
Arnold Beckmann
Victor Mitrana
Mariya Soskova (Eds.)

 123

LN
CS

 9
13

6

11th Conference on Computability in Europe, CiE 2015
Bucharest, Romania, June 29 – July 3, 2015
Proceedings

Evolving
Computability

Lecture Notes in Computer Science 9136

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Arnold Beckmann • Victor Mitrana
Mariya Soskova (Eds.)

Evolving
Computability
11th Conference on Computability in Europe, CiE 2015
Bucharest, Romania, June 29 – July 3, 2015
Proceedings

123

Editors
Arnold Beckmann
Department of Computer Science
Swansea University
Swansea
UK

Victor Mitrana
University of Bucharest
Bucharest
Romania

Mariya Soskova
Sofia University
Sofia
Bulgaria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-20027-9 ISBN 978-3-319-20028-6 (eBook)
DOI 10.1007/978-3-319-20028-6

Library of Congress Control Number: 2015940742

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

CiE 2015: Evolving Computability
Bucharest, Romania, June 29 – July 3, 2015

The evolution of the universe, and us within it, invites a parallel evolution in under-
standing. The CiE agenda – fundamental and engaged – targets the extraction and
development of computational models basic to current challenges. From the origins of
life, to the understanding of human mentality, to the characterizing of quantum
randomness – computability theoretic questions arise in many guises. The CiE com-
munity this year met for the first time in Bucharest, to carry forward the search for
coherence, depth, and new thinking across this rich and vital field of research. In line
with other conferences in this series, CiE 2015 had a broad scope and provided a forum
for the discussion of theoretical and practical issues in computability with an emphasis
on new paradigms of computation and the development of their mathematical theory.

The conference series Computability in Europe is organized by the Association CiE.
The association promotes the development of computability-related science, ranging
from mathematics, computer science, and applications in various natural and engi-
neering sciences, such as physics and biology, as well as the promotion of related
fields, such as philosophy and history of computing. In particular, the conference series
successfully brings together the mathematical, logical, and computer sciences com-
munities that are interested in developing computability-related topics.

The host of CiE 2015 was the Faculty of Mathemics and Computer Science of the
University of Bucharest.

The ten previous CiE conferences were held in Amsterdam (The Netherlands) in
2005, Swansea (Wales) in 2006, Siena (Italy) in 2007, Athens (Greece) in 2008,
Heidelberg (Germany) in 2009, Ponta Delgada (Portugal) in 2010, Sofia (Bulgaria) in
2011, Cambridge (UK) in 2012, Milan (Italy) in 2013, and Budapest (Hungary) in
2014. The proceedings of all these meetings were published in the Springer series
Lecture Notes in Computer Science. The annual CiE conference has become a major
event and is the largest international meeting focused on computability theoretic issues.
CiE 2016 will be held in Paris, France.

The series is coordinated by the CiE Conference Series Steering Committee
consisting of Arnold Beckmann (Swansea, chair), Laurent Bienvenu (Paris),
Alessandra Carbone (Paris), Barry Cooper (Leeds), Natasha Jonoska (Tampa FL),
Benedikt Löwe (Amsterdam and Hamburg), Florin Manea (Kiel), Dag Normann
(Oslo), Mariya Soskova (Sofia), and Susan Stepney (York).

The Program Committee of CiE 2015 was chaired by Victor Mitrana (Bucharest)
and Mariya Soskova (Sofia). It was responsible for the selection of the invited speakers
and the special session organizers and for running the reviewing process of all sub-
mitted regular contributions.

The conference had two tutorials by John Reif (Duke Unversity) and by Stephen
Simpson (Pennsylvania State University), and one public lecture by Mircea Dumitru
(University of Bucharest and Romanian Academy).

In addition, the Program Committee invited seven speakers to give plenary lectures:
Ann Copestake (University of Cambridge), Pawel Gawrychowski (University of
Warsaw), Julia Knight (University of Notre Dame), Anca Muscholl (Université
Bordeaux), Gheorghe Paun (Romanian Academy), Alexander Razborov (University of
Chicago and Steklov Mathematical Institute), and Vlatko Vedral (University of
Oxford).

Springer generously funded a Best Student Paper Award. For the second year in a
row the winner was Ludovic Patey. His contribution to this year’s volume is entitled
“Iterative Forcing and Hyperimmunity in Reverse Mathematics.”

The conference CiE 2015 has six special sessions: two sessions, Representing
Streams and Reverse Mathematics, were introduced for the first time in the conference
series. In addition to this, new developments in areas frequently covered in the CiE
conference series were addressed in the further special sessions on Automata, Logic and
Infinite Games, Bio-inspired Computation, Classical Computability Theory, and His-
tory and Philosophy of Computing. Speakers in these special sessions were selected by
the special session organizers, and were invited to contribute a paper to this volume:

Automata, Logic, and Infinite Games

Organizers. Dietmar Berwanger and Ioana Leustean
Speakers. Christian Georg Fermüller (Wien), Slawomir Lasota (Warsaw), Paulo
Oliva (London), Michael Vanden Boom (Oxford)

Bio-inspired Computation

Organizers. Andrei Paun, Petr Sosik
Speakers. Erzsébet Csuhaj-Varjú (Budapest), Ion Petre (Turku), Alexandru Tomescu
(Helsinki), Sergey Verlan (Paris)

Classical Computability Theory

Organizers. Marat Arslanov, Steffen Lempp
Speakers. Sergey Goncharov (Novosibirsk), Wei Li (Vienna), Frank Stephan
(Singapore), Dan Turetsky (Vienna)

History and Philosophy of Computing

Organizers. Christine Proust, Marco Benini
Speakers. Felice Cardone (Turin), Laura Crosilla (Leeds), Baptiste Mélès (Nancy),
Eric Vandendriessche (Paris)

VI Preface

Representing Streams

Organizers. Jörg Endrullis, Dimitri Hendriks
Speakers. Juhani Karhumäki (Turku), Jean-Eric Pin (Paris), Narad Rampersad
(Winnipeg), Luke Schaeffer (Waterloo)

Reverse Mathematics

Organizers. Damir Dzhafarov, Alberto Marcone
Speakers. David Belanger (Ithaca, NY), Takako Nemoto (Ishikawa), Ludovic Patey
(Paris), Paul Shafer (Ghent)

We received 64 non-invited contributed paper submissions, which were reviewed by
the Program Committee and many expert reviewers. In the end, 42 % of the submitted
papers were accepted for publication in this volume. In addition, this volume contains
ten invited papers. Without the help of our expert reviewers, the production of the
volume would have been impossible. We would like to thank all of them for their
excellent work; their names are listed at the end of this Preface.

All authors who contributed to this conference were encouraged to submit signifi-
cantly extended versions of their papers with unpublished research content to Com-
putability: The Journal of the Association CiE.

The Steering Committee of the conference series CiE is concerned about the rep-
resentation of female researchers in the field of computability. In order to increase
female participation, the series started the Women in Computability (WiC) program in
2007, first funded by the Elsevier Foundation, then taken over by the publisher Else-
vier. We are proud to continue this program with its annual WiC workshop and
mentorship program for junior female researchers in 2015. Both initiatives are coor-
dinated by Liesbeth De Mol. The workshop speakers are Johanna Franklin (University
of Connecticut) Anca Muscholl (Labri, Université Bordeaux I) and Cezara Dragoi
(CNRS/Inria/Equipe Antique, Ecole Normale Supérieure, Paris).

The organizers of CiE 2015 would like to acknowledge and thank the following
entities for their financial support (in alphabetic order): the Association for Symbolic
Logic (ASL), the European Association for Theoretical Computer Science (EATCS),
Springer, the University of Bucharest, and the Asociatia Alumni Universitatii din
Bucuresti. We would also like to acknowledge the support of our nonfinancial sponsor,
the Association Computability in Europe (CiE).

We thank Andrej Voronkov for his EasyChair system that facilitated the work of the
Program Committee and the editors considerably.

April 2015 Arnold Beckmann
Victor Mitrana

Mariya Soskova

Preface VII

Organization

CiE 2015 was organized by the Faculty of Mathematics and Computer Science of the
University of Bucharest. The members of the Organizing Committee were Radu
Gramatovici (Bucharest) and Liviu Marin (Bucharest).

Program Committee

Marat Arslanov (Kazan)
Jeremy Avigad (Pittsburgh)
Veronica Becher (Buenos Aires)
Arnold Beckmann (Swansea)
Laurent Bienvenu (Paris)
Alessandra Carbone (Paris)
S. Barry Cooper (Leeds)
Laura Crosilla (Leeds)
Liesbeth De Mol (Ghent)
Walter Dean (Warwick)
Volker Diekert (Stuttgart)
Damir Dzhafarov (Storrs, Connecticut)
Peter van Emde Boas (Amsterdam)
Rachel Epstein (Harvard)
Johanna Franklin (Hempstead, NY)
Neil Ghani (Glasgow)
Joel David Hamkins (New York)
Rosalie Iemhoff (Utrecht)
Emmanuel Jeandel (LORIA)
Natasha Jonoska (Tampa, FL)
Antonina Kolokolova (St. John’s, NL)

Antonin Kucera (Prague)
Oliver Kutz (Bolzano)
Benedikt Löwe (Hamburg

and Amsterdam)
Jack Lutz (Ames, IA)
Florin Manea (Kiel)
Alberto Marcone (Udine)
Radu Mardare (Aalborg)
Joe Miller (Madison, WI)
Russell Miller (Flushing, NY)
Mia Minnes (La Jolla, CA)
Victor Mitrana (Bucharest, Co-chair)
Dag Normann (Oslo)
Ian Pratt-Hartmann (Manchester)
Mehrnoosh Sadrzadeh (London)
Anne Smith (St. Andrews)
Mariya Soskova (Sofia, Co-chair)
Paul Spirakis (Patras and Liverpool)
Susan Stepney (York)
Jacobo Toran (Ulm)
Marius Zimand (Towson, MD)

Additional Reviewers

Andras, Peter
Bauwens, Bruno
Boasson, Luc
Bréard, Andréa
Bundala, Daniel
Carton, Olivier
Chailloux, André
Constantoudis, Vassilios
Dassow, Jürgen

Diener, Hannes
Dorais, François
Downey, Rod
Escardo, Martin
Freydenberger, Dominik D.
Gabbay, Murdoch
Gaspers, Serge
Gherardi, Guido
Gordeev, Lev

Goudsmit, Jeroen
Gregoriades, Vassilis
Grigorieff, Serge
Grozea, Cristian
Harizanov, Valentina
Hertrampf, Ulrich
Hetzl, Stefan
Hirst, Jeff
Hitchcock, John M.
Hoksza, David
Hu, Ting
Husfeldt, Thore
Ifrim, Georgiana
Inkpen, Diana
Istrate, Gabriel
Jervell, Herman Ruge
Kalimullin, Iskander
Kausch, Jonathan
Khoussainov, Bakhadyr
Kjos-Hanssen, Bjørn
Knowles, Joshua
Kopecki, Steffen
Kutrib, Martin
Lange, Karen
Lecroq, Thierry
Lešnik, Davorin
Lozes, Etienne
Lösch, Steffen
McNicholl, Tim
Melnikov, Alexander
Merkle, Wolfgang
Mignot, Ludovic
Mileti, Joseph
Miyabe, Kenshi
Monath, Martin
Mummert, Carl
Ng, Keng Meng Selwyn

Nies, Andre
Oger, Francis
Oitavem, Isabel
Pauly, Arno
Paun, Andrei
Paun, Gheorghe
Perifel, Sylvain
Petricek, Tomas
Petrisan, Daniela
Raffinot, Mathieu
Rao, Michael
Rettinger, Robert
Rojas, Cristóbal
Romani, Shadab
Rute, Jason
Sanders, Sam
Savchuk, Dmytro
Schlicht, Philipp
Sebastien, Labbe
Shafer, Paul
Shi, Yaoyun
Solomon, Reed
Soskova, Alexandra
Steiner, Rebecca M.
Stephan, Frank
Tadaki, Kohtaro
Terwijn, Sebastiaan
Teutch, Jason
Towsner, Henry
Tveite, Paul
Vaszil, György
Vatev, Stefan
Verlan, Sergey
Weiermann, Andreas
Westrick, Linda Brown
Woods, Damien
Zenil, Hector

X Organization

Franco Montagna
1948 – 2015

Prof. Franco Montagna died on February 18, 2015, at 66. He was Professor of
Mathematical Logic at the University of Siena, which he entered in 1973 working with
Roberto Magari of whom he had been a student. Internationally well-known logician,
Franco Montagna has authored and coauthored more than 120 papers (with an
amazingly long list of national and international coauthors), which appeared in
international journals of logic, algebra and computer science. Since 1973 until 1994,
his main scientific interest was Provability Logic, a modal logic in which it is possible
to express a counterpart of self-reference and incompleteness in arithmetic. His recent
interest was the logic of uncertainty, especially manyvalued logics. In this field, his
results are related to Łukasiewicz Logic with additional operators, like product and
product residuation; the generalizations of Łukasiewicz logic, like Hájek’s logic BL,
and its further generalizations like the logic of GBL-algebras, or the monoidal t-norm
logic, as well as the connections between many-valued logic and substructural logics.
He had a special interest in the relationships between many-valued logics and
probability, in particular the problem of coherence for probabilitic assessments.
Although not a specialistic computability theorist, he cultivated and used computability
theory throughout his work, with the rigour and elegance which characterized his
mathematical style. He served in the Program Committee of CiE 2007. He will be
remembered as a fine researcher, and as a precious teacher, beloved by his students.
Colleagues and friends will remember him for his goodness, his generosity, and his
gentleness.

Contents

Invited Papers

Computers and the Mechanics of Communication: Outline of a Vision from
the Work of Petri and Holt. 3

Felice Cardone

Error and Predicativity . 13
Laura Crosilla

Is Human Mind Fully Algorithmic? Remarks on Kurt Gödel’s
Incompleteness Theorems. 23

Mircea Dumitru

A New Approach to the Paperfolding Sequences. 34
Daniel Goč, Hamoon Mousavi, Luke Schaeffer, and Jeffrey Shallit

Covering the Recursive Sets . 44
Bjørn Kjos-Hanssen, Frank Stephan, and Sebastiaan A. Terwijn

On Distributed Monitoring and Synthesis . 54
Anca Muscholl

Unconventional Computing: Do We Dream Too Much? 63
Gheorghe Păun

Newton’s Forward Difference Equation for Functions
from Words to Words . 71

Jean-Éric Pin

Degrees of Unsolvability: A Tutorial . 83
Stephen G. Simpson

Universality in Molecular and Cellular Computing 95
Sergey Verlan

Contributed Papers

Some Results on Interactive Proofs for Real Computations. 107
Martijn Baartse and Klaus Meer

Prime Model with No Degree of Autostability Relative to Strong
Constructivizations . 117

Nikolay Bazhenov

http://dx.doi.org/10.1007/978-3-319-20028-6_1
http://dx.doi.org/10.1007/978-3-319-20028-6_1
http://dx.doi.org/10.1007/978-3-319-20028-6_2
http://dx.doi.org/10.1007/978-3-319-20028-6_3
http://dx.doi.org/10.1007/978-3-319-20028-6_3
http://dx.doi.org/10.1007/978-3-319-20028-6_4
http://dx.doi.org/10.1007/978-3-319-20028-6_5
http://dx.doi.org/10.1007/978-3-319-20028-6_6
http://dx.doi.org/10.1007/978-3-319-20028-6_7
http://dx.doi.org/10.1007/978-3-319-20028-6_8
http://dx.doi.org/10.1007/978-3-319-20028-6_8
http://dx.doi.org/10.1007/978-3-319-20028-6_9
http://dx.doi.org/10.1007/978-3-319-20028-6_10
http://dx.doi.org/10.1007/978-3-319-20028-6_11
http://dx.doi.org/10.1007/978-3-319-20028-6_12
http://dx.doi.org/10.1007/978-3-319-20028-6_12

Immune Systems in Computer Virology. 127
Guillaume Bonfante, Mohamed El-Aqqad, Benjamin Greenbaum,
and Mathieu Hoyrup

ITRM-Recognizability from Random Oracles . 137
Merlin Carl

P Systems with Parallel Rewriting for Chain Code Picture Languages 145
Rodica Ceterchi, K.G. Subramanian, and Ibrahim Venkat

Base-Complexity Classifications of QCB0-Spaces . 156
Matthew de Brecht, Matthias Schröder, and Victor Selivanov

New Bounds on Optimal Sorting Networks . 167
Thorsten Ehlers and Mike Müller

Nonexistence of Minimal Pairs in L½d�. 177
Chengling Fang, Jiang Liu, Guohua Wu, and Mars M. Yamaleev

Intuitionistic Provability versus Uniform Provability in RCA 186
Makoto Fujiwara

Randomness and Differentiability of Convex Functions 196
Alex Galicki

Weighted Automata on Infinite Words in the Context
of Attacker-Defender Games. 206

Vesa Halava, Tero Harju, Reino Niskanen, and Igor Potapov

Turing Jumps Through Provability . 216
Joost J. Joosten

Rice’s Theorem in Effectively Enumerable Topological Spaces. 226
Margarita Korovina and Oleg Kudinov

Decidability of Termination Problems for Sequential P Systems
with Active Membranes . 236

Michal Kováč

Weihrauch Degrees of Finding Equilibria in Sequential Games 246
Stéphane Le Roux and Arno Pauly

Prefix and Right-Partial Derivative Automata . 258
Eva Maia, Nelma Moreira, and Rogério Reis

A Note on the Computable Categoricity of ‘p Spaces 268
Timothy H. McNicholl

XIV Contents

http://dx.doi.org/10.1007/978-3-319-20028-6_13
http://dx.doi.org/10.1007/978-3-319-20028-6_14
http://dx.doi.org/10.1007/978-3-319-20028-6_15
http://dx.doi.org/10.1007/978-3-319-20028-6_16
http://dx.doi.org/10.1007/978-3-319-20028-6_16
http://dx.doi.org/10.1007/978-3-319-20028-6_17
http://dx.doi.org/10.1007/978-3-319-20028-6_18
http://dx.doi.org/10.1007/978-3-319-20028-6_19
http://dx.doi.org/10.1007/978-3-319-20028-6_20
http://dx.doi.org/10.1007/978-3-319-20028-6_21
http://dx.doi.org/10.1007/978-3-319-20028-6_21
http://dx.doi.org/10.1007/978-3-319-20028-6_22
http://dx.doi.org/10.1007/978-3-319-20028-6_23
http://dx.doi.org/10.1007/978-3-319-20028-6_24
http://dx.doi.org/10.1007/978-3-319-20028-6_24
http://dx.doi.org/10.1007/978-3-319-20028-6_25
http://dx.doi.org/10.1007/978-3-319-20028-6_26
http://dx.doi.org/10.1007/978-3-319-20028-6_27
http://dx.doi.org/10.1007/978-3-319-20028-6_27

On the Computational Content of Termination Proofs 276
Georg Moser and Thomas Powell

Local Compactness for Computable Polish Metric Spaces is P1
1-complete . . . 286

André Nies and Slawomir Solecki

Iterative Forcing and Hyperimmunity in Reverse Mathematics 291
Ludovic Patey

Completely Regular Bishop Spaces . 302
Iosif Petrakis

Computing Equality-Free String Factorisations . 313
Markus L. Schmid

Towards the Effective Descriptive Set Theory. 324
Victor Selivanov

On Computability of Navier-Stokes’ Equation . 334
Shu Ming Sun, Ning Zhong, and Martin Ziegler

Kalmár and Péter: Undecidability as a Consequence of Incompleteness 343
Máté Szabó

How to Compare Buchholz-Style Ordinal Notation Systems
with Gordeev-Style Notation Systems . 353

Jeroen Van der Meeren and Andreas Weiermann

Author Index . 363

Contents XV

http://dx.doi.org/10.1007/978-3-319-20028-6_28
http://dx.doi.org/10.1007/978-3-319-20028-6_29
http://dx.doi.org/10.1007/978-3-319-20028-6_29
http://dx.doi.org/10.1007/978-3-319-20028-6_30
http://dx.doi.org/10.1007/978-3-319-20028-6_31
http://dx.doi.org/10.1007/978-3-319-20028-6_32
http://dx.doi.org/10.1007/978-3-319-20028-6_33
http://dx.doi.org/10.1007/978-3-319-20028-6_34
http://dx.doi.org/10.1007/978-3-319-20028-6_35
http://dx.doi.org/10.1007/978-3-319-20028-6_36
http://dx.doi.org/10.1007/978-3-319-20028-6_36

Invited Papers

Computers and the Mechanics
of Communication

Outline of a Vision from the Work of Petri and Holt

Felice Cardone(B)

Dipartimento di Informatica, Università di Torino, Turin, Italy
felice.cardone@unito.it

Abstract. Computers have become an integral part of a vast range of
coordination patterns among human activities which go far beyond mere
calculation. The conceptual relevance of this new field of application of
computers has been advocated by Carl Adam Petri (1926–2010) and
Anatol W. Holt (1927–2010), two computer scientists best known for
their contributions to the subject of Petri nets, a graphical formalism
for describing the causal dependence of events in systems distributed in
space. We outline some fundamental, mainly epistemological aspects of
their vision of the computer as a “communication machine.”

1 Overview

One approach to the theoretical study of computation, that dates back to the
early years of the discipline, has concentrated on the problem of synthesis of
automata out of simple components, rather than on the closure properties of
classes of computable functions. It is in this tradition that Carl Adam Petri
(1926–2010) formulated a novel approach to automata theory that took seriously
the physical limitations that such systems have to comply with, in particular
upper bounds on the propagation speed of signals and on the density of storage
of information. In Petri’s 1962 PhD dissertation [26], these constraints were the
guiding principles underlying the design of a class of asynchronous systems whose
programming consists essentially in setting up communication rules among their
parts in order to achieve coordination of behavior. The central questions here are
relative to the causal relations among events: in particular, it is in this context
that concurrency can find a general formulation as causal independence.

The ideas of Petri were pursued at an early stage, and partly in collaboration
with him, by Anatol Wolf Holt (1927–2010), although he was less interested than
Petri in the relations of these ideas to physics and mathematics, being primarily
concerned with their use in the specification and analysis of computer systems.
By setting up a theoretical approach to computing based on classes of Petri
nets (a name introduced by Holt himself), and by demonstrating the expressive
power of the latter in application areas ranging from the design of hardware
components to the analysis of legal systems [25], Petri and Holt outlined a vision
of a computer as a “general medium for strictly organized information flow” [28],
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-20028-6 1

4 F. Cardone

a “medium for the transmission of messages between persons” [5], providing
a theoretical complement to the ideas of Licklider [24] on the computer as a
communication device.

An essential sketch of the scientific biography of Anatol Holt may contribute
to appreciate his place in the development of computing in the United States.1

After earning degrees in mathematics from Harvard (1950) and MIT (1953),
where he was employed at the Research Laboratory for Electronics of Robert
Fano as a research assistant in information theory, Holt started his reflection on
computers and their role as a UNIVAC programmer in Philadelphia, where he
worked for Sperry Rand Corporation from 1952 to 1960 and where, with W.J.
Turansky, designed and implemented the Generalized Programming system [4].
In 1955, Holt became Associate Director of the Univac Applications Research
Center, established by himself and J.W. Mauchly. After getting a PhD in descrip-
tive linguistics from University of Pennsylvania under Zellig Harris (1963), while
at Massachusetts Computer Associates, a subsidiary of Applied Data Research,
Holt led the ARPA supported Information System Theory Project (1964–1968)
[6] and subsequent projects until the end of the 1970s. These produced a large
amount of theoretical and applied work on Petri nets, influencing in particular
the research on asynchronous hardware and on data-flow computer architectures
through relations with the Computation Structures Group led by J.B. Dennis
at MIT, and contributing to spread the notions of concurrency, conflict and
causality.2

As an example of the Petri net representation of these notions, we show the
design of a two-stage asynchronous pipeline for bits, taken from an unpublished
review from Holt’s Nachlass dated November, 1976:

2

1

B

A

4

3

Here events 1 and 2 represent the input of a bit 0 or a bit 1, respectively, in the
first stage of the pipeline, and similarly for events A and B. Conditions represent
the states of each stage: empty, holding bit 0 and holding bit 1. The pairs of
events 1 and 3, and 2 and 3 are concurrent: both events of each pair are enabled
to fire according to the rules for the token game on nets [22]. The events 1 and 2
are in conflict: both are enabled because their common precondition is marked,
but only one of them can fire, thus disabling the other. One important feature
of this model of a pipeline is the synchronization of a forward flow of tokens in
1 For a biography of Petri, see the recent book by Einar Smith [34].
2 Extensive documentation on this work is now available at the page of the Defense

Technical Information Center, http://www.dtic.mil/dtic/index.html, search for
example for the strings “AD0704796”, “ADA955303”, “ADA047864”.

http://www.dtic.mil/dtic/index.html

Computers and the Mechanics of Communication 5

the system, representing the bits, with a backward flow of tokens representing
permits (or requests for data): this is essential to the design of safe asynchronous
communication mechanisms.

As Director of the Computing Center of Boston University, Holt’s interests
focused more closely on the development of computer support for human orga-
nized activity and the related descriptive formalisms, like role/activity nets [12].
After an appointment at ITT as the leader of a Coordination Technology research
group, in 1986 he founded and became Chief Technical Officer of Coordination
Technology, working in particular on the development of new formalisms for
coordination [17]. In 1991 he moved to Milano, Italy, where he continued his
research on organized human activity interacting with researchers in the area of
Computer Supported Cooperative Work at the Università di Milano and oth-
ers interested in his ideas (like the present writer). The main outcome of this
research was the book [19], soon followed by a shorter one which appeared in an
Italian translation [20], and several papers on organized activity, in particular
in relation to the novel approach to information suggested by his outlook [21],
that he planned to investigate in a book of which several drafts survive. His last
writing, as far as we know, has been an unpublished revision of the 1997 book,
written in 2003.

The aim of this paper is to compose an introductory account of the vision
of computer as a communication machine from the published and unpublished
material by Petri and Holt, mainly focussing on the epistemological issues that
underlie their endeavor rather than on the technical achievements.3 After a short
introduction to Holt’s approach to systems as expression of organized human
activities, we discuss its consequences on a systemic interpretation of the notion
of information and outline two ways of looking at the interpretation of comput-
ers as communication machines: Holt’s communication mechanics and Petri’s
communication disciplines. Finally, we comment on some mathematical aspects
of the relations between discrete and continuous models of digital systems, moti-
vated by communication mechanics and based on a topological interpretation of
the primitive notions of Petri nets.

2 Computers, Systems and Communication

2.1 Communication Mechanics

Through his acquaintance with Gregory Bateson and his family4 Holt interacted
with cyberneticians and systemically oriented thinkers5 developing a loosely
3 Both Holt’s Nachlass, that we are currently studying, and that of Petri, are preserved

at the Deutsches Museum in Munich.
4 Holt’s mother, Claire Holt, collaborated with Bateson and his wife, Margaret Mead,

as an expert of Indonesian art, especially of Balinese dance, see [2] for a biography.
5 This happened in at least one important context, the Wenner-Gren Conference on

the Effects of Conscious Purpose on Human Adaptation held in Burg Wartenstein
(Austria) in 1968, as evidenced by the proceedings edited by Bateson’s daughter,
Mary Catherine [1]. Holt was one of the main characters of that conference which
included as participants Gregory Bateson, Barry Commoner, Warren McCulloch and
Gordon Pask, among others.

6 F. Cardone

systemic attitude towards computing, whose main ideas can be gathered from
his papers from the period 1968–1980, for example [6,7,9–11,13]. As an early
illustration of Holt’s interest in systemic notions, one of the concerns of the
Information System Theory Project was the “analysis and description of data
structures”, where a data structure should not be thought of as “a static set of
elements with interrelations” (ibid., p. 4), but rather should be identified with
the basic operations made possible by that structure.6 For example,

we might consider beginning with a list of the elementary events which
we suppose can occur involving a 1-dimensional array [. . .] Given this
list of events we can now describe the constraints on their relative occur-
rences. [. . .] A set of mutually constrained events is what we call a system
[6, pp. 4–6].

Examples of systems involve patterns of coordinated activity “such as the flow
of traffic at a highway interchange, the operation of an elevator responding to
calls on different floors, an iterative procedure for successively approximating
the solution of a differential equation” (ibid., p. 9). In this perspective, systems
are identified with the mechanical aspects of human organizations, expressed in
rules whose function is to “establish certain relations of communication among
a set of role players” [7]. Their investigation leads to communication mechanics,

a theory about the mechanical aspects of communication – i.e., those
aspects that have to do with the rules, insofar as these can be formalized,
which define the relations among a set of communicating parts [. . .] We
regard the words ‘organization’ and ‘system’ as referring to such bodies
of rules [7].

Holt later developed communication mechanics into a theory of organized activ-
ity whose formalization instantiated the elements of the bipartite ontology of
Petri nets, made generically of conditions and events, first as roles and activities
[3,12] and, eventually, as bodies and operations [15,17,19]. Roles are the hall-
mark of organized activity: in the context of organized activities persons play
roles and it is in such roles that they perform actions. By doing so, persons
assume responsibilities that reflect organizational interests, becoming actors. As
a machine cannot assume any responsibility for its actions, actions cannot be
performed by machines: this remark lies at the heart of Holt’s critique of the
idea of artificial intelligence and, more generally, of the personification of com-
puters [5]. In the system context, actions are units of organizational time: the
time represented in calendars and planners and made up of lumps of human
effort. Similarly, space enters this picture in the form of organizational space, for
example files, cabinets, rooms or buildings. For all these examples,
6 In this novel approach to the characterization of data structures we can see perhaps

a first hint of techniques for data abstraction that would become a leading theme
of programming language design in the next decade, culminating with the notion of
(software) object.

Computers and the Mechanics of Communication 7

their coordination-relevant structure cannot be described in the language
of physics. The description of this structure necessarily makes reference
to the manner of its use in the conduct of socially organized activity,
perhaps only by implication [18].

Organizational space has a topological structure whereby entities that interact
directly are spatial neighbors, cfr. [12], an operational conception of topological
relations which is distinctive of communication mechanics, as we shall see later.

2.2 Communication Disciplines

Holt was concerned with a notion of information subsuming the multitude of
ways informational phenomena enter the picture of human organizations as sup-
ported by computers:

Information processing and information flow within a machine cannot be
adequately engineered without the power to see it as integral to infor-
mation processing and flow within an organization [13] “the user” is a
community with a diversity of roles and interests all of which concur-
rently affect the use of the machine (or complex of machines) [. . .] At
any one time the machine is not serving one man but is participating in
the establishment of a relation between several men [. . .] a very different
matter than the standard concept of a “computational problem” [8].

An initial attempt at a technical notion of information supporting the study of
the causal relations among decisions in systems, was explored by Holt and Fred
Commoner in their contribution to the Project Mac Woods Hole conference in
June 1970, in the restricted setting where a system is represented by a state
machine [22]. Information is input at states where a decision has to be taken as
to which of several possible actions should be performed next; dually, information
is output when several actions lead to the same state: namely the information
needed to backtrack from that state.

Holt’s systemic notion of information matches a notion of communication
which does not reduce, as in Shannon’s seminal work, to “reproducing at one
point either exactly or approximately a message selected at another point” [33].
The reception via fax of a perfect reproduction of a $100 bill does not count as a
successful money transfer. Holt’s first attempt at a criticism of traditional com-
munication theory in a technical context, [9], reveals the hidden organizational
assumptions underlying Shannon’s theory: in the systemic treatment, informa-
tion is studied as a correlate of coordination or, more generally, of organized
activity.

According to the new theory of communication, in any organized human
activity the material aspects, including representation, are essential: this is a recur-
ring theme through Holt’s reflection, from the early formulations of communica-
tion mechanics witnessed by Mary Catherine Bateson at the Burg Wartenstein
conference:

8 F. Cardone

Tolly went up to the board and wrote the number two in several ways,
2, II, ii, 2, a tiny two and a monstrous one [. . .] — There is a profound
illusion that it is possible in a systematic sense to separate the represen-
tation from what is represented [. . .] it is a fundamental error [. . .] The
symbol is nothing apart from its uses [1, pp. 156–157]

to a late list of popular assumptions running counter to the proper foundations
of a theory of organized activity, quoted from an unpublished draft translated
into Italian as [20]:

The logic of a formal procedure (and therefore organized activity) is
clearly separable from the physical means by which it is performed (and
therefore separable from time/spatial considerations) [. . .] in the study
of organized activity the opposite is assumed.

The following table, extracted from [10, p. 166], summarizes the basic tenets of
the systemic view of information by constrasting it with the conventional view:

Conventional Systemic

Information is an imperishable good Information has validity only within
a given context

Information content and form are, in
principle, factorable from one another

Form and content are, in principle,
inseparable

Information can, in principle, flow from
sender S to receiver R without
information flowing from R to S

Information flow requires, in
principle, circuits over which to
flow (like electric current)

We have a shift from a theory of signal transmission like classical communication
theory to a formal pragmatics7 where computers are message processors:

the systems point of view would [. . .] principally see computers as com-
munication machines and principally see the material that flows through
a computer as documents bearing messages [10, Lecture 3].

While applying his ideas to the design of electronic coordination environments
[8], Holt made several examples of disciplines to be imposed on message-handling

7 It is formal because its rules are entirely formulated in terms of roles, and it is a prag-
matics in the etymological sense, because it concerns communication among actors
as action performers. Pragmatics has an obvious bearing on the communication-
oriented uses of information technology, and in fact we find ideas from the speech-
act theories of Austin, Searle and Habermas at the basis of the ‘language/action
perspective’ of Winograd and Flores and the related coordination programs, and
also in the foundational work on information systems by the Scandinavian school of
Langefors, Goldkuhl and Lyytinen, among others.

Computers and the Mechanics of Communication 9

capabilities within a computer-based information system, like delegation of
authority, addressing of messages and their identification and cancellation [16].
Petri [28] compiled a list of such communication disciplines classifying the func-
tions of computer as a general medium for strictly organized information flow,

disciplines of a science of communication yet to be created, and disci-
plines in the sense of keeping to a set of rules to be followed if commu-
nication is to be successful [30].

Understanding these rules becomes essential when the ordinary context of com-
munication is replaced by a computer-based system, and the material carriers
of messages are replaced accordingly. For example, an unproblematic notion of
‘original’ applies to paper-based documents that can be transferred only with
difficulty to electronic environments. A discipline of copying in this case is clearly
relevant (after all, a copy is defined in opposition to an original), like a discipline
of composition, “concerned with determining the structure of documents relative
to a material or conceptual carrier” [28], relevant to the legal value of writing.

3 Continuous Discrete Behavior

The representation of communication relations in a digital context needs a way
of representing motion:

To communicate one must move [. . .] We will need a theory of motion
suited to our ends: the analysis of communication relations. In this con-
nection, the analysis of motion based on the mathematical continuum is
not serviceable. It gives us no systematic way of relating communication
intentions to the mechanics which implement them [7].

A sense of continuity of motion can be recovered by exploiting the topological
aspects of the state/transition structure of digital systems. Petri had observed,
circa 1972, that a Petri net with states S, transitions T and flow relation F ⊆
(S × T) ∪ (T × S) can be regarded as a topological space X = S ∪ T by
forgetting the direction of flow taking a new relation A = (F ∪ F−1) ∩ (S × T)
and by defining U ⊆ X to be open when A−1[U] ⊆ U [27]. In this topology {s}
is open for every s ∈ S and {t} is closed for every t ∈ T . In addition, this space
has the properties that characterize the net topologies [31]:

– Arbitrary unions of closed sets are closed (equivalently, arbitrary intersections
of open sets are open);

– Every singleton is either open or closed (the resulting topological space
is T 1

2
).8

Net topologies were intended originally to be used to define continuous mappings
on nets as describing views of a system at different levels of abstractions. The
basic insight at the basis of their definition has however a much wider import:
8 In passing, we remark that closely related topologies have recently been exploited in

the definition of the digital line for the purposes of digital image processing [23].

10 F. Cardone

by describing the motion of bodies in space (in communication mechanics, the
communication between parts) by means of nets, the events and interactions in
which the moving bodies are involved are made part of the topological structure
of the space:

one ordinarily imagines that space and time can somehow be structured –
i.e., subdivided into nameable entities with topological relations among
them before describing the actions, interactions, movements, disposi-
tions, etc. of the various distinguishable entities in which one is ulti-
mately interested. We, on the other hand, will see temporal and spatial
organization as logically related to the “drama” (or class of dramas)
which are to take place in that frame [7, Sect. C].

Instead of spatial regions and their boundaries construed as point-sets, in the
topological interpretation of nets we have (open) atomic regions of a state space
whose (closed) transitions express the crossing of boundaries, in topological
spaces whose points are better expressed by verbs (with different aspectual fea-
tures) than by nouns. Net topologies allow to introduce notions like continuity,
connectedness and boundary in the foundations of a new approach to models of
digital phenomena.

Though the notions ‘state’ and ‘event’ are “digital” concepts, ours will
not rest on the fiction that events have no real duration – i.e., can be
represented by time points in mathematical continuum – nor on the
fiction that states have no real extension – i.e., can be associated with
space points in a continuum [7].

The coming about of an objectively verifiable change in anything takes
time, and necessarily entails passage through a region of uncertainty. Our
theory should also not presuppose the fiction of perfect classification
schemes [. . .] Theories based on these fictions cannot account for the
effort that must go into achieving reliability in systems [10, pp. 139–40].

On the one hand, these remarks lead to a theory of intransitive indifference
relations, of which concurrency is an example, axiomatized by Petri [29,32] in
relation to a finitistic view of continuity as a foundation for measurement. On the
other hand, they set the stage for Holt’s investigation of motion complying with
the needs of communication mechanics, culminating in his unpublished contribu-
tion to the May 1981 MIT-IBM conference on Physics of Computation [14]. The
basic picture behind his views, recurring through his prolonged meditation on
the foundations of state/transition models, is that of a hiker who alternates the
crossing of mountains (transitions) with being in valleys (states). One can set up
a language describing his motion consisting of elementary statements involving
the relations of the hiker with atomic regions of state space and their boundaries
(like his being in a valley or his being away from a boundary). The logic of these
statements permits then a purely linguistic interpretation of topological relations
between regions of the state space of the hiker, their interiors and boundaries,
and ultimately of net topologies. While this work has been left unfinished by

Computers and the Mechanics of Communication 11

Holt, who was aware of its embryonic stage, it offers new technical and philo-
sophical insights into the relation between continuity and discreteness and the
possibility of building finite, small models of continuous phenomena that arise
at the border between computing and physics. As a conclusion of our outline,
we point at this as an interesting direction for future research arising from the
work of Petri and Holt.

Acknowledgements. I am indebted to Anastasia Pagnoni for encouragement, and
help with Holt’s Nachlass, and to Marco Benini for his interest in this work. The
financial support of Project LINTEL is gratefully acknowledged.

References

1. Bateson, M.C.: Our Own Metaphor. A Personal Account of a Conference on the
Effects of Conscious Purpose on Human Adaptation. Smithsonian Institution,
Washington, DC (1972)

2. Burton, D.: Sitting at the Feet of Gurus: The Life and Dance Ethnography of
Claire Holt. Xlibris Corporation, Web Mounted (2009)

3. Grimes, J.D., Holt, A.W., Ramsey, H.R.: Coordination system technology as the
basis for a programming environment. Electr. Commun. 57(4), 301–314 (1983)

4. Holt, A.W.: General purpose programming systems. Commun. ACM 1(5), 7–9
(1958)

5. Holt, A.W.: The personification of computers. Datamation 13(3), 137–138 (1967)
6. Holt, A.W.: Information system theory project: final report. Technical report,

RADC-TR-68-305, NTIS AD 676972, Applied Data Research, Inc., Princeton, NJ,
September 1968

7. Holt, A.W.: Communication mechanics. Advanced Course on Operating Systems
Principles, Istituto di Elaborazione dell’Informazione, Pisa, 20–31 August 1973
(course material)

8. Holt, A.W.: The design of a computer-based communication system. Technical Pro-
posal P-7-002, Massachusetts Computer Associates Inc., Massachusetts, Wakefield,
26 February 1974

9. Holt, A.W.: Information as a system-relative concept. Technical Report CA-7409-
3011, Massachusetts Computer Associates Inc., Wakefield, Massachusetts, 30 Sep-
tember 1974, published in Krippendorff, K. (ed.) Communication and Control in
Society, pp. 279–285. Gordon and Breach Science Publishers (1979)

10. Holt, A.W.: Formal methods in system analysis. In: Shaw, B. (ed.) Computers and
the Educated Individual, pp. 135–179. University of Newcastle upon Tyne (1975).
http://www.ncl.ac.uk/computing/about/history/seminars/

11. Holt, A.W.: Petri nets and systems analysis. In: The MIT Conference on Petri-nets
and Related Methods, July 1975 (reproduced in [10])

12. Holt, A.W.: Roles and activities. A system for describing systems, p. 58, 30 March
1979 (unpublished typescript)

13. Holt, A.W.: Computer-based information systems: the views of a quasi-wholist.
IFIPS TC-9, Number 9, September 1980

14. Holt, A.W.: A mathematical model of continuous discrete beahvior. Technical
report, Massachusetts Computer Associates Inc., Wakefield, Massachusetts, 11
November 1980

http://www.ncl.ac.uk/computing/about/history/seminars/

12 F. Cardone

15. Holt, A.W.: Coordination technology and Petri nets. In: Rozenberg, G. (ed.) APN
1985. LNCS, vol. 222, pp. 278–296. Springer, Heidelberg (1985)

16. Holt, A.W.: Identification: Generally and in ICECT, 12 February 1986 (unpub-
lished draft)

17. Holt, A.W.: Diplans: a new language for the study and implementation of coordi-
nation. ACM Trans. Off. Inf. Syst. 6(2), 109–125 (1988)

18. Holt, A.W.: The mechanics of organized human activity, p. 100 (1988), book draft,
including book overviews

19. Holt, A.W.: Organized Activity and its Support by Computer. Kluwer, Norwell
(1997)

20. Holt, A.W.: Ripensare il mondo. Il computer e i vincoli del sociale. Masson, Milano
(1998)

21. Holt, A.W., Cardone, F.: An organisational theory of information. In: Falkenberg,
E.D., Lyytinen, K., Verrijn-Stuart, A.A. (eds.) Information System Concepts: An
Integrated Discipline Emerging. IFIP Conference Proceedings, vol. 164, pp. 77–91.
Kluwer, Netherlands (2000)

22. Holt, A.W., Commoner, F.: Events and conditions. In: Dennis, J.B. (ed.) Record
of the Project MAC conference on concurrent systems and parallel computation,
pp. 3–52. ACM, New York (1970)

23. Khalimsky, E., Kopperman, R., Meyer, P.: Computer graphics and connected
topologies on finite ordered sets. Topology Appl. 36, 1–17 (1990)

24. Licklider, J.C.R., Taylor, R.W.: The computer as a communication device. Sci.
Technol. 76, 21–31 (1968)

25. Meldman, J.A., Holt, A.W.: Petri nets and legal systems. Jurimetr. J. 12(2), 65–75
(1971)

26. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Darmstadt Technical
University (1962), English Translation as Technical report RADC-TR-65-377, vol.
1, Supplement 1, Griffiss Air Force Base (1966)

27. Petri, C.A.: Concepts of net theory. In: Mathematical Foundations of Computer
Science: Proceedings of Symposium and Summer School, 3–8 September, pp. 137–
146. Mathematical Institute of the Slovak Academy of Sciences, Strbské Pleso
(1973)

28. Petri, C.A.: Communication disciplines. In: Shaw, B. (ed.) Computing System
Design, pp. 171–183. University of Newcastle upon Tyne (1976). http://www.ncl.
ac.uk/computing/about/history/seminars/

29. Petri, C.A.: Modelling as a communication discipline. In: Beilner, H., Gelenbe, E.
(eds.) Measuring, Modelling and Evaluating Computer Systems. North-Holland,
Amsterdam (1977)

30. Petri, C.A.: Cultural aspects of net theory. Soft. Comput. 5, 141–145 (2001)
31. Petri, C.A.: Mathematical aspects of net theory. Soft. Comput. 5, 146–151 (2001)
32. Petri, C.A., Smith, E.: Concurrency and continuity. In: Rozenberg, G. (ed.)

Advances in Petri Nets. LNCS, vol. 266, pp. 273–292. Springer, Berlin (1987)
33. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27,

379–423 (1948)
34. Smith, E.: Carl Adam Petri. Eine Biographie. Springer, Berlin (2014)

http://www.ncl.ac.uk/computing/about/history/seminars/
http://www.ncl.ac.uk/computing/about/history/seminars/

Error and Predicativity

Laura Crosilla(B)

School of Philosophy, Religion and History of Science
University of Leeds, Leeds LS2 9JT, UK

matmlc@leeds.ac.uk

Abstract. The article surveys ideas emerging within the predicative
tradition in the foundations of mathematics, and attempts a reading of
predicativity constraints as highlighting different levels of understanding
in mathematics. A connection is made with two kinds of error which
appear in mathematics: local and foundational errors. The suggestion
is that ideas originating in the predicativity debate as a reply to foun-
dational errors are now having profound influence to the way we try
to address the issue of local errors. Here fundamental new interactions
between computer science and mathematics emerge.

1 Certainty and Certification

Mathematics is often considered the most exact of all sciences, but error is not
unusual even in print. Errors are also costly and unwelcome in computer science,
where program verification is increasingly appealed to in order to minimize fail-
ure in hardware and software.

I would like to suggest a distinction between two types of error which can
appear in mathematics. First of all there are what I should like to call “local”
errors. These are errors which plague individual proofs, or possibly a relatively
small group of proofs which share a similarity in structure. These mistakes are
somehow confined to a small portion of the mathematical enterprise and, if
corrigible, they can be amended without introducing any substantial revision of
the underlying mathematical principles one appeals to when devising the given
proof. Secondly, there are “foundational” mistakes, which instead relate to the
very principles of proofs and the axioms; these occur when inconsistencies arise
within our foundational systems.

Nowadays emphasis is on local errors. The ever growing specialization of
mathematics has made proofs much harder not only to obtain, but also to ver-
ify. In addition to the complexity, the mere size of some proofs demands new
strategies for their verification. A substantial debate on the role of computers
for both the discovery and the verification processes in mathematics is presently
ongoing within the mathematical community, with an increasing number of

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 13–22, 2015.
DOI: 10.1007/978-3-319-20028-6 2

14 L. Crosilla

mathematicians hoping that a fruitful interaction between mathematics and
computer science will produce substantial benefits for today’s mathematics.1

As to the second kind of error, a large number of mathematicians seem by now
quite confident that we have obtained inductive corroboration of our mathemat-
ical practice and also of our main mathematical systems; for example, theories
like ZFC seem to have undergone sufficient scrutiny over the years to be consid-
ered reliable by most. However, a genuine concern regarding the trustworthiness
of our mathematical methodology and of our foundational systems was voiced
at the turn of the 20th century, as a direct reply to the deep methodological
changes that mathematics was undergoing at the time, as well as the rise of the
set-theoretic paradoxes.

The main topic of this article is predicative mathematics, a form of mathemat-
ics which originated at the beginning of the 20th century in attempts to address
the threat arising from potential foundational errors, by proposing methodolog-
ical constraints. Predicativity constraints are motivated by a varied family of
concepts, and, as further hinted at below, inspire a number of rather different
forms of mathematics. This complexity makes it very difficult to discuss pred-
icativity within the limits of a short article and venture to draw some general
conclusions. However, I would like to highlight some common themes which run
through the debate on predicativity since its earliest times. I would also like to
recall the difficulties encountered in understanding the demarcation between the
notions of predicative and impredicative. Notwithstanding these difficulties, the
hope is to be able to suggest a reading of predicativity constraints as an instru-
ment for singling out (substantial) portions of classical mathematics which are
amenable to a less abstract, and a more concrete treatment. A predicative treat-
ment of those portions of mathematics then is often seen by its proponents as
providing full conviction for the correctness of the results. That is, by restrict-
ing the methodology to more stringent canons, one ought to gain more detailed
insight of the constructions carried out within a proof, and fuller grasp of the
results. In the case of constructive predicativity as represented by the tradition
arising within Martin-Löf type theory, the ensuing mathematics obtains a dis-
tinctive direct computational content. Here predicativity constraints enable an
identification of mathematics with programming which has inspired fundamental
research at the intersection between mathematics and computer science. In fact,
recent years have seen the rise of attempts to proof-checking portions of math-
ematics with the support of computer systems, opening up new paths for the
verification of mathematics. The suggestion I would like to make, then, is that
ideas originating in the predicativity debate as a reply to foundational errors are
now having profound influence to the way we try to address the issue of local
errors.

1 Dana Scott in his opening talk at the The Vienna Summer of Logic (9th–24th July
2014) suggested that we are now witnessing a paradigm change in logic and math-
ematics. At least in certain areas of mathematics, there is an urgent need to solve
complex and large proofs, and this requires computers and logic to work together to
make progress. See Dana Scott’s e-mail to the Foundations of Mathematics mailing
list of 28–07–14 (http://www.cs.nyu.edu/mailman/listinfo/fom).

http://www.cs.nyu.edu/mailman/listinfo/fom

Error and Predicativity 15

2 Predicativity

Predicativity has its origins in the writings of Poincaré and Russell, and is only
one of a number of influential programmes which arose at the beginning of the
past century in an attempt to bring clarity to a fast changing mathematics.
Mathematics, in fact, had undergone deep methodological alterations during the
19th century which soon prompted a lively foundational debate. The paradoxes
that were discovered in Cantor’s and Frege’s set theories in the early 20th cen-
tury were one of the principal motivations for the very rich discussions between
Poincaré and Russell, within which the concept of predicativity was forged (see
for example [19,22,23]). These saw impredicativity as the main source of the
paradoxes, and attempted to clarify a notion of predicativity, adherence to which
would hinder inconsistencies. According to one rendering of this notion, a defi-
nition is impredicative if it defines an object by quantifying on a totality which
includes the object to be defined. Through Russell and Poincaré’s confrontation
a number of ways of capturing impredicativity and explaining its perceived prob-
lematic character emerged. One influential thought (originating in Richard and,
via Poincaré, adopted and particularly pressed further by Russell) saw impred-
icativity as engendering from a vicious circularity, or self-reference.2 According
to this view, a vicious circle arises if we suppose that a collection of objects
may contain members which can only be defined by means of the collection as
a whole, thus bearing reference to the definiendum. As a response to these dif-
ficulties Russell introduced his well-known vicious circle principle, which in one
formulation states that: “whatever in any way concerns all or any or some of a
class must not be itself one of the members of a class.” [24, p.198]

Perhaps an example could help clarify the issue of impredicativity. The most
paradigmatic instance of antinomy is Russell’s paradox, which was discovered
by Russell in Frege’s Grundgesetze in 1901. A modern rendering of the paradox
amounts to forming Russell’s set, R = {x | x /∈ x}, by unrestricted comprehen-
sion. One then obtains: R ∈ R if and only if R /∈ R. A circularity arises here
from the fact that R is defined by reference to (i.e. quantification on) the whole
universe of sets, to which R itself would belong. Russell’s vicious circle principle,
then, endeavours to prevent R from selecting a collection. The perceived diffi-
culty arising from this kind of circularity can be elucidated from a number of
perspectives. For example, according to one view, we ought to have access to a
well-determined meaning for the condition appearing in the above instance of
the comprehension principle (i.e. x /∈ x). The difficulty is then realated to the
fact that we seem to be unable to grant this independently of whether or not
there exists a set R as specified above [4].

The analysis of the paradoxes turned out to be extremely fruitful for the
development of mathematical logic3, starting from Russell’s own implementa-
tion of the vicious circle principle through his type theory. In the mature version
2 Another analysis proposed by Poincaré [20] stressed a form of “invariance” as charac-

teristic of predicativity: a predicative set cannot be “disturbed” by the introduction
of new elements, contrary to an impredicative set [3,11].

3 See [3] for a rich discussion of the impact of the paradoxes on mathematical logic.

16 L. Crosilla

of [23] two crucial ideas are interwoven: that of a type restriction and of ramifi-
cation. By combining these two aspects ramified type theory seems to block all
vicious circularity, and thus paradoxes of both set-theoretic and semantic nature.

Russell’s type theory is a first fundamental contribution to the clarification
of the complex question of what is predicativity in precise, logico-mathematical
terms. However, as a way of developing a predicative form of mathematics
Russell’s type theory encountered substantial difficulties; it eventually surren-
dered to the assumption, in Principia Mathematica [29], of the axiom of reducibil-
ity, whose effect (in that context) was to restore full impredicativity. However,
another attempt to develop analysis from a predicative point of view was pro-
posed by Weyl [28], who showed how to carry out (a portion of) analysis on the
basis of the bare assumption of the natural number structure. Weyl’s crucial idea
was to take the natural number structure with mathematical induction as given,
as an ultimate foundation of mathematical thought, which can not be further
reduced. Restrictions motivated by predicativity concerns were then imposed at
the next level of idealization: the continuum. Weyl, in fact, introduced restric-
tions on how we form subsets of the natural numbers; in today’s terminology, he
saw as justified only those subsets of the natural numbers of the form {x : ϕ(x)}
if the formula ϕ is arithmetical, that is, it does not quantify over sets (but may
quantify over natural numbers). The idea was that the natural numbers with full
mathematical induction constitute an intuitively given category of mathemati-
cal objects; we can then use this and some immediately exhibited properties of
and relations between the objects of this category (as obtained by arithmetical
comprehension) to ascend to sets of natural numbers. In this way one also avoids
vicious circularity in defining subsets of the natural numbers, as the restriction
to number quantifiers in the comprehension principle does not allow for the defi-
nition of a new set by quantifying over a totality of sets to which the definiendum
belongs.

I wish to highlight two aspects of Weyl’s contribution. First, his approach
to the question of the limit of predicativity went directly at the core of the
mathematical practice, to show that large parts of 19th century analysis could
be recovered on the basis of this restricted methodology. He thus succeeded in
reducing to predicative methodology a conspicuous segment of mathematics,
including portions which prima facie required impredicativity. Second, Weyl saw
only this part of classical mathematics as fully justified; as he quickly became
aware that not all of classical mathematics could be so recovered, he was ready
to give up the rest, as (so far) not fully justified.

After Poincaré, Russell’s and Weyl’s fundamental contributions, predicativ-
ity lost momentum until the 1950’s, when fresh attempts were made to obtain
a clearer demarcation of the boundary between predicative and impredicative
mathematics. The literature from the period shows the complexity of the task,
but also witnesses the fruitfulness of the mathematical methodology for the phi-
losophy of mathematics. The celebrated upshot of that research is the logical
analysis of predicativity4 by Feferman and Schütte (independently) following

4 According to a notion of predicativity given the natural numbers which is discussed
in the next section.

Error and Predicativity 17

lines indicated by Kreisel [4,10,25,26]. Here Russell’s original idea of ramifica-
tion had a crucial role, as a transfinite progression of systems of ramified second
order arithmetic indexed by ordinals was used to determine a precise limit for
predicativity. This turned out to be expressed in terms of an ordinal, called Γ0,
which was the least non-predicatively provable ordinal. A formal system was
then considered predicatively justifiable if it is proof-theoretically reducible to a
system of ramified second order arithmetic indexed by an ordinal less than Γ0.5

Another crucial contribution to the clarification of the extent of predicativity
was the mathematical analysis of predicativity, aiming at elucidating which parts
of mathematics can be expressed in predicative terms [5,27]. Work by Feferman,
as well as results obtained within Friedman and Simpson’s programme of Reverse
Mathematics have shown that large parts of contemporary mathematics can be
framed within (weak) predicative systems. Ensuing these results, Feferman has
put forth the working hypothesis that all of scientifically applicable analysis can
be developed in the system W of [5], which codifies in mordern terms Weyl’s
system in Das Kontinuum. These recent developments help better understand
the reach of predicative mathematics, and reveal that predicativity goes much
further than previously thought.

3 Plurality of Predicativity

As clarified by Feferman [4,6], the logical analysis of predicativity aimed at deter-
mining the limits of a notion of predicativity given the natural numbers. That is,
one here takes an approach to predicativity similar to Weyl’s, in assuming for
given the structure of the natural numbers with full induction, and then imposing
appropriate predicativity constraints on the formation of subsets of the natural
numbers.6 With Kreisel and Feferman the study of predicativity becomes thus
an attempt to clarify what is implicit in the acceptance of the natural number
structure (with full induction).7

Different incarnations of predicativity have however appeared in the litera-
ture, giving rise to very different forms of mathematics. For example, predicativ-
ity constraints have motivated Nelson’s predicative arithmetic [16] and Parsons’
criticism of the impredicativity of standard explanations of the notion of nat-
ural number [18]. According to Nelson already the whole system of the natural
numbers equipped with full mathematical induction is predicatively problematic
on grounds of circularity [16]: “The induction principle assumes that the nat-
ural number system is given. A number is conceived to be an object satisfying

5 See [6] for an informal account of this notion of predicativity and for further refer-
ences.

6 The resulting notion of predicativity is, in fact, more generous than in Weyl’s original
proposal. The proof theoretic strength of a modern version of Weyl’s system, like,
for example, Feferman’s system W from [5], equates that of Peano Arithmetic, and
thus lays well below Γ0.

7 This line of research has been brought forward with Feferman’s notion of unfolding,
as analysed further by Feferman and Strahm e.g. in [7].

18 L. Crosilla

every inductive formula; for a particular inductive formula, therefore, the bound
variables are conceived to range over objects satisfying every inductive formula,
including the one in question.” [16, p.1] From this point of view, then, already
the theory of Peano Arithmetic, with its unrestricted induction, lies well beyond
predicativity. Therefore Nelson’s rejection of circularity leads him to justify only
systems which are interpretable in a weak fragment of primitive recursive arith-
metic, Robinson’s system Q.8

Themes stemming from the original predicativity debates also play a promi-
nent role within constructive mathematics, for example in the work of Lorenzen
and Myhill [12], and in Martin-Löf type theory [14]. For constructive founda-
tional theories, a more ‘liberal’ approach to predicativity, compared with that
by Kreisel-Feferman-Schütte, has been suggested. Here the driving idea is that
so-called generalised inductive definitions ought to be allowed in the realm of
constructive mathematics. The intuitive justification of inductive definitions is
related to the fact that they can be expressed by means of finite rules, and allow
for a specification of sets which proceeds from the ‘bottom up’. The underlying
idea is to start from a well understood structure, say the natural numbers, and
then use finite rules to extend this, by a process of successive iterations. We thus
build a first subset of the set of natural numbers according to the rule, then use
this to build a new one, and so on. The predicativity of this process is granted
provided that we can ensure that at no stage in the built up of the new set, we
need to presuppose a totality “outside” the set under construction. If this were
the case, then, we would rely exclusively on increasingly more complex frag-
ments of the very set under definition, and no vicious circularity would occur.9

An important point to make is that the proof-theoretic strength of so-called
theories of inductive definitions goes well beyond Feferman and Schütte’s bound
(and thus also very much beyond Peano Arithmetic), as shown in [1]. Follow-
ing this line of reasoning, relatively strong theories are considered predicative
in today’s foundations of constructive mathematics [17,21].

A remarkable fact which emerges starting from the detailed logical analysis
initiated in the 1950’s, is that we now witness a number of different versions
of predicativity, that appear to relate to very different forms of mathematics.
Thus predicativity constraints motivate Nelson’s strictly finitary subsystems of
Peano Arithmetic, but also the much more generous predicativity given the
natural numbers, which, under the analysis by Kreisel, Feferman and Schütte,
extends well beyond Peano Arithmetic. Further up in the proof theoretic scale,
we have constructive predicativity, which (on the basis of intuitionistic logic)
reaches the strength of rather substantial subsystems of second order arithmetic
[21]. In fact, the use of intuitionistic logic and its interaction with predicativity

8 As such, Nelson’s ideas have proved extremely fruitful, as they have paved the way
for substantial contributions to the area of computational complexity [2].

9 Theories of inductive definitions are discussed in [4], where they are considered unac-
ceptable from a predicative point of view on grounds of circularity. See also [18] for
an alternative view which sees inductive definitions as justified from a constructive
perspective.

Error and Predicativity 19

makes it more difficult to assess the relation between this kind of predicativ-
ity and the others. But it would seem that in all cases predicatively motivated
constraints can be “applied” to different initial “bases”, different mathematical
structures which are taken as accepted, or granted. A possible understanding of
predicativity would then see it as a (series of) methodological constraints, often
motivated by the desire to avoid vicious circularity, which can be implemented
on top of a previously given base, considered secure and granted. Predicativ-
ity constraints then impose methodological restrictions on the mathematical
constructions which populate the next higher level of abstraction. For example,
predicativity given the natural numbers takes the natural number structure with
full induction as unquestionable and builds predicatively motivated restrictions
on top of it, thus constraining the notion of arbitrary set.

A very significant aspect which emerges here is the crucial role of the princi-
ple of induction for debates on predicativity. In fixing the conceptual framework
which we take as basis, we have to explicitly clarify how much induction we
are prepared to accept. That is, it would seem that induction (possibly appro-
priately restricted) is a crucial component of the structure one takes as base,
and, as highlighted by Nelson and Parsons, plays a crucial role in discussions
of impredicativity. In less neutral terms, it would seem that when looking at
the conceptual framework of reference, we need to include not only the relevant
objects, for example the natural numbers, but also the way we are to reason
about them. The example of constructive predicativity also seems to support
similar conclusions, suggesting to include even the logic within the base one
takes for granted.

There is here some complex philosophical work which is required to justify
the choice of the privileged base as well as the methodological restrictions to
be put on place. It is not unusual within the literature on predicativity to find
reference to the time-honoured distinction between potential and actual infinity
in mathematics. Often then predicativity constraints are seen as ways of avoid-
ing full commitment to actual infinity; this, in turn, is frequently linked to the
philosophical debate on realism versus anti-realism in mathematics. From a per-
spective of this kind, for example, one might be prompted to accept predicativity
given the natural numbers, from the desire to subscribe to some form of realism
with respect to the natural number structure, while maintaining an anti-realist
(e.g. a definitionist) position on arbitrary sets [6]. Here I would like to suggest
another possible reading of predicativity, which cashes it out in terms of our
understanding of mathematical concepts.10 Predicativity now becomes a crucial
instrument in arguing for differences in levels of understanding, and conceptual
clarity. Predicativity given the natural numbers, for example, would now rep-
resent a way of vindicating a commonly preceived difference in understanding
between the concept of natural number and that of real number or, more gen-
erally, of arbitrary set [6]. That is, one here attempts to capture a distinction
between forms of understanding, rather than ontological status, claiming that
some concepts are more fundamental, or clearer, or more evident than others.

10 A view along similar lines is also hinted at by Feferman in [6].

20 L. Crosilla

Predicativity constraints then could be seen as ways of extending beyond those
more fundamental concepts (the conceptual basis) in ways which are somehow
already implicit in the basis itself, that is, withouth extending the very con-
ceptual apparatus in substantial ways. Here again a difficult philosophical task
lays ahead in attempting to further explicate the distinction between different
forms of understanding, especially in light of the logical analysis briefly dis-
cussed above, which brings to the fore a plurality of versions of predicativity.11

A crucial aspect of this view is that predicativity becomes a tool for clarifying
different forms of mathematics and various ways of understanding, but it does
not entail a claim that only predicative mathematics of some kind is justified. In
fact, predicativity, like other restrictions to standard methodology, in the hands
of the logician become a tool for exploring in precise terms which parts of stan-
dard mathematics are amenable to be reframed in terms of more elementary
assumptions or ways of reasoning.

Predicativity is an essential component of constructive type theory [14,15].
In fact, predicativity made a very dramatic appearance within Martin-Löf type
theory, which bears surprising similarities to how it entered the mathematical
landscape at the beginning of the 20th century. The appeal to an impredicative
type of all types in the first formulation of intuitionistic type theory, in fact, gave
rise to Girard’s paradox [8]. Martin-Löf promptly corrected his type theory by
eliminating the all-encompassing type of all types, and introduced in its place a
hierarchy of type universes, each “reflecting” on previously constructed sets and
universes [14]. Type theoretic universes are indeed at the centre of the generous
notion of predicativity which arises in intuitionistic type theory [21].

Martin-Löf type theory embodies the Curry–Howard isomorphism, and thus
identifies propositions with types (and their proofs with the elements of the
corresponding types). As a consequence, type theory is simultaneously a very
general programming language and a mathematical formalism. Girard’s para-
dox is usually read as implying that in this context impredicativity (in the form
of arbitrary quantification on types) is inconsistent with the Curry–Howard iso-
morphism. In a sense, predicativity signs the limit of the strong identification
of mathematics with programming which is at the heart of constructive type
theory.12

An observation naturally comes to mind: recent years have seen the flourish-
ing of research on formalization of mathematics, with the purpose of verification.
Here a new interplay between computer science and mathematics emerges. For

11 Further challenges are also posed by technical developments in proof theory which
have brought Gerhard Jäger to introduce a notion of metapredicative [9]. A thorough
analysis of predicativity also ought to clarify its relation with metapredicativity.

12 Predicativity is also at the centre of Martin-Löf’s meaning explanations for type
theory, which explain the type theoretic constructions of this theory “from the bot-
tom up”. A key concept here is that of evidence: constructive type theory represents
a form of mathematics which is, according to its proponents, intuitively evident,
amenable to contentual and computational understanding. This contentual under-
standing is then seen as supporting the belief in the consistency of this form of
mathematics [13].

Error and Predicativity 21

example, as observed by Georges Gonthier, one strategy which proved useful
in proof checking is to turn mathematical concepts into data structures or pro-
grams, thus converting proof checking into program verification. Here construc-
tive type theory has played a pivotal role, and inspired the development of other
systems, like the (impredicative) calculus of constructions which underlines the
Coq system.13 One would then be tempted to conclude that ideas which origi-
nated through the fear of foundational errors are now having profound impact
on new ways of addressing the ever pressing issue of local errors.

Acknowledgements. The author would like to thank Andrea Cantini and Robbie
Williams for reading a draft of this article. She also gratefully acknowledges funding
from the School of Philosophy, Religion and History of Science, University of Leeds.

References

1. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions
and Subsystems of Analysis. Springer, Berlin (1981)

2. Buss, S.: Bounded Arithmetic. Studies in Proof Theory Lecture Notes. Bibliopolis,
Naples (1981)

3. Cantini, A.: Paradoxes, self-reference and truth in the 20th century. In: Gabbay,
D. (ed.) The Handbook of the History of Logic, pp. 5–875. Elsevier, UK (2009)

4. Feferman, S.: Systems of predicative analysis. J. Symb. Log. 29, 1–30 (1964)
5. Feferman, S.: Weyl vindicated: Das Kontinuum seventy years later. In: Temi e

prospettive della logica e della scienza contemporanee, pp. 59–93 (1988)
6. Feferman, S.: Predicativity. In: Shapiro, S. (ed.) Handbook of the Philosophy of

Mathematics and Logic. Oxford University Press, Oxford (2005)
7. Feferman, S., Strahm, T.: The unfolding of non-finitist arithmetic. Ann. Pure Appl.

Log. 104(1–3), 75–96 (2000)
8. Girard, J.Y.: Interprétation fonctionnelle et élimination des coupures de

l’arithmetique d’ordre supérieur (1972)
9. Jäger, G.: Metapredicative and explicit mahlo: a proof-theoretic perspective. In:

Cori, R., et al. (eds.) Proceedings of Logic Colloquium ‘00. Association of Symbolic
Logic Lecture Notes in Logic, vol. 19, pp. 272–293. AK Peters, AK Peters (2005)

10. Kreisel, G.: Ordinal logics and the characterization of informal concepts of proof.
In: Proceedings of the International Congress of Mathematicians (August 1958),
pp. 289–299. Gauthier-Villars, Paris (1958)

11. Kreisel, G.: La prédicativité. Bulletin de la Societé Mathématique de France 88,
371–391 (1960)

12. Lorenzen, P., Myhill, J.: Constructive definition of certain analytic sets of numbers.
J. Symb. Log. 24, 37–49 (1959)

13 The calculus of constructions takes an opposite route compared with Martin-Löf
type theory to the impasse given by Girard’s paradox: it relinquishes the Curry–
Howard hisomorphism in favour of impredicative type constructions. Although the
Coq sytem was originally developed on the impredicative calculus of constructions,
recent versions are based on a predicative core, although they also allow for impred-
icative extensions.

22 L. Crosilla

13. Martin-Löf, P.: The Hilbert-Brouwer controversy resolved? In: van Atten, M. (ed.)
One Hundred Years of Intuitionism (1907–2007). Birkhäuser, Basel (2008)

14. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose,
H.E., Shepherdson, J.C. (eds.) Logic Colloquium 1973. North-Holland, Amster-
dam (1975)

15. Martin-Löf, P.: Constructive mathematics and computer programming. In: Choen,
L.J. (ed.) Logic, Methodology, and Philosophy of Science VI. North-Holland, Ams-
terdam (1982)

16. Nelson, E.: Predicative Arithmetic. Princeton University Press, Princeton (1986)
17. Palmgren, E.: On universes in type theory. In: Sambin, G., Smith, J. (eds.) Twenty-

Five Years of Type Theory. Oxford University Press, Oxford (1998)
18. Parsons, C.: The impredicativity of induction. In: Detlefsen, M. (ed.) Proof, Logic,

and Formalization, pp. 139–161. Routledge, London (1992)
19. Poincaré, H.: Les mathématiques et la logique. Revue de métaphysique et de morale

14, 294–317 (1906)
20. Poincaré, H.: La logique de linfini. Revue de Métaphysique et Morale 17, 461–482

(1909)
21. Rathjen, M.: The constructive Hilbert program and the limits of Martin-Löf type

theory. Synthese 147, 81–120 (2005)
22. Russell, B.: Les paradoxes de la logique. Revue de métaphysique et de morale 14,

627–650 (1906)
23. Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30,

222–262 (1908)
24. Russell, B.: Essays in Analysis. George Braziller, New York (1973)
25. Schütte, K.: Eine Grenze für die Beweisbarkeit der Transfiniten Induktion in

der verzweigten Typenlogik. Archiv für mathematische Logik und Grundlagen-
forschung 7, 45–60 (1965)

26. Schütte, K.: Predicative well-orderings. In: Crossley, J., Dummett, M. (eds.) Formal
Systems and Recursive Functions. North-Holland, Amsterdam (1965)

27. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, 2nd
edn. Cambridge University Press, Cambridge (2009)

28. Weyl, H.: Das Kontinuum Kritischen Untersuchungen über die Grundlagen der
Analysis. Veit, Leipzig (1918)

29. Whitehead, A.N., Russell, B.: Principia Mathematica, vol. 1. Cambridge University
Press, Cambridge (1925)

Is Human Mind Fully Algorithmic? Remarks
on Kurt Gödel’s Incompleteness Theorems

Mircea Dumitru(B)

University of Bucharest and Romanian Academy,
Bdul M. Kogalniceanu nr. 36-46, 050107 Bucharest, Romania

mircea.dumitru@unibuc.ro

Abstract. In this paper I shall address an issue in philosophy of mind
related to philosophy of mathematics, or more specifically to the nature of
mathematical knowledge and reasoning. The issue concerns whether the
human mind is fully algorithmic. I shall develop my answer against the
background which is created by Kurt Gödel’s celebrated incompleteness
theorems. In what follows: (i) I shall first sketch the main programs and
responses to the mind-body problem in philosophy of mind; (ii) then,
I shall provide an informal overview of the two Gödelian incomplete-
ness theorems; (iii) finally, I shall present and comment upon some of
the main views advocated by Gödel about minds and machines, mind
and matter, and the contrast between Turing machines and the so-called
Gödel minds. In the process, Gödel’s very unorthodox and unfashionable
views against computabilism, neuralism, physicalism, psychoneural par-
allelism, and even against the underlying philosophical presuppositions
of the Turing machines will emerge. Shocking as they, understandably,
are, as compared to the standard psychological and philosophical ortho-
doxy underlying the received computabilistic views on mind, Gödel’s own
views are worth exploring and they fully deserve our undivided philo-
sophical attention. Gödel is, after all, the founding father and one of the
essential inspiring sources for the whole domain and range of topics that
I address in my paper.

Philosophy of mind is thriving nowadays. The field has been developed exten-
sively and intensively receiving all sorts of input from other connected fields,
notably from computer science and cognitive science. The complexity and vital-
ity of the domain is reflected by the vast literature which ramifies in various
sub-fields and directions of research in which one tackles a batch of interrelated
topics: the ontological problem (the so-called mind-body problem), the seman-
tic problem, the epistemological problem, the methodological problem, artificial
intelligence, and problems of neuroscience.

In my paper I shall deal with an issue in philosophy of mind related to
philosophy of mathematics, or more specifically to the nature of mathematical
knowledge and reasoning. The issue is whether or not human mind and intel-
ligent consciousness is fully algorithmic. I shall develop my answer against the
background which is created by Kurt Gödel’s celebrated incompleteness theo-
rems. In what follows: (i) I shall first sketch the main programs and responses
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 23–33, 2015.
DOI: 10.1007/978-3-319-20028-6 3

24 M. Dumitru

to the mind-body problem in philosophy of mind; (ii) then, I shall provide an
informal overview of the two Gödelian incompleteness theorems; (iii) finally, I
shall present and comment upon some of the main views advocated by Gödel
about minds and machines, mind and matter, and the contrast between Turing
machines and the so-called Gödel minds. In the process, Gödel’s very unorthodox
and unfashionable views against computabilism, neuralism, physicalism, psy-
choneural parallelism, and even against the underlying philosophical presuppo-
sitions of the Turing machines will emerge. Shocking as they, understandably, are
as compared to the standard psychological and philosophical orthodoxy under-
lying the received computabilistic views on mind, Gödel’s own views are worth
exploring and they fully deserve our undivided philosophical attention. Gödel is,
after all, the founding father and one of the essential inspiring sources for the
whole domain and range of topics that I address in my paper. And even if we
do not, and perhaps cannot, take everything that he thought on those issues on
board, one can still have a lot to learn from how he framed the questions and
what he had to say about those fascinating issues concerning the nature and the
functioning of our (mathematical) mind.

1 Sketch of the Main Programs and Responses
to the Mind-Body Problem in Philosophy of Mind

So, let us first canvass the metaphysics of mind. A very useful resource for
this topic is [1], whom I basically follow for the systematization of the main
philosophical responses to the mind-body problem What we aim at clarifying
here is the problem of the nature of the mind’s states and processes. More
specifically, the questions that we raise are: where do mental states and processes
occur, and how are they correlated to the physical world? Is my consciousness
going to survive my physical decay after I am dead? Is it possible that a purely
physical system (a computer) be built in such a way that it can have conscious
experience with qualia? Where do minds come from? What are they?

The reasoned answers to those difficult issues are theory and methodological
driven. They are dependent upon the particular theory of mind that we may
favor, which is based on its explicative and predictive power, and also on its
coherence and simplicity. The main theories that have been advocated in the
philosophy of mind are:

Dualism. The essence of all forms of dualism, such as substance dualism and
property dualism, is that the nature of the mental resides in a nonphysical entity,
which escapes the domain of physics, neurophysiology and computer science.
Dualism, nowadays, undergoes a sort of paradoxical fate. By far the most popular
and traditional philosophical perspective on mind, akin to the position advocated
by various major religions on the relation between mind, soul, and body, dualism
is almost completely rejected by professional philosophers today.

Philosophical behaviorism. This has been a tremendously influential con-
ception in the metaphysics of mind for several decades in the XX-th century.

Remarks on Kurt Gödel’s Incompleteness Theorems 25

The rise of cognitivism in linguistics and psychology led to the demise of this
once powerful position and critical tool against traditional speculative meta-
physics. As such, philosophical behaviorism is not a theory about the essence of
mental states per se; it is, rather, a kind of analysis of the language in which
we talk about our mental states. Thus, sentences about various mental episodes,
such as emotions, sensations, beliefs, desires, wants, etc. are not about would-be
inner occurrences of mental events, but instead, they are abbreviated ways of
speaking about actual and possible behavior. Therefore, any sentence about a
mental state or process can be rephrased in a longer sentence about behavior.

Reductive materialism (Identity theory). The main claim of this form of
materialist theory is that mental states are (identical with) physical states of the
brain. More specifically, each type (or token, in weaker versions of this theory)
of mental states or processes is numerically identical to some type (token) of
physical state or process which takes place in the brain or in the central nervous
system.

Functionalism. This doctrine, which is the prevalent view on mind today, says
that the characteristic feature of any type of mental state is the set of causal rela-
tions it bears to the input coming from the environment, to other types of mental
states, and to the output of our behavior. A mental state plays a causal role,
and that mental state is defined through its network of causal roles. According
to functionalism, as opposed to philosophical behaviorism, reference to men-
tal states cannot be eliminated; and in order to define such a type of mental
state, one has to refer to a number of other mental states with which that state
is causally connected. Functionalism acknowledges the reality of mental states
which should be studied systematically. It follows that psychology should be an
autonomous science from, and not reducible to, the physical sciences (physics,
biology, neurophysiology). Psychology is a science in its own right with its own
irreducible laws, and its own domain.

