Prime Model with No Degree of Autostability Relative to Strong Constructivizations

Nikolay Bazhenov^{1,2(\boxtimes)}

¹ Sobolev Institute of Mathematics, Novosibirsk, Russia ² Novosibirsk State University, Novosibirsk, Russia nickbazh@yandex.ru

Abstract. We build a decidable structure *M* such that *M* is a prime model of the theory $Th(\mathcal{M})$ and $\mathcal M$ has no degree of autostability relative to strong constructivizations.

Keywords: Autostability · Decidable structure · Prime model · Autostability spectrum · Autostability relative to strong constructivizations \cdot Degree of categoricity \cdot Categoricity spectrum \cdot Decidable categoricity

1 Introduction

The study of autostable structures goes back to the works of Fröhlich and Shepherdson [\[1\]](#page-9-0), and Mal'tsev [\[2,](#page-9-1)[3](#page-9-2)]. Since then, the notion of *autostability* has been relativized to the levels of the hyperarithmetical hierarchy, and to arbitrary Turing degrees **d**, and has been the subject of much study.

Definition 1. Let **d** be a Turing degree. A computable structure A is **d***autostable* if, for every computable structure β isomorphic to \mathcal{A} , there exists a **d**-computable isomorphism from $\mathcal A$ onto $\mathcal B$. **0**-autostable structures are also called *autostable*.

The *autostability spectrum* of the structure A is the set

 $AutSpec(\mathcal{A}) = \{d : \mathcal{A} \text{ is } d\text{-autostable}\}.$

A Turing degree \mathbf{d}_0 is the *degree of autostability* of A if \mathbf{d}_0 is the least degree in $AutSpec(\mathcal{A}).$

Autostability spectra and degrees of autostability were introduced by Fokina, Kalimullin, and Miller $[4]$ $[4]$. Note that much of the literature (see, e.g., $[4-8]$) uses the terms *categoricity spectrum* and *degree of categoricity* in place of autostability spectrum and degree of autostability, respectively. In this paper, we follow the terminology of [\[9\]](#page-9-5).

Suppose that n is a natural number and α is a computable ordinal. Fokina, Kalimullin, and Miller [\[4](#page-9-3)] proved that every Turing degree **d** that is d.c.e. in and above $\mathbf{0}^{(n)}$ is the degree of autostability of a computable structure. This result

was extended by Csima, Franklin, and Shore [\[5\]](#page-9-6) to hyperarithmetical degrees. They proved that every degree that is d.c.e. in and above $\mathbf{0}^{(\alpha+1)}$ is a degree of autostability. They also showed that $\mathbf{0}^{(\alpha)}$ is a degree of autostability.

Miller [\[10](#page-9-7)] constructed the first example of a computable structure with no degree of autostability. He proved that there exists a computable field F which is not autostable and such that for some $\mathbf{c}_0, \mathbf{c}_1 \in \text{AutSpec}(F)$, $\mathbf{c}_0 \wedge \mathbf{c}_1 = \mathbf{0}$. For more results on autostability spectra, see the survey [\[11\]](#page-9-8).

Recall that a computable structure A is *decidable* if its complete diagram $D^{c}(\mathcal{A})$ is a computable set. The following definition describes the notion of autostability restricted to decidable copies of a structure. This notion is a natural one, as it simply changes the word *computable* to *decidable*.

Definition 2. Suppose that **d** is a Turing degree. A decidable structure A is **d***-autostable relative to strong constructivizations* (**d***-*SC*-autostable*) if, for every decidable copy β of \mathcal{A} , there exists a **d**-computable isomorphism $f: \mathcal{A} \rightarrow \beta$. In case $\mathbf{d} = \mathbf{0}$, we say that A is *SC*-autostable.

The *autostability spectrum relative to strong constructivizations* (SC*-autostability spectrum*) is the set

$$
AutSpec_{SC}(\mathcal{A}) = \{ \mathbf{d} : \mathcal{A} \text{ is } \mathbf{d} \text{-}SC\text{-}autostable \}.
$$

A Turing degree **d**⁰ is the *degree of autostability relative to strong constructivizations* (*degree of SC-autostability*) of A if \mathbf{d}_0 is the least degree in the spectrum AutSpec_{SC}(A).

The study of SC -autostability spectra was initiated by Goncharov [\[9](#page-9-5)]. In particular, he proved that every c.e. Turing degree is the degree of SC-autostability of some decidable prime model. In [\[12\]](#page-9-9) the author announced the following result: for a computable successor ordinal α , every degree **d** that is c.e. in and above $\mathbf{0}^{(\alpha)}$ is a degree of *SC*-autostability.

Suppose that L is a language. If M is an L-structure, then $Th(\mathcal{M})$ is the first-order theory of M. A structure M is a *prime model* (of the theory $Th(\mathcal{M})$) if, for every model N of Th (M) , there is an elementary embedding of M into N . A structure M is an *almost prime model* if there exists a finite tuple \bar{c} from M such that (M, \bar{c}) is a prime model.

Our work is concerned with the following problem.

Problem 1. (Goncharov [\[9](#page-9-5)]). Suppose that M is a decidable almost prime model and \bar{c} is a tuple from M such that (M, \bar{c}) is a prime model of the theory $Th(\mathcal{M}, \bar{c})$. Let **d** be the Turing degree of the collection of complete formulas of $Th(\mathcal{M}, \bar{c})$. It is not difficult to see that **d** is a c.e. degree and M is **d**-SCautostable. Is it always true that **d** is the degree of SC -autostability of M ?

