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1 Introduction

The study of autostable structures goes back to the works of Fröhlich and
Shepherdson [1], and Mal’tsev [2,3]. Since then, the notion of autostability has
been relativized to the levels of the hyperarithmetical hierarchy, and to arbitrary
Turing degrees d, and has been the subject of much study.

Definition 1. Let d be a Turing degree. A computable structure A is d-
autostable if, for every computable structure B isomorphic to A, there exists
a d-computable isomorphism from A onto B. 0-autostable structures are also
called autostable.

The autostability spectrum of the structure A is the set

AutSpec(A) = {d : A is d-autostable}.

A Turing degree d0 is the degree of autostability of A if d0 is the least degree in
AutSpec(A).

Autostability spectra and degrees of autostability were introduced by Fokina,
Kalimullin, and Miller [4]. Note that much of the literature (see, e.g., [4–8]) uses
the terms categoricity spectrum and degree of categoricity in place of autostability
spectrum and degree of autostability, respectively. In this paper, we follow the
terminology of [9].

Suppose that n is a natural number and α is a computable ordinal. Fokina,
Kalimullin, and Miller [4] proved that every Turing degree d that is d.c.e. in and
above 0(n) is the degree of autostability of a computable structure. This result
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was extended by Csima, Franklin, and Shore [5] to hyperarithmetical degrees.
They proved that every degree that is d.c.e. in and above 0(α+1) is a degree of
autostability. They also showed that 0(α) is a degree of autostability.

Miller [10] constructed the first example of a computable structure with no
degree of autostability. He proved that there exists a computable field F which
is not autostable and such that for some c0, c1 ∈ AutSpec(F ), c0 ∧ c1 = 0. For
more results on autostability spectra, see the survey [11].

Recall that a computable structure A is decidable if its complete diagram
Dc(A) is a computable set. The following definition describes the notion of
autostability restricted to decidable copies of a structure. This notion is a natural
one, as it simply changes the word computable to decidable.

Definition 2. Suppose that d is a Turing degree. A decidable structure A is
d-autostable relative to strong constructivizations (d-SC-autostable) if, for every
decidable copy B of A, there exists a d-computable isomorphism f : A → B. In
case d = 0, we say that A is SC-autostable.

The autostability spectrum relative to strong constructivizations (SC-auto-
stability spectrum) is the set

AutSpecSC(A) = {d : A is d-SC-autostable}.

A Turing degree d0 is the degree of autostability relative to strong constructiviza-
tions (degree of SC-autostability) of A if d0 is the least degree in the spectrum
AutSpecSC(A).

The study of SC-autostability spectra was initiated by Goncharov [9]. In partic-
ular, he proved that every c.e. Turing degree is the degree of SC-autostability of
some decidable prime model. In [12] the author announced the following result:
for a computable successor ordinal α, every degree d that is c.e. in and above
0(α) is a degree of SC-autostability.

Suppose that L is a language. If M is an L-structure, then Th(M) is the
first-order theory of M. A structure M is a prime model (of the theory Th(M))
if, for every model N of Th(M), there is an elementary embedding of M into
N . A structure M is an almost prime model if there exists a finite tuple c̄ from
M such that (M, c̄) is a prime model.

Our work is concerned with the following problem.

Problem 1. (Goncharov [9]). Suppose that M is a decidable almost prime
model and c̄ is a tuple from M such that (M, c̄) is a prime model of the theory
Th(M, c̄). Let d be the Turing degree of the collection of complete formulas
of Th(M, c̄). It is not difficult to see that d is a c.e. degree and M is d-SC-
autostable. Is it always true that d is the degree of SC-autostability of M?

We give the negative answer to this question by proving the following result.

Theorem 1. There exists a decidable structure M such that M is a prime
model of the theory Th(M) and M has no degree of SC-autostability.
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2 Preliminaries

Suppose that S is a countable set. A numbering of S is a map ν from the set ω
of natural numbers onto the set S. A numbering ν is a Friedberg numbering if ν
is 1-1.

γ denotes the standard numbering of the family of all finite subsets of ω. In
particular, if n0 < n1 < . . . < nk < ω, then

γ (2n0 + 2n1 + . . . + 2nk) = {n0, n1, . . . , nk}.