Eliminative materialism. This is a profoundly skeptical view on the mind.
It casts doubts upon the concepts and explanations of folk psychology (which
explains the intelligent actions of human beings in terms of the causal powers of
propositional attitude ascriptions, such as belief, desire, hope, etc.). Eliminative
materialism also goes against reductive materialism, since part of that reduction
program is to achieve a one-to-one correspondence between the mental states
and processes acknowledged by folk psychology and some neuro-physiological
processes that occur in the brain. This intended reduction cannot be done. And
the reason is not lack of ingenuity from the part of the theorists. The reason is
the non-existence of such things as mental states, processes or attitudes which
are posited by this common-sense psychological framework which, in its turn, is
hypothesized by folk psychology through an inference to the best explanation.
Therefore, one key reason for this reduction being impossible resides in the fact
that the common-sense psychological framework is fraught with some fatal prob-
lems: it is literally false, and consequently, it is also a misleading conception of
what determines causally our behavior and mental activity. Through scientific

26 M. Dumitru

education, it is expected that, and it is hoped that, gradually one can get rid
of this false representation about our own psychology, based on propositional
attitude ascriptions. This framework will be eliminated by future neuroscientific
discovery. This is the motivation for the name of the conception, viz. “eliminative
materialism”.

A general idea that emerges from the various responses to the mind-body
problem, which is essentially a leit-motif of the ongoing dialectics running
through those questions and answers, is that what best explains mental states
and processes is a computational paradigm of the mind. Most theorists argue
that the mind is a sort of computation on symbols and representational men-
tal contents. This computational paradigm will offer a coherent answer to the
hard problem of integrating two distinct views on human beings: the causal
view, which underlies the explanation of the bio-chemical complex structures in
which human beings qua biological entities consist, with the intentionality of
the mental representation view of human beings qua rational and socio-cultural
decision-making agents. The hope is that functionalism will solve this integration
problem. The most influential version of current functionalism considers a com-
putational theory of mind to be the best available explanation of human behavior
via the causal role of mental states to mediate, explicitly in computational terms,
between the environmental input and the behavioral output. We shall see in a
moment that Gödel rejects both this view on mind and its presuppositions.

2 A Short Informal Overview of the Two Gödelian
Incompleteness Theorems

What Gödel’s First Incompleteness Theorem shows is that any consistent formal
axiom system or deductive system T , which is sound (i.e. proves only true sen-
tences) and powerful enough to express elementary arithmetic, is bound to be
incomplete because a sentence, that we shall call GT , can be true according to
the interpretation of that formal system T , but cannot be derived as a theorem
in that system.

Thus, Gödel shows that the common idea, according to which arithmeti-
cal truth equals proof within a formal deductive system, is wrong. Gödel was
able to prove this following a series of ingenious steps of ([4], p. 1–7). First,
he constructed a sentence GT , in the language of arithmetic (via the technique
of Gödel-numbering), which represents the meta-mathematical sentence: “The
sentence GT is not provable in the system T”. That is, GT says of itself that it
is unprovable in T . It follows that GT is true if and only if (iff) GT cannot be
proved in T . Let’s suppose further that T is sound. If GT were provable in T
then GT would be false, and hence unprovable in T , since T is sound and it can
only prove true sentences. So, up to this point, if GT were provable, then it could
not be proven. Therefore GT is not provable after all in T meaning that GT is
true. Suppose now that GT were not provable. Then GT is true and, of course,
its negation, ∼ GT , is false. But T is sound and it proves only true sentences.
Thus, T cannot prove ∼ GT either. So, there is a true sentence, GT , which says

Remarks on Kurt Gödel’s Incompleteness Theorems 27

of itself that it is not provable in a system T , and neither that sentence GT , nor
its negation ∼ GT is provable in T . Hence the sentence GT is undecidable by the
means of the system T and, assuming that T is sound, the system T is incom-
plete. Adding GT to the system T does not solve the issue because, according
to the same method, a new sentence G′

T can be constructed in such a way as to
be able to say of itself that it is not provable in T + GT , while being true, and
while neither G′

T nor its negation ∼ G′
T being provable in T + GT .

Thus far Gödel has shown that, since GT is true and unprovable in T , the
axioms of the system T are incomplete. Summing up this part of the proof,
that culminates in Gödel’s First Incompleteness Theorem, Nagel & Newman in
([3], p. 67) cogently argue that “we cannot deduce all arithmetical truths from
the axioms. Moreover, Gödel established that arithmetic is essentially incom-
plete: even if additional axioms were assumed so that the true formula GT could
be formally derived from the augmented set, another true but formally undecid-
able formula could be constructed.”

In the Second Incompleteness Theorem, Gödel shows how to construct an
arithmetical statement A that has the meta-mathematical content: “Arithmetic
is consistent”. He goes one to prove that the sentence “A −→ GT ” is formally
provable; however, since GT itself is not provable, Gödel shows that A is not
provable either. What follows from this is the Second Incompleteness Theo-
rem which establishes the fact “that the consistency of arithmetic cannot be
established by an argument that can be represented in the [very same] formal
arithmetical calculus” ([3], p. 67).

Do all these Gödelian ground-braking meta-mathematical results have any
philosophical significance? And if so, what would that significance be? From
among many reactions and comments that Gödel’s Incompleteness Theorems
have prompted1, I shall take a look at Gödel’s own philosophical views corre-
lated with his own results, and make some comments on three issues, concerning
(a) Gödel’s view on minds, machines and computabilism, (b) Gödel’s view on
mind, matter, physicalism, and psycho-physical parallelism, and (c) Gödel vs.
Turing, i.e. Gödel’s view on Turing Machines and on Gödel Minds.

3 Comments upon Some of the Main Views Advocated
by Gödel

This section of the paper is based on [6], which is an extremely reach source for
Gödel’s philosophical views.

3.1 Gödel About Minds and Machines

Gödel had a strong conviction that neither computabilism, i.e. the view that
the brain and the mind work essentially like a computer, nor neuralism, i.e. the
view that the brain is a sufficient explanans for mental phenomena is right, and

1 For some of the reactions see [2,5,6].

28 M. Dumitru

consequently he argued vigorously against and rejected both views. Hao Wang [6]
tells us that Gödel was preoccupied with the problem of whether computabilism
was a complete explanation of mental processes, “that is, the issue of whether
all thinking is computational - with special emphasis on mathematical thinking.
Gödel’s main concern was to demonstrate that not all mathematical thinking is
computational” ([6], p. 183).

In one if its several formulations, Gödel’s Second Incompleteness Theorem
states something that is relevant to the mathematical capacity of the human
mind, namely that if a reasonably strong theorem-proving computer or program
is sound and consistent, then it cannot prove the truth that expresses its own
consistency. According to [6], Gödel drew a relevant conclusion from this con-
cerning the human mind: “6.1.1 The human mind is incapable of formulating
(or mechanizing) all its mathematical intuitions. That is, if it has succeeded
in formulating some of them, this very fact yields new intuitive knowledge, for
example the consistency of this formalism. This fact may be called the “incom-
pletability” of mathematics. On the other hand, on the basis of what has been
proved so far, it remains possible that there may exist (and even be empirically
discoverable) a theorem-proving machine which in fact is equivalent to mathe-
matical intuition, but cannot be proved to be so, nor even be proved to yield
only correct theorems of finitary number theory” ([6], p. 184–185).

Hao Wang, again, tells us that Gödel was very attached to some ideas about
creation in mathematics and the algorithmic nature of human mind and math-
ematical thought ([6], p. 186). Those ideas are relevant for the implications of
his theorem, as one can see from the following remark made by Gödel: “6.1.8
My incompleteness theorem makes it likely that mind is not mechanical, or else
mind cannot understand its own mechanism. If my result is taken together with
the rationalistic attitude which Hilbert had and which was not refuted by my
results, then [we can infer] the sharp result that mind is not mechanical. This is
so, because, if the mind were a machine, there would, contrary to this rationalis-
tic attitude, exist number-theoretic questions undecidable for the human mind”
([6], p. 186–187).

The upshot of all those remarks is Gödel’s strong conviction that human
mind, through its intuitive powers and creativity, is superior over computers,
and that the partaking of individual minds to the collective experience of the
human species gives a whole new range of possibilities, which allows the human
mind and spirit to surpass the power of computing machines. Here are some of
Gödel’s thoughts in this regard:

“6.1.19 The brain is a computing machine connected with a spirit.”
“6.1.21 Consciousness is connected with one unity. A machine is composed of
parts.”
“6.1.23 By mind I mean an individual mind of unlimited life span2. This is
still different from the collective mind of the species. Imagine a person engaged
in solving a whole set of problems: this is close to reality; people constantly
introduce new axioms.” ([6], p. 189).
2 Gödel believed the human soul is immortal, that science will prove that fact one day.

His philosophical hero was Leibniz.

Remarks on Kurt Gödel’s Incompleteness Theorems 29

This fragment tellingly shows Gödel’s trust that eventually we can prove
mind’s superiority over computers, because of its creativity and power to give
new forceful ideas and insights:
“6.1.24 It would be a result of great interest to prove that the shortest decision
procedure requires a long time to decide comparatively short propositions. More
specifically, it may be possible to prove: For every decidable system and every
decision procedure for it, there exists some proposition of length less than 200
whose shortest proof is longer that 1020. Such a result would actually mean that
computers cannot replace the human mind, which can give short proofs by giving
a new idea.” ([6], p. 189).

3.2 Gödel About Mind and Matter

The making of the distinction between mind and matter imposes upon us the
metaphysical idea that they are distinct from each other, a doctrine which com-
mits us to some form of dualism (see above). The difficulty to tie the two together
(causally or otherwise), once we separated them essentially, has been notorious
since Descartes’ work. Gödel has his own way of framing this celebrated meta-
physical issue, namely by asking whether “the brain suffices for the explanation
of all mental phenomena”. Gödel rephrases the question in a more precise, quan-
titative fashion, raising the issue of whether there are enough brain operations
that represent the mental operations in such a manner that the correspondence
between physical brain and mental operations is one-to-one or even many-to-one.

Scientific and philosophical orthodoxy argues that such a correlation exists,
a view which is known as psychoneural parallelism. If, further on, one makes the
physicalist assumption, which is quite common today, that all neural operations
are physical operations of a special kind, the view turns into psychophisical
parallelism.

Gödel’s own argument is that there is mind which is separate from brain
(matter). Gödel, contrary to the whole scientific establishment and current ortho-
doxy, refutes both psychoneural and psychophysical parallelism. His remarks
with regard to this topic are very daring, and surely shocking for many of us.
Thus, says Gödel: “6.2.1 Parallelism is a prejudice of our time. 6.2.2 Parallelism
will be disproved scientifically (perhaps by the fact that there aren’t enough
nerve cells to perform the observable operations of the mind)” ([6], p. 190).

Gödel is quick to recognize that not all prejudices are necessarily false. A prej-
udice is a widely shared belief whose strength is not backed by solid pieces of
evidence. Why do we hold so strongly to the parallelism prejudice? We do it,
because we are impressed by the power of science and technology, often leading
us to uncritically accepting scientism. Gödel makes the further extraordinary
remark that the philosophical point of the parallelism in the aforementioned
6.2.2 is not only a philosophical prejudice, but also a scientific and empirical
stance that will be disproved. Gödel emphasizes this idea whenever he feels
that it is important to make more room for it in conceptual space. He refers to
this notion in the following passages: “6.2.3 It is a logical possibility that the

30 M. Dumitru

existence of mind [separated from matter] is an empirically decidable question.
This possibility is not a conjecture. [...] there is an empirical question behind
it. 6.2.4 Logic deals with more general concepts; monadology, which contains
general laws of biology, is more specific. The limits of science: Is it possible that
all mind activities [...] are brain activities? There can be a factual answer to
this question. Saying no to thinking as a property of a specific nature calls for
saying no also to elementary particles. Matter and mind are two different things.
6.2.5 The mere possibility that there may not be enough nerve cells to perform
the function of the mind introduces an empirical component into the problem of
mind and matter” ([6], p. 191).

Gödel puts a lot of emphasis on the important and difficult metaphysical issue
of the relation between mind and matter, considering it central to philosophical
inquiry and critical to understanding philosophy’s importance to science. Thus,
one can read the following remark made by Gödel in conversation with Hao
Wang: “6.2.6 Many so-called philosophical problems are scientific problems, only
not yet treated by scientists. One example is whether mind is separate from
matter. Such problems should be discussed by philosophers before scientists are
ready to discuss them, so that philosophy has as one of its functions to guide
scientific research. Another function of philosophy is to study what the meaning
of the world is” ([6], p. 191).

Gödel is very interested in clarifying the issue of the parallelism between mind
and matter, clearly stating his stance: “6.2.9 Mind is separate from matter: it is a
separate object ...” Moreover, he boldly conjectures, completely going against the
grain of the scientific establishment, that science itself will eventually refute this
prejudice of the psychoneural parallelism: “6.2.11 [...] I believe that mechanism
in biology3 is a prejudice of our time which will be disproved. In this case, one
disproof, in my opinion, will consist in a mathematical theorem to the effect that
the formation within geological times of a human body by the laws of physics
(or any other laws of a similar nature), starting from a random distribution of
the elementary particles and the field, is as unlikely as the separation by chance
of the atmosphere into its components” ([6], p. 192).

And a last remark in this regard. The remark shows Gödel’s conviction that:
(a) the brain is a physical object, (b) the mind (or the spirit) is a separate entity
from the brain, and (c) the brain, as a normal physical object, functions the way
it does just because it is connected to a mind: “6.2.14 Even if the finite brain
cannot store an infinite amount of information, the spirit may be able to. The
brain is a computing machine connected with a spirit. If the brain is taken to be

3 By ‘mechanism in biology’ Hao Wang says that Gödel meant Darwinism, “which he
apparently sees as a set of algorithmic laws (of evolution). Even though he seems
to believe that the brain - and presumably also the human body - functions like a
computer [...], he appears to be saying here that the human body is so complex that
the laws of physics and evolution are insufficient to account for its formation within
the commonly estimated period of time” ([6], p. 192).

Remarks on Kurt Gödel’s Incompleteness Theorems 31

physical and as [to be] a digital computer, from quantum mechanics [it follows
that] there are then only a finite number of states. Only by connecting it [the
brain] to a spirit might it work in some other way” ([6], p. 193).

3.3 Turing Machines vs. the So-Called Gödel Minds

Gödel thought profoundly of the nature of algorithms, and of the formalization
of logical systems. Consequently, he was very interested in the ground-braking
work of Alan Turing, holding Turing’s work in very high esteem. Gödel came to
believe that his own incompleteness theorems hit upon an important aspect of
the limits of formalization only after Turing developed his analysis, which Gödel
fully endorsed, of the concept of mechanical (or computational) procedures, the
so-called Turing machine. Moreover, Gödel was satisfied with the fact that Tur-
ing machines provide evidence for the thesis that sharp concepts really exist,
and that human minds can perceive them clearly. Nevertheless, Gödel spotted
a problem in Turing’s argument of the adequacy of his analysis of algorithms,
namely a fallacious proof of the conclusion that minds and machines are equiv-
alent ([6], p. 194).

Gödel’s position is made clear through the following remark: “6.3.5 Attem-
pted proofs for the equivalence of minds and machines are fallacious. One
example is Turing’s alleged proof that every mental procedure for producing an
infinite series of integers is equivalent to a mechanical procedure” ([6], p. 197).
Gödel explains why he considers the proof attempted by Turing to be fallacious:
“6.3.6 Turing gives an argument which is supposed to show that mental proce-
dures cannot carry farther than mechanical procedures. However, this argument
is inconclusive, because it depends on the supposition that a finite mind is capable
of only a finite number of distinguishable states” ([6], p. 197).

Gödel rejects the supposition that mind (spirit) is matter; he says: “6.3.7
It is a prejudice of our time that (1) there is no mind separate from matter;
indeed, (1) will be disproved scientifically” ([6], p. 198). He, then, continues to
interpret and reconstruct Turing’s argument, and finds it valid, only after certain
presuppositions are guaranteed and accepted: “6.3.8 It is very likely that (2) the
brain functions basically like a digital computer. 6.3.9 It is practically certain
that (2’) the physical laws, in their observable consequences, have a finite limit of
precision. 6.3.10 If we accept (1), together with either (2) or (2’), then Turing’s
argument becomes valid” ([6], p. 198).

It is hard for us today not to accept all these presuppositions just because we
are accustomed, or indeed perhaps prejudiced, to thinking of the brain and the
mind as being two aspects of the same thing. However, Gödel did not consider
the matter to be so: “6.3.11 If (i) a finite mind is capable only of a finite number
of distinguishable states, then (ii) mental procedures cannot carry any farther
than mechanical procedures. 6.3.12 Turing’s argument (iii) for the condition (i) is
his idea which centers on the following sentence: We will also suppose that the
number of states of mind which need be taken into account is finite. The reasons
for this are of the same character as those which restricted the number of symbols.

32 M. Dumitru

If we admit an infinity of states of mind, some of them will be ‘arbitrarily close’
and will be confused.” ([6], p. 198).

Gödel is happy with the inference from (i) to (ii). He believes, though, that
(i) can be inferred from (iii) only if some additional assumptions are forthcoming.
And since Gödel does not accept that brain is equivalent to mind, he goes on to
reject both (i) and (ii).

At the end of the day, Gödel’s refutation of mental computerism, his deeply
held conviction that mind can carry farther than machines, is based on the idea
that “6.3.13 Mind, in its use, is not static, but constantly developing.” When
we focus, introspectively, on the stream of our consciousness, we are struck by
the fact that the mental states and their succession do not enjoy the sharp-
ness and clarity of the states of Turing machines. Wang comments the following
concerning Gödel’s idea: “... we develop over time, both individually and collec-
tively; and so, for instance, what appeared to be complex becomes simple, and
we understand things we did not understand before. Here again, we feel that
the process of development is somewhat indefinite and not mechanical” ([6],
p. 200).

Do we have a proof that minds can carry farther than computers, and that
they are not fully mechanical? We do not. However, Gödel promotes a dynamic
and developing kind of vision of mind that is both telling and credible: “6.3.14
Although at each stage of the mind’s development the number of its possible
states is finite, there is no reason why this number should not converge to infinity
in the course of its development” ([6], p. 200).

A mechanical brain connected to a creative, ever-evolving, developing, and
non-mechanical mind (spirit) is a set-up that goes beyond the individualism of
the atomic, and isolated minds. Thus, brains and minds can create thoughts in a
manner which reflects that minds can carry farther than brains and computers,
eventually indicating mind’s superiority over computers.

Acknowledgements. I want to thank Dr. Victor Mitrana, University of Bucharest,
for commenting upon an earlier version of the paper which contributed to the improve-
ment of the arguments, and for introducing the text in LaTeX. I am grateful to
Dr. Daniela Dumitru, Bucharest University of Economic Studies, for stimulating dis-
cussions about cognitivism and computerism. I also want to thank Miss Ioana Andrada
Dumitru, PhD student at Johns Hopkins University, for making comments and styl-
istic suggestions which I happily accepted and which improved the clarity and the
readability of the paper.

References

1. Churchland, P.M.: Matter and Consciousness. The MIT Press, Cambridge (1992)
2. Hintikka, J.: On Gödel. Wadsworth, Belmont (2000)
3. Nagel, E., Newman, J.R.: Gödel’s Proof. Routledge, London (1958)

Remarks on Kurt Gödel’s Incompleteness Theorems 33

4. Smith, P.: An Introduction to Gödel’s Theorems, 2nd edn. Cambridge, New York
(2013)

5. Tieszen, R.: After Gödel. Platonism and Rationalism in Mathematics and Logic.
Oxford, UK (2011)

6. Wang, H.: A Logical Journey. From Gödel to Philosophy. The MIT Press, Cambridge
(1996)

A New Approach to the Paperfolding Sequences

Daniel Goč1,2, Hamoon Mousavi1,3, Luke Schaeffer1,4, and Jeffrey Shallit1(B)

1 School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

{dgoc,hamoon.mousavihaji,l3schaeffer,shallit}@cs.uwaterloo.ca
2 Queen’s University, Kingston, Ontario
3 McAfee Software, Waterloo, Ontario

4 MIT, Cambridge, MA

Abstract. In this paper we show how to re-derive known results about
the paperfolding sequences, and obtain new ones, using a new approach
using a decision method and some machine computation. We also obtain
exact expressions for the recurrence and appearance function of the
paperfolding sequences, and solve an open problem of Rampersad about
factors shared in common between two different paperfolding sequences.

1 Introduction

To simplify notation, we often write −1 as 1 in this paper. The (regular) paper-
folding sequence R = (Rn)n≥1 = 11 1 1 1 1 1 · · · is defined as the limit, as
n → ∞, of the following sequence of finite words over the alphabet {1, 1 }:

F0 = 1 Fn+1 = Fn 1 (−FR
n) (n ≥ 0).

Here by wR we mean the reversal of the word w, by −x we mean the negation of
each symbol in x, and juxtaposition means concatenation. The sequence arises
from the following process, which explains the name: take a piece of paper, fold it
lengthwise over and over n times, then unfold it so all the angles are right angles.
Read left to right, the sequence of “hills” (right turns) (+1) and “valleys” (left
turns) (−1) so obtained is a prefix of length 2n − 1 of R. The sequence R is
2-automatic in the sense of Cobham [6], and has been extensively studied.

Davis and Knuth [7] generalized the regular paperfolding sequence by allow-
ing the folds to be right-hand over left, or vice-versa. During unfolding, we can
read off the sequence of fold choices that we made, and encode it by letting 1
denote a hill and 1 a valley. For every infinite sequence of folds f = (fn)n≥0 we
get a corresponding infinite paperfolding sequence Pf = p1p2p3 · · · , given as the
limit of the following finite words:

F0 = f0 Fn+1 = Fn fn+1 (−FR
n) (n ≥ 0).

For example, if we choose the sequence of unfolding instructions 1 1 1 1 · · · , then
the resulting sequence is 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · · . This gives uncountably
many distinct paperfolding sequences.
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 34–43, 2015.
DOI: 10.1007/978-3-319-20028-6 4

A New Approach to the Paperfolding Sequences 35

Dekking, Mendès France and van der Poorten [8] observed that we can easily
determine the paperfolding sequence (pn)n≥1 from the sequence of unfolding
instructions (fi)i≥0, as follows: write n = 2s · r, where r is odd. Then

pn =

{
fs, if r ≡ 1 (mod 4);

−fs, if r ≡ 3 (mod 4).
(1)

One of the earliest themes in the study of the paperfolding sequences is the
properties of their finite factors. By a finite factor of an infinite sequence (ai)i≥0

we mean a word of the form aiai+1 · · · aj for 0 ≤ i ≤ j + 1. For example,
Prodinger and Urbanek [11] showed that the regular paperfolding sequence con-
tains no square factors xx with |x| > 5. Allouche [1] proved that the subword
complexity (aka “factor complexity” or just “complexity” — the number of dis-
tinct factors of length n) of every paperfolding sequence is 4n for n ≥ 7. Allouche
and Bousquet-Mélou [2] gave an upper bound of 44n on the recurrence function
of every paperfolding sequence. In another paper, Allouche and Bousquet-Mélou
[3] showed that there are no 3+ powers in any paperfolding sequence, and that
the only cubes are 111 or 1 1 1 . They also studied the “almost-squares” in the
paperfolding sequences; these are words of the form wcw, where w is a nonempty
word and c is a single-letter. They claimed that any such almost-square satisfies
|w| ∈ {1, 2, 3, 4, 7}, but this is not quite correct. The correct statement, as proved
in [10, Proposition. 3], is that either |w| ∈ {2, 4} or |w| = 2k − 1 for some k ≥ 1.
Furthermore, there are almost-squares corresponding to all these orders. In this
paper we reconfirm the corrected version of their results.

All the proofs of the results above are essentially based on case analysis,
some of it rather intricate. It is natural to wonder if there is some more general
approach to obtaining these results, and perhaps more. In this paper, we give
such a general approach. We provide a technique whereby, most of these results
can be proved purely mechanically, using a decision procedure and a machine
computation — at least in principle. (In some cases the decision procedure may
result in extremely long running times or extremely large space requirements.)
We also obtain some new results.

Parts of this paper have already appeared in the master’s thesis of the third
author [12].

2 The Main Idea

The main idea is to observe that Eq. (1) implies that the n’th term of a paper-
folding sequence specified by unfolding instructions f0, f1, . . . , ft−1 can be com-
puted by the 5-state deterministic finite automaton that takes, as input, the
base-2 expansion of n in parallel with the unfolding instructions, provided that
1 ≤ n < 2t — in other words, provided enough unfolding instructions have
been furnished. The first components of the inputs are the unfolding instruc-
tions, starting with f0, and the second components form the base-2 expansion
of n, starting with the least-significant digit (lsd) first, and padded with 0’s on

36 D. Goč et al.

the right, if necessary. The symbol “∗” is a wildcard and matches anything in
the input. The output associated with the input is contained in the last state
reached. The automaton is depicted below in Fig. 1.

[∗, 0]
[1, 1]

[−1, 1]

[∗, 0]

[∗, 1]

[∗, 0]

[∗, ∗]

[∗, ∗]

[∗, 1]

−1

+1 +1

−1

Fig. 1. The paperfolding automaton for arbitrary unfolding instructions, lsd first

Alternatively we could feed in n with the most significant digit first. This
requires reversing the order of the paperfolding instructions, so that ft−1 is fed
in first and f0 last. The resulting automaton has 7 states and is omitted from
this version. Thus, although there are uncountably many distinct paperfolding
sequences, they can all be encoded by a single finite automaton.

Now we adapt the technique discussed previously in [4,5,9] to the paperfolding
sequences. Briefly, this technique allows us to translate certain predicates P (n)
concerning the factors of a k-automatic sequence into an automaton M accepting
the base-k representations of those n for which P (n) holds. Given M we can easily
determine if there exists such an n, or if there exist infinitely many n.

Since the sequence of unfolding instructions is infinite, an appropriate deci-
sion procedure can be based on the theory of ω-words (i.e., infinite words) [12].
However, for our purposes, it is simpler to implement a version where we only
consider finite lists of unfolding instructions. Thus, we need to rephrase assertions
about infinite paperfolding sequences in terms of finite prefixes of paperfolding
sequences. This adds a bit of complication: when we evaluate a predicate involv-
ing terms of the paperfolding sequence, the result makes sense only if we have
been provided sufficiently many terms of the unfolding instructions.

During the course of our computation, we will have to query the automaton
in Fig. 1 on various inputs consisting of a finite list of unfolding instructions
f and an index n into the paperfolding sequence whose unfolding instructions
begin with f . We can only guarantee the correctness of the computation if 1 ≤
n ≤ 2|f | − 1.

All computations reported here were performed on a Macintosh 2.6 GHz Intel
Core i5 machine.

3 Our Results

In what follows, the unfolding instructions are over {1, 1 } and by convention
are indexed, starting at 0, as follows: f = f0, f1, The resulting paperfolding
sequence Pf is, by convention, indexed starting at 1 and is given by Pf [1]Pf [2] · · · .

A New Approach to the Paperfolding Sequences 37

We start by recovering a known result about the orders of squares occurring
in paperfolding sequences. By the order of a square xx we mean |x|.

3.1 Orders of Squares

Theorem 1. If xx is a nonempty factor of any paperfolding sequence, then |x| ∈
{1, 3, 5}. Furthermore, every paperfolding sequence contains squares of orders
1, 3, and 5.

Proof. We want to determine those positive integers n such that there exists a
sequence of unfolding instructions f and an integer i ≥ 1 such that

Pf [i..i + n − 1] = Pf [i + n..i + 2n − 1].

However, since the number of unfolding sequences is uncountably infinite, we
cannot check this as stated. Instead, we reason as follows: if there is some paper-
folding sequence Pf satisfying Pf [i..i+n−1] = Pf [i+n..i+2n−1], this equality
will also hold for the finite prefix of Pf of length 2t − 1 specified by the prefix
of f of length t, provided 2t − 1 ≥ i + 2n − 1. So we create an automaton M
accepting all those words w over {1, 1 } × Σ2 × Σ2 where the projection π1(w)
onto the first coordinate specifies the unfolding instructions, and the projections
π2(w) (resp., π3(w)) onto the second (resp., third coordinates) gives the base-2
representation of i (resp., n) (starting with the least significant digit), such that
i+2n− 1 ≤ 2|w| − 1, and Pf [i..i+n− 1] = Pf [i+n..i+2n− 1]. (This last condi-
tion is checked by nondeterministically guessing an index where it fails, creating
the appropriate NFA, determinizing it, and then interchanging the role of final
and nonfinal states.) Once we have M , we project onto the third coordinate to
obtain an automaton accepting all n corresponding to orders of squares in all
paperfolding sequences.

We implemented this idea using two independent programs, created by the
first and second authors, respectively. Hamoon Mousavi’s Java program, called
Walnut, uses the following command:
eval paperfolding_square_orders

"?lsd_2 (n > 0) & (Ef Ei (i >= 1) & (Ak k < n => PF[f][i+k] = PF[f][i+k+n]))":

Here the “E” is an abbreviation for “there exists” (often written ∃) and the “A”
is an abbreviation for “for all” (often written ∀).

When we run this, the result is given by the automaton depicted below in Fig. 2.

By inspection of Fig. 2, we can see that the only orders of squares that can
possibly occur in paperfolding sequences are 1, 3, and 5. This completes the
proof. The total computation time was 109 ms.

Next, we demonstrate that every infinite paperfolding sequence contains
squares of orders 1, 3, and 5. We use the following command in Mousavi’s Walnut
prover:

eval paper1
"?lsd_2 An ((n=1) | (n=3) | (n=5)) =>
(Ei (i > 0) & (Ak k < n => PF[f][i+k] = PF[f][i+k+n]))":

38 D. Goč et al.

0 1
(1)

2
(0)

3
(1)

(0)

(1)

(0)

Fig. 2. Possible orders of squares in paperfolding sequences, lsd first

In other words, we are asking for those finite sequences of unfolding instructions
having squares of order 1, 3, and 5. These are given below in Fig. 3. By inspec-
tion of Fig. 3, we easily see that every sufficiently long sequence of unfolding
instructions is accepted. The total computation time was 129 ms.

0

1(-1)

2

(1)

3
(-1)

4
(1)

5
(-1)

6

(1)

7

(-1)

8

(1)

(1)

(-1)

(-1)

(1)
(1)

(-1)
9

(-1)
(1)

(-1)
(1)

(-1)
(1)

Fig. 3. Finite unfolding sequences having squares of length 1, 3, and 5

3.2 Cubes

Theorem 2. The only cubes contained in any paperfolding sequence are 111 and
1 1 1 . Furthermore, every infinite paperfolding sequence contains these cubes.

Proof. For the first part, it suffices to determine the lengths of cubes xxx that
can appear in any paperfolding sequence. We use the technique described in the
preceding section, modulo the change of the condition:

Pf [i..i + 2n − 1] = Pf [i + n..i + 3n − 1].

We implemented this using
eval paperfolding_cube_orders

"?lsd_2 (n > 0) & (Ef Ei (i >= 1) & (Ak k < 2*n => PF[f][i+k] = PF[f][i+k+n]))":

The output is an automaton of two states accepting only the order 1. The com-
putation took 400 ms. The second part is proved as in the case of squares.

3.3 Higher Powers

Theorem 3. No paperfolding sequence contains a 3+-power.

Proof. Using the ideas above, it suffices to determine those lengths n for which
Pf [i..i + 2n] = Pf [i + n..i + 3n].
We implemented this using
eval higher_power_orders

"?lsd_2 (n > 0) & Ef Ei ((i >= 1) & (Ak k <= 2*n => PF[f][i+k] = PF[f][i+k+n]))":

The resulting automaton accepts no n at all. The computation took 189 ms.

A New Approach to the Paperfolding Sequences 39

3.4 Orders of Almost-Squares

Theorem 4. If wcw is a factor of a paperfolding sequence, where w is a word
and c is a single letter, then either |w| ∈ {2, 4} or |w| = 2k − 1 for some k ≥ 1.

Furthermore, for all k ≥ 1, and all paperfolding sequences, and every n ∈
{2, 4} ∪ {2k − 1 : k ≥ 1}. there is a factor of the form wcw with |w| = n.

Proof. We can verify the first claim with the methods above, computing those
n for which

Pf [i..i + n − 1] = Pf [i + n + 1..i + 2n].

We implemented this using

eval almost_square_orders

"?lsd_2 (n > 0) & Ef Ei ((i >= 1) & (Ak (k < n) => PF[f][i+k] = PF[f][i+k+n+1]))":

and found the following automaton (Fig. 4):

0

1
(0)

2

(1)

3
(0)

4
(1)

(1) (0)

(1) (0)

Fig. 4. Orders of almost-squares in all paperfolding sequences, lsd first

Note that the n accepted are precisely those with base-2 expansion 10, 100,
and 11 · · · 1 (in reversed form). The computation took 196 ms.

For the second statement, we make an automaton accepting those pairs (f, n)
for which Pf has an almost-square of order n.

eval paper2

"?lsd_2 (n > 0) & (Ei (i > 0) & (Ak k < n => PF[f][i+k] = PF[f][i+k+n+1]))":

The resulting automaton (Fig. 5) has 9 states and was computed in 72 ms.
By inspection of the automaton, one can verify that every path, no matter

what the first component is, having second component labeled with a member
of 0100 or 00100 or 11∗00, reaches the accepting state 8.

3.5 Appearance Function for Paperfolding Sequences

In what follows, we need a bound on the so-called “appearance” function Ax(n),
which is the least integer i such that every factor of length n of an infinite word
x appears somewhere in the prefix x[1..i].

The appearance function is not identical for every paperfolding sequence.
For example, AP111···(3) = 24, while AP111 1 1 ···(3) = 26. However, we have the
following theorem.

40 D. Goč et al.

Theorem 5. Let A(n) denote the supremum of the appearance function for
length n factors, taken over all paperfolding sequences. Then

A(1) = 3 A(2) = 7 A(n) = 6 · 2h + n − 1, where h = �log2 n.
Furthermore, the upper bound is best possible and is achieved by the unfolding
instructions 1 1 1 1ω.

0

1

(-1,0)

2(1,0)

3

(-1,1)

(1 ,1)

4
(-1,0)

(1 ,0)

5

(-1,1)

6

(1,1)

(1 ,1)

(-1,1)

7
(1,0)

(-1,0)

(-1,1)
(1 ,1)

(-1,0)

(1 ,0)

(-1,1)
(1 ,1)

8
(-1,0)
(1 ,0)

(-1,0)

(1 ,0)
(1 ,1)

(-1,1)
(-1,0)
(1 ,0)

Fig. 5. Automaton accepting (f, n) pairs for which Pf has an almost-square of order n

Proof. The assertions for A(1) and A(2) are easy to verify by hand. For n ≥ 3,
our proof has two parts. First, we show that in every paperfolding sequence Pf ,
every factor of length n appears in the prefix Pf [1..A(n)]. To see this, we attempt
to find a prefix of a paperfolding sequence for which this assertion fails, that is,
we write a predicate asserting the existence of some n ≥ 3 and i ≥ 1 for which
Pf [i..i + n − 1] �= Pf [j..j + n − 1] for all j ≤ 6 · 2�log2 n�.

reg power2 lsd_2 "0*10*":
def twoceilinglog "?lsd_2 $power2(x) & (x >= y) & x < 2*y":
eval appearance "?lsd_2 En Ei (n >= 3) & (i >= 1) &
(Aj (Ex x >= 1 & j <= 6*x & $twoceilinglog(x,n)) =>
(Ek k < n & PF[f][i+k] != PF[f][j+k]))":

Here power2 is a regular expression stating that its argument is a power of 2
(in lsd form, allowing trailing zeroes) and twoceilinglog applied to (x, y) asserts
that x = 2�log2 y�. When we run this, we discover that the resulting automaton
has 1 state and accepts nothing. Hence there are no counterexamples for n ≥ 3,
and hence A(n) ≤ 6 · 2h + n − 1, as desired.

In the next step, we verify that A(n) is the best possible bound. To do so,
we reduce our bound on j in the expression above by 1, and ask for the n
corresponding to the particular f in the statement. In this case all n ≥ 3 are
accepted.

Corollary 6. Let x be a factor of length n of any paperfolding sequence. Then
x appears for the first time beginning at a position i with 1 ≤ i ≤ 12n.

A New Approach to the Paperfolding Sequences 41

3.6 The Minimum of the Appearance Function

The minimum value of the appearance function, taken over all paperfolding
sequences, is given by

m(1) = 2 m(2) = 5 m(3) = 16
m(4) = 17 m(5) = 32 m(6) = 36

m(n) = 4 · 2h + n − 1, where h = �log2 n, for n ≥ 7.

No single paperfolding sequence seems to achieve these bounds for all n.
However m(n) for n ≥ 7 is achieved by 111111 11 11 11 · · · . This can be proved
by an approach similar to that in the previous section, and we omit the details.

3.7 Recurrence and the Recurrence Function

A sequence is recurrent if every factor that occurs, occurs infinitely often. As
is well known, this is equivalent to the statement that every factor that occurs,
occurs at least twice.

Theorem 7. Every paperfolding sequence is recurrent.

Trying to prove this directly illustrates a deficiency in our method. We would
like to show for all paperfolding sequences f for all i ≥ 1, n ≥ 1 there exists j > i
such that

Pf [i..i + n − 1] = Pf [j..j + n − 1].

During the course of our computation, we can only deal with a prefix of the
folding instructions of the same length as the representations of i, j, and n.
Since j is unbounded in this formulation, we cannot implement this predicate as
stated (unless we use ω-automata).

The solution is to come up with a plausible bound on j. In fact, we can find
a conjectured exact bound empirically, and then use our method to verify our
conjecture. More precisely, for every paperfolding sequence, we would like to find
the recurrence function r(n); this is the smallest integer m such that every block
of size m contains every factor of length n.

Theorem 8. Define

r(1) = 4 r(2) = 9 r(n) = 8 · 2h + n − 1, where h = �log2 n, forn ≥ 3.

Then r(n) is the recurrence function for every paperfolding sequence.

This improves the bound given in Allouche and Bousquet-Mélou [2].

Proof. The proof is quite similar to that of Theorem 5. Again, we look for coun-
terexamples. In Mousavi’s Walnut prover we use

42 D. Goč et al.

reg power2 lsd_2 "0*10*":
def twoceilinglog "?lsd_2 $power2(x) & (x >= y) & x < 2*y":
eval recur4 "?lsd_2 En Ei (n >= 3) & (i >= 1) &
(Aj (Ex x >= 1 & j <= 8*x & j >= 1 & $twoceilinglog(x,n)) =>
(Ek k < n & PF[f][i+k] != PF[f][i+j+k]))":

and when we run this we discover there are none (in 276 ms).
As before we can prove the bounds are optimal.

The recurrence quotient of a sequence x is defined to be lim supn≥1 r(n)/n.

Corollary 9. Every paperfolding sequence has recurrence quotient equal to 17.

3.8 Intersection of Sets of Paperfolding Factors

Narad Rampersad asked (personal communication) if it is true that for any two
distinct paperfolding sequences, there is some length l such that the sequences
have no factors of length l in common. The answer is yes:

Theorem 10. If f and g are two different unfolding sequences and l the smallest
index for which fl �= gl, then Pf and Pg have no factors of length ≥ 14 · 2l in
common.

Proof. It suffices to show that Pf and Pg have no factors of length exactly 14 ·2l

in common.
To do this, we build an automaton that accepts words w where

– π1(w) = f , a prefix of f
– π2(w) = g, a prefix of g
– [π3(w)]2 = i, a starting position of a factor in Pf

– [π4(w)]2 = j, a starting position of a factor in Pg

such that f and g differ at some position, say position l (starting indexing at
position 0) and Pf [i..i + 14 · 2l − 1] = Pg[j..j + 14 · 2l − 1]. In order to calculate
these factors we know from Theorem 5 that any such factor can be found with
i, j ≤ 12 · 14 · 2l. It therefore suffices to assume that i and j end with at least 7
zeroes.

A program by the first author has verified this assertion.

4 Remarks on Correctness

One referee asked whether we have proved our program correct. The answer
is no. In the vast literature of combinatorics on words, machine computations
commonly form part of the arguments presented, but to our knowledge nobody
attempts to prove their programs correct. For one thing, programs are frequently
hundreds or thousands of lines long, and proving even short programs correct
is a nontrivial task. For another, typically one proves programs correct with

A New Approach to the Paperfolding Sequences 43

the aid of a prover, but then who has verified the prover? In our opinion, the
only reasonable prescription is to (a) provide enough details that a reader could
duplicate the computations and (b) provide access to the code used. We hope
we have done (a). As for (b), the software can be downloaded from https://cs.
uwaterloo.ca/∼shallit/papers.html.

References

1. Allouche, J.P.: The number of factors in a paperfolding sequence. Bull. Aust. Math.
Soc. 46, 23–32 (1992)

2. Allouche, J.P., Bousquet-Mélou, M.: Canonical positions for the factors in the
paperfolding sequences. Theor. Comput. Sci. 129, 263–278 (1994)

3. Allouche, J.P., Bousquet-Mélou, M.: Facteurs des suites de Rudin-Shapiro
généralisées. Bull. Belg. Math. Soc. 1, 145–164 (1994)

4. Allouche, J.P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an
automatic sequence. Theor. Comput. Sci. 410, 2795–2803 (2009)

5. Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of
automatic sequences. Int. J. Found. Comp. Sci. 23, 1035–1066 (2012)

6. Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)
7. Davis, C., Knuth, D.E.: Number representations and dragon curves-I, II. J. Recreat.

Math. 3(66–81), 133–149 (1970)
8. Dekking, F.M., Mendès France, M., Poorten, A.J.v.d.: Folds! Math. Intell. 4, 130–

138, 173–181, 190–195 (1982). Erratum 5, 5 (1983)
9. Goč, D., Henshall, D., Shallit, J.: Automatic theorem-proving in combinatorics on

words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191.
Springer, Heidelberg (2012)

10. Kao, J.Y., Rampersad, N., Shallit, J., Silva, M.: Words avoiding repetitions in
arithmetic progressions. Theor. Comput. Sci. 391, 126–137 (2008)

11. Prodinger, H., Urbanek, F.J.: Infinite 0-1-sequences without long adjacent identical
blocks. Discrete Math. 28, 277–289 (1979)

12. Schaeffer, L.: Deciding properties of automatic sequences. Master’s thesis, Univer-
sity of Waterloo, School of Computer Science (2013)

https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html

Covering the Recursive Sets

Bjørn Kjos-Hanssen1, Frank Stephan2(B), and Sebastiaan A. Terwijn3

1 Department of Mathematics,
University of Hawaii at Manoa, Honolulu, HI 96822, USA

bjoernkh@hawaii.edu
2 Department of Mathematics and Department of Computer Science,

National University of Singapore, Singapore 119076, Republic of Singapore
fstephan@comp.nus.edu.sg

3 Department of Mathematics, Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

terwijn@math.ru.nl

Abstract. We give solutions to two of the questions in a paper by
Brendle, Brooke-Taylor, Ng and Nies. Our examples derive from a 2014
construction by Khan and Miller as well as new direct constructions
using martingales.

At the same time, we introduce the concept of i.o. subuniformity and
relate this concept to recursive measure theory. We prove that there are
classes closed downwards under Turing reducibility that have recursive
measure zero and that are not i.o. subuniform. This shows that there
are examples of classes that cannot be covered with methods other than
probabilistic ones. It is easily seen that every set of hyperimmune degree
can cover the recursive sets. We prove that there are both examples of
hyperimmune-free degree that can and that cannot compute such a cover.

1 Introduction

An important theme in set theory has been the study of cardinal characteristics.
As it turns out, in the study of these there are certain analogies with recur-
sion theory, where the recursive sets correspond to sets in the ground model. In
a recent paper by Brendle, Brooke-Taylor, Ng and Nies [1], the authors point
out analogies between cardinal characteristics and the study of algorithmic ran-
domness. We address two questions raised in this paper that are connected to
computing covers for the recursive sets.

In the following, we will assume that the reader is familiar with various
notions from computable measure theory, in particular, with the notions of

This work was partially supported by a grant from the Simons Foundation (#315188
to Bjørn Kjos-Hanssen) and by a grant from the NUS (R146-000-181-112 to
F. Stephan). A substantial part of the work was performed while the first and third
authors were supported by the Institute for Mathematical Sciences of the National
University of Singapore during the workshop on Algorithmic Randomness during
2–30 June 2014.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 44–53, 2015.
DOI: 10.1007/978-3-319-20028-6 5

Covering the Recursive Sets 45

Martin-Löf null, Schnorr null and Kurtz null set. For background on these notions
we refer the reader to the books of Downey and Hirschfeldt [4], Li and Vitányi
[12] and Nies [14].

Our notation from recursion theory is mostly standard. The natural numbers
are denoted by ω, and 2ω denotes the Cantor space and 2<ω the set of all finite
binary sequences. We denote the concatenation of strings σ and τ by στ . The
notation σ � τ denotes that the finite string σ is an initial segment of the (finite
or infinite) string τ . We identify sets A ⊆ ω with their characteristic sequences,
and A�n denotes the initial segment A(0) . . . A(n − 1). We use λ to denote the
empty string. Throughout, μ denotes the Lebesgue measure on 2ω.

Definition 1. A function M : 2<ω → R�0 is a martingale if for every x ∈ 2<ω,
M satisfies the averaging condition

2M(σ) = M(σ0) + M(σ1), (1)

A martingale M succeeds on a set A if

lim sup
n→∞

M(A�n) = ∞.

The class of all sets on which M succeeds is denoted by S[M].

The following definition is taken from Rupprecht [17].

Definition 2. An oracle A is Schnorr covering if the union of all Schnorr null
sets is Schnorr null relative to A. An oracle A is weakly Schnorr covering if the
set of recursive reals is Schnorr null relative to A.

Definition 3. A Kurtz test relative to A is an A-recursive sequence of closed-
open sets Gi such that each Gi has measure at most 2−i; these closed-open sets
are given by explicit finite lists of strings and they consist of all members of
{0, 1}ω extending one of the strings. Note that i → μ(Gi) can be computed
relative to A. The intersection of a Kurtz test (relative to A) is called a Kurtz
null set (relative to A). An oracle A is Kurtz covering if there is an A-recursive
array Gi,j of closed-open sets such that each i-th component is a Kurtz test
relative to A and every unrelativized Kurtz test describes a null-set contained in
∩jGi,j for some i; A is weakly Kurtz covering if there is such an array and each
recursive sequence is contained in some A-recursive Kurtz null set ∩jGi,j .

Brendle, Brook-Taylor, Ng and Nies [1] called the notion of (weakly) Schnorr
covering in their paper (weakly) Schnorr engulfing . In this paper, we will use the
original terminology of Rupprecht [17]. We have analogous notions for the other
notions of effective null sets. For example, a set A is weakly Kurtz covering if
the set of recursive reals is Kurtz null relative to A. We also have Baire category
analogues of these notions of covering: A set A is weakly meager covering if it
computes a meager set that contains all recursive reals. Recall that a set A is
diagonally nonrecursive (DNR) if there is a function f �T A such that, for all
x, if ϕx(x) is defined then ϕx(x) �= f(x). A set A has hyperimmune-free Turing
degree if for every f �T A there is a recursive function g with ∀x [f(x) � g(x)].

46 B. Kjos-Hanssen et al.

2 Solutions to Open Problems

In [1, Question 4.1], Brendle, Brooke-Taylor, Ng and Nies posed three questions,
(7), (8) and (9). In this section, we will provide the answers to the questions (7)
and (9). For this we note that by [1, Theorem 3] and [9, Theorem 5.1] we have
the following result.

Theorem 4. A set A is weakly meager covering iff it is high or of DNR degree.

We recall the following well-known definitions and results.

Definition 5. A function ψ, written e
→ (n
→ ψe(n)), is a recursive numbering
if the function (e, n)
→ ψe(n) is partial recursive. For a given recursive num-
bering ψ and a function h, we say that f is DNRψ

h if for all n, f(n) �= ψn(n)
and f(n) ≤ h(n). An order function is a recursive, nondecreasing, unbounded
function.

Theorem 6 (Khan and Miller [8, Theorem 4.3]). For each recursive num-
bering ψ and for each order function h, there is an f ∈ DNRψ

h such that f
computes no Kurtz random real.

Wang (cf. [4, Theorem 7.2.13]) gave a martingale characterization of Kurtz ran-
domness. While it is obvious that weakly Kurtz covering implies weakly Schnorr
covering for the martingale notions, some proof is needed in the case that one
uses tests (as done here).

Proposition 7. If A is weakly Kurtz covering then A is weakly Schnorr covering.

Proof. Suppose A is weakly Kurtz covering, as witnessed by the A-recursive array
of closed-open sets Gi,j . Then the sets Fj = ∪iGi,i+j+1 form an A-recursive
Schnorr test, as each Fj has at most the measure

∑
j 2−i−j−2 = 2−i−1 and

the measures of the Fj is uniformly A-recursive as one can relative to A com-
pute the measure of each Gi,i+j+1 and their sum is fast converging. As for each
recursive set there is an i such that all Gi,i+j+1 contain the set, each recursive
set is covered by the Schnorr test. �

Theorem 8. There is a recursive numbering ψ and an order function h such
that for each set A, if A computes a function f that is DNRψ

h then A is weakly
Kurtz covering.

Proof. Fix a correspondence between strings and natural numbers num : 2<ω →
ω such that

2|σ| − 1 ≤ num(σ) ≤ 2|σ|+1 − 2.

For instance, num(σ) could be the position of σ in the length-lexicographically
lexicographic ordering of all strings as proposed by Li and Vitányi [12]. Let
str(n) = num−1(n) be the string representation of the number n. Thus

2|str(n)| − 1 ≤ num(str(n)) = n ≤ 2|str(n)|+1 − 2.

Covering the Recursive Sets 47

Let ϕ be any fixed recursive numbering, let

〈a, b〉 = num(1|str(a)|0str(a)str(b))

in concatenative notation. Let ψ2〈e,n〉(x) = ϕe(n) for any x and ψ2y+1 = ϕy.
Note that ψ is an acceptable numbering. Let s(e, n) = 2〈e, n〉. Then if f is DNR
with respect to ψ then f has the following property with respect to ϕ:

f(s(e, n)) �= ϕe(n).

Indeed,
f(s(e, n)) = f(2〈e, n〉) �= ψ2〈e,n〉(2〈e, n〉) = ϕe(n).

Moreover,

s(a, b) = 2〈a, b〉 ≤ 2(2|1|str(a)|0str(a)str(b)|) = 4(2|1|str(a)||2|str(a)|2|str(b)|)

= 4(2|str(a)|2|str(a)|2|str(b)|) ≤ 4(a + 1)2(b + 1).

Consider a partition of ω into intervals Im such that |Im| is 2 + log(m + 1)
rounded down, and let h(m) = |Im|. If f is DNRψ

h then we have

∀ϕe ∀n (f(s(e, n)) ∈ {0, 1}Is(e,n) and f(s(e, n)) �= ϕe(n)).

Given a recursive set R, there is, by the fixed-point theorem, an index e such
that, for all n, ϕe(n) = R � Is(e,n) and f(s(e, n)) �= R � Is(e,n). Note that for
every fixed e,

∞∏
n=0

(1 − 2−|Is(e,n)|) �
∞∏

n=e+2

(1 − 2−(2+log(4(e+1)2(n+1)+1))) �

∞∏
n=e+2

(1 − 2−(3+log(4(e+1)2(n+1)))) =
∞∏

n=e+2

(1 − 2−(5+2 log(e+1)+log(n+1))).

The last product in this formula is 0, as the sum

∞∑
n=e+2

2−(5+2 log(e+1)+log(n+1)) = 1/32 · (e + 1)−2 ·
∞∑

n=e+2

1/(n + 1)

diverges. Thus

μ({B : ∃e∀n [B � Is(e,n) �= f(s(e, n))]}) �
∑

e

∞∏
n=0

(1 − 2−|Is(e,n)|) = 0

So if f is computable from A then we have a Σ0
2(A) null set that contains all

recursive sets, as desired. �

Theorem 9 (Affirmative answer to Brendle, Brooke-Taylor, Ng and
Nies [1, Question 4.1(7)]). There exists a set A such that

48 B. Kjos-Hanssen et al.

1. A is weakly meager covering,
2. A does not compute any Schnorr random set,
3. A is of hyperimmune-free degree,
4. A is weakly Schnorr covering.

Proof. Let h and ψ as in Theorem 8. By Theorem 6, there is an f ∈ DNRψ
h such

that f computes no Kurtz random real. Let A be a set Turing equivalent to f .

1. By Theorem 4, A is weakly meager covering. Alternatively, one could use the
fact that every weakly Kurtz covering oracle is also weakly meager covering
and derive the item 1 from the proof of item 4.

2. Since each Schnorr random real is Kurtz random, A does not compute any
Schnorr random real.

3. Since A does not compute any Kurtz random real, A is of hyperimmune-free
degree.

4. By Theorem 8, A is weakly Kurtz covering. In particular, by Proposition 7,
A is weakly Schnorr covering.

This completes the proof. �

Franklin and Stephan [6] characterised that a set A is Schnorr trivial iff for
every f �tt A there is a recursive function g such that, for all n, f(n) ∈
{g(n, 0), g(n, 1), . . . , g(n, n)}; this characterisation serves here as a definition.

Theorem 10 (Affirmative answer to Brendle, Brooke-Taylor, Ng and
Nies [1, Question 4.1 (9)]). There is a hyperimmune-free oracle A which is
not DNR (and thus low for weak 1-genericity) and which is not Schnorr trivial
and which does not Schnorr cover all recursive sets.

Remark 11. The reader may object that the original question in [1] asked for a
set that was not low for Schnorr tests rather than not Schnorr trivial. However,
we can recall the following facts:

– Kjos-Hanssen, Nies and Stephan [10] showed that if A is low for Schnorr tests
then A is low for Schnorr randomness;

– Franklin [5] showed that if A is low for Schnorr randomness then A is Schnorr
trivial.

3 Infinitely Often Subuniformity and Covering

Let 〈. , .〉 denote a standard recursive bijection from ω × ω to ω. For a function
P : ω → ω define

Pn(m) = P (〈n,m〉)
and say that P parametrizes the class of functions {Pn : n ∈ ω}. We identify sets
of natural numbers with their characteristic functions. A class A is (recursively)
uniform if there is a recursive function P such that A = {Pn : n ∈ ω}, and

Covering the Recursive Sets 49

(recursively) subuniform if A ⊆ {Pn : n ∈ ω}. These notions relativize to any
oracle A to yield the notions of A-uniform and A-subuniform.

It is an elementary fact of recursion theory that the recursive sets are not
uniformly recursive. The following theorem, as cited in Soare’s book [18, p. 255],
quantifies exactly how difficult it is to do this:

Theorem 12 (Jockusch). The following conditions are equivalent:

(i) A is high, that is, A′ �T ∅′′,
(ii) the recursive functions are A-uniform,
(iii) the recursive functions are A-subuniform,
(iv) the recursive sets are A-uniform.

If A has r.e. degree then (i)–(iv) are each equivalent to:
(v) the recursive sets are A-subuniform.

In the following we study infinitely often parametrizations and the relation to
computing covers for the recursive sets.

3.1 Infinitely Often Subuniformity

Definition 13. We say that a set X covers a class A if there is an X-recursive
martingale M such that A ⊆ S[M].

Note that for X recursive this is just the definition of recursive measure zero.
For basics about computable martingales see [4, p. 207].

Definition 14. A class A ⊆ 2ω is called infinitely often subuniform (i.o. sub-
uniform for short) if there is a recursive function P ∈ {0, 1, 2}ω such that

∀A ∈ A ∃n
[∃∞x

(
Pn(x) �= 2

) ∧ ∀x
(
Pn(x) �= 2 → Pn(x) = A(x)

)]
. (2)

That is, for every A ∈ A there is a row of P that computes infinitely many
elements of A without making mistakes. Again, we can relativize this definition
to an arbitrary set X: A class A is i.o. X-subuniform if P as above is X-recursive.

Let REC denote the class of recursive sets. Recall that A is a PA-complete
set if A can compute a total extension of every {0, 1}-valued partial recursive
function. Note that if a set A is PA-complete then REC is A-subuniform (cf.
Proposition 15 below).

For every recursive set A there is a recursive set Â such that A can be recon-
structed from any infinite subset of Â. Namely, let Â(x) = 1 precisely when x
codes an initial segment of A. So it might seem that any i.o. sub-parametrization
of REC can be converted into a subparametrization in which every recursive set
is completely represented. However, we cannot do this uniformly (since we can-
not get rid of the rows that have Pn(x) = 2 a.e.) and indeed the implication
does not hold.

50 B. Kjos-Hanssen et al.

Proposition 15. We have the following picture of implications:

A is PA-complete ⇒ REC isA-subuniform ⇒ REC is i.o.
A -subuniform

⇑ ⇑
A is high ⇒ A has hyperimmune degree

No other implications hold than the ones indicated.

Proposition 16. Every i.o. subuniform class has recursive measure zero. This
relativizes to: If A is i.o. X-subuniform then X covers A.

Proof. The ability to compute infinitely many bits from a set clearly suffices to
define a martingale succeeding on it. The uniformity is just what is needed to
make the usual sum argument work. �

Proposition 17. There exists a class of recursive sets that has recursive mea-
sure zero and that is not i.o. subuniform.

Proof. The class of all recursive sets A satisfying ∀x [A(2x) = A(2x + 1)] has
recursive measure 0 but is not i.o. subuniform: If P would witness this class to
be i.o. subuniform then Q defined as Qi(x) = min{Pi(2x), Pi(2x + 1)} would
witness REC to be i.o. subuniform, a contradiction. �

Above the recursive sets, the 1-generic sets are a natural example of such a class
that has measure zero but that is not i.o. subuniform: It is easy to see that the
1-generic sets have recursive measure zero because for every such set A there are
infinitely many n such that A ∩ [n, 2n] = ∅. On the other hand, a variation of
the construction in the proof of Proposition 17 shows that the 1-generic sets are
not i.o. X-subuniform for any X:

Proposition 18. The 1-generic sets are not i.o. X-subuniform for any set X.

Proof. Let P ⊆ {0, 1, 2}ω be an X-recursive parametrization and let A be 1-
generic relative to X (so that A is in particular 1-generic). Then for every n, if
Pn(x) �= 2 for infinitely many x then{

σ ∈ 2<ω : ∃x [Pn(x) �= 2 ∧ Pn(x) �= σ(x)]
}

is X-recursive and dense, hence A meets this set of conditions and consequently
P does not i.o. parameterize A. �

Now both the example from Proposition 17 and the 1-generic sets are coun-
terexamples to the implication “measure 0 ⇒ i.o. subuniform” because of the
set structure of the elements in the class. One might think that for classes closed
downwards under Turing reducibility (i.e. classes defined by information content
rather than set structure) the situation could be different, i.e. that for A closed
downwards under �T the implication “X covers A ⇒ A i.o. X-subuniform”
would hold. Note that for X recursive this is not interesting, since any nonempty

Covering the Recursive Sets 51

class closed downwards under Turing reducibility contains REC and REC does
not have recursive measure zero. However, this is also not true: Let A be the class

{A : A �T G for some 1-genericG}.

Clearly A is closed downwards under Turing reducibility and it follows from
proofs by Kurtz [11] and by Demuth and Kučera [2] (a proof is also given by
Terwijn [19]), that A is a Martin-Löf nullset, and that in particular ∅′ covers A.
However, by Proposition 18 the 1-generic sets are not i.o. ∅′-subuniform so that
in particular A is not i.o. ∅′-subuniform.

3.2 A Nonrecursive Set that Does Not Cover REC

It follows from Proposition 15 and Proposition 16 that if A is of hyperimmune
degree then A covers REC. In particular every nonrecursive set comparable
with ∅′ covers REC. We see that if A cannot cover REC then A must have
hyperimmune-free degree. We now show that there are indeed nonrecursive sets
that do not cover REC. Indeed, the following result establishes that there are
natural examples of such sets.

Theorem 19. If A is Martin-Löf random then there is no martingale M �tt A
which covers REC. In particular if A is Martin-Löf random and of hyperimmune-
free Turing degree then it does not cover REC.

Proof. Let A be Martin-Löf random and MA be truth-table reducible to A by
a truth-table reduction which produces on every oracle a savings martingale,
that is, a martingale which never goes down by more than 1. Without loss of
generality, the martingale starts on the empty string with 1 and is never less
than or equal to 0. Note that because of the truth-table property, one can easily
define the martingale N given by

N(σ) =
∫

E⊆ω

ME(σ) dE.

As one can replace the E by the strings up to use(|σ|) using the recursive use-
function use of the truth-table reduction, one has that

N(σ) =
∑

τ∈{0,1}use(|σ|)

2−|τ |Mτ (σ)

and N is clearly a recursive martingale. Let B be a recursive set which is adver-
sary to N , that is, B is defined inductively such that

∀n [N(B�(n + 1)) � N(B�n)].

Define the uniformly r.e. classes Sn by

Sn = {E : ME reaches on B a value beyond 2n + 1}.

52 B. Kjos-Hanssen et al.

By the savings property, once ME has gone beyond 2n + 1 on B, ME will stay
above 2n afterwards. It follows that the measure of these E can be at most 2−n.
So μ(Sn) � 2−n for all n and therefore the Sn form a Martin-Löf test. Since A
is Martin-Löf random, there exists n such that A /∈ Sn, and hence MA does not
succeed on B. �
We note that the set

{
A ∈ 2ω : A covers REC

}
has measure 1. This follows

from Proposition 15 and the fact that the hyperimmune sets have measure 1
(a well-known result of Martin, cf. [4, Theorem 8.21.1]). We note that apart
from the hyperimmune degrees, there are other degrees that cover REC:

Proposition 20. There are sets of hyperimmune-free degree that cover the
class REC.

Proof. As in Proposition 15, take a PA-complete set A of hyperimmune-
free degree. Then the recursive sets are A-subuniform, so by Proposition 16
A covers REC. �

3.3 Computing Covers Versus Uniform Computation

We have seen above that in general the implication “X covers A ⇒ A i.o. X-
subuniform” does not hold, even if A is closed downwards under Turing reducibil-
ity. A particular case of interest is whether there are sets that can cover REC
but relative to which REC is not i.o. subuniform.

Theorem 21. There exists a set A that covers REC but relative to which REC
is not i.o. A-subuniform.

Theorem 22. We have the following picture of implications:

A is PA-complete
⇓

A is high ⇒ REC isA − subuniform
⇓ ⇓

A has hyperimmune degree ⇒ REC is i.o.A − subuniform
⇓

A is nonrecursive ⇐ A covers REC
⇓

A has hyperimmune degree or A is not Martin-Löf random

No other implications hold than the ones indicated.

The following interesting question is still open.

Question 23. Are there sets A such that A covers REC, but not the class of
recursively enumerable sets RE?

Acknowledgements. The authors would like to thank George Barmpalias andMichiel
van Lambalgen for discussions about Sect. 3 and André Nies and Benoit Monin for cor-
respondence and thorough checking of Theorem 10.

Covering the Recursive Sets 53

References

1. Brendle, J, Brooke-Taylor, A, Ng, K.M., Nies, A.: An analogy between cardi-
nal characteristics and highness properties of oracles. Technical report on http://
arxiv.org/abs/1404.2839 (2014)

2. Demuth, O., Kučera, A.: Remarks on 1-genericity, semigenericity and related con-
cepts. Commentationes Math. Univ. Carol. 28(1), 85–94 (1987)

3. Downey, R.G., Hirschfeldt, D.R., Lempp, S., Solomon, R.: A Δ0
2 set with no infinite

low subset in either it or its complement. J. Symbolic Logic 66(3), 1371–1381 (2001)
4. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. The-

ory and Applications of Computability. Springer, New York (2010)
5. Franklin, J.: Hyperimmune-free degrees and Schnorr triviality. J. Symbolic Logic

73, 999–1008 (2008)
6. Franklin, J., Stephan, F.: Schnorr trivial sets and truth-table reducibility. J. Sym-

bolic Logic 75, 501–521 (2010)
7. Hirschfeldt, D.R., Terwijn, S.A.: Limit computability and constructive measure.

In: Computational Prospects of Infinity II: Presented Talks. Lecture Notes Series,
Institute for Mathematical Sciences, National University of Singapore, vol. 15, pp.
131–141. World Scientific Publishing Co., Pte. Ltd., Hackensack (2008)

8. Khan, M., Miller, J.S.: Forcing with bushy trees. Manuscript (2014)
9. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recur-

sion theorem. Trans. Am. Math. Soc. 363(10), 5465–5480 (2011)
10. Kjos-Hanssen, B., Nies, A., Stephan, F.: Lowness for the class of Schnorr random

reals. SIAM J. Comput. 35(3), 647–657 (2005)
11. Kurtz, S.A.: Randomness and genericity in the degrees of unsolvability. Thesis

(Ph.D.) - University of Illinois at Urbana-Champaign, ProQuest LLC, Ann Arbor,
MI (1981)

12. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer, Heidelberg (2008)

13. Miller, W., Martin, D.A.: The degrees of hyperimmune sets. Zeitschrift für Math.
Logik und Grundlagen der Math. 14, 159–166 (1968)

14. Nies, A.: Computability and Randomness. Oxford Science Publications, New York
(2009)

15. Odifreddi, P.G.: Classical Recursion Theory. Studies in Logic and the Foundations
of Mathematics, vol. 125. North-Holland Publishing Co., Amsterdam (1989)

16. Odifreddi, P.G.: Classical Recursion Theory II. Studies in Logic and the Founda-
tions of Mathematics, vol. 143. North-Holland Publishing Co., Amsterdam (1999)

17. Rupprecht, N.: Relativized Schnorr tests with universal behavior. Arch. Math.
Logic 49(5), 555–570 (2010)

18. Soare, R.I.: Recursively enumerable sets and degrees. In: Feferman, S., Lerman,
M., Magidor, M., Scedrov, A. (eds.) Perspectives in Mathematical Logic. Springer,
Berlin (1987)

19. Terwijn, S.A.: On the quantitative structure of Δ0
2. In: Berger, U., Osswald, H.,

Schuster, P. (eds.) Reuniting the Antipodes–Constructive and Nonstandard Views
of the Continuum (Venice. 1999). Synthese Library, pp. 271–283. Kluwer Academic
Publishers, Dordrecht (2001)

http://arxiv.org/abs/1404.2839
http://arxiv.org/abs/1404.2839

On Distributed Monitoring and Synthesis

Anca Muscholl(B)

LaBRI, University of Bordeaux, Talence, France
anca@labri.fr

1 Context

Modern computing systems are increasingly distributed and heterogeneous. Soft-
ware needs to be able to exploit these advances, providing means for applications
to be more performant. Traditional concurrent programming paradigms, as Java
for example, are based on threads, shared-memory, and locking mechanisms that
guard access to common data. More recent paradigms, such as the reactive pro-
gramming model of Erlang [2] and Scala/Akka [1,3] replace shared memory by
asynchronous message passing, where sending a message is non-blocking.

In all these concurrent frameworks, writing reliable software is a big chal-
lenge because programmers tend to think about code mostly in a sequential
way, and have difficulties in overviewing all possible interleavings of executions
by different entities. For the same reason, formal verification and analysis of
concurrent programs is very challenging. Testing, which is still the main method
for error detection in software, has low coverage for concurrent programs. The
reason is that bugs in such programs are difficult to reproduce: they may happen
under very specific thread schedules and the likelihood of taking such corner-
case schedules is very low. Formal verification, such as model-checking and other
traditional exploration techniques, can handle very limited instances of concur-
rent programs, mostly because of the very large number of possible states and
of possible interleavings of executions.

Formal verification of programs requires as a pre-requisite a clear mathe-
matical model for programs. Usually, verification of sequential programs starts
with an abstraction step – reducing the value domains of variables to finite
domains, viewing conditional branching as non-determinism, etc. Another major
simplification consists in disallowing recursion. This leads to a very robust com-
putational model, namely finite-state automata and regular languages. Regular
languages of words (and trees) are particularly well understood notions. The deep
connections between logic and automata revealed by the foundational work of
Büchi, Rabin and others, are crucial pieces in automata-based verification and
synthesis.

Synthesis means to translate a specification into a program that conforms
with the specification, and thus can provide solutions that are correct by con-
struction. Synthesis of reactive systems, that is of systems that interact with
an environment, started as a problem in logics. In the sixties, A. Church asked
for an algorithm to construct devices that transform sequences of input bits
into sequences of output bits in a way required by a logical formula [9]. Later,
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 54–62, 2015.
DOI: 10.1007/978-3-319-20028-6 6

On Distributed Monitoring and Synthesis 55

Ramadge and Wonham proposed the supervisory control formulation [33], where
a plant and a specification are given; a controller should be designed such that its
product with the plant satisfies the specification. Thus, control means restricting
the behavior of the plant. Synthesis is the particular case of control where the
plant allows for every possible behavior. Rabin’s result about the decidability of
monadic second-order logic over infinite trees solved Church’s question for MSO
specifications [32].

When adding concurrency, the landscape of verification and automated syn-
thesis becomes much more complicated. First, there is no canonical model for
concurrent systems, simply because there can be very different kinds of inter-
action between processes. Compare for example multi-threaded shared memory
systems and programs with asynchronous function calls. A second serious obsta-
cle for developing automata-based verification techniques for concurrent systems
is the lack of a general framework for distributed synthesis, and this even for
systems without environment. The question whether a sequential specification
can be turned into a distributed implementation over a given distributed archi-
tecture was first raised in the context of Petri nets. Ehrenfeucht and Rozenberg
introduced the notion of regions to describe how to associate places of nets with
states of a transition system [12].

Inspired by Petri nets, Mazurkiewicz proposed in the late seventies the theory
of Mazurkiewicz traces [27], that we present in the next section. Within this
theory, Zielonka’s theorem [36] is a prime example for distributed synthesis. Our
survey aims at introducing Mazurkiewicz traces and Zielonka’s theorem, and
describe how this theory can help to verify and design concurrent programs.

2 Mazurkiewicz Traces and Zielonka Automata

Mazurkiewicz traces [27] are one of the simplest formalisms able to describe con-
currency. To define the model we fix an alphabet of actions Σ and a dependence
relation D ⊆ Σ ×Σ on actions, that is reflexive and symmetric. The idea behind
this definition is that two dependent actions are always ordered and cannot be
permuted. For instance, in a multi-threaded program all actions belonging to one
thread must be ordered according to the program order. The actions of acquiring
or releasing the same lock are also ordered, since a thread needs to wait that
a lock is released before acquiring it. By contrast, independent actions can be
permuted.

A by now classical way to express such dependencies is Lamport’s happens-
before partial order [25]. Mazurkiewicz traces capture this partial order through
the dependence relation: from a linear execution w = a1 . . . an ∈ Σ∗ a partial
order T (w) = 〈E,�〉 is defined, where:

– E = {a1, . . . , an} is the set of events, in one-to-one relation with the positions
of w,

– � is the reflexive-transitive closure of {(ai, aj) | i < j, ai D aj}.

Partial orders T (w) as above are called Mazurkiewicz traces.

56 A. Muscholl

Example 1. As an example consider a concurrent program with threads T ∈ T
that have read/write access to shared variables x ∈ X. The dependence relation
D over the alphabet of actions Σ = {r(T, x), w(T, x) | T ∈ T , x ∈ X} is given
by a D b if

– a, b are actions of the same thread T , or
– a, b access to the same variable x ∈ X and at least one of them is a write.

This dependence relation simply describes that two actions are independent
only if they belong to different threads. Moreover, if they access the same shared
variable, then they must be both read actions.

From a language-theoretical viewpoint, traces are almost as attractive as words,
and a rich body of results on automata and logics over finite and infinite traces
exists, see the handbook [11]. One of the cornerstone results in Mazurkiewicz
trace theory is based on a simple notion of finite-state distributed automata,
Zielonka automata, that we present in the remaining of the section.

Informally, a Zielonka automaton [36] is a finite-state automaton with control
distributed over several processes that synchronize on shared actions. There is
no global clock, for instance between two synchronizations, two processes can
do a different number of actions. Because of this, Zielonka automata are also
known as asynchronous automata. Sharing of actions is defined through a fixed
distributed action alphabet.

A distributed action alphabet on a finite set P of processes is a pair (Σ, dom),
where Σ is a finite set of actions and dom : Σ → (2P \ ∅) is a location function.
The location dom(a) of action a comprises all processes that synchronize in order
to perform this action. The location induces a natural dependence relation D
over Σ by letting a D b if dom(a) ∩ dom(b)
= ∅.

Example 2. As an example of distributed alphabet reconsider Example 1. A
pair (Σ, dom) corresponding to the dependence relation D defined above can be
obtained from the set of processes: P = T ∪ {〈T, x〉 | T ∈ T , x ∈ X}. Informally
each thread represents a process, and there is a process for each pair 〈T, x〉,
representing the cached value of x in thread T .

The location function defined below satisfies a D b iff dom(a) ∩ dom(b)
= ∅:

dom(a) =

{
{T, 〈T, x〉} if a = r(T, x)
{T, 〈T ′, x〉 | T ′ ∈ T } if a = w(T, x)

Formally, a Zielonka automaton A = 〈(Sp)p∈P, (sinitp)p∈P, δ〉 over (Σ, dom) con-
sists of:

– a finite set Sp of (local) states with an initial state sinitp ∈ Sp, for every process
p ∈ P,

– a partial transition relation δ ⊆ ⋃
a∈Σ

(∏
p∈dom(a) Sp × {a} × ∏

p∈dom(a) Sp

)
.

As usual, an automaton is called deterministic if the transition relation is a
(partial) function. The reader may be more familiar with synchronous products

On Distributed Monitoring and Synthesis 57

of finite automata, where a joint action means that every automaton having
this action in its alphabet executes it according to its transition relation. Joint
transitions in Zielonka automata follow a rendez-vous paradigm, meaning that
the processes having action a in their alphabet can exchange information via the
execution of a. The following example illustrates this effect:

Example 3. The CAS operation is available as atomic operation in the JAVA
package java.util.concurrent.atomic, and supported by many architectures. It
takes as parameters the thread identifier T , the variable name x, and two values,
old and new. The effect of the instruction y = CAS(T,x,old,new) is conditional:
the value of x is replaced by new if it is equal to old, otherwise it does not change.
The method returns true if the value was swapped, and false otherwise.

We can view the CAS instruction as a synchronization between two processes,
PT associated with the thread T and Px associated with the variable x. The
states of PT are valuations of the local variables of T . The states of Px are the
values x can take. An instruction a of the form y = CAS(T,x,old,new) becomes
a synchronization action between PT and Px with the following two transitions
(represented for convenience as Petri net transitions; places on the left represent
states of PT , and on the right of Px):

s old

a

s′ new

s v

a

s′′ v

On the left side of the figure we have the case where the value of x is old, and
on the right half when it is different from old. Notice that in state s′ the value
of y is true, whereas in s′′, it is false.

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP .
Notice that a Zielonka automaton can be seen as a usual finite-state automa-

ton with the state set S =
∏

p∈P
Sp given by the global states, and transitions

s
a−→ s′ if (sdom(a), a, s′

dom(a)) ∈ δ, and sP\dom(a) = s′
P\dom(a). Thus states of this

automaton are the tuples of states of the processes of the Zielonka automaton.
As a language acceptor, a Zielonka automaton A accepts a trace-closed language
L(A), that is, a language closed under permutation of adjacent independent
symbols.

3 Distributed Synthesis

A cornerstone result in the theory of Mazurkiewicz traces is a construction that
transforms sequential automata into deterministic Zielonka automata, whenever

58 A. Muscholl

the language is trace-closed. This important result is one of the rare examples
of distributed synthesis, next to Ehrenfeucht and Rozenberg’s theory of regions.

Theorem 1 ([36]). For a given distributed alphabet (Σ, dom), and a regular
trace-closed language L ⊆ Σ∗ over (Σ, dom), a deterministic Zielonka automaton
A can be effectively constructed with L(A) = L.

The intricacy of Zielonka’s construction is such that there has been a lot of
work to simplify it and to improve its complexity, see e.g. [10,16,19,28]. The
most recent construction produces deterministic Zielonka automata of size that
is exponential only in the number of processes. It was shown in [16] that the
construction is optimal modulo a technical assumption (that is actually required
for monitoring).

Theorem 2 ([16]). There is an algorithm that takes as input a distributed alpha-
bet (Σ, dom) over n processes and a DFA A accepting a trace-closed language
over (Σ, dom), and computes an equivalent deterministic Zielonka automaton B
with at most 4n4 · |A|n2

states per process. Moreover, the algorithm computes
the transitions of B on-the-fly in polynomial time, and checks whether a state is
final in polynomial time as well.

Besides a theoretical interest of having an algorithm constructing deterministic
Zielonka automata, there is also a strong practical motivation, namely to moni-
tor distributed programs or systems at runtime. Of course, monitoring a system
offline is also possible, however it can be done only a posteriori or by a cen-
tralized monitor that requires additional communication. If we want to monitor
a distributed system at runtime, we need a decentralized monitor. The idea is
simple: we have some trace-closed, regular property φ that should be satisfied by
every execution of the program or system. To detect possible violations of φ at
runtime, we construct a monitor for φ and run it in parallel with the program.
Assuming that we model our program P by a Zielonka automaton AP , running
monitor M , that is also a Zielonka automaton AM , amounts to build the usual
product automaton on each process between AP and AM .

It is worth noting that the properties one would like to monitor on dis-
tributed programs can be often expressed in terms of the partial order between
specific events. To illustrate this, consider as an example the race detection prob-
lem for multi-threaded programs. Informally, a race occurs whenever there are
conflicting accesses to the same shared variable without proper lock synchro-
nization. Detecting races is important since executions with races may yield
non-deterministic, unexpected behaviors. Two accesses to the same variable are
called conflicting, if at least one of them is a write. A race is given by two con-
flicting accesses that are unordered in the happens-before relation. This relation
is a dependence relation in terms of Mazurkiewicz traces, that orders the events
of each thread and lock access operations for each lock. So a violation of the
“no-race” safety property consists in monitoring for two unordered occurrences
of such conflicting accesses.