We give the negative answer to this question by proving the following result.

Theorem 1. *There exists a decidable structure* M *such that* M *is a prime model of the theory* $Th(\mathcal{M})$ *and* \mathcal{M} *has no degree of* SC -*autostability.*

2 Preliminaries

Suppose that S is a countable set. A *numbering* of S is a map ν from the set ω of natural numbers *onto* the set S. A numbering ν is a *Friedberg numbering* if ν is 1-1.

 γ denotes the standard numbering of the family of all finite subsets of ω . In particular, if $n_0 < n_1 < \ldots < n_k < \omega$, then

$$
\gamma (2^{n_0} + 2^{n_1} + \ldots + 2^{n_k}) = \{n_0, n_1, \ldots, n_k\}.
$$

For a set $A \subseteq \omega$, we use |A| to denote the cardinality of A. We assume $\{\varphi_e\}_{e \in \omega}$ to be a standard effective enumeration of all unary partial computable functions. We also assume $\langle \cdot, \cdot \rangle$ to be a standard computable pairing function over ω . For a function f, δf denotes the domain of f and ρf denotes the range of f.

An L-structure M is an *atomic model* if, for any tuple $\bar{a} = a_0, \ldots, a_n$ from M, there exists an L-formula $\phi(x_0,\ldots,x_n)$ such that $\mathcal{M} \models \phi(\bar{a})$, and every L-formula $\psi(x_0,\ldots,x_n)$ satisfies the following condition: if $\mathcal{M} \models \psi(\bar{a})$, then

 $\mathcal{M} \models \forall x_0 \dots \forall x_n (\phi(x_0, \dots, x_n) \rightarrow \psi(x_0, \dots, x_n)).$

Such a formula ϕ is called a *complete formula* of the theory $Th(\mathcal{M})$. Recall Vaught's theorem on the relationship of prime and atomic models (see [\[13\]](#page-9-10)).

Theorem 2. (Vaught). *Suppose that* M *is an* L*-structure.* M *is a prime model if and only if* M *is a countable atomic model.*

We identify the set $\omega^{\leq \omega}$ with a tree with the following ordering: $\sigma \preccurlyeq \tau$ iff σ is an *if and only if* M *is a countable atomic model.*
We identify the set $\omega^{<\omega}$ with a tree with the follow
initial segment of τ . For any $\sigma, \tau \in \omega^{<\omega}$, we use σ initial segment of τ . For any $\sigma, \tau \in \omega^{\langle \omega \rangle}$, we use $\sigma^{\sim} \tau$ to denote the concatenation of σ and τ . Suppose that T is a subtree of $\omega^{\langle \omega \rangle}$. We use $b(\sigma; T)$ to denote the *branching function* of T which is defined as follows. If $\sigma \in T$, then: hat *T* is a subtree of ω
^r which is defined as for $b(\sigma; T) = |\{n \in \omega : \sigma^{\frown}\}$

$$
b(\sigma;T) = |\{n \in \omega : \sigma^{\frown}\langle n \rangle \in T\}|.
$$

The following is a relativization of the Low Basis Theorem due to Jockusch and Soare (see $[14, 15]$ $[14, 15]$ $[14, 15]$).

Theorem 3. (Jockusch and Soare). *Suppose that* $V \subseteq \omega$, and \mathcal{T} *is a family of all* V-computable finite-branching subtrees T of $\omega^{\langle \omega \rangle}$ with a V-computable *branching function* $b(\sigma; T)$ *. Then there exists a Turing degree* **d** *with* **d'** \leq $\deg_T(V')$ such that every infinite tree $T \in \mathcal{T}$ has a **d**-computable path. (Such *a degree is known as a* P A*-degree relative to* V *). Furthermore, there exist two* PA -degrees \mathbf{d}_0 and \mathbf{d}_1 relative to V such that

$$
\forall \mathbf{c} \left((\mathbf{c} \le \mathbf{d}_0 \& \mathbf{c} \le \mathbf{d}_1) \rightarrow \mathbf{c} \le \deg_T(V) \right). \tag{1}
$$

We refer the reader to [\[16](#page-9-13)[,17](#page-9-14)] for further background on computable and decidable structures.

2.1 Colored Algebras

120 N. Bazhenov
 2.1 Colored Algebras

Let L_{BA} be the language $\{ \vee^2, \wedge^2, C^1; 0, 1 \}$. We treat Boolean algebras as L_{BA} structures. If $\mathcal L$ is a linear ordering, then Int($\mathcal L$) denotes the corresponding *interval algebra*. For a Boolean algebra \mathcal{B} , Atom(\mathcal{B}) denotes the set of atoms Let L_{BA} be the language $\{\vee^2, \wedge^2, \vee^2, \vee^2,$ of β . If a is an element of β , then \hat{a}_{β} denotes the *relative algebra* with the universe $\{b \in \mathcal{B} : b \leq_{\mathcal{B}} a\}$. For further information on computable Boolean algebras, see [\[18](#page-9-15)].

