
Some Results on Interactive Proofs
for Real Computations

Martijn Baartse and Klaus Meer(B)

Computer Science Institute, BTU Cottbus-Senftenberg,
Platz der Deutschen Einheit 1, 03046 Cottbus, Germany

baartse@tu-cottbus.de, meer@b-tu.de

Abstract. We study interactive proofs in the framework of real number
complexity theory as introduced by Blum, Shub, and Smale. Shamir’s
famous result characterizes the class IP as PSPACE or, equivalently,
as PAT and PAR in the Turing model. Since space resources alone are
known not to make much sense in real number computations the ques-
tion arises whether IP can be similarly characterized by one of the lat-
ter classes. Ivanov and de Rougemont [9] started this line of research
showing that an analogue of Shamir’s result holds in the additive Blum-
Shub-Smale model of computation when only Boolean messages can be
exchanged. Here, we introduce interactive proofs in the full BSS model.
As main result we prove an upper bound for the class IPR. It gives rise
to the conjecture that a characterization of IPR will not be given via
one of the real complexity classes PARR or PATR. We report on ongoing
approaches to prove as well interesting lower bounds for IPR.

1 Introduction

One inspiring source of research problems to deal with in the framework of
real number computations [4] is the question, whether important results from
Turing complexity theory hold as well over the reals as underlying structure.
And in case they do what does it need to prove them. Beside the importance
for the respective computational model this might as well shed light on a better
understanding what is the intrinsic reason for a result to hold. Examples are
provided by the huge amount of research on quantifier elimination algorithms
yielding decidability of all problems in NPR, a recent analogue of Toda’s theorem
[3], or the proof of a real version of the classical PCP theorem [2], to mention
only a few.

Along the same lines in [9] the authors introduced interactive proofs in the
framework of real number complexity theory. More precisely, they considered
the additive version of the BSS model, see [4] and interaction is restricted to
exchange boolean messages only. In this setting, IP again can be characterized
via parallel polynomial time.

K. Meer—Both authors were supported under projects ME 1424/7-1 and ME 1424/
7-2 by the Deutsche Forschungsgemeinschaft DFG. We gratefully acknowledge the
support.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 107–116, 2015.
DOI: 10.1007/978-3-319-20028-6 11



108 M. Baartse and K. Meer

It is thus natural to extend the definition of interactive proofs to the full
BSS model by allowing real messages to be exchanged and the verifier to use
multiplications as well. By a folklore result in real number complexity [11] each
real decision problem can be decided in linear space. Thus the class IPR of real
decision problems acceptable by such an interactive protocol cannot meaning-
fully be characterized using space resources alone. As with other real complexity
classes that classically correspond to space classes the question then is whether
and which other characterizations hold. Note that the two classes PAR and PAT
of problems decidable in parallel and in alternating polynomial time, respec-
tively, equal PSPACE in the Turing model. However, for their real counterparts
PARR,PATR it is known that the first is a proper subset of the latter [7]. So the
question is whether one of them (and which) equals IPR?

It has been shown in [9] that PARR is different from IPR; there are problems
in IPR that cannot be solved in parallel polynomial time. A reason for this
is that PARR is too weak to capture certain real quantifier elimination tasks.
One might then expect that the larger class PATR is the correct one to capture
IPR. However, as our main result shows, this seems unlikely. We establish as an
upper bound for IPR the class MA∃R. It was introduced in [8], is strictly larger
than PARR but conjectured to be strictly included in PATR. After introducing
interactive protocols and the real complexity classes important for this paper
we prove the upper bound result in Sect. 3. The remaining part of the paper
then discusses approaches to achieve good lower bounds for IPR as well. This,
however, seems to be much harder and we only report on some problems for
which Shamir’s classical technique can be extended to design real protocols as
well. We try to substantiate why the lower bound problem in the full model seems
harder by re-analyzing the result of Ivanov and de Rougemont using counting
problems. This viewpoint leads to a couple of interesting open problems which
seem important on the way to a full real analogue of Shamir’s theorem.