On Distributed Monitoring and Synthesis 59

The construction of a deterministic Zielonka automata for properties asking
for the partial ordering between specific events is in fact very close to the critical
part of all available proofs of Zielonka’s theorem. This critical part is known as
the gossip automaton [28], and the name reflects already its rôle: it computes
what a process knows about the knowledge of other processes.

In general, the gossip automaton is already responsible for the exponential
complexity of the Zielonka construction. Thus, an important practical question
is whether the construction of the gossip automaton can be avoided, or at least
simplified. As the theorem below shows, gossiping is not needed when the com-
munication structure is hierarchical.

A distributed alphabet (Σ,dom) is called acyclic if all actions have unary
or binary domains, and the following graph G(Σ,dom) (called communication
graph) is acyclic: the set of nodes of G(Σ,dom) is the set P of processes and the
set of edges is {(p, q) | ∃a ∈ Σ : dom(a) = {p, q}}.

Theorem 3 ([22]). Let (Σ, dom) be a distributed alphabet whose communication
graph is acyclic. Then every regular, trace-closed language L over Σ can be
recognized by a deterministic Zielonka automaton with O(s2) states per process,
where s is the size of the minimal DFA for L.

We need to stress that the practical use of Zielonka automata for e.g. monitoring
properties does not depend exclusively on the efficiency of the constructions from
the above theorems. Further properties are required for a monitoring automaton
AM besides determinism. A first requirement is that violations of the property
to monitor should be detectable locally, i.e., by at least one thread. The reason is
that local detection enables a thread to start some recovery actions, like rollback
of a transaction and a new try. A Zielonka automaton A with this property is
called locally rejecting [16]. More formally, each process p has a subset of states
Rp ⊆ Sp, and an execution leads a process p into a state from Rp if and only if the
causal past of p cannot be extended to a trace in L(A). A second requirement is
that the monitoring automaton should not block the monitored system AP . This
can be achieved by asking that in every global state of AM such that no process
is a rejecting state, every action is enabled. A related discussion of desirable
properties of Zielonka automata and on an implementation of the construction
of [16] is reported in [5] (see also [34]).

4 Related Work

This brief overview aimed at presenting the motivation behind distributed syn-
thesis and how Mazurkiewicz trace theory can be useful in this respect. In the
following we point out some related results.

Synthesis. Zielonka’s algorithm has been applied for solving the synthesis prob-
lem, for models that go beyond Mazurkiewicz traces. One example is synthe-
sis of communicating automata from graphical specifications known as message
sequence charts. Communicating automata are distributed finite-state automata

60 A. Muscholl

communicating over point-to-point FIFO channels. As such, the model is Tur-
ing powerful. However, if the communication channels are bounded, there is a
strong link between execution sequences of the communicating automaton and
Mazurkiewicz traces [21]. Actually we can even handle even the case where
the assumption about bounded channels is relaxed by asking that they are
are bounded for at least one scheduling of message receptions [18]. Producer-
consumer behaviors are captured by this second setting.

Multiply nested words with various bounds on stacks [23,24,31] are an
attractive model for concurrent programs with recursion, because of their decid-
ability properties and expressiveness. In [7] the model is extended to nested
Mazurkiewicz traces and Zielonka’s construction is lifted to this setting.

We do not survey here recent results on synthesis of open systems and control
for Zielonka automata. The interested reader is referred to [14,15,17,26,29].

Verification. As we already mentioned, automated verification of concurrent
systems encounters major problems due to state explosion. One particularly
efficient technique able to addresses these problems is known as partial order
reduction (POR) [20,30,35]. It consists of restricting the exploration of the state
space by avoiding the execution of similar, or equivalent runs. The notion of
equivalence of runs used by POR is based on the model of Mazurkiewicz traces.
The efficiency of POR methods depends of course on the precise equivalence
notion between executions. More recent methods such as dynamic POR work
without storing explored states explicitly and aim at improving the precision by
computing additional information about (non)-equivalent executions [4].

There are many other contexts in verification where analysis can be made
more efficient using equivalences based on Mazurkiewicz traces. One such exam-
ple is counter-example generation based on partial (Mazurkiewicz) traces instead
of linear traces, as done in [8]. Another example is the detection of concurrency
bugs such as atomicity violations [13], non-linearizability and sequential incon-
sistency [6].

References

1. Akka. http://akka.io/
2. Erlang programming language. http://www.erlang.org/
3. Scala programming language. http://www.scala-lang.org/
4. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order

reduction. In: POPL 2014, pp. 373–384. ACM (2014)
5. Akshay, S., Dinca, I., Genest, B., Stefanescu, A.: Implementing realistic asynchro-

nous automata. In: FSTTCS 2013, LIPIcs, pp. 213–224. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2013)

6. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for
concurrent objects. In: LICS 1996, pp. 219–228. IEEE (1996)

7. Bollig, B., Grindei, M.-L., Habermehl, P.: Realizability of concurrent recursive
programs. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 410–424.
Springer, Heidelberg (2009)

http://akka.io/
http://www.erlang.org/
http://www.scala-lang.org/

On Distributed Monitoring and Synthesis 61

8. Černý, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Efficient
synthesis for concurrency by semantics-preserving transformations. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 951–967. Springer, Heidelberg
(2013)

9. Church, A.: Logic, arithmetics, and automata. In: Proceedings of the International
Congress of Mathematicians, pp. 23–35 (1962)

10. Cori, R., Métivier, Y., Zielonka, W.: Asynchronous mappings and asynchronous
cellular automata. Inf. Comput. 106, 159–202 (1993)

11. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

12. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures: parts i and ii. Acta
Informatica 27(4), 315–368 (1989)

13. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer,
Heidelberg (2008)

14. Gastin, P., Lerman, B., Zeitoun, M.: Distributed games with causal memory are
decidable for series-parallel systems. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS
2004. LNCS, vol. 3328, pp. 275–286. Springer, Heidelberg (2004)

15. Gastin, P., Sznajder, N.: Fair synthesis for asynchronous distributed systems. ACM
Trans. Comput. Log. 14(2), 9 (2013)

16. Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Optimal Zielonka-Type
construction of deterministic asynchronous automata. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 52–63. Springer, Heidelberg (2010)

17. Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Asynchronous games over
tree architectures. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 275–286. Springer, Heidelberg (2013)

18. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Inf. Comput. 204(6),
920–956 (2006)

19. Genest, B., Muscholl, A.: Constructing exponential-size deterministic zielonka
automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 565–576. Springer, Heidelberg (2006)

20. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of dead-
lock freedom and safety properties. Form. Meth. Syst. Des. 2(2), 149–164 (1993)

21. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M., Thiagarajan, P.S.: A
theory of regular MSC languages. Inf. Comput. 202(1), 1–38 (2005)

22. Krishna, S., Muscholl, A.: A quadratic construction for Zielonka automata with
acyclic communication structure. Theor. Comput. Sci. 503, 109–114 (2013)

23. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS 2007, pp. 161–170. IEEE (2007)

24. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: fixed-
point, sequentialization, and tree-width. In: FSTTCS 2012, LIPIcs, pp. 173–184.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

25. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Oper. Syst. 21(7), 558–565 (1978)

26. Madhusudan, P., Thiagarajan, P.S., Yang, S.: The MSO theory of connectedly
communicating processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS,
vol. 3821, pp. 201–212. Springer, Heidelberg (2005)

27. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
report PB 78, Aarhus University, Aarhus (1977)

62 A. Muscholl

28. Mukund, M., Sohoni, M.A.: Keeping track of the latest gossip in a distributed
system. Distrib. Comput. 10(3), 137–148 (1997)

29. Muscholl, A., Walukiewicz, I.: Distributed synthesis for acyclic architectures. In:
FSTTCS 2014, LIPIcs, pp. 639–651. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2014)

30. Peled, D.A.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)

31. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

32. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Providence (1972)

33. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc.
IEEE 77(2), 81–98 (1989)

34. Stefanescu, A.: Automatic synthesis of distributed transition systems. Ph.D. thesis,
Universität Stuttgart (2006)

35. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) APN 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

36. Zielonka, W.: Notes on finite asynchronous automata. RAIRO-Theor. Inf. Appl.
21, 99–135 (1987)

Unconventional Computing: Do We Dream
Too Much?

Gheorghe Păun(B)

Institute of Mathematics of the Romanian Academy, PO Box 1-764,
014700 Bucureşti, Romania

gpaun@us.es

Abstract. After briefly mentioning the motivation and the “dreams” of
unconventional computing (with an eye on natural computing, especially
on bio-inspired computing), we ask ourselves whether these “dreams”
are realistic, and end with a couple of related research issues from the
membrane computing area.

1 Motivation of Unconventional Computing

The motivation of unconventional computing, in particular, of natural computing
(here we understand it mainly in the sense of bio-inspired computing, although in
many cases – see, e.g., [22] – also quantum computing and cellular automata are
included), comes from at least three directions: (i) the limits of current (“Turing-
von Neumann”) computers, (ii) the need for new modeling and simulating tools
for sciences like biology, ecology, even physics, (iii) the intrinsic human curiosity,
the need to know, to predict, to build mathematical models.

The computers are the most influential invention of the last century, but they
have both theoretical limits and practical limits (the two categories do not com-
pletely overlap – but this can be the subject of a separate discussion). Among
the theoretical ones, two are fundamental: (1) current computers (although they
are not Turing machines in the strict, mathematical meaning of the term) cannot
compute “beyond the Turing barrier”, cannot compute what is Turing uncom-
putable, and (2) for current computers, problems of a complexity higher than the
polynomial one are intractable, they cannot be solved in a feasible time. In gen-
eral, problems which are NP-complete are (considered) intractable – although
most non-trivial practical problems are of this type. (Cryptography is crucially
dependent on this assumption.)

Breaking “the Turing barrier” was a constant concern of computability, and
the term hypercomputability was coined to name research in this direction. The
bibliography is large, we mention here only [6,24].

Much larger is the literature related to complexity classes P and NP and,
especially in the unconventional computing area, the bibliography of attempts
to “break the NP barrier”. Symmetrical to the hypercomputation concept, the
term fypercomputation was proposed in [18] as a name for the research aiming
to find polynomial time solutions to computationally hard problems, typically,
NP-complete problems (the initial “f” is taken from “fast”).
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 63–70, 2015.
DOI: 10.1007/978-3-319-20028-6 7

64 G. Păun

Fypercomputability is the primary goal of unconventional computing and
this is a very important issue from a practical point of view, [5], although it
is believed, see, e.g., [6], that “computing the uncomputable” could have even
more important consequences than proving that P = NP.

2 Dreams of Unconventional Computing

The term “unconventional” is not precisely defined, we use it here in the vague
sense of “non-classic” in theory (not belonging to the “standard” automata
theory, based on Turing machines and their variants, restrictions and gener-
alizations) and “not electronic” in the form of implementation, having in mind
especially bio-inspired computing (DNA computing, membrane computing, evo-
lutionary and neural computing, the long list of algorithms abstracted from bio-
processes, such as immune, ant colony, bee colony, swarm, cuckoo, strawberry
algorithms), water flowing algorithms and cultural computing, as well as quan-
tum computing and analog computation, optical computing and many others.

As said before, solving problems considered of an exponential complexity (we
assume P �= NP) in polynomial time is the first dream of all these directions
of research (even if the solution is not provably optimal, but “good enough”,
whatever this means – e.g., close to optimal with a known probability). In
evolutionary-like computing the strategy is based on an intriguing slogan: when
you do not know where to, go randomly! Actually, the random walk through the
space of candidate solutions is controlled in a way which imitates the Darwinian
evolution, or the way the ants and the bees look for food, and so on and so
forth. Combined with the impressive brute force of the modern computers, this
strategy, which is only a metaphoric imitation of biological processes, proves to
work surprisingly well in surprisingly many situations.

Although usually not explicitly stated, also hypercomputability is a dream of
unconventional computing, starting, for instance, from the (debatable, of course)
observation that “the brain is not a Turing machine” and, similarly, from other
“computations” taking place in nature which seem to be of a non-Turing type.
There are many basic ideas of hypercomputing, [24], which lead to devices more
powerful than Turing machines (typically, able to answer the halting problem).
Some of these ideas were extended also to natural computing models. An example
is the acceleration, see [3] (the first step takes one time unit, but the machine
learns, so the next step takes only half of a time unit, and so on, each step taking
half of the time needed for the previous step; note the important distinction
between the internal clock and the external one: infinitely many internal steps
are performed in two external time units).

There also are other goals/dreams of unconventional computing, which can
themselves be called “unconventional” with respect to the classical computer sci-
ence. We only list some of them: energy efficiency, also related to the reversibility
issue; adaptability, learnability, evolvability; self-healing, robustness with respect
to hardware errors.

We somewhat moved from theory to engineering, so let us go further towards
practice (the three dimensions, theory, computer engineering, and applications,

Unconventional Computing: Do We Dream Too Much? 65

are intimately related, of course). The internet brought into the stage old-new
concepts, such as unsynchronized/asynchronous computation, amorphous com-
puting, cloud computing. Biology asks for models of cells (this is considered
the main challenge of the bioinformatics, after the completion of the Genome
Project), medicine asks for nano-robots able to scan the body and deliver medi-
cines in the necessary places, repair genes, kill viruses (a project of such a nano-
robot, built from DNA molecules, was presented in [2]; note that repairing genes,
identifying and breaking in parts viruses are string editing operations, hence they
pertain to DNA computing).

Then, on top of all these, there is a “meta-dream”, actually, a forecast: both
physics and biology will gain a lot from bringing among their central paradigms
the information and the computability, new ages of these sciences are foreseen,
based on these paradigms. For physics, this seems to be enhanced by the pro-
gresses in quantum computing (see, e.g., [10,27]). For biology, the issue is more
urgent, taking into account that biology is not yet a mathematized science, the
biologists need tools and techniques for modeling and simulating processes at all
levels, from cells to eco-systems. A huge quantity of empirical data was gathered,
but the tools to process these data were not correspondingly developed. In [14]
the term infobiotics was proposed for this informational-computational biology,
in [19] we propose the term infobiology (symmetrical to the currently used term
bioinformatics).

Significant for our discussion, a lot of words were spent around the systems
biology syntagma, a planned research area aiming to transform biology and medi-
cine into a “precise engineering” (see, e.g., [12]).

3 Difficulties and Limits

And now, we come to the question in the title: are these goals and dreams real-
istic, or we dream too much? Of course, we do not have to underestimate the
progresses in science and technology, in particular, in bioengineering, there are
many funny examples of this kind in the history. However, in many cases, after
a successful experiment (e.g., in bio-computing), the progresses were disappoint-
ing, not confirming the initial enthusiasm. The typical example is that of DNA
computing, with Adleman’s experiment, [1], opening a new research area, which,
after twenty years has not confirmed yet the big hopes of the beginning.

There are many details to be discussed here. The scientists are, in general,
moderately enthusiastic, but they are “forced” to be so in order to “sell” their
results, to get projects, hence money. Then, mass-media is always ready to inflate
the facts, to predict “scientific revolutions” (see, as an example, the media echoes
of the “doctor in a cell” from [2] and of similar – science fiction at this moment –
ideas). As another illustration we can mention the noise around systems biology,
in many respects not too much more than an reincarnation of system theory
applied to biology, [25], not very successful in its first stages, in sixties, because
of various reasons, connected to both computer science and biology development
at that time.

66 G. Păun

All these pertain to the politics and the sociology of science. Here we are
more interested in the difficulties and, especially, the limits coming from science
and technology. There are many of them.

On paper we work with idealized objects, e.g., DNA molecules; in a test
tube or in a cell they behave “slightly” differently. There are three different
“worlds”, in vivo, in vitro, in info, and the notions, ideas, models cannot be
directly transferred among them. The models of a cell are made of symbols,
they are reductionistic, abstract, they always work as prescribed, which is not
the case in reality. The goal of life is life, not computing. We, the computer
scientists see computations everywhere. The biochemistry is in a large extent
nondeterministic, probabilistic, context-dependent, the controls are complex and
not always known or easy to find. Nature is redundant, it has “enough time”, it
affords to try and, if the result is not acceptable, to discard it. All these are far
from what we need and what we can do in computer science. That is why the
modeling and the simulation of a cell, the minimal entity which is unanimously
considered alive, is so difficult. That is why it is difficult to ask the biomolecules
or the cells to compute.

Going upwards from the cell, the things become still more difficult, first
because the systems and processes we have to deal with are much more complex.
Small is beautiful, big is necessary (but difficult to handle). At the level of “big”
there appear such phenomena as emergence, synergy, system effect, which are
often non-predictable (this can be related to precise mathematical results: Rice
theorem tells us that no non-trivial question about a model of the cell which is
known to be Turing equivalent – and most such models in membrane computing
are so – can be algorithmically answered).

How to model such “things” like life and intelligence providing that we do not
even have good (mathematical) definitions of them?!... This raises the question
whether such definitions are possible, in general, or, more realistic, possible in
the framework of the today mathematics. It was said in several places (see the
references of [17], from where several ideas are recalled here) that it is perhaps
necessary to wait for a new mathematics in order to face such tasks, like modeling
life and intelligence.

But, also in terms of what we have now we can find intrinsic limits of uncon-
ventional computing.

Three are my favorite results of this kind. They are mentioned in the order
of the time of their publication.

The first one is Gandy’s approach to what is (to use Hilbert’s term) mechan-
ically computable, see [9]. In the attempt to free the Turing-Church thesis of
any anthropic meaning, Gandy considered a general algebraic definition of a
computing device, and then proved that any computing machine fulfilling the
(four) conditions in this definition can be simulated by a Turing machine. The
generality of Gandy’s definition and his theorem can be seen as a proof that
hypercomputing is a difficult task – and this fits with Martin Davis opinion [7,8]
that “hypercomputing is a myth”, moreover, that the computing machineries
more powerful than the Turing machine which were reported so far are based

Unconventional Computing: Do We Dream Too Much? 67

on dishonest tricks (the power is introduced in the definition, in disguise, in the
form of infinite processes, real numbers, other infinite ingredients, hence there is
no surprise that the device is powerful).

Next, one must recall Conrad theorems, [4]. Basically, they say that the three
desired characteristics of computing devices, universality (hence programmabil-
ity), efficiency and learnability/evolvability, are contradictory, there cannot exist
a computing device simultaneously having all these three properties. These the-
orems are of a kind which is famous in mathematics, impossibility theorems,
proving that when we demand simultaneously certain properties, it happens
that there is no object having all these properties. Gödel theorems and Arrow
theorem (in social choice) are classic examples.

As the third limiting theorem in natural computing/optimization we can con-
sider the (in) famous no free lunch theorem of Wolpert and Macready, [26], say-
ing, in short, that in average all methods of approximate optimization are equally
good over all optimization problems. “Equally good” can also be read “equally
bad”, which can explain the plethora of approximate optimization methods –
each new one finds a niche where it is better than others, and so on....

Returning to applications in biology, one often makes lists of properties
which, for instance, the mathematical models should possess: adequacy and rel-
evance, programmability and scalability, efficiency, understandability, emergent
behavior. The question which arises is obvious: can all these properties be simul-
taneously reached, or also in the biological modeling area there exist impossibil-
ity theorems, like Conrad theorems? I bet for the existence of such impossibility
results.

4 Research Topics

The last lines of the previous section already formulated a research topic. There
are many others – of course, we are interested only in those which are related to
the discussion here, concerning the goals/dreams of unconventional computing.

Two are the basic directions of future research in this respect: hypercom-
puting and fypercomputing. We consider them only in terms of membrane com-
puting, the area we know better, [21]. The only ideas considered so far in the
direction of hypercomputing were acceleration [3] and evolutionary lineages of P
systems [23]. Many further ideas (well, “tricks”, in terms of Martin Davis) can
be found in the literature [6,24] – which ones can be extended also to membrane
computing? Which of them can also have a biological motivation? In particular,
what about spiking neural P systems [11] able of hypercomputation? No result
of this type is known, not even the acceleration used in [3] was extended to SN
P systems. This issue is especially relevant, taking into account the fact that the
brain is considered non-Turing.

Fypercomputing is a basic research topic in membrane computing, encour-
aged by the fact that there are many biological processes which can be used in
order to produce an exponential space in linear time, so that we can trade-off
time for space, thus essentially speeding-up the computation. Membrane divi-
sion, membrane creation (plus the possibility of producing exponentially many

68 G. Păun

objects in linear time), membrane separation, neuron division and neuron bud-
ding, string replication are such processes. An almost systematic study of the
effect of these operations on various classes of P systems was carried out – but
still efforts are needed in this respect to complete the map.

A special case is that of numerical P systems from [20], proved in [13] to
be efficient for a variant used in robot control, those with “enzymatic con-
trol”, [16]. What about numerical P systems without the enzymatic control?
In the above mentioned papers, these systems are used for computing functions
and no research was reported where numerical P systems are used for solving
decision problems. This remains as a research topic. To this aim, is it necessary
to introduce further ingredients, such as membrane division, or these systems
are intrinsically efficient?

An interesting and natural issue is to try to transform the ideas which lead
to hypercomputation to tools for obtaining fypercomputation. As an example,
acceleration is such a tool, in two time units (external time), any computation
ends (although internally one performs an infinite number of steps). The first
task is to define complexity classes for such devices, then to compare them with
each other and with standard complexity classes.

Natural (bio-inspired) computing raises certain complexity problems which
were not considered in the classical complexity theory, [15]. We only mention
three of them, in the form already discussed – but not completely settled – in
the membrane computing framework: (1) allowing non-uniform solutions (called
semi-uniform when the algorithms are produced in polynomial time, starting
from instances, not from the size of the problem), comparing uniform and semi-
uniform complexity classes; (2) using pre-computed resources, an arbitrarily
large initial workspace, without containing “too much” information, activated
by introducing a problem in a well delimited portion of it; (3) allowing nonde-
terminism, but taking care that the device is confluent, either converges to a
unique configuration, from where the computation continues deterministically
(strong confluence), or all computations halt and provide the same result (weak,
logical confluence).

Of course, a major problem concerns the implementations. Most chapters of
natural computing aim at finding ways to better use the existing computers – see
as a typical example the case of evolutionary computing. DNA computing came
with a new promise, of using molecules as a support for computation. This goes
close to analog computing, where the device is the big novelty, not the possible
model behind it. At this moment, no commercial unconventional computer is
known – maybe the D-wave computers are a counterexample, but the extent in
which they can be considered quantum computers is still debatable.

But, as we said before, we have to be careful, not to underestimate the
progress, in particular, that of unconventional computing!...

Unconventional Computing: Do We Dream Too Much? 69

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 226, 1021–1024 (1994)

2. Benenson, Y., Shapiro, E., Gill, B., Ben-Dor, U., Adar, R.: Molecular computer.
A ‘Smart Drug’ in a test tube. In: Ferretti, C., Mauri, G., Zandron, C. (eds.)
Proceedings of Tenth DNA Computing Conference, vol. 49, Milano, 2004, (abstract
of invited talk), Univ. of Milano-Bicocca (2004)

3. Calude, C., Păun, G.: Bio-steps beyond turing. BioSystems 77, 175–194 (2004)
4. Conrad, M.: The price of programmability. In: Herken, R. (ed.) The Universal

Turing Machine: A Half-Century Survey, pp. 285–307. Kammerer and Unverzagt,
Hamburg (1988)

5. Cook, S.: The importance of the P versus NP question. J. ACM 50(1), 27–29
(2003)

6. Copeland, B.J.: Hypercomputation. Mind. Mach. 12(4), 461–502 (2002)
7. Davis, M.: The myth of hypercomputation. In: Teuscher, C. (ed.) Alan Turing:

The Life and Legacy of a Great Thinker, pp. 195–212. Springer, Berlin (2004)
8. Davis, M.: Why there is no such discipline as hypercomputation. Appl. Math.

Comput. 178, 4–7 (2006)
9. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., et al.

(eds.) The Kleene Symposium, pp. 123–148. North-Holland, Amsterdam (1980)
10. Gruska, J.: Quantum Computing. McGraw-Hill, Maidenhead (1999)
11. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Infor-

maticae 71, 279–308 (2006)
12. Kitano, H.: Systems biology. a brief overview. Science 295, 1662–1664 (2002)
13. Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Enzymatic numerical P sys-

tems using elementary arithmetic operations. In: Alhazov, A., Cojocaru, S., Gheo-
rghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol.
8340, pp. 249–264. Springer, Heidelberg (2014)

14. Manca, V.: Infobiotics: Information in Biotic Systems. Springer, Berlin (2013)
15. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
16. Pavel, A.B., Vasile, C.I., Dumitrache, I.: Robot localization implemented with

enzymatic numerical p systems. In: Prescott, T.J., Lepora, N.F., Mura, A., Ver-
schure, P.F.M.J. (eds.) Living Machines 2012. LNCS, vol. 7375, pp. 204–215.
Springer, Heidelberg (2012)

17. Păun, G.: From cells to (silicon) computers, and back. In: Cooper, B.S., Lowe, B.,
Sorbi, A. (eds.) New Computational Paradigms. Changing Conceptions of what is
Computable, pp. 343–371. Springer, New York (2008)

18. Păun, G.: Towards “fypercomputations” (in membrane computing). Essays dedi-
cated to jürgen dassow on the occasion of his 65th birthday. In: Bordihn, H., Kutrib,
M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 207–220. Springer,
Heidelberg (2012)

19. Păun, G.: Looking for Computers in the Biological Cell. After Twenty Years. The
Publishing House of the Romanian Academy, Bucharest (2014). (in Romanian)

20. Păun, G., Păun, R.: Membrane computing and economics: numerical P systems.
Fundamenta Informaticae 73, 213–227 (2006)

21. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, New York (2010)

22. Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing.
Springer, Berlin (2012)

70 G. Păun

23. Sośık, P., Valik, O.: On evolutionary lineages of membrane systems. In: Freund,
R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp.
67–78. Springer, Heidelberg (2006)

24. Syropoulos, A.: Hypercomputation: Computing Beyond the Church-Turing Bar-
rier. Springer, Berlin (2008)

25. Wolkenhauer, O.: Systems biology: the reincarnation of systems theory applied in
biology? Brief. Bioinform. 2(3), 258–270 (2001)

26. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1, 67 (1997)

27. Zenil, H. (ed.): A Computable Universe. Understanding and Exploring Nature as
Computation. World Scientific, Singapore (2013)

28. The P Systems Website. http://ppage.psystems.eu

http://ppage.psystems.eu

Newton’s Forward Difference Equation
for Functions from Words to Words

Jean-Éric Pin(B)

LIAFA, Université Paris-Diderot and CNRS, Case 7014, 75205 Paris Cedex 13, France
jean-eric.pin@liafa.univ-paris-diderot.fr

Abstract. Newton’s forward difference equation gives an expression of
a function from N to Z in terms of the initial value of the function and the
powers of the forward difference operator. An extension of this formula
to functions from A∗ to Z was given in 2008 by P. Silva and the author.
In this paper, the formula is further extended to functions from A∗ into
the free group over B.

Let A be a set. In this paper, we denote by A∗ the free monoid over A and by
FG(A) the free group over A. The empty word, which is the unit of both A∗

and FG(A), is denoted by 1.

Original motivation. The characterization of the regularity-preserving func-
tions is the original motivation of this paper, but since there is a long way to go
from this problem to Newton’s forward difference equation, it is worth relating
the story step by step.

A function f from A∗ to B∗ is regularity-preserving if, for each regular lan-
guage L of B∗, the language f−1(L) is also regular. Several families of regularity-
preserving functions have been identified in the literature [3,8,10–12,18,19], but
finding a complete description of these functions seems to be currently out of
reach. Following a dubious, but routine mathematical practice consisting to offer
generalizations rather than solutions to open problems, I proposed a few years
ago the following variation: given a class C of regular languages, characterize the
C-preserving functions. Of course, a function f is C-preserving if L ∈ C implies
f−1(L) ∈ C.

For instance, a description of the sequential functions preserving star-free
languages (respectively group-languages) is given in [17]. A similar problem was
also recently considered for formal power series [4]. The question is of special
interest for varieties of languages. Recall that a variety of languages V asso-
ciates with each finite alphabet A a set V(A∗) of regular languages closed under
finite Boolean operations and quotients, with the further property that, for each
morphism ϕ : A∗ → B∗, the condition L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

Algebra and topology step in. It is interesting to see how algebra and topol-
ogy can help characterizing V-preserving functions. Let us start with algebra.

Eilenberg [5] proved that varieties of languages are in bijection with vari-
eties of finite monoids. A variety of finite monoids is a class of finite monoids
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 71–82, 2015.
DOI: 10.1007/978-3-319-20028-6 8

72 J.-É. Pin

closed under taking submonoids, homomorphic images and finite products. For
instance, the variety of all finite monoids corresponds to the variety of regular
languages, and the variety of aperiodic finite monoids corresponds to the variety
of star-free languages.

Topology is even more relevant to our problem. To each variety of finite
monoids V, one can attach a pseudometric dV, (called the pro-V pseudometric,
see [1,14,16] for more details). Now, if V is the variety of languages corresponding
to V, the following property holds: a function is V-preserving if and only if it is
uniformly continuous with respect to dV. This result motivated P. Silva and the
author to investigate more closely uniform continuity with respect to various
varieties of monoids [14]. Simultaneously, we started to investigate a specific
example, the variety Gp of finite p-groups, where p is a given prime [13,15].
Then the corresponding pseudometric is a metric denoted by dp.

This case is interesting because there are relevant known results both in
algebra and in topology. First, Eilenberg and Schützenberger [5, p. 238] gave a
very nice description of the languages recognized by a p-group. Secondly, the
free monoid over a one-letter alphabet is isomorphic to N, and the metric dp

is the p-adic metric, a well known mathematical object. The completion of the
metric space (N, dp) is the space of p-adic numbers. Thirdly, the uniformly con-
tinuous functions from (N, dp) to itself are characterized by Mahler’s theorem,
a celebrated result of number theory. This is the place where Newton’s forward
difference equation is needed.

Newton’s forward difference equation. This result states that for each func-
tion f : N → Z and for all n ∈ N, the following equality holds:

f(n) =
∞∑

k=0

(
n

k

)
(Δkf)(0) (1)

where Δ is the difference operator, defined by (Δf)(n) = f(n + 1) − f(n).
Mahler’s theorem states that a function f : N → N is uniformly continuous for

dp if and only if limk→∞|Δkf(0)|p = 0, where |n|p denotes the p-adic norm of n.
This gives a complete characterization of the dp-uniformly continuous functions
from a∗ to a∗.

An extension of Mahler’s theorem to functions from A∗ to N was given in
[13,15], giving in turn a complete characterization of the dp-uniformly continuous
functions from A∗ to a∗. This result relies on an extension of Newton’s forward
difference equation which works as follows. For each function f : A∗ → Z and
for all u ∈ A∗, the following equality holds:

f(u) =
∑

v∈A∗

(
u

v

)
(Δvf)(1) (2)

where (u
v) denotes the binomial coefficient of two words u and v (see [5, p. 253]

and [9, Chap. 6]). If v = a1 · · · an, the binomial coefficient of u and v is defined
as follows (

u

v

)
=

∣∣{(u0, . . . , un) | u = u0a1u1 . . . anun}∣∣.

Newton’s Forward Difference Equation for Functions from Words to Words 73

The difference operator Δw is now defined by induction on the length of the
word w by setting Δ1f = f and, for each letter a,

Δaf(u) = f(ua) − f(u)
Δawf(u) = (Δa(Δwf)(u)

In order to further extend Mahler’s theorem to functions from A∗ to B∗ (for
arbitrary finite alphabets A and B), one first need to find a Newton’s forward
difference equation for functions from A∗ to FG(B) and this is precisely the
objective of this paper. As the reader will see, it is relatively easy to guess the
right formula, but the main difficulty is to find the appropriate framework to
prove it formally.

The paper is organized as follows. An intuitive approach to the forward dif-
ference equation is given in Sect. 1. The main tools to formalize this intuitive
approach are the near rings, introduced in Sect. 2 and the noncommutative Mag-
nus transformation presented in Sect. 3. The formal statement and the proof of
the forward difference equation are given in Sect. 4.

1 The Difference Operator

Let f : A∗ → FG(B) be a function. For each letter a, the difference operator
Δaf is the map from A∗ to FG(B) defined by

(Δaf)(u) = f(u)−1f(ua) (3)

One can now define inductively an operator Δwf : A∗ → FG(B) for each word
w ∈ A∗ by setting Δ1f = f , and for each letter a ∈ A and each word w ∈ A∗,

Δawf = Δa(Δwf). (4)

One could also make use of Δwa instead of Δaw in the induction step, but the
result would be the same, in view of the following result:

Proposition 1.1. The following formulas hold for all v, w ∈ A∗:

Δvwf = Δv(Δwf)

Proof. By induction on |v|. The result is trivial if v is the empty word. If v = au
for some letter a, we get Δvwf = Δauwf = Δa(Δuwf). Now by the induction
hypothesis, Δuwf = Δu(Δwf) and thus Δvwf = Δa(Δu(Δwf)) = Δau(Δwf) =
Δv(Δwf). ��
For instance, we get

(Δ1f)(u) = f(u)

(Δaf)(u) = f(u)−1f(ua)

(Δaaf)(u) = f(ua)−1f(u)f(ua)−1f(uaa)

74 J.-É. Pin

(Δbaaf)(u) = f(uaa)−1f(ua)f(u)−1f(ua)f(uba)−1f(ub)f(uba)−1f(ubaa)

(Δabaaf)(u) = f(ubaa)−1f(uba)f(ub)−1f(uba)f(ua)−1f(u)f(ua)−1f(uaa)

f(uaaa)−1f(uaa)f(ua)−1f(uaa)f(uaba)−1f(uab)f(uaba)−1

f(uabaa)

A forward difference equation should express f in terms of the values of (Δwf)(1),
for all words w. To simplify notation, let us set, for all w ∈ A∗:

Δw = (Δwf)(1)

A little bit of computation leads to the formulas

f(1) = Δ1

f(a) = Δ1Δa f(b) = Δ1Δb

f(ab) = Δ1ΔaΔbΔab f(ba) = Δ1ΔbΔaΔba

f(bab) = Δ1ΔbΔaΔbaΔbΔbbΔabΔbab f(aba) = Δ1ΔaΔbΔabΔaΔaaΔbaΔaba

which give indeed a forward difference equation for f(w) for a few values of w.
But how to find a closed formula valid for all values of w? To do so, acting as
a physicist, we will generate some formulas without worrying too much about
correctness. Then we will describe a rigorous formalism to justify our equations.

As a first step, our exponential notation suggests to write Δu+v for ΔuΔv,
which gives

f(1) = Δ1

f(a) = Δ1+a f(b) = Δ1+b

f(ab) = Δ1+a+b+ab f(ba) = Δ1+b+a+ba

f(bab) = Δ1+b+a+ba+b+bb+ab+bab f(aba) = Δ1+a+b+ab+a+aa+ba+aba

The next step is to observe that, in an appropriate noncommutative setting, one
can write

(1 + a)(1 + b) = 1 + a + b + ab

(1 + b)(1 + a) = 1 + b + a + ba

(1 + b)(1 + a)(1 + b) = 1 + b + a + ba + b + bb + ab + bab

(1 + a)(1 + b)(1 + a) = 1 + a + b + ab + a + aa + ba + aba

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

which gives for instance the noncommutative difference equations

f(aba) = Δ(1+a)(1+b)(1+a) and f(bab) = Δ(1+b)(1+a)(1+b)

It is now easy to guess a similar equation for f(u), for any word u.
But it is time to tighten the bolts and justify our adventurous notation. A

little bit of algebra is in order to give grounds to the foregoing formulas. Let us
start by introducing the relatively little-known notion of a near-ring.

Newton’s Forward Difference Equation for Functions from Words to Words 75

2 Near-Rings

A (left) near-ring (with unit) is an algebraic structure K equipped with two
binary operations, denoted additively and multiplicatively, and two elements 0
and 1, satisfying the following conditions:

(1) K is a group (not necessarily commutative) with identity 0 under addition,
(2) K is a monoid with identity 1 under multiplication,
(3) multiplication distributes on the left over addition: for all x, y, z ∈ K, z(x +

y) = zx + zy.

An element of z of K is distributive if, for all x, y ∈ K, (x + y)z = xz + yz.
It follows from the axioms that x0 = 0 and x(−y) = −xy for all x, y ∈ K.

However, it is not necessarily true that 0x = 0 and (−x)y = −xy. It is even
possible that (−1)x is not equal to −x.

A well-known example of near-ring is the set of all transformations on a group
G, equipped with pointwise addition as addition and composition as product.

Let us now survey a construction first introduced by Fröhlich [6,7]. We follow
the presentation of Banaschewski and Nelson [2]. Let M be a monoid. We want
to construct a near-ring FG[M] in which the additive group is the free group
FG(M) on the set M and the multiplication extends the operation on M . This
leads us to denote the operation on M multiplicatively and to use an additive
notation for the free group1.

Let us consider terms of the form

ε1u1 + · · · + εkuk

with ε1, . . . , εk ∈ {−1,+1} and u1, . . . , uk ∈ M . A term is reduced if it does not
contain any subterms of the form u + −u or −u + u. The reduction of a term is
obtained by iteratively ruling out the subterms of the form u + −u or −u + u
until the term is reduced. One can show that these operations can be done in
any order and lead to the same reduced term.

The elements of FG[M] can be represented by reduced terms. The sum of
two elements ε1u1 + · · · + εrur and ε1v1 + · · · + εsvs is obtained by reducing
the term

ε1u1 + · · · + εrur + ε1v1 + · · · + εsvs

The empty term (corresponding to the case k = 0) is the identity for this addition
and is simply denoted by 0. The inverse of ε1u1 + · · · + εkuk is −εkuk + · · · +
−ε1u1.

We now define a multiplication on FG[M] in two steps. First, given an ele-
ment ε1u1 + · · · + εrur of FG[M] and m ∈ M , we set

(ε1u1 + · · · + εrur)m = (ε1u1m + · · · + εrurm)
(ε1u1 + · · · + εrur)(−m) = (−εrurm + · · · + −ε1u1m)

1 Therefore, the notation FG(M) and FG[M] refer to the same set, but to different
structures: the free group on M in the first case, the free near semiring on M in the
latter case.

76 J.-É. Pin

Now, the product of two elements ε1u1 + · · · + εrur and ε′
1u

′
1 + · · · + εsu

′
s

of FG[M] is defined by

(ε1u1 + · · · + εrur)(ε1u′
1 + · · · + εsu

′
s) = (ε1u1 + · · · + εrur)(ε′

1u
′
1)

+ (ε1u1 + · · · + εrur)(ε′
2u

′
2) + · · · + (ε1u1 + · · · + εrur)(ε′

su
′
s)

(6)

This operation defines a multiplication on FG[M]. Together with the addi-
tion, FG[M] is now equipped with a structure of near-ring.

Since (u)(v) = (uv), the monoid M embeds into the multiplicative monoid
FG[M] and it is convenient to simplify the notation (u) to u. With this conven-
tion, the identity of the multiplication of FG[M] is denoted by 1. Furthermore
an element (u1, . . . , ur) can be written as u1 + · · · + ur and thus (6) is a con-
sequence of the following natural formulas, where u1, . . . , ur, v1, . . . , vs, v ∈ M
and w ∈ FG[M]:

(u1 + · · · + ur)v = u1v + · · · + urv (7)
w(v1 + · · · + vs) = wv1 + · · · + wvs (8)

The near-ring FG[M] has the further convenient property that 0 is distribu-
tive in FG[M] since 0x = 0 by definition. Moreover, the equality (−x)y = −xy
holds if y ∈ M but is not necessarily true otherwise. Even the relation (−1)y =
−y may fail if y is not an element of M . For instance, if M is the free monoid
{a, b}∗, then (−1)(a + b) = −a − b but −(a + b) = −b − a.

Note that if M is the trivial monoid, then FG[M] is isomorphic to the ring
Z of integers. In the sequel, M will be the free monoid A∗.

3 Noncommutative Magnus Transformation

Our goal in this section is to justify and to extend the Eq. (5). As explained in
Sect. 2, we view FG[A∗] as a near-ring.

3.1 Definition of the Magnus Transformation

The monoid morphism μ from A∗ into the multiplicative monoid FG[A∗] defined,
for each letter a ∈ A, by

μ(a) = 1 + a

is called the Magnus transformation. It extends uniquely to a group morphism
from FG(A∗) to the additive group FG[A∗]. For instance, if A = {a, b}, we get

μ(1) = 1 μ(a) = 1 + a μ(b) = 1 + b

μ(ab) = 1 + a + b + ab μ(1 + a) = 1 + 1 + a

μ(−1 + a − ab) = − 1 + 1 + a − ab − b − a − 1 = a − ab − b − a − 1
μ(aba) = 1 + a + b + ab + a + aa + ba + aba

More generally, for each u ∈ A∗,

μ(au) = μ(a)μ(u) = (1 + a)μ(u) = μ(u) + aμ(u)

Newton’s Forward Difference Equation for Functions from Words to Words 77

Proposition 3.1. The following formula holds for all u ∈ FG[A∗] and v ∈ A∗:

μ(uv) = μ(u)μ(v) (9)

Proof. Since μ is a monoid morphism μ from A∗ into the multiplicative monoid
FG[A∗], (9) holds if u ∈ A∗. Next, if u = ε1u1 + · · ·+εkuk, with u1, . . . , uk ∈ A∗

and ε1, . . . , εk ∈ {−1, 1}, then uv = ε1u1v + · · · + εkukv and hence μ(uv) =
ε1μ(u1)μ(v) + · · · + εkμ(uk)μ(v) = μ(u)μ(v). This proves (9). ��
However, μ is not a monoid morphism for the multiplicative structure of FG[A∗],
since, for instance, μ((1 + a)(1 + b)) �= μ(1 + a)μ(1 + b).

3.2 The Inverse of the Magnus Transformation

Let π be the monoid morphism from A∗ into the multiplicative monoid FG[A∗]
defined, for each letter a ∈ A, by

π(a) = − 1 + a

Then π has a unique extension to a group morphism from FG[A∗] into itself and
enjoys properties similar to those of μ. Just like μ, π is not a monoid morphism
for the multiplicative structure of FG[A∗], but a result analoguous to Proposition
3.1 also holds for π.

Proposition 3.2. The following formula holds for all u ∈ FG[A∗] and v ∈ A∗:

π(uv) = π(u)π(v) (10)

For instance

π(aba) = − ab + b − 1 + a − aa + a − ba + aba

π(abaa) = − aba + ba − a + aa − a + 1 − b + ab − aba + ba − a + aa

− aaa + aa − baa + abaa

π(abab) = − aba + ba − a + aa − a + 1 − b + ab − abb + bb − b + ab

− aab + ab − bab + abab

Observe that, for each letter a ∈ A,

μ(π(a)) = μ(−1 + a) = μ(−1) + μ(a) = −1 + (1 + a) = a (11)
π(μ(a)) = π(1 + a) = π(1) + π(a) = 1 + (−1 + a) = a (12)

It is tempting to conclude from these equalities that π is the inverse of μ, but
the right answer is slightly more involved.

The reversal of a word u = a1 · · · an is the word u = an · · · a1. The reversal
map is a permutation on A∗ which extends by linearity to a group automorphism
of the free group FG[A∗].

78 J.-É. Pin

Proposition 3.3. The following relations hold for all u, v ∈ A∗,

μ(vπ(u)) = μ(v)u (13)

π(μ(u)v) = uπ(v) (14)

Proof. We prove (13) (for all v ∈ A∗) by induction on the length of u. The
result is trivial if u is the empty word. Suppose that u = aw for some letter a.
Observing that u = wa, we get

π(u) = π(w)π(a) = π(w)(−1 + a) = − π(w) + π(w)a

whence

π(u) = − π(w) + aπ(w)

and

vπ(u) = − vπ(w) + vaπ(w)

Applying the induction hypothesis to w, we obtain

μ(vπ(u)) = − μ(vπ(w)) + μ(vaπ(w)) = − μ(v)w + μ(va)w
= − μ(v)w + μ(v)μ(a)w = (−μ(v) + μ(v)(1 + a))w
= μ(v)aw = μ(v)u

which proves (13).
We also prove (14) by induction on the length of u. The result is trivial if u

is the empty word. Suppose that u = wa for some letter a. We get

μ(u) = μ(wa) = μ(w)μ(a) = μ(w) + μ(w)a
whence

μ(u)v = μ(w)v + μ(w)av

and
π(μ(u)v) = π(μ(w)v) + π(μ(w)av)

Applying the induction hypothesis to w, we obtain

π(μ(u)v) = wπ(v) + wπ(av) = w(π(v) + π(av))
Now, since av = va, one gets π(av) = π(v)π(a) and hence

π(v) + π(av) = π(v) + π(v)π(a) = π(v) + π(v)(−1 + a)

= π(v)a = aπ(v)
and finally

π(μ(u)v) = waπ(v) = uπ(v)

which proves (14). ��

Newton’s Forward Difference Equation for Functions from Words to Words 79

Corollary 3.4. The function μ : FG[A∗] → FG[A∗] is a bijection and its
inverse is defined by

μ−1(u) = π(u) (15)

Proof. Taking v = 1 in (13) and (14) shows that for all u ∈ A∗, μ(π(u)) = u and
π(μ(u)) = u. The result follows since μ, π and the maps u → μ(u) and u → π(u)
are group morphisms. ��

4 Forward Difference Equation

Let F be the set of all functions from A∗ into FG(B). Then F is a group under
pointwise multiplication defined by setting

(fg)(x) = f(x)g(x)

whose identity is the constant map onto the identity of FG(B). Furthermore,
the inverse of f in this group is given by the formula

f−1(x) = (f(x))−1

The map (u, f) → Δuf from A∗ ×F to F defines a left action of A∗ on F , since
Δ1f = f and, by Proposition 1.1, Δuvf = Δu(Δvf) for all u, v ∈ A∗.

This action can be extended by linearity to a map from FG[A∗] × F to F as
follows: for each element u = ε1u1 + · · ·+εkuk of FG[A∗], we define the function
Δuf by

(Δuf) = (Δu1f)ε1 · · · (Δukf)εk

In particular, Δ0f is the constant map onto the identity of FG(B) and Δ1f = f .
We are interested in the coefficients (Δuf)(1). To simplify notation, we intro-

duce the following short forms, for all u, v ∈ FG[A∗]:

Δu = (Δuf)(1) Δu · v = (Δuf)(v)

The next proposition gives some useful relations between these coefficients.

Proposition 4.1. The following formulas hold for all u, v ∈ A∗ and a ∈ A:

(Δu · v)(Δau · v) = Δu · va (16)

Δμ(vu) = Δμ(u) · v (17)

Proof. By definition, Δu · v = (Δuf)(v) and thus we get

Δau · v = (Δauf)(v) = (Δa(Δuf))(v) =

=
(
(Δuf)(v)

)−1(Δuf)(va) = (Δu · v)−1Δu · va

from which (16) follows immediately.

80 J.-É. Pin

By induction, it suffices to establish (17) for v = a. If μ(u) = u1 + · · · + uk,
then by Proposition 3.2, μ(au) = μ(a)μ(u) = u1 + au1 + · · · + uk + auk. Now,
(16) shows that for 1 � i � k, (ΔuiΔaui) = Δui · a. It follows that

Δμ(au) = (Δu1Δau1) · · · (ΔukΔauk) = (Δu1 · a) · · · (Δuk · a) = Δμ(u) · a
which concludes the proof. ��
Proposition 4.2. The following formulas hold for all u, v ∈ A∗:

f(vu) = (Δμ(u)f)(v) (18)

f(u) = Δμ(u) (19)

Proof. Applying (17) with u = 1, we get Δμ(v) = Δμ(1) · v = f(v) which gives
(19). It follows that f(vu) = Δμ(vu). Now by (17) we also have Δμ(vu) =
(Δμ(u)f)(v), which yields (19). ��

4.1 Difference Expansion

The formula f(u) = Δμ(u) gives a representation of f(u) as a product of elements
of the form Δv. This expression is called the difference expansion of f . For
instance we have

f(abaa) = Δ1ΔaΔbΔabΔaΔaaΔbaΔabaΔaΔaaΔbaΔabaΔaaΔaaaΔbaaΔabaa

We now show that this decomposition is unique in a sense that we now make
precise.

Let (cu)u∈A∗ be a family of elements of FG(B). The map u �→ cu extends
uniquely to a group morphism from FG[A∗] to FG(B). In particular, for each
element ε1u1 + · · · + εkuk in FG[A∗], we set

cε1u1+···+εkuk
= cε1

u1
· · · cεk

uk

We can now state:

Theorem 4.3. Let f be a function from A∗ to FG(B). There is a unique family
(cu)u∈A∗ of elements of FG(B) such that, for all u ∈ A∗, f(u) = cμ(u). This
family is given by cu = (Δuf)(1).

Proof. The existence follows from (19). Unicity can be proved by induction on
the length of u. Necessarily, c1 = f(1) = Δ1(f)(1). Suppose that the coefficients
cu are known to be uniquely determined for |u| � n. Let u be a word of length
n and let a be a letter. Then μ(u) = u1 + · · · + uk−1 + u, where the words
u1, . . . , uk−1 are shorter than u. Furthermore

μ(ua) = u1 + · · · + uk−1 + u + u1a + · · · + uk−1a + ua

where again, ua is the only word of length n + 1. The condition f(ua) = cμ(ua)

now gives
f(ua) = cu1 · · · cuk−1cucu1a · · · cuk−1acua

Newton’s Forward Difference Equation for Functions from Words to Words 81

It follows than cua is necessarily equal to

f(ua)(cu1 · · · cuk−1cucu1a · · · cuk−1a)−1

which proves unicity. ��
It is a well-known fact that every sequence of real numbers can appear as coeffi-
cients of the Maclaurin series of a smooth function. The following corollary can
be viewed as a discrete, non-commutative analogue of this result.

Corollary 4.4. Given, for each u ∈ A∗, an element cu of FG(B), there exists
a unique function f : A∗ → FG(B) such that, for all u ∈ A∗, Δuf = cu. This
function is defined by f(u) = cμ(u) for all u ∈ A∗.

Corollary 4.4 can also be interpreted as an answer to the following interpolation
problem: determine f knowing the coefficients Δuf for all u ∈ A∗.

4.2 The Inversion Formula

The definition of Δuf was given by induction on the length of u. To conclude
this article, we give a close formula that allows one to compute Δuf directly.

Let f : A∗ → FG(B) be a function. Then f can be extended by linearity
into a group morphism from FG[A∗] to FG(B).

Proposition 4.5. The following formula holds for all u in A∗ and v in A∗:

Δuf(v) = f(vπ(u)) (20)

Proof. Substituting π(u) for u in (18) and using (13) we get

f(vπ(u)) = Δμ(π(u))f(v) = Δuf(v)

which gives the result. ��
Corollary 4.6. The following formula holds for all u ∈ FG[A∗]

Δuf = f(π(u)) = f(μ−1(u)) (21)

Example 4.7. For instance, for u = abb, we get u = bba and

π(u) = π(bba) = (−1 + b)(−1 + b)(−1 + a) = (−b + 1 − b + bb)(−1 + a)
= − bb + b − 1 + b − ba + a − ba + bba

π(u) = − bb + b − 1 + b − ab + a − ab + abb

Δabb = −f(bb) + f(b) − f(1) + f(b) − f(ab) + f(a) − f(ab) + f(abb)

Acknowlegements. I would like to thank the anonymous referees for their valuable
comments.

82 J.-É. Pin

References

1. Almeida, J.: Finite semigroups and universal algebra. World Scientific Publishing
Co., River Edge (1994). Translated from the 1992 Portuguese original and revised
by the author

2. Banaschewski, B., Nelson, E.: On the non-existence of injective near-ring modules.
Can. Math. Bull. 20(1), 17–23 (1977)

3. Berstel, J., Boasson, L., Carton, O., Petazzoni, B., Pin, J.É.: Operations preserving
recognizable languages. Theor. Comput. Sci. 354, 405–420 (2006)

4. Droste, M., Zhang, G.Q.: On transformations of formal power series. Inf. Comput.
184(2), 369–383 (2003)

5. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press,
New York (1976)

6. Fröhlich, A.: On groups over a d.g. near-ring. I. Sum constructions and free R-
groups. Q. J. Math. Oxf. Ser. (2) 11, 193–210 (1960)

7. Fröhlich, A.: On groups over a d.g. near-ring. II. Categories and functors. Q. J.
Math. Oxf. Ser. (2) 11, 211–228 (1960)

8. Kosaraju, S.R.: Regularity preserving functions. SIGACT News 6(2), 16–17 (1974)
9. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library.

Cambridge University Press, Cambridge (1997)
10. Pin, J.É., Sakarovitch, J.: Operations and transductions that preserve rationality.

In: Cremers, A.B., Kriegel, H.-P. (eds.) Theoretical Computer Science. LNCS, vol.
145, pp. 617–628. Springer, Heidelberg (1982)

11. Pin, J.É., Sakarovitch, J.: Une application de la représentation matricielle des
transductions. Theor. Comput. Sci. 35, 271–293 (1985)

12. Pin, J.É., Silva, P.V.: A topological approach to transductions. Theor. Comput.
Sci. 340, 443–456 (2005)

13. Pin, J.É., Silva, P.V.: A Mahler’s theorem for functions from words to integers. In:
Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of
Computer Science (STACS 2008), pp. 585–596. Internationales Begegnungs- Und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2008)

14. Pin, J.É., Silva, P.V.: On profinite uniform structures defined by varieties of finite
monoids. Int. J. Algebr. Comput. 21, 295–314 (2011)

15. Pin, J.É., Silva, P.V.: A noncommutative extension of Mahler’s theorem on inter-
polation series. Eur. J. Comb. 36, 564–578 (2014)

16. Pin, J.É., Weil, P.: Uniformities on free semigroups. Int. J. Algebr. Comput. 9,
431–453 (1999)

17. Reutenauer, C., Schützenberger, M.P.: Variétés et fonctions rationnelles. Theor.
Comput. Sci. 145(1–2), 229–240 (1995)

18. Seiferas, J.I., McNaughton, R.: Regularity-preserving relations. Theor. Comp. Sci.
2, 147–154 (1976)

19. Stearns, R.E., Hartmanis, J.: Regularity preserving modifications of regular expres-
sions. Inf. Control 6, 55–69 (1963)

Degrees of Unsolvability: A Tutorial

Stephen G. Simpson(B)

Department of Mathematics, Pennsylvania State University, State College, PA, USA
simpson@math.psu.edu

http://www.math.psu.edu/simpson

Abstract. Given a problem P , one associates to P a degree of unsolv-
ability, i.e., a quantity which measures the amount of algorithmic unsolv-
ability which is inherent in P . We focus on two degree structures: the
semilattice of Turing degrees, DT, and its completion, Dw = ̂DT, the
lattice of Muchnik degrees. We emphasize specific, natural degrees and
their relationship to reverse mathematics. We show how Muchnik degrees
can be used to classify tiling problems and symbolic dynamical systems
of finite type. We describe how the category of sheaves over Dw forms a
model of intuitionistic mathematics, known as the Muchnik topos. This
model is a rigorous implementation of Kolmogorov’s nonrigorous 1932
interpretation of intuitionism as a “calculus of problems”.

Keywords: Degrees of unsolvability · Mass problems · Turing degrees ·
Muchnik degrees · Algorithmic randomness · Kolmogorov complexity ·
Tiling problems · Symbolic dynamics · Intuitionism · Sheaves · Topoi

1 Turing Degrees

The existence of unsolvable1 mathematical problems was discovered by Turing
[77]. Indeed, Turing exhibited a specific, natural example2 of such a problem:
the halting problem for Turing machines. Later, in the 1950 s and 1960s, it was
discovered that there are specific, natural, unsolvable problems in virtually every
branch of mathematics: number theory (Hilbert’s Tenth Problem [14]), geometry
(the homeomorphism problem for finite simplicial complexes, the diffeomorphism

MSC2010: Primary 03D28; Secondary 03D80, 03D32, 03D35, 03D55, 03F55, 03G30,
18F20, 37B10.
S.G. Simpson—This paper is a preview of a three-hour tutorial to be given at CiE
in Bucharest, June 29 to July 3, 2015. The author’s research is supported by the
Eberly College of Science and by Simons Foundation Collaboration Grant 276282.

1 By unsolvable we mean algorithmically unsolvable, i.e., not solvable by a Turing
program.

2 We are not offering a rigorous definition of what is meant by “specific and natural.”
However, it is well known that considerations of specificity and naturalness play an
important role in mathematics. Without such considerations, it would be difficult
or impossible to pursue the ideal of “exquisite taste” in mathematical research, as
famously enunciated by von Neumann.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 83–94, 2015.
DOI: 10.1007/978-3-319-20028-6 9

84 S.G. Simpson

problem for compact manifolds [42, Appendix]), group theory (the word problem
[1] and the triviality problem [47] for finitely presented groups), combinatorics
(the problem of tileability of the plane with a finite set of tiles [6,49]), math-
ematical logic (the validity problem for predicate calculus [12,77], the decision
problem for first-order arithmetic [75]), and even elementary calculus (the prob-
lem of integrability in finite terms [48]).

A scheme for classifying unsolvable problems was developed by Post [46] and
Kleene/Post [34]. Two reals3 X and Y are said to be Turing equivalent if each is
computable using the other as a Turing oracle. The Turing degree of a real is its
equivalence class under this equivalence relation. Each of the specific, natural,
unsolvable problems mentioned above is a decision problem and may therefore
be straightforwardly described or “encoded”4 as a real. It was then shown that
each of these problems is of the same Turing degree as the halting problem. This
Turing degree is denoted 0′. Thus the specific Turing degree 0′ is extremely
useful and important.

Given a real X, the Turing degree of X is denoted degT(X). If a = degT(X)
and b = degT(Y) are the Turing degrees of reals X and Y respectively, we
write X ≤T Y or a ≤ b to mean that Y is “at least as unsolvable as” X in
the following sense: X is computable using Y as a Turing oracle. We also write
X <T Y or a < b to mean that X ≤T Y and Y �T X. Let DT be the set
of all Turing degrees. Clearly ≤ is a partial ordering of DT, and every pair of
degrees in DT has a supremum, i.e., a least upper bound. In other words, DT

is a semilattice. Kleene and Post proved that there are infinitely many degrees
in DT which are less than 0′, and there are uncountably many other degrees
in DT which are incomparable with 0′. Thus DT has a rich algebraic structure.
However, despite recent remarkable progress [59,71], no one has yet discovered
a specific, natural example of an unsolvable problem of Turing degree � 0′.

Given a real X, let X ′ be a real which encodes the halting problem relative
to X, i.e., with X used as a Turing oracle. If a is the Turing degree of X, let
a′ be the Turing degree of X ′. It can be shown that a′ is independent of the
choice of X such that degT(X) = a. The operator a �→ a′ : DT → DT is called
the Turing jump operator. Generalizing Turing’s proof of the unsolvability of the
halting problem, one shows that a < a′. In other words, X ′ is “more unsolvable
than” X. Inductively we write a(0) = a and a(n+1) = (a(n))′ for all natural
numbers n. Extending this induction into the transfinite, it is possible to define
a(α) where α ranges over a large initial segment of the ordinal numbers including
the constructibly countable ordinal numbers. We then have a(α) < a(β) whenever
α < β. See [53, Part A] and [27,60].

3 In this paper we take reals to be points in the Baire space N

N, i.e., functions X :
N → N where N = {0, 1, 2, . . .} = the natural numbers.

4 More specifically, each of the mentioned problems amounts to the question of decid-
ing whether or not a given string of symbols from a fixed finite alphabet belongs to a
particular set of such strings. The problem is then identified with the characteristic
function of the set of Gödel numbers of the strings which belong to the set.

Degrees of Unsolvability: A Tutorial 85

Let 0 be the bottom degree in DT, i.e., the Turing degree of any solvable
problem. We then have a transfinite hierarchy of specific, natural Turing degrees

0 < 0′ < 0′′ < · · · < 0(α) < 0(α+1) < · · ·

where α ranges over a large initial segment of the ordinal numbers [60]. More-
over, this hierarchy of specific, natural Turing degrees has been useful for the
classification of unsolvable mathematical problems. See for instance [43] and [50,
Sect. 14.8] and Sect. 4 below. However, no other specific, natural Turing degrees
are known.

The semilattice DT is large and complicated, so it is reasonable to examine
subsemilattices which are hopefully more manageable. One such subsemilattice
has been studied in great depth. A Turing degree is said to be recursively enu-
merable5 if it is the Turing degree of the characteristic function of a subset of N

which is the range of a recursive function. Let ET be the subsemilattice of DT

consisting of the recursively enumerable Turing degrees. The top and bottom
degrees in ET are 0′ and 0. It is known that ET is structurally rich. Two key
results due to Sacks [51,52] are the Splitting Theorem6 and the Density Theo-
rem7, and many other results have been obtained [37,38,58,72]. For instance,
the Turing degree of the first-order theory of ET is 0(ω) [45]. However, except for
0′ and 0 no specific, natural, recursively enumerable Turing degrees are known.

2 Muchnik Degrees

There are many specific, natural, unsolvable problems to which it is impossible
to assign a Turing degree.

As an example, let T be an effectively essentially undecidable theory. For
instance, we could take T = PA = Z1 = first-order arithmetic, or T = Z2 =
second-order arithmetic [62], or T = ZFC = Zermelo/Fraenkel set theory [25], or
T = Q = Robinson’s arithmetic [75], or T = any consistent recursively axioma-
tizable extension of one of these. Consider the problem C(T) of “finding” a com-
plete and consistent theory which extends T . A solution of the problem would
be any such theory. Lindenbaum’s Lemma implies that such theories exist, and
by [75] no such theory is algorithmically decidable.8 In this sense the problem
C(T) is algorithmically unsolvable. On the other hand, the problem C(T) cannot
correspond to a Turing degree, because for any solution X of C(T) there exists
a solution Y of C(T) such that Y <T X.

In order to overcome this limitation of the Turing degrees, we now extend
DT to its completion, Dw, the lattice of Muchnik degrees.
5 A.k.a., computably enumerable [73].
6 The Sacks Splitting Theorem says that ET satisfies ∀x (x > 0 ⇒ ∃u ∃v (u < x and

v < x and sup(u, v) = x)).
7 The Sacks Density Theorem says that ET satisfies ∀x ∀y (x < y ⇒ ∃z (x < z < y)).
8 When speaking of decidable theories, we identify a theory with the characteristic

function X ∈ {0, 1}N of the set of Gödel numbers of theorems of the theory.

86 S.G. Simpson

A mass problem is defined to be a set of reals.9 The idea here is that a mass
problem P “represents” (i.e., is the solution set of) the problem of “finding” or
“computing” some real X which belongs to P . Accordingly, a mass problem P is
said to be unsolvable if it contains no Turing computable real, i.e., if P ∩REC = ∅
where REC = {X | X is computable}. Following the same idea, we generalize
the notion of Turing reducibility as follows. For mass problems P and Q, we
say that P is Muchnik reducible to Q, abbreviated P ≤w Q, if every solution
of Q can be used as a Turing oracle to compute some solution of P . In other
words, P ≤w Q if and only if ∀Y (Y ∈ Q ⇒ ∃X (X ∈ P and X ≤T Y)).10 We
say that P is Muchnik equivalent to Q, abbreviated P ≡w Q, if P ≤w Q and
Q ≤w P . The Muchnik degree of P , written degw(P), is the equivalence class
of P under ≡w. Let Dw be the set of all Muchnik degrees, partially ordered by
letting degw(P) ≤ degw(Q) if and only if P ≤w Q. It is easy to see that Dw is
a complete and completely distributive lattice. Given a real X, we identify X
with the mass problem {X} = the singleton set whose only member is X. Thus
degT(X) = degw({X}) and DT is now a subset of Dw.

The relationship between DT and Dw may be viewed as an instance of a
general construction. Namely, for any partially ordered set K let K̂ be the set of
upwardly closed subsets of K partially ordered by reverse inclusion, i.e., U ≤ V
if and only if U ⊇ V . Identifying a ∈ K with the upwardly closed set Ua =
{x ∈ K | x ≥ a} ∈ K̂, we see that K is a subordering of K̂, i.e., a ≤ b if and
only if Ua ≤ Ub. Thus K̂ is a complete and completely distributive lattice, the
completion of K. There is a unique isomorphism of Dw onto D̂T which extends
the identity map on DT, and in this sense Dw is the completion of DT. The
upshot here is that Muchnik degrees can be identified with upwardly closed sets
of Turing degrees.11 This remark will be important in Sect. 5 below.

In the above example, let us identify C(T) with the mass problem {X | X
is a complete and consistent extension of T}. Under this identification, C(T) is
Muchnik reducible to the halting problem.12 However, the halting problem is not
Muchnik reducible to C(T), because the halting problem has a Turing degree
while C(T) does not. Thus, letting 1 = the Muchnik degree of C(T), we have
0 < 1 < 0′. Furthermore, the particular Muchnik degree 1 = degw(C(T)) can
be characterized abstractly in a way which does not depend on T . We now see
that 1 is a very specific, very natural, very important Muchnik degree which is
not a Turing degree.

In addition to the Muchnik degree 1 and the Turing degrees 0(α) for ordinal
numbers α = 0, 1, 2, . . . , ω, ω + 1, . . ., there are many other specific, natural
Muchnik degrees. Here are some examples and references.

1. Let λ be the fair coin probability measure on {0, 1}N. A set S ⊆ {0, 1}N is
said to be effectively null if S ⊆ ⋂

n Un for some uniformly effectively open
sequence of sets Un such that λ(Un) ≤ 2−n for all n. A real Z ∈ {0, 1}N is

9 This concept is from Medvedev [39]. As in footnote 3 a real is a function X ∈ N

N.
10 This is Muchnik’s notion of weak reducibility [41, Definition 2].
11 For a more precise statement, see [5, Theorem 5.8].
12 This follows from a theorem of Kleene [33, p. 398]. See also [29,57].

Degrees of Unsolvability: A Tutorial 87

said to be Martin-Löf random [16,44] if it does not belong to any effectively
null set. Let r1 = degw({Z ∈ {0, 1}N | Z is Martin-Löf random}). It is not
difficult to show that 0 < r1 < 1.

2. More generally, for any constructibly countable ordinal number α, let rα =
degw({Z | (∀ξ < α) (Z is Martin-Löf random relative to 0(ξ))}). It is not
difficult to show that 0 = r0 < r1 < r2 < · · · < rα < rα+1 < · · · . Moreover,
each rα for α ≥ 2 is incomparable with 1.

3. A partial recursive function ψ : ⊆ N → N is said to be universal if for each
partial recursive function ϕ : ⊆ N → N there exists a recursive function
p : N → N such that ϕ(n) � ψ(p(n)) for all n.13 Fix such a function ψ and
let d = degw({Z ∈ N

N | Z ∩ ψ = ∅}) and dREC = degw({Z ∈ N

N | Z ∩ ψ = ∅
and Z is recursively bounded}). Clearly d and dREC are independent14 of our
choice of ψ. By [3,26] we have 0 < d < dREC < r1.

4. Given a recursive function f : N → N, define Z ∈ {0, 1}N to be f-complex if
∃c∀n (K(Z�{1, . . . , n}) > f(n) − c) where K denotes Kolmogorov complex-
ity. In this way each specific, natural,15 recursive function f gives rise to a
specific, natural Muchnik degree kf = degw({Z ∈ {0, 1}N | Z is f -complex}),
and there is also kREC = degw({Z ∈ {0, 1}N | Z is f -complex for some
unbounded recursive function f}). By [32] we have kREC = dREC, and by
[16, Theorem 6.2.3] we have k1 = r1 where 1 : N → N is the identity func-
tion. Building on the methods of Miller [40], Hudelson [24] has shown that
dREC < kf < kg ≤ r1 holds for many pairs of unbounded recursive functions
f, g. In particular, this holds whenever ∀n (f(n) ≤ f(n + 1) ≤ f(n) + 1 and
f(n) + 2 log2 f(n) ≤ g(n) ≤ n).

5. Let MLRX = {Z ∈ {0, 1}N | Z is Martin-Löf random relative to X}. We
say that X is LR-reducible to Y , abbreviated X ≤LR Y , if MLRX ⊇ MLRY

[16,44]. Letting bα = degw({Y | 0(α) ≤LR Y }), it is not difficult to show that
0 = b0 < b1 < b2 < · · · < bα < bα+1 < · · · . On the other hand, by [68]
we know that the Muchnik degrees bα for α ≥ 1 are incomparable with the
Muchnik degrees d, 1, and rα for all α ≥ 1.

6. A partial recursive function ψ : ⊆ N → N is said to be linearly universal if
it is “universal via linear functions,” i.e., for each partial recursive function
ϕ : ⊆ N → N there exist a, b ∈ N such that ϕ(n) � ψ(an + b) for all n.
Let D = {Z ∈ N

N | Z ∩ ψ = ∅ for some linearly universal partial recursive
function ψ}, and let DREC = {Z ∈ D | Z is recursively bounded}). Clearly
degw(D) = d and degw(DREC) = dREC where d and dREC are as above.
However, letting Dh = {Z ∈ D | Z is h-bounded} where h is a specific

13 Here E1 � E2 means that E1 and E2 are both undefined or both defined and equal.
14 Let ϕn, n ∈ N be a fixed, standard, partial recursive enumeration of the partial

recursive functions. A function Z ∈ N

N is said to be diagonally nonrecursive [3,
23,26,32,65] if Z ∩ ψ = ∅ where ψ is the well known diagonal function, defined
by ψ(n) � ϕn(n). Letting DNR = {Z ∈ N

N | Z is diagonally nonrecursive} and
DNRREC = {Z ∈ DNR | Z is recursively bounded}, we have d = degw(DNR) and
dREC = degw(DNRREC).

15 For example, f(n) could be n/2 or n/3 or
√

n or 3
√

n or log2 n or log3 n or log2 log2 n,
etc., or f could be the inverse Ackermann function.

88 S.G. Simpson

recursive function, we get a family of Muchnik degrees dh = degw(Dh) which
are of considerable interest [64, Sect. 10] [31]. In particular, for any unbounded
recursive function h such that ∀n (1 ≤ h(n) ≤ h(n + 1)) we know by [3,23]
and [7, Sect. 7.3] that dREC < dh < 1, and if

∑
n h(n)−1 < ∞ then dh < r1,

and if
∑

n h(n)−1 = ∞ then dh is incomparable with rα for all α ≥ 1. Also of
interest is the Muchnik degree dslow = degw({Z | Z ∈ Dh for some recursive
function h such that ∀n (h(n) ≤ h(n + 1)) and

∑
n h(n)−1 = ∞}).

7. There are many other examples of specific, natural Muchnik degrees. See for
instance the Computability Menagerie16 [30]. Our choice of examples in this
paper is oriented toward Sect. 3 below.

3 The Lattices Ew and Sw

The lattice Dw is large and complicated, so it is desirable to consider more man-
ageable sublattices. The smallest such sublattice which comes immediately to
mind is the countable lattice Ew consisting of the Muchnik degrees of nonempty,
effectively closed subsets of {0, 1}N. The explicit study of Ew was undertaken
only relatively recently [8,10,61,63,64] but was implicit in some much older lit-
erature [22,28,29,54,55]. By [55] the top and bottom degrees in Ew are 1 and
0, and by [10] every countable distributive lattice is lattice-embeddable into Ew.
The only Turing degree in Ew is 0, but there is an obvious analogy

Ew

Dw
=

ET

DT

and indeed the Splitting Theorem and the Density Theorem hold for Ew [8,9].
The Turing degree of the first-order theory of Ew is known to be ≥ 0(ω) [56] and
conjectured to be = 0(ωCK

1 +ω) [13, p. 127] [69, Remark 3.2.3].
An advantage of Ew over ET is that Ew contains a great variety of specific,

natural Muchnik degrees in addition to its top and bottom degrees 1 and 0.
In particular, it is not difficult [65, Sect. 3] to show that the Muchnik degrees
d,dREC,kf , r1,dh, and dslow which were discussed in Sect. 2 belong to Ew.

Also of interest is the countable lattice Sw consisting of the Muchnik degrees
of nonempty, effectively closed subsets of N

N. An easy argument [69, Lemma 3.3.5]
shows that Sw has an alternative characterization as the lattice of Muchnik
degrees of nonempty, lightface Σ0

3 subsets of N

N. This is important, because it
implies that Sw contains many specific, natural Muchnik degrees beyond those
which are already in Ew. In particular, the Muchnik degree r2 which was dis-
cussed in Sect. 2 belongs to Sw, as do the Turing degrees 0(α) and the Muchnik
degrees bα for all recursive ordinal numbers α < ωCK

1 [68].
Trivially Ew is a sublattice of Sw, and by [69, Theorem 3.3.1] we know that

Ew is an initial segment of Sw. This is important, because it means that we
have a specific, natural, lattice homomorphism s �→ inf(s,1) : Sw → Ew. With

16 The inhabitants of this menagerie are downwardly closed sets of Turing degrees, but
the complements of such sets are essentially the same thing as Muchnik degrees.

Degrees of Unsolvability: A Tutorial 89

k = d

k

w1 = deg (C(PA))

d

inf(b ,1)

inf(b ,1)+1

inf(r ,1)2

slowd

d

0

1

inf(b ,1)2
inf(b ,1)

r1

inf(a,1)

REC REC

Fig. 1. A picture of Ew.

this homomorphism, each of the specific, natural Muchnik degrees in Sw has a
specific, natural image in Ew. In particular, the Muchnik degrees inf(r2,1) [65,
Sect. 3] and inf(bα,1) for all ordinal numbers α < ωCK

1 [66,68] belong to Ew.
Clearly ET is a subsemilattice of Sw, and by the Arslanov Completeness

Criterion [26, Theorem 1] (see also [65, Sect. 5]) our homomorphism of Sw onto
Ew is one-to-one when restricted to ET. Thus we have a semilattice embedding
a �→ inf(a,1) : ET ↪→ Ew which carries the top and bottom degrees 0′,0 ∈
ET to the top and bottom degrees 1,0 ∈ Ew. Unfortunately, the range of this
embedding does not appear to contain any specific, natural Muchnik degrees
other than 1 and 0. Thus the problem of finding a specific, natural, recursively
enumerable Turing degree in the range 0 < a < 0′ remains open.

Figure 1 is a picture of Ew. In this picture, a is any recursively enumerable
Turing degree in the range 0 < a < 0′. The black dots other than inf(a,1)
denote some of the specific, natural Muchnik degrees which we have discussed.

4 Applications

We briefly mention an application of Ew to tiling problems. A Wang tile is a
unit square with colored edges. Given a finite set A of Wang tiles, let PA be the
problem of tiling the plane with copies of tiles from A. More formally, PA is the
set of mappings X : Z × Z → A such that for all (i, j) ∈ Z × Z the right edge of
X(i, j) matches the left edge of X(i+1, j) and the top edge of X(i, j) matches the
bottom edge of X(i, j+1). Clearly degw(PA) ∈ Ew provided PA �= ∅. It turns out
[17,70] that conversely, every Muchnik degree in Ew is degw(PA) for some finite
set A of Wang tiles. This result plus the existence of an infinite independent set

90 S.G. Simpson

of degrees in Ew has a recursion-theory-free consequence for symbolic dynamics.
Namely, there exists an infinite collection of 2-dimensional symbolic dynamical
systems of finite type which are strongly independent of each other with respect
to symbolic products, symbolic disjoint unions, and symbolic morphisms. For
details see [70, Sect. 3].

We briefly mention the connection between degrees of unsolvability and
reverse mathematics. From my book [62] it is clear that basic recursion-theoretic
concepts such as Turing reducibility [62, Remark I.7.5], the Turing jump operator
[62, Remark I.3.4], basis theorems [62, Sects. VII.1 and VIII.2], the hyperarith-
metical hierarchy [62, Sect. VIII.3], the hyperjump [62, Remark I.5.4], and algo-
rithmic randomness [62, Sect. X.1] are highly relevant to reverse mathematics.
More recently [68] it emerged that some advanced recursion-theoretic concepts
such as LR-reducibility are also highly relevant to reverse mathematics. Beyond
this, there is an obvious correspondence between the so called “Big Five” sub-
systems of Z2 [62, Chaps. II–VI] and certain degrees of unsolvability. Namely,
the systems RCA0, WKL0, ACA0, ATR0, and Π1

1 -CA0 correspond to the Much-
nik degrees 0, 1, 0′, 0(α) for α < ωCK

1 , and 0(ωCK
1) respectively, where ωCK

1 is
the least nonrecursive ordinal. In addition, the system WWKL0 [62, Sect. X.1]
corresponds to the Muchnik degree r1.

5 The Muchnik Topos

From Medvedev’s 1955 paper introducing mass problems [39] and Muchnik’s
1963 paper introducing Muchnik reducibility [41]17, it is evident that both
authors were motivated by Kolmogorov’s nonrigorous 1932 interpretation of
intuitionistic propositional calculus as a “calculus of problems” [35,36].
Kolmogorov’s idea was to view intuitionistic propositions as “problems,” and
intuitionistic proofs of propositions as “solutions” of the corresponding “prob-
lems.” Intuitionistic propositional connectives are then viewed as methods of
combining “problems” to form new “problems.” Two “problems” are viewed as
being “equivalent” if from any solution of either of them a “solution” of the
other can be “easily” or “immediately” extracted. We cannot expect the Law of
the Excluded Middle to hold, because it would mean that for any proposition
there should be an “easy” proof of either the proposition or its negation.