For a set A ⊆ ω, we use |A| to denote the cardinality of A. We assume {ϕe}e∈ω

to be a standard effective enumeration of all unary partial computable functions.
We also assume 〈·, ·〉 to be a standard computable pairing function over ω. For
a function f , δf denotes the domain of f and ρf denotes the range of f .

An L-structure M is an atomic model if, for any tuple ā = a0, . . . , an from
M, there exists an L-formula φ(x0, . . . , xn) such that M |= φ(ā), and every
L-formula ψ(x0, . . . , xn) satisfies the following condition: if M |= ψ(ā), then

M |= ∀x0 . . . ∀xn (φ(x0, . . . , xn) → ψ(x0, . . . , xn)).

Such a formula φ is called a complete formula of the theory Th(M). Recall
Vaught’s theorem on the relationship of prime and atomic models (see [13]).

Theorem 2. (Vaught). Suppose that M is an L-structure. M is a prime model
if and only if M is a countable atomic model.

We identify the set ω<ω with a tree with the following ordering: σ � τ iff σ is an
initial segment of τ . For any σ, τ ∈ ω<ω, we use σ̂τ to denote the concatenation
of σ and τ . Suppose that T is a subtree of ω<ω. We use b(σ;T ) to denote the
branching function of T which is defined as follows. If σ ∈ T , then:

b(σ;T ) = |{n ∈ ω : σ̂〈n〉 ∈ T}|.

The following is a relativization of the Low Basis Theorem due to Jockusch
and Soare (see [14,15]).

Theorem 3. (Jockusch and Soare). Suppose that V ⊆ ω, and T is a family
of all V -computable finite-branching subtrees T of ω<ω with a V -computable
branching function b(σ;T ). Then there exists a Turing degree d with d′ ≤
degT (V ′) such that every infinite tree T ∈ T has a d-computable path. (Such
a degree is known as a PA-degree relative to V ). Furthermore, there exist two
PA-degrees d0 and d1 relative to V such that

∀c ((c ≤ d0 & c ≤ d1) → c ≤ degT (V )). (1)

We refer the reader to [16,17] for further background on computable and decid-
able structures.
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2.1 Colored Algebras

Let LBA be the language
{

∨2,∧2,C1; 0, 1
}

. We treat Boolean algebras as LBA-
structures. If L is a linear ordering, then Int(L) denotes the corresponding
interval algebra. For a Boolean algebra B, Atom(B) denotes the set of atoms
of B. If a is an element of B, then âB denotes the relative algebra with the uni-
verse {b ∈ B : b ≤B a}. For further information on computable Boolean algebras,
see [18].

Let k be a non-zero natural number. A k-partition of an element a in a
Boolean algebra B is a sequence b1, . . . , bk of pairwise disjoint non-zero elements
(i.e., bi ∧ bj = 0 when i �= j, and bi �= 0) such that a = b1 ∨ . . . ∨ bk. The formula
(b1, . . . , bk | a) denotes that b1, . . . , bk is a k-partition of a.

Consider the new computable language L0 = LBA ∪
{

P 1
k : k ∈ ω

}

, where P 1
k

is a computable predicate.

Definition 3. Let B be a Boolean algebra. An L0-structure Bc = (B, Pk)k∈ω

is a colored algebra if there exists a computable sequence of LBA-formulas
{Φk(x, ȳk)}k∈ω such that for any k, there is a tuple b̄k from B with the property

Bc |= ∀x
(

Pk(x) ↔ Φk(x, b̄k)
)

. (2)

Such a sequence {Φk}k∈ω is called a coloring sequence of Bc. The Boolean algebra
B is called the underlying algebra of Bc.

Colored algebras were introduced in [12]. The informal explanation of the term
“colored algebra” is as follows. We treat the predicates Pk as colors and assign
these colors to elements of a Boolean algebra B. Note the important difference
between our coloring and the graph coloring: we do not require that an element
of B have only one color.

A colored algebra Bc is atomic if its underlying algebra B is an atomic Boolean
algebra. We use Col(Bc) to denote the set

⋃

k∈ω Pk of all colored elements of Bc.
Ershov [19] obtained the following result: a computable atomic Boolean alge-

bra B is decidable iff the set of atoms Atom(B) is computable. It is not difficult
to show that Ershov’s result yields the following corollary.