2 Basic Notions

As underlying algorithm model we work in the Blum-Shub-Smale BSS model over
R [4]. Decision problems considered in this model are subsets of R

∞ :=
⊔

i≥1 R
i.

The model allows to perform the basic arithmetic operations +,−,× and test
instructions of the form ‘is x ≥ 0?’ at unit cost. Below, in addition we allow both
the verifier and the prover to exchange real numbers at unit cost.

The prover P is a BSS machine unlimited in computational power. The ver-
ifier V is a randomized polynomial time algorithm. It is important to point out
that randomization (still) is discrete, i.e., V generates a sequence of random
bits r = (r1, r2, . . .) during its computation. Now, the computation proceeds as
follows:

– Given an input x ∈ R
n of size |x| = n and (some of) the random bits of r the

verifier V computes a real V (x, r) =: w1 ∈ R and sends it to P ;
– using x and w1 the prover P sends a real P (x,w1) =: p1 ∈ R back to V ;



Some Results on Interactive Proofs for Real Computations 109

– in general, if after i rounds of communication (w1, p1, w2, . . . , pi) denotes
the information sent forth and back, in round i + 1 V computes a real
V (x, r, w1, p1, . . . , pi) =: wi+1 and sends it to P ; P then computes a real
P (x, r, w1, p1, . . . , pi, wi+1) =: pi+1 and sends it to V ;

– the communication halts after a polynomial number m = poly(|x|) of rounds.
Then V computes its final result V (x, r, w1, . . . , pm−1) =: wm ∈ {0, 1} repre-
senting its decision to reject or accept the input, respectively.

We denote the result of an interaction between V and P on input x and using r
as random string by (P, V )(x, r). All computations by V have to be finished in
(real) polynomial time; thus, in particular the number of random bits generated
as well as the number of rounds is polynomially bounded in the algebraic size
|x| of x.

Definition 1. (a) A language L ⊆ R
∞ has an interactive protocol if there exists

a polynomial time randomized verifier V such that
(i) if x ∈ L there exists a prover P such that Pr

r∈{0,1}∗
{(P, V )(x, r) = 1} = 1

and
(ii) if x �∈ L, then for all provers P it holds Pr

r∈{0,1}∗
{(P, V )(x, r) = 1} ≤ 1

4 .

Above, the length of r can be polynomially bounded in the length of x.
(b) The class IPR is the class of all decision problems L ⊆ R

∞ which have an
interactive protocol.

The real number complexity class most important for our considerations here
was introduced and studied by Cucker and Briquel in [8] and is denoted by
MA∃R. Starting point of defining it is the fact that over the reals classes which
are classically defined or characterized using space resources turn out to have
a more subtle relation among each other than they do classically. Taken alone,
space resources have no meaning at all; each decision problem can be decided
in linear space using an elementary coding trick [11]. As consequence, for many
equivalent characterizations especially of the class PSPACE in classical complex-
ity it is unclear what they should become in the real number framework. Recall
that PAR, PSPACE, PAT, and IP, denoting the classes of languages acceptable
by parallel polynomial time with exponentially many processors, in polynomial
space, in polynomial alternating time, and by interactive proofs, respectively,
all are the same in Turing complexity (see the textbook [1] for references and
proofs). In contrast, over R it is known that the real counterparts of the first three
classes mentioned above satisfy PARR � PSPACER ⊆ PATR, where PSPACER

denotes the class of real decision problems decidable by an algorithm using both
exponential time and polynomial space1 and the other two classes are defined by
extending the classical definitions straightforwardly, see [4,7]. As a consequence,
if a new class like IPR is studied which classically gives yet another characteri-
zation of PSPACE via Shamir’s famous result [12], it is not at all obvious where

1 The simultaneous requirement of exponential time and polynomial space excludes
the above mentioned coding trick from [11] and makes the definition meaningful.



110 M. Baartse and K. Meer

it has to be located over the reals. The above chain of inclusions also gives the
option to define new classes which do not make much sense over finite alpha-
bets. This is precisely where [8] starts by defining classes which can be located
between PSPACER and PATR. The class MA∃R is one such and turns out to be
important for interactive protocols. It at least gives a non-trivial upper bound
for IPR, just indicating the latter to be likely weaker than PATR.