Muchnik’s rigorous implementation of Kolmogorov’s idea [41, Theorem 4] is
based on mass problems, Muchnik reducibility, and lattice operations in Dw.
Given two Muchnik degrees p and q, we interpret p ∧ q as sup(p,q), p ∨ q as
inf(p,q), p ⇒ q as inf({x | sup(p,x) ≥ q}), “true” as 0, “false” as degw(∅), and
p � q as p ≥ q. For more details and references, see [69, Sect. 4] and [67,74].

Recently Muchnik’s interpretation of intuitionistic propositional calculus [41]
has been extended to an interpretation of intuitionistic mathematics as a whole
[5]. The extension is based on a category which we call the Muchnik topos. The
idea here is to consider DT as a topological space in which the open sets are
17 See also the English translation in [5, Appendix].

Degrees of Unsolvability: A Tutorial 91

the upwardly closed sets of Turing degrees.18 In general, for any topological
space T , a sheaf over T consists of a topological space X together with a local
homeomorphism p : X → T . A sheaf morphism from a sheaf p : X → T to a
sheaf q : Y → T is a continuous function f : X → Y such that p(x) = q(f(x))
for all x ∈ X . The sheaves and sheaf morphisms over T form a category called
Sh(T). As noted by Fourman and Scott [21], Sh(T) is a topos and provides
a model of intuitionistic higher-order logic in which the truth values are the
open subsets of T . The Muchnik topos is then the special case Sh(DT) with
truth values in Dw. All of this background material concerning sheaves and
intuitionistic higher-order logic is explained at length in our paper [5].

Within the Muchnik topos Sh(DT), there are two versions of the real number
system R: the sheaf RC = R×DT of Cauchy reals, and the sheaf RM = {(r,a) ∈
RC | degT(r) ≤T a} of Muchnik reals. Roughly speaking, the difference between
RC and RM is that a Cauchy real can exist anywhere within the topological space
DT, but a Muchnik real can exist only where we have enough Turing oracle power
to compute it. For precise definitions, see [5]. It turns out [5, Theorem 5.18] that
the Muchnik topos satisfies a Choice and Bounding Principle:

forallx∃y Φ(x, y)) ⇒ ∃w ∃z ∀x (wx ≤T (x, z) ∧ Φ(x,wx))

where x, y, z are variables ranging over Muchnik reals, w is a variable ranging
over functions from Muchnik reals to Muchnik reals, and Φ(x, y) is any formula
of intuitionistic higher-order logic in which w and z do not occur. Our Choice
and Bounding Principle reflects a well known intuitonistic idea: if for all real
numbers x there exists a real number y which bears a certain relationship to x,
then there should be a function x �→ y which computes such a y using x as a
Turing oracle.

We feel that, among various interpretations of intuitionistic mathematics,
our interpretation in terms of the Muchnik topos stands out because of its rela-
tionship to the ideas of Kolmogorov, Medvedev, and Muchnik.

References

1. Aanderaa, S., Cohen, D.E.: Modular machines I, II. In: [2], pp. 1–18, 19–28 (1980)
2. Adian, S.I., Boone, W.W., Higman, G. (eds.): Word Problems II: The Oxford Book.

Studies in Logic and the Foundations of Mathematics, X + 578 p., North-Holland
(1980)

3. Ambos-Spies, K., Kjos-Hanssen, B., Lempp, S., Slaman, T.A.: Comparing DNR
and WWKL. J. Symbolic Logic 69, 1089–1104 (2004)

4. Barwise, J., Keisler, H.J., Kunen, K. (eds.): The Kleene Symposium. Studies in
Logic and the Foundations of Mathematics, XX + 425 p., North-Holland (1980)

5. Basu, S.S., Simpson, S.G.: Mass problems and intuitionistic higher-order logic, 44
p., 12 August 2014. http://arxiv.org/abs/1408.2763

6. Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American
Mathematical Society, vol. 66, p. 72. American Mathematical Society, Providence
(1966)

18 This topological space was considered by Muchnik [41, p. 1332] [5, p. 35].

http://arxiv.org/abs/http://arxiv.org/abs/1408.2763

92 S.G. Simpson

7. Bienvenu, L., Porter, C.P.: Deep Π0
1 classes, 37 p., 4 June 2014. http://

arxiv.org/abs/1403.0450v2
8. Binns, S.: A splitting theorem for the medvedev and muchnik lattices. Math. Logic

Q. 49(4), 327–335 (2003)
9. Binns, S., Shore, R.A., Simpson, S.G.: Mass problems and density, in preparation,

5 p., 1 March 2014
10. Binns, S., Simpson, S.G.: Embeddings into the medvedev and muchnik lattices of

Π0
1 classes. Arch. Math. Logic 43, 399–414 (2004)

11. Chong, C.T., Feng, Q., Slaman, T.A., Woodin, W.H., Yang, Y. (eds.): Computa-
tional Prospects of Infinity. In: Proceedings of the Logic Workshop at the Insti-
tute for Mathematical Sciences, Part I: Tutorials in Lecture Notes Series, Institute
for Mathematical Sciences, National University of Singapore, World Scientific, 20
June–15 August, 2005, no. 14, 264 p. (2008)

12. Church, A.: A note on the Entscheidungsproblem. J. Symbolic Logic 1, 40–41
(1936)

13. Cole, J.A., Simpson, S.G.: Mass problems and hyperarithmeticity. J. Math. Logic
7(2), 125–143 (2008)

14. Davis, M.: Hilbert’s tenth problem is unsolvable. Am. Math. Mon. 80, 233–269
(1973)

15. Dekker, J.C.E. (ed.): Recursive function theory. In: Proceedings of Symposia in
Pure Mathematics, American Mathematical Society, VII + 247 p. (1962)

16. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. The-
ory and Applications of Computability, XXVIII + 855 p. Springer, New York
(2010)

17. Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their appli-
cations. J. Comput. Syst. Sci. 78(3), 731–764 (2012). doi:10.1016/j.jcss.2011.11.
001

18. Fenstad, J.E., Frolov, I.T., Hilpinen, R. (eds.): Logic, Methodology and Philosophy
of Science VIII. No. 126 in Studies in Logic and the Foundations of Mathematics,
XVII + 702 p., North-Holland (1989)

19. FOM e-mail list September 1997 to the present. http://www.cs.nyu.edu/mailman/
listinfo/fom/

20. Fourman, M.P., Mulvey, C.J., Scott, D.S. (eds.): Applications of Sheaves, Proceed-
ings, Durham, 1977. No. 753 in Lecture Notes in Mathematics, XIV + 779 p.,
Springer (1979)

21. Fourman, M.P., Scott, D.S.: Sheaves and logic. In: [20], pp. 302–401 (1979)
22. Gandy, R.O., Kreisel, G., Tait, W.W.: Set existence. In: Bulletin de l’Académie

Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et
Physiques, vol. 8, pp. 577–582 (1960)

23. Greenberg, N., Miller, J.S.: Diagonally non-recursive functions and effective
Hausdorff dimension. Bull. Lond. Math. Soc. 43(4), 636–654 (2011)

24. Hudelson, W.M.P.: Mass problems and initial segment complexity. J. Symbolic
Logic 79(1), 20–44 (2014)

25. Jech, T.: Set Theory, XI + 621 p., Academic Press (1978)
26. Jockusch Jr. C.G.: Degrees of functions with no fixed points. In: [18], pp. 191–201

(1989)
27. Jockusch Jr. C.G., Simpson, S.G.: A degree-theoretic definition of the ramified

analytical hierarchy. Ann. Math. Logic 10, 1–32 (1976)
28. Jockusch Jr. C.G., Soare, R.I.: Degrees of members of Π0

1 classes. Pac. J. Math.
40, 605–616 (1972)

http://arxiv.org/abs/1403.0450v2
http://arxiv.org/abs/1403.0450v2
http://dx.doi.org/10.1016/j.jcss.2011.11.001
http://dx.doi.org/10.1016/j.jcss.2011.11.001
http://www.cs.nyu.edu/mailman/listinfo/fom/
http://www.cs.nyu.edu/mailman/listinfo/fom/

Degrees of Unsolvability: A Tutorial 93

29. Jockusch Jr. C.G., Soare, R.I.: Π0
1 classes and degrees of theories. Trans. Am.

Math. Soc. 173, 35–56 (1972)
30. Khan, M., Kjos-Hanssen, B., Miller, J.S.: The Computability Menagerie (2015).

http://www.math.wisc.edu/∼jmiller/
31. Khan, M., Miller, J.S.: Forcing with bushy trees, 18 p., 30 March 2015.

http://arxiv.org/abs/1503.08870v1
32. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recur-

sion theorem. Trans. Am. Math. Soc. 363, 5465–5480 (2011)
33. Kleene, S.C.: Introduction to Metamathematics, X + 550 p., Van Nostrand (1952)
34. Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of recursive unsolvabil-

ity. Ann. Math. 59, 379–407 (1954)
35. Kolmogoroff, A.: Zur Deutung der intuitionistischen Logik. Math. Z. 35, 58–65

(1932)
36. Kolmogorov, A.N.: On the interpretation of intuitionistic logic. In: [76], translation

of [35] with commentary and additional references, pp. 151–158 and 451–466 (1991)
37. Lerman, M.: Degrees of Unsolvability. Perspectives in Mathematical Logic, XIII +

307 p., Springer, Berlin (1983)
38. Lerman, M.: A Framework for Priority Arguments. Lecture Notes in Logic, Asso-

ciation for Symbolic Logic, XVI + 176 p., Cambridge University Press (2010)
39. Medvedev, Y.T.: Degrees of difficulty of mass problems. Dokl. Akad. Nauk SSSR

104, 501–504 (1955). in Russian
40. Miller, J.S.: Extracting information is hard: a turing degree of non-integral effective

Hausdorff dimension. Adv. Math. 226, 373–384 (2011)
41. Muchnik, A.A.: On strong and weak reducibilities of algorithmic problems. Sib.

Mat. Zh. 4, 1328–1341 (1963). in Russian
42. Nabutovsky, A.: Einstein structures: existence versus uniqueness. Geom. Funct.

Anal. 5, 76–91 (1995)
43. Nabutovsky, A., Weinberger, S.: Betti numbers of finitely presented groups and

very rapidly growing functions. Topology 46, 211–233 (2007)
44. Nies, A.: Computability and Randomness, XV + 433 p., Oxford University Press

(2009)
45. Nies, A., Shore, R.A., Slaman, T.A.: Interpretability and definability in the recur-

sively enumerable degrees. Proc. Lon. Math. Soc. 77, 241–291 (1998)
46. Post, E.L.: Recursively enumerable sets of positive integers and their decision prob-

lems. Bull. Am. Math. Soc. 50, 284–316 (1944)
47. Rabin, M.O.: Recursive unsolvability of group theoretic problems. Ann. Math. 67,

172–194 (1958)
48. Richardson, D.: Some undecidable problems involving elementary functions of a

real variable. J. Symbolic Logic 33, 514–520 (1968)
49. Robinson, R.M.: Undecidability and nonperiodicity of tilings of the plane. Inven-

tiones Math. 12, 177–209 (1971)
50. Rogers Jr. H.: Theory of Recursive Functions and Effective Computability, XIX +

482 p.. MIT Press, Cambridge (1967)
51. Sacks, G.E.: Degrees of Unsolvability. No. 55 in Annals of Mathematics Studies,

IX + 174 p., Princeton University Press, London (1963)
52. Sacks, G.E.: The recursively enumerable degrees are dense. Ann. Math. 80, 300–

312 (1964)
53. Sacks, G.E.: Higher Recursion Theory. Perspectives in Mathematical Logic, XV +

344 p., Springer (1990)
54. Scott, D.S.: Algebras of sets binumerable in complete extensions of arithmetic. In:

[15], pp. 117–121 (1962)

http://www.math.wisc.edu/~jmiller/
http://arxiv.org/abs/http://arxiv.org/abs/1503.08870v1

94 S.G. Simpson

55. Scott, D.S., Tennenbaum, S.: On the degrees of complete extensions of arithmetic
(abstract). Not. Am. Math. Soc. 7, 242–243 (1960)

56. Shafer, P.: Coding true arithmetic in the Medvedev and Muchnik degrees. J. Sym-
bolic Logic 76(1), 267–288 (2011)

57. Shoenfield, J.R.: Degrees of models. J. Symbolic Logic 25, 233–237 (1960)
58. Shoenfield, J.R.: Degrees of Unsolvability. No. 2 in North-Holland Mathematics

Studies, VIII + 111 p., North-Holland (1971)
59. Shore, R.A.: The Turing degrees: an introduction, IV + 77 p. (2012). http://www.

math.cornell.edu/∼shore/
60. Simpson, S.G.: The hierarchy based on the jump operator. In: [4], pp. 267–276

(1980)
61. Simpson, S.G.: FOM: natural r.e. degrees; Pi01 classes. FOM e-mail list [19], 13

August 1999
62. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathe-

matical Logic, pp. XIV + 445, Second Edition, Springer (1999), Perspectives in
Logic, Association for Symbolic Logic, XVI+ 444 p., Cambridge University Press
(2009)

63. Simpson, S.G.: FOM: natural r.e. degrees. FOM e-mail list [19], 27 February 2005
64. Simpson, S.G.: Mass problems and randomness. Bull. Symbolic Logic 11, 1–27

(2005)
65. Simpson, S.G.: An extension of the recursively enumerable turing degrees. J. Lond.

Math. Soc. 75(2), 287–297 (2007)
66. Simpson, S.G.: Mass problems and almost everywhere domination. Math. Logic

Quarterly 53, 483–492 (2007)
67. Simpson, S.G.: Mass problems and intuitionism. Notre Dame J. Formal Logic 49,

127–136 (2008)
68. Simpson, S.G.: Mass problems and measure-theoretic regularity. Bull. Symbolic

Logic 15, 385–409 (2009)
69. Simpson, S.G.: Mass problems associated with effectively closed sets. Tohoku Math.

J. 63(4), 489–517 (2011)
70. Simpson, S.G.: Medvedev degrees of 2-dimensional subshifts of finite type. Ergodic

Theor. Dyn. Syst. 34(2), 665–674 (2014). doi:10.1017/etds.2012.152
71. Slaman, T.A.: Global properties of the turing degrees and the turing jump. In:

[11], pp. 83–101 (2008)
72. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathemat-

ical Logic, XVIII + 437 p., Springer (1987)
73. Soare, R.I.: Computability and recursion. Bull. Symbolic Logic 2, 284–321 (1996)
74. Sorbi, A., Terwijn, S.A.: Intuitionistic logic and Muchnik degrees. Algebra Univers.

67, 175–188 (2012). doi:10.1007/s00012-012-0176-1
75. Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. Studies in Logic

and the Foundations of Mathematics, IX + 98 p., North-Holland (1953)
76. Tikhomirov, V.M. (ed.): Selected Works of A.N. Kolmogorov, vol. I, Mathematics

and Mechanics. Mathematics and its Applications, Soviet Series, XIX + 551 p.,
Kluwer Academic Publishers (1991)

77. Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)

http://www.math.cornell.edu/~shore/
http://www.math.cornell.edu/~shore/
http://dx.doi.org/10.1017/etds.2012.152
http://dx.doi.org/10.1007/s00012-012-0176-1

Universality in Molecular and Cellular
Computing

Sergey Verlan1,2(B)

1 Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est – Créteil
Val de Marne, 61, av. gén. de Gaulle, 94010 Créteil, France

2 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova,
Academiei 5, 2028 Chisinau, Moldova

verlan@u-pec.fr

Abstract. In this article we present an overview of the study of the
universality problem in the area of molecular and cellular computing.
We consider the results that deal explicitly with this problem and that
aim to optimize the obtained construction. A particular attention is given
to models based on the splicing operation as well as to multiset-rewriting
based models.

1 Introduction

The concept of universality was first formulated by A. Turing in [56]. He con-
structed a universal (Turing) machine capable of simulating the computation of
any other (Turing) machine. This universal machine takes as input a description
of the machine to simulate, the contents of its input tape, and computes the
result of its execution on the given input.

More generally, the universality problem for a class of computing devices (or
functions) C consists in finding a fixed element M of C able to simulate the
computation of any element M′ of C using an appropriate fixed encoding. More
precisely, if M′ computes y on an input x (we will write this as M′(x) = y), then
M′(x) = f(M(

〈
g(M′), h(x)

〉
)), where h and f are the encoding and decoding

functions, respectively, g is the function retrieving the number of M′ in some
fixed enumeration of C and

〈〉
is a coding function for couples, e.g. the Cantor

coding. We note that in the case of generating devices, e.g. formal grammars,
the universality concept is slightly different as the input is empty. However, the
universal element M has an input, which is just the code of the element to
be simulated. Another solution is to define the computation in the generating
framework by requiring the generated result to be singleton for any input.

We will use the terminology considered by Korec [26] and call a construction
strongly universal if the encoding and decoding functions are identities, other-
wise the corresponding construction will be called (weakly) universal. Some
authors [26,30] implicitly consider only the strong notion of universality as the
encoding and decoding functions can perform quite complicated transformations,
which are not necessarily doable in the original devices [5,52]. We refer to [26] for

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 95–104, 2015.
DOI: 10.1007/978-3-319-20028-6 10

96 S. Verlan

a more detailed discussion of different variants of the universality and to [33,39]
for a survey on this topic.

Let us stress here an important distinction between computational complete-
ness and universality as in the literature the latter term is often wrongly used to
denote the computational completeness. Given a class C of computability mod-
els, we say that C is computationally complete if the devices in C can characterize
the power of Turing machines (or of any other type of equivalent devices). This
means that given a Turing machine M one can find an element C in C such that
C is equivalent with M . Thus, completeness refers to the capacity of covering
the level of computability – in grammatical terms, this means to generate all
recursively enumerable languages (RE). Universality is an internal property of C
and it means the existence of a fixed element M of C which is able to simulate
any given element M′ (of C), providing that an appropriate encoding of M′ and
of the input is given. If C does not have a universal element, then there is a
family C′ ⊃ C that contains an element M universal for C. We note that M is
not necessarily universal for RE.

It is clear that if a family of computability models C is computationally
complete, then it has an infinite number of universal elements. For example,
such an element U can be the equivalent in C of some universal Turing machine
MU . Then in order to simulate an element C ∈ C it is sufficient to simulate by
MU (and hence by U) the Turing machine MC that is equivalent to C.

We would like to highlight another notion of universality, the intrinsic univer-
sality, very common in the field of cellular automata. It arises as an observation
of the fact that it is not trivial to properly define the above (Turing) universality
for devices working without halting, input and output on infinite configurations.
A more natural notion in this case is to construct a cellular automata able to
simulate the work of any other automata in a shift-invariant and time-invariant
way. This is a stronger notion than the (Turing) universality as it corresponds
to a bisimulation with a fixed number of steps (and within a fixed space) [50].
For the class of computationally complete devices intrinsic universality implies
(Turing) universality, while the converse is not true [40].

It is interesting to find a universal element that has a small descriptional
complexity giving in this way an upper bound on the required complexity of
the universality construction. In 1956 Shannon [54] considered the question of
finding the smallest possible universal Turing machine where the size is cal-
culated as the number of states and symbols. In the early sixties, Minsky and
Watanabe had a running competition to see who could find the smallest universal
Turing machine [37,59]. Later, Rogozhin showed the construction of several small
universal Turing machines [49]. An overview of recent results on this topic can
be found in [39]. Other computational models were also considered, e.g. cellular
automata [58] with a construction of universal cellular automata of rather small
size; see [41,61] for an overview.

Small universal devices have mostly theoretical importance as they demon-
strate the minimal ingredients needed to achieve a complex (universal) compu-
tation. Their construction is a long-standing and fascinating challenge involving
a lot of interconnections between different models, constructions, and encodings.

Universality in Molecular and Cellular Computing 97

In this paper we overview the results related to the universality problem for
different models in molecular and cellular computing areas. The area of molecu-
lar (DNA) computing is a recent and quickly growing field of computer science
which centers on the study of the operations and processes issued from the
biochemical reactions involving DNA molecules [46,50]. The cellular comput-
ing (also called membrane computing or P systems) gets its inspiration from
the functioning and the structure of a living cell [44,45,47]. We consider only
the results explicitly building universal devices, because as we mentioned
above the computational completeness already implies the existence of univer-
sal devices, which can then be trivially constructed. Hence, we suppose that
explicit constructions are somehow optimized in terms of the descriptional com-
plexity and in number of rules, in particular. We mainly focus on two models:
(controlled) splicing (from DNA computing) and (distributed) multiset rewrit-
ing (from cellular computing). These models have undergone heavy theoretical
investigations and present most of the small universality constructions from the
the two areas.

2 Models in Molecular Computing

In this section we shall give a brief discussion on the origin of models in the area
of molecular computing.

The first direction explores the representation of DNA or RNA sequences
as strings and the corresponding biological operations as operations on strings,
eventually making abstraction of some technical details. This brings the possibil-
ity of a theoretical study of these operations in the framework of the formal lan-
guage theory. Hence, the studied questions and methods are intrinsically related
to that area. As examples of this approach we can cite splicing-based models,
related to the operation of DNA recombination, and insertion-deletion based
models, related to the mismatched annealing of DNA and RNA sequences [46].
In most of the cases closure properties are considered, however, like in the case
of regulated rewriting [51], it is possible to consider additional external control
mechanisms like graph, matrix, random-context time-varying and distributed
controls. We note that, traditionally, most of the models consider the generation
of a language, like formal grammars. This implies that in order to consider uni-
versality constructions proper notions of input and output should be defined. We
will consider that the input is finite and is given as part of the axiom(s) of the
system, while in order to obtain the output we require that the corresponding
systems generate a singleton language. The universality constructions discussed
below fit this scheme, however it should be clear that there are other ways to
define the input and the output.

The second modeling possibility relies on the annealing of some specially
designed DNA structures (tiles) that produce 2-D and 3-D shapes by self-
assembly. In this case the computation is performed by self-assembly and its
result is a shape that encodes the result, in a way similar to the cellular automata
computations. The well known example of this approach is the tile assembly

98 S. Verlan

model (TAM) developed by Winfree [60]. In this framework only the intrinsic
universality was explicitly investigated [13]. We also note that it was shown that
one tile is sufficient to obtain this result [12], so in some sense this closes the
quest for “small” universal systems with respect to the number of tiles. Since
the TAM is computationally complete [60], it contains universal elements. Many
papers on self-assembly, e.g. [28,43,55], give constructions for Turing machine
simulation by different variants of TAM, however since the universality problem
is not directly addressed it is extremely difficult to compute the parameters of
the universal elements obtained by given constructions.

In the third case the modeling is performed at higher functional levels: DNA
strings are considered as signals that can trigger more complex actions using
more sophisticated machinery, naturally leading to the construction of boolean
gates and boolean networks. Because of the natural restrictions circuits using
dual-rail encoding are considered. A typical example of this approach are the
models from [25,53]. As far as we know, the universality problem was not con-
sidered in this framework yet, although there exist models able to simulate the
work of a Turing machine [48].

3 Splicing Based Models

The splicing operation was first considered by T. Head [18,19] and it is concep-
tually different from the (string) rewriting: its main difference is being a binary
operation. Splicing considers some specified context in each of two strings enter-
ing the operation and performs a crossover of the two strings at the context
location [24,46,62]. Hence, the methods used for universality constructions are
substantially different as a parallel evolution of a set of strings (instead of a single
string) should be considered as well as other specificities related to the fact that
splicing systems are a language generating device. This operation is very power-
ful allowing the construction of extremely small universal devices competing
with small universal Turing machines. Since the language generated by any H
system is regular [45], additional control mechanisms should be used to achieve
the computational completeness.

Double Splicing. The double splicing operation is in some sense a counterpart
of matrix grammars [51] for splicing systems. However, instead of sequences of
prescribed rules the double splicing operation is composed of two splicings and
requires that the result of the first splicing to be the input of the second one.
A universal construction using only 5 splicing rules is given in [3].

(E)TVDH Systems. This model is the adaptation of the idea of time-varying
grammars [51] to the area of splicing. We recall that time-varying grammars can
be seen as graph-controlled grammars where the corresponding control graph
has the form of a ring. In the splicing case the definition is slightly different as
one allows using words that are simultaneously obtained to perform a single (or
multiple in the case of ETVDH systems) splicing at each step.

In the case of TVDH systems of degree 1 the set of rules is applied to the
result of the previous application and this corresponds to a simple iteration of

Universality in Molecular and Cellular Computing 99

the splicing operation. Comparing to ordinary splicing systems this provides a
powerful feature that permits to eliminate all strings that are not produced by a
splicing operation at the corresponding step. It is somehow surprising that this
modification by itself suffices to achieve the computational completeness [34,35].
Article [1] presents constructions for universal TVDH systems of degree 1 and 2
and having 17 and 15 splicing rules, respectively.

Test Tube Systems. One of the particularities of previously discussed models is
that the system starts from a single initial set of axioms and at each step the
current set of words is replaced by a new one, computed according to the control
of the system. It is possible to consider splicing systems based on a different idea.
Namely, instead of evolving a single set of words, a fixed number of such sets
(a vector) is evolved. This corresponds to a distributed system containing some
units that we call components. The computation is then divided in two different
steps: a computation step and a communication step. During the computation
step splicing rules are applied in each component, independently from each other
according to the underlying control. During the communication step the contents
of components is redistributed in the system according to a predefined algorithm.

The model considered in this subsection is the splicing counterpart of the
parallel communicating grammar systems with communication by command [51]
and in the literature it is also known under the name of splicing test tube sys-
tems. The idea is to use the (closure of the) splicing operation for the computa-
tional step in each component and input permitting filters for the communication
according to a communication graph [8].

In [3] a construction of a universal test tube system having 8 rules distributed
in 3 components is given. Universal constructions with 2 tubes and different filter
restrictions are given in [1], but in this case 10 splicing rules are necessary.

Splicing P Systems. Another distribution possibility is to apply a single splicing
operation in each component during the computation step and redistribute the
contents during the communication step based on the splicing rule that has been
applied. With some reserve (because splicing is a binary operation) the model can
be considered as graph-controlled splicing. The obtained model, called splicing
P systems, was introduced in [44] and more details can be found in [45,47].

It is worth to note that splicing P systems allow one of the smallest uni-
versal constructions for the splicing area as well as for string-based universal
devices. The construction from [3] has 5 splicing rules, 6 axioms, 3 components,
an alphabet of 7 symbols and the diameter (size of rules’ contexts) (3,2,2,1).

4 Networks of Evolutionary Processors

Networks of evolutionary processors (NEPs) [7] are an example of distributed
systems based on three evolutionary operations: point mutation that can replace
a symbol by another symbol randomly in the string, insertion of a symbol any-
where in the string and deletion of a specific symbol. During the computational
step the corresponding operation is applied in the nodes once. During the com-
munication step, the contents of a node is checked for an output condition given

100 S. Verlan

as a regular language and any words passing this condition are removed from
that node. Next, the words that exit a node can enter another connected node if
they satisfy its input condition also given by a regular language. The language
determined by the system is defined as the set of words which appear at some
distinguished node during the computation.

The regular filtering is quite a powerful mechanism that allows to finely
control the computation. In [23] the following constructions are given: strongly
universal NEPs with 5 rules and weakly universal NEPs with 4 rules (using a
unary encoding of integers in NEPs) as well as a universal NEP with 7 rules
that is able to efficiently simulate any Turing machine in polynomial time.

It is known that the expressivity of NEPs is depending on the power of the
filter, on the communication graph structure and on the allowed set of node
operations [2,10,11]. An interesting restriction of NEPs are Accepting Hybrid
Networks of Evolutionary Processors (AHNEP) which limit the filters to random-
context conditions [32]. Within this model there are obtained several universality
results; we cite only [9,31] as well as [29] for the variant of the model using
splicing operation. However, from the proofs of these results it is not easy to
compute all the parameters of the system, in particular, the number of used
rules. We refer to [32] for a more comprehensive survey on this topic.

5 Cellular Computing Based Models

We note that membrane systems with a static structure (that does not change
in time) are equivalent to distributed multiset rewriting [15], which in turn can
be reduced (using some standard flattening techniques) to the parallel multiset
rewriting. In what follows we will use the term and the definitions related to
the multiset rewriting, but we would like to note that there is one-to-one corre-
spondence between many models based on this operation, e.g. vector addition
systems, Petri nets, population protocols and P systems. So, the constructions
presented below can be easily interpreted in terms of any of these models. More-
over, we would like to note that models using multiset rewriting and models
using numbers directly (like register machines) are extremely similar, because
multiset rewriting permits to represent any numerical mapping. The difference
between two representations mostly relies in the encoding and decoding concepts
as well as in the descriptional complexity issues.

Multiset Rewriting with Inhibitors. We consider the variant corresponding to
forbidding grammars [51] and we note that this model is identical to P systems
with symport/antiport and inhibitors [45], to Petri nets with inhibitor arcs [42]
and to vector addition systems with zero checks [6,20].

In [21] several universal multiset rewriting systems are constructed exhibit-
ing trade-offs between the cardinality of the alphabet, the number of rules, the
total number of used inhibitors and the maximal size of the rule. Deterministic
strong and weak universal constructions with following parameters (in the above
order) are presented: (30, 34, 13, 3), (14, 31, 51, 8), (11, 31, 79, 11), (21, 25, 13, 5),
(67, 64, 8, 3), (58, 55, 8, 5). In [22] the following parameters are obtained for the

Universality in Molecular and Cellular Computing 101

non-deterministic case: (5, 877, 1022, 729), (5, 1024, 1316, 379), (4, 668, 778, 555),
(4, 780, 1002, 299).

Register Machines. Register Machines [38] can be viewed as a particular case of
(finite-state) multiset rewriting with inhibitors, where (at most) one state symbol
is present in reachable configurations, and the rules have a special reduced form.

Register machines with the smallest number of instructions are reported by
Korec [26], where he gives a construction for a strongly universal register machine
having 22 instructions and using 8 registers and a weakly universal register
machine having 20 instructions, as well as several small machines with other
type of instructions. It is known that machines with two registers can only be
weakly universal [5,52], while with 3 registers the strong universality can be
achieved. The article [22] mentions such constructions having 278 instructions
for the case of the 2-register machine and 365 instructions for the case of the
3-register machine.

One can even consider generalized register machines that allow several reg-
ister decrements and increments by more than one. This is a useful tool for
obtaining some small universal systems. In the case of register machines such a
generalization permits to have only 13 (decrement with zero test and with add)
instructions for the strong universality [14]

Maximally Parallel Multiset Rewriting. The application of rules in the case of
the maximally parallel multiset rewriting follows the maximality principle – a
set of rules is maximally parallel if the rules are all applicable in parallel and no
other rule can be added to this set maintaining this property.

A register machine viewed as a finite-state multiset rewriting system behaves
sequentially even under maximal parallelism, because (at most one) state symbol
is present in any configuration, and any rule contains a state symbol in its
left side. In [4] a maximally parallel multiset rewriting system with 23 rules
is given. The construction is based on the simulation of the universal register
machine U32 from [26] and takes profit of the parallelism to encode efficiently
the representation of states.

6 Conclusions

In this paper we gave an overview of the study of the universality problem for
several models originated from molecular and cellular computing. As it can be
seen, in the field of molecular computing there are almost no results exhibiting
small universality constructions, except for splicing-based models. So it is natural
to consider the construction of “small” universal devices for other models, like
insertion-deletion systems, sticker systems [46] and (AH)NEPs [32].

Another interesting research direction is to give intrinsic universality con-
structions for aforementioned models. The first attempt in the case of splicing
was done in [16,17], but the obtained system is not time-invariant. In the area
of insertion-deletion systems there are time invariant bisimulation constructions
between several classes of models [27,36,57].

102 S. Verlan

Finally, we would like to note that in the case of genetic circuits the com-
putational completeness is achieved by a simulation of boolean networks with
memory. It could be interesting to encode other type of models in order to achieve
smaller universal constructions.

References

1. Alhazov, A., Kogler, M., Margenstern, M., Rogozhin, Y., Verlan, S.: Small universal
TVDH and test tube systems. Int. J. Found. Comput. Sci. 22(1), 143–154 (2011)

2. Alhazov, A., Mart́ın-Vide, C., Truthe, B., Dassow, J., Rogozhin, Y.: On networks of
evolutionary processors with nodes of two types. Fundamenta Informaticae 91(1),
1–15 (2009)

3. Alhazov, A., Rogozhin, Y., Verlan, S.: On small universal splicing systems. Int. J.
Found. Comput. Sci. 23(07), 1423–1438 (2012)

4. Alhazov, A., Verlan, S.: Minimization strategies for maximally parallel multiset
rewriting systems. Theor. Comput. Sci. 412(17), 1581–1591 (2011)

5. Barzdin, I.M.: On a class of turing machines (Minsky machines). Algebra i Logika
1, 42–51 (1963). (in Russian)

6. Bonnet, R.: The reachability problem for vector addition system with one zero-test.
In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 145–157.
Springer, Heidelberg (2011)

7. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete
problems with networks of evolutionary processors. In: Mira, J., Prieto, A.G. (eds.)
IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)

8. Csuhaj-Varjú, E., Kari, L., Păun, G.: Test tube distributed systems based on splic-
ing. Comput. Artif. Intell. 15(2–3), 211–232 (1996)

9. Dassow, J., Manea, F.: Accepting hybrid networks of evolutionary processors with
special topologies and small communication. In: Proceedings of DCFS 2010, of
EPTCS, vol. 31, pp. 68–77 (2010)

10. Dassow, J., Manea, F., Truthe, B.: On the power of accepting networks of evolu-
tionary processors with special topologies and random context filters. Fundamenta
Informaticae 136(1–2), 1–35 (2015)

11. Dassow, J., Mitrana, V.: Accepting networks of non-inserting evolutionary proces-
sors. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational
Systems Biology XI. LNCS, vol. 5750, pp. 187–199. Springer, Heidelberg (2009)

12. Demaine, E.D., Demaine, M.L., Fekete, S.P., Patitz, M.J., Schweller, R.T.,
Winslow, A., Woods, D.: One tile to rule them all: simulating any tile assem-
bly system with a single universal tile. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 368–379. Springer,
Heidelberg (2014)

13. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The
tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science, pp. 302–310 (2012)

14. Freund, R., Oswald, M.: A small universal antiport P system with forbidden con-
text. In: Leung, H., Pighizzini, G. (eds.) 8th International Workshop on Descrip-
tional Complexity of Formal Systems, pp. 259–266. Proceedings, New Mexico
(2006)

15. Freund, R., Verlan, S.: A formal framework for static (Tissue) P systems. In:
Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)

Universality in Molecular and Cellular Computing 103

16. Frisco, P.: Direct constructions of universal extended H systems. Theor. Comput.
Sci. 296(2), 269–293 (2003)

17. Frisco, P., Hoogeboom, H.J., Sant, P.: A direct construction of a universal P system.
Fundamenta Informaticae 49(1–3), 103–122 (2002)

18. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biol. 49(6), 737–759 (1987)

19. Head, T.: Splicing languages generated with one sided context. In: Paun, G. (ed.)
Computing with Bio-Molecules. Theory and Experiments, pp. 158–181. Springer,
Singapore (1998)

20. Hopcroft, J., Pansiot, J.-J.: On the reachability problem for 5-dimensional vector
addition systems. Theor. Comput. Sci. 8(2), 135–159 (1979)

21. Ivanov, S., Pelz, E., Verlan, S.: Small universal Petri nets with inhibitor arcs (2013).
arXiv, CoRR. abs/1312.4414

22. Ivanov, S., Pelz, E., Verlan, S.: Small universal non-deterministic Petri nets with
inhibitor arcs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014.
LNCS, vol. 8614, pp. 186–197. Springer, Heidelberg (2014)

23. Ivanov, S., Rogozhin, Y., Verlan, S.: Small universal networks of evolutionary
processors. J. Autom. Lang. Comb. 19(1—-4), 133–144 (2014)

24. Kari, L.: DNA computing: arrival of biological mathematics. Math. Intell. 19(2),
9–22 (1997)

25. Kim, J., White, K.S., Winfree, E.: Construction of an in vitro bistable circuit from
synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006)

26. Korec, I.: Small universal register machines. Theor. Comput. Sci. 168(2), 267–301
(1996)

27. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion
systems with one-sided contexts. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008)

28. Lathrop, J.I., Lutz, J.H., Patitz, M.J., Summers, S.M.: Computability and com-
plexity in self-assembly. Theory Comput. Syst. 48(3), 617–647 (2011)

29. Loos, R., Manea, F., Mitrana, V.: On small, reduced, and fast universal accepting
networks of splicing processors. Theor. Comp. Sci. 410(45), 406–416 (2009)

30. Malcev, A.I.: Algorithms and Recursive Functions. Wolters-Noordhoff, Groningen
(1970)

31. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On the size complexity of universal
accepting hybrid networks of evolutionary processors. Math. Struct. Comput. Sci.
8, 17:753–771 (2007)

32. Manea, F., Mart́ın-Vide, C., Mitrana, V.: Accepting Networks of Evolutionary
Word and Picture Processors: A Survey, pp. 525–561. Imperial College Press, Lon-
don (2010). Chap. 10

33. Margenstern, M.: Frontier between decidability and undecidability: a survey.
Theor. Comput. Sci. 231(2), 217–251 (2000)

34. Margenstern, M., Rogozhin, Y.: Time-varying distributed H systems of degree 1
generate all recursively enumerable languages. In: Ito, M., Păun, G., Yu, S. (eds.)
Words, Semigroups, and Transductions, pp. 329–339. World Scientific, Singapore
(2001)

35. Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying distributed H systems
with parallel computations: the problem is solved. In: Chen, J., Reif, J.H. (eds.)
DNA 2003. LNCS, vol. 2943, pp. 48–53. Springer, Heidelberg (2004)

36. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided
contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664,
pp. 205–217. Springer, Heidelberg (2007)

http://arxiv.org/abs/1312.4414

104 S. Verlan

37. Minsky, M.: Size and structure of universal Turing machines using tag systems. In:
Recursive Function Theory: Proceedings, Symposium in Pure Mathematics, vo. 5,
pp. 229–238. Provelence (1962)

38. Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, USA
(1967)

39. Neary, T., Woods, D.: The complexity of small universal turing machines: a survey.
In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.)
SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012)

40. Ollinger, N.: Automates cellulaires: structures. Ph.D. thesis, ENS Lyon (2002)
41. Ollinger, N.: The quest for small universal cellular automata. In: Widmayer, P.,

Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 318–329. Springer, Heidelberg (2002)

42. Patil, S.S.: Coordination of asynchronous events. Ph.D. thesis, MIT (1970)
43. Patitz, M.J., Summers, S.M.: Self-assembly of decidable sets. In: Calude, C.S.,

Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008. LNCS, vol.
5204, pp. 206–219. Springer, Heidelberg (2008)

44. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 1(61), 108–143
(2000). Also TUCS Report No. 208, 1998

45. Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)
46. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para-

digms. Springer, Heidelberg (1998)
47. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook Of Membrane Com-

puting. Oxford University Press, New York (2009)
48. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with

DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518,
pp. 123–140. Springer, Heidelberg (2011)

49. Rogozhin, Y.: Small universal turing machines. Theor. Comput. Sci. 168(2), 215–
240 (1996)

50. Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing.
Springer, Heidelberg (2012)

51. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, Heidelberg
(1997)

52. Schroeppel, R.: A two counter machine cannot calculate 2N. AI Memos, Cambridge
(1972)

53. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585–1588 (2006)

54. Shannon, C.E.: A universal Turing machine with two internal states. Autom. Stud.
Ann. Math. Stud. 34, 157–165 (1956)

55. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Com-
put. 36(6), 1544–1569 (2007)

56. Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)

57. Verlan, S.: Study of language-theoretic computational paradigms inspired by biol-
ogy. Habilitation thesis, Université Paris Est (2010)

58. von Neumann, J.: Theory of self-reproducing automata. University of Illinois (1966)
59. Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal turing machines. J.

ACM 8(4), 476–483 (1961)
60. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, Caltech (1998)
61. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., UK (2002)
62. Zizza, R.: Splicing systems. Scholarpedia 5(7), 9397 (2010)

Contributed Papers

Some Results on Interactive Proofs
for Real Computations

Martijn Baartse and Klaus Meer(B)

Computer Science Institute, BTU Cottbus-Senftenberg,
Platz der Deutschen Einheit 1, 03046 Cottbus, Germany

baartse@tu-cottbus.de, meer@b-tu.de

Abstract. We study interactive proofs in the framework of real number
complexity theory as introduced by Blum, Shub, and Smale. Shamir’s
famous result characterizes the class IP as PSPACE or, equivalently,
as PAT and PAR in the Turing model. Since space resources alone are
known not to make much sense in real number computations the ques-
tion arises whether IP can be similarly characterized by one of the lat-
ter classes. Ivanov and de Rougemont [9] started this line of research
showing that an analogue of Shamir’s result holds in the additive Blum-
Shub-Smale model of computation when only Boolean messages can be
exchanged. Here, we introduce interactive proofs in the full BSS model.
As main result we prove an upper bound for the class IPR. It gives rise
to the conjecture that a characterization of IPR will not be given via
one of the real complexity classes PARR or PATR. We report on ongoing
approaches to prove as well interesting lower bounds for IPR.

1 Introduction

One inspiring source of research problems to deal with in the framework of
real number computations [4] is the question, whether important results from
Turing complexity theory hold as well over the reals as underlying structure.
And in case they do what does it need to prove them. Beside the importance
for the respective computational model this might as well shed light on a better
understanding what is the intrinsic reason for a result to hold. Examples are
provided by the huge amount of research on quantifier elimination algorithms
yielding decidability of all problems in NPR, a recent analogue of Toda’s theorem
[3], or the proof of a real version of the classical PCP theorem [2], to mention
only a few.

Along the same lines in [9] the authors introduced interactive proofs in the
framework of real number complexity theory. More precisely, they considered
the additive version of the BSS model, see [4] and interaction is restricted to
exchange boolean messages only. In this setting, IP again can be characterized
via parallel polynomial time.

K. Meer—Both authors were supported under projects ME 1424/7-1 and ME 1424/
7-2 by the Deutsche Forschungsgemeinschaft DFG. We gratefully acknowledge the
support.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 107–116, 2015.
DOI: 10.1007/978-3-319-20028-6 11

108 M. Baartse and K. Meer

It is thus natural to extend the definition of interactive proofs to the full
BSS model by allowing real messages to be exchanged and the verifier to use
multiplications as well. By a folklore result in real number complexity [11] each
real decision problem can be decided in linear space. Thus the class IPR of real
decision problems acceptable by such an interactive protocol cannot meaning-
fully be characterized using space resources alone. As with other real complexity
classes that classically correspond to space classes the question then is whether
and which other characterizations hold. Note that the two classes PAR and PAT
of problems decidable in parallel and in alternating polynomial time, respec-
tively, equal PSPACE in the Turing model. However, for their real counterparts
PARR,PATR it is known that the first is a proper subset of the latter [7]. So the
question is whether one of them (and which) equals IPR?

It has been shown in [9] that PARR is different from IPR; there are problems
in IPR that cannot be solved in parallel polynomial time. A reason for this
is that PARR is too weak to capture certain real quantifier elimination tasks.
One might then expect that the larger class PATR is the correct one to capture
IPR. However, as our main result shows, this seems unlikely. We establish as an
upper bound for IPR the class MA∃R. It was introduced in [8], is strictly larger
than PARR but conjectured to be strictly included in PATR. After introducing
interactive protocols and the real complexity classes important for this paper
we prove the upper bound result in Sect. 3. The remaining part of the paper
then discusses approaches to achieve good lower bounds for IPR as well. This,
however, seems to be much harder and we only report on some problems for
which Shamir’s classical technique can be extended to design real protocols as
well. We try to substantiate why the lower bound problem in the full model seems
harder by re-analyzing the result of Ivanov and de Rougemont using counting
problems. This viewpoint leads to a couple of interesting open problems which
seem important on the way to a full real analogue of Shamir’s theorem.

2 Basic Notions

As underlying algorithm model we work in the Blum-Shub-Smale BSS model over
R [4]. Decision problems considered in this model are subsets of R

∞ :=
⊔

i≥1 R

i.
The model allows to perform the basic arithmetic operations +,−,× and test
instructions of the form ‘is x ≥ 0?’ at unit cost. Below, in addition we allow both
the verifier and the prover to exchange real numbers at unit cost.

The prover P is a BSS machine unlimited in computational power. The ver-
ifier V is a randomized polynomial time algorithm. It is important to point out
that randomization (still) is discrete, i.e., V generates a sequence of random
bits r = (r1, r2, . . .) during its computation. Now, the computation proceeds as
follows:

– Given an input x ∈ R

n of size |x| = n and (some of) the random bits of r the
verifier V computes a real V (x, r) =: w1 ∈ R and sends it to P ;

– using x and w1 the prover P sends a real P (x,w1) =: p1 ∈ R back to V ;

Some Results on Interactive Proofs for Real Computations 109

– in general, if after i rounds of communication (w1, p1, w2, . . . , pi) denotes
the information sent forth and back, in round i + 1 V computes a real
V (x, r, w1, p1, . . . , pi) =: wi+1 and sends it to P ; P then computes a real
P (x, r, w1, p1, . . . , pi, wi+1) =: pi+1 and sends it to V ;

– the communication halts after a polynomial number m = poly(|x|) of rounds.
Then V computes its final result V (x, r, w1, . . . , pm−1) =: wm ∈ {0, 1} repre-
senting its decision to reject or accept the input, respectively.

We denote the result of an interaction between V and P on input x and using r
as random string by (P, V)(x, r). All computations by V have to be finished in
(real) polynomial time; thus, in particular the number of random bits generated
as well as the number of rounds is polynomially bounded in the algebraic size
|x| of x.

Definition 1. (a) A language L ⊆ R

∞ has an interactive protocol if there exists
a polynomial time randomized verifier V such that
(i) if x ∈ L there exists a prover P such that Pr

r∈{0,1}∗
{(P, V)(x, r) = 1} = 1

and
(ii) if x �∈ L, then for all provers P it holds Pr

r∈{0,1}∗
{(P, V)(x, r) = 1} ≤ 1

4 .

Above, the length of r can be polynomially bounded in the length of x.
(b) The class IPR is the class of all decision problems L ⊆ R

∞ which have an
interactive protocol.

The real number complexity class most important for our considerations here
was introduced and studied by Cucker and Briquel in [8] and is denoted by
MA∃R. Starting point of defining it is the fact that over the reals classes which
are classically defined or characterized using space resources turn out to have
a more subtle relation among each other than they do classically. Taken alone,
space resources have no meaning at all; each decision problem can be decided
in linear space using an elementary coding trick [11]. As consequence, for many
equivalent characterizations especially of the class PSPACE in classical complex-
ity it is unclear what they should become in the real number framework. Recall
that PAR, PSPACE, PAT, and IP, denoting the classes of languages acceptable
by parallel polynomial time with exponentially many processors, in polynomial
space, in polynomial alternating time, and by interactive proofs, respectively,
all are the same in Turing complexity (see the textbook [1] for references and
proofs). In contrast, over R it is known that the real counterparts of the first three
classes mentioned above satisfy PARR � PSPACER ⊆ PATR, where PSPACER

denotes the class of real decision problems decidable by an algorithm using both
exponential time and polynomial space1 and the other two classes are defined by
extending the classical definitions straightforwardly, see [4,7]. As a consequence,
if a new class like IPR is studied which classically gives yet another characteri-
zation of PSPACE via Shamir’s famous result [12], it is not at all obvious where

1 The simultaneous requirement of exponential time and polynomial space excludes
the above mentioned coding trick from [11] and makes the definition meaningful.

110 M. Baartse and K. Meer

it has to be located over the reals. The above chain of inclusions also gives the
option to define new classes which do not make much sense over finite alpha-
bets. This is precisely where [8] starts by defining classes which can be located
between PSPACER and PATR. The class MA∃R is one such and turns out to be
important for interactive protocols. It at least gives a non-trivial upper bound
for IPR, just indicating the latter to be likely weaker than PATR.

Definition 2 ([8]).

(a) The class MA∃R consists of all decision problems L ⊆ R

∞ for which
there exists a problem B ∈ PR together with a polynomial p such that
an x ∈ R

∞ belongs to L if and only if the following formula holds:
∀Bz1∃Ry1 . . . ∀Bzp(|x|)∃Ryp(|x|)(x, y, z) ∈ B. The subscripts B,R for quan-
tifiers indicate whether a quantified variable ranges over B := {0, 1} or R,
respectively.

(b) The class MA∀R consists of the complements of problems in MA∃R. Thus, a
language L ∈ MA∀R contains precisely the points x for which a formula of
the following form holds: ∃Bz1∀Ry1 . . . ∃Bzp(|x|)∀Ryp(|x|)(x, y, z) ∈ B.

The following easy lemma is used later on.

Lemma 1. Let B̃ ∈ MA∃R and p be a polynomial. Then the set L ⊆ R

∞ of all
x such that ∀By1∃Rz1 . . . ∀Byp(|x|)∃Rzp(|x|)(x, y, z) ∈ B̃ belongs to MA∃R, i.e., if
in the definition of MA∃R condition B ∈ PR is replaced by B ∈ MA∃R we stay
within MA∃R

2.

Proof. The quantifier structure related to the definition of MA∃R guarantees
the existence of a polynomial q and a problem B ∈ PR such that (x, y, z) ∈
B̃ ⇐⇒ ∀Bs1∃Rt1∀Bs2 . . . ∀Bsq(|(x,y,z)|)∃Rtq(|(x,y,z)|)(x, y, z, s, t) ∈ B. So x ∈ L iff
∀By1∃Rz1 . . . ∀Byp(|x|)∃Rzp(|x|)∀Bs1∃Rt1∀Bs2 . . . ∀Bsq(|(x,y,z)|)∃Rtq(|(x,y,z)|)(x, y, z,
s, t) ∈ B. Since the lengths of both y and z are polynomially bounded in |x| this
holds as well for the lengths of s and t. Thus, L has the required representation. ��
One of the main results in [8] is proving the inclusion of PSPACER both in
MA∃R and MA∀R, which in turn implies the strict inclusion of PARR in both
latter classes.

Theorem 1 ([8]). PARR � PSPACER ⊆ MA∃R ∩MA∀R and MA∃R ∪MA∀R ⊆
PATR.

Above, the second containment is trivial because by definition of PATR the alter-
nating quantifiers in a defining formula all range over R. The relation between
MA∃R and MA∀R currently is unknown as is the question whether one of the
two is strictly contained in PATR. In the next section we show our main result:
MA∃R is an upper bound for IPR.

2 This of course only makes sense after MA∃R has been defined precisely.

Some Results on Interactive Proofs for Real Computations 111

3 Upper and Lower Bounds for IPR

In this section we prove the main result of this paper, an upper bound for the
class IPR. In addition, we deal with a few examples for which an interactive
proof can be designed. Unfortunately, our results are far from a characterization
of IPR like Shamir’s one in the Turing model. Nevertheless, even the bounds
presented here seem not at all obvious and require some efforts. As we shall see,
a main obstacle for getting better lower bounds is the fact that now we deal with
an uncountable space of information underlying the communications. We shall
comment on the results at the end.

3.1 Upper Bound: Recursive Evaluation of Verifier Action

We want to show the inclusion IPR ⊆ MA∃R. The proof is based on combining
a result in [9] with parts of the proof of Theorem1 adjusted accordingly. The
former gives a recursive procedure for computing the number of random vectors
under which a verifier accepts an interactive protocol; in the setting of [9] the
procedure runs in additive parallel polynomial time. In our setting, however,
due to the fact that in particular the prover can send reals the corresponding
procedure is not bounded by PARR, as has been shown in [9], see also comments
below. Instead, dealing with the real information sent introduces real quantifier
elimination as part of the task to compute the number of successful random
vectors. This naturally leads to considering the class MA∃R.

To start with let a verifier V and a prover P be given such that a language
L ⊆ R

∞ has an interactive protocol established by (P, V). In order to decide for
an input x whether x ∈ L it is sufficient to count the number of random strings
that cause V to accept x and check whether this number is larger than 1

2 of
the strings. We want to show that this task can be accomplished within class
MA∃R. Towards this aim below we recall a recursive procedure in [9] for doing
this counting and adapt it to our framework. Note that very similar results were
already used in the classical discrete setting.

For technical reasons in the proofs below we first need the notion of a nor-
malized real protocol.

Definition 3. (a) A real protocol (P, V) is called normalized if the following
conditions are satisfied:

– for input x ∈ R

n, n ∈ N there are precisely p(n) rounds of communication
for a fixed polynomial p only depending on V ;

– between receiving a real from P and sending a real back to P the verifier
V generates precisely one random bit.

(b) If in a normalized protocol the verifier generates ′0′ as random bit in round
i and then computes a real wi as the one to be sent to the prover next, we
denote it by wi(0); similarly for wi(1) if a ′1′ was generated.

112 M. Baartse and K. Meer

Notational Convention: For a normalized verifier round i starts with generating
random bit ri, then V computes deterministically wi ∈ R and sends it to P in
order to receive a pi ∈ R. We shall reflect this order of information flow also
below in the arguments of some important functions.

It is easy to see that without loss of generality we can assume each protocol
to be normalized.

Definition 4 (cf. [9]). Let (P, V) be a normalized real protocol. For an input
x ∈ R

∞ suppose the interaction to last m = poly(|x|) rounds. Let r =
(r1, . . . , rm) ∈ {0, 1}∗ be a sequence of random bits V generates during its com-
putation and let 1 ≤ j ≤ m.

(a) For w1, . . . , wj , p1, . . . , pj ∈ R denote by Pass(x, r1, w1, p1, r2, . . . , rj , wj)
the relation expressing that for j rounds, given x as input and ri as
random bit in round i the wi’s are the correct data sent by V if P
answers with pi for 1 ≤ i ≤ j. Thus, Pass(x, r1, w1, p1, r2, . . . , rj , wj) ⇔
V (x, r1, w1, p1, . . . , wi−1, pi−1, ri) = wi for all 1 ≤ i ≤ j.

(b) Define functions Qj ,Wj as follows: Qj(x,w1, p1, w2, . . . , pj−1) := max
|{r ∈ {0, 1}m | Pass(x, r1, w1, p1, . . . , rj−1, wj−1) ∧ wm = 1}| and Wj(x,w1,
p1, w2, . . . , pj−1, wj) := max |{r ∈ {0, 1}m | Pass(x, r1, w1, p1, . . . , pj−1, rj ,
wj) ∧wm = 1}| . In both cases the max is taken over all provers that give
responses p1, . . . , pj−1 ∈ R as answers to questions w1, . . . , wj−1 sent by V
on input x.

The only difference between this definition and the corresponding one in [9] is
that the wi and pi are reals. However, this makes the algorithm behind the next
statement more difficult because additional existential quantifiers taking care of
the role of the pi’s are needed. Because we deal with normalized protocols the
influence of the wi’s now being reals can be controlled without additional quan-
tifiers ranging over R. They basically are determined by the actually generated
(discrete) random bit and the previous information of the protocol. This finally
is the reason why MA∃R plays an important role.

Lemma 2 (cf. [9], Adapted to Normalized Protocols). Let x ∈ R

∞ and
(P, V) be a normalized real protocol accepting a language L. Let m be the number
of random bits generated by V during computation on x. Then for all 1 ≤ j ≤
m − 1

(a) x is accepted iff Q1(x) > 2m−1;
(b) Qj(x,w1, ..., pj−1) = Wj(x,w1, ..., pj−1, wj(0)) + Wj(x,w1, ..., pj−1, wj(1));
(c) Wj(x,w1, ..., pj−1, wj) = max

pj∈R

Qj+1(x,w1, ..., pj−1, wj , pj);

(d) Wm(x,w1, ..., pm−1, wm) = |{r ∈ {0, 1}m | Pass(x, r1, w1, p1, r2, ..., pm−1,
rm, 1)}| .

Proof. Except for small changes the proof is similar to the corresponding one
in [9]. Item (a) follows from the definition of Q1 and that of (P, V) accepting
an input x. For (b) first note that the verifier at most generates two different

Some Results on Interactive Proofs for Real Computations 113

real values for wj given x, r, and the pi, wi for 1 ≤ i ≤ j − 1, namely wj(0) and
wj(1). In this sense the choice of possible wj ’s still is discrete. For each prover
P used as candidate for the max in the definition of Qj it is easy to see that the
number of accepting r it yields is at most as large as the sum on the right hand
side. This holds because the same P is a candidate for both max computations
related to Wj(x, . . . , wj(0)) and Wj(x, . . . , wj(1)). Vice versa, if P0, P1 denote
the optimal provers in the definitions of Wj(x, . . . , wj(0)) and Wj(x, . . . , wj(1)),
respectively, an optimal prover for the max in Qj behaves like P0 if rj = 0 and
wj(0) was sent by the verifier and like P1 if rj = 1 and wj(1) was sent. This
proves the equality.

For (c) the max defining Wj asks for the best continuation of the protocol
when x, r1, . . . , rj−1, p1, . . . , pj−1, w1, . . . , wj are fixed. The next portion of data
that can be chosen to achieve the maximum is pj ∈ R. The right hand side just
asks for the optimal one. Thus both sides are equal. Item (d) holds because the
part (p1, . . . , pm−1) of the argument Wm already fixes the prover. ��
The lemma is used in order to compute recursively whether an input x is
accepted, i.e., computing Q1(x) and deciding whether it is larger than 2m−1.
In the discrete setting this can be achieved in parallel polynomial time. In our
situation, however, due to Theorem2 in [9] this is not possible;3 there are prob-
lems provably in IPR but not in PARR. Therefore, the involved max computa-
tions increase the problem’s difficulty because maximization over an uncountable
domain is required. The formal description of the resulting problem introduces
∃R-quantifiers and thus leads to MA∃R as an upper bound for IPR.

Theorem 2. IPR ⊆ MA∃R.

Proof. Let L ∈ IPR and (P, V) a corresponding normalized protocol for
L. For an input x ∈ R

n let m = poly(n) denote the polynomial num-
ber of rounds and generated random bits of the interaction. In order to
use the above lemma algorithmically it is necessary to compute the max-
ima occuring in the statements. Though the prover’s answers range over real
numbers the maxima are integers. Consider Qm(x,w1, p1, w2, . . . , pm−1) =
|{r ∈ {0, 1}m | Pass(x, r1, w1, p1, r2, w2, . . . , pm−1)}|. Obviously, both Qm and
the predicate “Qm(x,w1, . . . , pm−1) = s for given s ∈ {0, 1, . . . , 2m}” are com-
putable in PARR because for every single r the simulation of (P, V) on x
using r needs polynomial time. Now for each s ∈ {0, 1, . . . , 2m} the predicate
∃pm−1 ∈ R : Qm(x,w1, . . . , pm−2, wm−1, pm−1) = s belongs to MA∃R: First,
Theorem 1 implies that the inner predicate “Qm = s” is in MA∃R, then Lemma 1
shows that this class is not left. In order to compute Wm−1 we can in parallel
compute for each s ∈ {0, 1, . . . , 2m} whether ‘∃pm−1 ∈ R : Qm = s’ holds and
finally extract the maximal s for which this is true in polynomial time. Again
by Lemma 1 it follows that the predicate Wm−1 = s can be decided in MA∃R.
The same holds for the predicate Qm−1(q, w1, . . . , pm−1) = s since according to

3 Though formally the classes in [9] are defined a bit differently it is easy to see that
their protocols used to prove the theorem fit into IPR.

114 M. Baartse and K. Meer

part (b) of Lemma 2 it can be computed using a sum of Wm−1 when the last
component once is wm−1(0) and once wm−1(1).

We continue along the recursion behind Lemma2. Since its depth m is poly-
nomially bounded in n = |x|, by precisely the same arguments as above we see
that all predicates Q1 = s (or, similarly, Q1 > s) for s ∈ {0, 1, . . . , 2m} belong
to MA∃R; the structure ∀B∃R of quantifier prefixes remains the same and for
each of the m rounds only a polynomial number of quantifiers is added. Finally,
x ∈ L iff Q1 > 2m−1 finishes the proof. ��

3.2 Lower Bounds

In this subsection we report on ongoing research to obtain meaningful lower
bounds for IPR. However, it currently is more a discussion of problems and
interesting open questions than a completed project. In particular, so far we
have not been able to give a characterization of IPR analogue to Shamir’s result.
Below, we discuss where new difficulties arise and what might be promising ways
to go.

Let us first give some interactive proofs for certain restricted subclasses of
problems. These results might already shed some light on the difficulties faced
when trying to generalize the classical methods to design IP’s to the real model.

A major problem here seems to be to obtain suitable arithmetizations of the
problems considered in order to apply similar techniques. PATR,MA∃R,MA∀R

are classes defined by quantifying a problem B ∈ PR using different sequences
of quantifiers of different structures. Another example of such a class is DPATR,
where all quantifiers are Boolean. It seems natural to expect that at least for
sequences of Boolean quantifiers the classical techniques could be adopted. How-
ever, this is not obviously true, the reason being the need of a suitable arith-
metization of properties B ∈ PR. In the following we consider certain subclasses
obtained by restricting parts of the general problem definition: either the quan-
tifier structure or the condition in PR or both. We shall investigate some cases
for which interactive protocols can be designed.

Definition 5. (a) We denote by MA∀=0
R

the subclass of problems in MA∀R

where B ∈ PR can be chosen to be of the following particular form: There is a
multivariate polynomial Fx such that (x, y, z) ∈ B if and only if Fx(y, z) = 0.
Moreover, given (x, y, z) the value Fx(y, z) can be computed in polynomial
time in the size of x.

(b) A problem S is in class DPATR if there is a polynomial p and another problem
B ∈ PR such that x ∈ S if and only if ∀Bz1∃Bz2 . . . Qp(|x|)zp(|x|)(x, z1, ...,
zp(|x|)) ∈ B, where Qp(|x|) ∈ {∃B ,∀B}.

(c) A problem S ∈ DPATR belongs to class DPAT=0
R

if the condition (x, z) ∈ B
in part (b) has the particular form Fx(z) = 0 for a polynomial Fx that can
be evaluated in polynomial time in |x|. Similarly, class DPAT�=0

R
consists of

problems where this condition reads Fx(z) �= 0.

For the class MA∀=0
R

of problems defined above we obtain interactive protocols
basically by applying the classical Schwartz-Zippel lemma.

Some Results on Interactive Proofs for Real Computations 115

Proposition 1. It holds MA∀=0
R

⊆ IPR.

Problems in class DPATR are defined using Boolean quantifier prefixes only.
Thus, one might expect that the classical discrete technique for designing inter-
active proofs suffices. However, the problem seems to be finding a suitable arith-
metization of the formula. For the subclasses defined above this is possible.

Proposition 2. It holds DPAT=0
R

⊂ IPR and DPAT�=0
R

⊂ IPR.

Another possible way to extend the class of problems that have a real interactive
protocol is the examination of oracle computations and counting problems. In
[10] an interactive protocol for verifying the value of a permanent of a 0-1-
matrix was given (before Shamir’s result was known). Together with Toda’s
theorem that the polynomial hierarchy PH is included in P#P and the #P -
completeness of the permanent computation this implies an interactive protocol
for all problems in the polynomial hierarchy. The protocol for the permanent, as
for example described in [1], works as well for real matrices in the BSS model.
This implies that real problems that can be decided by a polynomial time BSS
algorithm having access to an oracle computing the permanent of real number
matrices, i.e., all problems in class PPerm

R
, belong to IPR. However, it is not

known whether the permanent plays a similar role for real counting problems as
it does in the Turing model. This is an active field of research. Basu and Zell
[3] have given a real analogue of Toda’s theorem. Instead of the permanent in
this approach the computation of so-called Betti numbers of semi-algebraic sets
plays a crucial role. The latter express certain topological properties of semi-
algebraic sets. They seem to be even more difficult to handle than permanent
computations. An intensive study of counting problems has been performed in
[5,6] for both the additive and the full real number model. Further topological
quantities that turn out to be important are, for example, the topological degree
and the Euler characteristic of a set. In both papers several characterizations of
real complexity classes via oracle computations as well as completeness results
are given. The results in the additive setting actually can be used to prove again
the main result of [9].

Theorem 3 ([9]). In the additive real BSS model the class PARR,+ of problems
decidable in parallel polynomial time equals the class BIPR,+ of problems that
admit an additive interactive protocol only exchanging boolean messages.

The prove is technically very similar to the one in [9] in that a crucial inclusion
PARR,+ ⊆ PPSPACE

R+
is shown using the existence of small rational points in

certain point location tasks. A similar result is central in [9]. This gives the pos-
sibility to involve discrete oracles which then can be handled using the classical
protocol by Shamir. It is not known whether in the full model discrete oracles
play a similarly important role. But the above reasoning makes it interesting to
study which real (counting) functions bearing a high complexity can be com-
puted by an interactive protocol in order to use it as an oracle. Another example
are so-called resultant functions which are polynomials built from the coefficients

116 M. Baartse and K. Meer

of certain polynomial systems and crucial in some of the currently best known
algorithms for dealing with the existential theory over the reals like determinants
are for the solution of linear systems. Thus we have

Problem 1: Can any of the following problems be solved by an interactive
protocol in the full BSS model: given a semi-algebraic set S ⊆ R

n via a system
of polynomial (in-)equalities and a number k ∈ N0, verify that the sum of the
Betti-numbers of S or the degree or the Euler-characteristic of S equals k. What
about verifying the value of resultant polynomials by an interactive protocol?

Even if it is unclear whether positive answers would give the intended char-
acterization of IPR it would be a significant step forward. For example, existence
of such protocols for the Euler characteristic or the Betti numbers would imply
that co-NPR ⊆ IPR because the latter can be solved using a polynomial time
oracle computation that has access to evaluating those function.

Unfortunately, at the moment we do not know how to design an interactive
protocol for co-NPR. It seems unlikely that MA∃R = MA∀R. Thus, if MA∃R

turns out to equal IPR it would not be obvious whether IPR is closed under
complementation. Classically, this of course holds.

Problem 2: Is IPR closed under complementation?

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Baartse, M., Meer, K.: The PCP theorem for NP over the reals. Found. Comput.
Math. Springer. doi:10.1007/s10208-014-9188-x

3. Basu, S., Zell, T.: Polynomial hierarchy, Betti numbers, and a real analogue of
Toda’s theorem. Found. Comput. Math. 10(4), 429–454 (2010)

4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, New York (1998)

5. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations
I: semilinear sets. SIAM J. Comput. 33(1), 227–260 (2003)

6. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations.
II. algebraic and semialgebraic sets. J. Complex. 22(2), 147–191 (2006)

7. Cucker, F.: On the complexity of quantifier elimination: the structural approach.
Comput. J. 36(5), 400–408 (1993)

8. Cucker, F., Briquel, I.: A note on parallel and alternating time. J. Complex. 23,
594–602 (2007)

9. Ivanov, S., de Rougemont, M.: Interactive protocols on the reals. Comput. Com-
plex. 8, 330–345 (1999)

10. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

11. Michaux, C.: Une remarque à propos des machines sur R introduites par Blum.
Shub et Smale. C.R. Acad. Sci. Paris, t. 309, Série I, pp. 435–437 (1989)

12. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)

http://dx.doi.org/10.1007/s10208-014-9188-x

Prime Model with No Degree of Autostability
Relative to Strong Constructivizations

Nikolay Bazhenov1,2(B)

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia

nickbazh@yandex.ru

Abstract. We build a decidable structure M such that M is a prime
model of the theory Th(M) and M has no degree of autostability relative
to strong constructivizations.

Keywords: Autostability · Decidable structure · Prime model ·
Autostability spectrum · Autostability relative to strong constructiviza-
tions · Degree of categoricity · Categoricity spectrum · Decidable
categoricity

1 Introduction

The study of autostable structures goes back to the works of Fröhlich and
Shepherdson [1], and Mal’tsev [2,3]. Since then, the notion of autostability has
been relativized to the levels of the hyperarithmetical hierarchy, and to arbitrary
Turing degrees d, and has been the subject of much study.

Definition 1. Let d be a Turing degree. A computable structure A is d-
autostable if, for every computable structure B isomorphic to A, there exists
a d-computable isomorphism from A onto B. 0-autostable structures are also
called autostable.

The autostability spectrum of the structure A is the set

AutSpec(A) = {d : A is d-autostable}.

A Turing degree d0 is the degree of autostability of A if d0 is the least degree in
AutSpec(A).

Autostability spectra and degrees of autostability were introduced by Fokina,
Kalimullin, and Miller [4]. Note that much of the literature (see, e.g., [4–8]) uses
the terms categoricity spectrum and degree of categoricity in place of autostability
spectrum and degree of autostability, respectively. In this paper, we follow the
terminology of [9].

Suppose that n is a natural number and α is a computable ordinal. Fokina,
Kalimullin, and Miller [4] proved that every Turing degree d that is d.c.e. in and
above 0(n) is the degree of autostability of a computable structure. This result
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 117–126, 2015.
DOI: 10.1007/978-3-319-20028-6 12

118 N. Bazhenov

was extended by Csima, Franklin, and Shore [5] to hyperarithmetical degrees.
They proved that every degree that is d.c.e. in and above 0(α+1) is a degree of
autostability. They also showed that 0(α) is a degree of autostability.

Miller [10] constructed the first example of a computable structure with no
degree of autostability. He proved that there exists a computable field F which
is not autostable and such that for some c0, c1 ∈ AutSpec(F), c0 ∧ c1 = 0. For
more results on autostability spectra, see the survey [11].

Recall that a computable structure A is decidable if its complete diagram
Dc(A) is a computable set. The following definition describes the notion of
autostability restricted to decidable copies of a structure. This notion is a natural
one, as it simply changes the word computable to decidable.

Definition 2. Suppose that d is a Turing degree. A decidable structure A is
d-autostable relative to strong constructivizations (d-SC-autostable) if, for every
decidable copy B of A, there exists a d-computable isomorphism f : A → B. In
case d = 0, we say that A is SC-autostable.

The autostability spectrum relative to strong constructivizations (SC-auto-
stability spectrum) is the set

AutSpecSC(A) = {d : A is d-SC-autostable}.

A Turing degree d0 is the degree of autostability relative to strong constructiviza-
tions (degree of SC-autostability) of A if d0 is the least degree in the spectrum
AutSpecSC(A).

The study of SC-autostability spectra was initiated by Goncharov [9]. In partic-
ular, he proved that every c.e. Turing degree is the degree of SC-autostability of
some decidable prime model. In [12] the author announced the following result:
for a computable successor ordinal α, every degree d that is c.e. in and above
0(α) is a degree of SC-autostability.

Suppose that L is a language. If M is an L-structure, then Th(M) is the
first-order theory of M. A structure M is a prime model (of the theory Th(M))
if, for every model N of Th(M), there is an elementary embedding of M into
N . A structure M is an almost prime model if there exists a finite tuple c̄ from
M such that (M, c̄) is a prime model.

Our work is concerned with the following problem.

Problem 1. (Goncharov [9]). Suppose that M is a decidable almost prime
model and c̄ is a tuple from M such that (M, c̄) is a prime model of the theory
Th(M, c̄). Let d be the Turing degree of the collection of complete formulas
of Th(M, c̄). It is not difficult to see that d is a c.e. degree and M is d-SC-
autostable. Is it always true that d is the degree of SC-autostability of M?

We give the negative answer to this question by proving the following result.

Theorem 1. There exists a decidable structure M such that M is a prime
model of the theory Th(M) and M has no degree of SC-autostability.

Prime Model with No Degree of Autostability Relative 119

2 Preliminaries

Suppose that S is a countable set. A numbering of S is a map ν from the set ω
of natural numbers onto the set S. A numbering ν is a Friedberg numbering if ν
is 1-1.

γ denotes the standard numbering of the family of all finite subsets of ω. In
particular, if n0 < n1 < . . . < nk < ω, then

γ (2n0 + 2n1 + . . . + 2nk) = {n0, n1, . . . , nk}.

For a set A ⊆ ω, we use |A| to denote the cardinality of A. We assume {ϕe}e∈ω

to be a standard effective enumeration of all unary partial computable functions.
We also assume 〈·, ·〉 to be a standard computable pairing function over ω. For
a function f , δf denotes the domain of f and ρf denotes the range of f .

An L-structure M is an atomic model if, for any tuple ā = a0, . . . , an from
M, there exists an L-formula φ(x0, . . . , xn) such that M |= φ(ā), and every
L-formula ψ(x0, . . . , xn) satisfies the following condition: if M |= ψ(ā), then

M |= ∀x0 . . . ∀xn (φ(x0, . . . , xn) → ψ(x0, . . . , xn)).

Such a formula φ is called a complete formula of the theory Th(M). Recall
Vaught’s theorem on the relationship of prime and atomic models (see [13]).

Theorem 2. (Vaught). Suppose that M is an L-structure. M is a prime model
if and only if M is a countable atomic model.

We identify the set ω<ω with a tree with the following ordering: σ � τ iff σ is an
initial segment of τ . For any σ, τ ∈ ω<ω, we use σ̂τ to denote the concatenation
of σ and τ . Suppose that T is a subtree of ω<ω. We use b(σ;T) to denote the
branching function of T which is defined as follows. If σ ∈ T , then:

b(σ;T) = |{n ∈ ω : σ̂〈n〉 ∈ T}|.

The following is a relativization of the Low Basis Theorem due to Jockusch
and Soare (see [14,15]).

Theorem 3. (Jockusch and Soare). Suppose that V ⊆ ω, and T is a family
of all V -computable finite-branching subtrees T of ω<ω with a V -computable
branching function b(σ;T). Then there exists a Turing degree d with d′ ≤
degT (V ′) such that every infinite tree T ∈ T has a d-computable path. (Such
a degree is known as a PA-degree relative to V). Furthermore, there exist two
PA-degrees d0 and d1 relative to V such that

∀c ((c ≤ d0 & c ≤ d1) → c ≤ degT (V)). (1)

We refer the reader to [16,17] for further background on computable and decid-
able structures.

120 N. Bazhenov

2.1 Colored Algebras

Let LBA be the language
{∨2,∧2,C1; 0, 1

}
. We treat Boolean algebras as LBA-

structures. If L is a linear ordering, then Int(L) denotes the corresponding
interval algebra. For a Boolean algebra B, Atom(B) denotes the set of atoms
of B. If a is an element of B, then âB denotes the relative algebra with the uni-
verse {b ∈ B : b ≤B a}. For further information on computable Boolean algebras,
see [18].

Let k be a non-zero natural number. A k-partition of an element a in a
Boolean algebra B is a sequence b1, . . . , bk of pairwise disjoint non-zero elements
(i.e., bi ∧ bj = 0 when i �= j, and bi �= 0) such that a = b1 ∨ . . . ∨ bk. The formula
(b1, . . . , bk | a) denotes that b1, . . . , bk is a k-partition of a.

Consider the new computable language L0 = LBA ∪ {
P 1

k : k ∈ ω
}
, where P 1

k

is a computable predicate.

Definition 3. Let B be a Boolean algebra. An L0-structure Bc = (B, Pk)k∈ω

is a colored algebra if there exists a computable sequence of LBA-formulas
{Φk(x, ȳk)}k∈ω such that for any k, there is a tuple b̄k from B with the property

Bc |= ∀x
(
Pk(x) ↔ Φk(x, b̄k)

)
. (2)

Such a sequence {Φk}k∈ω is called a coloring sequence of Bc. The Boolean algebra
B is called the underlying algebra of Bc.

Colored algebras were introduced in [12]. The informal explanation of the term
“colored algebra” is as follows. We treat the predicates Pk as colors and assign
these colors to elements of a Boolean algebra B. Note the important difference
between our coloring and the graph coloring: we do not require that an element
of B have only one color.

A colored algebra Bc is atomic if its underlying algebra B is an atomic Boolean
algebra. We use Col(Bc) to denote the set

⋃
k∈ω Pk of all colored elements of Bc.

Ershov [19] obtained the following result: a computable atomic Boolean alge-
bra B is decidable iff the set of atoms Atom(B) is computable. It is not difficult
to show that Ershov’s result yields the following corollary.

Proposition 1. Suppose that Bc = (B, Pk)k∈ω is a computable atomic colored
algebra, and {Φk(x, ȳk)}k∈ω is a coloring sequence of Bc. The structure Bc is
decidable if and only if it satisfies the following conditions:

(i) the set of atoms Atom(B) is computable; and
(ii) there exists a computable function g(x) such that for any k, the value g(k)

is equal to the Gödel number of some tuple b̄k with the property (2).

3 The Proof of Theorem 1

We will build two decidable atomic colored algebras Ac and Bc such that Ac and
Bc are isomorphic but not computably isomorphic. Lemmas 2, 5, and 8 guaran-
tee that Ac satisfies Theorem 1. The construction uses the ideas of Miller [10,
Theorem 3.4] and Steiner [20, Theorem 2.8].

Prime Model with No Degree of Autostability Relative 121

We fix a computable atomless Boolean algebra C = (ω;∨,∧,C; 0, 1). For
clarity, we use ≤C and ≤ω when we need to differentiate between the ordering of
the Boolean algebra C and the standard ordering of ω. We also fix a computable
subalgebra C0 ≤ C such that C0 is isomorphic to Int(ω) and C0 has a computable
set of atoms Atom(C0) = {a0 <ω a1 <ω a2 <ω . . .}. For a set X ⊆ ω, we use
gr(X) to denote the subalgebra of C generated by X.

Consider a computable language Lc =
{
P 1

k : k ∈ ω
} ∪

{
Q1

k,j : k, j ∈ ω
}

.

We will construct two Lc-structures Ac =
(
A, PA

k , QA
k,j

)
k,j∈ω

and Bc =(
B, PB

k , QB
k,j

)
k,j∈ω

such that Ac ∼= Bc, C0 ≤ A ≤ C, and C0 ≤ B ≤ C.