Proposition 1. Suppose that Bc = (B, Pk)k∈ω is a computable atomic colored
algebra, and {Φk(x, ȳk)}k∈ω is a coloring sequence of Bc. The structure Bc is
decidable if and only if it satisfies the following conditions:

(i) the set of atoms Atom(B) is computable; and
(ii) there exists a computable function g(x) such that for any k, the value g(k)

is equal to the Gödel number of some tuple b̄k with the property (2).

3 The Proof of Theorem 1

We will build two decidable atomic colored algebras Ac and Bc such that Ac and
Bc are isomorphic but not computably isomorphic. Lemmas 2, 5, and 8 guaran-
tee that Ac satisfies Theorem 1. The construction uses the ideas of Miller [10,
Theorem 3.4] and Steiner [20, Theorem 2.8].
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We fix a computable atomless Boolean algebra C = (ω;∨,∧,C; 0, 1). For
clarity, we use ≤C and ≤ω when we need to differentiate between the ordering of
the Boolean algebra C and the standard ordering of ω. We also fix a computable
subalgebra C0 ≤ C such that C0 is isomorphic to Int(ω) and C0 has a computable
set of atoms Atom(C0) = {a0 <ω a1 <ω a2 <ω . . .}. For a set X ⊆ ω, we use
gr(X) to denote the subalgebra of C generated by X.

Consider a computable language Lc =
{

P 1
k : k ∈ ω

}

∪
{

Q1
k,j : k, j ∈ ω

}

.

We will construct two Lc-structures Ac =
(

A, PA
k , QA

k,j

)

k,j∈ω
and Bc =

(

B, PB
k , QB

k,j

)

k,j∈ω
such that Ac ∼= Bc, C0 ≤ A ≤ C, and C0 ≤ B ≤ C.

At stage s we define computable Boolean algebras As and Bs. The universe
of As is denoted by As, and the universe of Bs is denoted by Bs. For every
k ∈ ω, we also define the number fk,s, elements cA

k,s, d
A
k,s from As, and elements

cB
k,s, d

B
k,s from Bs. In addition, we build the predicates PA

k , PB
k , QA

k,j , and QB
k,j

in such a way that, for any predicate R, there is a unique stage t which deals
with R.

Notation. We say that we don’t change k-parameters at stage s + 1 if we define
fk,s+1 = fk,s, cA

k,s+1 = cA
k,s, dA

k,s+1 = dA
k,s, cB

k,s+1 = cB
k,s, and dB

k,s+1 = dB
k,s.

Construction Stage 0. Define A0 = B0 = C0. For every k ∈ ω, set PA
k = PB

k =
{a2k, a2k+1}, fk,0 = 0, cA

k,0 = cB
k,0 = a2k, and dA

k,0 = dB
k,0 = a2k+1.

Stage s + 1. Suppose that s = 〈k, t〉. Consider the following four cases.

Case 1. Suppose that fk,s = 0, and t is the least natural number such that
ϕk,t(a2k) ↓= a2k and ϕk,t(a2k+1) ↓= a2k+1. Find the following par-
titions in the Boolean algebra C: (c1, c2 | cA

k,s), (d1, d2, d3 | dA
k,s),

(c′
1, c

′
2, c

′
3 | cB

k,s), and (d′
1, d

′
2 | dB

k,s). Define

As+1 = gr(As ∪ {c1, c2, d1, d2, d3}), Bs+1 = gr(Bs ∪ {c′
1, c′

2, c′
3, d′

1, d′
2}),

QA
k,t = {c1, d1}, QA

k,t+1 = {c2, d2}, QA
k,t+2 = {d3},

QB
k,t = {c′

1, d′
1}, QB

k,t+1 = {c′
2, d′

2}, QB
k,t+2 = {c′

3},

QA
k,t+l+3 = QB

k,t+l+3 = ∅, l ∈ ω.

Set fk,s+1 = 1. For any l, do not change l-parameters (except the
parameter fk,s+1).