Let k be a non-zero natural number. A k-*partition* of an element a in a Boolean algebra $\mathcal B$ is a sequence b_1,\ldots,b_k of pairwise disjoint non-zero elements (i.e., $b_i \wedge b_j = 0$ when $i \neq j$, and $b_i \neq 0$) such that $a = b_1 \vee \ldots \vee b_k$. The formula $(b_1,\ldots,b_k | a)$ denotes that b_1,\ldots,b_k is a k-partition of a. blean algebra $\mathcal B$ is a sequence b_1, \ldots, b_k of pairwise disjoint non-zero elements $\ldots, b_i \wedge b_j = 0$ when $i \neq j$, and $b_i \neq 0$) such that $a = b_1 \vee \ldots \vee b_k$. The formula $\ldots, b_k | a$ denotes that b_1, \ldots, b_k is a k -

is a computable predicate.

Definition 3. Let B be a Boolean algebra. An L_0 -structure $\mathcal{B}^c = (\mathcal{B}, P_k)_{k \in \omega}$ is a *colored algebra* if there exists a computable sequence of L_{BA} -formulas ${\{\Phi_k(x,\bar{y}_k)\}}_{k\in\omega}$ such that for any k, there is a tuple \bar{b}_k from B with the property

$$
\mathcal{B}^c \models \forall x \left(P_k(x) \leftrightarrow \Phi_k(x, \bar{b}_k) \right). \tag{2}
$$

Such a sequence $\{\Phi_k\}_{k\in\omega}$ is called a *coloring sequence* of \mathcal{B}^c . The Boolean algebra $\mathcal B$ is called the *underlying algebra* of $\mathcal B^c$.

Colored algebras were introduced in [\[12\]](#page-9-9). The informal explanation of the term "colored algebra" is as follows. We treat the predicates P_k as colors and assign these colors to elements of a Boolean algebra β . Note the important difference between our coloring and the graph coloring: we do not require that an element of β have only one color. between our coloring and the graph coloring: we do not require that an element
of $\mathcal B$ have only one color.
A colored algebra $\mathcal B^c$ is *atomic* if its underlying algebra $\mathcal B$ is an atomic Boolean
algebra. We use $\$

A colored algebra \mathcal{B}^c is *atomic* if its underlying algebra $\mathcal B$ is an atomic Boolean

Ershov [\[19\]](#page-9-16) obtained the following result: a computable atomic Boolean algebra $\mathcal B$ is decidable iff the set of atoms $\text{Atom}(\mathcal B)$ is computable. It is not difficult to show that Ershov's result yields the following corollary.

Proposition 1. *Suppose that* $\mathcal{B}^c = (\mathcal{B}, P_k)_{k \in \omega}$ *is a computable atomic colored algebra, and* $\{\Phi_k(x, \bar{y}_k)\}_{k \in \omega}$ *is a coloring sequence of* \mathcal{B}^c . The structure \mathcal{B}^c *is decidable if and only if it satisfies the following conditions:*

- *(i) the set of atoms* Atom(B) *is computable; and*
- *(ii) there exists a computable function* $g(x)$ *such that for any* k*, the value* $g(k)$ *is equal to the Gödel number of some tuple* b_k *with the property [\(2\)](#page-3-0).*

3 The Proof of Theorem 1

We will build two decidable atomic colored algebras A^c and B^c such that A^c and \mathcal{B}^c are isomorphic but not computably isomorphic. Lemmas [2,](#page-5-0) [5,](#page-7-0) and [8](#page-8-0) guarantee that \mathcal{A}^c satisfies Theorem [1.](#page-1-0) The construction uses the ideas of Miller [\[10](#page-9-7), Theorem 3.4] and Steiner [\[20,](#page-9-17) Theorem 2.8].

We fix a computable atomless Boolean algebra $\mathcal{C} = (\omega; \vee, \wedge, C; 0, 1)$. For clarity, we use $\leq_{\mathcal{C}}$ and \leq_{ω} when we need to differentiate between the ordering of the Boolean algebra C and the standard ordering of ω . We also fix a computable subalgebra $C^0 \leq C$ such that C^0 is isomorphic to $\text{Int}(\omega)$ and C_0 has a computable set of atoms $\text{Atom}(\mathcal{C}_0) = \{a_0 \leq_{\omega} a_1 \leq_{\omega} a_2 \leq_{\omega} \ldots\}$. For a set $X \subseteq \omega$, we use $gr(X)$ to denote the subalgebra of C generated by X. algebra $C^0 \leq C$ such that C^0 is isomorphic to Int(ω) and C_0 has a computable
of atoms Atom(C_0) = { $a_0 <_{\omega} a_1 <_{\omega} a_2 <_{\omega} \ldots$ }. For a set $X \subseteq \omega$, we use
X) to denote the subalgebra of C generated by X.
Co

Consider a computable language $L_c = \{P_k^1 : k \in \omega\} \cup \{Q_{k,j}^1 : k, j \in \omega\}$
We will construct two L_c -structures $\mathcal{A}^c = \left(\mathcal{A}, P_k^A, Q_{k,j}^A\right)_{k,j \in \omega}$ and $\mathcal{B}^c = \left(\mathcal{B}, P_k^B, Q_{k,j}^B\right)_{k,j \in \omega}$ such that $\mathcal{A}^c \con$ as
 $\}$ \cup
 $\{A \atop {k,j}\}$ $(S, P_k^B, Q_{k,j}^B)$ _{k,j∈ω} such that $\mathcal{A}^c \cong \mathcal{B}^c$, $\mathcal{C}^0 \leq \mathcal{A} \leq \mathcal{C}$, and $\mathcal{C}^0 \leq \mathcal{B} \leq \mathcal{C}$.