Definition 2 ([8]).

(a) The class MA∃R consists of all decision problems L ⊆ R
∞ for which

there exists a problem B ∈ PR together with a polynomial p such that
an x ∈ R

∞ belongs to L if and only if the following formula holds:
∀Bz1∃Ry1 . . . ∀Bzp(|x|)∃Ryp(|x|)(x, y, z) ∈ B. The subscripts B,R for quan-
tifiers indicate whether a quantified variable ranges over B := {0, 1} or R,
respectively.

(b) The class MA∀R consists of the complements of problems in MA∃R. Thus, a
language L ∈ MA∀R contains precisely the points x for which a formula of
the following form holds: ∃Bz1∀Ry1 . . . ∃Bzp(|x|)∀Ryp(|x|)(x, y, z) ∈ B.

The following easy lemma is used later on.

Lemma 1. Let B̃ ∈ MA∃R and p be a polynomial. Then the set L ⊆ R
∞ of all

x such that ∀By1∃Rz1 . . . ∀Byp(|x|)∃Rzp(|x|)(x, y, z) ∈ B̃ belongs to MA∃R, i.e., if
in the definition of MA∃R condition B ∈ PR is replaced by B ∈ MA∃R we stay
within MA∃R

2.

Proof. The quantifier structure related to the definition of MA∃R guarantees
the existence of a polynomial q and a problem B ∈ PR such that (x, y, z) ∈
B̃ ⇐⇒ ∀Bs1∃Rt1∀Bs2 . . . ∀Bsq(|(x,y,z)|)∃Rtq(|(x,y,z)|)(x, y, z, s, t) ∈ B. So x ∈ L iff
∀By1∃Rz1 . . . ∀Byp(|x|)∃Rzp(|x|)∀Bs1∃Rt1∀Bs2 . . . ∀Bsq(|(x,y,z)|)∃Rtq(|(x,y,z)|)(x, y, z,
s, t) ∈ B. Since the lengths of both y and z are polynomially bounded in |x| this
holds as well for the lengths of s and t. Thus, L has the required representation. ��
One of the main results in [8] is proving the inclusion of PSPACER both in
MA∃R and MA∀R, which in turn implies the strict inclusion of PARR in both
latter classes.

Theorem 1 ([8]). PARR � PSPACER ⊆ MA∃R ∩MA∀R and MA∃R ∪MA∀R ⊆
PATR.

Above, the second containment is trivial because by definition of PATR the alter-
nating quantifiers in a defining formula all range over R. The relation between
MA∃R and MA∀R currently is unknown as is the question whether one of the
two is strictly contained in PATR. In the next section we show our main result:
MA∃R is an upper bound for IPR.

2 This of course only makes sense after MA∃R has been defined precisely.



Some Results on Interactive Proofs for Real Computations 111

3 Upper and Lower Bounds for IPR

In this section we prove the main result of this paper, an upper bound for the
class IPR. In addition, we deal with a few examples for which an interactive
proof can be designed. Unfortunately, our results are far from a characterization
of IPR like Shamir’s one in the Turing model. Nevertheless, even the bounds
presented here seem not at all obvious and require some efforts. As we shall see,
a main obstacle for getting better lower bounds is the fact that now we deal with
an uncountable space of information underlying the communications. We shall
comment on the results at the end.

3.1 Upper Bound: Recursive Evaluation of Verifier Action

We want to show the inclusion IPR ⊆ MA∃R. The proof is based on combining
a result in [9] with parts of the proof of Theorem1 adjusted accordingly. The
former gives a recursive procedure for computing the number of random vectors
under which a verifier accepts an interactive protocol; in the setting of [9] the
procedure runs in additive parallel polynomial time. In our setting, however,
due to the fact that in particular the prover can send reals the corresponding
procedure is not bounded by PARR, as has been shown in [9], see also comments
below. Instead, dealing with the real information sent introduces real quantifier
elimination as part of the task to compute the number of successful random
vectors. This naturally leads to considering the class MA∃R.