Case 2. Suppose that fk,s = 0, and t is the least number such that ϕk,t(a2k)↓=
a2k+1 and ϕk,t(a2k+1) ↓= a2k. Find the following partitions in
C: (c1, c2 | cA

k,s), (d1, d2, d3 | dA
k,s), (c′

1, c
′
2 | cB

k,s), and (d′
1, d

′
2, d

′
3 | dB

k,s).
The definitions of As+1, fk,s+1, QA

k,t+l (where l ∈ ω), and QB
k,t+l (where

l �= 2) are the same as in the Case 1. Define

Bs+1 = gr(Bs ∪ {c′
1, c

′
2, d

′
1, d

′
2, d

′
3}), QB

k,t+2 = {d′
3}.

For any l, don’t change l-parameters (except fk,s+1).
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Case 3. Suppose that fk,s = 0 and neither of Cases 1 and 2 hold. Find the
following partitions in C: (c1, c2 | cA

k,s), (d1, d2 | dA
k,s), (c′

1, c
′
2 | cB

k,s), and
(d′

1, d
′
2 | dB

k,s). Set

As+1 = gr(As ∪ {c1, c2, d1, d2}), Bs+1 = gr(Bs ∪ {c′
1, c

′
2, d

′
1, d

′
2}),

QA
k,t = {c1, d1}, cA

k,s+1 = c2, dA
k,s+1 = d2,

QB
k,t = {c′

1, d
′
1}, cB

k,s+1 = c′
2, dB

k,s+1 = d′
2.

For any l, don’t change any l-parameters.
Case 4. If fk,s �= 0, then set As+1 = As, Bs+1 = Bs, and don’t change l-

parameters for any l.

We have described the construction. Define Boolean algebras A = gr
(⋃

s∈ω As

)

and B = gr
(⋃

s∈ω Bs

)

. It is easy to see that the sets As and Bs,
s ∈ ω, are uniformly computable; therefore, we may assume that the structures
A and B are computable. Consider the structures Ac =

(

A, PA
k , QA

k,j

)

k,j∈ω
and

Bc =
(

B, PB
k , QB

k,j

)

k,j∈ω
. It is not difficult to show that Ac and Bc are com-

putable structures.

Verification. It is easy to verify the following properties of the construction.

Lemma 1. (a) For any k, j ∈ ω, we have
∣

∣PA
k

∣

∣ =
∣

∣PB
k

∣

∣ ≤ 2 and
∣

∣

∣QA
k,j

∣

∣

∣ =
∣

∣

∣QB
k,j

∣

∣

∣ ≤ 2. Moreover, there exist computable functions fA(x) and fB(x)

such that for any k and j, PA
k = γ(fA(〈k, 0〉)), QA

k,j = γ(fA(〈k, j + 1〉)),
PB

k = γ(fB(〈k, 0〉)), and QB
k,j = γ(fB(〈k, j + 1〉)).

(b) Atom(A) =
⋃

k,j∈ω QA
k,j and Atom(B) =

⋃

k,j∈ω QB
k,j.

(c) Suppose that R and S are distinct predicates from the language Lc. Then
RA ∩ SA = ∅ and RB ∩ SB = ∅.

(d) Every k ∈ ω satisfies one of the following two conditions.
(d.1) There exists a number t ≥ 3 such that each of the algebras ̂(a2k)A,

̂(a2k+1)A, ̂(a2k)B, and ̂(a2k+1)B is isomorphic either to Int(t) or to
Int(t + 1). Moreover, ̂(a2k)A �

̂(a2k+1)A and ̂(a2k)B �
̂(a2k+1)B.

(d.2) Each of the algebras ̂(a2k)A, ̂(a2k+1)A, ̂(a2k)B, and ̂(a2k+1)B is isomor-
phic to Int(ω).

(e) A = gr
(

Atom(A) ∪
⋃

k∈ω PA
k

)

and B = gr
(

Atom(B) ∪
⋃

k∈ω PB
k

)

.
(f) A is isomorphic to Int(ω2).

Lemma 2. Structures Ac and Bc are decidable colored algebras.

Proof. Consider the function fA(x) from Lemma 1(a). Define the following
sequence of LBA-formulas.