At stage s we define computable Boolean algebras A_s and B_s . The universe of \mathcal{A}_s is denoted by \mathcal{A}_s , and the universe of \mathcal{B}_s is denoted by \mathcal{B}_s . For every $k \in \omega$, we also define the number $f_{k,s}$, elements $c_{k,s}^A$, $d_{k,s}^A$ from \mathcal{A}_s , and elements $c_{k,s}^B, d_{k,s}^B$ from \mathcal{B}_s . In addition, we build the predicates P_k^A , P_k^B , $Q_{k,j}^A$, and $Q_{k,j}^B$ in such a way that, for any predicate R , there is a unique stage t which deals with R.

Notation. We say that we *don't change* k-parameters at stage $s + 1$ if we define $f_{k,s+1} = f_{k,s}, c^A_{k,s+1} = c^A_{k,s}, d^A_{k,s+1} = d^A_{k,s}, c^B_{k,s+1} = c^B_{k,s}, \text{ and } d^B_{k,s+1} = d^B_{k,s}.$

Construction *Stage* 0. Define $\mathcal{A}_0 = \mathcal{B}_0 = \mathcal{C}^0$. For every $k \in \omega$, set $P_k^A = P_k^B =$ ${a_{2k}, a_{2k+1}}, f_{k,0} = 0, c_{k,0}^A = c_{k,0}^B = a_{2k}, \text{ and } d_{k,0}^A = d_{k,0}^B = a_{2k+1}.$

Stage $s + 1$. Suppose that $s = \langle k, t \rangle$. Consider the following four cases.

<u>Case 1</u>. Suppose that $f_{k,s} = 0$, and t is the least natural number such that $\varphi_{k,t}(a_{2k}) \downarrow = a_{2k}$ and $\varphi_{k,t}(a_{2k+1}) \downarrow = a_{2k+1}$. Find the following partitions in the Boolean algebra C: $(c_1, c_2 \mid c_{k,s}^A), (d_1, d_2, d_3 \mid d_{k,s}^A),$ $(c'_1, c'_2, c'_3 | c_{k,s}^B)$, and $(d'_1, d'_2 | d_{k,s}^B)$. Define

$$
\begin{array}{ll}\mathcal{A}_{s+1}=\operatorname{gr}(A_s\cup\{c_1,c_2,d_1,d_2,d_3\}), & \mathcal{B}_{s+1}=\operatorname{gr}(B_s\cup\{c'_1,c'_2,c'_3,d'_1,d'_2\}),\\ & \qquad Q^A_{k,t}=\{c_1,d_1\}, & \qquad Q^A_{k,t+1}=\{c_2,d_2\}, & \qquad Q^A_{k,t+2}=\{d_3\},\\ & \qquad Q^B_{k,t}=\{c'_1,d'_1\}, & \qquad Q^B_{k,t+1}=\{c'_2,d'_2\}, & \qquad Q^B_{k,t+2}=\{c'_3\},\\ & \qquad Q^A_{k,t+l+3}=\mathcal{Q}^B_{k,t+l+3}=\emptyset, & \qquad l\in\omega.\end{array}
$$

Set $f_{k,s+1} = 1$. For any l, do not change l-parameters (except the parameter $f_{k,s+1}$).

<u>Case 2.</u> Suppose that $f_{k,s} = 0$, and t is the least number such that $\varphi_{k,t}(a_{2k}) \downarrow =$ a_{2k+1} and $\varphi_{k,t}(a_{2k+1}) \downarrow = a_{2k}$. Find the following partitions in C: $(c_1, c_2 \mid c_{k,s}^A)$, $(d_1, d_2, d_3 \mid d_{k,s}^A)$, $(c'_1, c'_2 \mid c_{k,s}^B)$, and $(d'_1, d'_2, d'_3 \mid d_{k,s}^B)$. The definitions of \mathcal{A}_{s+1} , $f_{k,s+1}$, $Q_{k,t+l}^A$ (where $l \in \omega$), and $Q_{k,t+l}^B$ (where $l \neq 2$) are the same as in the Case 1. Define

$$
\mathcal{B}_{s+1} = \text{gr}(B_s \cup \{c'_1, c'_2, d'_1, d'_2, d'_3\}), \quad Q_{k,t+2}^B = \{d'_3\}.
$$

For any l, don't change l-parameters (except $f_{k,s+1}$).

Case 3. Suppose that $f_{k,s} = 0$ and neither of Cases 1 and 2 hold. Find the following partitions in C: $(c_1, c_2 \mid c_{k,s}^A)$, $(d_1, d_2 \mid d_{k,s}^A)$, $(c'_1, c'_2 \mid c_{k,s}^B)$, and $(d'_1, d'_2 | d^B_{k,s})$. Set

$$
\mathcal{A}_{s+1} = \text{gr}(A_s \cup \{c_1, c_2, d_1, d_2\}), \quad \mathcal{B}_{s+1} = \text{gr}(B_s \cup \{c'_1, c'_2, d'_1, d'_2\}),
$$
\n
$$
Q_{k,t}^A = \{c_1, d_1\}, \quad c_{k,s+1}^A = c_2, \quad d_{k,s+1}^A = d_2,
$$
\n
$$
Q_{k,t}^B = \{c'_1, d'_1\}, \quad c_{k,s+1}^B = c'_2, \quad d_{k,s+1}^B = d'_2.
$$

For any l, don't change any l-parameters.