To start with let a verifier V and a prover P be given such that a language
L ⊆ R

∞ has an interactive protocol established by (P, V ). In order to decide for
an input x whether x ∈ L it is sufficient to count the number of random strings
that cause V to accept x and check whether this number is larger than 1

2 of
the strings. We want to show that this task can be accomplished within class
MA∃R. Towards this aim below we recall a recursive procedure in [9] for doing
this counting and adapt it to our framework. Note that very similar results were
already used in the classical discrete setting.

For technical reasons in the proofs below we first need the notion of a nor-
malized real protocol.

Definition 3. (a) A real protocol (P, V ) is called normalized if the following
conditions are satisfied:

– for input x ∈ R
n, n ∈ N there are precisely p(n) rounds of communication

for a fixed polynomial p only depending on V ;
– between receiving a real from P and sending a real back to P the verifier

V generates precisely one random bit.

(b) If in a normalized protocol the verifier generates ′0′ as random bit in round
i and then computes a real wi as the one to be sent to the prover next, we
denote it by wi(0); similarly for wi(1) if a ′1′ was generated.



112 M. Baartse and K. Meer

Notational Convention: For a normalized verifier round i starts with generating
random bit ri, then V computes deterministically wi ∈ R and sends it to P in
order to receive a pi ∈ R. We shall reflect this order of information flow also
below in the arguments of some important functions.

It is easy to see that without loss of generality we can assume each protocol
to be normalized.

Definition 4 (cf. [9]). Let (P, V ) be a normalized real protocol. For an input
x ∈ R

∞ suppose the interaction to last m = poly(|x|) rounds. Let r =
(r1, . . . , rm) ∈ {0, 1}∗ be a sequence of random bits V generates during its com-
putation and let 1 ≤ j ≤ m.

(a) For w1, . . . , wj , p1, . . . , pj ∈ R denote by Pass(x, r1, w1, p1, r2, . . . , rj , wj)
the relation expressing that for j rounds, given x as input and ri as
random bit in round i the wi’s are the correct data sent by V if P
answers with pi for 1 ≤ i ≤ j. Thus, Pass(x, r1, w1, p1, r2, . . . , rj , wj) ⇔
V (x, r1, w1, p1, . . . , wi−1, pi−1, ri) = wi for all 1 ≤ i ≤ j.

(b) Define functions Qj ,Wj as follows: Qj(x,w1, p1, w2, . . . , pj−1) := max
|{r ∈ {0, 1}m | Pass(x, r1, w1, p1, . . . , rj−1, wj−1) ∧ wm = 1}| and Wj(x,w1,
p1, w2, . . . , pj−1, wj) := max |{r ∈ {0, 1}m | Pass(x, r1, w1, p1, . . . , pj−1, rj ,
wj) ∧wm = 1}| . In both cases the max is taken over all provers that give
responses p1, . . . , pj−1 ∈ R as answers to questions w1, . . . , wj−1 sent by V
on input x.

The only difference between this definition and the corresponding one in [9] is
that the wi and pi are reals. However, this makes the algorithm behind the next
statement more difficult because additional existential quantifiers taking care of
the role of the pi’s are needed. Because we deal with normalized protocols the
influence of the wi’s now being reals can be controlled without additional quan-
tifiers ranging over R. They basically are determined by the actually generated
(discrete) random bit and the previous information of the protocol. This finally
is the reason why MA∃R plays an important role.

Lemma 2 (cf. [9], Adapted to Normalized Protocols). Let x ∈ R
∞ and

(P, V ) be a normalized real protocol accepting a language L. Let m be the number
of random bits generated by V during computation on x. Then for all 1 ≤ j ≤
m − 1

(a) x is accepted iff Q1(x) > 2m−1;
(b) Qj(x,w1, ..., pj−1) = Wj(x,w1, ..., pj−1, wj(0)) + Wj(x,w1, ..., pj−1, wj(1));
(c) Wj(x,w1, ..., pj−1, wj) = max

pj∈R

Qj+1(x,w1, ..., pj−1, wj , pj);

(d) Wm(x,w1, ..., pm−1, wm) = |{r ∈ {0, 1}m | Pass(x, r1, w1, p1, r2, ..., pm−1,
rm, 1)}| .