At stage s we define computable Boolean algebras As and Bs. The universe
of As is denoted by As, and the universe of Bs is denoted by Bs. For every
k ∈ ω, we also define the number fk,s, elements cA

k,s, d
A
k,s from As, and elements

cB
k,s, d

B
k,s from Bs. In addition, we build the predicates PA

k , PB
k , QA

k,j , and QB
k,j

in such a way that, for any predicate R, there is a unique stage t which deals
with R.

Notation. We say that we don’t change k-parameters at stage s + 1 if we define
fk,s+1 = fk,s, cA

k,s+1 = cA
k,s, dA

k,s+1 = dA
k,s, cB

k,s+1 = cB
k,s, and dB

k,s+1 = dB
k,s.

Construction Stage 0. Define A0 = B0 = C0. For every k ∈ ω, set PA
k = PB

k =
{a2k, a2k+1}, fk,0 = 0, cA

k,0 = cB
k,0 = a2k, and dA

k,0 = dB
k,0 = a2k+1.

Stage s + 1. Suppose that s = 〈k, t〉. Consider the following four cases.

Case 1. Suppose that fk,s = 0, and t is the least natural number such that
ϕk,t(a2k) ↓= a2k and ϕk,t(a2k+1) ↓= a2k+1. Find the following par-
titions in the Boolean algebra C: (c1, c2 | cA

k,s), (d1, d2, d3 | dA
k,s),

(c′
1, c

′
2, c

′
3 | cB

k,s), and (d′
1, d

′
2 | dB

k,s). Define

As+1 = gr(As ∪ {c1, c2, d1, d2, d3}), Bs+1 = gr(Bs ∪ {c′
1, c′

2, c′
3, d′

1, d′
2}),

QA
k,t = {c1, d1}, QA

k,t+1 = {c2, d2}, QA
k,t+2 = {d3},

QB
k,t = {c′

1, d′
1}, QB

k,t+1 = {c′
2, d′

2}, QB
k,t+2 = {c′

3},

QA
k,t+l+3 = QB

k,t+l+3 = ∅, l ∈ ω.

Set fk,s+1 = 1. For any l, do not change l-parameters (except the
parameter fk,s+1).

Case 2. Suppose that fk,s = 0, and t is the least number such that ϕk,t(a2k)↓=
a2k+1 and ϕk,t(a2k+1) ↓= a2k. Find the following partitions in
C: (c1, c2 | cA

k,s), (d1, d2, d3 | dA
k,s), (c′

1, c
′
2 | cB

k,s), and (d′
1, d

′
2, d

′
3 | dB

k,s).
The definitions of As+1, fk,s+1, QA

k,t+l (where l ∈ ω), and QB
k,t+l (where

l �= 2) are the same as in the Case 1. Define

Bs+1 = gr(Bs ∪ {c′
1, c

′
2, d

′
1, d

′
2, d

′
3}), QB

k,t+2 = {d′
3}.

For any l, don’t change l-parameters (except fk,s+1).

122 N. Bazhenov

Case 3. Suppose that fk,s = 0 and neither of Cases 1 and 2 hold. Find the
following partitions in C: (c1, c2 | cA

k,s), (d1, d2 | dA
k,s), (c′

1, c
′
2 | cB

k,s), and
(d′

1, d
′
2 | dB

k,s). Set

As+1 = gr(As ∪ {c1, c2, d1, d2}), Bs+1 = gr(Bs ∪ {c′
1, c

′
2, d

′
1, d

′
2}),

QA
k,t = {c1, d1}, cA

k,s+1 = c2, dA
k,s+1 = d2,

QB
k,t = {c′

1, d
′
1}, cB

k,s+1 = c′
2, dB

k,s+1 = d′
2.

For any l, don’t change any l-parameters.
Case 4. If fk,s �= 0, then set As+1 = As, Bs+1 = Bs, and don’t change l-

parameters for any l.

We have described the construction. Define Boolean algebras A = gr(⋃
s∈ω As

)
and B = gr

(⋃
s∈ω Bs

)
. It is easy to see that the sets As and Bs,

s ∈ ω, are uniformly computable; therefore, we may assume that the structures
A and B are computable. Consider the structures Ac =

(
A, PA

k , QA
k,j

)
k,j∈ω

and

Bc =
(
B, PB

k , QB
k,j

)
k,j∈ω

. It is not difficult to show that Ac and Bc are com-

putable structures.

Verification. It is easy to verify the following properties of the construction.

Lemma 1. (a) For any k, j ∈ ω, we have
∣∣PA

k

∣∣ =
∣∣PB

k

∣∣ ≤ 2 and
∣∣∣QA

k,j

∣∣∣ =∣∣∣QB
k,j

∣∣∣ ≤ 2. Moreover, there exist computable functions fA(x) and fB(x)

such that for any k and j, PA
k = γ(fA(〈k, 0〉)), QA

k,j = γ(fA(〈k, j + 1〉)),
PB

k = γ(fB(〈k, 0〉)), and QB
k,j = γ(fB(〈k, j + 1〉)).

(b) Atom(A) =
⋃

k,j∈ω QA
k,j and Atom(B) =

⋃
k,j∈ω QB

k,j.
(c) Suppose that R and S are distinct predicates from the language Lc. Then

RA ∩ SA = ∅ and RB ∩ SB = ∅.
(d) Every k ∈ ω satisfies one of the following two conditions.

(d.1) There exists a number t ≥ 3 such that each of the algebras ̂(a2k)A,
̂(a2k+1)A, ̂(a2k)B, and ̂(a2k+1)B is isomorphic either to Int(t) or to

Int(t + 1). Moreover, ̂(a2k)A �
̂(a2k+1)A and ̂(a2k)B �

̂(a2k+1)B.
(d.2) Each of the algebras ̂(a2k)A, ̂(a2k+1)A, ̂(a2k)B, and ̂(a2k+1)B is isomor-

phic to Int(ω).
(e) A = gr

(
Atom(A) ∪ ⋃

k∈ω PA
k

)
and B = gr

(
Atom(B) ∪ ⋃

k∈ω PB
k

)
.

(f) A is isomorphic to Int(ω2).

Lemma 2. Structures Ac and Bc are decidable colored algebras.

Proof. Consider the function fA(x) from Lemma 1(a). Define the following
sequence of LBA-formulas.

Φk,j(x, ȳ) =

⎧⎨
⎩

(x = y1) ∨ (x = y2), if |γ(fA(〈k, j〉))| = 2,
x = y1, if |γ(fA(〈k, j〉))| = 1,
x �= x, otherwise.

Prime Model with No Degree of Autostability Relative 123

Lemma 1(a) implies that the sequence {Φk,j}k,j∈ω is the coloring sequence for
each of the structures Ac and Bc. Hence, Ac and Bc are colored algebras.
Lemma 1(a,b) also implies that Ac and Bc satisfy the conditions of Proposi-
tion 1; therefore, our structures are decidable.

The proof of Lemma 2 actually shows that every computable copy of Ac satisfies
Proposition 1.

Corollary 1. Every computable copy of Ac is decidable. In particular, the spec-
trum AutSpecSC(Ac) is equal to AutSpec(Ac).

Definition 4. Given an element a from the set Col(Ac), we define the Lc-
formula φa(x) as follows. First, we find a predicate R from Lc such that a ∈ RA.

(i) If a is an atom of A, then we define φa(x) = R(x).
(ii) If a /∈ Atom(A), then R = Pk for some k ∈ ω. Consider the following two

cases.
(ii.a) Suppose that the Boolean algebra âA is finite and it has exactly t atoms.

We define

φa(x) = Pk(x)&∃y ((y ∧ x = y)&Qk,t−1(y)) &
¬∃z((z ∧ x = z)&Qk,t(z)).

(ii.b) If âA is an infinite algebra, then we set φa(x) = Pk(x).

Note that Lemma 1(b,c,d) implies that the formulas φa are well-defined. It is not
difficult to prove the following lemma.

Lemma 3. Suppose that Ac
1 =

(
A1, P

A1
k , QA1

k,j

)
k,j∈ω

is a colored algebra with

the universe contained in ω. Suppose also that F is a bijection from Col(Ac)
onto Col(Ac

1) with the following properties:

(a) for any a, b ∈ Col(Ac), a ≤A b iff F (a) ≤A1 F (b);
(b) for any a, b ∈ Col(Ac), Ac |= φa(b) iff Ac

1 |= φa(F (b)).

Then there exists a unique isomorphism F c : Ac → Ac
1 such that F c ⊇ F . More-

over, F c can be constructed effectively from F and the atomic diagram of Ac
1.

Lemma 4. Colored algebras Ac and Bc are isomorphic but not computably iso-
morphic. In particular, Ac is not SC-autostable.

Proof. It is easy to construct a 0′-computable bijection F from Col(Ac) onto
Col(Bc) satisfying the conditions of Lemma3. Therefore, Ac and Bc are 0′-
computably isomorphic.

Note that for any k ∈ ω and any isomorphism G : Ac → Bc, G maps a2k to a2k

and a2k+1 to a2k+1, or vice versa. Therefore, Cases 1 and 2 of the construction
guarantee that ϕk is not an isomorphism. For example, Case 1 ensures that if
ϕk(a2k) = a2k and ϕk(a2k+1) = a2k+1, then the relative algebras ̂(a2k)A and
̂(a2k)B are not isomorphic.

124 N. Bazhenov

Lemma 5. Ac is a prime model.

Proof. By Theorem 2, it is sufficient to prove that Ac is an atomic model. Given a
tuple ā = a0, . . . , an from Ac, we will construct a complete Lc-formula Φ(x̄) such
that Ac |= Φ(ā). Lemma 1(e) implies that we can choose a tuple b̄ = b0, . . . , bm

from Col(Ac) such that ā ∈ gr ({b0, . . . , bm}). For i � n, fix an LBA-term ti(ȳ)
such that ai = ti(b̄). We define the formula

Φ(x̄) = ∃y0 . . . ∃ymΨ(x̄, y0, . . . , ym),

where Ψ is the conjunction of the following formulas:

1. xi = ti(ȳ) for i � n,
2. φbj (yj) for j � m,
3. yj ∧ yk = yj for all j and k with the property bj ≤C bk,
4. yj ∧ yk �= yj for all j and k with the property bj �C bk.

It is easy to see that Ac |= Φ(ā). Suppose that Ac |= Φ(c̄) for some c̄. Using
Lemma 3, it is not difficult to show that the structures (Ac, ā) and (Ac, c̄) are
isomorphic. Hence, Φ is a complete formula.

Definition 5. Let Ac
1 =

(
A1, P

A1
k , QA1

k,j

)
k,j∈ω

be a copy of Ac with universe

A1 ⊆ ω. A special numbering of Col(Ac
1) is a Friedberg numbering of Col(Ac

1)
with the following properties: ν is a computable function, and for all x, k, j ∈ ω,
if ν(x) ∈ QA1

k,j+1, then there exist y0, y1, z0, z1 such that y0 < y1 < z0 < z1 < x,
PA1

k = {ν(y0), ν(y1)}, and QA1
k,j = {ν(z0), ν(z1)}.

Note. If Ac
1 is a computable copy of Ac, then there exists a special numbering ν1

of Col(Ac
1). Moreover, ν1 can be constructed effectively from the atomic diagram

of Ac
1.

We fix a special numbering ν of Col(Ac). For a number s, ν[s] denotes the set
{ν(0), . . . , ν(s)}. The following definition is based on [10, Definition 5.1] and [20,
Definition 2.16].

Definition 6. Let Ac
1 be a computable copy of Ac with universe A1. The uni-

verse of the isomorphism tree TA,A1 is the set of all functions f with the following
properties.

(a) δf = ν[s] for some s, and ρf ⊆ A1;
(b) Suppose that Lf is a language

{
R ∈ Lc : ∃a ∈ δf

(
a ∈ RA

)}
. Then f is an

isomorphic embedding from the Lf -structure
(
δf, LA

f

)
into the Lf -structure(

A1, L
A1
f

)
.

(c) For every a, b ∈ δf , a ≤A b iff f(a) ≤A1 f(b).

The ordering of the tree TA,A1 is standard, i.e., f � g iff f ⊆ g. We identify
the tree TA,A1 with a computable subtree of ω<ω. We may assume that TA,A1 is
built effectively from the atomic diagram of Ac

1.

Prime Model with No Degree of Autostability Relative 125

The following lemma justifies the choice of the term “isomorphism tree.”

Lemma 6. Suppose that Ac
1 is a computable copy of Ac. Let I be the set of all

isomorphisms from Ac onto Ac
1, and P be the set of all paths through the tree

TA,A1 . Then there exists a bijection Ψ from P onto I such that for any π ∈ P ,
π is Turing equivalent to Ψ(π).

Proof. Here we omit the details and give only general idea of the proof. Given
a path π through TA,A1 , build a bijection Fπ : Col(Ac) → Col(Ac

1) such that Fπ

satisfies the conditions of Lemma 3 and for any a ∈ Col(Ac), there is a finite
function f ≺ π with the property Fπ(a) = f(a). The function Fπ yields an
isomorphism F c

π : Ac → Ac
1. Set Ψ(π) = F c

π.

It is not difficult to verify the following claim.

Lemma 7. The tree TA,A1 is a finite-branching tree with a computable branching
function b(σ;TA,A1). Moreover, for any σ ∈ TA,A1 , we have b(σ;TA,A1) ≤ 2.

Lemma 8. (1) Suppose that d is a PA-degree relative to ∅. Then Ac is d-
autostable.

(2) Ac has no degree of SC-autostability.

Proof. Let Ac
1 be a computable copy of Ac. By Theorem 3 and Lemma 7, the

isomorphism tree TA,A1 has a d-computable path π. By Lemma 6, there is a d-
computable isomorphism Ψ(π) from Ac onto Ac

1. Therefore, Ac is d-autostable.
We fix two PA-degrees d0 and d1 relative to ∅ with the property (1) (where

V = ∅). We already proved that Ac is d0-SC-autostable and d1-SC-autostable.
Note that (1) implies that if Ac has a degree of SC-autostability, then Ac is
SC-autostable. Therefore, by Lemma 4, Ac has no degree of SC-autostability.

This completes the proof of Theorem 1. In conclusion, we formulate some open
questions related to Problem1.

Question 1. Suppose that M is a decidable almost prime model and c̄ is a tuple
from M such that (M, c̄) is a prime model of the theory Th(M, c̄). Let d be
the Turing degree of the collection of complete formulas of Th(M, c̄). Suppose
also that M has the degree of SC-autostability c. Is it possible that c < d?

Question 2. Is every d.c.e. degree a degree of SC-autostability for some almost
prime model?

Note that the positive answer to Question 2 yields the positive answer to
Question 1.

Acknowledgements. The author is grateful to Sergey Goncharov and Svetlana
Aleksandrova for fruitful discussions on the subject. This work was supported by RFBR
(grant 14-01-00376), and by the Grants Council (under RF President) for State Aid of
Leading Scientific Schools (grant NSh-860.2014.1).

126 N. Bazhenov

References

1. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans.
Roy. Soc. London. Ser. A. 248, 407–432 (1956)

2. Mal’tsev, A.I.: Constructive algebras. I. Russ. Math. Surv. 16, 77–129 (1961)
3. Mal’tsev, A.I.: On recursive abelian groups. Sov. Math. Dokl. 32, 1431–1434 (1962)
4. Fokina, E.B., Kalimullin, I., Miller, R.: Degrees of categoricity of computable struc-

tures. Arch. Math. Logic. 49, 51–67 (2010)
5. Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyper-

arithmetic hierarchy. Notre Dame J. Formal Logic. 54, 215–231 (2013)
6. Bazhenov, N.A.: Degrees of categoricity for superatomic Boolean algebras. Algebra

Logic. 52, 179–187 (2013)
7. Anderson, B.A., Csima, B.F.: Degrees that are not degrees of categoricity. Notre

Dame J. Formal Logic. (to appear)
8. Fokina, E., Frolov, A., Kalimullin, I.: Categoricity spectra for rigid structures.

Notre Dame J. Formal Logic. (to appear)
9. Goncharov, S.S.: Degrees of autostability relative to strong constructivizations.

Proc. Steklov Inst. Math. 274, 105–115 (2011)
10. Miller, R.: d-computable categoricity for algebraic fields. J. Symb. Log. 74, 1325–

1351 (2009)
11. Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Downey,

R. (ed.) Turing’s Legacy: Developments from Turing Ideas in Logic. Lecture Notes
Logic, vol. 42, pp. 124–194. Cambridge University Press, Cambridge (2014)

12. Bazhenov, N.A.: Autostability spectra for Boolean algebras. Algebra Logic. 53,
502–505 (2014)

13. Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)
14. Jockusch, C.G., Soare, R.I.: Π0

1 classes and degrees of theories. Trans. Amer. Math.
Soc. 173, 33–56 (1972)

15. Cenzer, D.: Π0
1 classes in computability theory. In: Griffor, E.R. (ed.) Handbook

of Computability Theory. Studies Logic Foundations Mathematics, vol. 140, pp.
37–85. Elsevier Science B.V., Amsterdam (1999)

16. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hier-
archy. Elsevier Science B.V, Amsterdam (2000)

17. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum
Publishers, New York (2000)

18. Goncharov, S.S.: Countable Boolean Algebras and Decidability. Consultants
Bureau, New York (1997)

19. Ershov, Y.L.: Decidability of the elementary theory of distributive lattices with
relative complements and the theory of filters. Algebra Logic. 3, 17–38 (1964)

20. Steiner, R.M.: Effective algebraicity. Arch. Math. Logic. 52, 91–112 (2013)

Immune Systems in Computer Virology

Guillaume Bonfante1,2(B), Mohamed El-Aqqad2, Benjamin Greenbaum3,4,
and Mathieu Hoyrup1

1 Loria, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
Guillaume.Bonfante@loria.fr, Mathieu.Hoyrup@inria.fr

2 École Nationale Supérieure des Mines de Nancy,
Université de Lorraine, Nancy, France

Mohamed.El-aqqad1@etu.univ-lorraine.fr
3 Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

Benjamin.Greenbaum@mssm.edu
4 Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

The analogy between computer viruses and biological viruses, from which com-
puter viruses get their name [7], has been clear for the past several decades.
During that time there has been progress in both understanding the vast diver-
sity of biological viruses, and in abstract approaches to understanding computer
viruses. However, there has not been a great deal of effort to see if the formal
efforts in theoretical computer science can be of any use to our understanding
of biological viruses.

In this work, we use biological viruses as a motivation to extend some well-
known results in theoretical computers viruses. In Cohen’s [7], a virus is a string
which–read by a Turing Machine–reproduces either itself or a variant form of
itself. In Adelman’s [1] initial formalism, the theory of computer viruses was
placed in the theory of recursive functions. One well known result from both
theories is that the general problem of viral detection is undecidable, implying
that general computer immune systems based on viral detection can always be
circumvented and there are no robust ways to modify a detector successfully [5].

In biological systems, there is some notion that a biological virus is less
powerful, computationally, than the host it infects. Motivated by that analogy,
here we show two cases where viruses, due to diminished computational capacity
relative to their hosts, will not always win. But, first, what is a virus? We state
after Adelman [1] and Bonfante, Kaczmarek, Marion [3] that a virus v is a fix
point in the sense of Kleene’s Second Recursion Theorem:

[[v]](x) = f(v, x)

where f is called the propagation function which defines a viruses behavior in
regard to its first argument. As justified in [3] or by Case and Moelius in [6], the
model is strong enough to capture the virus mutability or even virus “factories”.
It is shown that the different versions of the Recursion Theorem–weak, strong,
extended, double, see Smullyan’s [12] for a precise terminology–correspond to
different aspects of computer viruses.

G. Bonfante—The first author received the support of ANR-12-INSE-002.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 127–136, 2015.
DOI: 10.1007/978-3-319-20028-6 13

128 G. Bonfante et al.

Fixed points exist as long as the framework is universal [11], that is Turing
complete, with a universal function and a specializer. Thus the following defense
strategy: to block viruses, one may simply prevent the existence of fixed points.
As we will see, the Recursion Theorem holds as long as there is a specializer,
projections and composition. It is hard to avoid the two latter criteria. Thus, we
focus on systems without specializers. We provide a solution based on cons-free
programs as it has been developed in the past by Jones [9]. Whatever the choice
of enumeration of programs, there is no specializer for cons-free programs. It
is worth noticing that the language is logspace-complete making it relatively
powerful computationally speaking.

We develop an other scenario, perhaps closer to the analogy with biology. Our
idea is to strengthen the defense against viruses, not to avoid their existence.
Indeed, biological viruses exist, but their hosts have some defense capabilities. In
this scenario, we suppose that there is a (finite) set of known viruses. Then, each
time a program enters the system, it is submitted to a program (an immune cell)
which verifies whether it behaves like one of the viruses and remove it accordingly.
Our scenario is close to the strategy of anti-virus software: they (are supposed to)
recognize infected programs relative to a malware database which contains the
(finite) set of known viruses. The existence of such a detector infringes Rice’s
Theorem. Indeed, it corresponds to the decidability of program equivalence.
Thus, and again, to get such a language, we will loose Turing completeness.

To our knowledge, in computer virology, only “negative” results have been
established so far. They state more or less that there is no defenses against
viruses. On the theoretical side, we refer the reader to the aforementioned
work [1,7] which where followed by Zuo and Zhou [13] and then by Case and
Moelius [5]. On a more practical side, there are also many interesting approaches.
For instance, Borello and Mé [4] showed how metamorphism can trick anti-virus
software. Other escaping techniques involve encryption, self-reproduction and
feints, see [8] for a full survey. This contribution is a first attempt to provide
“positive” solutions.

1 Introduction

An alphabet is a finite set Σ of letters. Given an alphabet Σ, let TΣ be the
set of binary trees with leaves in Σ, that is the smallest set containing Σ and
(t1 · t2) whenever t1, t2 ∈ TΣ . The two functions π1 and π2 are the projections:
πi(t1 · t2) = ti and πi(c) = c with i ∈ {1, 2} and c ∈ Σ. The size of a tree t is
denoted |t| and is defined by |c| = 1, c ∈ Σ, and |(t · u)| = |t| + |u| + 1.

A word a1·a2 · · · ak in Σ∗ is encoded in TΣ∪{nil} as (a1·(a2·(· · · (ak·nil) · · ·)))
where nil is an atom used as an end-marker. This relates computations over
words to the ones over trees.

Definition 1. Let � be the sub-tree relation on TΣ, that is the smallest order
(reflexive-transitive relation) such that for all t, u ∈ TΣ:

Immune Systems in Computer Virology 129

– t � t,
– t � (t · u),
– t � (u · t).
The embedding relation on TΣ is defined to be the smallest order such that t �
u ⇒ t � u, and closed by context: t � t′ ∧ u � u′ ⇒ (t · u) � (u · u′).

Observe that nil � (nil ·nil). The difference between the sub-tree relation and
the embedding one is exemplified by (nil ·(nil ·nil)) � ((nil ·nil) ·(nil ·nil))
but (nil · (nil · nil)) �� ((nil · nil) · (nil · nil)).

Let � and � denote respectively the strict order relative to � and �. From
the definition, first, it is clear that if t � u, then u �� t. And, second, if |t| > |u|,
then t �� u.

We present (a slight variant of) While, a generic imperative language intro-
duced by Jones [9]. We suppose a given alphabet Σ contains an atom nil.
Moreover, we suppose given (a denumerable set of) variables Var � X0, X1,
In the following, X, Y serve as generic variables. The syntax of While is given by
the following grammar:

Expressions � E, F : : = X | t | cons E F | hd E | tl E | =? E F
Commands � C, D : : = X := E | C ; D | while E do C
Programs � P : : = read X1, . . . , Xn; C; write Y

where t ∈ TΣ .

1.1 Semantics of While

A configuration, next called a store, is a function σ : Var → TΣ . The set of
stores is denoted SΣ , or shorter, S when Σ is clear from the context. Given a
configuration σ ∈ S a variable X and t ∈ TΣ , σ[X �→ t] is the store equal to σ
on all variables but X for which it is set equal to t.

The semantics of an expression E applied on a configuration σ is denoted
[[E]]σ and defined by the equations:

[[X]]σ = σ(X) [[hd E]]σ = π1([[E]]σ) [[cons E F]]σ = ([[E]]σ · [[F]]σ)
[[t]]σ = t [[tl E]]σ = π2([[E]]σ) [[=? E F]]σ = [[E]]σ 	 [[F]]σ

where for equality 	, nil serves as false and (nil · nil) as true. Each command
C ∈ Commands updates the store, that is [[C]] : S → S which is defined recursively
as follows:

[[X := E]]σ = σ[X �→ [[E]]σ]
[[C; D]]σ = [[D]]([[C]]σ)

[[while E do C]]σ = σ if [[E]]σ = nil

[[while E do C]]σ = [[C ; while E do C]]σ otherwise

The program p � read X1, . . . , Xn C ; writeY computes the following func-
tion. Given t1, . . . , tn, in the initial configuration σ0(t1, . . . , tn), all variables
are set to nil, except X1, . . . , Xn which are respectively set to t1, . . . , tn. Then
[[p]](t1, . . . , tn) is defined to be ([[C]]σ0(t1, . . . , tn))(Y).

130 G. Bonfante et al.

1.2 While as an Acceptable Language

Let {assign, seq,while, Var,quote, cons,hd, tl, iseq, nil} denote 10 distinct
elements of TΣ . The representation p of a program in While is defined recur-
sively:

0 = nil Xi = (Var · i)
n + 1 = (nil · n) t = (quote · t)

() = nil hd E = (hd · E)
(x1, . . .) = (x1 · (. . .)) tl E = (tl · E)
Xi := E = (assign · (Xi · E)) cons E F = (cons · (E · F))

C; D = (seq · (C · D)) =? E F = (iseq · (E · F))
while E do C = (while · (E · C))

and for a program, we define read X1, . . . , Xn; C; write Y = ((X1, . . . , Xn)·(C·Y)).
More generally speaking, the representation of a programming language is

an injective function from the set of programs (here While) to its corresponding
data set (here TΣ).

As shown by Jones [9], there is a universal program u ∈ While, that is
a program u such that for any program p ∈ While and any data t ∈ TΣ :
[[u]](p, t) = [[p]](t). For all m,n ∈ N, there is a specializer s m n, that is a
program s m n such that for all m + n-ary program p, for all t1, . . . , tm+n ∈
TΣ ,

[[s m n]](p, t1, . . . , tm)��(tm+1, . . . , tm+n) = [[p]](t1, . . . , tm+n). Finally, it
is Turing-complete. Such a language is said to be acceptable in Jones/Roger’s
terms. As such, it is isomorphic to any other acceptable language as shown by
Rogers:

Theorem 1 (Rogers [11]). Two acceptable languages are isomorphic.

That is there is a bijective computable function transforming programs in the
first language to programs in the second one with equivalent semantics.

For any acceptable language, Kleene’s second recursion theorem is known to
hold. We recall:

Theorem 2 (Kleene’s Second Recursion Theorem). For any k + 1-ary
program p, there is a k-ary program e satisfying for all inputs t1, . . . , tk ∈ TΣ:
[[e]](t1, . . . , tk) = [[p]](e, t1, . . . , tk).

Proof. For later use, we give a proof for k = 1. The proof for k > 1 follows
the same schema. For the specializer s 1 1 � read X0, X1; Cs 1 1; write Y, for
all binary program p ∈ P and t, t′ ∈ TΣ ,

[[s 1 1]](p, t)��(t′) = [[p]](t, t′). Let
p = read X′

0, X
′
1; Cp; write Y′. By renaming variables, we suppose without loss

of generality that it does not share variables with s 1 1. Then, let rp be the
program:

read X′′
0 , X′′

1 ;
X0 := X′′

0 ; X1 := X′′
0 ;

Cs 1 1;
X′
0 := Y; X′

1 := X′′
1 ;

Cp;
write Y′

Immune Systems in Computer Virology 131

with X′′
0 , X′′

1 some fresh variables. Then, it is clear that for all q ∈ P and all
t ∈ TΣ , [[rp]](q, t) = [[p]]([[s 1 1]](q,q), t). Let e � [[s 1 1]](rp, rp), we get:

[[e]](t) =

[[s 1 1]](rp, rp)��(t) by def. of

.��
= [[rp]](rp, t) by def. of s 1 1
= [[p]]([[s 1 1]](rp, rp), t) by remark above
= [[p]](e, t) since [[s 1 1]](rp, rp) = [[s 1 1]](rp, rp)

As justified by Bonfante, Kaczmarek and Marion in [3], a virus can be formalized
as follows:

Definition 2 (Computer Virus). Given a computable function B called the
propagation function, a virus is a program v such that [[v]](t) = B(v, t) for all
t ∈ TΣ.

In other words, it is a fixed point for a propagation function. Thus, as shown
in [3], the second recursion theorem of Kleene implies that for any propagation
function there is a corresponding virus. In other words, the theorem provides a
virus compiler, and there are no general ways to avoid them. In the remaining,
we restrict While to get around computer viruses. We propose two strategies to
that end. First, we delineate a programming language in which the Recursion
Theorem does not hold. As shown by the proof of the Recursion Theorem, the
existence of a specializer, of composition and projection is sufficient to prove the
Theorem. Thus, we find a programming language without specializer.

The second strategy consists in finding a language for which fixed point
exists, but viruses can be detected. By detection we mean program equivalence
as justified by Adleman in [1].

2 On Cons-Free Programs

While\{cons} is the language while restricted to expressions of the shape:

Expressions � E, F : : = X | t | hd E | tl E | E =? F

Such programs where initially considered by Jones under a complexity per-
spective. He proved that they compute exactly logspace predicates. We show
that the Second Recursion Theorem does not hold in While\{cons}.

In this section, when t ∈ TΣ and S ⊆ TΣ , the notation t � S means
∃t′ ∈ S : t � t′. When S, S′ are two sets, the notation S � S′ states for
∀t ∈ S,∃t′ ∈ S′ : t � t′. For a store σ, let Rg(σ) = {σ(X) | X ∈ Var}.

Definition 3. Let E be an expression, we denote by c(E) the set of all constants
occurring in E; formally, by induction: c(X) = ∅, c(t) = {t}, c(hd E) = c(tl E) =
c(E) and c(cons E F) = c(E=? F) = c(E) ∪ c(F).

The definition is extended to commands: c(X := E) = c(E), c(C ; D) = c(C) ∪
c(D), c(while E do C) = c(E) ∪ c(C) and finally to programs by the equation
c(read X1, . . . , Xn; C; writeY) = c(C).

132 G. Bonfante et al.

Proposition 1. Given a program p ∈ While\{cons} of arity n and t1, · · · , tn

some elements of TΣ, [[p]](t1, · · · ,tn) � c(p)∪{t1, · · · ,tn}∪{(nil ·nil)} when-
ever [[p]](t1, . . . , tn) is defined.

Proof. A very similar result occurs in Jones [9]. It is by induction on the structure
of programs.

Proposition 2. Given a program p ∈ While\{cons} and t ∈ TΣ if p computes
the constant function equal to t, then either:

t � (nil · nil) or t � c(p)

Proof. Applying Proposition 1 to the program p: [[p]](nil) � c(p) ∪ {nil, (nil ·
nil)}. But, again, nil � (nil · nil), thus [[p]](nil) � c(p) ∪ {(nil · nil)}.

2.1 While\{cons} Does Not Contain a Specializer

Theorem 3. Whatever the choice of a representation, and in particular for the
one given in the preceding section, there is no specializer in While\{cons}.

Proof. We assume the existence of a specializer s 1 1. Let us define two programs
p and q: p � read X1, X2; Y = X1; write Y and q � read X1, X2; if (X2 =
? nil) Y := X1 else Y := X2; write Y.

Consider some t ∈ TΣ , we apply Proposition 1 to the program s 1 1 and the
inputs p, t we obtain: {

[[s 1 1]](p, t) � C or
[[s 1 1]](p, t) � t

with C = ((nil · nil) · p · c1 · · · cm) and c(s 1 1) = {c1, · · · , cm}.
Given t �= t′,

[[s 1 1]](p, t)��(nil) = t �= t′ =

[[s 1 1]](p, t′)��(nil). Thus,

t �→ [[s 1 1]](p, t) is an injective function. From that, we state that the set
SC = {t ∈ TΣ | |[[s 1 1]](p, t)| ≤ |C|} is finite. We set N1 = max{|t| | t ∈ SC}.
Then, for all |t| > N1, we can state that |[[s 1 1]](p, t)| > |C| which in turn
means that [[s 1 1]](p, t) � t.

Since for any t �= t′,

[[s 1 1]](q, t)��(nil) = t �= t′ =

[[s 1 1]](q, t′)��(nil),
the function t �→ [[s 1 1]](q, t) is injective. Thus, we use the same approach:
there exists an integer N2 such that |t| > N2 implies [[s 1 1]](q, t) � t. We set
N = max(N1, N2) and we get :

|t| > N ⇒ ([[s 1 1]](p, t) � t and [[s 1 1]](q, t) � t)

Given n ∈ N, wet define n↓� = {t ∈ TΣ | t � n} with the encoding of
integers defined in the preceding section. Observe that we have the equality:

n↓� = {k | 0 ≤ k ≤ n}. (1)

For all i, j ∈ N, let k such that k �= i and k �= j. We have [[[[s 1 1]](p, i)]](k) =
i �= k = [[[[s 1 1]](q, j)]](k) which means that for all i, j ∈ N: [[s 1 1]](p, i) �=
[[s 1 1]](q, j).

Immune Systems in Computer Virology 133

Consider some M > N . Recall that both t �→ [[s 1 1]](p, t) and t �→
[[s 1 1]](q, t) are injective. Due to the aforementioned remark, the set SMN =
{[[s 1 1]](p, i) | N < i ≤ M} ∪ {[[s 1 1]](q, i) | N < i ≤ M} contains exactly
2 × (M − N) elements. However, all these elements verify SMN � M ∈ M↓�,
but by Eq. 1, the set M↓� contains only M + 1 elements which leads to
2 × (M − N) ≤ M + 1. The inequality does not hold for M = 2 × (N + 1).

The non-existence of a specializer does not mean that there are no fixed points
in While\{cons}, for instance the nowhere defined program

read X1 ;while (nil · nil) do X1 := X1 ; write X1

is a fixed point for the program

read X1, X2 ;while (nil · nil) do X1 := X1 ; write X1.

There are other fix-point constructions which are not based on specializers,
some are found in Smullyan’s [12], but we wish to mention here the approach
due to Moss [10] which is based on a very elementary framework, text register
machines.

Nevertheless, there are programs for which there is no fixed points. In other
words, the Recursion Theorem does not hold. For instance, for the homeomorphic
representation of programs presented in While\{cons}:

Proposition 3. There is no Quine in While\{cons}.

Proof. Ad absurdum, suppose there is a Quine q in While\{cons}. It is a fixed
point for the program pi1 � read X1, X2 ; X1 := X1 ; write X1. Since [[q]](nil) =
q, since |q| > |(nil ·nil)| (as it is the case for any programs), we can state with
Corollary 1 that q � c(q). Let t ∈ c(q) such that

q � t. (2)

With the homeomorphic encoding we chose, we can state that (quote · t) � q.
Thus

t � (quote · t) � q (3)

The two inequalities 2 and 3 are not compatible. The conclusion follows.

Quines are interesting in Adleman’s perspective. They correspond to the ‘Imi-
tate’ scenario. The ‘Infection’ scenario would not be possible due to Proposition 1.
Thus, programs in While\{cons} cannot be infected in his view. The reader may
notice that the proof here depends on the choice of the representation of programs.
Indeed, it is not difficult to define an encoding for which there is a Quine. Simply
modify − so that the encoding of nil � read X1 ; X1 := nil ; write X1 is set to
nil. Then, [[nil]](t) = nil which is the required equation. Nevertheless, there are
no other Quines. To end the remark, observe that program representation can be
on the defense side, not on the virus writer’s one.

134 G. Bonfante et al.

3 Tiny, a Whippersnapper Programming Language

Tiny is the language While restricted to expressions of the shape:

Expressions � E, F : : = X | t | cons E F | hd E | tl E

and commands to:

Commands � C, D : : = X := E | C ; D.

Obviously, Tiny is not Turing complete. Actually, it is a very weak fragment of
computable functions: it contains only functions computable in constant time.
However, the Recursion Theorem holds, surprisingly, in Tiny. For the represen-
tation of programs that we defined, the Recursion Theorem holds:

Theorem 4. Given a k-ary program p ∈ Tiny, there is a k − 1-ary program
e ∈ Tiny such that for all t1, . . . , tk ∈ TΣ : [[e]](t1, . . . , tk) = [[p]](e, t1, . . . , tk).

Proof. Again, we give a proof for k = 1. The other cases are left to the reader. If
we come back to the previous proof of the Recursion Theorem, it is clear that the
program rp is in Tiny whenever both p and s 1 1 are in Tiny. Since p ∈ Tiny
by hypothesis, rp is in Tiny if there is a specializer within Tiny. This is actually
the case: define s 1 1 �

read X0, X1;
C := hd (tl X0); // the representation of the body of X0
X := hd (hd X0); // the rep. of the first input variable of X0
XL := tl (hd X0); // the remaining variables of X0
Y := tl (tl X0); // the rep. of the output variable of X0
E := cons quote X1; // the rep. of the value t of X1
C0 := cons assign (cons X E); // the rep of X := t
C := cons seq (cons C0 C); // the rep. of X := t ; C
P := cons XL(cons C Y); // the packaging of the new (unary) program
write P

This is a specializer. Indeed, let p = read X′
0, X

′
1; Cp; write Y′. For all t ∈ TΣ ,

[[s 1 1]](p, t) = read X′
1; X

′
0 := t ; Cp; write Y′. Thus, for all t′ ∈ TΣ : we have

[[s m n]](p, t)��(t′) = [[p]](t, t′) as required.
So, rp is in Tiny. Since the fixed point e = S11(rp, rp) is in Tiny, the proof

ends as a corollary of the following Lemma:

Lemma 1. If p ∈ Tiny, for all t ∈ TΣ: [[s 1 1]](p, t) ∈ Tiny.

Proof. Recall that [[s 1 1]](p, t) = read X′
1; X

′
0 := t ; Cp; write Y. Since p is in

Tiny, [[s 1 1]](p, t) is itself the representation of a program in Tiny.

Immune Systems in Computer Virology 135

3.1 Program Equivalence in Tiny

From the above, there are viruses in Tiny. However, with the scenario made
in the introduction, we can protect a system which is based on Tiny. Protec-
tion amounts to problem equivalence decision. It is the following. Given two
programs p,q, does [[p]] = [[q]]? In general—in particular for a Turing-complete
Language—, such a decision is not computable (as a direct consequence of Rice’s
Theorem). But, for Tiny, there is a simple decision procedure.

Theorem 5. Equivalence of programs is computable for programs in Tiny.

Proof. Composing expressions, one may reduce programs in Tiny to just one
expression. The semantics of an expression can be explicitly expanded. Then,
equivalence is equality of the semantics. We provide in appendix an algorithm
that compute the semantics of expressions. However,

Proposition 4. Equalence of programs in Tiny is not in Tiny.

Lemma 2. Any program in Tiny is monotonic, that is if ti � t′
i for all i ≤ n,

then [[p]](t1, . . . , tn) � [[p]](t′
1, . . . , t

′
n).

Proof. We have seen above that any program in Tiny is equivalent to some
program of the shape read X1, . . . , Xn; Y := E; write Y, thus we restrict our
attention to these ones. Since π1 and π2 are monotonic, the result holds by an
immediate induction on E.

Proof (Proposition 4). Let us come back to the proof of the Proposition.
Ad absurdum, suppose that there is some program eq ∈ Tiny such that
[[eq]](p1,p2) �= nil iff [[p1]] = [[p2]] for all p1,p2 ∈ Tiny. Let p1 � read X; Y :=
nil; write Y. It is in tiny, thus, [[eq]](p1,p1) �= nil since p1 is equivalent to itself.
Observe that p2 � read X; Y := cons nil nil; write Y which is also in Tiny
verifies p1 � p2. By Lemma 2, we can state that [[eq]](p1,p1) � [[eq]](p1,p2).
In turn, that means [[eq]](p1,p2) �= nil. But p1 and p2 are not equivalent:
[[p1]](nil) �= [[p2]](nil), thus a contradiction.

4 Conclusion

Thought it is conceptually deep, the Recursion Theorem can be difficult to utilize
for practical applications. In the context of computer viruses, it can often have a
negative flavor. To our mind, our work opens a new branch of research which con-
structively studies fixed point within constrained computation systems. Types,
logics and weak arithmetics arise as good candidates for that sake.

We end with a side remark about the efficiency of fixed points. Let us cite
Hansen, Nikolajsen, Träff and Jones in [2]: “[...] running a fixed-point program to
compute the factorial of n results in n levels of interpretation, each one slowing
down execution by a large constant factor”. This leads the authors to introduce
a self-reflection statement that, supposedly, enables efficient fixed points.

136 G. Bonfante et al.

The fixed points presented above never involve any interpretation layer. The
construction of the specializer shows that it only introduce a constant time
overhead with respect to the initial program. Therefore, the complexity of the
fixed point e is equal to the one of the program rp. It involves the code of s 1 1
which is in Tiny, and thus takes constant time and so few assignment which do
not increase the size of their inputs. In the end, we see that the program e is as
efficient as p on its input up to a constant factor.

Acknowledgements. The authors would like to thank the Institute for Advanced
Study and the organizers of the 2012 Program in Theoretical Physics on Biology and
Computation. In particular, we would like to thank Stanislas Leibler for several moti-
vating discussions.

References

1. Adleman, L.M.: An abstract theory of computer viruses. In: Goldwasser, S. (ed.)
CRYPTO 1988. LNCS, vol. 403, pp. 354–374. Springer, Heidelberg (1990)

2. Amtoft, T., Thomas, H., Jesper, N., Träff, L., Jones, N.D.: Experiments with imple-
mentations of two theoretical constructions. In: Proceedings of the 2007 Workshop
on Programming Languages and Analysis for Security, PLAS 2007, San Diego,
California, USA, 14 June 2007, pp. 47–52. ACM (2007)

3. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: A classification of viruses through
recursion theorems. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS,
vol. 4497, pp. 73–82. Springer, Heidelberg (2007)

4. Borello, J.-M., Mé, L.: Code obfuscation techniques for metamorphic viruses. J.
Comput. Virol. 4(3), 211–220 (2008)

5. Case, J., Moelius, S.E.: Cautious virus detection in the extreme. In: Proceedings of
the 2007 Workshop on Programming Languages and Analysis for Security, PLAS
2007, San Diego, California, USA, 14 June 2007, pp. 47–52. ACM (2007)

6. Case, J., Moelius, S.E.: Characterizing programming systems allowing program
self-reference. Theory Comput. Syst. 45(4), 756–772 (2009)

7. Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35
(1987)

8. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection, 1st edn. Addison-Wesley Professional,
New Jersey (2009)

9. Jones, N.D.: Computability and Complexity, from a Programming Perspective.
MIT press, Cambridge (1997)

10. Moss, L.S.: Recursion theorems and self-replication via text register machine pro-
grams. Bull. EATCS 89, 171–182 (2006)

11. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967)

12. Smullyan, R.M.: Recursion Theory for Metamathematics. Oxford University Press,
Oxford (1993)

13. Zuo, Z., Zhou, M.: Some further theorical results about computer viruses. Comput.
J. 47(6), 627–633 (2004)

ITRM -Recognizability from Random Oracles

Merlin Carl(B)

Fachbereich für Mathematik und Statistik der Universität Konstanz,
Konstanz, Germany

merlin.carl@uni-konstanz.de

Abstract. By a theorem of Sacks, if a real x is recursive relative to all
elements of a set of positive Lebesgue measure, x is recursive. This state-
ment - and the analogous statement for non-meagerness instead of posi-
tive Lebesgue measure - has been shown to carry over to many models of
transfinite computations in [7]. Here, we start exploring another analogue
concerning recognizability rather than computability. We show that, for
Infinite Time Register Machines (ITRMs), if a real x is recognizable rel-
ative to all elements of a non-meager Borel set Y , then x is recognizable.

1 Introduction

It is well-known (see e.g. [2]) that, if x is a non-recursive real number, the Turing
upper-cone of x is a meager set. Intuitively, randomly choosing an oracle is not
likely to increase the chance of solving the problem of computing a certain real
fixed in advance. In a similar spirit, by a theorem of Sacks (see e.g. [8]), if a real
x is recursive relative to all elements of a set Y of positive Lebesgue measure,
x is recursive. This statement - along with its analogue where the condition
of Y having positive Lebesgue measure is replaced by the condition that Y is
Borel and not meager - continues to hold for many machine models of infinitary
computations as demonstrated in [7] (for some it is currently still open, while for
others it turns out to be independent of ZFC). In particular, it was shown in [7]
that, if x is computable by an infinite time register machine (ITRM) relative
to all elements of a set Y of positive Lebesgue measure or a non-meager Borel
set Z, then x is ITRM -computable.

Besides computability, there is another way how an infinitary machine can
‘determine’ a real x: x is recognizable if and only if there is a program that halts
on all oracles and outputs 1 when run on the oracle x and otherwise outputs 0.
Recognizability is known to be a strictly (and in fact much) weaker property
than computability. In [3], a notion of relativized recognizability was considered,
resembling computations with oracles. This motivates us to ask whether the
‘random oracles are not informative’-intuition is sufficiently stable to still hold
in this context, i.e. recognizability relative to all oracles in some ‘large’ set of
reals (i.e. a set of positive Lebesgue measure or a non-meager Borel set) implies
recognizability. This paper treats the simplest non-trivial case of this question,
namely Infinite Time Register Machines (ITRMs) and recognizability from all
oracles in a Borel set that is not meager.
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 137–144, 2015.
DOI: 10.1007/978-3-319-20028-6 14

138 M. Carl

Infinite Time Register Machines (ITRMs), introduced in [10] and further
studied in [12], work similar to the classical unlimited register machines (URMs)
described in [6]. In particular, the ITRM -programs are the same as the URM -
programs; moreover, ITRMs use finitely many registers each of which can store
a single natural number. Also, like a URM , an ITRM has a special halting state.
The difference is that ITRMs use transfinite ordinal running time: The state of
an ITRM at a successor ordinal is obtained as for URMs. At limit times, the
program line is the inferior limit of the earlier program lines and there is a sim-
ilar limit rule for the register contents. If the inferior limit of the earlier register
contents is infinite, the register is reset to 0.

Notation: If X is a set, P(X) denotes its power set. We fix some natural enu-
meration (Pi|i ∈ ω) of the ITRM -programs. For P an ITRM -program, x ⊆ ω
and i, j ∈ ω, we write P x(i) ↓= j for the statement that P , when run in the
oracle x with i in its first register and 0 in all other registers, halts with j in
its first register. P x ↓ abbreviates the statement that the computation of P in
the oracle x on the input 0 halts. For notions and results on admissible set the-
ory see [1] or [16], for descriptive set theory see [11], concerning forcing [14]. KP
denotes Kripke-Platek set theory. ωCK,x

i denotes the ith x-admissible infinite ordi-
nal, ωCK,x

ω := sup{ωCK,x
i : i ∈ ω}. δ is the Kronecker symbol, i.e. for x, y ⊆ ω, let

δ(x, y) = 1 if and only if x = y and δ(x, y) = 0 otherwise. We say that A ⊆ [0, 1]
is non-meager if and only if A is Borel and not meager. When (A,∈) is an exten-
sional ∈-structure and f : ω → A is a bijection, then c := {p(i, j) : f(i) ∈ f(j)}
is called a code for (A,∈), where p is Cantor’s pairing function.

2 Infinite Time Register Machines

For details on ITRMs, we refer to [10,12,13]. Here, we briefly recall some stan-
dard notions and facts concerning ITRMs that will be used below.

Definition 1. x ⊆ ω is ITRM -computable in the oracle y ⊆ ω if and only if
there exists an ITRM -program P such that, for i ∈ ω, P with oracle y stops for
every natural number j in its first register at the start of the computation and
returns 1 if and only if j ∈ x and otherwise returns 0. A real ITRM -computable
in the empty oracle is simply called ITRM -computable.

It is not hard to see that any ITRM -computation either stops or eventually
cycles. Moreover, it can be shown (see [12]) that an ITRM -computation even-
tually cycles if and only if some state of the computation, consisting of the active
program line index l and the register contents (r1, ..., rn) appears at two differ-
ent times α < β such that neither the active program line index nor any of the
register contents drops below their corresponding value at time α. This halting
criterion can be effectively tested by an ITRM , which leads to the following
crucial property of ITRMs:

ITRM -Recognizability from Random Oracles 139

Theorem 2. Let Pn denote the set of ITRM -programs using at most n regis-
ters, and let (Pi,n | i ∈ ω) enumerate Pn in some natural way. Then the bounded
halting problem Hx

n := {i ∈ ω | P x
i,n(0) ↓} is computable uniformly in the oracle

x by an ITRM -program (using more than n registers, of course).
Moreover, if P ∈ Pn, i ∈ ω, x ⊆ ω and P x(i) ↓, then the computation takes

less than ωCK,x
n+1 many steps. Consequently, if P is an ITRM -program and i ∈ ω,

x ⊆ ω are such that P x(i) ↓, then P x(i) stops in less than ωCK,x
ω many steps.

Proof. The corresponding results from [12] easily relativize.

Theorem 3. Let x, y ⊆ ω. Then x is ITRM -computable in the oracle y if and
only if x ∈ LωCK,y

ω
[y]. Moreover, there is a function g : ω → ω such that any

x ∈ LωCK,y
n

[y] is computable in the oracle y by some ITRM -program P using at
most g(n) registers.

Proof. This is a relativization of the main results of [13].

Lemma 1. There are ITRM -programs (Pn : n ∈ ω) and Q such that, for every
x ⊆ ω:

(1) P x
n computes a real number coding LωCK,x

n+1 +2[x].
(2) Given a natural number n and a natural number m coding a finite set p of

natural numbers, Qx(m) computes a real number y ⊇ p that is Cohen-generic
over LωCK,x

n+1 +1[x].

Proof. (1) By standard fine-structural considerations, such a code is contained
in LωCK,x

n+1 +3[x] and hence computable by some ITRM -program Px by The-
orem 3. Moreover, there is some k ∈ ω such that for each x, Px uses at most
k many registers. To compute a code for LωCK,x

n+1 +2[x] uniformly in the oracle
x, we search, starting with i = 0, through ω in the following way: Given
i ∈ ω, first determine, using Theorem 2, whether ∀j ∈ ωP x

i,k(j) ↓ {0, 1},
i.e. whether P x

i,k computes a real. If so, determine, using the techniques for
evaluating proof predicates with ITRMs from the proof of the lost melody
theorem for ITRMs in [10], whether the real computed by P x

i is a code
for a well-founded ∈-structure of the form Lα[x] such that α is of the form
β + 2, Lβ [x] |= KP and Lβ [x] contains exactly n elements of the form Lγ [x]
such that Lγ [x] |= KP . If this holds, then a code as desired has been found;
otherwise, proceed with i+1. As we observed, some program in Pk computes
a code as desired, so this procedure will terminate for some finite value of i.

(2) As LωCK,x
n+1 +1[x] is isomorphic (via the Levy collapsing map) to its own Σ1-

Skolem hull of {x}, it follows that LωCK,x
n+1 +1[x] is countable in LωCK,x

n+1 +2[x].
Hence the proof of the Rasiowa-Sikorski-lemma shows that a real extend-
ing p and Cohen-generic over LωCK,x

n+1 +1[x] is contained in LωCK,x
n+1 +2[x]. Use

the program Pn from (1) to compute a real number c coding LωCK,x
n+1 +2[x].

Then search through ω to determine, again using the techniques for eval-
uating first-order statements with ITRMs, some i ∈ ω that codes a real

140 M. Carl

with the desired properties in c. From i and c, the desired real is now easily
computable.

We now define relative recognizability and then proceed with stating and proving
our theorem.

Definition 4. Let x, y ⊆ ω. We say that x is ITRM -recognizable from y,
written x ≤RECOG y, if and only if there is an ITRM -program P such that
P z ↓∈ {0, 1} for every z ⊆ ω and, for all z ⊆ ω, we have P z⊕y ↓= δ(x, z). For
a set Y ⊆ P(ω), we say that x is uniformly recognizable from Y if and only if
there is an ITRM -program P such that, for every y ∈ Y and every z ⊆ ω, we
have P z⊕y ↓= δ(z, x). In this case, we say that x is recognized from Y via P .
We say that x is recognizable if and only if x ≤RECOG 0. We denote the set of
reals recognizable relative to y ⊆ ω by RECOGy and abbreviate RECOG0 by
RECOG.

Remark: As we are only concerned with ITRMs in this paper, we usually drop
the prefix ‘ITRM ’.

Remark: The condition that P z stops with output 0 or 1 for every input is intro-
duced merely for the sake of the simplification of further arguments; if P is a
program using n registers, we can always use the solvability of the bounded halt-
ing problem for ITRMs using at most n registers given by Theorem 2 to produce
another program P ′ that, given z ⊆ ω, first tests whether P z ↓ with output 0 or 1
and returns the output of P z if that is the case and otherwise outputs 0. P ′x and
P x will hence produce the same output wherever the output of P is of the required
form and P ′ will satisfy our extra condition.

A typical phenomenon for models of infinitary computations is the existence
of reals that are recognizable, but not computable. As computability is easily
seen to imply recognizability, it follows that recognizability is a strictly weaker
notion than computability. This was first shown in [9] for Infinite Time Turing
Machines. Detailed treatments of recognizability for ITRMs and for infinitary
machines in general can be found in [3–5,10].

We note here that recognizability is computably stable for ITRMs, i.e. pre-
served under ITRM -computable equivalence:

Definition 5. For x, y ⊆ ω, we write x ≡ITRM y and say that x and y are
ITRM -computably equivalent if and only if there are ITRM -programs P and Q
such that P x computes y and Qy computes x.

Proposition 6. Let x ≡ITRM y be reals. Then x ∈ RECOG if and only if
y ∈ RECOG.

Proof. Assume that x ∈ RECOG. Let P and Q be ITRM -programs such that
P x ↓= y and Qy ↓= x, and let R be a program for recognizing x, i.e. such that
∀z ⊆ ωRz ↓= δ(x, z). To recognize y, we proceed as follows: Assume that z is
given in the oracle.

ITRM -Recognizability from Random Oracles 141

Step 1: Check, using a halting problem solver (see Theorem 2) for Q, whether
Qz(i) ↓ for all i ∈ ω. If not, then z
= y, as Q computes x from y and
hence Qy(i) ↓ for every i ∈ ω. So in that case, output 0 and stop. Then
check whether Qz(i) ↓∈ {0, 1} for all i ∈ ω by an exhaustive search. If
not, then z
= y, again since Qy ↓= x, so in that case, output 0 and stop.
Otherwise, proceed with step 2.

Step 2: Let Qz ↓= a. Check whether Ra ↓= 1. If not, then a
= x as R recognizes
x, and hence z
= y as Qy ↓= x. In that case, output 0 and stop.
Otherwise, proceed with step 3.

Step 3: At this point, we know that Qz ↓= a = x. Check whether P a ↓= z (using
a halting problem solver as in step 1). If not, then z
= y as P x ↓= y. In
this case, output 0 and stop. Otherwise, z = y, so output 1 and stop.

Hence x ∈ RECOG implies y ∈ RECOG. The reverse direction follows analo-
gously.

Remark: Note that, however, relative recognizability is not transitive (see [4]).

Lemma 2. Let P be an ITRM -program using n registers, let x ⊆ ω and suppose
that g is Cohen-generic over LωCK,x

n+1 +1[x]. Then ωCK,x⊕g
i = ωCK,x

i for i ≤ n+1.

Consequently, P x⊕g halts in less than ωCK,x
n+1 many steps or does not halt at all.

Proof. By Theorem 10.11 of [15], if M is admissible, P is a forcing in M and G
is P-generic over M such that G intersects every subclass of M that is a union of
a Σ1(M) and a Π1(M) class, then M [G] is also admissible. Clearly, as Lα+1[x]
contains all subclasses of Lα[x] definable over Lα[x], we have that, when M is
of the form Lα[x] with x-admissible α and g ⊆ ω Cohen-generic over Lα+1[x],
then Lα[x][g] is admissible.

As admissible ordinals are indecomposable, it follows from Theorem 9.0 of
[15] that the forcing extension LωCK,x

i
[x][g] agrees with the relativized L-level

LωCK,x
i

[x ⊕ g] for all i ≤ n + 1. Consequently, if g is as in the assumption the

lemma, then LωCK,x
i

[x][g] = LωCK,x
i

[x ⊕ g] is admissible for i ≤ n + 1: so ωCK,x
i

is x⊕ g-admissible for i ≤ n+1. Certainly, every x⊕ g-admissible ordinal is also
x-admissible, so that first (n+1) many x-admissible ordinals agree with the first
(n + 1) many x ⊕ g-admissible ordinals. Hence ωCK,x

n+1 = ωCK,x⊕g
n+1 .

The second claim now follows from Theorem 2.

Theorem 7. Let Y ⊆ [0, 1] be comeager, and let x ⊆ ω be uniformly recognizable
in Y . Then x is recognizable.

Proof. Let P be an ITRM -program that uniformly recognizes x from Y . Suppose
that P uses n registers. Now, the set C of reals Cohen-generic over LωCK,x

n+1 +1[x]
is comeager and hence has comeager intersection with Y . Assume without loss
of generality that Y = Y ∩ C and let z ∈ Y . Then, by the forcing theorem for
admissible sets (see [15]) there is some forcing condition p ⊆ z such that p �
P x⊕z ↓= 1 over LωCK,x

n+1 +1[x]. The same hence holds for every real a ⊃ p which is
Cohen-generic over LωCK,x

n+1 +1[x].

142 M. Carl

We claim that the following procedure recognizes x: Given a real z in the ora-
cle, compute a real gz ⊇ p Cohen-generic over LωCK,z

n+1 +1[z], using (2) of Lemma 1.

Then run P z⊕gz and return its output, which must be 0 or 1 by definition of
relativized recognizability. This procedure can be carried out by some ITRM -
program Q. We claim that if the computation of P z⊕gz terminates with output 1,
then z = x, otherwise z
= x.

We saw above that Qx ↓= 1. We need to show that Qy ↓= 0 if y
= x. To see
this, pick ω ⊇ y
= x and compute gy. By definition of relativized recognizability,
we have that P y⊕gy ↓ with output 0 or 1. Then, by Lemma 2, P , when run in
the oracle y ⊕ gy, halts in < ωCK,y

n+1 many steps; furthermore, the computation
is contained in LωCK,y

n+1
[y ⊕ gy] and is absolute between LωCK,y

n+1
[y ⊕ gy] and the

real world. If P y⊕gy ↓= 0, we are done.
So assume otherwise, i.e. we have P y⊕gy ↓= 1. By genericity of gy, there

is some Cohen condition q ⊆ gy such that q � P y⊕gy ↓= 1. Hence, we have
P y⊕b ↓= 1 for every real b ⊇ q which is Cohen-generic over LωCK,y

n+1 +1[y]. Now,

the set Ĉ of reals g ⊇ q Cohen-generic over LωCK,y
n+1 +1[y] is non-meager and thus

has non-meager (and hence non-empty) intersection with the comeager set Y .
Pick ĝ ∈ Y ∩ Ĉ. Then, as ĝ ∈ Ĉ, we have P y⊕ĝ ↓= 1; but on the other hand,
ĝ ∈ Y and y
= x, which contradicts the assumption that P recognizes x from Y .

Corollary 1. Let Y ⊆ [0, 1] be non-meager, and let x ⊆ ω be uniformly recog-
nizable in Y . Then x is recognizable.

Proof. As Y is non-meager, there is an interval I = (a, b) ⊆ [0, 1] such that
Y is comeager in I. By shortening I if necessary, we may assume without loss
of generality that I is of the form {tx|x ∈ω 2} for t ∈<ω 2 (where tx denotes
the concatenation of t and x) and (passing to Y ∩ I if necessary) that Y ⊆ I.
Suppose that P recognizes x relative to all elements of Y . We define a program
P ′ that recognizes x from all elements of Y ′ := {x : tx ∈ I}, which is obviously a
comeager set. P ′a⊕y works by simply running P a⊕ty. Clearly, P ′ has the desired
properties: For y ∈ Y ′, we have P ′a⊕y ↓= 1 if and only if P a⊕ty ↓= 1 which, as
ty ∈ Y by definition of Y ′, is equivalent with a = x. So P ′ recognizes x from all
elements of a comeager set. By Theorem 7, x is recognizable.

We have so far worked with uniform recognizability, i.e. the program recognizing
x from y ∈ Y has to be the same for all elements of Y . If one wants to drop
this assumption and allow x to be recognized from y by different programs P for
different y ∈ Y , the problem arises that the corresponding subsets YP := {y ∈
Y : P recognizes x from y} might not have the property of Baire and hence not
be comeager in some interval so that Theorem 7 is not applicable. At least under
some (standard) set-theoretical extra assumption, however, we can strengthen
the claim to drop the uniformity condition:

Corollary 2. Assume that every Σ1
2-set of reals has the Baire property. Let Y

be a non-meager set, x ⊆ ω and assume that, for every y ∈ Y , there is some
ITRM -program P such that P z⊕y ↓= 1 if and only if z = x. Then x is ITRM -
recognizable.

ITRM -Recognizability from Random Oracles 143

Proof. YP is Π1
2 in x for every ITRM -program P : Namely, it is definable by

a formula expressing ‘For all z, b ⊆ ω: If b codes the computation of P in the
oracle z and this computation stops with output 1, then z = x’. (Recall that,
by the choice of P , the computation of P in the oracle z always terminates and
hence is a countable set codable by a real.) As ‘b codes the computation of P
in the oracle z’ is Π1

1 , the negation is Σ1
1 , so the equivalent statement ‘For all

z, b ⊆ ω: z = x or b does not code the computation of P in the oracle z’ is Π1
2 .

Thus, for each ITRM -program P , YP has the Baire property (as its comple-
ment is Σ1

2 and hence Baire by assumption and as complements of Baire sets are
again Baire). Now Y =

⋃
i∈ω YPi

. As Y is not meager, it cannot be the union
of countably many meager sets. So there is some k ∈ ω such that Ȳ := YPk

is
not meager. As Ȳ also has the Baire property, there is an interval such that Ȳ
is comeager relative to that interval. As in the proof of Corollary 1, it follows
that x is uniformly ITRM -recognizable from all elements of a comeager set of
oracles, and hence, by Theorem 7, x is ITRM -recognizable.

Remark: The assumption that every Σ1
2-set of reals has the Baire property

follows for example from the existence of a measurable cardinal (see e.g. Corollary
14.3 [11]). By Proposition 13.7 of [11], every Σ1

2-set is a union of ℵ1 many Borel
sets. By Theorem 2.20 of chapter II of [14], MAω1 implies that a union of ℵ1

many meager sets is meager (and hence that a union of ℵ1 many sets with the
Baire property has the Baire property). As Borel sets have the Baire property,
it thus also follows from MAω1 that all Σ1

2-sets have the Baire property.

Moreover, the statement that all Σ1
2-sets of reals have the Baire property is

equivalent to the statement that the set of reals that are Cohen-generic over
L[x] is comeager for every x ⊆ ω (see Theorem 14.2 of [11]).

It well known that L contains Σ1
2-sets of reals that fail to have the Baire

property (see e.g. Corollary 13.10 of [11] or observe that in L, the set of reals
Cohen-generic over L is empty). On the other hand, MAω1 holds in a forcing
extension of L (see Theorem 10.11 of [11]). The statement that every Σ1

2-set of
reals has the Baire property it thus independent of ZFC.

We do not know if this non-uniform version of Corollary 1 is provable in
ZFC alone.

3 Further Work

Since there is no analogue for the stratification of halting times as given by
Theorem 2 for Infinite Time Turing Machines (ITTMs), which is a crucial ingre-
dient of Theorem 7, the treatment of ITTMs will require new ideas. We have
a sketch of a considerably more involved proof of the claim corresponding to
Corollary 1 for ITTMs which we are currently elaborating and plan to cover in
future work.

Moreover, it is natural to ask what happens when we replace the condition of
non-meagerness by the condition of positive Lebesgue measure. This and other
related topics can be dealt with using random forcing over models of KP , which
will be treated in future work with Philipp Schlicht.

144 M. Carl

Acknowledgements. We thank Philipp Schlicht for a discussion on Corollary 2 (and
the remark following it) as well as various helpful comments on the presentation of the
proof of Theorem 7.

References

1. Barwise, J.: Admissible Sets and Structures. Springer, Berlin (1975)
2. Barmpalias, G., Lewis-Pye, A.: The information content of typical reals. In:

Sommaruga, G., Strahm, T. (eds.) Turing’s Ideas - Their Significance and Impact.
Springer, Basel (2014)

3. Carl, M.: The lost melody phenomenon. Festschrift on the occasion of Philip
Welch’s and Peter Koepke’s 60th birthday

4. M. The distribution of ITRM -recognizable reals. Annals of Pure and Applied Logic
5. Carl, M.: Optimal results on recognizability by infinite time register machines. J.

Symbolic Logic (to appear)
6. Cutland, N.: Computability - An Introduction to Recursive Function Theory.

Cambridge University Press, Cambridge (1980)
7. Carl, M., Schlicht, P.: Infinite computations with random oracles. Notre Dame J.

Formal Logic (To appear)
8. Downey, R.G., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory

and Applications of Computability. Springer LLC, New York (2010)
9. Hamkins, J., Lewis, A.: Infinite time turing machines. J. Symbolic Logic 65(2),

567–604 (2000)
10. Carl, M., Fischbach, T., Koepke, P., Miller, R., Nasfi, M., Weckbecker, G.: The

basic theory of infinite time register machines. Arch. Math. Logic 49(2), 249–273
(2010)

11. Kanamori, A.: The Higher Infinite. Springer, Berlin (2005)
12. Koepke, P., Miller, R.: An enhanced theory of infinite time register machines. In:

Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028,
pp. 306–315. Springer, Heidelberg (2008)

13. Koepke, P.: Ordinal computability. In: Ambos-Spies, K., Löwe, B., Merkle, W.
(eds.) CiE 2009. LNCS, vol. 5635, pp. 280–289. Springer, Heidelberg (2009)

14. Kunen, K.: Set Theory. An Introduction to Independence Proofs. Elsevier,
Amsterdam (2006)

15. Mathias, A.R.D.: Provident sets and rudimentary set forcing. Preprint. https://
www.dpmms.cam.ac.uk/∼ardm/fifofields3.pdf

16. Sacks, G.: Higher Recursion Theory. Springer, New York (1990)

https://www.dpmms.cam.ac.uk/~ardm/fifofields3.pdf
https://www.dpmms.cam.ac.uk/~ardm/fifofields3.pdf

P Systems with Parallel Rewriting for Chain
Code Picture Languages

Rodica Ceterchi1(B), K.G. Subramanian2, and Ibrahim Venkat3

1 Faculty of Mathematics and Computer Science,
University of Bucharest, 14 Academiei Street, 010014 Bucharest, Romania

rceterchi@gmail.com
2 Faculty of Science, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK
3 School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Abstract. Chain code pictures are composed of unit lines in the plane,
drawn according to a sequence of instructions left, right, up, down codi-
fied by words over Σ = {l , r , u, d}. P systems to generate such languages
have been considered in previous work with sequential rewriting in the
membranes. We consider here parallel rewriting, with the advantage of
reducing the number of membranes. We also consider the problem of
generating the finite approximations of space-filling curves, the Hilbert
curve and the Peano curve.

1 Introduction

String rewriting P systems and their variants with string objects and context-free
rewriting rules have been extensively studied. Rewriting strings in the regions of
such rewriting P systems, either sequentially as in Chomsky type of grammars
or in parallel as in L systems, have been investigated from the point of view
of formal language theory (see, for example, [5,10]). Extension of string rewrit-
ing P systems to two-dimensions with array objects (also called picture arrays)
and array-rewriting rules applied in a sequential manner as in isometric array
grammars, was considered in [1] by introducing array P systems, thus linking P
systems with array grammars. Parallel mode of rewriting was incorporated in
these array P systems and its power studied in [15]. Improved results in terms
of reduction in the number of membranes in the results proved in [15], were
obtained in [9].

On the other hand, a picture generating model, called chain code picture
grammar, was introduced in [8] as early as 1982 and intensively investigated
subsequently in various studies (see, for example, [2,3]). This grammar generates
chain code pictures (also called line pictures) that are made of unit lines in the
two-dimensional grid and encoded by words over the alphabet {l , r , u, d} with
the symbols l , r , u, d respectively interpreted as instructions to draw a horizontal
or vertical unit line to the left, right, up or down directions from the current
position in the chain code picture. Recently, chain code picture grammars were
linked with P systems in [16], introducing chain code P system, by considering

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 145–155, 2015.
DOI: 10.1007/978-3-319-20028-6 15

146 R. Ceterchi et al.

context-free string grammar rules in the regions of the P system with the terminal
alphabet {l , r , u, d} interpreted as mentioned. The rewriting is done sequentially
in the string objects in the chain code P system in [16]. Here we incorporate the
parallel mode of rewriting in the application of the rules in the regions of a chain
code P system, resulting in Parallel chain code system. We examine the results
established in [16], namely comparison with collage grammars [3] restricted to
line picture generation. Although not entirely unexpected, the parallel mode of
rewriting results in a reduction in the number of membranes in the constructions
involved in the results in [16]. We also construct parallel chain code P systems to
generate the patterns of approximations of space-filling curves [7,13], the Hilbert
curve and the Peano curve.

2 Basic Definitions and Results

We recall the notions of chain code pictures and chain code picture grammars
[3,8]. For notions related to Chomsky grammars and languages, we refer to [11]
and for P systems, we refer to [1,10,14].

For integers m,n, the left, right, up and down neighbours of the point
z = (m,n) in the two-dimensional plane are the points (m − 1, n), (m +
1, n), (m,n + 1), (m,n − 1) respectively denoted by l(z), r(z), u(z), d(z). A unit
line in the plane, denoted by (z, n(z)), connects two neighbouring points z
and n(z) for n ∈ {l , r , u, d}. A chain code picture or a line picture p is a
finite set pline of connected unit lines, which can be made of several discon-
nected parts in general, but here we consider connected chain code pictures
only. Figure 1 shows a star-shaped picture with four arms of equal length (first
considered in [4] as a digitized picture) in the form of a chain code picture.
Each arm starts at the centre point and its length is the number of unit lines
constituting an arm. The leftmost end of the horizontal line is at the ori-
gin (0, 0). The star-shaped picture in Fig. 1 is made of the unit lines given
by the set Sline = {((0, 0), (1, 0)), ((1, 0), (2, 0)), ((2, 0), (3, 0)), ((3, 0), (4, 0))} ∪
{((2,−2), (2,−1)), ((2,−1), (2, 0)), ((2, 0), (2, 1)), ((2, 1), (2, 2))}. A drawing of
the picture in Fig. 1, starting from the point (0, 0), reaching (4, 0) moving right,
then moving left to reach (2, 0), followed by moving up to reach (2, 2) and finally
moving down ending at the point (2,−2), can be described by a word r4l2u2d4

over the alphabet Σ = {l , r , u, d}, which is called a picture description of the
corresponding chain code picture. A picture description of a chain code picture
depends on the starting point of the drawing of the picture and so there could
be many such picture descriptions.

We are more concerned with the relative positions of the unit lines in a chain
code picture rather than absolute positions in the plane. The word w over Σ =
{l , r , u, d} which corresponds to a drawing of a chain code picture determines the
set of unit lines of the picture. The ‘shape’ of a chain code picture p is thus given by
the set pline. We write drawing(w) = pline. The shape of the chain code picture
p, which is denoted as (pline, s, e), can then be drawn starting from a given start
point s to an end point e of a drawing of p from s to e.

Parallel P System for Chain Code Pictures 147

Fig. 1. Star-shaped chain code picture

A context-free chain code grammar (CFCCG) [8] is a Chomsky type context-
free grammar G with terminal alphabet Σ = {l , r , u, d}. The chain code picture
language generated by G is L(G) = {drawing(w) | w ∈ L(G)}. We denote by
CFCC, the class of all chain code picture languages generated by CFCCGs.

We now recall the context-free rewriting chain code P system of [16] which
is a rewriting P system with string objects and internal output.

A context-free rewriting chain code P system of degree n, n ≥ 1, is a construct
Π = (N,Σ, μ, L1, · · · , Ln, R1, · · · , Rn, i0) where: N is the nonterminal alphabet;
Σ = {l , r , u, d} is the terminal alphabet; N ∩ Σ = ∅; μ is a membrane structure
with n membranes labelled in a one-to-one way with 1, 2, . . . , n; L1, . . . , Ln are
finite sets of strings over V = N∪Σ associated with the n regions of μ; R1, . . . , Rn

are finite sets of context-free rewriting rules associated with the n regions of μ;
the rules are of the form A → α(tar), where A → α is a context-free (CF) rule
as in a Chomsky context-free grammar, A being a non-terminal, α, a string of
nonterminals and terminals; the rules have attached targets here, out, in (in
general, here is omitted) with the target specifying the region where the result
of the rewriting should be placed in the next step: here means that the result
remains in the same region where the rule was applied, out means that the string
has to be sent to the region immediately surrounding the region where it has been
produced, and in means that the string should go to one of the directly inner
membranes, if any exists. Each string in a region is processed by at most one
rule at a time; if many rules can be used, then one of them, nondeterministically
chosen, is used; if no rule can rewrite a string, then it remains unchanged. All
strings, from all regions, are rewritten at the same time. A sequence of such steps
is called a computation. A computation provides a result only if it halts and the
system reaches a configuration where no further rule can be applied. Finally, io
is the label of an elementary membrane of μ, the output membrane. In particular
the rules in a region can be regular rules of the forms A → wB,A → w, where
A,B are non-terminals and w is a string of terminals. A successful computation
in a context-free rewriting chain code P system is a halting computation with
the strings over the terminal alphabet Σ collected in the output membrane being
the strings accepted. The chain code picture language generated by Π is the set

L(Π) = {drawing(w) | w is a string over Σ accepted by Π}.

The words w over Σ, which are computed by the system Π are interpreted
as drawings of chain code pictures, thus giving rise to the picture language
L(Π). The set of all chain code picture languages computed or generated by
context-free rewriting chain code P systems with n membranes is denoted by

148 R. Ceterchi et al.

RCCPn(CF). If the rules in the regions are all regular, then the family is denoted
by RCCPn(REG).

3 Parallel Chain Code P System

We now consider rewriting the string objects in parallel in the chain code P
system of [16].

A context-free parallel chain code P system of degree n, n ≥ 1, is a construct

Π = (N,Σ, μ, L1, · · · , Ln, R1, · · · , Rn, i0)

where all the components of Π are as defined in the chain code P system [16]
recalled in the previous section. The only difference is that during a computation,
all the nonterminals (if any) in a string object in a region are rewritten at the
same time by available and applicable context-free (or regular) rules in the region
with the requirement that all the rules used in a string have the same target
indication. The words over the terminal alphabet Σ = {l , r , u, d} collected in
the output membrane at the end of a successful halting computation constitute
the language generated by the P system

L(Π) = {drawing(w) | w is a string over Σ accepted by Π}.

The set of all chain code picture languages generated by context-free parallel
chain code P systems with n membranes is denoted by PCCPn(CF). If the rules
in the regions are all regular, then the family is denoted by PCCPn(REG).

We shall now illustrate the parallel chain code P system. Let Ls be the set of
star shaped chain code pictures with 4 equal arms each of length ≥ 1. A member
of this language is shown in Fig. 1. We now define a parallel chain code P system
generating the picture description words of the language Ls. Consider the parallel
chain code P system with regular rules

Π1 = ({A,B,C,D}, {l , r , u, d}, [1 [2]2]1 , {ABCD}, ∅,R1 ,R2 , 2)

with a linear membrane structure having two regions. The rule sets are given by
R1 = {A → r2A,B → lB ,C → uC ,D → d2D ,A → r2 (in),B → l(in),C →
u(in),D → d2 (in)},R2 = ∅.

Lemma 1. L(Π1) = Ls.

Proof. Initially, the string ABCD is in region 1 and the region 2 has no
object. The rules A → r2A,B → lB ,C → uC ,D → d2D are applicable
in parallel as many times as we need and the generated string of the form
r2(n−1)Al (n−1)Bu(n−1)Cd2(n−1)D remains in the same region. Once the rules
A → r2, B → l ,C → u,D → d2 with the same target indication in are
applied in region 1, the resulting string r2nlnund2n is sent to region 2. The
chain code picture language generated by Π1 is the set L(Π1) = {drawing(w) |
w = r2nlnund2n, n ≥ 1}. Note that the symbols {l , r , u, d} are interpreted in
the manner described earlier so that the words w = r2nlnund2n yield the star
shaped pictures with arms of equal length. �	

Parallel P System for Chain Code Pictures 149

Remark 1. We note that the chain code P system considered in [16] can not gen-
erate the star shaped pictures with four equal arms, using only two membranes
and regular rules in the regions, since sequential application of regular rules can
correspond to “developing only one arm”at a time in a region and also cannot
terminate growth of all the four arms together. On the other hand the following
chain code P system Π2 with sequential application of context free rules and
three membranes generates Ls. We define Π2 as follows:

Π2 = ({A,D}, {l , r , u, d}, [1 [2 [3]3]2]1 , {AD}, ∅,R1 ,R2 ,R3 , 3) where R1 =
{A → r2Al(in), A → r2A′l(in)}, R2 = {D → uDd2(out),D → uD′d2(in)}R3 =
{A′ → r2l,D′ → ud2} The P system Π2 generates Ls as follows: Initially, the
string AD is in region 1. If the rule A → r2Al is applied then the generated
string r2AlD is sent to region 2 wherein if the rule D → uDd2 is applied,
then the result r2AluDd2 is sent back to region 1 and the process can repeat.
Once the rule A → r2A′l is applied in region 1, the resulting string is sent to
region 2 and application of the rule D → uD′d2 sends the result to region 3
where the application of the rules for A′ and D′ halts the computation and
strings of the form r2nlnund2n are collected in the output membrane. An incor-
rect application sequence of the rules will make the string get stuck in region
1 or in region 3. The chain code picture language generated by Π2 is the set
L(Π2) = {drawing(w) | w = r2nlnund2n, n ≥ 1}, thus yielding Ls. We believe
that the number of membranes in this case cannot be reduced without any addi-
tional ingredients to the system.