<u>Case 4.</u> If $f_{k,s} \neq 0$, then set $\mathcal{A}_{s+1} = \mathcal{A}_s$, $\mathcal{B}_{s+1} = \mathcal{B}_s$, and don't change lparameters for any l.

We have described the construction. Define Boolean algebras $A = \text{gr}$ $\bigcup_{s\in\omega}A_s$ **i.** If $f_{k,s} \neq 0$, then set $A_{s+1} = A_s$, $B_{s+1} = B_s$, and don't change *l*-
parameters for any *l*.
ave described the construction. Define Boolean algebras $A = \text{gr}$
 (A_s) and $B = \text{gr} (\bigcup_{s \in \omega} B_s)$. It is easy to see $s \in \omega$, are uniformly computable; therefore, we may assume that the structures We have described the construction. Define Boolean algebras $\mathcal{A} = (\bigcup_{s \in \omega} A_s)$ and $\mathcal{B} = \text{gr }(\bigcup_{s \in \omega} B_s)$. It is easy to see that the sets A_s and $s \in \omega$, are uniformly computable; therefore, we may assume that and $\mathcal{B}^c = \left(\mathcal{B}, P_k^B, Q_{k,j}^B\right)_{k,j \in \omega}$. It is not difficult to show that \mathcal{A}^c and \mathcal{B}^c are com- \mathcal{B} =

mly

nput
 B _{k,j}) putable structures.

Verification. It is easy to verify the following properties of the construction. 

putable structures.
 Verification. It is easy to verify the following proposition. It is easy to verify the following proposition $\mathbf{Lemma} \mathbf{1.}$ (a) For any $k, j \in \omega$, we have $|P_k^A|$ operties of the construction
 $\left| \begin{array}{c} = |P_k^B| \leq 2 \text{ and } |Q_{k,j}^A| \end{array} \right|$ **ification.** It is easy to verify the following properties of the construction.
 nma 1. (a) For any $k, j \in \omega$, we have $|P_k^A| = |P_k^B| \le 2$ and $|Q_{k,j}^A| =$ $\left| {{Q_{{k,j}}^B}} \right.$ \vert \leq 2*. Moreover, there exist computable functions* $f_A(x)$ *and* $f_B(x)$ such that for any k and j , $P_k^A = \gamma(f_A(\langle k, 0 \rangle))$, $Q_{k,j}^A = \gamma(f_A(\langle k, j + 1 \rangle))$, $P_k^B = \gamma(f_B(\langle k, 0 \rangle)), \text{ and } Q_{k,j}^B = \gamma(f_B(\langle k, j + 1 \rangle)).$ $|Q_{k,j}^{\omega}| \leq 2$. Moreover, there exist computable functs
such that for any k and j, $P_k^A = \gamma(f_A(\langle k, 0 \rangle))$, $Q_{k,j}^A$
 $P_k^B = \gamma(f_B(\langle k, 0 \rangle))$, and $Q_{k,j}^B = \gamma(f_B(\langle k, j+1 \rangle))$.
(b) Atom($A) = \bigcup_{k,j \in \omega} Q_{k,j}^A$ and $\text{Atom}(\mathcal{B}) = \$ *k*, there exist comput
and j , $P_k^A = \gamma(f_A(\langle k \rangle))$
and $Q_{k,j}^B = \gamma(f_B(\langle k,j \rangle))$
 $A_{k,j}$ and Atom(B) = U

-
- (c) *Suppose that* R *and* S *are distinct predicates from the language* Lc*. Then* $R^{\tilde{A}} \cap S^A = \emptyset$ and $R^B \cap S^B = \emptyset$.
- (d) *Every* $k \in \omega$ *satisfies one of the following two conditions.*
	- (d.1) *There exists a number* $t \geq 3$ *such that each of the algebras* $(a_{2k})_A$ *,* $(a_{2k+1})_{\mathcal{A}}, (a_{2k})_{\mathcal{B}}, and (a_{2k+1})_{\mathcal{B}}$ *is isomorphic either to* $\text{Int}(t)$ *or to* Int $(t+1)$ *. Moreover*, $\widehat{(a_{2k})}_A \not\cong \widehat{(a_{2k+1})}_A$ and $\widehat{(a_{2k})}_B \not\cong \widehat{(a_{2k+1})}_B$ *.* $\frac{d}{a_{2k}}\left(\frac{a_{2k+1}}{a_{2k}}\right)$ is isomorphic either to $\frac{a_{2k}}{a_{2k}}$ \neq $\frac{(a_{2k+1})_A}{a_{2k}}$ and $\frac{(a_{2k})_B}{a_{2k}} \neq \frac{(a_{2k+1})_A}{a_{2k}}$ 1d (a_{2k+1}) g is isomorphic either to
- (d.2) *Each of the algebras* $(a_{2k})_A$, $(a_{2k+1})_A$, $(a_{2k})_B$, and $(a_{2k+1})_B$ *is isomorphic to* Int (ω) *.* (d.2) Each of the algebras (a_{2k})

(d.2) Each of the algebras (a_{2k})

phic to Int(ω).