Proof. Except for small changes the proof is similar to the corresponding one
in [9]. Item (a) follows from the definition of Q1 and that of (P, V ) accepting
an input x. For (b) first note that the verifier at most generates two different



Some Results on Interactive Proofs for Real Computations 113

real values for wj given x, r, and the pi, wi for 1 ≤ i ≤ j − 1, namely wj(0) and
wj(1). In this sense the choice of possible wj ’s still is discrete. For each prover
P used as candidate for the max in the definition of Qj it is easy to see that the
number of accepting r it yields is at most as large as the sum on the right hand
side. This holds because the same P is a candidate for both max computations
related to Wj(x, . . . , wj(0)) and Wj(x, . . . , wj(1)). Vice versa, if P0, P1 denote
the optimal provers in the definitions of Wj(x, . . . , wj(0)) and Wj(x, . . . , wj(1)),
respectively, an optimal prover for the max in Qj behaves like P0 if rj = 0 and
wj(0) was sent by the verifier and like P1 if rj = 1 and wj(1) was sent. This
proves the equality.

For (c) the max defining Wj asks for the best continuation of the protocol
when x, r1, . . . , rj−1, p1, . . . , pj−1, w1, . . . , wj are fixed. The next portion of data
that can be chosen to achieve the maximum is pj ∈ R. The right hand side just
asks for the optimal one. Thus both sides are equal. Item (d) holds because the
part (p1, . . . , pm−1) of the argument Wm already fixes the prover. ��
The lemma is used in order to compute recursively whether an input x is
accepted, i.e., computing Q1(x) and deciding whether it is larger than 2m−1.
In the discrete setting this can be achieved in parallel polynomial time. In our
situation, however, due to Theorem2 in [9] this is not possible;3 there are prob-
lems provably in IPR but not in PARR. Therefore, the involved max computa-
tions increase the problem’s difficulty because maximization over an uncountable
domain is required. The formal description of the resulting problem introduces
∃R-quantifiers and thus leads to MA∃R as an upper bound for IPR.

Theorem 2. IPR ⊆ MA∃R.

Proof. Let L ∈ IPR and (P, V ) a corresponding normalized protocol for
L. For an input x ∈ R

n let m = poly(n) denote the polynomial num-
ber of rounds and generated random bits of the interaction. In order to
use the above lemma algorithmically it is necessary to compute the max-
ima occuring in the statements. Though the prover’s answers range over real
numbers the maxima are integers. Consider Qm(x,w1, p1, w2, . . . , pm−1) =
|{r ∈ {0, 1}m | Pass(x, r1, w1, p1, r2, w2, . . . , pm−1)}|. Obviously, both Qm and
the predicate “Qm(x,w1, . . . , pm−1) = s for given s ∈ {0, 1, . . . , 2m}” are com-
putable in PARR because for every single r the simulation of (P, V ) on x
using r needs polynomial time. Now for each s ∈ {0, 1, . . . , 2m} the predicate
∃pm−1 ∈ R : Qm(x,w1, . . . , pm−2, wm−1, pm−1) = s belongs to MA∃R: First,
Theorem 1 implies that the inner predicate “Qm = s” is in MA∃R, then Lemma 1
shows that this class is not left. In order to compute Wm−1 we can in parallel
compute for each s ∈ {0, 1, . . . , 2m} whether ‘∃pm−1 ∈ R : Qm = s’ holds and
finally extract the maximal s for which this is true in polynomial time. Again
by Lemma 1 it follows that the predicate Wm−1 = s can be decided in MA∃R.
The same holds for the predicate Qm−1(q, w1, . . . , pm−1) = s since according to

3 Though formally the classes in [9] are defined a bit differently it is easy to see that
their protocols used to prove the theorem fit into IPR.



114 M. Baartse and K. Meer

part (b) of Lemma 2 it can be computed using a sum of Wm−1 when the last
component once is wm−1(0) and once wm−1(1).