Φk,j(x, ȳ) =

⎧

⎨

⎩

(x = y1) ∨ (x = y2), if |γ(fA(〈k, j〉))| = 2,
x = y1, if |γ(fA(〈k, j〉))| = 1,
x �= x, otherwise.
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Lemma 1(a) implies that the sequence {Φk,j}k,j∈ω is the coloring sequence for
each of the structures Ac and Bc. Hence, Ac and Bc are colored algebras.
Lemma 1(a,b) also implies that Ac and Bc satisfy the conditions of Proposi-
tion 1; therefore, our structures are decidable.

The proof of Lemma 2 actually shows that every computable copy of Ac satisfies
Proposition 1.

Corollary 1. Every computable copy of Ac is decidable. In particular, the spec-
trum AutSpecSC(Ac) is equal to AutSpec(Ac).

Definition 4. Given an element a from the set Col(Ac), we define the Lc-
formula φa(x) as follows. First, we find a predicate R from Lc such that a ∈ RA.

(i) If a is an atom of A, then we define φa(x) = R(x).
(ii) If a /∈ Atom(A), then R = Pk for some k ∈ ω. Consider the following two

cases.
(ii.a) Suppose that the Boolean algebra âA is finite and it has exactly t atoms.

We define

φa(x) = Pk(x)&∃y ((y ∧ x = y)&Qk,t−1(y)) &
¬∃z((z ∧ x = z)&Qk,t(z)).

(ii.b) If âA is an infinite algebra, then we set φa(x) = Pk(x).

Note that Lemma 1(b,c,d) implies that the formulas φa are well-defined. It is not
difficult to prove the following lemma.

Lemma 3. Suppose that Ac
1 =

(

A1, P
A1
k , QA1

k,j

)

k,j∈ω
is a colored algebra with

the universe contained in ω. Suppose also that F is a bijection from Col(Ac)
onto Col(Ac

1) with the following properties:

(a) for any a, b ∈ Col(Ac), a ≤A b iff F (a) ≤A1 F (b);
(b) for any a, b ∈ Col(Ac), Ac |= φa(b) iff Ac

1 |= φa(F (b)).

Then there exists a unique isomorphism F c : Ac → Ac
1 such that F c ⊇ F . More-

over, F c can be constructed effectively from F and the atomic diagram of Ac
1.

Lemma 4. Colored algebras Ac and Bc are isomorphic but not computably iso-
morphic. In particular, Ac is not SC-autostable.

Proof. It is easy to construct a 0′-computable bijection F from Col(Ac) onto
Col(Bc) satisfying the conditions of Lemma3. Therefore, Ac and Bc are 0′-
computably isomorphic.

Note that for any k ∈ ω and any isomorphism G : Ac → Bc, G maps a2k to a2k

and a2k+1 to a2k+1, or vice versa. Therefore, Cases 1 and 2 of the construction
guarantee that ϕk is not an isomorphism. For example, Case 1 ensures that if
ϕk(a2k) = a2k and ϕk(a2k+1) = a2k+1, then the relative algebras ̂(a2k)A and
̂(a2k)B are not isomorphic.
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Lemma 5. Ac is a prime model.

Proof. By Theorem 2, it is sufficient to prove that Ac is an atomic model. Given a
tuple ā = a0, . . . , an from Ac, we will construct a complete Lc-formula Φ(x̄) such
that Ac |= Φ(ā). Lemma 1(e) implies that we can choose a tuple b̄ = b0, . . . , bm

from Col(Ac) such that ā ∈ gr ({b0, . . . , bm}). For i � n, fix an LBA-term ti(ȳ)
such that ai = ti(b̄). We define the formula

Φ(x̄) = ∃y0 . . . ∃ymΨ(x̄, y0, . . . , ym),

where Ψ is the conjunction of the following formulas:

1. xi = ti(ȳ) for i � n,
2. φbj (yj) for j � m,
3. yj ∧ yk = yj for all j and k with the property bj ≤C bk,
4. yj ∧ yk �= yj for all j and k with the property bj �C bk.

It is easy to see that Ac |= Φ(ā). Suppose that Ac |= Φ(c̄) for some c̄. Using
Lemma 3, it is not difficult to show that the structures (Ac, ā) and (Ac, c̄) are
isomorphic. Hence, Φ is a complete formula.