(e) $\mathcal{A} = \text{gr}(\text{Atom}(\mathcal{A}) \cup \bigcup_{k \in \omega} P_k^{\mathcal{A}}$. $A \not\cong \widehat{(a_{2k+1})}_A$ and $\widehat{(a_{2k})}_B \not\cong \widehat{(a_{2k+1})}_B$
 $(a_{2k+1})_A$, $\widehat{(a_{2k})}_B$, and $\widehat{(a_{2k+1})}_B$

and $B = \text{gr} (\text{Atom}(B) \cup \bigcup_{k \in \omega} P_k^B)$.
-
- (f) A *is isomorphic to* $Int(\omega^2)$ *.*

Lemma 2. *Structures* A^c *and* B^c *are decidable colored algebras.*

Proof. Consider the function $f_A(x)$ from Lemma [1\(](#page-5-1)a). Define the following sequence of L_{BA} -formulas.

$$
\varPhi_{k,j}(x,\bar{y}) = \begin{cases}\n(x = y_1) \lor (x = y_2), \text{ if } |\gamma(f_A(\langle k,j \rangle))| = 2, \\
x = y_1, & \text{ if } |\gamma(f_A(\langle k,j \rangle))| = 1, \\
x \neq x, & \text{otherwise.} \n\end{cases}
$$

Lemma [1\(](#page-5-1)a) implies that the sequence $\{\Phi_{k,j}\}_{k,j\in\omega}$ is the coloring sequence for each of the structures \mathcal{A}^c and \mathcal{B}^c . Hence, \mathcal{A}^c and \mathcal{B}^c are colored algebras. Lemma $1(a,b)$ $1(a,b)$ also implies that \mathcal{A}^c and \mathcal{B}^c satisfy the conditions of Proposition [1;](#page-3-1) therefore, our structures are decidable.

The proof of Lemma [2](#page-5-0) actually shows that every computable copy of \mathcal{A}^c satisfies Proposition [1.](#page-3-1)

Corollary 1. *Every computable copy of* A^c *is decidable. In particular, the spectrum* AutSpec_{SC}(A^c) *is equal to* AutSpec(A^c).

Definition 4. Given an element a from the set $Col(A^c)$, we define the L_c formula $\phi^a(x)$ as follows. First, we find a predicate R from L_c such that $a \in R^A$.

- (i) If a is an atom of A, then we define $\phi^a(x) = R(x)$.
- (ii) If $a \notin \text{Atom}(\mathcal{A})$, then $R = P_k$ for some $k \in \omega$. Consider the following two cases. If a is an atom of A, then we define φ^*
If a \notin Atom(A), then $R = P_k$ for some
cases.
(ii.a) Suppose that the Boolean algebra \hat{a}
	- (ii.a) Suppose that the Boolean algebra \hat{a}_A is finite and it has exactly t atoms. We define

$$
\phi^{a}(x) = P_{k}(x) \& \exists y ((y \land x = y) \& Q_{k,t-1}(y)) \& \neg \exists z ((z \land x = z) \& Q_{k,t}(z)).
$$

(ii.b) If $\hat{a}_{\mathcal{A}}$ is an infinite algebra, then we set $\phi^{a}(x) = P_{k}(x)$.

Note that Lemma $1(b,c,d)$ $1(b,c,d)$ implies that the formulas ϕ^a are well-defined. It is not difficult to prove the following lemma.

Note that Lemma 1(b,c,d) implies that the formulas ϕ^i
difficult to prove the following lemma.
Lemma 3. *Suppose that* $A_1^c = (A_1, P_k^{A_1}, Q_{k,j}^{A_1})_{k,j \in \omega}$ *is a colored algebra with the universe contained in* ω *. Suppose also that* \overline{F} *is a bijection from* Col(\mathcal{A}^c) *onto* $Col(\mathcal{A}_1^c)$ *with the following properties:*

(a) for any $a, b \in \text{Col}(\mathcal{A}^c)$, $a \leq_{\mathcal{A}} b$ *iff* $F(a) \leq_{\mathcal{A}_1} F(b)$, *(b)* for any $a, b \in \text{Col}(\mathcal{A}^c)$, $\mathcal{A}^c \models \phi^a(b)$ iff $\mathcal{A}^c_1 \models \phi^a(F(b))$.

Then there exists a unique isomorphism $F^c: \mathcal{A}^c \to \mathcal{A}^c_1$ *such that* $F^c \supseteq F$ *. Moreover,* F^c *can be constructed effectively from* F *and the atomic diagram of* A_1^c *.*

Lemma 4. *Colored algebras* A^c *and* B^c *are isomorphic but not computably isomorphic. In particular,* A^c *is not* SC-autostable.

Proof. It is easy to construct a $\mathbf{0}'$ -computable bijection F from Col(\mathcal{A}^c) onto Col(\mathcal{B}^c) satisfying the conditions of Lemma [3.](#page-6-0) Therefore, \mathcal{A}^c and \mathcal{B}^c are $\mathbf{0}'$ computably isomorphic.

Note that for any $k \in \omega$ and any isomorphism $G: \mathcal{A}^c \to \mathcal{B}^c$, G maps a_{2k} to a_{2k} and a_{2k+1} to a_{2k+1} , or vice versa. Therefore, Cases 1 and 2 of the construction guarantee that φ_k is not an isomorphism. For example, Case 1 ensures that if $\varphi_k(a_{2k}) = a_{2k}$ and $\varphi_k(a_{2k+1}) = a_{2k+1}$, then the relative algebras $(a_{2k})_{\mathcal{A}}$ and (a_{2k}) _B are not isomorphic.