We continue along the recursion behind Lemma2. Since its depth m is poly-
nomially bounded in n = |x|, by precisely the same arguments as above we see
that all predicates Q1 = s (or, similarly, Q1 > s) for s ∈ {0, 1, . . . , 2m} belong
to MA∃R; the structure ∀B∃R of quantifier prefixes remains the same and for
each of the m rounds only a polynomial number of quantifiers is added. Finally,
x ∈ L iff Q1 > 2m−1 finishes the proof. ��

3.2 Lower Bounds

In this subsection we report on ongoing research to obtain meaningful lower
bounds for IPR. However, it currently is more a discussion of problems and
interesting open questions than a completed project. In particular, so far we
have not been able to give a characterization of IPR analogue to Shamir’s result.
Below, we discuss where new difficulties arise and what might be promising ways
to go.

Let us first give some interactive proofs for certain restricted subclasses of
problems. These results might already shed some light on the difficulties faced
when trying to generalize the classical methods to design IP’s to the real model.

A major problem here seems to be to obtain suitable arithmetizations of the
problems considered in order to apply similar techniques. PATR,MA∃R,MA∀R

are classes defined by quantifying a problem B ∈ PR using different sequences
of quantifiers of different structures. Another example of such a class is DPATR,
where all quantifiers are Boolean. It seems natural to expect that at least for
sequences of Boolean quantifiers the classical techniques could be adopted. How-
ever, this is not obviously true, the reason being the need of a suitable arith-
metization of properties B ∈ PR. In the following we consider certain subclasses
obtained by restricting parts of the general problem definition: either the quan-
tifier structure or the condition in PR or both. We shall investigate some cases
for which interactive protocols can be designed.

Definition 5. (a) We denote by MA∀=0
R

the subclass of problems in MA∀R

where B ∈ PR can be chosen to be of the following particular form: There is a
multivariate polynomial Fx such that (x, y, z) ∈ B if and only if Fx(y, z) = 0.
Moreover, given (x, y, z) the value Fx(y, z) can be computed in polynomial
time in the size of x.

(b) A problem S is in class DPATR if there is a polynomial p and another problem
B ∈ PR such that x ∈ S if and only if ∀Bz1∃Bz2 . . . Qp(|x|)zp(|x|)(x, z1, ...,
zp(|x|)) ∈ B, where Qp(|x|) ∈ {∃B ,∀B}.

(c) A problem S ∈ DPATR belongs to class DPAT=0
R

if the condition (x, z) ∈ B
in part (b) has the particular form Fx(z) = 0 for a polynomial Fx that can
be evaluated in polynomial time in |x|. Similarly, class DPAT�=0

R
consists of

problems where this condition reads Fx(z) �= 0.

For the class MA∀=0
R

of problems defined above we obtain interactive protocols
basically by applying the classical Schwartz-Zippel lemma.



Some Results on Interactive Proofs for Real Computations 115

Proposition 1. It holds MA∀=0
R

⊆ IPR.

Problems in class DPATR are defined using Boolean quantifier prefixes only.
Thus, one might expect that the classical discrete technique for designing inter-
active proofs suffices. However, the problem seems to be finding a suitable arith-
metization of the formula. For the subclasses defined above this is possible.

Proposition 2. It holds DPAT=0
R

⊂ IPR and DPAT�=0
R

⊂ IPR.

Another possible way to extend the class of problems that have a real interactive
protocol is the examination of oracle computations and counting problems. In
[10] an interactive protocol for verifying the value of a permanent of a 0-1-
matrix was given (before Shamir’s result was known). Together with Toda’s
theorem that the polynomial hierarchy PH is included in P#P and the #P -
completeness of the permanent computation this implies an interactive protocol
for all problems in the polynomial hierarchy. The protocol for the permanent, as
for example described in [1], works as well for real matrices in the BSS model.
This implies that real problems that can be decided by a polynomial time BSS
algorithm having access to an oracle computing the permanent of real number
matrices, i.e., all problems in class PPerm

R
, belong to IPR. However, it is not

known whether the permanent plays a similar role for real counting problems as
it does in the Turing model. This is an active field of research. Basu and Zell
[3] have given a real analogue of Toda’s theorem. Instead of the permanent in
this approach the computation of so-called Betti numbers of semi-algebraic sets
plays a crucial role. The latter express certain topological properties of semi-
algebraic sets. They seem to be even more difficult to handle than permanent
computations. An intensive study of counting problems has been performed in
[5,6] for both the additive and the full real number model. Further topological
quantities that turn out to be important are, for example, the topological degree
and the Euler characteristic of a set. In both papers several characterizations of
real complexity classes via oracle computations as well as completeness results
are given. The results in the additive setting actually can be used to prove again
the main result of [9].

