nil). Thus,

t �→ [[s 1 1]](p, t) is an injective function. From that, we state that the set
SC = {t ∈ TΣ | |[[s 1 1]](p, t)| ≤ |C|} is finite. We set N1 = max{|t| | t ∈ SC}.
Then, for all |t| > N1, we can state that |[[s 1 1]](p, t)| > |C| which in turn
means that [[s 1 1]](p, t) � t.

Since for any t �= t′,

[[s 1 1]](q, t)��(nil) = t �= t′ =

[[s 1 1]](q, t′)��(nil),
the function t �→ [[s 1 1]](q, t) is injective. Thus, we use the same approach:
there exists an integer N2 such that |t| > N2 implies [[s 1 1]](q, t) � t. We set
N = max(N1, N2) and we get :

|t| > N ⇒ ([[s 1 1]](p, t) � t and [[s 1 1]](q, t) � t)

Given n ∈ N, wet define n↓� = {t ∈ TΣ | t � n} with the encoding of
integers defined in the preceding section. Observe that we have the equality:

n↓� = {k | 0 ≤ k ≤ n}. (1)

For all i, j ∈ N, let k such that k �= i and k �= j. We have [[[[s 1 1]](p, i)]](k) =
i �= k = [[[[s 1 1]](q, j)]](k) which means that for all i, j ∈ N: [[s 1 1]](p, i) �=
[[s 1 1]](q, j).

Immune Systems in Computer Virology 133

Consider some M > N . Recall that both t �→ [[s 1 1]](p, t) and t �→
[[s 1 1]](q, t) are injective. Due to the aforementioned remark, the set SMN =
{[[s 1 1]](p, i) | N < i ≤ M} ∪ {[[s 1 1]](q, i) | N < i ≤ M} contains exactly
2 × (M − N) elements. However, all these elements verify SMN � M ∈ M↓�,
but by Eq. 1, the set M↓� contains only M + 1 elements which leads to
2 × (M − N) ≤ M + 1. The inequality does not hold for M = 2 × (N + 1).

The non-existence of a specializer does not mean that there are no fixed points
in While\{cons}, for instance the nowhere defined program

read X1 ;while (nil · nil) do X1 := X1 ; write X1

is a fixed point for the program

read X1, X2 ;while (nil · nil) do X1 := X1 ; write X1.

There are other fix-point constructions which are not based on specializers,
some are found in Smullyan’s [12], but we wish to mention here the approach
due to Moss [10] which is based on a very elementary framework, text register
machines.

Nevertheless, there are programs for which there is no fixed points. In other
words, the Recursion Theorem does not hold. For instance, for the homeomorphic
representation of programs presented in While\{cons}:

Proposition 3. There is no Quine in While\{cons}.

Proof. Ad absurdum, suppose there is a Quine q in While\{cons}. It is a fixed
point for the program pi1 � read X1, X2 ; X1 := X1 ; write X1. Since [[q]](nil) =
q, since |q| > |(nil ·nil)| (as it is the case for any programs), we can state with
Corollary 1 that q � c(q). Let t ∈ c(q) such that

q � t. (2)

With the homeomorphic encoding we chose, we can state that (quote · t) � q.
Thus

t � (quote · t) � q (3)

The two inequalities 2 and 3 are not compatible. The conclusion follows.

Quines are interesting in Adleman’s perspective. They correspond to the ‘Imi-
tate’ scenario. The ‘Infection’ scenario would not be possible due to Proposition 1.
Thus, programs in While\{cons} cannot be infected in his view. The reader may
notice that the proof here depends on the choice of the representation of programs.
Indeed, it is not difficult to define an encoding for which there is a Quine. Simply
modify − so that the encoding of nil � read X1 ; X1 := nil ; write X1 is set to
nil. Then, [[nil]](t) = nil which is the required equation. Nevertheless, there are
no other Quines. To end the remark, observe that program representation can be
on the defense side, not on the virus writer’s one.