Lemma 5. A^c *is a prime model.*

Proof. By Theorem [2,](#page-2-0) it is sufficient to prove that A^c is an atomic model. Given a tuple $\bar{a} = a_0, \ldots, a_n$ from \mathcal{A}^c , we will construct a complete L_c -formula $\Phi(\bar{x})$ such that $\mathcal{A}^c \models \Phi(\bar{a})$. Lemma [1\(](#page-5-1)e) implies that we can choose a tuple $b = b_0, \ldots, b_m$ from Col(\mathcal{A}^c) such that $\bar{a} \in \text{gr}(\{b_0,\ldots,b_m\})$. For $i \leq n$, fix an L_{BA} -term $t_i(\bar{y})$ such that $a_i = t_i(\bar{b})$. We define the formula

$$
\Phi(\bar{x}) = \exists y_0 \ldots \exists y_m \Psi(\bar{x}, y_0, \ldots, y_m),
$$

where Ψ is the conjunction of the following formulas:

1. $x_i = t_i(\bar{y})$ for $i \leq n$, 2. $\phi^{b_j}(y_j)$ for $j \leq m$, 3. $y_i \wedge y_k = y_j$ for all j and k with the property $b_i \leq_c b_k$, 4. $y_j \wedge y_k \neq y_j$ for all j and k with the property $b_j \nleq_c b_k$.

It is easy to see that $A^c \models \Phi(\bar{a})$. Suppose that $A^c \models \Phi(\bar{c})$ for some \bar{c} . Using Lemma [3,](#page-6-0) it is not difficult to show that the structures (A^c, \bar{a}) and (A^c, \bar{c}) are isomorphic. Hence, Φ is a complete formula. It is easy to see that $\mathcal{A}^c \models \Psi(a)$. Suppose that $\mathcal{A}^c \models \Psi(c)$ for some c. Using
Lemma 3, it is not difficult to show that the structures (\mathcal{A}^c, \bar{a}) and (\mathcal{A}^c, \bar{c}) are
isomorphic. Hence, Φ is a comp

 $A_1 \subseteq \omega$. A *special numbering* of Col(A_1^c) is a Friedberg numbering of Col(A_1^c) with the following properties: ν is a computable function, and for all $x, k, j \in \omega$, if $\nu(x) \in Q_{k,j+1}^{A_1}$, then there exist y_0, y_1, z_0, z_1 such that $y_0 < y_1 < z_0 < z_1 < x$, $P_k^{A_1} = {\nu(y_0), \nu(y_1)}, \text{ and } Q_{k,j}^{A_1} = {\nu(z_0), \nu(z_1)}.$

Note. If \mathcal{A}^c is a computable copy of \mathcal{A}^c , then there exists a special numbering ν_1 of Col(\mathcal{A}_1^c). Moreover, ν_1 can be constructed effectively from the atomic diagram of \mathcal{A}_1^c .

We fix a special numbering ν of Col(\mathcal{A}^c). For a number s, $\nu[s]$ denotes the set $\{\nu(0),\ldots,\nu(s)\}\.$ The following definition is based on [\[10](#page-9-7), Definition 5.1] and [\[20](#page-9-17), Definition 2.16].

Definition 6. Let A_1^c be a computable copy of A^c with universe A_1 . The universe of the *isomorphism tree* T_{A,A_1} is the set of all functions f with the following properties. verse of the *isomorphism tree* I_{A,A_1} is the set of all functions f with the following
properties.
(a) $\delta f = \nu[s]$ for some s , and $\rho f \subseteq A_1$;
(b) Suppose that L_f is a language $\{R \in L_c : \exists a \in \delta f \ (a \in R^A)\}\$. Then

- (a) $\delta f = \nu[s]$ for some s, and $\rho f \subseteq A_1$;
- $\delta f = \nu[s]$ for some s, and $\rho f \subseteq A_1$;
Suppose that L_f is a language $\{R \in L_c : \exists a \in \mathcal{S}\}$ isomorphic embedding from the L_f -structure $\left(\begin{array}{c} 1 & 0 \end{array}\right)$ $\left(\delta f,L_f^A\right)$) into the L_f -structure $\left(A_1, L^{A_1}_f\right)$.

(c) For every
$$
a, b \in \delta f
$$
, $a \leq_A b$ iff $f(a) \leq_{A_1} f(b)$.

The ordering of the tree T_{A,A_1} is standard, i.e., $f \preccurlyeq g$ iff $f \subseteq g$. We identify the tree T_{A,A_1} with a computable subtree of $\omega^{\langle \omega \rangle}$. We may assume that T_{A,A_1} is built effectively from the atomic diagram of \mathcal{A}_1^c .

The following lemma justifies the choice of the term "isomorphism tree."

Lemma 6. Suppose that A_1^c is a computable copy of A^c . Let I be the set of all *isomorphisms from* A^c *onto* A^c *_f*, *and* P *be the set of all paths through the tree* T_{A,A_1} *. Then there exists a bijection* Ψ *from* P *onto* I *such that for any* $\pi \in P$ *,* π *is Turing equivalent to* $\Psi(\pi)$.

Proof. Here we omit the details and give only general idea of the proof. Given a path π through T_{A,A_1} , build a bijection $F_{\pi} : \text{Col}(\mathcal{A}^c) \to \text{Col}(\mathcal{A}^c_1)$ such that F_{π} satisfies the conditions of Lemma [3](#page-6-0) and for any $a \in Col(\mathcal{A}^c)$, there is a finite function $f \prec \pi$ with the property $F_{\pi}(a) = f(a)$. The function F_{π} yields an isomorphism $F_{\pi}^c \colon \mathcal{A}^c \to \mathcal{A}_1^c$. Set $\Psi(\pi) = F_{\pi}^c$.