Theorem 3 ([9]). In the additive real BSS model the class PARR,+ of problems
decidable in parallel polynomial time equals the class BIPR,+ of problems that
admit an additive interactive protocol only exchanging boolean messages.

The prove is technically very similar to the one in [9] in that a crucial inclusion
PARR,+ ⊆ PPSPACE

R+
is shown using the existence of small rational points in

certain point location tasks. A similar result is central in [9]. This gives the pos-
sibility to involve discrete oracles which then can be handled using the classical
protocol by Shamir. It is not known whether in the full model discrete oracles
play a similarly important role. But the above reasoning makes it interesting to
study which real (counting) functions bearing a high complexity can be com-
puted by an interactive protocol in order to use it as an oracle. Another example
are so-called resultant functions which are polynomials built from the coefficients



116 M. Baartse and K. Meer

of certain polynomial systems and crucial in some of the currently best known
algorithms for dealing with the existential theory over the reals like determinants
are for the solution of linear systems. Thus we have

Problem 1: Can any of the following problems be solved by an interactive
protocol in the full BSS model: given a semi-algebraic set S ⊆ R

n via a system
of polynomial (in-)equalities and a number k ∈ N0, verify that the sum of the
Betti-numbers of S or the degree or the Euler-characteristic of S equals k. What
about verifying the value of resultant polynomials by an interactive protocol?

Even if it is unclear whether positive answers would give the intended char-
acterization of IPR it would be a significant step forward. For example, existence
of such protocols for the Euler characteristic or the Betti numbers would imply
that co-NPR ⊆ IPR because the latter can be solved using a polynomial time
oracle computation that has access to evaluating those function.

Unfortunately, at the moment we do not know how to design an interactive
protocol for co-NPR. It seems unlikely that MA∃R = MA∀R. Thus, if MA∃R

turns out to equal IPR it would not be obvious whether IPR is closed under
complementation. Classically, this of course holds.

Problem 2: Is IPR closed under complementation?

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Baartse, M., Meer, K.: The PCP theorem for NP over the reals. Found. Comput.
Math. Springer. doi:10.1007/s10208-014-9188-x

3. Basu, S., Zell, T.: Polynomial hierarchy, Betti numbers, and a real analogue of
Toda’s theorem. Found. Comput. Math. 10(4), 429–454 (2010)

4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, New York (1998)

5. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations
I: semilinear sets. SIAM J. Comput. 33(1), 227–260 (2003)

6. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations.
II. algebraic and semialgebraic sets. J. Complex. 22(2), 147–191 (2006)

7. Cucker, F.: On the complexity of quantifier elimination: the structural approach.
Comput. J. 36(5), 400–408 (1993)

8. Cucker, F., Briquel, I.: A note on parallel and alternating time. J. Complex. 23,
594–602 (2007)

9. Ivanov, S., de Rougemont, M.: Interactive protocols on the reals. Comput. Com-
plex. 8, 330–345 (1999)

10. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

11. Michaux, C.: Une remarque à propos des machines sur R introduites par Blum.
Shub et Smale. C.R. Acad. Sci. Paris, t. 309, Série I, pp. 435–437 (1989)

12. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)

http://dx.doi.org/10.1007/s10208-014-9188-x

	Some Results on Interactive Proofs for Real Computations
	1 Introduction
	2 Basic Notions
	3 Upper and Lower Bounds for IPR
	3.1 Upper Bound: Recursive Evaluation of Verifier Action
	3.2 Lower Bounds

	References