We now examine the result in [16] on the comparison with context free col-
lage grammars [6], which produce pictures by transforming any sort of basic
geometric objects using affine transformations (see [3]). It is shown in [16] that
RCCP3(REG)−CFCC
= ∅, and as a consequence RCCP3(REG)−CFCL
= ∅,
where RCCP3(REG) is the class of all chain code picture languages generated
by rewriting chain code P systems with 3 membranes and regular rules in the
regions applied in the sequential mode, while CFCL denotes the class of lan-
guages of context-free collage grammars restricted to chain code picture gener-
ation. We now show that the number of membranes in this result is reduced to
2 when parallel mode of rewriting is considered in the regions.

Theorem 1. PCCP2(REG) ∩ CFCC
= ∅.

Proof. The set of chain code pictures of “stairs” of equal height, one member of
which is shown in Fig. 2, is in CFCC.

The language of picture description words of these chain code pictures
is {(ru)nr(dr)n | n ≥ 1}, which is generated by the context-free chain code

Fig. 2. A chain code picture of two “stairs”of equal height

150 R. Ceterchi et al.

grammar ({S, r, u, d}, r, u, d, {S → ruSdr, S → ruAdr,A → r}, S). This lan-
guage is also in PCCP2(REG) generated by the parallel chain code P sys-
tem Πstair of degree 2 with regular rules, given by Πstair = ({A,B}, {r, u, d},
[1[2]2]1, {ArB}, ∅, ∅, R1, R2, 2) where the rule sets are given by R1 = {A →
ruA,B → drB,A → ru(in), B → dr(in)}, R2 = ∅. Initially, the string ArB is
in region 1. The rules A → ruA,B → drB are applicable in parallel as many
times as needed. Once the rules A → ru,B → dr with the same target indication
(in) are applied in region 1, the resulting string is sent to region 2. The com-
putation halts yielding strings of the form (ru)nr(dr)n, n ≥ 1, in the output
membrane. �	
Since the language of “stairs” is not in CFCL (see Theorem 4 in [3]), we have:

Corollary 1. PCCP2(REG) − CFCL
= ∅.

4 Space-Filling Curves: The Hilbert Curve

Space-filling curves which are continuous but nowhere differentiable as a map-
ping from the unit interval [0, 1] to the unit square [0, 1] × [0, 1], are known to
have applications to different kinds of problems. Various methods of generat-
ing or realizing the sequence of patterns that are iterations or approximations
of a space-filling curve have been proposed (See for example [7,13]). A space-
filling curve which has been well-studied [12,13] from the point of view of formal
language theory, is the Hilbert curve. We now construct a context-free parallel
chain code P system with two membranes to generate the sequence of patterns
of approximations of the Hilbert curve. The Hilbert curve patterns can be repre-
sented by picture description words over the alphabet Σ = {l , r, u, d} as follows
[13]: The first approximation is given by H1 = urd and for n > 1, the sub-
sequent approximations are given by Hn = g1(Hn−1)uHn−1rHn−1dg2(Hn−1)
where g1, g2 are homomorphisms on Σ given by g1(u) = r, g1(d) = l , g1(l) =
d, g1(r) = u, g2(u) = l , g2(d) = r, g2(l) = u, g2(r) = d.

Fig. 3. First three approximations of Hilbert curve

The finite approximations of the Hilbert curve, Hn, n ≥ 1, are called Hilbert
words (Fig. 3).

We consider the context-free parallel chain code P system ΠH given by

ΠH = ({A,B,C,D}, {l , r, u, d}, [1[2]2]1, {A}, ∅, ∅, R1, R2, 2)

where R1, R2 are given by R1 = {A → β1, B → β2, C → β3,D → β4, (here, in)},
R2 = {A → λ,B → λ,C → λ,D → λ} Here λ is the empty word and

Parallel P System for Chain Code Pictures 151

β1 = BuArAdC, β2 = ArBuBlD, β3 = DlCdCrA, β4 = CdDlDuB.
Initially, the region 1 has the string A and the other region is empty. Appli-

cation in parallel of the rules A → β1, B → β2, C → β3,D → β4 in region 1,
expand once the symbols A,B,C,D suitably. This process can be repeated as
many times as the target indication here is used. But if the target indication
in is used, then the string enters region 2 where the nonterminals are erased
and the resulting string of terminal symbols remains here. These strings are the
picture description words of the approximation patterns of the Hilbert curve.

Theorem 2. The P system ΠH produces in membrane 2 the Hilbert words.

Proof. We have adapted the proof used in [7] and [12] to show that the Hilbert
infinite word is generated by a tag system.

Consider the alphabet Θ = {A,B,C,D}∪Σ and the morphisms γ : Θ∗ → Θ∗

given by A → BuArAdC, B → ArBuBlD, C → DlCdCrA, D → CdDlDuB,
u → u, d → d, r → r, l → l and f : Θ∗ → Σ∗ given by A → λ,B → λ,C →
λ,D → λ, u → u, d → d, r → r, l → l. Morphism γ is the rewriting in membrane
1, and f the rewriting in membrane 2. We have to prove that f(γn(A)) = Hn.
First a technical lemma:

Lemma 2. The following hold:

f(γn(A)) = g1(f(γn(B))) = g2(f(γn(C)))
f(γn(B)) = g1(f(γn(A))) = g2(f(γn(D)))
f(γn(C)) = g1(f(γn(D))) = g2(f(γn(A)))
f(γn(D)) = g1(f(γn(C))) = g2(f(γn(B)))

Proof. By induction. For n = 1, we have f(γ(A)) = urd, f(γ(B)) = rul,
f(γ(C)) = ldr, f(γ(D)) = dlu, and the rest is straightforward computation.
We suppose the equalities hold for n. To prove the first equality:

f(γn+1(A)) = f(γn(BuArAdC))
= f(γn(B))uf(γn(A))rf(γn(A))df(γn(C))
= g1(f(γn(A)))ug1(f(γn(B)))rg1(f(γn(B)))dg1(f(γn(D)))
= g1(f(γn(A)))g1(r)g1(f(γn(B)))g1(u)g1(f(γn(B)))g1(l)g1(f(γn(D)))
= g1(f(γn(ArBuBlD))) = g1(f(γn+1(B))).

The other equalities follow by similar computations, and g21 = g22 = 1Σ . �	
Back to The Proof of Theorem. For n = 1 we have f(γ(A)) = urd = H1.
We suppose that f(γn(A)) = Hn, and we compute for n + 1: f(γn+1(A)) =
f(γn(BuArAdC)) = f(γn(B))uf(γn(A))rf(γn(A))df(γn(C)) = g1(f(γn(A)))
uf(γn(A))rf(γn(A))dg2(f(γn(A))) = g1(Hn)uHnrHndg2(Hn) = Hn+1, where
we have used the lemma and the induction hypothesis. �	

152 R. Ceterchi et al.

5 The Peano Curve

The first space-filling curve introduced in the literature by G. Peano is the Peano
curve. The approximations of the Peano curve are called Peano words, and they
form an iterative sequence. The first two Peano words are shown in Fig. 4.

Fig. 4. The first two Peano words

The problem of generating the Peano words has been considered in [16] and
a rewriting chain code P system with four membranes and sequential mode of
rewriting has been given to generate these patterns. Here we construct a context-
free parallel chain code P system with two membranes, completely different from
the system of [16], to generate the sequence of Peano words.

The patterns can be represented by picture description words over the
alphabet Σ = {l , r, u, d} as follows [13]: The first approximation is given by
P1 = uurddruu and for n > 1, the subsequent approximations are given by

Pn+1 = Pnuh1(Pn)uPnrh2(Pn)dh3(Pn)dh2(Pn)rPnuh1(Pn)uPn

where h1, h2, h3 are homomorphisms on Σ as given below:

h1(u) = u, h1(d) = d, h1(l) = r, h1(r) = l ;
h2(u) = d, h2(d) = u, h2(l) = l , h2(r) = r;
h3(u) = d, h3(d) = u, h3(l) = r, h3(r) = l .

We consider the context-free parallel chain code P system ΠP given by
ΠP = ({U1, U2,D1,D2, R1, R2, L1, L2}, {l , r, u, d}, [1[2]2]1, {U1}, ∅, R1, R2, 2)
where R2 = ∅ and R1 contains the following eight rules with target indication
here:

U1 → U1U2R1D1D2R2U1U2U1, U2 → U2U1L1D2D1L2U2U1U2

D1 → D1D2R2U1U2R1D1D2D1, D2 → D2D1L2U2U1L1D2D1D2

R1 → U1U2R1D1D2R2U1U2R1, R2 → D1D2R2U1U2R1D1D2R2

L1 → U2U1L1D2D1L2U2U1L1, L2 → D2D1L2U2U1L1D2D1L2

and the following eight rules with target indication in:

U1 → u,U2 → u,D1 → d,D2 → d,R1 → r,R2 → r, L1 → l, L2 → l.

Theorem 3. The P system ΠP above produces in membrane 2 the words Pnu,
where Pn is the n-th Peano word.

Proof. Let us denote by γ the morphism given by the eight rewriting rules with
target here, and by f the morphism given by the eight rewriting rules with target

Parallel P System for Chain Code Pictures 153

in. We will prove by induction that f(γn(U1))) = Pnu and f(γn(R1))) = Pnr.
For n = 1 we have f(γ(U1)) = uurddruuu = P1u, f(γ(R1)) = uurddruur = P1r.
We also have: f(γ(U2)) = uulddluuu = h1(P1)u = h1(P1u),

f(γ(D1)) = ddruurddd = h2(P1)d = h2(P1u),
f(γ(D2)) = ddluulddd = h3(P1)d = h3(P1u),
f(γ(R2)) = ddruurddr = h2(P1)r = h2(P1r),
f(γ(L1)) = uulddluul = h1(P1)l = h1(P1r),
f(γ(L2)) = ddluulddl = h3(P1)l = h3(P1r).

Lemma 3. The following relations hold:

f(γn(U1)) = h1(f(γn(U2))) = h2(f(γn(D1))) = h3(f(γn(D2)))
f(γn(U2)) = h1(f(γn(U1))) = h2(f(γn(D2))) = h3(f(γn(D1)))
f(γn(D1)) = h1(f(γn(D2))) = h2(f(γn(U1))) = h3(f(γn(U2)))
f(γn(D2)) = h1(f(γn(D1))) = h2(f(γn(U2))) = h3(f(γn(U1)))
f(γn(R1)) = h1(f(γn(L1))) = h2(f(γn(R2))) = h3(f(γn(L2)))
f(γn(R2)) = h1(f(γn(L2))) = h2(f(γn(R1))) = h3(f(γn(L1)))
f(γn(L1)) = h1(f(γn(R1))) = h2(f(γn(L2))) = h3(f(γn(R2)))
f(γn(L2)) = h1(f(γn(R2))) = h2(f(γn(L1))) = h3(f(γn(R1)))

Proof. We will prove the relations by induction. For n = 1 we have them. Sup-
pose they all hold for n. For n + 1 we compute:

f(γn+1(U1)) = f(γn(U1U2R1D1D2R2U1U2U1))
= f(γn(U1))f(γn(U2))f(γn(R1))f(γn(D1))f(γn(D2))
·f(γn(R2))f(γn(U1))f(γn(U2))f(γn(U1))
= h1(f(γn(U2)))h1(f(γn(U1)))h1(f(γn(L1)))h1(f(γn(D2)))
·h1(f(γn(D1)))h1(f(γn(L2)))h1(f(γn(U2)))h1(f(γn(U1)))h1(f(γn(U2)))
= h1(f(γn(U2U1L1D2D1L2U2U1U2))) = h1(f(γn(γ(U2))) = h1(f(γn+1(U2))).

The other 23 relations follow by similar computations, and observing that: h2
1 =

h2
2 = h2

3 = 1Σ , h3 = h1 ◦ h2 = h2 ◦ h1, h1 = h2 ◦ h3 = h3 ◦ h2, h2 = h1 ◦ h3 =
h3 ◦ h1. �	
Back to The Proof of Theorem. Suppose the relations hold for n. Then

f(γn+1(U1)) = f(γn(U1U2R1D1D2R2U1U2U1))
= f(γn(U1))f(γn(U2))f(γn(R1))f(γn(D1))f(γn(D2))
·f(γn(R2))f(γn(U1))f(γn(U2))f(γn(U1))
= Pnuh1(Pnu)Pnrh2(Pnu)h3(Pnu)h2(Pnr)Pnuh1(Pnu)Pnu
= Pnuh1(Pn)uPnrh2(Pn)dh3(Pn)dh2(Pn)rPnuh1(Pn)uPnu = Pn+1u,

where we have applied the induction hypothesis and the lemma.
Similarly, f(γn+1(R1)) = Pn+1r. �	

154 R. Ceterchi et al.

6 Conclusions

We have introduced P systems with parallel rewriting of strings in order to
generate chain code picture languages. Similar P systems, but with sequential
rewriting, have been introduced in [16], We have investigated the relation with
collage grammars, establishing a result similar to one of [16], but with only
two membranes instead of three. Next we have focused on the generation of
finite approximations of space-filling curves. We present a P system with parallel
rewriting and two membranes which generates the Hilbert words and we prove
its correctness. We also present a P system with parallel rewriting and two
membranes which generates the Peano words, which is completely different from
the one proposed in [16]. The generation of other space-filling curves with P
systems can be attacked along the lines introduced in the present paper. Also,
the parallel model presented here can be a framework in which to consider other
classes of picture languages, for instance stripe picture languages.

Acknowledgments. The third author acknowledges partial support for this research
from a RU grant, USM and an FRGS grant from MOHE, Malaysia.

References

1. Ceterchi, R., Mutyam, M., Pǎun, G., Subramanian, K.G.: Array - rewriting P
systems. Nat. Comput. 2, 229–249 (2003)

2. Dassow, J., Habel, A., Taubenberger, S.: Chain-code pictures and collages gener-
ated by hyperedge replacement. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G.
(eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 412–427. Springer, Heidelberg
(1996)

3. Drewes, F.: Some remarks on the generative power of collage grammars and chain-
code grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
TAGT 1998. LNCS, vol. 1764, pp. 1–14. Springer, Heidelberg (2000)

4. Fernau, H., Freund, R., Schmid, M.L., Subramanian, K.G., Wiederhold, P.: Con-
textual array grammars and array P systems. Ann. Math. Artificial Intell. doi:10.
1007/s10472-013-9388-0

5. Ferretti, C., Mauri, G., Paun, G., Zandron, C.: On three variants of rewriting P
systems. Theor. Comp. Sci. 301, 201–215 (2003)

6. Habel, A., Kreowski, H.J.: Collage grammars. In: Ehrig, H., Kreowski, H.-J.,
Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 411–429.
Springer, Heidelberg (1991)

7. Kitaev, S., Mansour, T., Seebold, P.: The Peano curve and counting occurrences
of some patterns. J. Autom. Lang. Combin. 9(4), 439–455 (2004)

8. Maurer, H.A., Rozenberg, G., Welzl, E.: Using string languages to describe picture
languages. Inf. Control 54, 155–185 (1982)

9. Pan, L., Păun, G.: On parallel array P systems. In: Adamatzky, A. (ed.) Automata,
Universality, Computation. ECC, vol. 12, pp. 173–183. Springer, Heidelberg (2015)

10. Pǎun, G.: Computing with membranes. J. Comp. Syst. Sci. 61, 108–143 (2000)
11. Salomaa, A.: Formal Languages. Academic Press, London (1973)
12. Seebold, P.: Tag system for the Hilbert curve. Discrete Math. Theor. Comp. Sci.

9, 213226 (2007)

http://dx.doi.org/10.1007/s10472-013-9388-0
http://dx.doi.org/10.1007/s10472-013-9388-0

Parallel P System for Chain Code Pictures 155

13. Siromoney, R., Subramanian, K.G.: Space-filling curves and infinite graphs. In:
Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153,
pp. 380–391. Springer, Heidelberg (1983)

14. Subramanian, K.G.: P systems and picture languages. In: Durand-Lose, J., Mar-
genstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 99–109. Springer, Heidelberg
(2007)

15. Subramanian, K.G., Isawasan, P., Venkat, I., Pan, L.: Parallel array-rewriting P
systems. Rom. J. Inf. Sci. Tech. 17(1), 103–116 (2014)

16. Subramanian, K.G., Venkat, I., Pan, L.: P Systems generating Chain Code Picture
Languages, Proceedings of Asian Conference on Membrane Computing, pp. 115–
123 (2012)

Base-Complexity Classifications of QCB0-Spaces

Matthew de Brecht1(B), Matthias Schröder2, and Victor Selivanov3

1 National Institute of Information and Communications Technology (NICT),
Center for Information and Neural Networks (CiNet), Osaka, Japan

matthew@nict.go.jp
2 Department of Mathematics, TU Darmstadt, Darmstadt, Germany

3 A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia

Abstract. We define and study new classifications of qcb0-spaces based
on the idea to measure the complexity of their bases. The new classifi-
cations complement those given by the hierarchies of qcb0-spaces intro-
duced in [7,8] and provide new tools to investigate non-countably based
qcb0-spaces. As a by-product, we show that there is no universal qcb0-
space and establish several apparently new properties of the Kleene-
Kreisel continuous functionals of countable types.

Keywords: QCB0-spaces · Y -based spaces · Hyperspaces · Scott topol-
ogy · Hyperprojective hierarchy · Kleene-Kreisel continuous functionals

1 Introduction

A basic notion of Computable Analysis [10] is the notion of an admissible rep-
resentation of a topological space X. This is a partial continuous surjection δ
from the Baire space N onto X satisfying a certain universality property. Such a
representation of X often induces a reasonable computability theory on X, and
the class of admissibly represented spaces is wide enough to include most spaces
of interest for Analysis or Numerical Mathematics. This class coincides with the
class of the so-called qcb0-spaces, i.e. T0-spaces which are quotients of count-
ably based spaces, and it forms a cartesian closed category with the continuous
functions as morphisms [5]. Thus, among qcb0-spaces one meets many impor-
tant function spaces including the continuous functionals of finite types [3,4]
interesting for several branches of logic and computability theory. In addition
to being cartesian closed, the category QCB0 of qcb0-spaces is also closed under
countable limits, countable colimits, and many other important constructions,

M. de Brecht—Supported by JSPS Core-to-Core Program, A. Advanced Research
Networks
M. Schröder—Supported by FWF research project “Definability and computability”
and by DFG project Zi 1009/4-1.
V. Selivanov—Supported by the DFG Mercator professorship at the University of
Würzburg, by the RFBR-FWF project “Definability and computability”, by RFBR
project 13-01-00015a, and by 7th EU IRSES project 294962 (COMPUTAL).

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 156–166, 2015.
DOI: 10.1007/978-3-319-20028-6 16

Base-Complexity Classifications of QCB0-Spaces 157

making it a very convenient category of topological spaces. However, along with
the benefits of this generality comes the challenge of developing comprehensive
theories that provide a deeper understanding of arbitrary qcb0-spaces.

Classical descriptive set theory [2] has proven to be extremely useful for clas-
sifying and studying separable metrizable spaces. Every separable metrizable
space can be topologically embedded into a Polish space (a complete separable
metrizable space), for example by taking the completion of a compatible metric.
We can therefore classify a separable metrizable space according to the complex-
ity of defining it as a subspace of some Polish space, where topological complexity
can be quantified using natural hierarchies such as the Borel or Luzin (projec-
tive) hierarchies. This method of classification is topologically invariant (it does
not depend on which Polish space we embed into) because of the remarkable
fact that a subspace of a Polish space is Polish if and only if it is of level Π0

2 in
the Borel hierarchy. We can even generalize this approach to the entire class of
countably based T0-spaces (abbreviated cb0-spaces) by using quasi-Polish spaces
[1], which have the same Π0

2 absoluteness property as Polish spaces. In fact, for
classifying cb0-spaces we can restrict ourselves to the algebraic domain Pω of all
subsets of natural numbers (denoted ω), which is quasi-Polish and universal for
cb0-spaces.

Unfortunately, this approach to classifying topological spaces does not imme-
diately generalize to the entire category of qcb0-spaces. First of all, as we will see
in this paper, there is no universal qcb0-space to serve as a basis for comparing
topological complexity. A second critical problem is that the Π0

2 absoluteness
property of Polish and quasi-Polish spaces does not apply to subspaces of non-
countably based spaces. For example, in [9] it is shown that the space O(N), the
lattice of open subsets of N with the Scott-topology, contains singleton subsets
which are Π1

1-complete even though they are trivially Polish with respect to the
subspace topology. It is possible to use similar methods to construct qcb0-spaces
that have singleton subsets of arbitrarily high complexity in the hyperprojective
hierarchy.

Important progress towards classifying qcb0-spaces was made in [7,8], where
the Borel, projective, and hyperprojective hierarchies of qcb0-spaces were intro-
duced. The major insight was to classify qcb0-spaces according to the complexity
of the equivalence relation on the elements of N induced by an admissible repre-
sentation of the space, which elegantly sidesteps the problem of finding a univer-
sal space. This approach works well because the universal property of admissible
representations causes them to reflect many important topological properties of
the underlying space. In fact, it was shown in [7,8] that for cb0-spaces, the newly
introduced classification approach using admissible representations is equivalent
to the approach described above that uses topological embeddings into Pω.

However, the hierarchies defined in [7,8] do not differentiate between count-
ably based qcb0-spaces and non-countably based spaces. In particular, the prob-
lem of placing an upper bound on the relative complexity of even very simple
subsets (such as singletons) of non-countably based spaces can not be settled
using this approach. Thus, although the Borel, projective, and hyperprojective
hierarchies quantify one important aspect of the complexity of qcb0-spaces, there

158 M. de Brecht et al.

appears to be an additional dimension of complexity that is mostly apparent in
the large difference between countably based and non-countably based spaces.

In this paper we attempt to capture this additional dimension of complexity
by introducing methods to classify a topological space according to the com-
plexity of defining a basis for its topology. Our hope is that by combining the
basis-complexity measures introduced in this paper with the hierarchies defined
in [7,8], we can obtain a more complete measure of the topological complexity
of qcb0-spaces.

The basic idea of our approach is a natural generalization of the definition of
a countable basis. Given a topological space X, a countable basis for X can be
viewed as a mapping φ from ω to the set O(X) of open subsets of X such that
the range of φ is a basis for the topology of X. As a first approach to generalizing
this definition to non-countably based spaces, we can replace the index set ω with
an arbitrary topological space Y and consider whether or not a basis for X can
be indexed by some mapping φ : Y → O(X) which is continuous with respect
to the Scott-topology on O(X). The class of spaces that have such an indexing
for a basis will be called Y -based spaces, and the complexity of Y according to
the hierarchies in [7,8] provides an indication of the complexity of the spaces in
this class. This definition is very natural and we will show that it has several
useful properties, but unfortunately it can be difficult to use in practice. We
therefore also introduce a second related concept that we call sequentially Y -
based spaces, which requires a more complicated definition but behaves much
better when working with sequential spaces. In particular, we will show that
universal spaces exist for the class of sequentially Y -based spaces for each qcb0-
space Y . We expect this observation will be useful for future development of a
descriptive theory of qcb0-spaces that avoids the problems mentioned earlier in
this introduction.

We will provide a detailed analysis of the relationship between the proposed
hierarchies and the previous ones, and provide some applications. The newly
introduced basis-complexity classifications can be particularly useful when deter-
mining whether one space can be embedded into another space. We will demon-
strate this claim by investigating the existence of certain classes of universal
qcb0-spaces, by showing that every qcb0-space can be embedded into a space
with a total admissible representation, and by establishing several apparently
new properties of the Kleene-Kreisel continuous functionals of countable types.

In Sect. 2 we discuss the notions of topological and sequential embeddings.
In Sects. 3 and 4 we first introduce and study some versions of the notion of a
Y -based space, and then define and investigate the two relevant classifications of
qcb0-spaces. In Sect. 5 we study which levels of the the new and old hierarchies
have a universal (or sequentially universal) space. Because of the strict space
bounds, we omit all proofs and use some notation and notions from [8] without
definition.

Base-Complexity Classifications of QCB0-Spaces 159

2 Topological Embeddings Versus Sequential Embeddings

In this section we briefly discuss two notions of embedding for sequential spaces
relevant to this paper. The first one is the usual topological embedding which is
used in Sect. 3. The second one is a lesser known sequential embedding which is
more natural for sequential spaces and results in a more satisfactory theory in
Sect. 4 than the theory based on topological embeddings.

We say that a space X embeds topologically into Y , if X is homeomorphic
to a topological subspace M of Y ; the corresponding homeomorphism seen as a
function e from X to Y is called a topological embedding of X into Y . When deal-
ing with sequential spaces (in particular, qcb0-spaces), it is natural to consider
the following modification of the topological embeddings:

Definition 1. Let X,Y be sequential spaces.

(1) The space X is a sequential subspace of Y , if X ⊆ Y and, whenever (xn)n is
a sequence in X and x∞ ∈ X, convergence of (xn)n to x∞ in X is equivalent
to convergence of (xn)n to x∞ in Y .

(2) We say that X embeds sequentially into Y , if there is an injection e : X → Y
such that convergence of (xn)n to x∞ in X is equivalent to convergence of
(e(xn))n to e(x∞) in Y . In this case we call e a sequential embedding of X
into Y .

The distinction between topological subspace and sequential subspace is subtle,
but very important. It can be shown that if X and Y are sequential spaces,
then X embeds sequentially into Y if and only if there is a topological subspace
S ⊆ Y such that X is homeomorphic to the sequentialisation of S.

It is easy to check that, for all sequential spaces X,Y , if e : X → Y is a
topological embedding then it is also a sequential embedding, but the converse
does not hold in general. If e : X → Y is a surjective sequential embedding, then
e is a homeomorphism.

3 Y -based Spaces

In this section we introduce and study the notion of a Y -based space, where Y
is a topological space. This provides a natural generalization of the notion of a
countably based space which can be applied to classifying non-countably based
qcb0-spaces.

Let S be the Sierpinski space and O(X) be the hyperspace of open subsets
of a space X topologised with the ω-Scott topology. If X is a sequential space
(in particular a qcb0-space), then O(X) is homeomorphic to S

X .

Definition 2. Let X,Y be topological spaces. A continuous function φ : Y →
O(X) is a Y -indexing of a basis for X, if the range of φ is a basis for the topology
on X. The space X is Y -based if there is a Y -indexing of a basis for X.

160 M. de Brecht et al.

These notions are purely topological and apply to arbitrary topological spaces.
It is easily shown that if X is Y -based and Y is a continuous image of a space
Z then X is Z-based, and that any topological subspace of a Y -based space is
Y -based.

The next proposition generalizes the fact that any countably-based T0-space
embeds topologically into Pω, which is homeomorphic to O(ω).

Theorem 1. Let X,Y be sequential T0-spaces such that X is Y -based. Then X
topologically embeds into O(Y).

The next basic fact characterizes qcb0-spaces in terms of these notions.

Theorem 2. The following are equivalent for any sequential T0-space X:

(1) X is Y -based for some zero-dimensional cb0-space Y (i.e., some Y ⊆ N).
(2) X is Y -based for some qcb0-space Y .
(3) X topologically embeds into O(Y) for some cb0-space Y .
(4) X is a qcb0-space.

As O(Y) has a total admissible representation for any cb0-space Y , we obtain:

Corollary 1. Every qcb0-space topologically embeds into a space with a total
admissible representation.

For any qcb0-space Y , let Based(Y) denote the class of Y -based qcb0-spaces.
For a class S of qcb0-spaces, let Based(S) =

⋃
Y ∈S Based(Y). Theorem 2 induces

some natural classifications of qcb0-spaces. For example, one can relate to any
family of pointclasses Γ the classes Based(Γ(N)) and Based(QCB0(Γ)) and easily
check that the classes coincide. Here, the notation QCB0(Γ) refers to the hier-
archies of qcb0-spaces defined in [7,8]. Thus, the classical hierarchies of subsets
of the Baire space induce corresponding hierarchies of qcb0-spaces, in particu-
lar the “hyperprojective base-hierarchy” Based(Σ1

α(N)), for which we use the
simpler notation Based(Σ1

α).
We now establish a relationship between Based(Σ1

α) and the qcb0-space N〈α〉,
which is the space of continuous functionals of type α over ω. The spaces N〈α〉
are defined by induction on countable ordinals α as follows [8]:

N〈0〉 := ω, N〈β + 1〉 := ωN〈β〉 and N〈λ〉 :=
∏

α<λ N〈α〉,
where ω denotes the discrete space of natural numbers, β, λ < ω1 and λ is a
limit ordinal. Obviously, for k < ω the space N〈k〉 coincides with the space
of Kleene-Kreisel continuous functionals of type k extensively studied in the
literature, and N〈1〉 coincides with the Baire space N . Moreover, we consider
a standard admissible representation δα : Dα → N〈α〉 for N〈α〉 derived by a
natural construction as presented in [8]. We will also deal with the coproduct
spaces N〈<λ〉 :=

⊕
α<λ N〈α〉, where λ is a countable ordinal limit.

Proposition 1. For any α < ω1, Based(Dα+1)=Based(Π1
α)=Based(Σ1

α+1)=
Based(N〈α + 1〉). For any limit ordinal λ < ω1, Based(Dλ) = Based((Π1

<λ)δ) =
Based(Σ1

λ) = Based(N〈λ〉).

Base-Complexity Classifications of QCB0-Spaces 161

By Theorem 1, any space from Based(Y) topologically embeds into O(Y). A prin-
cipal question is: for which qcb0-spaces Y do we have that the space O(Y) is
Y -based? Clearly, this is equivalent to saying that Based(Y) is the class of spaces
topologically embeddable into O(Y). Unfortunately, the assertion does not hold
for all Y : one easily checks that the space O(Q) is not Q-based. Nevertheless,
the assertion O(Y) ∈ Based(Y) might hold for some natural spaces Y , in partic-
ular a positive answer to the following problem would clarify the nature of the
hierarchy {Based(Dα)}α<ω1 considerably:

Problem 1. Does the assertion O(Dα) ∈ Based(Dα) hold for all α < ω1?

If the answer is positive, Based(Dα) would coincide with the class of spaces
topologically embeddable into O(Dα). For α = 0 the assertion holds because
O(ω) is homeomorphic to Pω, and we will show below that the assertion is
also true for α = 1. For α ≥ 2 we still do not know the answer. This is an
obstacle to answering the principal question on the non-collapse of the introduced
hierarchy {Based(Dα)}α<ω1 . By the non-collapse property we mean that the
inclusion Based(Dα) ⊆ Based(Dβ) is proper for each α < β < ω1. The next
result (along with the assertion O(D1) ∈ Based(D1)) implies, in particular, that
Based(D0) � Based(D1).

Proposition 2. For any α < ω1, O(Dα+1) �∈ Based(Dα). For any limit ordinal
λ < ω1, O(Dλ) /∈ Based(

⊕
α<λ Dα).

The following relation between the hyperprojective hierarchy of qcb0-spaces and
the hierarchy {Based(Dα)}α<ω1 is interesting in its own right and also implies
a weak non-collapse property:

Proposition 3. For any α < ω1, QCB0(Π1
α) ⊆ Based(Π1

α+1) = Based(Dα+2).

Conversely, for each ordinal α < ω1, QCB0(Π1
α) does not even contain all of

Based(ω), as Dα+2 ∈ Based(ω) \ QCB0(Π1
α) by Theorem 2 in [8]. The second

item of the next corollary is the weak version of the non-collapse property.

Corollary 2. Let α < ω1. Then we have O(Dα) ∈ Based(Dα+2) and the inclu-
sion Based(Dα) ⊂ Based(Dα+3) is proper.

Problem 2. For which α < ω1 can the inclusion from Proposition 3 be improved
to QCB0(Π1

α) ⊆ Based(Dα+1) or even to QCB0(Π1
α) ⊆ Based(Dα)?

Next we further investigate the important class Based(N) = Based(D1) of N -
based qcb0-spaces, which includes many natural non-countably based spaces. As
an example, we state an interesting property of the class of quasi-Polish spaces
[1], which includes both Polish spaces and ω-continuous domains.

Proposition 4. If X is quasi-Polish then O(X) is N -based.

For metrizable spaces X ∈ CB0(Π1
1) we have the following complete characteri-

zation of when O(X) is N -based.

162 M. de Brecht et al.

Proposition 5. Let X ∈ CB0(Π1
1) be metrizable. Then O(X) is N -based if and

only if X is Polish.

Corollary 3. A qcb0-space is N -based if and only if it embeds topologically in
O(N). In particular, Based(D0) � Based(D1).

4 Sequentially Y -based Spaces

In this section we consider some modifications of the notion of Y -based spaces
from the previous section which are more suitable to the nature of sequential
spaces (in particular, qcb0-spaces). This will be sufficient to settle the analogues
of the open questions in Sect. 3 for the sequential embeddings in place of topo-
logical embeddings.

One could define several modifications of the notion of Y -based space. For
instance, for qcb0-spaces X,P we could say that a function φ : P → O(X) is a
P -indexed sequential basis for X, if φ is continuous and range(φ) is a subbasis for
a topology τ on X such that the sequentialisation of τ is the Scott topology in
O(X). Under this definition, some interesting facts may be established, e.g., one
can show that for any α < ω1 the space N〈α + 1〉 has an N〈α〉-indexed sequential
basis (see Corollary 5). We also consider the following deeper modification:

Definition 3. Let X,P be sequential spaces.

(1) We call a collection B of open subsets of X a sequential basis for X if B is
a subbase of a topology τ on the set X such that the sequentialisation of τ
is equal to O(X).

(2) A function φ : P → O(X) is called a P -indexed sequential basis for X if φ
is continuous and its range rng(φ) is a sequential basis for X.

(3) For a function φ : P → O(X), we define Bφ to consist of all intersections of
the form

⋂
n≤∞ φ(pn), where (pn)n converges to p∞ in P .

(4) A function φ : P → O(X) is called a P -indexed generating system for X if
φ is continuous and Bφ is a sequential basis for X.

(5) X is called sequentially P -based if there is a P -indexed generating system
for X.

By Proposition 2.2 in [6] the elements of Bφ are open in X, if φ is continuous,
because (φ(pn))n converges to φ(p∞) in O(X).

Now we study for which spaces P the existence of a P -indexed generating
system implies the existence of a P -indexed sequential basis.

Lemma 1. Let P be a sequential space such that there is a continuous surjection
from P onto PN∞ . Then any sequential space X is sequentially P -based if, and
only if, X has a P -indexed sequential basis.

The spaces N〈α〉 and N〈<λ〉 can be shown to fulfill the requirement of Lemma1.
We obtain:

Base-Complexity Classifications of QCB0-Spaces 163

Corollary 4. (1) For any α < ω1, a sequential space X is sequentially N〈α〉-
based if, and only if, there is an N〈α〉-indexed sequential basis for X.

(2) For any limit ordinal λ < ω1, a sequential space X is sequentially N〈<λ〉-
based if, and only if, there is an N〈<λ〉-indexed sequential basis for X.

Although Definition 3 (4) is very technical, it is justified by several nice properties
the main of which is the following theorem:

Theorem 3. Let X and P be sequential T0-spaces. Then X is sequentially P -
based if, and only if, X embeds sequentially into O(P).

Theorem 3 solves in the positive the “sequential analogue” of the question “is
O(P) ∈ Based(P) for each P?” discussed in the previous section.

For any sequential space P we of course have Based(P) ⊆ SBased(P). An
interesting question is “for which P is this inclusion proper?” One example is Q,
because O(Q) is sequentially Q-based by Theorem 3, but not countably based, as
Q is a non-locally-compact metrizable space. This observation can be improved
to the following:

Proposition 6. The space O(Q) is sequentially N -based, but not N -based.

We now show how to construct generating systems for countable products and
function spaces (formed in the category Seq of sequential spaces).

Proposition 7. Let Xi, Pi be sequential T0-spaces such that Xi is sequentially
Pi-based. Then the sequential product

∏
i∈ω Xi is sequentially (

⊕
i∈ω Pi)-based.

Proposition 8. Let X,Y, P be sequential T0-spaces such that Y is sequentially
P -based. Then Y X is sequentially (P × X)-based.

We obtain the following nice property of the spaces of functionals:

Corollary 5. For any α < ω1, the space N〈α + 1〉 is sequentially N〈α〉-based.
For any limit ordinal λ < ω1, the space N〈λ〉 is sequentially N〈<λ〉-based.
For any qcb0-space Y , let SBased(Y) denote the class of sequentially Y -based
qcb0-spaces. For a class S of qcb0-spaces Y , let SBased(S) =

⋃
Y ∈S SBased(Y).

Obviously, Based(Y) ⊆ SBased(Y) for each qcb0-space Y . Theorem 3 induces
some natural classifications of qcb0-spaces. For example, one can relate to any
family of pointclasses Γ the classes SBased(Γ(N)), SBased(QCB0(Γ)) and show
that they coincide.

Thus, the classical hierarchies of subsets of the Baire space induce the corre-
sponding hierarchies of qcb0-spaces, in particular the “hyperprojective sequen-
tial-based-hierarchy” SBased(Σ1

α(N)); we simplify the notation to SBased(Σ1
α)

and relate this hierarchy to the admissible representations δα : Dα → N〈α〉. The
next assertion is an analogue of Proposition 1.

Proposition 9. For any α < ω1, SBased(Dα+1)=SBased(Π1
α)=SBased(Σ1

α+1)
=SBased(N〈α + 1〉). For any limit ordinal λ < ω1, SBased(Dλ)=SBased(Σ1

λ)=
SBased((Π1

<λ)δ)=SBased(N〈λ〉).

164 M. de Brecht et al.

Next we solve the principal question on the non-collapse property of the hierarchy
{SBased(Dα)}α<ω1 . Remember that the corresponding result for the hierarchy
{Based(Dα)}α<ω1 remained open.

Proposition 10. The hierarchy {SBased(Dα)}α<ω1 does not collapse. More
precisely, SBased(Dα)�SBased(Dα+1) for all α < ω1 and SBased(

⊕
α<λ Dα)

�SBased(Dλ) for each limit ordinal λ < ω1.

The next fact shows that the class SBased(N) is rather rich.

Proposition 11. Let X be a qcb0-space having a total admissible representation
ξ : N → X. Then O(X) embeds sequentially into O(N).

Problem 3. We know from Theorem 3 and Proposition 6 that Based(Q) �

SBased(Q) and Based(N) � SBased(N). We would like to know which
sequential spaces X satisfy Based(X) � SBased(X). In particular, we con-
jecture that Based(Dα) � SBased(Dα) for all non-zero ordinals α < ω1, and
SBased(

⊕
α<λ Dα) � SBased(

⊕
α<λ Dα) for all limit ordinals λ < ω1. Good

possible witnesses seem to be N〈α + 1〉 and N〈λ〉 respectively (see Corollary 5).

By Proposition 10, the spaces O(Dα) are natural witnesses for the non-collapse
property of the hierarchy {SBased(Dα)}α<ω1 . Next we observe that the spaces
N〈α〉 provide other natural witnesses for this property showing that Corollary 5
is in a sense optimal.

Theorem 4. (1) For any α < ω1, N〈α + 2〉∈SBased(N〈α + 1〉) \ SBased
(N〈α〉).

(2) For any limit ordinal λ < ω1, N〈λ + 1〉∈SBased(N〈λ〉) \ SBased(N〈<λ〉).
(3) For any limit ordinal λ < ω1, N〈λ〉∈SBased(

⊕
α<λ

N〈α〉) \ ⋃
α<λ

SBased(N〈α〉).

We also can deduce the following corollary about the continuous functionals.

Corollary 6. For all α < β < ω1, N〈β〉 does not sequentially embed into N〈α〉.

5 On Universal Spaces

In this section we discuss which classes of qcb0-spaces have and which do not
have a universal space. This is of interest because universal spaces are noticeable
in several branches of set-theoretic topology.

Definition 4. (1) Let S be a class of topological spaces. A space X is universal
in S, if X ∈ S and any space from S embeds topologically in X.

(2) Let S be a class of sequential spaces. A space X is sequentially universal in
S, if X ∈ S and any space from S embeds sequentially in X.

The first notion above is well-known in topology. E.g., Pω is universal in the class
of cb0-spaces, while the class of all topological spaces has no universal space. The

Base-Complexity Classifications of QCB0-Spaces 165

second notion is a “sequential version” of the first one which is natural when
dealing with sequential spaces or qcb0-spaces. As Pω is universal in the class
of cb0-spaces and Y -based spaces are designed as a natural generalization of
countably based spaces, it is natural to ask for which Y ⊆ N the class of Y -
based spaces has a universal space. At least, we can prove:

Corollary 7. Let Y ⊆ N be such that the space O(Y) is Y -based. Then O(Y)
is universal in the class of Y -based topological spaces. In particular, the space
O(N) is universal in the class of N -based spaces.

For the sequential version, we derive from Theorem 3:

Corollary 8. For any Y ∈ QCB0, O(Y) is sequentially universal in SBased(Y).

It is still open whether or not Based(Dα) contains a universal space when α > 1.
However, we see that each level of the hierarchy {SBased(Dα)}α<ω1 contains a
sequentially universal space O(Dα) with a total admissible representation. The
same applies to the hierarchies of cb0-spaces in [7] (obviously, Pω is a universal
space in CB0(Γ) for each family of pointclasses Γ that contains Π0

2).
For the hierarchies of qcb0-spaces in [7,8] the situation is more complicated.

Currently we do not know which of the classes QCB0(Γ), where Γ is a level of the
Borel or hyperprojective hierarchy, have a universal (or a sequentially universal)
space. Nevertheless, we can show that the class of all qcb0-spaces, as well as some
natural pointclasses related to the hyperprojective hierarchy of qcb0-spaces, do
not have universal spaces. Recall from [7,8] that QCB0(P) :=

⋃
n<ω QCB0(Σ1

n)
and QCB0(HP) :=

⋃
α<ω1

QCB0(Σ1
α) denote the classes of projective and of

hyperprojective qcb0-spaces, respectively.

Theorem 5. (1) There is no universal (nor a sequentially universal) qcb0-
space.

(2) For any limit ordinal λ < ω1, there is no universal (nor a sequentially
universal) space in QCB0(Σ1

<λ).
(3) There is no universal (nor a sequentially universal) space in QCB0(P) (nor

in QCB0(HP)).

References

1. de Brecht, M.: Quasi-polish spaces. Ann. Pure Applied Logic 164, 356–381 (2013)
2. Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995)
3. Kleene, S.C.: Countable functionals. In: Heyting, A. (ed.) Constructivity in Math-

ematics, pp. 87–100. North Holland, Amsterdam (1959)
4. Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite

types. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 101–128. North
Holland, Amsterdam (1959)

5. Schröder, M: Admissible representations for continuous computations. Ph.D. thesis
Fachbereich Informatik, FernUniversität Hagen (2003)

6. Schröder, M.: A Hofmann-Mislove Theorem for Scott Open Sets (2015).
arXiv:1501.06452

http://arxiv.org/abs/1501.06452

166 M. de Brecht et al.

7. Schröder, M., Selivanov, V.: Some hierarchies of qcb0-spaces. Math. Struct. in
Comp. Sci. (2014). doi:10.1017/S0960129513000376

8. Schröder, M., Selivanov, V.: Hyperprojective hierarchy of qcb0-spaces. Computabil-
ity 4(1), 1–17 (2015)

9. Selivanov, V.: Total representations. Logical Methods Comput. Sci. 9(2), 1–30
(2013)

10. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

http://dx.doi.org/10.1017/S0960129513000376

New Bounds on Optimal Sorting Networks

Thorsten Ehlers(B) and Mike Müller

Institut für Informatik, Christian-Albrechts-Universität zu Kiel,
24098 Kiel, Germany

{the,mimu}@informatik.uni-kiel.de

Abstract. We present new parallel sorting networks for 17 to 20 inputs.
For 17, 19, and 20 inputs these new networks are faster (i.e., they require
fewer computation steps) than the previously known best networks.
Therefore, we improve upon the known upper bounds for minimal depth
sorting networks on 17, 19, and 20 channels. Furthermore, we show that
our sorting network for 17 inputs is optimal in the sense that no sort-
ing network using less layers exists. This solves the main open problem of
[D. Bundala & J. Závodný. Optimal sorting networks, Proc. LATA 2014].

1 Introduction

Comparator networks are hardwired circuits consisting of simple gates that sort
their inputs. If the output of such a network is sorted for all possible inputs,
it is called a sorting network. Sorting networks are an old area of interest, and
results concerning their size date back at least to the 50’s of the last century.

The size of a comparator network in general can be measured by two different
quantities: the total number of comparators involved in the network, or the
number of layers the network consists of. In both cases, finding optimal sorting
networks (i.e., of minimal size) is a challenging task even when restricted to few
inputs, which was attacked using different methods.

For instance, Valsalam and Miikkulainen [11] employed evolutionary algo-
rithms to generate sorting networks with few comparators. Minimal depth sort-
ing networks for up to 16 inputs were constructed by Shapiro and Van Voorhis
in the 60’s and 70’s, and by Schwiebert in 2001, who also made use of evolu-
tionary techniques. For a presentation of these networks see Knuth [8, Fig. 51].
However, the optimality of the known networks for 11 to 16 channels was only
shown recently by Bundala and Závodný [4], who partitioned the set of first two
layers into equivalence classes and reduced the search to extensions of one rep-
resentative of each class. They then expressed the existence of a sorting network
with less layers extending these representatives in propositional logic and used a
SAT solver to show that the resulting formulae are unsatisfiable. Codish, Cruz-
Filipe, and Schneider-Kamp [5] simplified the generation of the representatives
and independently verified Bundala and Závodný’s result.

For more than 16 channels, not much is known about the minimal depths of
sorting networks. Al-Haj Baddar and Batcher [2] exhibit a network sorting 18
inputs using 11 layers, which also provides the best known upper bound on the
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 167–176, 2015.
DOI: 10.1007/978-3-319-20028-6 17

168 T. Ehlers and M. Müller

minimal depth of a sorting network for 17 inputs. The lowest upper bound on
the size of minimal depth sorting networks on 19 to 22 channels also stems from
a network presented by Al-Haj Baddar and Batcher [1]. For 23 and more inputs,
the best upper bounds to date are established by merging the outputs of smaller
sorting networks with Batcher’s odd-even merge [3], which needs �log n� layers
for this merging step.

The known lower bounds are due to Parberry [10] and Bundala and Závodný.
A new insight by Codish, Cruz-Filipe, and Schneider-Kamp [6] into the struc-
ture of the last layers of sorting networks lead to a significant further reduction
of the search space. Despite all this recently resparked interest in sorting net-
works, the newly gained insights were insufficient to establish a tight lower bound
on the depth of sorting networks for 17 inputs.

We use the SAT approach by Bundala and Závodný to synthesize new sorting
networks of small depths, and thus provide better upper bounds for 17, 19, and
20 inputs. Furthermore, our improvements upon their method allow us to raise
the lower bound for 17 inputs. Therefore, for the first time after the works of
Shapiro, Van Voorhis, and Schwiebert, we present here a new optimal depth
sorting network.

An overview of the old and new upper and lower bounds for the minimal
depth of sorting networks for up to 20 inputs is presented in Table 1.

Table 1. Bounds on the minimal depth of sorting networks for up to 20 inputs.

Number of inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Old upper bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 11 11 12 12

New upper bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 10 11 11 11

Old lower bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 9 9 9 9

New lower bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 10 10 10 10

2 Preliminaries

A comparator is a gate with two inputs in1 and in2 and two outputs outmin

and outmax, that compares, and if necessary rearranges its inputs such that
outmin = min{in1, in2} and outmax = max{in1, in2}. Combining zero or more
comparators in a network yields a comparator network. Comparator networks
are usually visualized in a graphical manner in a so-called Knuth diagram as
depicted in Fig. 1. Here a comparator connecting two channels is drawn as ,
where by convention the upper output is outmin and the lower output is outmax.
A maximal set of comparators with respect to inclusion that can perform parallel
comparisons in a comparator network is called a layer. The number of layers of a
network is called the depth of the network. A useful tool to verify that a network
is a sorting network is the “0-1-principle” [8], which states that a comparator
network is a sorting network, if and only if it sorts all binary inputs.

For more details about sorting networks we refer to Knuth [8, Sect. 5.3.4].

New Bounds on Optimal Sorting Networks 169

Fig. 1. A comparator network of depth 3 with 5 comparators

3 Improved Techniques

In this section we introduce the new techniques and improvements on exist-
ing techniques we used to gain our results. We will stick to the formulation by
Bundala and Závodný [4], and introduce new variables if necessary. Furthermore,
we will extend a technique introduced in their paper, called subnetwork optimiza-
tion. It is based on the fact that a sorting network must sort all its inputs, but
in order to prove non-existence of sorting networks of a certain depth, it is often
sufficient to consider only a subset of all possible inputs, which are not all sorted
by any network of this restricted depth. Bundala and Závodný chose subsets of
the form T r =

{
0ax1b | |x| = r and a + b + |x| = n

}
for r < n, which are inputs

having a window of size r. For an input 0ax1b from this set the values on the
first a channels at any point in the network will always be 0, and those on the
last b channels will always be 1, which significantly reduces the encoding size for
these inputs if a and b are sufficiently large.

3.1 Prefix Optimization

It is a well-known fact that permuting the channels of a sorting network, fol-
lowed by a repair-procedure called untangling yields another feasible sorting
network [10]. In fact, Parberry [10] used a first layer with comparators of the
form (2i − 1, 2i), 1 ≤ i ≤ �n

2 �, which we will call Pb-style whereas Bundala and
Závodný used comparators (i, n + 1 − i), 1 ≤ i ≤ �n

2 � in the first layer, which
we call BZ-style; see Fig. 2. Both versions are equivalent in the sense that if
there exists a sorting network Cd

n, then there exist sorting networks of the same
depth with either of these prefixes. Nevertheless, for creating networks obeying a
certain prefix as well as proving their non-existence, a given prefix may be hard-
coded into the SAT formula. Given a prefix P of depth |P |, the remaining SAT
formula encodes the proposition “There is a comparator network on n channels
of depth d − |P | which sorts all outputs of P”. Interestingly, the outputs of dif-
ferent prefix styles are not equally handy for the SAT encoding. A Pb-style first
layer performs compare-and-swap operations between adjacent channels, thus
the presorting performed here is more local than the one done by BZ-style first

Fig. 2. Pb-style first layer (left), and BZ-style (right) for 6 channels

170 T. Ehlers and M. Müller

layers. Let out(P) denote the set of outputs of a prefix P on n layers. Then,
the number of channels that actually must be considered in the SAT formula is
given by ∑

x∈out(P)

(
n − max{a | x = 0ax′} − max{b | x = x′1b})

,

i.e., the sum of window-sizes of all outputs of P .
Table 2 shows the impact of these previous deliberations when using a 1-

layer-prefix for 2 ≤ n ≤ 17 channels.

Table 2. Number of channels to consider in the encoding after the first layer

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pb-style 0 5 12 44 84 233 408 1016 1704 4013 6564 14948 24060 53585 85296 186992

BZ-style 0 4 10 36 72 196 358 876 1524 3532 5962 13380 22128 48628 79246 171612

Table 3. Impact of prefix style when proving that no sorting network for 16 channels
with at most 8 layers exists.

Prefix style Overall time (s) Maximum time (s)

Pb 22,241 326

BZ 10,927 150

Opt 5,492 36

Table 3 shows running times when proving that no sorting network on 16
channels with 8 layers exists. In this case, we used 2-layer-prefixes according
to [5], and proved unfeasibility for each of the 211 distinct prefixes. In the first
case, they were permuted and untangled such that the first layer is in Pb-style,
whereas the second case has BZ-style first layers. In the third case, we used
an evolutionary algorithm to find a prefix such that the number of channels to
consider when using 800 distinct outputs of the respective prefix was minimized.
As we have d − |P | Boolean variables for each channel which cannot be hard-
coded, this procedure minimizes the number of variables in the resulting SAT
formula.

This technique reduced the overall running time by factors of 4.05 and 1.99,
and the maximum running times by 9.0 and 4.1, respectively.

3.2 Iterative Encoding

As mentioned above, it is usually not necessary to use all 2n input vectors to
prove lower bounds. In order to take advantage of this fact, we implemented an
iterative approach. We start with a formula which describes a feasible comparator

New Bounds on Optimal Sorting Networks 171

network and a (potentially empty) set of initial inputs, and iteratively add inputs
until either a feasible sorting network has been found, or no network can be
found which is able to sort the given set of inputs, as depicted in Fig. 3. During
the iterative process, counter-examples (i.e., inputs that are not sorted by the
network created so far) of minimal window-size are chosen.

SAT: Network found

SAT: Counterexample found

UNSAT: No network found UNSAT: Network is feasible

Network Creation Network Check

Fig. 3. Iterative generation of new inputs

Using this technique, we tested the impact of different prefix style on both
running time, and the number of inputs required. Table 4 shows results for one
2-layer-prefix for 16 channels, used to prove that this cannot be extended to a
sorting network with 8 layers. Here, more inputs are required to prove that a
BZ-style prefix cannot be extended when compared to a Pb-style prefix. Never-
theless, BZ-style prefixes are superior in terms of running time. Interestingly, the
process becomes faster when more inputs than actually required were chosen,
this is, using slightly more inputs is beneficial.

Table 4. Impact of prefix style on running time and number of iterations

Initial inputs 0 100 200 300 400 500 600 700 800 900

Pb Time 157 139 128 86 61 56 45 52 54 59

Iterations 264 174 72 4 1 1 1 1 1 1

BZ Time 88 75 64 47 28 14 14 13 13 19

Iterations 358 259 165 66 10 1 1 1 1 1

Next, we turn to improve the SAT encoding.

3.3 Improved SAT Encoding

We modified the SAT encoding of Bundala and Závodný [4], significantly reduc-
ing the number of clauses. A variable gki,j , with i < j, encodes the fact that
there is a comparator comparing channels i and j in layer k in the network.

172 T. Ehlers and M. Müller

Furthermore, the variable vki stores the value on channel i after layer k. For
completeness’ sake we list the original encoding completely:

onceki (C
d
n) =

∧
1≤i�=j �=l≤n

(
¬gkmin(i,j),max(i,j) ∨ ¬gkmin(i,l),max(i,l)

)

valid(Cd
n) =

∧
1≤k≤d,1≤1≤n

onceki (C
d
n)

usedki (C
d
n) =

∨
j<i

gkj,i ∨
∨
i<j

gki,j

updateki (C
d
n) =

(¬usedki (Cd
n) → (vki ↔ vk−1

i)
) ∧∧

1≤j<i

(
gkj,i → (

vki ↔ (vk−1
j ∨ vk−1

i)
)) ∧

∧
i<j≤n

(
gki,j → (

vki ↔ (vk−1
j ∧ vk−1

i)
))

Here, once encodes the fact that each channel may be used only once in one
layer, and valid encodes this constraint for each channel and each layer. The
update-formula describes the impact of comparators on the values stored on
each channel after every layer.

sorts(Cd
n, x) =

∧
1≤i≤n

(v0i ↔ xi) ∧
∧

1≤k≤d,1≤i≤n

updateki (C
d
n) ∧

∧
1≤i≤n

(vdi ↔ yi)

The constraint sorts encodes if a certain input is sorted by the network Cd
n.

For this purpose, the values after layer d (i.e., the outputs of the network) are
compared to the vector y, which is a sorted copy of the input x. A sorting
network for n channels on d layers exists iff valid(Cd

n) ∧ ∧
x∈{0,1}n sorts(Cd

n, x)
is satisfiable.

Consider an input x = 0ax′1b, and a comparator gki,j with i ≤ a. This is,
we have vki ↔ 0 ∧ vk−1

j ≡ 0, and vkj ↔ 0 ∨ vk−1
j ≡ vk−1

j . As the same holds
for j > n − b, we have that comparators “leaving” a subnetwork need not be
considered for sorting the respective inputs. Furthermore, if vk−1

i ↔ 1 for some
k and i, using any comparator gkj,i will cause vki ↔ 1. Thus, for every channel i
we introduce oneDownk

i,j- and oneUpki,j-variables which indicate whether there
is a comparator gkl,j for some i ≤ l < j or gki,l for some i < l ≤ j, respectively.

oneDownk
i,j ↔

∨
i<l≤j

gki,l noneDownk
i,j ↔ ¬oneDownk

i,j

oneUpki,j ↔
∨

i≤l<j

gkl,j noneUpki,j ↔ ¬oneUpki,j

New Bounds on Optimal Sorting Networks 173

To make use of these new predicates, given an input x = 0ax′1b, for all a < i ≤
n − b we add

vk−1
i ∧ noneDownk

i,n−b → vki

¬vk−1
i ∧ noneUpka+1,i → ¬vki ,

to the formula and remove all update-constraints that are covered by these con-
straints. This offers several advantages: Firstly, it reduces the size of the resulting
formula in terms of both the number of clauses, and the overall number of liter-
als. Secondly, this encoding allows for more propagations, thus, conflicts can be
found earlier. Thirdly, it offers a more general perspective on the reasons of a
conflict. Table 5 shows the impact of both the new encoding and permuting the
prefix, which results in an average speed-up of 8.2, and a speed-up of 17.1 for
the hardest prefixes.

Table 5. Results for different settings when proving the non-existence of 8-layer
sorting-networks for 16 channels

Encoding Prefix-style Overall time (s) Max. time (s) Variables Clauses Literals

Old Pb 22,241 326 108,802 4,467,201 13,977,393

BZ 10,927 150 99,850 3,996,902 12,442,522

Opt 5,492 36 84,028 3,183,363 9,879,588

New Pb 11,766 196 110,398 2,443,186 8,108,501

BZ 4,359 54 101,404 2,049,744 6,799,486

Opt 2,702 19 85,652 1,504,177 4,981,882

4 Obtaining New Lower Bounds

In a first test, we tried to prove that there is no sorting network on 17 channels
using at most 9 layers by using a SAT encoding which was almost identical to
the one introduced in [4], enriched by constraints on the last layers [6]. Before
we broke up this experiment after 48 days, we were able to prove that 381 out
of 609 prefixes cannot be extended to sorting networks of depth 9. Showing
unsatisfiability of these formulae took 353 · 106 s of CPU time, with a maximum
of 3 · 106 s.

In a new attempt, we used a modified encoding as described in the previous
section. For every equivalence class of 2-layer-prefixes, we chose a representative
which minimizes the number of variables in the SAT encoding when using 2, 000
distinct inputs. This time, we were able to prove that none of the prefixes can
be extend to a sorting network using 9 layers. The overall CPU time for all 609
equivalence classes was 27.63 · 106 s with a maximum running time of 97, 112 s.
This is a speed up of at least 42.7 concerning the maximum running time, and
20.4 for the average running time. Since the result for all 2-layer-prefixes was
unsat, we conclude:

Theorem 1. Any sorting network for n ≥ 17 channels has at least 10 layers.

174 T. Ehlers and M. Müller

5 Finding Faster Networks

Even though SAT encodings for sorting networks as well as SAT solvers them-
selves have become much better within the last years, generating new, large
sorting networks from scratch is still out of their scope. Hence, we extended
ideas by Al-Haj Baddar and Batcher [2].

5.1 Using Hand-Crafted Prefixes

A well-known technique for the creation of sorting networks is the generation
of partially ordered sets for parts of the input in the first layers. Figure 4 shows
comparator networks which create partially ordered sets for 2, 4 and 8 input
bits. In the case of n = 2, the output will always be sorted. For n = 4 bits, the
set of possible output vectors is given by{(

0 0 0 0
)T

,
(
0 0 0 1

)T
,
(
0 0 1 1

)T
,
(
0 1 0 1

)T
,
(
0 1 1 1

)T
,
(
1 1 1 1

)T}
,

i.e., there are 6 possible outputs. Furthermore, the first output bit will equal
zero unless all input bits are set to one, and the last output bit will always be
set to one unless all input bits equal zero. Similarly, the network for n = 8 inputs
allows for 20 different output vectors. Prefixes of sorting networks which consist
of such snippets are referred to as Green filters [7].

Fig. 4. Generating partially ordered sets for n ∈ {2, 4, 8} inputs.

5.2 Results

We present two sorting networks improving upon the known upper bounds on
the minimal depth of sorting networks. The networks presented in Fig. 5 are
sorting networks for 17 channels using only 10 layers, which outperform the
currently best known network due to Al-Haj Baddar and Batcher [2]. The first
three layers of the network on the left are a Green filter on the first 16 channels,
the remainder of this network was created by a SAT solver. To create the network
on the right, we applied the prefix optimization procedure described earlier to
the Green filter prefix. The first version of our solver required 29921 s to find
this network, whereas our current solver can find these networks in 282 s, when
using the Green filter, and 60 s when using the optimized prefix.

Thus, we can summarize our results in the following theorem:

New Bounds on Optimal Sorting Networks 175

Fig. 5. Sorting networks for 17 channels of depth 10.

Theorem 2. The optimum depth for a sorting network on 17 channels is 10.

The network displayed in Fig. 6 sorts 20 inputs in 11 parallel steps, which beats
the previously fastest network using 12 layers [1]. In the first layer, partially
ordered sets of size 2 are created. These are merged to 5 partially ordered sets
of size 4 in the second layer. The third layer is used to create partially ordered
sets of size 8 for the lowest and highest wires, respectively. These are merged in
the fourth layer.

Fig. 6. A sorting network for 20 channels of depth 11.

The wires in the middle of the network are connected in order to totally
sort their intermediate output. Using this prefix and the necessary conditions
on sorting networks depicted above, we were able to create the remaining layers
using our iterative, SAT-based approach. Interestingly, the result was created in
588 iterations, thus 587 different input vectors were sufficient.

6 Tools

Our software is based on the well-known SAT solver MiniSAT 2.20. Before start-
ing a new loop of our network creation process, we used some probing-based
preprocessing techniques [9] as they were quite successful on this kind of SAT

176 T. Ehlers and M. Müller

formulae. MiniSAT uses activity values for clauses which are used for managing
the learnt clause database. Here, we changed the value “cla-decay” to 0.9999,
which leads to better control on learnt clauses that were not used for a long
time. Our experiments were performed on Intel Xeon E5-4640 CPUs clocked at
2.40 GHz. The software used for our experiments can be downloaded at http://
www.informatik.uni-kiel.de/∼the/SortingNetworks.html.

Acknowledgments. We would like to thank Michael Codish, Lúıs Cruz-Filipe, and
Peter Schneider-Kamp for fruitful discussions on the subject and their valuable com-
ments on an earlier draft of this article. Furthermore, we thank Dirk Nowotka for pro-
viding us with the computational resources to run our experiments. We thank Donald
E. Knuth and the anonymous reviewers for their helpful comments on this paper.

References

1. Baddar, S.W.A., Batcher, K.E.: A 12-step sorting network for 22 elements. Techni-
cal report 2008-05, Department of Computer Science, Kent State University (2008)

2. Baddar, S.W.A., Batcher, K.E.: An 11-step sorting network for 18 elements. Par-
allel Process. Lett. 19(1), 97–103 (2009)

3. Batcher, K.E.: Sorting networks and their applications. In: American Federation of
Information Processing Societies: AFIPS Conference Proceedings: 1968 Spring Joint
Computer Conference, Atlantic City, NJ, USA, 30 April–2 May 1968, AFIPS Con-
ference Proceedings, vol. 32, pp. 307–314. Thomson Book Company, Washington
D.C (1968)

4. Bundala, D., Závodný, J.: Optimal sorting networks. In: Dediu, A.-H., Mart́ın-
Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370,
pp. 236–247. Springer, Heidelberg (2014)

5. Codish, M., Cruz-Filipe, L., Schneider-Kamp, P.: The quest for optimal sorting
networks: efficient generation of two-layer prefixes. CoRR, abs/1404.0948 (2014)

6. Codish, M., Cruz-Filipe, L., Schneider-Kamp, P.: Sorting networks: the end game.
CoRR, abs/1411.6408 (2014)

7. Coles, D.: Efficient filters for the simulated evolution of small sorting networks. In:
Soule, T., Moore, J.H. (eds.) Genetic and Evolutionary Computation Conference,
GECCO 2012, pp. 593–600. ACM, Philadelphia (2012)

8. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesly Professional, Reading (1998)

9. Lynce, I., Silva, J.P.M.: Probing-based preprocessing techniques for propositional
satisfiability. In: 15th IEEE International Conference on Tools with Artificial Intel-
ligence (ICTAI 2003), Sacramento, California, USA, 3–5 November 2003, p. 105.
IEEE Computer Society (2003)

10. Parberry, I.: A computer-assisted optimal depth lower bound for nine-input sorting
networks. Math. Syst. Theor. 24(2), 101–116 (1991)

11. Valsalam, V.K., Miikkulainen, R.: Using symmetry and evolutionary search to
minimize sorting networks. J. Mach. Learn. Res. 14, 303–331 (2013)

http://www.informatik.uni-kiel.de/~the/SortingNetworks.html
http://www.informatik.uni-kiel.de/~the/SortingNetworks.html

Nonexistence of Minimal Pairs in L[d]

Chengling Fang1, Jiang Liu2, Guohua Wu3(B), and Mars M. Yamaleev4

1 School of Science, Chongqing Jiaotong University, Chongqing, China
2 Chongqing Institute of Green Intelligent Technology,

Chinese Academy of Sciences, Chongqing, China
3 School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore
guohua@ntu.edu.sg

4 Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia

Abstract. For a d.c.e. set D with a d.c.e. approximation {Ds}s∈ω, the
Lachlan set of D is defined as L(D) = {s : ∃x ∈ Ds − Ds−1 and x �∈ D}.
For a d.c.e. degree d, L[d] is defined as the class of c.e. degrees of those
Lachlan sets of d.c.e. sets in d. In this paper, we prove that for any
proper d.c.e. degree d, no two elements in L[d] can form a minimal pair.
This result gives another solution to Ishmukhametov’s problem, which
asks whether for any proper d.c.e. degree d, L[d] always has a minimal
element. A negative answer to this question was first given by Fang, Wu
and Yamaleev in 2013.

1 Introduction

For a d.c.e. set D with a d.c.e. approximation {Ds}s∈ω, the Lachlan set of D
is defined as L(D) = {s : ∃x ∈ Ds − Ds−1 and x �∈ D}.1 Note that L(D) is

Fang is partially supported by NSF of China (No. 11401061), SRF for ROCS, SEM
and Chongqing Jiaotong University Fund (No. 2012kjc2-018).
Liu is partially supported by NSF of China (No. 61202131), the CAS western light
program, Chongqing Natural Science Foundation (No. cstc2014jcsfglyjs0005 and No.
cstc2014zktjccxyyB0031).
Wu is partially supported by a grant MOE2011-T2-1-071 (ARC 17/11, M45110030)
from Ministry of Education of Singapore and by a grant RG29/14, M4011274
from NTU.
Yamaleev is partially supported by The President grant of Russian Federation
(project NSh-941.2014.1), by Russian Foundation for Basic Research (projects 14-
01-31200, 15-01-08252), by the subsidy allocated to Kazan Federal University for the
project part of the state assignment in the sphere of scientific activities, and by a
grant MOE2011-T2-1-071 (ARC 17/11, M45110030) from Ministry of Education of
Singapore.

1 This definition is from Ishmukhametov’s articles [2] and [3]. Another definition of
the Lachlan set is L∗(D) = {〈x, s〉 : x ∈ Ds and x �∈ D}. It is easy to see that L(D)
defined by Ishmukhametov and L∗(D) above are Turing equivalent, and hence, make
no difference when we consider L[d], a collection of Turing degrees. In this paper,
we will use Ishmukhametov’s definition.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 177–185, 2015.
DOI: 10.1007/978-3-319-20028-6 18

178 F. Chengling et al.

a c.e. set with L(D) ≤T D and that D is c.e. in L(D). In [2], Ishmukhametov
showed that the Turing degree of L(D) doesn’t depend on the approximations
of D, and that for any X, L(D) ≤T X if and only if D ∈ ΣX

1 . In the same
work, Ishmukhametov considered the following class of c.e. predecessors of d.c.e.
degree d,

R[d] = {deg(W) : W is c.e. and there exists a D ∈ d such that D ∈ ΣW
1 },

and constructed a d.c.e. degree d such that R[d] has a minimum element. In [2],
Ishmukhametov asked whether R[d] can always have a minimal element, if d is
proper d.c.e. In [3], Ishmukhametov proved the existence of a d.c.e. degree such
that the corresponding Lachlan degrees have no minimum element.

Theorem 1. (Ishmukhametov [3]) There exists a proper d.c.e. degree d such that
for any d.c.e. set B ∈ d there exists a d.c.e. set A ∈ d such that L(B) �≤T L(A).

In [1], Fang, Wu and Yamaleev defined L[d] as the class of c.e. degrees of those
Lachlan sets of d.c.e. sets in d and also proved that R[d] = L[d]. After this,
Fang, Wu and Yamaleev constructed a proper d.c.e. degree d such that R[d] has
no minimal element, providing a negative answer to Ishmukhametov’s question.

Theorem 2. (Fang, Wu, and Yamaleev [1]) There exists a proper d.c.e. degree
d such that for any d.c.e. set B ∈ d there exists d.c.e. set A ∈ d such that
L(A) <T L(B).

In this paper, we will prove that in L[d], no two elements can form a minimal
pair, if d is proper d.c.e.

Theorem 3. If d is a d.c.e. degree then for any d.c.e. sets A,B ∈ d, there
exists a d.c.e. set D ∈ d such that L(D) ≤T L(A), L(B). In particular, if d is
proper d.c.e., then no two elements in L[d] can have infimum 0.

Combining Theorems 1 and 3, we can have an alternative proof of Theorem 2,
and hence another solution of Ishmukhametov’s question via Ishmukhametov’s
original attempt. Indeed, take d as constructed in Theorem 1, and assume that
B ∈ d is a d.c.e. set such that L(B) is a minimal element in L[d]. Then by Theo-
rem 1, there is a d.c.e. set A in d such that L(B) �≤T L(A). By Theorem 3, there
is a d.c.e. set D ∈ d such that L(D) ≤T L(A), L(B) and L(D) incomputable,
and hence L(D) <T L(B). A contradiction.

Our notation is standard and generally follows Soare’s textbook [4].

2 Basic Idea of the Construction

We now give some basic idea of the proof of Theorem 3. Let A,B be two d.c.e.
sets with A ≡T B, and let {As}s∈ω, {Bs}s∈ω be the d.c.e approximations of
A and B. We will construct a d.c.e. set D ≡T A (hence D ≡T B) such that
L(D) ≤T L(A), L(B). Assume that A = ΦB and B = ΨA and we will build

Nonexistence of Minimal Pairs in L[d] 179

partial computable functionals Γ,Δ such that A = ΓD and D = ΔA, and also
partial computable functionals Λ,Θ such that L(D) = ΛL(A) and L(D) = ΘL(B).

Construction of Γ and Δ. For each x, we reserve 2x and 2x+1 to code A in D
via a partial computable functional Γ . We define the γ-use γ(x) as γ(x) = 2x+1.

When ΓD(x) is defined and ΓD(x) �= A(x), then we enumerate 2x into D
(we can always do so, if it is the first time for A(x) to change, after ΓD(x) is first
defined), and redefine ΓD(x) = A(x). If A(x) changes again (the last change),
we can enumerate 2x + 1 into D, to undefine it, or remove 2x from D to recover
ΓD(x) (as 0). Of course, when we have ΓD(x) �= A(x) for the first time with
ΓD(x) = 1 �= 0 = A(x) (i.e. A(x) has its first change before ΓD(x) is defined),
then the enumeration of 2x into D will undefine ΓD(x) (we will then redefine it
as 0) and as A(x) will not change later, there is no possibility of removing 2x
out of D later, to rectify ΓD(x).

We also define Δ, to make D(2x) = ΔA(2x) and D(2x + 1) = ΔA(2x + 1)
with use δ(2x) = δ(2x + 1) = ψ(ϕ(x)). Of course, δ(2x) and δ(2x + 1) should
change accordingly, if A�ψ(ϕ(x)) changes (B�ϕ(x) may have changes and hence
ϕ(x) may be increased), and there will be no such change eventually, as ΦB(x)
and ΨA(ϕ(x)) are assumed to be convergent computations.

Removing 2x can also happen because of the definition of Δ. It can happen
that after the second change of A(x) (as indicated above, 2x is enumerated into
D, at stage s say, when A(x) has its first change), A�ψ(ϕ(x)) changes back to a
previous configuration, and hence, according to the definition of ΔA and to make
D(2x) = ΔA(2x), we need to keep D(2x) = 0, and such a removal of 2x from
D actually enumerates s, i.e., sD(2x), into L(D), this enumeration needs to get
permissions from L(A) and L(B).

Construction of Λ and Θ. We now describe the construction of Λ and Θ
which are built to make L(D) = ΛL(A) = ΘL(B).

Without loss of generality, we assume that x enters A after s0, the stage
when ΓD(x) is defined, and B changes below ϕ(x)[s0], say at a number y. If y
leaves B, then At�δ(2x)[s0] �= As0�δ(2x)[s0] for all t > sA(x), and 2x remains in
D forever. So, we assume that y enters B. Note that sA(x), sB(y) > s0 and that
we put 2x into D, with sD(2x) > sA(x), sB(y). We let s1 = sD(2x) and define
ΛL(A)(s1)[s1] = ΘL(B)(s1)[s1], with λ(s1)[s1] = θ(s1)[s1] = s1 (both are bigger
than sA(x) and sB(y), and it could happen that later, because of the changes of
L(A) and L(B), they can become different from each other).

If later x leaves A, say at stage s2, and As2�ψ(ϕ(x))[s0] = As0�ψ(ϕ(x))[s0],
then as ΔA(2x)[s2] = ΔA(2x)[s0] = 0, to make D(2x) = ΔA(2x), we need to
extract 2x from D, which means that we need permissions from both L(A) and
L(B). A permission from L(A) is just provided, because sA(x) is enumerated
into L(A) at stage s2. However, if y does not leave B before stage s2, then it
must happen at stage s2 since ΨA(y)[s2] = ΨA(y)[s0] = 0, and hence sB(y)
is enumerated into L(B) at this stage, undefining ΘL(B)(sD(2x)). Thus, as a
consequence, we can extract 2x out of D.

The case that y leaves B before stage s2 is a bit more complicated, as before
stage s2, we may already redefine ΘL(B)(sD(2x)), and at stage s2, we have

180 F. Chengling et al.

ΛL(A)(sD(2x)) undefined but ΘL(B)(sD(2x)) defined, and we could not extract
2x from D, and in this case, at stage s2, we put 2x + 1 into D, to code that x
leaves A.

Suppose that x leaves A at stage s2, also assume that B has changes below
ϕ(x)[s0] between stages s0 and s2. Then A has changes below ψ(ϕ(x))[s0]. We
can assume that some y′ enters B and that x′ enters A between s0 and s2.
Recall that at stage s2, we put 2x + 1 into D to code that x leaves A, and also
we redefine

δ(2x)[s2] = δ(2x + 1)[s2] = max
s0≤t≤s2

{ψ(ϕ(x))[t]}.

As sA(x) < s1 enters L(A), ΛL(A)(s1) is undefined at stage s2 and we can refine

λ(s1)[s2] = λ(s2)[s2] = s2.

Note that when y leaves B (before stage s2), ΘL(B)(s1) is undefined (as sB(y)
enters L(B)), and we would have already redefined ΘL(B)(s1) with

θ(s1)[s2] = θ(s2)[s2] = s′
1 > s1.

In particular, s2 > sA(x′) and that s′
1 > sB(y′). This kind of enumerations can

be repeated several times, and stop eventually because ΦB and ΨA are assumed
to be total. So, without loss of generality, we assume that x′, y′ are the last
numbers in this sequence.

Now suppose that at stage s3 > s2, As3�ψ(ϕ(x))[s0] = As0�ψ(ϕ(x))[s0],
which means that ΛA(2x) should be 0, and to make D = ΛA, we need to
extract 2x and 2x + 1 from D. Of course, if A�ψ(ϕ(x))[s0] does not recover
to As0�ψ(ϕ(x))[s0], then we can just leave 2x and 2x + 1 in D. To extract 2x
and 2x + 1 from D at stage s3, we must have permissions from L(A) and L(B),
to enumerate s1, s2 into L(D). Indeed, as x′ leaves A, sA(x′) ≤ s2 is enumer-
ated into L(A), which allows to correct ΛL(A) at both s1, s2. As B = ΨA, and
As3�ψ(ϕ(x))[s0] = As0�ψ(ϕ(x))[s0], B(y′)[s3] = B(y′)[s0] = 0, which means
that y′ also leaves B at stage s3, and hence sB(y′) < s′

1 enters L(B) at stage s3,
an L(B)-permission for s1 and s2.