It is not difficult to verify the following claim.

Lemma 7. *The tree* T_{A,A_1} *is a finite-branching tree with a computable branching function* $b(\sigma; T_{A,A_1})$ *. Moreover, for any* $\sigma \in T_{A,A_1}$ *, we have* $b(\sigma; T_{A,A_1}) \leq 2$ *.*

Lemma 8. (1) Suppose that **d** is a PA-degree relative to \emptyset . Then A^c is **d***autostable.*

(2) ^A^c *has no degree of* SC*-autostability.*

Proof. Let \mathcal{A}_1^c be a computable copy of \mathcal{A}^c . By Theorem [3](#page-2-1) and Lemma [7,](#page-8-1) the isomorphism tree T_{A,A_1} has a **d**-computable path π . By Lemma [6,](#page-8-2) there is a **d**computable isomorphism $\Psi(\pi)$ from \mathcal{A}^c onto \mathcal{A}^c_1 . Therefore, \mathcal{A}^c is **d**-autostable.

We fix two PA-degrees \mathbf{d}_0 and \mathbf{d}_1 relative to \emptyset with the property [\(1\)](#page-2-2) (where $V = \emptyset$). We already proved that \mathcal{A}^c is \mathbf{d}_0 -SC-autostable and \mathbf{d}_1 -SC-autostable. Note that [\(1\)](#page-2-2) implies that if \mathcal{A}^c has a degree of SC-autostability, then \mathcal{A}^c is SC-autostable. Therefore, by Lemma [4,](#page-6-1) \mathcal{A}^c has no degree of SC-autostability.

This completes the proof of Theorem [1.](#page-1-0) In conclusion, we formulate some open questions related to Problem [1.](#page-1-1)

Question 1. Suppose that M is a decidable almost prime model and \bar{c} is a tuple from M such that (M, \bar{c}) is a prime model of the theory $Th(M, \bar{c})$. Let **d** be the Turing degree of the collection of complete formulas of $Th(\mathcal{M}, \bar{c})$. Suppose also that M has the degree of SC -autostability **c**. Is it possible that $c < d$?

Question 2. Is every d.c.e. degree a degree of SC-autostability for some almost prime model?

Note that the positive answer to Question [2](#page-8-3) yields the positive answer to Question [1.](#page-8-4)

Acknowledgements. The author is grateful to Sergey Goncharov and Svetlana Aleksandrova for fruitful discussions on the subject. This work was supported by RFBR (grant 14-01-00376), and by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-860.2014.1).

References

- 1. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. Roy. Soc. London. Ser. A. **248**, 407–432 (1956)
- 2. Mal'tsev, A.I.: Constructive algebras. I. Russ. Math. Surv. **16**, 77–129 (1961)
- 3. Mal'tsev, A.I.: On recursive abelian groups. Sov. Math. Dokl. **32**, 1431–1434 (1962)
- 4. Fokina, E.B., Kalimullin, I., Miller, R.: Degrees of categoricity of computable structures. Arch. Math. Logic. **49**, 51–67 (2010)
- 5. Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame J. Formal Logic. **54**, 215–231 (2013)
- 6. Bazhenov, N.A.: Degrees of categoricity for superatomic Boolean algebras. Algebra Logic. **52**, 179–187 (2013)
- 7. Anderson, B.A., Csima, B.F.: Degrees that are not degrees of categoricity. Notre Dame J. Formal Logic. (to appear)
- 8. Fokina, E., Frolov, A., Kalimullin, I.: Categoricity spectra for rigid structures. Notre Dame J. Formal Logic. (to appear)
- 9. Goncharov, S.S.: Degrees of autostability relative to strong constructivizations. Proc. Steklov Inst. Math. **274**, 105–115 (2011)
- 10. Miller, R.: **d**-computable categoricity for algebraic fields. J. Symb. Log. **74**, 1325– 1351 (2009)
- 11. Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Downey, R. (ed.) Turing's Legacy: Developments from Turing Ideas in Logic. Lecture Notes Logic, vol. 42, pp. 124–194. Cambridge University Press, Cambridge (2014)
- 12. Bazhenov, N.A.: Autostability spectra for Boolean algebras. Algebra Logic. **53**, 502–505 (2014)
- 13. Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)
- 14. Jockusch, C.G., Soare, R.I.: Π_1^0 classes and degrees of theories. Trans. Amer. Math. Soc. **173**, 33–56 (1972)
- 15. Cenzer, D.: Π_1^0 classes in computability theory. In: Griffor, E.R. (ed.) Handbook of Computability Theory. Studies Logic Foundations Mathematics, vol. 140, pp. 37–85. Elsevier Science B.V., Amsterdam (1999)
- 16. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Science B.V, Amsterdam (2000)
- 17. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum Publishers, New York (2000)
- 18. Goncharov, S.S.: Countable Boolean Algebras and Decidability. Consultants Bureau, New York (1997)
- 19. Ershov, Y.L.: Decidability of the elementary theory of distributive lattices with relative complements and the theory of filters. Algebra Logic. **3**, 17–38 (1964)
- 20. Steiner, R.M.: Effective algebraicity. Arch. Math. Logic. **52**, 91–112 (2013)