Definition 5. Let Ac
1 =

(

A1, P
A1
k , QA1

k,j

)

k,j∈ω
be a copy of Ac with universe

A1 ⊆ ω. A special numbering of Col(Ac
1) is a Friedberg numbering of Col(Ac

1)
with the following properties: ν is a computable function, and for all x, k, j ∈ ω,
if ν(x) ∈ QA1

k,j+1, then there exist y0, y1, z0, z1 such that y0 < y1 < z0 < z1 < x,
PA1

k = {ν(y0), ν(y1)}, and QA1
k,j = {ν(z0), ν(z1)}.

Note. If Ac
1 is a computable copy of Ac, then there exists a special numbering ν1

of Col(Ac
1). Moreover, ν1 can be constructed effectively from the atomic diagram

of Ac
1.

We fix a special numbering ν of Col(Ac). For a number s, ν[s] denotes the set
{ν(0), . . . , ν(s)}. The following definition is based on [10, Definition 5.1] and [20,
Definition 2.16].

Definition 6. Let Ac
1 be a computable copy of Ac with universe A1. The uni-

verse of the isomorphism tree TA,A1 is the set of all functions f with the following
properties.

(a) δf = ν[s] for some s, and ρf ⊆ A1;
(b) Suppose that Lf is a language

{

R ∈ Lc : ∃a ∈ δf
(

a ∈ RA
)}

. Then f is an

isomorphic embedding from the Lf -structure
(

δf, LA
f

)

into the Lf -structure
(

A1, L
A1
f

)

.
(c) For every a, b ∈ δf , a ≤A b iff f(a) ≤A1 f(b).

The ordering of the tree TA,A1 is standard, i.e., f � g iff f ⊆ g. We identify
the tree TA,A1 with a computable subtree of ω<ω. We may assume that TA,A1 is
built effectively from the atomic diagram of Ac

1.
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The following lemma justifies the choice of the term “isomorphism tree.”

Lemma 6. Suppose that Ac
1 is a computable copy of Ac. Let I be the set of all

isomorphisms from Ac onto Ac
1, and P be the set of all paths through the tree

TA,A1 . Then there exists a bijection Ψ from P onto I such that for any π ∈ P ,
π is Turing equivalent to Ψ(π).

Proof. Here we omit the details and give only general idea of the proof. Given
a path π through TA,A1 , build a bijection Fπ : Col(Ac) → Col(Ac

1) such that Fπ

satisfies the conditions of Lemma 3 and for any a ∈ Col(Ac), there is a finite
function f ≺ π with the property Fπ(a) = f(a). The function Fπ yields an
isomorphism F c

π : Ac → Ac
1. Set Ψ(π) = F c

π.

It is not difficult to verify the following claim.

Lemma 7. The tree TA,A1 is a finite-branching tree with a computable branching
function b(σ;TA,A1). Moreover, for any σ ∈ TA,A1 , we have b(σ;TA,A1) ≤ 2.

Lemma 8. (1) Suppose that d is a PA-degree relative to ∅. Then Ac is d-
autostable.

(2) Ac has no degree of SC-autostability.

Proof. Let Ac
1 be a computable copy of Ac. By Theorem 3 and Lemma 7, the

isomorphism tree TA,A1 has a d-computable path π. By Lemma 6, there is a d-
computable isomorphism Ψ(π) from Ac onto Ac

1. Therefore, Ac is d-autostable.
We fix two PA-degrees d0 and d1 relative to ∅ with the property (1) (where

V = ∅). We already proved that Ac is d0-SC-autostable and d1-SC-autostable.
Note that (1) implies that if Ac has a degree of SC-autostability, then Ac is
SC-autostable. Therefore, by Lemma 4, Ac has no degree of SC-autostability.

This completes the proof of Theorem 1. In conclusion, we formulate some open
questions related to Problem1.

Question 1. Suppose that M is a decidable almost prime model and c̄ is a tuple
from M such that (M, c̄) is a prime model of the theory Th(M, c̄). Let d be
the Turing degree of the collection of complete formulas of Th(M, c̄). Suppose
also that M has the degree of SC-autostability c. Is it possible that c < d?

Question 2. Is every d.c.e. degree a degree of SC-autostability for some almost
prime model?

Note that the positive answer to Question 2 yields the positive answer to
Question 1.
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