134 G. Bonfante et al.

3 Tiny, a Whippersnapper Programming Language

Tiny is the language While restricted to expressions of the shape:

Expressions � E, F : : = X | t | cons E F | hd E | tl E

and commands to:

Commands � C, D : : = X := E | C ; D.

Obviously, Tiny is not Turing complete. Actually, it is a very weak fragment of
computable functions: it contains only functions computable in constant time.
However, the Recursion Theorem holds, surprisingly, in Tiny. For the represen-
tation of programs that we defined, the Recursion Theorem holds:

Theorem 4. Given a k-ary program p ∈ Tiny, there is a k − 1-ary program
e ∈ Tiny such that for all t1, . . . , tk ∈ TΣ : [[e]](t1, . . . , tk) = [[p]](e, t1, . . . , tk).

Proof. Again, we give a proof for k = 1. The other cases are left to the reader. If
we come back to the previous proof of the Recursion Theorem, it is clear that the
program rp is in Tiny whenever both p and s 1 1 are in Tiny. Since p ∈ Tiny
by hypothesis, rp is in Tiny if there is a specializer within Tiny. This is actually
the case: define s 1 1 �

read X0, X1;
C := hd (tl X0); // the representation of the body of X0
X := hd (hd X0); // the rep. of the first input variable of X0
XL := tl (hd X0); // the remaining variables of X0
Y := tl (tl X0); // the rep. of the output variable of X0
E := cons quote X1; // the rep. of the value t of X1
C0 := cons assign (cons X E); // the rep of X := t
C := cons seq (cons C0 C); // the rep. of X := t ; C
P := cons XL(cons C Y); // the packaging of the new (unary) program
write P

This is a specializer. Indeed, let p = read X′
0, X

′
1; Cp; write Y′. For all t ∈ TΣ ,

[[s 1 1]](p, t) = read X′
1; X

′
0 := t ; Cp; write Y′. Thus, for all t′ ∈ TΣ : we have

[[s m n]](p, t)��(t′) = [[p]](t, t′) as required.
So, rp is in Tiny. Since the fixed point e = S11(rp, rp) is in Tiny, the proof

ends as a corollary of the following Lemma:

Lemma 1. If p ∈ Tiny, for all t ∈ TΣ: [[s 1 1]](p, t) ∈ Tiny.

Proof. Recall that [[s 1 1]](p, t) = read X′
1; X

′
0 := t ; Cp; write Y. Since p is in

Tiny, [[s 1 1]](p, t) is itself the representation of a program in Tiny.

Immune Systems in Computer Virology 135

3.1 Program Equivalence in Tiny

From the above, there are viruses in Tiny. However, with the scenario made
in the introduction, we can protect a system which is based on Tiny. Protec-
tion amounts to problem equivalence decision. It is the following. Given two
programs p,q, does [[p]] = [[q]]? In general—in particular for a Turing-complete
Language—, such a decision is not computable (as a direct consequence of Rice’s
Theorem). But, for Tiny, there is a simple decision procedure.

Theorem 5. Equivalence of programs is computable for programs in Tiny.

Proof. Composing expressions, one may reduce programs in Tiny to just one
expression. The semantics of an expression can be explicitly expanded. Then,
equivalence is equality of the semantics. We provide in appendix an algorithm
that compute the semantics of expressions. However,

Proposition 4. Equalence of programs in Tiny is not in Tiny.

Lemma 2. Any program in Tiny is monotonic, that is if ti � t′
i for all i ≤ n,

then [[p]](t1, . . . , tn) � [[p]](t′
1, . . . , t

′
n).

Proof. We have seen above that any program in Tiny is equivalent to some
program of the shape read X1, . . . , Xn; Y := E; write Y, thus we restrict our
attention to these ones. Since π1 and π2 are monotonic, the result holds by an
immediate induction on E.