3 Construction

First, we define expansionary stages for A = ΦB and B = ΨA in a standard way.
Namely, we define the length agreement as

�(s) = max{y < s : ∀x < y [ΦB(x)[s] ↓= A(x)[s] & ∀u < ϕs(x)(ΨA(u)[s] ↓= B(u)[s])]}.

A stage s is expansionary if s = 0 or �(s) > �(t) for all t < s.
We consider each stage of the form 4n as an expansionary stage, and we

call these stage working stages. By this convention, between two stages 4n and
4(n + 1), A and B can have many changes on numbers below 4n. We will use
4n to denote the n-th working stage. So between two working stages 4n and
4(n + 1), there are many stages of enumerations of A and B, and we assume

Nonexistence of Minimal Pairs in L[d] 181

that at each stage, there is at most one x and at most one y, such that A(x) and
B(y) change the value. We need this convention, as we need the definition of sA

and sB well-defined. We may interpret this idea as, after working stage 4n, after
stage 4n + 3, at a stage t, we check whether t is an expansionary stage, and if
yes, then t is the next working stage, i.e. 4(n + 1), and if no, then do nothing
and go to stage t + 1.

We use α(x) to denote the working stage s at which �(s) exceeds x for the
first time. We will ensure that at each stage, at most one number is enumerated
into D (actually, only at stages 4n+ 1, 4n+ 2, 4n+ 3), and thus each stage s, at
most one x enters D, and hence different x will have different sD(x). We clarify
this as we are constructing reductions Λ,Θ, reducing L(D) to L(A) and L(B)
respectively. We will call [4n, 4n + 3] the n-th working block.

Working Block [0, 3]

Let D0 = ∅, and initiate all the functionals being constructed.

Working Block [4s, 4s + 3]

Stage 4s. Stage 4s is an expansionary stage and at this stage, A and B may
have many changes below 4s.

1. Let x1 < �(4s) be the least number being enumerated into A at stage 4s,
if any.

2. Let x2 < �(4s) be the least number being removed from A at stage 4s, if any.
3. Check whether there exist some z < s with D(2z)[4s] = 1 and ΔA(2z)[4s] = 0,

if any.

Go to next stage.

Stage 4s + 1. Check whether ΓD(x1)[4s] is defined or not. If ΓD(x1)[4s] is
defined, then enumerate 2x1 into D. Otherwise do nothing.

(Thus 4s+1 is defined as sD(2x1). The enumeration of 2x1 undefines ΓD(x1),
so we can redefined it as 1 later. It can happen that there are x′ with x1 < x′ <
�(4s) that enters A at stage 4s, and the enumeration of 2x1 into D at stage 4s+1
also undefines ΓD(x′). We may remove 2x1 from D later, at some stage 4s′ + 2
say, then at the same stage, we need to enumerate 2x′ into D, to make sure that
ΓD(x′) does not recover to ΓD(x′)[4s]. Because of this, we call x1 the support of
those numbers x′ ≥ x1, which are also enumerated into A at stage 4s.)

Go to next stage.

Stage 4s+ 2. Check whether 2x2 has been enumerated into D before stage 4s.
If not, then enumerate 2x2 into D to undefine ΓD(x2). (4s + 2 is defined as

sD(2x2). In this case, when we redefine ΓD(x2) after stage 4s+2, we will define
ΓD(x2) as 0, and as A is d.c.e., A(x2) will not have further changes. Thus, 2x2

will remain in D and sD(2x2) cannot be enumerated into L(D).)

182 F. Chengling et al.

If 2x2 has been enumerated into D before stage 4s, then we check whether
there is a working stage t with α(x2) < t < sA(x2) < 4s such that

A[4s]�δ(2x2)[t] = A[t]�δ(2x2)[t].

Here α(x2) is the first working stage s0 at which �(s0) > x2.

– If there is such a t, then remove 2x2 from D. We also check whether there is
some x′ with x2 as a support, and x′ is still in A[4s]. If such an x′ exists, then
we choose x′ as the least one, and enumerate 2x′ into D. For those numbers
with x2 as support before, we now use x′ as their support.

(4s+2 is defined as sD(2x′). As 2x2 is removed from D, sD(2x2) is enumer-
ated into L(D). Note that the enumeration of sD(2x2) into L(D) is permitted
by L(A) and L(B), by simple argument.)

– If there is no such a working stage t, then enumerate 2x2 + 1 into D (hence
ΓD(x2) is undefined, and also note that both ΔA(2x2) and ΔA(2x2 + 1) are
undefined at this stage, because of our assumption and that x2 leaves A, and
this allows us to enumerate 2x2 + 1 into D).

Go to next stage.

Stage 4s + 3. Remove all these 2z out of D, together with 2z + 1, if the
associated 2z + 1 is also in D. Let x3 be the least number that has one of these
z as its support. Enumerate 2x3 into D.

(These numbers 2z (also 2z + 1, if in D already) have to be removed from D,
as we need to keep D = ΔA.)

Extending Definitions of Γ,Δ,Λ,Θ:

Γ : Find the least x such that ΓD(x)[4s + 3] is not defined, and define ΓD(x) =
A(x)[4s + 3] with use γ(x) = 2x + 1.

Δ: Find the least x such that ΔD(2x)[4s + 3] is not defined, and define
ΔA(2x)[4s+3] = D(2x)[4s+3], ΔA(2x+1)[4s+3] = D(2x+1)[4s+3], with
use δ(2x)[4s + 3] = δ(2x + 1)[4s + 3] = ψ(ϕ(x))[4s + 3].

Λ: Find the least k such that ΛL(A)(k)[4s+3] is not defined yet. If k is a stage at
which no number is enumerated into D, then define ΛL(A)(k) = 0, with use
λ(k) = λ(k − 1)[4s+ 3]. If a number n is enumerated into D at stage k, then
define ΛL(A)(k) = L(D)(k)[4s+3], with use λ(k) = 4s+3, if ΛL(A)(k) has not
been defined before, or with use λ(k) = s′, where s′ is the last working stage
at which some number x′ < ψ(ϕ(n))[s′′] leaves A, where s′′ is the previous
use of λ(k).

Θ: Find the least k such that ΘL(B)(k)[4s+3] is not defined yet. If k is a stage at
which no number is enumerated into D, then define ΘL(B)(k) = 0, with use
θ(k) = θ(k − 1)[4s+ 3]. If a number n is enumerated into D at stage k, then
define ΘL(B)(k) = L(D)(k)[4s + 3], with use θ(k) = 4s + 3, if ΘL(B)(k) has
not been defined before, or with use θ(k) = s′, where s′ is the last working
stage at which some number y′ < ϕ(n)[s′′] leaves B, where s′′ is the previous
use of θ(k).

This completes the work of block [4s, 4s + 3]. Go to the next block.

Nonexistence of Minimal Pairs in L[d] 183

4 Verification

We now prove that the constructed set D, and that all the p.c. functionals
Γ,Δ,Λ,Θ, satisfy all the requirements. Obviously, α is total.

Lemma 1. ΓD is well-defined and total, and ΓD = A.

Proof. Fix x. By the construction, γ(x) is kept as 2x + 1, and hence ΓD(x) is
undefined, only when some x′ ≤ x enters A or leaves A, which can happen only
finitely many times. Also we enumerate 2x or 2x + 1 into D, only when (or
after) x enter A or leaves A. When 2x (maybe together with 2x + 1) is removed
from D, x already left A, and removing 2x from D recovers ΓD(x) to a previous
computation, i.e. a computation with value 0, and hence we have ΓD(x) = A(x).
This shows that ΓD(x) is defined and equals to A(x).

This proves that ΓD = A.

Lemma 2. ΔA is well-defined and total, and ΔA = D.

Proof. Fix x. By construction, δ(2x) and δ(2x + 1) depend on the use ψ(ϕ(x)).
By our assumption on A = ΦB and B = ΨA, ΦB and ΨA are both total, and
hence ϕ(x) and ψ(u) for all u ≤ ϕ(x) settle down after a big stage. As we only
define ΔA(2x) and ΔA(2x+1) at a working stage t, when they have no definition
at this stage. It can happen that ΔA(2x)[t′] or ΔA(2x+1)[t′], with t′ < t, become
valid, after stage t above, at a working stage t′′ say, i.e.

At′′�δ(2x)[t′] = At′�δ(2x)[t′],

then ΔA(2x)[t′′] and ΔA(2x)[t′] are actually the same, which means some num-
ber m < δ(2x)[t′] leaves A between stage t and stage t′′, and hence ΔA(2x)[t]
become invalid automatically, as A and A[t] can never agree on the initial seg-
ment At�δ(2x)[t′] after stage t′′. This shows that ΔA(2x) and ΔA(2x + 1) are
both well-defined.

We now prove that ΔA(2x) = D(2x).
If x never enters A, then 2x never enters D, which means that whenever

ΔA(2x) is defined, it is defined as 0. So we assume that x enters A, at a working
stage 4s say. Then ΔA(2x) is undefined, because of this enumeration. If at this
stage, 2x is enumerated into D immediately, then we can redefine ΔA(2x) as 1. It
can also happen that at this stage, a number n (even, or odd) is enumerated into
D, and this n is a support of x. Note that such a support can have changes, due
to the changes of A, and it could be possible that before x becomes a support of
itself, x already leaves A, and if so, whenever we define ΔA(2x), we just defined
as 0. If x becomes a support of itself, eventually, at a working stage s′ say, then at
this stage, ΔA(2x) should have no definition, and we can enumerate 2x into D.
It is actually true, because when x enters A, ΔA(2x) is undefined by x < δ(2x),
and then at any stage, when x has a new support, the previous support of x
leaves and the new support is still less than x, and these changes, as they are all
less than x, actually undefine ΔA(2x). Thus, at stage s′, ΔA(2x) is not defined,
and we are allowed to enumerate 2x into D and redefine ΔA(2x) as 1.

184 F. Chengling et al.

Now, again because of A-changes, at a working stage s′′ > s′, ΔA(2x) could
recover to a computation before stage s′, and hence ΔA(2x)[s′′] = 0. If it hap-
pens, then, by construction, 2x will be removed out of D at stage s′′. We note that
at stage s′′, ΔA(2x) is actually recovered to a computation before 4s, because
at any stage between 4s and s′, some number less than x, i.e., x’s support is in
A, and by stage s′, all these numbers are not in A anymore. This means that at
stage s′′, x is not in A neither, and hence the removal of 2x from D is consistent
with the definition of ΔA.

We comment here that after stage s′′, ΔA(2x) cannot come back to a com-
putation between 4s and s′′, because x leaves A, and also some other numbers
(at stage s′′, all these numbers should already leave A), and as A is d.c.e., these
numbers will leave A forever, and hence ensure that ΔA(2x) cannot come back
to a computation between 4s and s′′, which, if true, could require to enumerate
2x into D again.

Now we consider ΔA(2x + 1) = D(2x + 1). Without loss of generality, we
assume that 2x+1 is enumerated into D at a working stage s′. Then by construc-
tion, we know that by stage s′, x is already a support of itself, and x leaves A by
this stage. Because 2x is not removed from A, we know ΔA(2x) does not recover
to any computation before x enters A. That is, before x leaves A, some number
z less than ψ(ϕ(x)) enters or leaves A. This change allows us to enumerate 2x+1
into D, which is consistent with the definition of ΔA.

If z leaves A, then ΔA(2x) can never recover to any computation of it before x
enters A, and 2x, 2x+1 will remain in D forever. That is, after stage s′, whenever
we define ΔA(2x), ΔA(2x + 1) again, we just define it as D(2x),D(2x + 1), we
just let

ΔA(2x) = D(2x), ΔA(2x + 1) = D(2x + 1),

with use ψ(ϕ(x)). This ensures ΔA(2x + 1) = D(2x + 1).
If z enters A, and stays in A, then just as discussed above, we can define

ΔA(2x) = D(2x), ΔA(2x + 1) = D(2x + 1), with use ψ(ϕ(x)). This ensures
ΔA(2x + 1) = D(2x + 1).

So we assume that z enters A first and later leaves A, and also that at
stage s′′, ΔA(2x) recovers to a previous computation, before x enters A. Then,
by construction, 2x, 2x + 1 are removed from D. We have seen why 2x can be
removed, and for 2x + 1, we know that at stage s′, z enters A, allowing us to
enumerate 2x+1 into D, and when we define ΔA(2x+1) again, δ(2x+1) is bigger
than this z. Thus, when z leaves A, ΔA(2x + 1) is undefined, and especially, at
stage s′′, ΔA(2x + 1) is not defined as 1, and hence we can remove 2x + 1 out of
D. Again, as discussed for ΔA(2x), ΔA(2x+1) will not recover to a computation
between s′ and s′′, and will not require D(2x + 1) = 1 in the remainder of the
construction.

This completes the proof that ΔD is well-defined and computes A correctly.

Lemma 3. ΛL(A) is well-defined and L(D) = ΛL(A).

Proof. Fix s. Here we consider that s is a general stage, not necessary to be
working stage.

Nonexistence of Minimal Pairs in L[d] 185

If at stage s, no number is enumerated into D, then we always define ΛL(A)(s)
as 0, with use λ(s) the same as λ(s − 1). Thus, if ΛL(A)(s − 1) is defined, then
so is ΛL(A)(s), with value 0. This gives that ΛL(A)(s) = L(D)(s), as s can never
enter L(D).

So we assume that a number 2x is enumerated into D at stage s, i.e. sD(2x) =
s. The case that an odd number enters D at stage s can be argued in a similar
way, and we leave it to the reader to verify this.

Note that 2x is put into D at stage s, x is already in A, and assume that x
enters A at stage sA(x).

We first consider the case when x enters A at stage s. As we also assume that
2x also enters D at stage s, x is the support of itself. When we define ΛL(A)(s),
we define it as 0 with use λ(s) = s. This use will be kept the same, till s enters
L(A) (i.e. x leaves A) at stage s′ say. (So, if x remains in A, then such a stage
s′ does not exist, ΛL(A)(s) will have value 0, which equals to L(D)(s).) Then,
at stage s′, ΛL(A)(s) is undefined, and also at (perhaps before) stage s′, we do
have numbers x′ < ψ(ϕ(x))[s] entering A (if some number enters A before stage
s and leaves A at stage s′, 2x will be kept in D forever, by the construction),
and when we redefine ΛL(A)(s), we define it as 0, with use λ(s) = s′. Again, the
construction ensures that 2x will be in D, until x′ leaves A, at stage s′′, which
means that sA(x′) enters L(A) at stage s′′, undefining ΛL(A)(s). Of course, if 2x
is not removed from D at stage s′′, then another number x′′ < ψ(ϕ(x))[s] enters
A by stage s′′ and thus, when we redefine ΛL(A)(s), we define it as 0, with use
λ(s) = s′′. As ψ(ϕ(x))[s] is fixed, such a process can be repeated at most finitely
many times, and will stop after a certain stage big enough, s∗. Thus, by stage
s∗, either s is already in L(D), or s will never be enumerated into L(D). This
again gives that ΛL(A)(s) is defined and equals to L(D)(s).

Now consider the case that sA(x) < s. Then after stage s, when we check
the change below use, the use is ψ(ϕ(x))[sA(x)], as those computations between
stage sA(x) and stage s can never be recovered after stage s. An almost same
argument shows that ΛL(A)(s) is defined and equals to L(D)(s).

Lemma 4. ΘL(B) is well-defined and L(D) = ΘL(B).

Proof. The basic idea of the proof is similar to that in the proof of Lemma 3,
but here we consider the changes of B below the use ϕ(x).

This completes the proof of Theorem 3.

References

1. Fang, C.L., Wu, G., Yamaleev, M.M.: On a problem of Ishmuhkametov. Arch.
Math. Logic 52, 733–741 (2013)

2. Ishmukhametov, S.: On the predececcors of d.r.e. degrees. Arch. Math. Logic 38,
373–386 (1999)

3. Ishmukhametov, S.: On relative enumerability of turing degrees. Arch. Math. Logic
39, 145–154 (2000)

4. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

Intuitionistic Provability versus Uniform
Provability in RCA

Makoto Fujiwara(B)

Mathematical Institute, Tohoku University, Tohoku, Japan
sb0m29@math.tohoku.ac.jp

Abstract. We provide an exact formalization of uniform provability in
RCA and show that for any Π1

2 sentence of some syntactical form, it is
intuitionistically provable if and only if it is uniformly provable in RCA.

Keywords: Reverse mathematics · Constructive mathematics · Com-
putable analysis · Medvedev reducibility

1 Introduction

In the practice of reverse mathematics [15], a lot of mathematical theorems are
formalized as Π1

2 sentences of a form

∀ξ (A(ξ) → ∃ζB(ξ, ζ))

(where ξ and ζ may be tuples), and known to be provable in RCA0. However,
in some cases, the construction of the witness ζ from a instance ξ is not uni-
form. Let’s consider the case of well-known intermediate value theorem: if f is
a continuous function on the unit interval 0 ≤ x ≤ 1 such that f(0) < 0 < f(1),
then there exist x ∈ (0, 1) such that f(x) = 0. In fact, it is provable in RCA0

as follows (see [15, Theorem II.6.6] for details). If there exists x ∈ Q such that
0 < x < 1 and f(x) = 0, we are done. Otherwise, one can construct x ∈ (0, 1)
by the method of nested intervals (and the construction is verified) in RCA0.
In this proof, the construction of the intermediate point x from f is depends
on whether there is a rational intermediate point (although the construction is
trivial if there is). To reveal such a non-uniformity, sequential versions of Π1

2

statements, which assert to solve infinitely many instances of a particular prob-
lem simultaneously, have been investigated. In fact, the sequential version of
intermediate value theorem is equivalent to WKL over RCA0, and hence it is not
provable even in RCA (RCA0+full second-order induction scheme). Consequently,
it follows that there is no uniform algorithm to construct an intermediate point
x from an arbitrary given continuous function f on the unit interval 0 ≤ x ≤ 1
such that f(0) < 0 < f(1). The reason why the above proof in RCA0 does not
work is that one needs to decide in RCA whether there exists a rational inter-
mediate point or not for each problem simultaneously (than just a use of the

M. Fujiwara—The author is supported by a Grant-in-Aid for JSPS fellows.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 186–195, 2015.
DOI: 10.1007/978-3-319-20028-6 19

Intuitionistic Provability versus Uniform Provability in RCA 187

law-of-excluded-middle) in the sequentialized case. However, it is not possible in
RCA having only Δ0

1 (≈ computable) set existence scheme. As suggested by this
example, uniform provability in RCA (in the presented sense) is closely related
to the notions of uniform computability (in the sense of Medvedev reducibility)
and constructivity.

Systems of many-sorted arithmetic based on intuitionistic logic serves as
base theory formalizing constructive mathematics [18]. Historically constructive
mathematics has been developed informally in contrast to formalist foundation
of mathematics. Along with the development of reverse mathematics and the
discovery of the arithmetical hierarchy of the law-of-excluded-middle principles,
however, so-called constructive reverse mathematics [11], which investigates the
relationship between mathematical statements and logical principles over an
intuitionistic arithmetic, has been carried out in this decade.

In fact, there are several corresponding results between constructive reverse
mathematics and classical reverse mathematics of sequential versions. For exam-
ple, the principle of trichotomy for reals is intuitionistically equivalent to
Σ0

1-PEM whereas its sequential version is equivalent to ACA [5]. On the other
hand, the principle of dichotomy for reals is intuitionistically equivalent to Σ0

1-
DML whereas its sequential version is equivalent to WKL [5]. More directly, ACA
and WKL are intuitionistically equivalent to Σ0

1-PEM and Σ0
1-DML respectively

in the presence of choice scheme [11]. Based on these facts, in this paper, we pay
strict attention to and analyze the connection between intuitionistic provability
and uniform provability in RCA for Π1

2 statements. In particular, we first provide
an exact formalization of uniform provability in RCA and show that for any Π1

2

sentence of some syntactical form (rich enough), it is intuitionistically provable
if and only if it is uniformly provable in RCA. The direction from left to right
is shown by formalized realizability with functions (or the Dialectica interpre-
tation). In fact, this direction is just a refinement of [4, Proposition 3.7] (or [9,
Theorem 5.6]). Our main contribution is the converse direction, which is shown
by means of the negative translation (and the Dialectica interpretation).

From a philosophical point of view, it is remarkable that all of our proofs
are constructive, namely, they are just syntactic translations. Thus we construc-
tively (from a meta-perspective) establish the equivalence between constructive
provability and classical uniform provability.

Notations. EL is the two-sorted intuitionistic arithmetic (called “intuitionistic
analysis”) in [16, 1.9.10], which is a conservative extension of Heyting arith-
metic HA. EL0 is its fragment where induction scheme is restricted to quantifier-
free formulas (see [4]). Note that EL and EL0 contain the quantifier-free choice
scheme QF-AC0,0. The most popular base system RCA0 of reverse mathematics,
presented in [15], and its extension RCA having full induction scheme use the
set-based language (namely, has variables for numbers and sets of numbers) with
the membership relation symbol. On the other hand, the systems EL0 and EL use
the function-based language. However, as mentioned in [9] (see also [13]), one can
identify EL0+LEM with RCA0 and EL+LEM with RCA respectively in the sense
that each is included in a canonical definitional extension of the other. In fact,

188 M. Fujiwara

one can see sets in RCA0 as their characteristic functions in EL0 +LEM and con-
versely see functions in EL0 +LEM as their graphs in RCA0. Therefore, we write
RCA0 and RCA instead of EL0 + LEM and EL + LEM under this identification.
We basically use Roman small letters e.g. x, y, z for number (type-0) variables
and Greek lower case letters e.g. α, β, ξ, ζ for function (type-1) variables. In addi-
tion, we sometimes represent the type of a variable by its superscript number.
A quantifier-free formula is denoted like Aqf with the subscript “qf”.

In addition, we use systems of finite type arithmetic (e.g. E-HAω, E-PAω)
formulated in the language of functionals in all finite types. We employ the
notations from [14] for finite type arithmetic. Note that the superscripts on
quantified variables indicate their types. We recall that a type-0 functional is a
natural number, a type-1 (= 0(0)) functional is a function from natural num-
bers to natural numbers, and a type-1(1) functional is a functional from type 1
functionals to type 1 functionals. E-HAω (resp. E-PAω) is the intuitionistic (resp.
classical) arithmetic in all finite types with full extensionality and WE-HAω is
its weak extensional variant. Note that E-HAω is a conservative extension of HA
and EL. ̂E-HA

ω
� (resp. ̂E-PA

ω
�) is Feferman’s restriction of E-HAω (resp. E-PAω)

to primitive recursion of type 0 and quantifier-free induction. See [14, Chapter
3] for details.

2 Results

Consider a Π1
2 sentence ∀ξ(A(ξ) → ∃ζB(ξ, ζ)). In terms of computability the-

ory, its provability in RCA corresponds to Muchnik reducibility, namely, the fact
that for all ξ satisfying A(ξ), there is an algorithm Φ which computes ζ satisfy-
ing B(ξ, ζ) with the use of ξ as oracle. On the other hand, what one intends to
represent by its sequential provability in RCA is that there is an (uniform) algo-
rithm Φ such that for all ξ satisfying A(ξ), Φ computes ζ satisfying B(ξ, ζ) with
the use of ξ as oracle, which corresponds to Medvedev reducibility. We consider
the exact formalization of this notion in terms of reverse mathematics, and call
that “uniform provability in RCA”.

Definition 1 (Partially defined application operations, e.g. [16,17]). For
α, β : N → N,

α(β): =
{

α(β̄n) − 1 where n is the least n′ such that α(β̄n′) �= 0,
↑ if there is no such n′,

where β̄n′ denotes the (code of) finite sequence 〈β(0), . . . , β(n′ − 1)〉. Then
α |β: = λn. α(〈n〉�β).

Definition 2 ([9]). RCAω is the finite type system defined as E-PAω+QF-AC1,0.
Note that RCAω is a conservative extension of RCA [9, Theorem 2.8].

As indicated in [4], the provability of sequential versions in RCA seems not to
fully represent uniform provability in RCA. In addition, the provability of uniform

Intuitionistic Provability versus Uniform Provability in RCA 189

versions in RCAω also seems not to be an “exact” formalization because it suffices
for the provability of uniform versions ∃Φ∀ξ

(
A(ξ) → B(ξ, Φ(ξ))

)
in RCAω to

derive contradiction from the non-existence of Φ rather than the existence of Φ.
Using the above notions, we propose the two candidates of the formalization of
uniform provability in RCA:

1. There exists a (primitive recursive) closed term t1 of RCA such that

RCA � ∀ξ (A(ξ) → t | ξ ↓ ∧B(ξ, t | ξ)) .

2. There exists a (Gödel primitive recursive) closed term t1(1) of RCAω such that

RCAω � ∀ξ (A(ξ) → B(ξ, t(ξ))) .

In fact, as we show below, these two uniform provability in RCA are equivalent
if A is purely universal and B is not so complicated.

On a technical note, thanks to the term existence, the syntactical complexity
of the sentence in question is reduced enough to guarantee that the negative trans-
lation works (see the proof of Proposition 14). In fact, the proof of Proposition 14
does not work if we interpret uniform provability in RCA by sequential or uniform
version.

Definition 3. NKM is the class of formulas defined inductively as;

– Aqf and ∃xρAqf are in NKM, where ρ ∈ {0, 1}.
– If A1, A2 are in NKM, then A1 ∧ A2, ∀xρA1 are in NKM, where ρ ∈ {0, 1}.
– If A is in NKM, then ∀uρ∃v0Aqf → A is in NKM, where ρ ∈ {0, 1}.
Theorem 4. Let ∀ξ (A(ξ) → ∃ζB(ξ, ζ)) be a L(EL)-sentence where A(ξ) ∈ NKM

and B(ξ, ζ) is equivalent to ∀wρ∃s0Bqf (ξ, ζ, w, s) (ρ ∈ {0, 1}) over EL + MP,
where MP is Markov’s principle:

∀α(¬¬∃x(α(x) = 0) → ∃x(α(x) = 0)).

Then there exists a function term t of RCA such that

RCA � ∀ξ (A(ξ) → t | ξ ↓ ∧ B(ξ, t | ξ))
if and only if

EL + MP � ∀ξ (A(ξ) → ∃ζB(ξ, ζ)).

The corresponding result also holds for RCA0 and EL0 instead of RCA and EL.

Proof. By Lemma 15, this follows immediately from Proposition 9 (note that MP
is in CN) and Proposition 14. The result for fragments is due to Remark 20. ��
Remark 5. The Markov’s principle MP is not derivable in EL. However, MP is
allowed in Markov-style constructive mathematics (see e.g. [3,18] for details).1

1 Troelstra considers HA + ECT0(extended Church’s thesis)+MPPR(the fragment of
MP only for primitive recursive α) to be a formalization of Markov-style constructive
mathematics [18, 4.4.12].

190 M. Fujiwara

Remark 6. A lot of mathematical statements have been investigated in com-
putable analysis [19]. For a theorem S represented as a Π1

2 sentence ∀ξ(A(ξ) →
∃ζB(ξ, ζ)), the fact that S is provable in computable analysis (in the sense of
[1,2,19]) roughly means that there is a computational program which computes ζ
from ξ. This is conceptually the same as intended notion expressed by its sequen-
tial provability in RCA. However, there is a crucial difference between provability
in computable analysis and uniform provability in RCA. In the former case, the
verification that the program works is carried out in the usual mathematical
manner. On the other hand, in the latter case, the verification has to be carried
out in the restricted mathematical universe having only the Δ0

1 (≈computable)
set existence axiom. In this sense, uniform provability in RCA is more restrictive
than provability in computable analysis.2 On the other hand, the choice of EL
as a theory formalizing constructive mathematics is based on considering the
meaning of “constructive” as the existence of computational program.3 Under
this interpretation, the provability of S in EL indicates that there is a program
which computes ζ from ξ, and in addition, the verification is carried out in a
uniformly computable manner. In this sense, provability in EL is seemingly fur-
ther restrictive than uniform provability in RCA. However, Theorem 4 states
that constructive provability is equivalent to uniform provability of in RCA at
least for ‘practical’ Π1

2 sentences because the syntactical class which our results
cover is rich enough to involve most of statements studied in reverse mathemat-
ics (under the standard representation). In addition, as we show in Theorem 7
below, even the Markov’s principle can be reduced for simpler statements.

Theorem 7. Let ∀ξ (A(ξ) → ∃ζB(ξ, ζ)) be a L(EL)-sentence where A(ξ) is
purely universal (i.e., of the form ∀uAqf (ξ, u)) and B(ξ, ζ) is equivalent to
∀wρ∃s0Bqf (ξ, ζ, w, s) (ρ ∈ {0, 1}) over EL+MP. Then the following are pairwise
equivalent.

1. EL � ∀ξ (A(ξ) → ∃ζB(ξ, ζ)).
2. There exists a function term t of RCA such that RCA � ∀ξ(A(ξ) → t | ξ ↓

∧ B(ξ, t | ξ)).
3. There exists a term t1(1) of RCAω such that RCAω � ∀ξ(A(ξ) → B(ξ, tξ))

under the canonical embedding.

The corresponding result also holds for EL0, RCA0 and RCAω
0 (: = ̂E-PA

ω
� +

QF-AC1,0) instead of EL, RCA and RCAω.

Proof. The equivalence between (1) and (2) follows from Propositions 9 and 18.
On the other hand, (1) is equivalent to (3) by Proposition 19. The result for
fragments is due to Remark 20. ��
Remark 8. 1. The equivalence of (2) and (3) in Theorem 7 reveals that rep-

resentation of uniform provability by the continuous operator (·) | (·) and
2 The exhaustive comparison between these two is in [6].
3 Troelstra [17] indicates some analogy between Weihrauch’s computable analysis and

constructive mathematics.

Intuitionistic Provability versus Uniform Provability in RCA 191

representation by primitive recursive functional in the sense of Gödel are
equivalent for a lot of practical statements in reverse mathematics.

2. The related result to the equivalence of (2) and (3) in Theorem 7 for the
fragments can be found in [12, Sect. 4], where the relation between the con-
tinuous notion in finite type arithmetic and the continuous notion by means
of the operation (·) | (·) has been investigated with respect to higher-order
reverse mathematics.

3. The class of type-1(1) functional terms of RCAω
0 (containing only type-0

recursor R0) is proper subclass of type-1(1) functional terms of RCAω (pos-
sibly containing higher type recursors) while the class of function terms of
RCA0 is same as RCA.

Application. For example, by a careful inspection, one can see that Kierstead’s
effective variant of marriage theorem [10] (see also [8]) is formalized as a Π1

2

sentence whose premise and conclusion are equivalent to some purely univer-
sal formulas over EL0 + MP respectively. In addition, as indicated in [8], it
is uniformly provable in RCA0 (in particular, the verification of the solution-
constructing algorithm is carried out in RCA0). Therefore, by Theorem 7, it
follows that Kierstead’s effective marriage theorem is provable in EL0.

Future Work. The author feels that there are at least three possible extensions
of this work. One is the attempt to characterize the hierarchy of relativized
uniform provability with respect to WKL and ACA by the hierarchy of the
law-of-excluded-middle over EL (cf. Sect. 1). Another one is the characterization
of uniform provability in stronger systems (like ACA) by (semi-)intuitionistic
systems, where the aim is the characterization of computable analysis by con-
structive mathematics (cf. Remark 6 as well as [17]). The last one is to compare
formalized Markov-style constructive mathematics with uniform provability in
RCA (cf. Remark 5).

3 Proofs

The following is a refinement of Dorais’ result [4, Proposition 3.7] with extracting
a witness term, which is based on Kleene’s realizability with functions (see [16,
Sect. 3.3]). The proof is straightforward by a careful inspection of the proof of
[4, Proposition 3.7].4

Proposition 9. Let CN be the set of almost negative sentences ϕ such that
RCA � ϕ and GC be the generalized continuity principle (see [4] for the precise
definitions). If

EL + GC + CN � ∀ξ (A(ξ) → ∃ζB(ξ, ζ)) ,

where A(ξ) is almost negative and B(ξ, ζ) is in ΓK (see [4]), then there exists a
function term t of RCA such that

RCA � ∀ξ (A(ξ) → t | ξ ↓ ∧ B(ξ, t | ξ)) .

4 The detailed proof is in author’s phD thesis [7].

192 M. Fujiwara

For the converse direction, we use the well-known negative translation.

Definition 10 (Kuroda’s negative translation, see [14]). Aq is defined as
Aq :≡ ¬¬A∗, where A∗ is defined by induction on the logical structure of A:

– A∗ :≡ A, if A is a prime formula,
– (A�B)∗ :≡ (A∗�B∗), where � ∈ {∧,∨,→},
– (∃xρA)∗ :≡ ∃xρA∗,
– (∀xρA)∗ :≡ ∀xρ¬¬A∗.

Lemma 11. If RCA � A, then EL + MP � Aq.

Proof. The proof is straightforward by induction on the length of the derivation
as for [14, Proposition 10.3 (ii)]. Note that MP is used only to derive

(
QF-AC0,0

)q

intuitionistically from QF-AC0,0 (see [14, Proposition 10.6]). ��
Definition 12. NM is the class of formulas defined inductively as;

– Aqf is in NM.
– If A1, A2 are in NM, then A1 ∧ A2, A1 ∨ A2, ∀xρA1, ∃xρA1 are in NM, where

ρ ∈ {0, 1}.
– If A is in NM, then ∀uρ∃v0Aqf → A is in NM, where ρ ∈ {0, 1}.
Lemma 13. For any formula A ∈ NM, EL + MP � A → A∗.

Proof. The proof is by induction on the structure of NM. For quantifier-free
Aqf , this is trivial. Suppose that A1, A2 ∈ NM derivable in EL + MP. Then it is
straightforward to see that (A1 ∧ A2)

∗, (A1 ∨ A2)
∗, (∀xρA1)

∗ and (∃xρA1)
∗ is

derivable in EL+ MP, where ρ ∈ {0, 1}. For the case of ∀uρ∃v0Aqf → A1, using
MP and the induction hypothesis, one can see that ∀uρ∃v0Aqf → A1 implies
∀uρ¬¬∃v0Aqf → A1

∗, which is identical with
(∀uρ∃v0Aqf → A1

)∗. ��
Proposition 14. Assume that A(ξ) ∈ NM and that B(ξ, ζ) is equivalent to
∀wρ∃s0Bqf (ξ, ζ, w, s) (ρ ∈ {0, 1}) over EL+ MP. If there exists a function term
t of RCA such that

RCA � ∀ξ (A(ξ) → t | ξ ↓ ∧ B(ξ, t | ξ)) ,

then
EL + MP � ∀ξ (A(ξ) → ∃ζB(ξ, ζ)) .

Proof. Suppose RCA � ∀ξ
(
A(ξ) → t | ξ ↓ ∧ ∀wρ∃s0Bqf (ξ, t | ξ, w, s)

)
. Expressed

more precisely, it asserts that RCA proves (
):

∀ξ

⎛
⎝A(ξ) → ∀n∃m(t(〈n〉�ξm) > 0)∧

∀γ1

(∀n∃m
(
t(〈n〉�ξm) = γ(n) + 1 ∧ ∀m′ < m(t(〈n〉�ξm′) = 0)

)
→ ∀w∃sBqf (ξ, γ, w, s)

)⎞
⎠ .

By Lemma 11 and standard intuitionistic equivalences, it follows that EL+ MP
proves

Intuitionistic Provability versus Uniform Provability in RCA 193

∀ξ

⎛
⎝A∗(ξ) → ∀n¬¬∃m(t(〈n〉�ξm) > 0)∧

∀γ

(∀n¬¬∃m
(
t(〈n〉�ξm) = γ(n) + 1 ∧ ∀m′ < m(t(〈n〉�ξm′) = 0)

)
→ ∀w¬¬∃sBqf (ξ, γ, w, s)

)⎞
⎠ .

Therefore, using MP and Lemma 13, we have

EL + MP � (
). (1)

In the following, we reason in EL + MP. For ξ satisfying A(ξ), by (1) with
the use of QF-AC0,0, we have g1 such that t(〈n〉�ξ(g(n))) > 0 and ∀m′ <
m(t(〈n〉�ξm′) = 0) for all n. Then ζ: = λn.t(〈n〉�ξ(g(n)))−̇1 satisfies the con-
dition in (
). Thus EL + MP proves ∀ξ (A(ξ) → ∃ζ∀w∃sBqf (ξ, ζ, w, s)). ��
Lemma 15. NKM ⊂ NK ∩ NM, where NK is the class of almost negative formu-
las (see [4]).

Proof. Straightforward by induction on the construction of NKM. ��
The next proposition is a refinement of Hirst and Mummert’s result [9, Theo-
rem5.6] in the most useful form for our purpose. In the following, AC is the full
axiom of choice, IPω

∀ is the independence of premise for universal formulas and
Mω is the Markov principle in all finite types (see [9] for the precise definitions).

Proposition 16. For a sentence ∀xρ(A(x) → ∃yτB(x, y)) of L(WE-HAω) where
A(x) is purely universal and B(x, y) is in Γ2 (see [9]), if

WE-HAω + AC + IPω
∀ + Mω � ∀xρ(A(x) → ∃yτB(x, y)),

then there exists a term tτ(ρ) of WE-HAω such that

WE-HAω � ∀xρ(A(x) → B(x, t(x))).

Proof. By using IPω
∀ , we have that ∀x∃y (A(x) → B(x, y)) is provable in WE-HAω

+AC + IPω
∀ + Mω. Let A(x) :≡ ∀uAqf (x, u). Note that ∀x∃y(∀uAqf (x, u) →

B(x, y)) is in Γ2 since B(x, y) is in Γ2. The discussion below is same as in
the proof of [9, Theorem 5.6]. Let (B(x, y))D ≡ ∃v∀wBD(x, y, v, w) (note that
(∀uAqf (x, u))D ≡ ∀uAqf (x, u)). By [14, Theorem 8.6], there exist closed terms
tY , tV , tU such that WE-HAω � ∀x,w(Aqf (x, tUxw) → BD(x, tY (x), tV xw)).
Then, without difficulty, one can see

WE-HAω � ∀x∃v∀w∃u (Aqf (x, u) → BD(x, tY (x), v, w)) .

Since this is equivalent to WE-HAω � ∀x(∀uAqf (x, u) → (B(x, tY (x)))D)
and B(x, y) is in Γ2, applying [14, Lemma 8.11], we have WE-HAω �
∀x(∀uAqf (x, u) → B(x, tY (x))). ��
The following conservation result is an immediate consequence of the previous
proposition.

194 M. Fujiwara

Proposition 17. For a sentence ∀xρ(A(x) → ∃yτB(x, y)) of L(WE-HAω)
where A(x) is purely universal and B(x, y) is in Γ2, if

WE-HAω + AC + IPω
∀ + Mω � ∀xρ(A(x) → ∃yτB(x, y)),

then
WE-HAω � ∀xρ(A(x) → ∃yτB(x, y)).

Proposition 18. Assume that A(ξ) is purely universal and B(ξ, ζ) is equivalent
to ∀wρ∃s0Bqf (ξ, ζ, w, s) (ρ ∈ {0, 1}) over EL + MP. If there exists a function
term t of RCA such that

RCA � ∀ξ (A(ξ) → t | ξ ↓ ∧ B(ξ, t | ξ)) ,

then
EL � ∀ξ (A(ξ) → ∃ζB(ξ, ζ)) .

Proof. Since each purely universal formula is in NM, by Proposition 14, EL+MP
proves ∀ξ(A(ξ) → ∃ζ∀wρ∃s0Bqf (ξ, ζ, w, s)). By identifying EL + MP with its
canonical embedding into WE-HAω + M0, we have WE-HAω + M0 � ∀ξ(A(ξ) →
∃ζ∀wρ∃s0Bqf (ξ, ζ, w, s)). Since ∀wρ∃s0Bqf (ξ, ζ, w, s) is in Γ2, by Proposition 17,
we have

WE-HAω � ∀ξ
(
A(ξ) → ∃ζ∀wρ∃s0Bqf (ξ, ζ, w, s)

)
.

Since WE-HAω is conservative over EL for L(EL) formulas, it follows that EL
proves ∀ξ

(
A(ξ) → ∃ζ∀wρ∃s0Bqf (ξ, ζ, w, s)

)
. ��

Proposition 19. Let ∀ξ (A(ξ) → ∃ζB(ξ, ζ)) be a L(EL)-sentence where A(ξ) is
purely universal and B(ξ, ζ) is equivalent to ∀wρ∃s0Bqf (ξ, ζ, w, s) (ρ ∈ {0, 1})
over EL + MP. Then EL � ∀ξ (A(ξ) → ∃ζB(ξ, ζ)) if and only if there exists a
term t1(1) of RCAω such that RCAω � ∀ξ (A(ξ) → B(ξ, t(ξ))) under the canonical
embedding.

Proof. Soppose EL � ∀ξ(A(ξ) → ∃ζB(ξ, ζ)). Then WE-HAω � ∀ξ(A(ξ) →
∃ζB(ξ, ζ)) under the canonical embedding. Since A(ξ) is purely universal and
∀wρ∃s0Bqf (ξ, ζ, w, s) is in Γ2, by Proposition 16, there exists a term t1(1) of
RCAω such that RCAω � ∀ξ (A(ξ) → B(ξ, t(ξ))).

The converse direction is the same as for Proposition 18 except the use of
elimination of extensionality technique. Suppose that RCAω proves ∀ξ(A(ξ) →
B(ξ, t(ξ))). Since our sentence contains quantifiers only of type 0 and 1,
it follows by [14, Proposition 10.45] that WRCAω (i.e. WE-PAω + QF-AC1,0)
proves ∀ξ (A(ξ) → B(ξ, t(ξ))). Then using the negative translation [14, Propo-
sition 10.6], the Dialectica interpretation (Proposition 17) and the conser-
vativity just as in the proof of Proposition 18, we have that EL proves
∀ξ (A(ξ) → ∃ζB(ξ, ζ)). ��
Remark 20. By a careful inspection, one observes that all discussions in the
above proofs also work for fragments EL0, RCA0, RCAω

0 instead of EL, RCA, RCAω

(cf. [4, Remark 3.10], [14, Sect. 8.3] and [14, Sect. 10.5]).

Intuitionistic Provability versus Uniform Provability in RCA 195

Acknowledgment. The author is grateful to his supervisor Takeshi Yamazaki and
also to Ulrich Kohlenbach for helpful discussion.

References

1. Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak
computability. J. Symb. Log. 76(1), 143–176 (2011)

2. Brattka, V., Gherardi, G.: Effective choice and boundedness principles in com-
putable analysis. Bull. Symb. Log. 17(1), 73–117 (2011)

3. Bridges, D.S., Richman, F.: Varieties of constructive mathematics. London Math.
Soc. Lecture Notes, vol. 97. Cambridge University Press, Cambridge (1987)

4. Dorais, F.G.: Classical consequences of continuous choice principles from intuition-
istic analysis. Notre Dame J. Formal Logic 55, 25–39 (2014)

5. Dorais, F.G., Hirst, J.L., Shafer, P.: Reverse mathematics, trichotomy, and
dichotomy. J. Logic Anal. 4(13), 1–14 (2012)

6. Dorais, F.G., Dzhafarov, D.D., Hirst, J.L., Mileti, J.R., Shafer, P.: On uniform
relationships between combinatorial problems. Trans. AMS. (To appear). http://
www.ams.org/journals/tran/0000-000-00/S0002-9947-2015-06465-4/home.html

7. Fujiwara, M.: Intuitionistic and uniform provability in reverse mathematics. Ph.D.
thesis, Tohoku University (2015)

8. Fujiwara, M., Higuchi, K., Kihara, T.: On the strength of marriage theorems and
uniformity. Math. Logic Q. 60(3), 136–153 (2014)

9. Hirst, J.L., Mummert, C.: Reverse mathematics and uniformity in proofs without
excluded middle. Notre Dame J. Formal Logic 52(2), 149–162 (2011)

10. Kierstead, H.A.: An effective version of Hall’s theorem. Proc. Amer. Math. Soc.
88, 124–128 (1983)

11. Ishihara, H.: Constructive reverse mathematics: compactness properties. In:
Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analy-
sis: Towards Practicable Foundations for Constructive Mathematics, pp. 245–267.
Oxford University Press, Oxford (2005)

12. Kohlenbach, U.: Foundational and mathematical uses of higher types. In: Sieg,
W., et al. (eds.) Reflections on the Foundations of Mathematics. Essays in honor
of Solomon Feferman. Lecture Notes in Logic, vol. 15, pp. 92–116. A. K. Peters
Ltd, Natick, MA (2002)

13. Kohlenbach, U.: Higher order reverse mathematics. In: Simpson, S.G. (ed.) Reverse
Mathematics 2001. Association Symbolic Logic. Lecture Notes in Logic, vol. 21,
pp. 281–295. A. K. Peters, Wellesley MA (2005)

14. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics. Springer, Berlin (2008)

15. Simpson, S.G.: Subsystems of Second Order Arithmetic. Association for Symbolic
Logic, 2nd edn. Cambridge University Press, NY (2009)

16. Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. Lecture notes in Mathematics, vol. 344. Springer, Berlin (1973)

17. Troelstra, A.S.: Comparing the theory of representations and constructive math-
ematics. In: Börger, E., et al. (eds.) CSL 1991. LNCS, vol. 626, pp. 382–395.
Springer, Berlin (1992)

18. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction
(two volumes). North Holland, Amsterdam (1988)

19. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (2000)

http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2015-06465-4/home.html
http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2015-06465-4/home.html

Randomness and Differentiability of Convex
Functions

Alex Galicki(B)

Department of Computer Science, University of Auckland, Auckland, New Zealand
agal629@aucklanduni.ac.nz

Abstract. We study first and second derivatives of computable convex
functions on R

n. The main result of the paper is an effective form of
Aleksandrov’s Theorem: we show that computable randomness implies
twice-differentiability of computable convex functions.

1 Introduction

1.1 Overview of the Paper

This paper is concerned with computable analysis [14] and algorithmic random-
ness (see Nies [9], Downey and Hirschfeldt [5]).

We are mostly interested in computable convex functions on R
n. Convex

functions are very well behaved and play an important role in such areas as
optimization, control theory and variational analysis. This class has been studied
both in classical and in effective contexts.

First derivatives of computable convex functions of one variable have been
studied in Dinghzu and Ko [4]. In particular, Dinghzu and Ko noticed that the
first derivative is (uniformly) computable on the set of points where it does exist.
The second and higher derivatives of computable real functions of one variable
were considered for example in Zhong [15].

In Sect. 2 we study computable functions of one variable. Firstly, we charac-
terise sets of differentiability of computable convex functions from R to R. Next,
we introduce a class of effectively monotone functions and show that in some pre-
cise sense functions from this class are exactly derivatives of computable convex
functions. Finally, we prove two new characterisations of computable random-
ness: in terms of differentiability of effectively monotone functions and in terms
of twice-differentiability of computable convex functions.

Computable randomness is one of the more natural algorithmic randomness
notions. Originally, it has been defined on the Cantor space in terms of effec-
tive betting strategies. It has been generalized to other spaces. For details, see
Rute [12].

In Sect. 3 we generalize one of the results from Sect. 2 to R
n. The main result

of Sect. 3 (and of this paper) is an effective version of the following classical
result, known as Aleksandrov’s Theorem [2]:

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 196–205, 2015.
DOI: 10.1007/978-3-319-20028-6 20

Randomness and Differentiability of Convex Functions 197

Theorem 1 (Aleksandrov, 1939 [2]). If f : Rn → R is a convex function,
then it is twice-differentiable almost everywhere.

In Theorem 20 we prove that every computable convex function f : Rn → R is
twice differentiable at the set of computably random elements of Rn.

1.2 Notation and Conventions

Let f : Rn → R
m be a function. We denote the set of non-differentiability of f ,

that is the set of points x such that f ′(x) does not exist, by Nf .
Working with derivatives often means working with slopes. For functions of

one variable, we use the following notation. Let f : R → R be a function. We
define

Sf (x, h) =
f(x + h) − f(x)

h
.

We denote by I the identity function on R
n.

Computable Real Functions. There were multiple attempts of formaliz-
ing the notion of computability of real functions, most of which turned out
to be equivalent. In this paper by computability of real functions we mean the
Grzegorczyk-Lacombe notion of computability. Recall that a function f : Rn →
R

m is computable in the sense of Grzegorczyk-Lacombe, if f(x) is computable
uniformly in x, f is continuous and its modulus of continuity satisfies some spe-
cific effectivity conditions. For formal details, see Pour-El and Richards [10] and
Weihrauch [14].

Computable Randomness. In several of our results we use the notion of com-
putable randomness on R

n. For this purpose we extend the notion of computable
randomness on [0, 1]n (see [12]) to R

n.
We say z = (z1, . . . , zn) ∈ R

n is computably random if (z1 mod 1, . . . , zn
mod 1) is computably random.

On the real line, computable randomness can be characterised in terms of dif-
ferentiability of either computable Lipschitz functions or computable monotone
functions (see Brattka et al. [3] and Freer et al. [6]).

On R
n, computable randomness implies differentiability of computable Lip-

shitz functions of several variables and computable monotone functions from R
n

to R
n (see Galicki and Turetsky [7]).

1.3 Convex, Monotone and Lipschitz Functions

A function f : Rn → R is convex if the following condition holds for all x0, x1 ∈
R

n and all t ∈ [0, 1]:

f((1 − t)x0 + tx1) ≤ (1 − t)f(x0) + tf(x1).

198 A. Galicki

There are two other classes of functions that are closely related to convex
functions: Lipschitz and monotone functions. All three classes play a prominent
role in variational analysis (see Rockafellar and Wets [11]).

A function f : Rn → R
m is Lipschitz if there exists L ∈ R

+ such that

‖f(x) − f(y)‖ ≤ L · ‖x − y‖ for all x, y ∈ R
n.

The least such L is called the Lipschitz constant for f . We denote it by Lip(f).
To deal with discontinuous monotone functions, we need to consider set-

valued functions from R
n to R

n, that is functions that map every point in R
n

to a subset of Rn.
We say a set-valued function u : Rn → R

n is monotone if

〈y1 − y2, x1 − x2〉 ≥ 0 for all x1, x2 ∈ R
n and all y1 ∈ u(x1), y2 ∈ u(x2).

A set-valued monotone function is said to be maximal if its graph is not
properly included in the graph of another monotone function.

In this paper we mostly consider single valued functions. Hence, by default,
“monotone function” means a single-valued function. Every time we consider
set-valued functions, we explicitly say so.

Set-valued monotone functions on R
n are almost everywhere continuous and

are single valued at points of continuity. Moreover, if g : Rn → R
n is a maxi-

mal set-valued monotone function and z ∈ R
n, then g(z) is a closed convex set.

Derivatives of convex functions are closely related to monotone set-valued func-
tions. On the real line, a function is monotone if and only if it coincides (almost
everywhere) with a derivative of a convex function. In the case of functions on
R

n the situation is somewhat more nuanced: gradients of convex real-valued
functions on R

n form a proper subclass of the class of all monotone functions
from R

n to R
n.

We proceed with recalling a connection between (set-valued) monotone func-
tions and Lipschitz functions discovered by Minty [8] and some of its conse-
quences relevant to our paper.

Minty showed that the so called Cayley transformation

Φ : Rn × R
n → R

n × R
n defined by Φ(x, y) =

1√
2
(y + x, y − x)

transforms the graph of a set-valued maximal monotone function into a graph
of a 1-Lipschitz function. Note that when n = 1 this is a clockwise rotation of
π/4. We will rely on the following consequence of the above fact.

Proposition 2 (cf. Proposition 1.2 in [1]). Let u : Rn → R
n be a maximal

monotone (set-valued) function. Then (u + I) and (u + I)−1 are monotone and
(u + I)−1 is 1-Lipschitz.

Furthermore, to use an effective form of Rademacher’s Theorem in Sect. 3, we
will require the following result.

Randomness and Differentiability of Convex Functions 199

Proposition 3 (cf. Theorem 12.65 in [11]). Let u : Rn → R
n be a maximal

monotone (set-valued) function. Let z ∈ R
n and define f = (u + I)−1 and

ẑ = u(z) + z. The following two are equivalent:

1. u is differentiable at z, and
2. f is differentiable at ẑ and f ′(ẑ) is invertible.

A good exposition of classical results related to this area can be found in Alberti
and Ambrosio [1] and in Chap. 12 of [11].

Main Geometric Idea with an Example. Let u : R
n → R be a convex

function and let f = ∇u be its gradient. Denote the maximal extension of f
by f . Since this paper is concerned with those functions only for which a max-
imal extension exists and it is unique, we will always write about the maximal
extension. Then (f + I)−1 is 1-Lipschitz function that, in the sense of Proposi-
tion 3, preserves information about non-differentiability points of f . A crucial
idea used in this paper is that a question about twice-differentiability of con-
vex functions can be reduced to a question about differentiability of 1-Lipschitz
functions. To exploit this, we will prove effective variants of the above described
connections between convex, monotone and Lipschitz functions. The following
simple example illustrates this idea.

Example 4. Let u(x) = |x|. It is a computable convex function with one point
of non-differentiability, at x = 0. Its derivative f(x) = u′(x) is a step function.
f is defined and it is continuous at those points where u is differentiable. Note
that f is not a computable function, however f(x) is computable uniformly in
x at points where f is continuous. Finally note that g = (f + I)−1, where f is
the maximal extension of f , is a computable function, such that if g′(f(x) + x)
exists and it is not equal to 0, then f is differentiable at x (Fig. 1).

This example highlights the need to consider set-valued functions: note that
f + I is not invertible, while f + I is.

We will generalise these observations in Sect. 2.

−2. −1.5 −1. −0.5 0.5 1. 1.5

−1.

−0.5

0.5

1.

0

(a) u(x) = |x|

−2. −1.5 −1. −0.5 0.5 1. 1.5

−1.5

−1.

−0.5

0.5

1.

0

(b) f(x) = u (x)

−2. −1.5 −1. −0.5 0.5 1. 1.5

−1.

−0.5

0.5

1.

0

(c) g = (f + I)−1

Fig. 1. Example 4

200 A. Galicki

2 Differentiability of Convex and Monotone Real
Functions of One Variable

2.1 Sets of Non-differentiability of Computable Convex Functions

It is known that the set of points where a convex function f : R → R is not
differentiable is countable. In fact, for any countable set of points B on the real
line, there exists a convex real function that is not differentiable precisely at
elements of B (see [13]).

When f is computable, it is relatively easy to show (and we will do so later)
that all points of non-differentiability are computable. However, not all sequences
of computable real numbers are sets of non-differentiability of computable convex
functions.

Definition 5. Let (ri)i∈N be a sequence of real numbers. We say it is a cnd-
sequence (convex non-differentiability sequence) if there exists a computable
sequence of real numbers (qi)i∈N and a c.e. set W ⊆ N such that

{ri : i ∈ N} = {qi : i �∈ W}.

Now we show that cnd-sequences characterise sets of non-differentiability of com-
putable convex functions on the real line.

Theorem 6. Let (ri)i∈N be a sequence of real numbers. The following two are
equivalent:

1. (ri)i∈N is a cnd-sequence, and
2. there exists a computable convex function f : R → R such that Nf = {ri :

i ∈ N}.
Remark 7. While there is no computable convex function non-differentiable at
all computable reals, for any computable sequence of real numbers, there does
exist a computable convex function non-differentiable precisely at elements of the
sequence. In particular, there is a computable convex function non-differentiable
at all rationals. However, every computable convex function is differentiable on
a dense computable sequence of reals.

Fact 8. Let f : R → R be a computable convex function. There exists a com-
putable r ∈ R such that f is differentiable on r + Q.

Proof. Let (qi)i∈N be a computable sequence of real numbers and let W ⊆ N be
a c.e. set such that Nf = {qi : i �∈ W}.

Let (pi)i∈N be a computable sequence of real numbers that enumerates all
real numbers of the form qi + q for all i ∈ N and all q ∈ Q.

There exists a computable irrational real number r such that it is not in
(pi)i∈N. Then {r+q : q ∈ Q}∩{pi : i ∈ N} = ∅ and hence {r+q : q ∈ Q}∩Nf = ∅.

Randomness and Differentiability of Convex Functions 201

2.2 Monotone and Convex Functions

From classical analysis we know that there is a strong connection between
monotone and convex functions. If f : R → R is convex, its both left and
right derivatives are defined everywhere and are monotone and Nf is precisely
the set of discontinuity points of both its left or right derivatives. Conversely, if
g : R → R is monotone, then f(x) =

∫ x

0
g(t) dt is convex and Nf is the set of

discontinuity points of g. In this subsection we show an analogous result in the
effective setting.

We want to characterise derivatives of computable convex functions. Let f :
R → R be such a function. We know that f ′ is monotone and it is defined outside
some cnd-sequence. However, it can be discontinuous and thus not computable
in the sense of Grzegorczyk (not even relative to any oracle).

The following fact (stated in [4]) shows f ′(x) is computable (uniformly in x)
where it is defined.

Fact 9. Let f : R → R be a computable convex function and let g(x) = f ′(x).
Then g is computable (uniformly in x) on its set of continuity.

Proof. By convexity of g, we get that f(x)−f(x−t)
t ≤ f ′(x) ≤ f(x+t)−f(x)

t for all
t > 0 and hence whenever f ′(x) = g(x) exists, it can be effectively approximated
(uniformly in x) from below and from above.

This fact justifies the following definition.

Definition 10. We say a monotone function f : R → R is effectively monotone
if f(x) is computable uniformly in x when f is continuous at x.

Our notion of effective monotonicity is closely related to several other natural
notions of effectiveness when restricted to monotone functions. One of them is
the notion of almost everywhere computable functions (see Subsects. 7.1 and 7.2
in [12]). Roughly speaking, a function f is a.e. computable if f(x) is computable
uniformly in x on some subset of full measure.

The other notion is that of computability on IQ (see Sect. 7 in [3]). A partial
function f : I → R is said to be computable on IQ if its domain contains IQ =
[0, 1] ∩Q and f(q) is computable uniformly in q ∈ Q. Analogously, in this paper
we say f is computable on A if f(x) is computable uniformly in x ∈ A.

Proposition 11. Let f : R → R be an a.e. computable monotone function and
let C ⊆ R be its set of continuity. There exists a computable convex function
g : R → R such that g′ = f |C .

Proof. We may assume f is a non-decreasing function. Then u = (f + I)−1

is a 1-Lipschitz function, where f is the maximal extension of f . Let us show
that it is computable. Since it is Lipschitz, we are only required to show that
it is computable on rationals. Let y ∈ Q, let s ∈ N and define g = f + I. To
compute u(y) at stage s, find x+, x− ∈ Q such that g(x−) < y, g(x+) > y and
|f(x−) − f(x+)| ≤ s−s; declare u(y) at stage s to be x−.

202 A. Galicki

Since u(0) is computable, without loss of generality we may assume that
u(0) = 0. Hence we may assume that f(0) = 0. Let

F (x) =
∫ x

0

(f(t) + t) dt = x · (f(x) + x) −
∫ f(x)+x

0

u(t) dt.

F is convex and a.e. computable. Hence it is computable. It follows that
g(x) =

∫ x

0
f(t) dt is a computable convex function such that g′ = f |C .

Now we can prove equivalence between several notions of effectiveness for
monotone functions.

Proposition 12. Let f : R → R be a monotone function and let C ⊆ R be its
set of continuity. The following are pairwise equivalent:

1. f is effectively monotone,
2. f is computable on a dense computable sequence of reals,
3. f is computable on r + Q for some computable r,
4. f |C is a.e. computable, and
5. the graph of its maximal extension is a Π0

1 class.

Proof. 1. ⇒ 3. follows from Fact 8 and Propositions 11.
3. ⇒ 2. is trivial.
2. ⇒ 1. follows from the fact that f(x) can be effectively approximated from

above and from below when f is continuous at x.
1. ⇒ 4. holds since monotone functions are a.e. continuous
4. ⇒ 2. follows from Proposition 11 and Fact 9.
1. ⇒ 5. Let f be the maximal extension of f . Then, as we have seen in the proof

of Proposition 11, (f + I)−1 is a computable Lipschitz function, hence its
graph is a Π0

1 class. It follows that the graph of (f + I) is a Π0
1 class and

hence the graph of f is a Π0
1 class too.

5. ⇒ 1. Let P be the graph of the maximal extension of f . For every x ∈ C,
{y|(x, y) ∈ P} is a Π0

1 class (uniformly in x) with one element, hence f(x) is
computable uniformly in x.

While an effectively monotone function f : R → R is not necessarily computable
on IQ, there exists a computable real r such that f + r is computable on IQ.

Remark 13. Fact 9 and Proposition 11 show that in a precise sense, effectively
monotone functions correspond to derivatives of computable convex functions.
Both left and right derivatives of a computable convex functions are effectively
monotone functions and every effectively monotone function restricted to its set
of continuity is a derivative of some computable convex function.

Finally, note that just like every continuous monotone real function of one
variable is computable relative to some oracle, every monotone function is an
effectively monotone function relative to some oracle. This suggests that the class
of effectively monotone functions is an appropriate class for studying monotone
but not necessarily continuous functions in the context of computable analysis.

Randomness and Differentiability of Convex Functions 203

2.3 New Characterisations of Computable Randomness

The following result shows two new characterisations of computable random-
ness on R: in terms of differentiability of effectively monotone functions and in
terms of twice differentiability of computable convex functions. The result about
effectively monotone functions is an extension of a known theorem from [3] to dis-
continuous monotone functions. The other result can be seen as a bi-directional
effective version of Aleksandrov’s Theorem. To our knowledge it is the first result
that characterises a randomness notion in terms of twice differentiability.

Theorem 14. Let z ∈ R. The following are pairwise equivalent:

(1) z is computably random,
(2) all effectively monotone functions from R to R are differentiable at z,
(3) all computable convex functions from R to R are twice-differentiable at z.

Remark 15. The (2) =⇒ (1) and (3) =⇒ (1) implications follow immediately
from known facts from [3]. The other implications follow from Theorems 19 and 20.

It is possible to prove the (3) =⇒ (1) and (2) =⇒ (1) implications
directly by proving one-dimensional versions of results from the second part
of the paper. Alternatively, it seems feasible to combine results from Sect. 7 in
(the longer version of) [3] with some of results from this section to prove both
implications.

3 Effective Aleksandrov’s Theorem

The main result of this section is an effective version of Aleksandrov’s theorem.
Namely, we show that computable convex functions on R

n are twice differentiable
at computably random elements of Rn. The idea of the proof is straightforward.
Suppose f : R

n → R is a computable convex function and z ∈ R
n is com-

putably random. It is easy to show that g = ∇f , the gradient of f , is an a.e.
computable monotone function. To show that g is differentiable at z, we need to
prove a stronger version of Theorem 3.4.1 from [7] which states that computable
monotone functions on R

n are differentiable at computably random points. In
what follows we outline the idea behind the original proof and describe points
where it has to be modified.

Suppose g : R
n → R

n is a computable monotone function and z ∈ R
n is

computably random. The proof uses the fact that (g + I)−1 is a computable
injective 1-Lipschitz function and the fact that computable injective Lipschitz
functions satisfy the property that their inverses preserve computable random-
ness. It follows that g(z) + z is computably random and hence, by an effective
version of Rademacher’s Theorem proven in [7], (g + I)−1 is differentiable at
g(z) + z. By another classical result, Proposition 3, and by an effective version
of Sard’s Theorem for Lipschitz functions from [7], g is differentiable at z.

There are two main points where the original proof needs to be strengthened.
Let g be the maximal extension of g. Firstly, we need to show that (g + I)−1

204 A. Galicki

is computable when g is an a.e. computable monotone function. Secondly, since
g is no longer assumed to be continuous, (g + I)−1 is no longer guaranteed to
be injective. Hence we need to show that the mentioned preservation property
holds for all computable 1-Lipschitz function, not just for the injective ones. In
the following subsections we deal with those two issues.

3.1 Two Propositions

The following lemma is a stronger version of Lemma 3.2.5 from [7].

Lemma 16. Let f : Rn → R
n be a computable Lipschitz function and suppose

z ∈ R
n is not computably random. Then f(z) is not computably random either.

We also need the following effectively monotone version of Sard’s Theorem for
Lipschitz functions proven in [7].

Theorem 17 (Theorem 3.3.2, [7]). Let f : Rn → R
n be a computable Lip-

schitz function and let z ∈ R
n. If f(z) is computably random, then f ′(z) is

invertible.

3.2 Differentiability of A.E. Computable Monotone Functions

It is known that when g : Rn → R
n is a computable invertible function, its inverse

g−1 is computable too. This fact, in conjunction with an effective Rademacher’s
Theorem, was used in [7] to show that computable monotone functions from R

n

to R
n are differentiable at computably random points.

However, the gradient g = ∇f of a computable convex function f : Rn → R

need not be computable. It is a.e. computable and that is why we need the
following result.

Lemma 18. Let g : Rn → R
n be a monotone a.e. computable function and let

g be the maximal extension of g. If f = g−1 is 1-Lipschitz, then f is computable.

The proof of this lemma relies heavily on geometric properties of monotone and
Lipschitz functions and it is not clear whether the existence of a computable
inverse can be proven for other (natural) classes of partial computable functions.

We are now ready to formulate and prove our main result concerning
monotone a.e. computable functions.

Theorem 19. Let z ∈ [0, 1]n be computably random and let u : Rn → R
n be an

a.e. computable monotone function. Then u is differentiable at z.

Proof. Let u be the maximal extension of u.
Define g = (u+I) and f = g−1, then f is a Lipschitz function with Lip(f) ≤ 1.

Let y = u(z)+z so that f(y) = z. By Lemma 18, f is computable. And by Lemma
16, y is computably random. It follows that f is differentiable at y and, by Theorem
17, f ′(y) is invertible. Hence, by Proposition 3, u is differentiable at z.

Randomness and Differentiability of Convex Functions 205

3.3 Main Result

Theorem 20. Let f : Rn → R be a computable convex function. If z ∈ R
n is

computably random, then f is twice-differentiable at z.

Proof. Let g : Rn → R
n be the gradient of f . We know that it is a monotone

function. Let us show that g is a.e. computable. To do so, it is sufficient to show
that partial derivatives of f are a.e. computable.

Fix i ≤ n and let x ∈ R
n. Consider a convex function fx : R → R defined

by fx(h) = f(x + eih) (here e1, . . . , en denotes the standard basis for R
n). It is

differentiable at 0 when Dif(x) exists and then f ′
x(0) = Dif(x). It is computable

(uniformly in x), hence whenever f ′
x(0) exists, it is computable (uniformly in x).

Since Dif(x) exists a.e., the function x �→ Dif(x) is a.e. computable.
This shows that g is an a.e. computable monotone function. By Theorem 19,

g is differentiable at z.

References

1. Alberti, G., Ambrosio, L.: A geometrical approach to monotone functions in R
n.

Math. Z. 230, 259–316 (1999)
2. Aleksandrov, A.D.: Leningrad Univ. Ann. (Math. Ser.) 6, 3–35 (1939)
3. Brattka, V., Miller, J., Nies, A.: Randomness and differentiability. Trans. AMS

(forthcoming). http://arxiv.org/abs/1104.4465
4. Dingzhu, D., Ko, K.: Computational complexity of integration and differentiation

of convex functions. Syst. Sci. Math. Sci. 2(1), 70–79 (1989)
5. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer,

Berlin (2010)
6. Freer, C., Kjos-Hanssen, B., Nies, A., Stephan, F.: Algorithmic aspects of lipschitz

functions. Computability 3(1), 45–61 (2014)
7. Galicki, A., Turetsky, D.: Differentiability and randomness in higher dimensions

(2014, Submitted)
8. Minty, G.: Monotone nonlinear operators on a Hilbert space. Duke Math J. 29,

341–346 (1962)
9. Nies, A.: Computability and Randomness. Oxford Logic Guides. Oxford University

Press, Oxford (2009)
10. Pour-El, M.B., Richards, I.: Computability in Analysis and Physics. Springer,

Berlin (1988)
11. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathema-

tischen Wissenschaften. Springer, Heidelberg (1997)
12. Rute. J.: Computable randomness and betting for computable probability spaces

(2012, Submitted)
13. Siksek, S., El Sedy, E.: Points of non-differentiability of convex functions. Appl.

Math. Comput. 148, 725–728 (2004)
14. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
15. Zhong, N.: Derivatives of computable functions. Math. Log. Q. 44, 304–316 (1998)

http://arxiv.org/abs/1104.4465

Weighted Automata on Infinite Words
in the Context of Attacker-Defender Games

Vesa Halava1,2, Tero Harju1, Reino Niskanen2(B), and Igor Potapov2

1 Department of Mathematics and Statistics,
University of Turku, 20014 Turku, Finland

{vesa.halava,harju}@utu.fi
2 Department of Computer Science, University of Liverpool,

Ashton Building, Liverpool L69 3BX, UK
{r.niskanen,potapov}@liverpool.ac.uk

Abstract. We consider several infinite-state Attacker-Defender games
with reachability objectives. The results of the paper are twofold. Firstly
we prove a new language-theoretic result for weighted automata on
infinite words and show its encoding into the framework of Attacker-
Defender games. Secondly we use this novel concept to prove undecidabil-
ity for checking existence of a winning strategy in several low-dimensional
mathematical games including vector reachability games, word games
and braid games.

1 Introduction

In the last decade there has been a steady, growing interest in the area of infinite-
state games and computational complexity of the problem of checking the exis-
tence of a winning strategy [1,4,9,11,15,23,31]. Such games provide powerful
mathematical framework for a large number of computational problems. In par-
ticular they appear in the verification, refinement, and compatibility checking
of reactive systems [3], analysis of programs with recursion [11], combinatorial
topology and have deep connections with automata theory and logic [23,29,31].
In many cases the most challenging problems appear in low-dimensional models
or systems, where it is likely to have a few special cases with decidable problems
and open general problem as the system may produce either too complex behav-
iour for analysis or a lack of “space” to code directly the universal computation
for showing undecidability of the problem.

In this paper we present three variants of low-dimensional Attacker-Defender
games (i.e. Word Games, Matrix Games and Braid Games) for which it is unde-
cidable to determine whether one of the players has a winning strategy. In addi-
tion the proof incorporates new language theoretical result (Theorem 2) about
weighted automata on infinite words that can be efficiently used in the context
of other reachability games.

R. Niskanen—The author was partially supported by Nokia Foundation Grant.
I. Potapov—The author was partially supported by EPSRC grant “Reachability
problems for words, matrices and maps” (EP/M00077X/1).

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 206–215, 2015.
DOI: 10.1007/978-3-319-20028-6 21

Weighted Automata on Infinite Words and Attacker-Defender Games 207

The Attacker-Defender game is played in rounds, where in each round the
move of Defender (Player 1) is followed by the move of Attacker (Player 2)
starting from some initial position. Attacker tries to reach a target position
while Defender tries to keep Attacker from reaching the target position. Then
we say that Attacker has a winning strategy if it can eventually reach a target
position regardless of Defender’s moves. We show that in a number of restricted
cases of such games it is not possible to decide about existence of the winning
strategy for a given set of moves, initial and target positions.

We show that if both players are stateless but the moves correspond to a very
restricted linear transformation from SL(4, Z) the problem of existence of win-
ning strategy is undecidable. One can show that using a direct translation from
known undecidable reachability games (Robot Games [15]) leads to undecidabil-
ity for linear transformations in dimension 18. To prove it we first generalize the
concept by introducing the Word Game, where players are given words over a
group alphabet and in alternative way concatenate their words with a goal for
Attacker to reach the empty word. The games on words are common for proving
results in language theory [21,22,24] over semigroup alphabets, while we formu-
late a game with much simpler reachability objective for games over a group
alphabet.

Later we show that it is possible to stretch the application of the pro-
posed techniques to other models and frameworks even looking at the games
on topological objects, which were recently studied in [8,10]. Braids are clas-
sical topological objects that attracted a lot of attention due to their connec-
tions to topological knots and links as well as their applications to polymer
chemistry, molecular biology, cryptography, quantum computations and robot-
ics [12,13,16,17,26]. In this paper we consider games on braids with only 3 or 5
strands, where the braid is modified by composition of braids from a finite set
with a target for Attacker to reach a trivial braid. We show that it is undecidable
to check the existence of a winning strategy for 3 strands from a given nontrivial
braid and for 5 strands starting from a trivial braid, while the reachability with
a single player (i.e. with nondeterministic concatenation from a single set) was
shown to be decidable for braids with 3 strands in [28].

The whole paper is also based on another important language-theoretic result
showing that the universality problem for weighted automata A having merely
five states accepting infinite words is undecidable. The acceptance of an infinite
word w means that there exists a finite prefix p of w such that for a word p there
is a path in A that has the zero weight. The problem whether all infinite words
are accepted for a given A is undecidable and corresponds to the fact that there
is no solution for infinite PCP.

The considered model of automaton is closely related to the integer weighted
finite automata as defined in [18] and [2], where finite automata are accepting
finite words and having additive integer weights on the transitions. In [18] it was
shown that the universality problem is undecidable for integer weighted finite
automata on finite words by reduction from Post Correspondence Problem. In
the context of a game scenario it is important to have a property of acceptance

208 V. Halava et al.

in relation to infinite words with a finite prefix reaching a target value. Our proof
of undecidability in this paper initially follows the idea from [18] for mapping
computations on words into weighted (one counter) automata model.

All proofs omitted due to length constrain can be found in [20].

2 Notations and Definitions

An infinite word w over a finite alphabet A is an infinite sequence of letters
w = a0a1a2a3 · · · where ai ∈ A is a letter for each i = 0, 1, 2, We denote
the set of all infinite words over A by Aω. The monoid of all finite words over
A is denoted by A∗. A word u ∈ A∗ is a prefix of v ∈ A∗, denoted by u ≤ v, if
v = uw for some w ∈ A∗. If u and w are both nonempty, then the prefix u is
called proper, denoted by u < v. A prefix of an infinite word w ∈ Aω is a finite
word p ∈ A∗ such that w = pw′ where w′ ∈ Aω. This is also denoted by p ≤ w.
The length of a finite word w is denoted by |w|. For a word w, we denote by w(i)
the ith letter of w, i.e., w = w(1)w(2) · · · . Let w = w(1) · · · w(n), its reversed
word is denoted by wR = w(n) · · · w(1), i.e. the order of the letters is reversed.

Consider a finite integer weighted automaton A = (Q,A, σ, q0, F, Z) with the
set of states Q, the finite alphabet A, the set of transitions σ ⊆ Q × A × Q × Z,
the initial state q0, the set of final states F ⊆ Q and the additive group of
integers Z with identity 0, that is (Z,+, 0). We write the transitions in the

form t = 〈q, a, p, z〉 ∈ σ. An edge t we denote q
(a,z)−→ p. Note that A is non-

deterministic complete automaton in a sense that for each q ∈ Q and a ∈ A
there is atleast one transition 〈q, a, p, z〉 ∈ σ for some p ∈ Q and z ∈ Z.

Let π = ti0ti1 · · · be an infinite path of A, where tij = 〈qij , aj , qij+1 , zj〉 for
j ≥ 0. Define the morphism ‖ · ‖ : σω → Aω by setting ‖t‖ = a if t = 〈q, a, p, z〉.
Let p = ti0ti1 · · · tin for some n be a prefix of π. The weight of the prefix p is
γ(p) = z0 + z1 + . . . + zn ∈ Z. The prefix p reaches state q ∈ Q if the last
transition of p enters q, i.e., if tn = (qin , an, qin+1 , zn), then qin+1 = q. Denote by
R(p) the state reached by the finite path p.

An infinite word w ∈ Aω is accepted by A if there exists an infinite path π
such that at least one prefix p of π reaches a state in R(p) ∈ F and has weight
γ(p) = 0. The language accepted by A is

L(A) = {w ∈ Aω | ∃π ∈ σω : ||π|| = w and
∃ prefix p of π : γ(p) = 0 and R(p) ∈ F} .

We also define reverse acceptance, used in undecidability in Attacker-Defender
games, in which instead of prefix p we consider pR and its weight. Now an
infinite word w is accepted by the automaton if and only if for corresponding
computation π there exists a prefix whose reverse has zero weight. That is,

LR(A) = {w ∈ Aω | ∃π ∈ σω : ||π|| = w and

∃ prefix p of π : γ(pR) = 0 (and R(p) ∈ F)
}

.

Weighted Automata on Infinite Words and Attacker-Defender Games 209

A configuration of A is any triple (q, w, z) ∈ Q × A∗ × Z. A configuration
(q, aw, z1) is said to yield a configuration (p,w, z1+z2), denoted by (q, aw, z1) |=A
(p,w, z1 + z2), if there is a transition t = 〈q, a, p, z2〉 ∈ σ. Let |=∗

A or simply |=∗,
if A is clear from the context, be the reflexive and transitive closure of the
relation |=A.

The Universality Problem is a problem to decide whether the language
accepted by weighted automaton A is the set of all infinite words. In other
words, whether or not L(A) = Aω. The problem of non-universality is the com-
plement of universality problem, that is, whether or not L(A) �= Aω or whether
there exists w ∈ Aω such that for every path π corresponding to computation of
w and every prefix p of π, γ(p) �= 0.

An instance of the Post Correspondence Problem (PCP, for short) consists
of two morphisms g, h : A∗ → B∗, where A and B are alphabets. A nonempty
word w ∈ A∗ is a solution of an instance (g, h) if it satisfies g(w) = h(w). It is
undecidable whether or not an instance of the PCP has a solution; see [27]. Also
the problem is undecidable for domain alphabets A with |A| ≥ 7; see [25]. The
cardinality of the domain alphabet A is said to be the size of the instance.