Proof (Proposition 4). Let us come back to the proof of the Proposition.
Ad absurdum, suppose that there is some program eq ∈ Tiny such that
[[eq]](p1,p2) �= nil iff [[p1]] = [[p2]] for all p1,p2 ∈ Tiny. Let p1 � read X; Y :=
nil; write Y. It is in tiny, thus, [[eq]](p1,p1) �= nil since p1 is equivalent to itself.
Observe that p2 � read X; Y := cons nil nil; write Y which is also in Tiny
verifies p1 � p2. By Lemma 2, we can state that [[eq]](p1,p1) � [[eq]](p1,p2).
In turn, that means [[eq]](p1,p2) �= nil. But p1 and p2 are not equivalent:
[[p1]](nil) �= [[p2]](nil), thus a contradiction.

4 Conclusion

Thought it is conceptually deep, the Recursion Theorem can be difficult to utilize
for practical applications. In the context of computer viruses, it can often have a
negative flavor. To our mind, our work opens a new branch of research which con-
structively studies fixed point within constrained computation systems. Types,
logics and weak arithmetics arise as good candidates for that sake.

We end with a side remark about the efficiency of fixed points. Let us cite
Hansen, Nikolajsen, Träff and Jones in [2]: “[...] running a fixed-point program to
compute the factorial of n results in n levels of interpretation, each one slowing
down execution by a large constant factor”. This leads the authors to introduce
a self-reflection statement that, supposedly, enables efficient fixed points.

136 G. Bonfante et al.

The fixed points presented above never involve any interpretation layer. The
construction of the specializer shows that it only introduce a constant time
overhead with respect to the initial program. Therefore, the complexity of the
fixed point e is equal to the one of the program rp. It involves the code of s 1 1
which is in Tiny, and thus takes constant time and so few assignment which do
not increase the size of their inputs. In the end, we see that the program e is as
efficient as p on its input up to a constant factor.

Acknowledgements. The authors would like to thank the Institute for Advanced
Study and the organizers of the 2012 Program in Theoretical Physics on Biology and
Computation. In particular, we would like to thank Stanislas Leibler for several moti-
vating discussions.

References

1. Adleman, L.M.: An abstract theory of computer viruses. In: Goldwasser, S. (ed.)
CRYPTO 1988. LNCS, vol. 403, pp. 354–374. Springer, Heidelberg (1990)

2. Amtoft, T., Thomas, H., Jesper, N., Träff, L., Jones, N.D.: Experiments with imple-
mentations of two theoretical constructions. In: Proceedings of the 2007 Workshop
on Programming Languages and Analysis for Security, PLAS 2007, San Diego,
California, USA, 14 June 2007, pp. 47–52. ACM (2007)

3. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: A classification of viruses through
recursion theorems. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS,
vol. 4497, pp. 73–82. Springer, Heidelberg (2007)

4. Borello, J.-M., Mé, L.: Code obfuscation techniques for metamorphic viruses. J.
Comput. Virol. 4(3), 211–220 (2008)

5. Case, J., Moelius, S.E.: Cautious virus detection in the extreme. In: Proceedings of
the 2007 Workshop on Programming Languages and Analysis for Security, PLAS
2007, San Diego, California, USA, 14 June 2007, pp. 47–52. ACM (2007)

6. Case, J., Moelius, S.E.: Characterizing programming systems allowing program
self-reference. Theory Comput. Syst. 45(4), 756–772 (2009)

7. Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35
(1987)

8. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection, 1st edn. Addison-Wesley Professional,
New Jersey (2009)

9. Jones, N.D.: Computability and Complexity, from a Programming Perspective.
MIT press, Cambridge (1997)

10. Moss, L.S.: Recursion theorems and self-replication via text register machine pro-
grams. Bull. EATCS 89, 171–182 (2006)

11. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967)

12. Smullyan, R.M.: Recursion Theory for Metamathematics. Oxford University Press,
Oxford (1993)

13. Zuo, Z., Zhou, M.: Some further theorical results about computer viruses. Comput.
J. 47(6), 627–633 (2004)

	Immune Systems in Computer Virology
	1 Introduction
	1.1 Semantics of While
	1.2 While as an Acceptable Language

	2 On Cons-Free Programs
	2.1 While{cons} Does Not Contain a Specializer

	3 Tiny, a Whippersnapper Programming Language
	3.1 Program Equivalence in Tiny

	4 Conclusion
	References