The Infinite Post Correspondence Problem, ω PCP, is a natural extension of
the PCP. An infinite word w is a solution of the instance (g, h) of the ω PCP
if for every finite prefix p of w either h(p) < g(p) or g(p) < h(p). In the ω PCP
it is asked whether or not a given instance has an infinite solution or not. Note
that in our formulation prefixes have to be proper. It was proven in [19] that
the problem is undecidable for domain alphabets A with |A| ≥ 9 and in [14] it
was improved to |A| ≥ 8. In both proofs more general formulation of ω PCP was
used, namely the prefixes did not have to be proper. It is easy to see that adding
a new letter α to the alphabets and desynchronizing the morphisms h, g, gives
us solution where prefix has to be proper. That is, we add α to the left of each
letter in the image under h, to the right of each letter in the image under g and
g(α) = α, h(α) = ε. Now the solution has to start with α and images cannot be
of equal length because the image under g ends with α but not under h. Note
that in fact, both constructions already have this property, see [14,19].

3 Universality for Weighted Automata on Aω

We prove that the universality problem is undecidable for integer weighted
automata on infinite words by reducing the instances of the infinite Post Corre-
spondence Problem to the universality problem.

Let (g, h) be a fixed instance of the ω PCP. Then g, h : A∗ → B∗ where
A = {a1, a2, . . . , am−1} and B = {b1, b2, . . . , bs−1}. We construct an integer
weighted automaton A = (Q,A, σ, q0, {q4}, Z), where Q = {q0, q1, q2, q3, q4},
corresponding to the instance (g, h) such that an infinite word w ∈ Aω is accepted
by A if and only if for some finite prefix p of w, g(p) ≮ h(p) and h(p) ≮ g(p).
Note that our automaton is complete, i.e. there is a transition labeled with (a, z)
from each state qi for every a ∈ A and some z ∈ Z.

The idea of encoding ω PCP and proof of undecidability for universality prob-
lem is based on computation in weighted automaton that can be partitioned into

210 V. Halava et al.

four parts A,B,C and D. Let us consider the case where the image under h is
always longer than the image under g, the other cases are taken into account in
the construction of the automaton. In part A, differences of lengths of images
under h and g are stored for initial part of the input word. In part B, differences
of position k of image of a letter under morphism h and length of image under g
are stored together with a natural number jk representing letter at kth position.
In part C, the lengths of images under morphism g catch-up (by subtracting
lengths of images under morphism g) to position specified after parts A and B.
Finally, in part D, position � in the image of the second morphism is subtracted
together with a natural number i� from a set of natural numbers representing
letters not at �th position under morphism g.

To store two different values (differences of lengths and a code for a stored
symbol) at the same time, we can use a single counter since we only store one
symbol from a finite alphabet. Let us assume that symbols are encoded as natural
numbers in {1, . . . , s − 1}, where s is larger than the size of image alphabet B.
The length n will be defined as n · s and we have enough space to store a single
symbol from B by adding its code. If in the part D we refer to the same position
the difference of the lengths of images should be 0 and if the letters are the same,
the difference of letter codes is non-zero. This is done by allowing to subtract
only that number which does not equal the number corresponding to a code of
the letter at the �th position.

In the above consideration we considered the case where images under h was
always longer than images under g. To make the construction work for all cases
several computation paths are needed to be implemented in the automaton. The
difference in lengths of images is positive when image under h is longer and
negative when image under g is longer. For each case there are two possibilities
for position of error. Either the difference is small enough that, after reading the
next letter, there will be a position in images where letters differ (parts B and
D have to be done simultaneously), or the difference is large enough, that image
of the second morphism has to catch-up before error can be verified. Also from
our formulation of ω PCP, it is possible that images are of equal length which
means that the word is not a solution of ω PCP.

Lemma 1. Let w ∈ Aω. Then w is a solution of an instance (g, h) of the ω PCP
if and only if w /∈ L(A).

Theorem 2. It is undecidable whether or not L(A) = Aω holds for integer
weighted automata A over its alphabet A.

Weighted Automata on Infinite Words and Attacker-Defender Games 211

Proof. Claim follows from Lemma 1 and the undecidability of infinite PCP,
see [30]. �
Corollary 3. It is undecidable whether or not for weighted automaton A, there
exists a word w ∈ Aω such that for its each computation path π and prefix p ≤ π,
γ(p) �= 0 holds.

For proving undecidability of finding a winning strategy in Attacker-Defender
games we need to utilize slightly different acceptance condition.

Theorem 4. It is undecidable whether or not LR(B) = Aω holds for integer
weighted automata B over its alphabet A.

Proof (Sketch). The proof is based on Theorem 2. It is easy to see that if we
reverse all edges and follow the computation path p of original automaton from
end to finish, we have a computation path for pR. The full proof is in [20].

4 Applications to Attacker-Defender Games

Let us consider a two-player Attacker-Defender game which is played in rounds
and in each round a move of Defender is followed by a move of Attacker start-
ing from some initial position. Attacker tries to reach a target position while
Defender tries to keep Attacker from reaching the target position. Attacker
has a winning strategy if it can eventually reach a target position regardless of
Defender’s moves. The main computational question is to check whether Attacker
has a winning strategy for a given set of moves, initial and target positions.

Following the result for the weighted automata on infinite words (Theorem 4)
we can now define a simple scenario of undecidable infinite-state game that
can be also applied to other game frameworks. Assume that Defender will pro-
vide any input letters from a finite alphabet, one by one, to Attacker and
Attacker appends dummy symbol # until he chooses to follow computation path
of automaton B of Theorem 4. Attacker has to decide whether provided word
(ignoring symbols #) when played according to available transitions is accepted
by B.

In the above framework Defender will have a winning strategy if there is a
solution for infinite PCP and Attacker will have a winning strategy otherwise.

4.1 Weighted Word Game

Let us define the Attacker-Defender game on words, where the moves of Attacker
and Defender correspond to concatenations of words (over free group alpha-
bet) and follows a computation path of weighted automaton. This simplification
allows us to use Word Game to prove nontrivial results for games with low-
dimensional linear transformations and topological objects just by using injec-
tive homomorphism (i.e. monomorphism) to map words into other mathematical
objects.

212 V. Halava et al.

A weighted Word Game consists of two players, Attacker and Defender hav-
ing sets of words {u1, . . . , ur} ⊆ Γ ∗ and {v1, . . . , vs} ⊆ Γ ∗ respectively, where
Γ is finite alphabet from a free group, and integers xu1 , . . . , xur

, xv1 , . . . , xvs

corresponding to each word. In each round Defender chooses the word before
Attacker, the initial position is the pair (w, 0), where w ∈ Γ ∗ and 0 is initial
value of the counter, and target position of this game is the group identity, i.e.
the empty word, with zero weight. The configuration of a game at time t is
denoted by a word wt and integer x as a counter. In each round of the game
both Defender and Attacker concatenate their words (append from the right)
and update the counter value. Clearly wt = w ·vi1 ·ui1 ·vi2 ·ui2 · . . . ·vit ·uit after
t rounds of the game, where uij and vij are words from defined above sets of
Attacker and Defender, and the counter value is

∑t
j=1(xvij

+xuij
). The decision

problem for the word game is to check whether there exists a winning strategy
for Attacker to reach an empty word with zero weight.

Lemma 5. Let Σ′ = {z1, z2, . . . , zl} be a group alphabet and Σ2 = {c, d, c, d}
be a binary group alphabet. Define the mapping α : Σ′ → Σ∗

2 by: α(zi) =
cidci, α(zi) = cidci, where 1 ≤ i ≤ l. Then α is a monomorphism. Note that
α can be extended to domain Σ′∗ in the usual way [6,7].

Theorem 6. It is undecidable whether Attacker has a winning strategy in the
weighted Word Game with words over a binary free group alphabet.

The idea of proof is that Defender plays words of {v1, . . . , vs} corresponding to
w ∈ Aω letter by letter. Attacker either plays # or starts following computation
path of the automaton B and stores weights in a counter. Word q0q4, where q0
and q4 are initial and final states of B respectively, with weight 0 is reached if
and only if w is accepted by the automaton. Then we encode the group alphabet
using Lemma 5 to have binary group alphabet. The full proof can be found
in [20].

4.2 Word Games on Pairs of Group Words

We now modify the game of previous section by encoding counter as a separate
word over unary group alphabet Γ ′ = {ρ, ρ}.

Now Word Game consists of Attacker and Defender having sets of words
{(u1, u

′
1), . . . , (ur, u

′
r)} ⊆ Γ ∗ × Γ ′∗ and {(v1, ε), . . . , (vs, ε)} ⊆ Γ ∗ × Γ ′∗ respec-

tively, where Γ is binary group alphabet. Now the configuration of a game after
t rounds is a word wt = (vi1 , ε) ·(ui1 , u

′
i1

) ·(vi2 , ε) ·(ui2 , u
′
i2

) · . . . ·(vit , ε) ·(uit , u
′
it

),
where (uij , u

′
ij

) and (vij , ε) are words from defined above sets of Attacker and
Defender. The initial position is the word (w, ε) and target position of this game
is an empty word (ε, ε). The decision problem for the word game is to check
whether there exists a winning strategy for Attacker to reach an empty word
(ε, ε).

Theorem 7. It is undecidable whether Attacker has a winning strategy in the
Word Game with one component of words over a binary free group alphabet and
the other over unary group alphabet.

Weighted Automata on Infinite Words and Attacker-Defender Games 213

Proof (Sketch). The proof is based on Theorem 6 with encoding of counter x as
a word ρx over unary group alphabet {ρ, ρ}.

We follow idea of [5] to construct a word game where the initial word is (ε, ε).
For this we do 4 consequent games over 4 disjoint group alphabets. The games
are constructed in such way that (ε, ε) is reached if and only if (ε, ε) is reached in
every game. If none of the games result in (ε, ε), then there are at least 4 words,
from distinct group alphabets, which are non-canceled. Now if the computation
is completed twice (i.e. 8 games have been played in total), the number of non-
canceled elements cannot decrease.

4.3 Matrix Games and Braid Games

We extend the domain of the game and a set of rules to the class of linear
transformations on integer lattice Z

4 and to the domain of braids considering
moves of the game as a concatenation of braids in B3 (a class of braids with only
three strands) and B5 (a class of braids with only five strands) [28].

A Matrix Game consists of two players, Attacker and Defender having sets
of linear transformations MU1, . . . , MUr ⊆ Z

n×n and MV1, . . . , MVs ⊆ Z

n×n

respectively and an initial vector x0 ∈ Z

n of the game representing a starting
position. The dimension of the game is clearly the dimension of the integer
lattice n. Starting from x0, players move the current point by applying available
linear transformations (by matrix multiplication) from their respective sets in
turns. The decision problem of the Matrix Game is to check whether there exist
a winning strategy for Attacker to return to the starting point (vector in Z

n) of
the game.

Theorem 8. Given two finite sets matrices MU1,MU2, . . . , MUr ⊆ Z

n×n and
MV1,MV2, . . . , MVs ⊆ Z

n×n for Attacker and Defender players respectively and
initial starting vector x0 ∈ Z

n. It is undecidable whether Attacker has a winning
strategy in the Matrix Game of dimension four, i.e. when n = 4.

Proof (Sketch). We encode word game on pairs of words into matrices from
SL(4, Z) = {M ∈ Z

4×4 | det(M) = ±1}. Identity matrix is reachable if and only
if empty word is reachable in Word Game.

Now we translate the Attacker-Defender games into games on topological
objects - braids in Bn. We consider very simple games on braids with only 3
or 5 strands (i.e. B3 or B5) where the braid is modified by composition with
a finite set of braids. We show that it is undecidable to check the existence
of a winning strategy in such game, while the reachability with a single player
(i.e. with nondeterministic concatenation from a single set) was shown to be
decidable for B3 and undecidable for B5 in [28].

Definition 9. The n-strand braid group Bn is the group given by the presenta-
tion with n − 1 generators σ1, . . . , σn−1 and the following relations σiσj = σjσi,
for |i − j| ≥ 2 and σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2. These relations
are called Artin’s relations. Words in the alphabet {σ, σ−1} will be referred to
as braid words.

214 V. Halava et al.

The Braid Game can be defined in the following way. Given a set of words for
Attacker {a1, ..., ar} ⊆ Bn and Defender {d1, ..., ds} ⊆ Bn will correspond to
braids (or braid words in Bn). The game is starting with a given initial braid c
and each following configuration of the game is changed by Attacker or Defender
by concatenating braids from their corresponding sets. The concatenation (com-
position) of two braids is defined by putting one after the other making the
endpoints of the first one coincide with the starting points of the second one.
There is a neutral element for the composition: it is the trivial braid, also called
identity braid, i.e. the class of the geometric braid where all the strings are
straight.

Finally, the goal of Attacker is to unbraid, i.e. to reach a configuration of the
game that is isotopic to the trivial braid (empty word) and Defender tries to
keep Attacker from reaching it. Two braids are isotopic if their braid words can
be translated one into each other via the relations from the Definition 9 plus the
relations σiσ

−1
i = σ−1

i σi = 1, where 1 is the identity (trivial braid).

Theorem 10. The Braid Game is undecidable for braids from B3 starting from
non-trivial braid and for braids from B5 starting from a trivial braid.

The idea is to encode words of weighted word game into braids of B3 and weight
into central element of B3. While B5 contains direct product of two free subgroup
and can encode pair of words of word game into braids of B5. The full proof can
be found in [20].

References

1. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M.,
Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg
(2003)

2. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted
automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp.
482–491. Springer, Heidelberg (2011)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

4. Arul, A., Reichert, J.: The complexity of robot games on the integer line. In:
Proceedings of QAPL 2013, EPTCS, vol. 117, pp. 132–148 (2013)

5. Bell, P.C., Potapov, I.: On the undecidability of the identity correspondence prob-
lem and its applications for word and matrix semigroups. Int. J. Found. Comput.
Sci. 21(6), 963–978 (2010)

6. Bell, P.C., Potapov, I.: On the computational complexity of matrix semigroup
problems. Fundam. Inform. 116(1–4), 1–13 (2012)

7. Birget, J.C., Margolis, S.W.: Two-letter group codes that preserve aperiodicity of
inverse finite automata. Semigroup Forum. 76, 159–168 (2008). Springer

8. Bovykin, A., Carlucci, L.: Long games on braids (2006). Preprint. Available online
at http://logic.pdmi.ras.ru/∼andrey/braids final3.pdf

9. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

http://logic.pdmi.ras.ru/~andrey/braids_final3.pdf

Weighted Automata on Infinite Words and Attacker-Defender Games 215

10. Carlucci, L., Dehornoy, P., Weiermann, A.: Unprovability results involving braids.
Proc. Lond. Math. Soc. 102(1), 159–192 (2011)

11. Chatterjee, K., Fijalkow, N.: Infinite-state games with finitary conditions. In: Pro-
ceedings of CSL 2013, LIPIcs, vol. 23, pp. 181–196 (2013)

12. Collins, G.P.: Computing with quantum knots. Sci. Am. 294(4), 56–63 (2006)
13. Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B.: Ordering Braids. Mathematical

Surveys and Monographs, vol. 148. American Mathematical Society, Providence
(2008)

14. Dong, J., Liu, Q.: Undecidability of infinite post correspondence problem for
instances of size 8. RAIRO - Theor. Inf. Appl. 46(3), 451–457 (2012)

15. Doyen, L., Rabinovich, A.: Robot games. Technical report LSV-13-02, LSV, ENS
Cachan (2013)

16. Epstein, D., Paterson, M., Cannon, J., Holt, D., Levy, S., Thurston, W.P.: Word
Processing in Groups. AK Peters, Ltd, USA (1992)

17. Garber, D.: Braid group cryptography. In: Braids: Introductory Lectures on Braids,
Configurations and Their Applications, vol. 19, pp. 329 (2010)

18. Halava, V., Harju, T.: Undecidability in integer weighted finite automata. Fundam.
Inform. 38(1–2), 189–200 (1999)

19. Halava, V., Harju, T.: Undecidability of infinite post correspondence problem for
instances of size 9. ITA 40(4), 551–557 (2006)

20. Halava, V., Harju, T., Niskanen, R., Potapov, I.: Weighted automata on infinite
words in the context of attacker-defender games (2015). CoRR. abs/1411.4796

21. Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theor.
Comput. Sci. 348(2–3), 277–293 (2005)

22. Kunc, M.: The power of commuting with finite sets of words. Theory Comput.
Syst. 40(4), 521–551 (2007)

23. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

24. Ly, O., Wu, Z.: On effective construction of the greatest solution of language
inequality XA ⊆ BX. Theor. Comput. Sci. 528, 12–31 (2014)

25. Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-thue systems with a
few rules. Theor. Comput. Sci. 330(1), 145–169 (2005)

26. Panangaden, P., Paquette, É.O.: A categorical presentation of quantum compu-
tation with anyons. In: Coecke, B. (ed.) New Structures for Physics. LNP, pp.
983–1025. Springer, Heidelberg (2011)

27. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc.
52(4), 264–268 (1946)

28. Potapov, I.: Composition problems for braids. In: Proceedings of FSTTCS 2003,
LIPIcs, vol. 24, pp. 175–187 (2003)

29. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Bull. Am. Math. Soc. 74(5), 1025–1029 (1968)

30. Ruohonen, K.: Reversible machines and post’s correspondence problem for biprefix
morphisms. J. of Information Processing and Cybernetics 21(12), 579–595 (1985)

31. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput.
164(2), 234–263 (2001)

http://arxiv.org/abs/abs/1411.4796

Turing Jumps Through Provability

Joost J. Joosten(B)

University of Barcelona, Barcelona, Spain
jjoosten@ub.edu

Abstract. Fixing some computably enumerable theory T , the
Friedman-Goldfarb-Harrington (FGH) theorem says that over elemen-
tary arithmetic, each Σ1 formula is equivalent to some formula of the
form �T ϕ provided that T is consistent. In this paper we give various
generalizations of the FGH theorem. In particular, for n > 1 we relate
Σn formulas to provability statements [n]TrueT ϕ which are a formalization
of “provable in T together with all true Σn+1 sentences”. As a corollary
we conclude that each [n]TrueT is Σn+1-complete. This observation yields
us to consider a recursively defined hierarchy of provability predicates
[n + 1]�T which look a lot like [n + 1]TrueT except that where [n + 1]TrueT

calls upon the oracle of all true Σn+2 sentences, the [n+ 1]�T recursively
calls upon the oracle of all true sentences of the form 〈n〉�

T φ. As such
we obtain a ‘syntax-light’ characterization of Σn+1 definability whence
of Turing jumps which is readily extended beyond the finite. Moreover,
we observe that the corresponding provability predicates [n + 1]�T are
well behaved in that together they provide a sound interpretation of the
polymodal provability logic GLPω.

1 Introduction and Preliminaries

In first order arithmetic we have natural syntactical definitions that correspond
to finite iterations of the Turing jump. For example, a set of natural numbers
is computably enumerable relative to the n-th Turing jump of the empty set if
and only if it can be defined by a Σn+1 formula.

In this paper we shall use the fact that various provability predicates are Tur-
ing complete in a certain sense so that we can give alternative characterizations
for the finite Turing jumps.

We shall work with theories with identity in the language {0, 1, exp,+, ·, <}
of arithmetic where exp denotes the unary function x �→ 2x. We define Δ0 =
Σ0 = Π0 formulas as those where all quantifiers occur bounded, that is, we
only allow quantifiers of the form ∀x<t or ∃x<t where t is some term not
containing x. We inductively define Σn,Πn ⊂ Πn+1 and Σn,Πn ⊂ Σn+1; if
φ, ψ ∈ Πn+1, then ∀x φ, φ ∧ ψ, φ ∨ ψ ∈ Πn+1 and likewise, if φ, ψ ∈ Σn+1, then
∃x φ, φ ∧ ψ, φ ∨ ψ ∈ Σn+1.

We shall write Σn+1! for formulas ϕ of the form ∃x ϕ0 with ϕ0 ∈ Πn. We will
work in the absence of strong versions of (bounded) collection Bϕ which is defined
as Bϕ := ∀z ∀u (∀x<z ∃y ϕ(x, y,u) → ∃y′ ∀x<z ∃ y<y′ ϕ(x, y,u)

)
. Therefore,

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 216–225, 2015.
DOI: 10.1007/978-3-319-20028-6 22

Turing Jumps Through Provability 217

we will consider the formula class Σn+1,1 consisting of existentially quantified
disjunctions and conjunctions of Σn+1 formulas with bounded quantifiers over
them. To be more precise, we first inductively define

Σn+1,b := Σn+1 | (Σn+1,b ◦ Σn+1,b) | (Qx<y Σn+1,b)

with ◦ ∈ {∧,∨} and Q ∈ {∀,∃}. Next we define the Σn+1,1 formulas to be of
the form ∃x φ with φ ∈ Σn+1,b.

The theory of elementary arithmetic, EA, is axiomatized by the defining
axioms for {0, 1, exp,+, ·, <} together with induction for all Δ0 formulas. The
theory Peano Arithmetic, PA, is as EA but now allowing induction axioms for
any first order formula. It is well known that PA proves any instance Bϕ of
collection so that in particular each Σn+1,1 sentence is equivalent to some Σn+1

sentence. Clearly we have that Σn+1! ⊂ Σn+1. Using coding techniques, it is
clear that each Σn+1 formula is within EA equivalent to a Σn+1! formula.

For us, a computably enumerable (c.e.) theory T is understood to be given
by a Δ0 formula that defines the set of codes of the elementary set of axioms
of T . We will employ standard formalizations of meta-mathematical properties
like ProofT (x, y) for “x is the Gödel number of a proof from the axioms of T
of the formula whose Gödel number is y”. We shall often refrain from distin-
guishing a syntactical object ϕ from its Gödel number �ϕ� or from a syntactical
representation of its Gödel number.

We will write �T ϕ for the Σ1! formula ∃x ProofT (x, ϕ) and ♦T ϕ for ¬�T ¬ϕ.
By �T ϕ(ẋ) we will denote a formula which contains the free variable x, that
expresses that for each value of x the formula ϕ(x) is provable in T . Here, x
denotes a syntactical representation of the number x.

By Σ1 completeness we refer to the fact that for any true Σ1 sentence σ we
have that EA � σ. It is well-known that EA proves a formalized version of this:
for any Σ1 formula σ(x) and any c.e. theory T we have EA � σ(x) → �T σ(ẋ).

2 Witness-Comparisons: Rosser and the FGH Theorem

In this section we shall be dealing with various so-called witness-comparison
arguments where the order of (least) witnesses to existential sentences is impor-
tant. The first and most emblematic such argument occurred in the proof
of Rosser’s theorem which is a strengthening of Gödel’s first incompleteness
theorem.

Theorem 1 (Rosser’s Theorem). Let T be a consistent c.e. theory extending
EA. There is some ρ ∈ Σ1 so that T � ρ and T � ¬ρ.

For rhetoric reasons we shall below include a standard proof of this celebrated
result. Before doing so, we first need some notation.

Definition 1. For φ := ∃x φ0(x) and ψ := ∃x ψ0(x) we define

φ ≤ ψ := ∃x
(
φ0(x) ∧ ∀ y<x ¬ψ0(y)

)
and,

φ < ψ := ∃x
(
φ0(x) ∧ ∀ y≤x ¬ψ0(x)

)
.

218 J.J. Joosten

Statements of the form φ ≤ ψ or φ < ψ with φ, ψ ∈ Σn+1 are called witness-
comparison statements. Let us now collect some easy principles about witness-
comparison statements whose elementary proofs we leave as an exercise.

Lemma 1. For A and B in Σn+1 we have

1. EA � (A < B) → (A ≤ B);
2. EA � (A < B) ∧ (B ≤ C) → (A < C);
3. EA � (A ≤ B) ∧ (B < C) → (A < C);
4. EA � (A ≤ B) ∧ (B ≤ C) → (A ≤ C);
5. EA � (A ≤ B) → ¬(B < A) and consequently;
6. EA � (A < B) → ¬(B ≤ A);
7. EA � [(B ≤ B) ∨ (A ≤ A)] → [(A ≤ B) ∨ (B < A)];
8. EA � (A ≤ B) → A;
9. EA � A ∧ ¬B → (A < B) ;

10. EA � A ∧ ¬(A ≤ B) → B.
11. Both C < D and C ≤ D are of complexity Σn+1,1 if C,D∈Σn+1,1.

We can now present a concise proof of Rosser’s theorem.

Proof. We consider a fixed point ρ so that T � ρ ↔ (�T ¬ρ ≤ �T ρ).
If T � ρ, then for some number n we have ProofT (n, ρ). Since T is consistent

we also have ∀m≤n¬ProofT (m,¬ρ). Thus, by Σ1 completeness we have T �
�T ρ < �T ¬ρ whence T � ¬ρ; a contradiction.

Likewise, if T � ¬ρ we may conclude �T ¬ρ ≤ �T ρ so that T � ρ.

We now turn our attention to another theorem, a proof of which can succinctly be
given using witness comparison arguments: the FGH theorem. The initials FGH
refer to Friedman, Goldfarb and Harrington who all substantially contributed
to the theorem and we refer to [5] for historical details.

The proof we give here is a slight modification of the one presented in [5].
The most important improvement is that we avoid the use of the least-number
principle so that the proof becomes amenable for generalizations without a need
to increase the strength of the base theory.

Theorem 2 (FGH theorem). Let T be any computably enumerable theory
extending EA. For each σ ∈ Σ1 we have that there is some ρ ∈ Σ1 so that

EA � ♦T � → (
σ ↔ �T ρ

)
.

Proof. As in [5] we consider the fixed point ρ ∈ Σ1 for which EA � ρ ↔ (σ ≤
�T ρ). Without loss of generality we may assume that σ ∈ Σ1! so that both
σ ≤ �T ρ and �T ρ < σ are Σ1. We now reason in EA, assume ♦T � and set out
to prove σ ↔ �T ρ.

(→): assume for a contradiction that σ and ¬�T ρ. By Lemma 1.9 we conclude
σ ≤ �T ρ, i.e., ρ. By provable Σ1 completeness we get �T ρ.

(←): assume for a contradiction that ¬σ and �T ρ. Again, we conclude
�T ρ < σ so that �T (�T ρ < σ) whence �T ¬ρ so that �T ⊥ contradicting the
assumption ♦T �.

Turing Jumps Through Provability 219

A very special feature of ρ from the above proof is that it is of complexity Σ1

and that ¬ρ is implied a by a related Σ1 formula. Thus, we clearly provably have
ρ → �T ρ but in general we do not have ¬ρ → �T ¬ρ. But, due to the nature of ρ
we have that �T ¬ρ follows from the Σ1 statement that is slightly stronger than
¬ρ, namely �T ρ < σ. The least number principle for Σn formulas, LΣn, says
that for any ψ ∈ Σn we have ∃x ψ(x) → ∃x (ψ(x) ∧ ∀ y<x ¬ψ(y)). Of course,
using LΣ0 and by Lemma 1.7, ¬ρ and �ρ < σ are provably equivalent under the
assumption that �ρ ∨ σ.

We will be interested in generalizing the FGH theorem to Σn formulas using
ever stronger notions of provability. Visser’s proof of the FGH theorem as pre-
sented in [5] used an application of the least number principle for Δ0 formulas
in the guise of A → (A ≤ A). Thus, a direct generalization of Visser’s argument
to stronger provability notions would call for stronger and stronger arithmetical
principles:

Lemma 2. The schema A → (A ≤ A) for A ∈ Σn+1! is over EA provably
equivalent to the least-number principle for Πn formulas.

However, since our proof of the FGH theorem did not use the minimal number
principle, we shall see in the next section how the above argument generalizes
to other provability predicates. We end this section with some remarks on the
fixed point used in the proof of the FGH theorem. By no means, this fixed point
is the only one that works. The minor change where we consider ρ ↔ (σ < �ρ)
works with almost the same proof. But we also have two ‘dual’ versions of our
fixed point which gives the desired result.

Lemma 3. Let T be a c.e. theory and let σ ∈ Σ1.

1. If EA � ρ ↔ (�T ¬ρ ≤ σ) then EA � σ ∨ �T ⊥ ↔ �T ¬ρ.
2. If EA � ρ ↔ ¬(�T ρ < σ) then EA � σ ∨ �T ⊥ ↔ �T ρ.

Proof. (1) We reason in EA assuming ρ ↔ (�T ¬ρ ≤ σ). →: We suppose σ.
If ρ, then �T ¬ρ ≤ σ whence �T ¬ρ. If ¬ρ, then ¬(�T ¬ρ ≤ σ). But from
our assumption σ we get by the minimal number principle that σ ≤ σ so
that (�T ¬ρ ≤ σ) ∨ (σ < �T ¬ρ) whence we get σ < �T ¬ρ. By provable
Σ1-completeness we get �T (σ < �T ¬ρ) whence �T ¬ρ.

←: If �T ¬ρ and ¬σ, then �T ¬ρ ≤ σ whence ρ and by Σ1 completeness
�T ρ so that �T ⊥.

(2) Again, we reason in EA now avoiding the minimal number principle. →:
Suppose σ. If σ ≤ �T ρ, then �T (σ ≤ �T ρ) whence �T ¬(�T ρ < σ) so that
�ρ. If ¬(σ ≤ �T ρ), then since σ we have �T ρ.

←: Suppose �T ρ and ¬σ. Then, �T ρ < σ whence also �T (�T ρ < σ).
Thus �T ¬ρ, which together with the assumption that �T ρ yields �T ⊥.

3 Generalizations of the FGH Theorem and Applications

By [n + 1]TrueT we will denote the formalization of the predicate “provable in T
together with all true Σn+2 sentences”. For convenience, we set [0]T := �T .

220 J.J. Joosten

Basically, for n > 0, the predicate [n]TrueT ϕ will be a formalization of “there is
a sequence π0, . . . , πm so that each πi is either an axiom of T , or a true Σn+1

sentence, or a propositional logical tautology, or a consequence of some rule of
T using earlier elements in the sequence as antecedents”. Thus, it is clear that
for recursive theories T we can write [n]TrueT by a Σn+1,1-formula. Also, we have
provable Σn+1,1 completeness for these predicates, that is:

Lemma 4. Let T be a c.e. theory extending EA and let φ be a Σn+1,1 formula.
We have that

EA � φ(x) → [n]TrueT φ(ẋ).

Proof. Given φ(z, y1, . . . , yk, x) ∈ Σn+1, reason in EA, fix x1, . . . , xk, x and,
assume

∃z Q1 y1<x1 . . . Qk yk<xk φ(z, y1, . . . , yk, x)

where Q1 y1<x1 . . . Qk yk<xk is some block of bounded quantifiers. Thus, for
some a we have Q1 y1<x1 . . . Qk yk<xk φ(a, y1, . . . , yk, x). Under the box, we
can now replace each ∀ yi<xi by

∧
yi<xi

and each ∃ yi<xi by
∨

yi<xi
so that

by applying distributivity we see that Q1 y1<x1 . . . Qk yk<xk φ(a, y1, . . . , yk, x)
is equivalent to a disjunctive normal form of bounded substitution instances of
φ(a, y1, . . . , yk, x). Note that this operation in available within EA since it only
requires the totality of exponentiation.

Outside the box we know that for some of these big conjunctions of bounded
substitution instances of φ(a, y1, . . . , yk, x) actually all of the conjuncts are true.
Since each of those conjuncts is a true Σn+1 sentence, each conjunct is an axiom
whence holds under the box. Thus, the whole conjunct is provable under the
box whereby we obtain [n]TrueT Q1 y1<x1 . . . Qk yk<xk φ(a, y1, . . . , yk, x) whence
[n]TrueT ∃z Q1 y1<x1 . . . Qk yk<xk φ(z, y1, . . . , yk, x) as was to be shown. It is clear
that this case suffices for the more general form of Σn+1,1 formulas.

It is easy to check that the predicate [n]TrueT is well behaved. In particular one
can check that all the axioms of the standard provability logic GL as defined
in the last section hold for it. Over EA, the notion of [n]TrueT can be related to
regular provability �T by collecting all oracle axioms in a big conjunction.

By FinSeq(f) we denote a predicate that only holds on numbers that are
codes of a finite sequence of Gödel numbers and by |f | we denote the length of
such a sequence. Moreover, fi will denote the ith element of such a sequence f .
With TrueΣn+1 we will denote a partial truth predicate for Σn+1 formulas and
TrΣn+1 will denote the set of true Σn+1 sentences.

Lemma 5. For any c.e. theory T , we have that

EA � [n]TrueT ϕ ↔ ∃f
(
FinSeq(f)∧∀ i<|f | TrueΣn+1(fi) ∧ �T

(
(∧i<|f |fi) → ϕ

))
.

Proof. The ← direction is trivial. For the other direction we observe that we
can express that an element of a proof is a true Σn+1 sentence in a Δ0 fashion
so that by Δ0 induction on the length of a proof we can prove that there is a
sequence containing exactly all the true Σn+1 sentences used in the proof.

Turing Jumps Through Provability 221

Note that our definition of [n]TrueT is slightly non-standard since in the literature
(e.g. [1]) it is more common to define [n]TrueT using a Πn oracle rather than a Σn+1

oracle. With a Πn oracle one gets provable Σn+1 completeness but in the absence
of BΣn+1 not necessarily provable Σn+1,1 completeness. With our definition of
[n]TrueT , since A ≤ B ∈ Σn+1,1 for A,B ∈ Σn+1,1, and since we provided a proof
where the minimal number principle is avoided, the FGH theorem smoothly
generalizes to the new setting.

Theorem 3. Let T be any computably enumerable theory extending EA and let
n < ω. For each σ ∈ Σn+1,1 we have that there is some ρn ∈ Σn+1,1 so that

EA � 〈n〉TrueT � → (
σ ↔ [n]TrueT ρn

)
.

Proof. The proof runs entirely analogue to the proof of Theorem2. Thus, for each
number n we consider the fixed point ρn so that EA � ρn ↔ (σ ≤ [n]TrueT ρn).
Note that both ρn and [n]TrueT ρ < σ are Σn+1,1 whence by Lemma 4 we can apply
provable Σn+1,1 completeness to them.

As an easy corollary we get that [n]TrueT formulas are closed not only under
conjunction, as is well know, but also under disjunctions. Note that the FGH
theorem yields that provably 〈n〉TrueT � → (σ ↔ [n]TrueT ρn). Using the proposi-

tional tautology (¬A → C) →
[(

A → (B ↔ C)
) ↔ (

(¬A ∨ B) ↔ C
)]

and

[n]TrueT ⊥ → [n]TrueT ρn we see that this is equivalent to
(
[n]TrueT ⊥ ∨ σ

) ↔ [n]TrueT ρn.

Corollary 1. Let T be a c.e. theory extending EA and let n ∈ N. For each
formulas ϕ,ψ there is some σ ∈ Σn+1 so that T � ([n]TrueT ϕ ∨ [n]TrueT ψ) ↔
[n]TrueT σ.

Proof. We consider some σ ∈ Σn+1,1 so that provably σ ↔ ([n]TrueT ϕ ∨ [n]TrueT ψ).
By Theorem 3 applied to this σ we provably have that ([n]TrueT ϕ ∨ [n]TrueT ψ) ∨
[n]TrueT ⊥ is equivalent to [n]TrueT ϕ ∨ [n]TrueT ψ.

Lemma 6. Let T be any sound c.e. theory and let A ⊆ N. The following are
equivalent

1. A is c.e. in ∅(n);
2. A is many-one reducible to ∅(n+1);
3. A is definable on the standard model by a Σn+1 formula;
4. A is definable on the standard model by a formula of the form [n]TrueT ρ(ẋ);
5. A is definable on the standard model by a formula of the form [n]TrueT ρ(ẋ)

where ρ(x) ∈ Σn+1,1;

Proof. The equivalence of 1, 2 and 3 is just Post’s theorem. The implication
5 ⇒ 4 is trivial, and implication 4 ⇒ 3 holds in virtue of [n]TrueT being Σn+1,1

which on N is equivalent to Σn+1, so it suffices to prove 3 ⇒ 5.
Thus, let the number n be fixed and, let A be a set of natural numbers so that for

some σ(x) ∈ Σn+1 we have m ∈ A ⇐⇒ N |= σ(m). Using the fixed point lemma
we find ρn(x) ∈ Σn+1,1 so that EA � ∀x

(
ρn(x) ↔ [σ(x) ≤ [n]TrueT ρn(ẋ)]

)
.

222 J.J. Joosten

Reasoning in EA, we pick an arbitrary x and repeat the reasoning as in the proof
of Theorem 3 to see that EA � 〈n〉TrueT � → ∀x

(
σ(x) ↔ (

[n]TrueT ρn(ẋ)
))

.
Since EA is sound and by assumption of T also being sound we have for each n
that N |= 〈n〉TrueT �, we may conclude that for any number m, N |= σ(m) ⇐⇒
N |= [n]TrueT ρn(m) which was to be proven.

Feferman showed in [2] that for each unsolvable Turing degree d there is a theory
U so that the Turing degree of {�ϕ� | U � ϕ} is d. However, the theories that
Feferman considered were formulated in the language of identity and in particular
did not contain arithmetic. It is not hard to see that for theories that do contain
arithmetic we can only attain degrees that arise as Turing jumps.

Lemma 7. Let A ⊆ N be definable on N by α(x) with Turing degree a. Then,
the Turing degree of {ψ | EA + {α(n) | N |= α(n)} � ψ} equals a′.

We thus see that the Turing degrees of theories that are defined by a minimal
amount of arithmetic (EA) together with some oracle, are entirely determined by
the Turing degree of the corresponding oracle by means of the jump operator. By
Friedberg’s jump inversion theorem ([4]) we may thus conclude that any Turing
degree above 0′ can be attained as the decision problem of a theory containing
arithmetic. In this light, Lemma 6 should not come as a surprise. However, in the
lemma we have provided a natural subsequence of theories so that moreover, all
the necessary reasoning for the reductions can be formalized in EA. Lemma6 is
stated in terms of definability and computability but the proof tells us actually
a bit more, namely that the FGH theorem is easily formalizable within EA.

Lemma 8. For any c.e. theory T we have that

EA � ∀σ∈Σn+1 ∃ ρ∈Σn+1

(
〈n〉TrueT � → (

TrueΣn+1(σ) ↔ [n + 1]TrueT ρ
))

.

For other notions of provability we get similar generalizations of the FGH theo-
rem. In particular, let [n]Omega

T denote the formalization of the predicate “prov-
able in T using at most n nestings of the omega rule”. Following the recursive
scheme [0]Omega

T ϕ := �T ϕ and,

[n + 1]Omega
T ϕ := ∃ψ

(
∀x [n]Omega

T ψ(ẋ) ∧ �T (∀x ψ(x) → ϕ)
)

we see that for c.e. theories T we can write [n]Omega
T by a Σ2n+1-formula. Also,

we have provable Σ2n+1 completeness for these predicates, that is:

Proposition 1. Let T be a computable theory extending EA and let φ be a
Σ2n+1 formula. We have that EA � φ → [n]Omega

T φ.

Proof. By an external induction on n where each inductive step requires the
application of an additional omega-rule.

This proposition is the omega-rule analogue of provable Σn+1,1 completeness
for the [n]TrueT predicate. As a corollary we get an FGH Theorem for omega-
provability.

Turing Jumps Through Provability 223

Corollary 2. Let T be any sound computably enumerable theory extending EA
and let n < ω. For each σ ∈ Σ2n+1 we have that there is some ρn ∈ Σ2n+1,1 so
that PA � 〈n〉Omega

T � → (
σ ↔ [n]Omega

T ρn

)
.

We have formulated this corollary over PA so that Σ2n+1,1 sentences are provably
equivalent to Σ2n+1 sentences using collection. Consequently, we can now also
prove a definability result for the [n]Omega

T predicate.

Lemma 9. Let T be any c.e. theory, let n be a natural number, and let A ⊆ N.
The following are equivalent

1. A is c.e. in ∅(2n);
2. A is definable on the standard model by a Σ2n+1 formula;
3. A is definable on the standard model by a formula of the form [n]Omega

T ρ(ẋ);
4. A is definable on the standard model by a formula of the form [n]Omega

T ρ(ẋ)
where ρ(x) ∈ Σ2n+1,1;

Proof. The proof of this lemma is analogous to the proof of Lemma6 if one
substitutes Σn+1 by Σ2n+1, EA by PA, and [n]TrueT by [n]Omega

T .

By comparing Lemmas 6 and 9 we see that in a sense the hierarchy of formulas
of the form [n]TrueT ϕ is more fine-grained than the hierarchy of formulas of the
form [n]Omega

T ϕ. The positive feature of the latter hierarchy is that it is defined
solely in terms of provability whereas the former needs to call upon partial
truth predicates. As such the [n]Omega

T hierarchy is more amenable to Turing
jumps beyond the finite where no clear-cut syntactical characterizations along
the lines of Post’s correspondence theorem are available (see [3]). The down-side
to the [n]Omega

T hierarchy is that it runs outline with the Turing-jump hierar-
chy. In a forth-coming paper we propose a transfinite progression of provability
notions in second order arithmetic that takes the best of both worlds: it is defined
purely in terms of provability as in (1), synchronizes with the Turing-jump hier-
archy as in Theorem 4, and can be transfinitely extended along any ordinal Ξ
definable in second order logic yielding for a large class of second order theories
a sound interpretation of a well-behaved logic called GLPΞ as in Theorem 5.

4 Graded Provability via Turing Jumps

We shall now see how the FGH theorem can be used to define graded provability
notions [n]�T for n ∈ N which are defined using only provability notions yet which
are Σn+1 complete. Note that on the natural numbers we have [n + 1]TrueT ϕ ⇔
∃π

(
TrueΠn+1(π) ∧ �T (TrueΠn+1(π) → φ)

)
where [0]TrueT is nothing but �T . It

is easy to see that this equivalence is provable within PA. The idea now is to
replace true Πn+1 sentences by consistency statements, that is, by sentences of
the form 〈n〉T ϕ. This replacement will be done in a recursive fashion. Thus we
can consider the following recursive scheme [0]�T φ := �T φ, and [n + 1]�T φ :=
�T φ ∨ ∃ψ

(〈n〉�
T ψ ∧ �(〈n〉�

T ψ → φ)
)
. For this recursive scheme, we can

easily prove various desirable properties. However, for the sake of generalizing

224 J.J. Joosten

the definition to the transfinite setting, we choose to consider a more involved
recursion.

[0]�T φ := �T φ, and

[n + 1]�T φ := �T φ ∨ ∃ψ
∨

0≤m≤n

(
〈m〉�

T ψ ∧ �(〈m〉�
T ψ → φ)

)
. (1)

We shall now prove that this provability notion [n]�T is actually provably very
similar to that of [n]TrueT for any natural number n.

Proposition 2. Let T be a sound c.e. theory extending EA. We have for all
n ∈ N that

1. EA � ∀ϕ
(
[n]�T ϕ → [n]TrueT ϕ

)
;

2. PA � 〈n〉TrueT � → ∀ϕ
(
[n + 1]�T ϕ ↔ [n + 1]TrueT ϕ

)
;

3. PA � [n]TrueT

(
∀ϕ

(
[n]�T ϕ ↔ [n]TrueT ϕ

))
;

4. N |= ∀ϕ
(
[n]�T ϕ ↔ [n]TrueT ϕ

)
.

Proof. For the sake of readability we shall omit the subscripts T in this proof.

Item 1: This direction is easy, since by induction on n we see that each 〈n〉�
T ψ

is of complexity Πn+1.
Item 2: We reason in PA, assume 〈n〉True� and pick ϕ arbitrary. By Item 1 we

only need to prove that [n + 1]Trueϕ → [n + 1]�ϕ.
Thus, we suppose that [n + 1]Trueϕ so that for some π we have

TrueΠn+1(π) and �
(
TrueΠn+1(π) → ϕ

)
. Using the (formalized) FGH

theorem we now pick ρ so that TrueΠn+1(π) ∧ 〈n〉True� ↔ 〈n〉Trueρ.
Since we work under the assumption of 〈n〉True� we thus have 〈n〉Trueρ.
Clearly, since we know that �

(
TrueΠn+1(π) → ϕ

)
we also have the

weaker �
(〈n〉Trueρ → ϕ

)
. Thus we have 〈n〉Trueρ ∧ �

(〈n〉Trueρ → ϕ
)

so that by applying twice the induction hypothesis we get 〈n〉�ρ ∧
�

(〈n〉�ρ → ϕ
)

and by definition [n + 1]�ϕ as was to be shown.
Item 3: For n = 0 the statement holds by definition and for n+1, the statement

follows from the previous item since EA � [n + 1]True〈n〉True�.
Item 4: follows directly from the previous from the soundness of EA and T .

We shall see below that [n]�T provability is a very decent provability notion.

Theorem 4. Let T be a c.e. theory. We have for all A ⊆ N that the following
are equivalent

1. A is c.e. in ∅(n);
2. A is many-one reducible to ∅(n+1);
3. A is definable on the standard model by a formula of the form [n]�T ρ(ẋ).

Proof. This is a direct consequence of Lemma 6 and a minor generalization of
Proposition 2.

Turing Jumps Through Provability 225

As a consequence of this theorem we see that [n]�T sentences are closed under
disjunctions and conjunctions.

Corollary 3. Let T be a c.e. theory extending EA and let n ∈ N. For each
formulas ϕ,ψ there is some σ so that

T � ([n]�T ϕ ∨ [n]�T ψ) ↔ [n]�T σ.

Proof. Immediate from Theorem 4 since c.e. sets (with or without oracles) are
closed under both conjunctions and disjunctions.

As a matter of fact, it turns out that this corollary can be formalized being one
of the corner stones in a proof to the extent that the provability logic concerning
the [n]� predicates is nice. In particular, let GL be the normal modal logic
axiomatized by �(A → B) → (�A → �B) and �(�A → A) → �A and all
propositional tautologies with rules Modus Ponens and Necessitation: A

�A . Then
GLPω is the polymodal logic axiomatized by GL for each modality [n] together
with the schemas [n]A → [n + 1]A and 〈n〉A → [n + 1]〈n〉A.

Theorem 5. Let T be any c.e. theory extending EA. The logic GLPω is sound
w.r.t. PA if we interpret each [n]-modality as [n]�T .

The proof proceeds by a straightforward induction on n considering the logics
GLPn+1 that have only modalities up to [n].

Acknowledgements. I would like to thank Lev Beklemishev, Ramon Jansana,
Stephen Simpson and Albert Visser for encouragement and fruitful discussions.
También quisiera agradecerles a Diego Agulló Castelló y Rosa Maŕıa Espinosa Jaén,
alcaldes de las pedańıas de Elche, Maitino y Perleta respectivamente, por facilitarme
un sitio donde trabajar durante el verano del 2014. The research was supported by
the Generalitat de Catalunya under grant number 2014SGR437 and from the Spanish
Ministry of Science and Education under grant numbers MTM2011-26840, and
MTM2011-25747.

References

1. Beklemishev, L.D.: Provability algebras and proof-theoretic ordinals, I. Ann. Pure
Appl. Logic 128, 103–124 (2004)

2. Feferman, S.: Degrees of unsolvability associated with classes of formalized theories.
J. Symbolic Logic 22(2), 161–175 (1957)

3. Fernández-Duque, D., Joosten, J.J.: The omega-rule interpretation of transfinite
provability logic (submitted). arXiv:1302.5393 [math.LO] (2013)

4. Friedberg, R.M.: A criterion for completeness of degrees of unsolvability. J. Symbolic
Logic 22(2), 159–160 (1957)

5. Visser, A.: Faith and falsity: a study of faithful interpretations and false Σ0
1 -

sentences. Ann. Pure Appl. Logic 131(1–3), 103–131 (2005)

http://arxiv.org/abs/1302.5393

Rice’s Theorem in Effectively Enumerable
Topological Spaces

Margarita Korovina1(B) and Oleg Kudinov2

1 A.P. Ershov Institute of Informatics Systems, SbRAS, Novosibirsk, Russia
rita.korovina@gmail.com

2 Sobolev Institute of Mathematics, SbRAS, Novosibirsk, Russia
kud@math.nsc.ru

Abstract. In the framework of effectively enumerable topological spac-
es, we investigate the following question: given an effectively enumerable
topological space whether there exists a computable numbering of all
its computable elements. We present a natural sufficient condition on
the family of basic neighborhoods of computable elements that guaran-
tees the existence of a principal computable numbering. We show that
weakly-effective ω–continuous domains and the natural numbers with
the discrete topology satisfy this condition. We prove weak and strong
analogues of Rice’s theorem for computable elements.

1 Introduction

This research is motivated by rapidly increasing interest in continuous data
representations with suitable computational properties. In this paper we con-
centrate on studying properties of computable elements in the framework of
effectively enumerable topological spaces. We use numbering theory and index
sets as promising techniques merging classical recursion theory and computabil-
ity in topological spaces. There are several reasons for doing this. One of them is
that the theory of index sets provides methods for encoding problems in an effec-
tive way by natural numbers, i.e., generate the corresponding index sets which
can be used for analysis of their complexity in the settings of arithmetical and
analytical hierarchies. Another reason is that the theory of index sets has been
already successfully employed in many areas in mathematics and computer sci-
ence. In recursion theory, index sets have been applied to obtained both new
results and new elegant proofs of classical theorems such as the Post’s theorem
and the density theorem [9,17,19,21]. Many recent advancements in computable
model theory are also closely related to index sets [4,5]. In computer science,
the Rice-Shapiro theorem provides simple description of effectively enumerable
properties of program languages and the complexity of some decision problems

This research was partially supported by Marie Curie Int. Research Staff Scheme Fel-
lowship project PIRSES-GA-2011-294962, DFG/RFBR grant CAVER BE 1267/14-1
and 14-01-91334, RFBR grants 13-01-00015, 14-01-00376.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 226–235, 2015.
DOI: 10.1007/978-3-319-20028-6 23

Rice’s Theorem in Effectively Enumerable Topological Spaces 227

in programming have been studied in [23] using index sets. While some impor-
tant results have been obtained in [7,8,22–24,26] many methods and techniques
of numbering theory have not been fully employed in computable analysis. The
class of effectively enumerable topological spaces has been proposed in [15]. This
is a wide class containing weakly effective ω–continuous domains, computable
metric spaces and positive predicate structures [14] that retains certain nat-
ural effectivity requirements which allow us to introduce reasonable concepts of
(partial) computable functions. The main results of this paper are as follows.

We propose a natural condition on the family of basic neighborhoods of
computable elements that guarantees the existence of a principal computable
numbering. We show that weakly effective ω–continuous domains and the nat-
ural numbers with the discrete topology satisfy this condition. For such spaces we
address the problem whether there exists a nontrivial subset of the computable ele-
ments with a recursive index set. We give an example which demonstrates the main
difficulties in straightforward transfer of Rice’s theorem. Nevertheless, employ-
ing Branching Lemma [2], for effectively enumerable T0-spaces satisfying the con-
dition that the family of basic neighborhoods of the computable elements are
wn-families, we prove generalisations of Rice’s theorem for sets of computable ele-
ments. In particular, for such spaces if the subspace Xc of the computable elements
is connected then there is no nontrivial subset of Xc with a computable index set.

2 Preliminaries

We refer the reader to [19] and [20] for basic definitions and fundamental con-
cepts of recursion theory. We recall that, in particular, ϕe denotes the partial
computable (recursive) function with an index e in the Kleene numbering, ϕs

e

denotes the computation of ϕe for s steps such that the function ϕs
e is uni-

formly primitive recursive. In this paper we also use notations We = dom(ϕe),
W s

e = dom(ϕs
e), and πe = im(ϕe). We use Dm to denote the m-th finite subset of

ω in the canonical numbering. In the classical computability (recursion) theory
and its applications in computable model theory, computable analysis [1,7,8,25]
a common situation is the following. We start with the class of computable real
numbers IRc as an example. It is well-known that a real number r is computable
if and only if the constraint

∗(RD, LD; r) � (RD = {i|Qandqi > r} and LD = {i| and qi < r}arec.e.)

holds. Therefore, a criterion for r to belong to IRc is based on the existence
of computably enumerable sets RD, LD satisfying the constraint ∗(RD,LD; r).
This could be generalised to another class K, i.e., a criterion for an element k to
belong to the class K is based on the existence of computably enumerable sets
V1, . . . , Vs satisfying a particular constraint ∗(V̄ ; k) such that, for any V̄ and dif-
ferent k1, k2, the constraints ∗(V̄ ; k1) and ∗(V̄ ; k2) don’t hold simultaneously.
We call such K a constrained class. In the case when K is a constrained class we
say that {km}m∈ω is a computable sequence of elements of K if there exist com-
putable sequences {V m

1 }m∈ω, . . . , {V m
s }m∈ω of computably enumerable sets such

228 M. Korovina and O. Kudinov

that for every m ∈ ω the constraint ∗(V m
1 , . . . , V m

s ; km) holds. In other words,
one can say that the property (∃V̄) ∗ (V̄ ; k) holds uniformly on the elements of
the sequence. For example, {rm}m∈ω is a computable sequence of computable
real numbers if there exist computable sequences {LDm}m∈ω and {RDm}m∈ω of
computably enumerable sets such that ∗(RDm, LDm; rm) holds for every m ∈ ω,
i.e., the property (∃RD)(∃LD) ∗ (RD, LD; r) holds uniformly on r ∈ IRc.

For background on numbering theory we refer to [10]. Let A be a set. A
numbering is a surjection function ξ : ω → A. Assume additionally that A is a
constrained class. A numbering ξ : ω → A is called computable if {ξ(i)}i∈ω is
the computable sequence of all elements of A. A numbering α : ω → A is called
principal computable if it is computable and every computable numbering ξ is
computably reducible to α, i.e., there exists a computable function f : ω → ω
such that ξ(i) = α(f(i)). It is worth noting that these definitions agree with the
notions of computable and principal computable numberings of A ⊆ P(ω) [10].

Definition 1. Let K be a constrained class, α : ω → K be a principal com-
putable numbering and L ⊆ K. The set Ix(L) = {n|α(n) ∈ L} is called an index
set for the subclass L.

3 Effectively Enumerable Topological Spaces

Now we recall the notion of effectively enumerable topological space. Let (X, τ, α)
be a topological space, where X is a non-empty set, B ⊆ 2X is a base of the
topology τ and α : ω → B is a numbering.

Definition 2. [15] A topological space (X, τ, α) is effectively enumerable if the
following conditions hold.

1. There exists a computable function g : ω × ω × ω → ω such that

α(i) ∩ α(j) =
⋃
n∈ω

α(g(i, j, n)).

2. The set {i|α(i) �= ∅} is computably enumerable.

In [15] it has been shown that the class of effectively enumerable topological
spaces is a natural proper extension of weakly effective ω–continuous domains
and computable metric spaces as well, in particular, the real numbers, the contin-
uous real functions belong to this class. Let us note that when a base numbering
is changed, computability properties may also change. Therefore we need to for-
malise reducibility and equivalence between base numberings.

Definition 3. Let (X, τ, α) and (X, τ, β) be topological spaces. We don’t assume
that im(α) = im(β). We say that β is computably reducible to α, denoted β ≤ α,
if there exists a computable sequence {An}n∈ω of c.e. sets such that β(n) =
∪i∈An

α(i) for all n ∈ ω. Numberings α and β are equivalent, denoted α ≡ β, if
α ≤ β and β ≤ α.

Rice’s Theorem in Effectively Enumerable Topological Spaces 229

It is worth noting that if α ≡ β then (X, τ, α) is an effectively enumerable topo-
logical space if and only if (X, τ, β) is an effectively enumerable topological space.
As we will see below, any change of base numberings from the same equivalence
class preserves the classes of effectively open sets, computable elements and etc.
We can relativise the notions from Definition 3 to an appropriate oracle or a
Turing degree a.

Proposition 1. For every Turing degree a, there exists an effectively enumer-
able T1-space (X, τ, α) such that any base numbering β a-equivalent to α (and
even any β ≤a α) is not a-decidable, i.e., the set {(n,m)|α(n) = α(m)} is not
a-computable.

Recently, various notions of computable topological space have been proposed
(see among others [12,22,25]). The following results illustrate differences of our
approach and the approaches proposed in [12,25].

Proposition 2. There exists an effectively enumerable topological space which
is not T0-space.

Proof. One of the examples is an algebraically closed field with Zariski topology.

Proposition 3. There exists an effectively enumerable T1-space which is not a
computable topological space in the sense of [25].

Proof. The claim follows from Proposition 1 under the assumption that a = 0′.

Proposition 4. There exists an effectively enumerable T2-space which is not a
computable topological space in the sense of [12].

In this paper we use the following notion of effectively open sets and char-
acterisation of total computable functions between two effectively enumerable
topological spaces [15].

Definition 4. [15] Let (X, τ, α) be an effectively enumerable topological space.
A set A ⊆ X is effectively open if there exists a computably enumerable set V
such that A =

⋃
n∈V α(n).

Proposition 5. [15] Let X = (X, τ, α) be an effectively enumerable topological
space and Y = (Y, λ, β) be an effectively enumerable T0-space. For a total func-
tion F : X → Y F is computable iff F is effectively continuous, i.e., there exists
a computable function h : ω × ω → ω such that F−1(β(j)) =

⋃
i∈ω α(h(i, j)).

4 Computable elements of Effectively Enumerable
Topological Spaces

The notion of computable element is based on the following observation.

Proposition 6. For an effectively enumerable T0–space (X, τ, α) and a point
x ∈ X the following assertions are equivalent.

230 M. Korovina and O. Kudinov

(1) The function f : {0} → X, defined as f(0) = x, is computable.
(2) The set Ax = {n|x ∈ α(n)} is computably enumerable.
(3) For any effectively enumerable T0–space Y the function fY : Y → X, defined

as fY (y) = x, is computable.

Proof. (1 → 2). First, it is worth noting that, for total functions, computability
is equivalent to effective continuity [15]. So, we assume that f is effectively
continuous. Therefore there exists a computable function h : ω × ω → ω such
that f−1(α(n)) =

⋃
i∈ω β(h(n, i)), where β is a numbering of the base of the

space {0}. So, x ∈ α(n) ↔ f−1(α(n)) �= ∅ ↔ ∃i β(h(n, i)) �= ∅. Therefore Ax is
computably enumerable.

(2 → 3). Let us show that fY is effectively continuous. It is easy to see that

f−1
Y (α(n)) =

{
Y, x ∈ α(n)
∅, otherwise.

Let β be a numbering of a topology base of the space Y such that β(m) = Y
and β(k) = ∅ and

Sn =
{ {k}, n �∈ Ax

{k,m}, otherwise.

It is easy to see that f−1
Y (α(n)) =

⋃
s∈Sn

β(s) is computable enumerable. So, fY

is effectively continuous, i.e., computable.
(3 → 1). It is trivial.

For an effectively enumerable T0–space, if one of the assertions (1)–(3) holds, x
is called a computable element (point). For an arbitrary effectively enumerable
topological space, x is called a computable element if the assertions (2) holds
and, for any y ∈ X, Ax �= Ay. Let ∗(V ;x) � (x ∈ X and V = {n|x ∈ α(n)}
is computably enumerable). Let Xc be the set of all computable elements of an
effectively enumerable space X. It is clear that Xc is a constrained class. It is
easy to see that the definition above agrees with the notions of computable real
number, computable element of a computable metric space [3], computable ele-
ment of a weakly–effective ω-continuous domain [24,26] and computable element
of a computable topological space [12]. It is worth noting that there are effec-
tively enumerable topological spaces without computable elements. As example
we can consider the real numbers without the computable points. It is an effec-
tively enumerable T0-space, however there are no computable elements in this
space. An element x ∈ X is called co-effective if X \{x} is an effectively open set.
Let Xco be the set of all co-effective elements. We investigate relations between
the computable and co-effective elements. It turns out that, in general, even for
some complete computable metric spaces Xc �= Xco. For instance, let us con-
sider the Baire space ωω. There exists non-computable f ∈ ωω which is Π0

1 .
Therefore, f is non-computable but co-effective.

Let D = (D;B, β,≤,⊥) be a ω–continuous domain where B is a basis, β :
ω → B is a numbering of the basis (see [13]). We recall that (D, β) is a weakly
effective if the relation β(i) � β(j) is computably enumerable.

Rice’s Theorem in Effectively Enumerable Topological Spaces 231

Proposition 7. Let (X, τ, α) be an effectively enumerable topological space.
Define α∗(m) = ∪k∈Dm

α(k) and BX = im(α∗). Suppose (OX ,BX , α∗,⊆, ∅) is
a weakly effective ω-continuous domain, where the ordering is the set inclusion
and ⊥ = ∅. Then, Xco ⊆ Xc.

Proof. Let x ∈ X be co-effective. This means that X \ {x} =
⋃

n∈ω α(χ(n)) for
a computable function χ : ω → ω. Let us fix some n such that x ∈ α(n) and
α(n) � X. Then,

x ∈ α(k) ↔ (∃s ∈ ω)(∃l0 ∈ ω) . . . (∃ls ∈ ω)

⎛
⎝α(n) �

⋃
i≤s

α(χ(li)) ∪ α(k)

⎞
⎠ .

By assumption, α∗(n) � α∗(j) is computably enumerable. Therefore, the set
Ax is computably enumerable. By definition, x is computable.

Proposition 8. Let (X, τ, α) be an effectively enumerable T2-space such that
there exists a computable function g : ω × ω → ω such that X \ cl(α(n)) =⋃

n∈ω α(g(i, n)). Then, Xc ⊆ Xco.

Proof. Let x ∈ X be computable. Then, X \ {x} =
⋃

m∈ω{X \ cl(α(m))|x ∈
α(m)} is effectively open. So, x is co-effective.

Corollary 1. For every Euclidean space X, Xc = Xco.

Now we address the natural question whether for an effectively enumerable space
there exists a computable numbering of the computable elements. First, we
observe that while for the computable real numbers there is no computable num-
bering [6,18] as well as for the computable points of a complete computable met-
ric space [3], for a weakly–effective ω–continuous domain there is a computable
numbering of the computable elements [26]. Below we point out a natural suf-
ficient condition on the family of basic neighborhoods of computable elements
that guarantees the existence of a principal computable numbering. We show
that weakly-effective ω–continuous domains, ω with the discrete topology sat-
isfy this condition.

Definition 5. [10] Let S be a family of computable enumerable subsets of ω. S
is called a wn-family if there exists a partial computable function σ : ω → ω
such that (i) if σ(n) ↓ then Wσ(n) ∈ S and (ii) if Wn ∈ S then n ∈ dom(σ) and
Wn = Wσ(n).

Theorem 1. Let (X, τ, α) be an effectively enumerable T0-space and SX =
{Aa|a ∈ Xc}. If SX is a wn-family then there exists an algorithm to construct a
principal computable (canonical) numbering ᾱ : ω → Xc.

Proof. From [10] it follows that the set SX has a standard principal computable
numbering γ : n �→ Wσ(h0(n)), where h0 : ω → ω is a total computable function
such that im(h0) = dom(σ). Let us define ᾱ(n) = a ↔ Aa = Wγ(n).

232 M. Korovina and O. Kudinov

Proposition 9. Let D = (D;B, β,≤,⊥) be a weakly effective ω–continuous
domain. Then, the set SD = {{n|β(n) � a}|a ∈ Dc} is a wn-family.

Proposition 10. There exists an effectively enumerable T0-space X = (X, τ, α)
such that SX is a wn-family and X is not a domain.

Proof. See Example 1 below.

Below we assume that X is an effectively enumerable T0-space satisfying the
requirements of Theorem 1 and ᾱ : ω → Xc is defined as in Theorem 1. Now
we address the problem whether there is a nontrivial subset of the computable
elements with a computable index set. The following example is important for
understanding.

Example 1. We consider (ω, τ, α), where τ is the discrete topology and α is
defined as follows: α(0) = ∅, α(k) = {k − 1}. It is clear that Sω = {{n}|n > 0}
is a wn-family. By Theorem 1 there is a principal computable numbering of the
set of computable elements which coincides with ω. There exists K ⊂ ω, e.g.,
K = 2 · ω, such that Ix(K) is computable.

Proposition 11. Let K ⊆ Xc. If Ix(K) is computable then K is clopen in Xc.

The claim follows from the following proposition.

Proposition 12. Let K ⊆ Xc. If Ix(K) is computable then K is open in Xc.

In order to prove the proposition, for K ⊆ Xc, we define K̂ = {Aa|a ∈ K},
W = {n|n ∈ dom(σ) and Wσ(n) ∈ K̂}, and W 1 = {k|k ∈ dom(σ) and Wσ(k) ∈
SX\K̂}. Below we use the observation that Ix(K) = {n|γ(n) ∈ K̂} = {n|h0(n) ∈
W}, ω \ Ix(K) = {n|γ(n) ∈ SX \ K̂} = {n|h0(n) ∈ W 1}, W = h0(Ix(K)), and
W 1 = h0(ω \ Ix(K)), where h0 and γ are defined in Theorem 1. It is clear that
W and W 1 are computably enumerable. We give a proof using the following
lemmas.

Lemma 1 (Branching lemma). [2] Let V and W be computably enumerable
sets such that W contains all computably enumerable indices of V . Let λp.V p

be an enumeration of V and r : ω → ω be a total computable function. Then
there are e ∈ W and p ∈ ω such that We = V p ∪ Wr(p). Furthermore, such e
and p are computed uniformly from an computably enumerable index of W and
computable indices of the functions λp.V p and r.

Lemma 2. If W is computably enumerable then K̂ is monotone, i.e., if A ⊆ B,
A ∈ K̂ and B ∈ SX then B ∈ K̂.

Proof. Let A = Wσ(m) and B = Wσ(n). Define V = A and r(p) ≡ σ(n). It
is worth noting that if Wa = Wσ(m) ∈ K̂ then Wσ(a) = Wa ∈ K̂, so that
a ∈ W . Therefore, we can use Lemma 1 to find e ∈ W and p ∈ ω such that
We = V p ∪ Wr(p) = W p

σ(m) ∪ Wσ(n) = Wσ(n). Since B ∈ SX and e ∈ W ,

Wσ(e) = We ∈ K̂. Therefore, B ∈ K̂.

Rice’s Theorem in Effectively Enumerable Topological Spaces 233

Lemma 3. Assume K ⊆ Xc, Ix(K) is computable and K is not open in Xc.
Then, there exist a ∈ K, m ∈ ω, a computable function h : ω → ω such that
Wσ(m) = Aa and, for all p ∈ ω, W p

σ(m) ⊆ Wσ(h(p)) and h(p) ∈ W 1.

Proof. (Proposition 12) Assume contrary: K ⊆ Xc and Ix(K) is computable
and K is not open in Xc. Then there exist a, m and h satisfying Lemma 3. Let
V = Wσ(m) and r(p) ≡ σ(h(p)), so, for all p ∈ ω, Wσ(p) ∈ SX\K̂. Using Lemma 1
we find e ∈ W and p ∈ ω such that We = W p

σ(m)∪Wσ(h(p)) = Wσ(h(p)) ∈ SX \K̂.
Since, We = Wσ(e), e �∈ W . This contradicts to e ∈ W .

The following corollary of Proposition 12 is a weak analogue of Rice’s theorem.

Proposition 13 (Weak Rice’s Theorem). If Xc is connected then there is
no nontrivial K ⊂ Xc such that Ix(K) is computable.

It is worth noting that in a weakly effective ω-continuous domains with the bot-
tom, e.g., P(ω) with Scott topology, the set of computable elements is connected.
In order to prove a strong analogue of Rice’s theorem we use the notations and
the results from Proposition 12 and the following observations.

Let S = {Wσ(n)}n∈ω be a wn-family with the standard principal computable
numbering γ : n �→ Wσ(h0(n)), where h0 : ω → ω is a total computable function
such that im(h0) = dom(σ). For K̂ ⊆ S we define IxS(K̂) = {m|γ(m) ∈ K̂}.

Definition 6. [19] We say that K̂ is effectively discrete in S if there exists a
strongly computable family {Fn}n∈ω of finite subsets of ω such that

(∀A ∈ S)
(
A ∈ K̂ ↔ (∃n ∈ ω)A ⊇ Fn

)
.

In other words, K̂ is effectively discrete in S if it is effectively open in S that is
a subspace of P(ω) with Scott topology.

Proposition 14. If IxS(K̂) is computable then K̂ and S \ K̂ are effectively
discrete in S.

Proof. We use the notations W = {n|n ∈ dom(σ) and Wσ(n) ∈ K̂}, and W 1 =
{k|k ∈ dom(σ) and Wσ(k) ∈ SX \ K̂} as in Proposition 12. Let W = dom(g) for
a total computable g : ω → ω. First, using uniformisation we construct a partial
computable function h : ω × ω → ω such that

(∀p ∈ ω)(∀m ∈ W)
(
(∃k ∈ W 1)Wσ(k) ⊇ W p

σ(m) ↔(
Wσ(h(m,p)) ⊇ W p

σ(m) ∧ h(m, p) ∈ W 1
))

.

In particular, h(m, p) ↑ if σ(m) ↑. Given m ∈ W and V = Wσ(m), using com-
pleteness of the numbering {Wn}n∈ω, we construct a total computable function
r : ω → ω such that, for all p ∈ ω,

Wr(p) =
{

Wσ(h(m,p)), if h(m, p) ↓
∅, if h(m, p) ↑ .

234 M. Korovina and O. Kudinov

Using Lemma 1, from an computably enumerable index of W and com-
putable indices of the functions λp.V p and r, we uniformly compute e and
p such that We = W p

σ(m) ∪ Wr(p). It is worth noting that if h(m, p) ↓ then

We = Wσ(h(m,p)) ∈ S \ K̂, so Wσ(e) = We. Since e ∈ W , Wσ(e) ∈ K̂, a con-
tradiction. It follows that h(m, p) ↑. Using uniform computability of e and p we
construct a partial computable function p : ω → ω such that, for all m ∈ ω, if
σ(m) ↓ then h(m, p(m)) ↑ and im(p) = im(σ). Then, for m ∈ W , we obtain that
Wσ(k) ⊇ W

p(m)
σ(m) → k ∈ W by the choice of p. So, the family {Fn}n∈ω, defined as

Fn = W
p(g(n))
σ(g(n)) , testifies that K̂ is effectively discrete in S.

Theorem 2 (Strong Rice’s Theorem). Let K ⊆ Xc. The set Ix(K) is com-
putable if and only if K and Xc \ K are effectively open in Xc.

Proof (←). If K is effectively open in Xc then, by definition, K =
⋃

i∈I(α(i) ∩
Xc), where I is computably enumerable. Since ᾱ is computable, we have

n ∈ Ix(K) ↔ (∃i ∈ I) i ∈ Aᾱ(n).

So, Ix(K) is computable enumerable. Replacing K by Xc \K in the previous
reasoning we obtain that ω \ Ix(K) is computable enumerable.
(→). We apply Proposition 14 to K̂ = {Aa|a ∈ K} and S = SX . We immediately
obtain that, for any m ∈ W , ⋂

i∈W
p(m)
σ(m)

(α(i) ∩ Xc) ⊆ K.

Therefore,

K =
⋃

m∈W

⎛
⎜⎝ ⋂

i∈W
p(m)
σ(m)

(α(i) ∩ Xc)

⎞
⎟⎠ .

This means that K is effectively open in Xc. Replacing K by Xc \ K in the
previous reasoning we obtain that Xc \ K is effectively open in Xc. The proof is
complete.

References

1. Arslanov, M.M.: Families of recursively enumerable sets and their degrees of unsolv-
ability. Sov. Math. 29(4), 13–21 (1985)

2. Berger, U.: Total sets and objects in domain theory. Ann. Pure Appl. Logic. 60(2),
91–117 (1993)

3. Brattka, V.: Computable versions of baire’s category theorem. In: Sgall, J., Pultr,
A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 224–235. Springer, Hei-
delberg (2001)

Rice’s Theorem in Effectively Enumerable Topological Spaces 235

4. Calvert, W., Fokina, E., Goncharov, S.S., Knight, J.F., Kudinov, O.V., Morozov,
A.S., Puzarenko, V.: Index sets for classes of high rank structures. J. Symb. Log.
72(4), 1418–1432 (2007)

5. Calvert, W., Harizanov, V.S., Knight, J.F., Miller, S.: Index sets of computable
structures. J. Algebr. Log. 45(5), 306–325 (2006)

6. Ceitin, G.S.: Mean value theorems in constructive analysis. Trans. Am. Math. Soc.
Trans. Ser. 2(98), 11–40 (1971)

7. Cenzer, D.A., Remmel, J.B.: Index sets for Π0
1 classes. Ann. Pure Appl. Log. 93(1–

3), 3–61 (1998)
8. Cenzer, D.A., Remmel, J.B.: Index sets in computable analysis. Theor. Comput.

Sci. 219(1—-2), 111–150 (1999)
9. Ershov, Y.L.: Model C of partial continuous functionals. In: Gandy, R.O., Hyland,

J.M.E. (eds.) Logic colloquium 76, pp. 455–467. North-Holland, Amsterdam (1977)
10. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Com-

putability Theory, pp. 473–503. Elsevier Science B.V, Amsterdam (1999)
11. Grubba, T., Weihrauch, K.: On computable metrization. Electron. Notes Theor.

Comput. Sci. 167, 345–364 (2007)
12. Grubba, T., Weihrauch, K.: Elementary computable topology. J. UCS. 15(6),

1381–1422 (2009)
13. Gierz, G., Heinrich Hofmann, K., Keime, K., Lawson, J.D., Mislove, M.W.: Con-

tinuous Lattices and Domain. Encyclopedia of Mathemtics and its Applications,
vol. 93. Cambridge University Press, Cambridge (2003)

14. Korovina, M.V., Kudinov, O.V.: Positive predicate structures for continuous data.
J. Math. Struct. Comput. Sci. (2015, To appear)

15. Korovina, M.V., Kudinov, O.V.: Towards computability over effectively enumer-
able topological spaces. Electron. Notes Theor. Comput. Sci. 221, 115–125 (2008)

16. Korovina, M.V., Kudinov, O.V.: Towards computability of higher type continuous
data. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526,
pp. 235–241. Springer, Heidelberg (2005)

17. Lempp, S.: Hyperarithmetical index sets in recursion theory. Trans. Am. Math.
Sot. 303, 559–583 (1987)

18. Martin-Löf, P.: Notes on Constructive Mathematics. Stockholm, Sweden (1970)
19. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York (1967)
20. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable

Functions and Computably Generated Sets. Springer, Heidelberg (1987)
21. Shoenfield, J.R.: Degrees of unsolvability. North-Holland Publishing, Amsterdam

(1971)
22. Spreen, D.: On effective topological spaces. J. Symb. Log. 63(1), 185–221 (1998)
23. Spreen, D.: On some decision problems in programming. Inf. Comput. 122(1),

120–139 (1995)
24. Spreen, D.: On r.e. inseparability of CPO index sets. In: Börger, E., Rödding, D.,

Hasenjaeger, G. (eds.) Rekursive Kombinatorik 1983. LNCS, vol. 171, pp. 103–117.
Springer, Heidelberg (1984)

25. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)
26. Weihrauch, K., Deil, T.: Berechenbarkeit auf cpo-s. Schriften zur Angew. Math. u.

Informatik 63. RWTH Aachen, Aachen (1980)

Decidability of Termination
Problems for Sequential P Systems

with Active Membranes

Michal Kováč(B)

Faculty of Mathematics, Physics and Informatics, Comenius University,
Bratislava, Slovakia

kovac@fmph.uniba.sk

Abstract. We study variants of P systems that are working in the
sequential mode. Basically, they are not computationally universal, but
there are possible extensions that can increase the computation power.
Extensions that implement a notion of zero-checking, are often compu-
tationally universal. P systems with an ability to create new membranes
are a rare exception as they are known to be computationally universal
even in the sequential mode without using a dedicated zero-check oper-
ation. In this paper we show a result that seems surprising to us - the
existence of an infinite computation for sequential P systems with active
membranes is decidable. The standard construction of coverability tree
is extended to provide an algorithm for detecting infinite loops. In addi-
tion, we show that the existence of a halting computation is undecidable
as it can be reduced to reachability of register machines.

1 Introduction

Membrane systems (P systems) [1] were introduced by Păun (see [2]) as distrib-
uted parallel computing devices inspired by the structure and functionality of
cells. Starting from the observation that there is an obvious parallelism in the
cell biochemistry and relying on the assumption that “if we wait enough, then
all reactions which may take place will take place”, a feature of the P systems is
given by the maximal parallel way of using the rules. For various reasons ranging
from looking for more realistic models to just more mathematical challenge, the
maximal parallelism was questioned, either simply criticized, or replaced with
presumably less restrictive assumptions. In some cases, a sequential model may
be a more reasonable assumption. In sequential P systems, only one rewriting
rule is used in each step of computation. Without priorities, they are equiva-
lent to Petri nets [3], hence not computationally universal. However priorities,
inhibitors and other modifications can increase the computation power. It seems
that there is a link between universality and ability to zero-check [4].

In this paper we study a variant where universality can be achieved without
checking for zero by allowing membranes to be created unlimited number of

Work supported by the grant VEGA 1/1333/12.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 236–245, 2015.
DOI: 10.1007/978-3-319-20028-6 24

Decidability of Termination Problems for Sequential P Systems 237

times [3]. Such P systems are called active P systems. Contrary, if we place a
limit on the number of times a membrane is created, we get a class of P systems
which is only equivalent to Petri nets, hence not computationally universal.

In Sect. 2 we will recall some basic notions from formal languages, multisets
and graph theory. Then in Sect. 3 we will introduce membrane structure and
formally define membrane configuration and active P system, because standard
definitions are not convenient for our formal proofs.

Section 4 contains two main results. The existence of an infinite computation
is surprisingly shown to be decidable. On the other hand, the existence of a
halting computation is shown to be undecidable.

2 Preliminaries

Here we recall several notions from the classical theory of formal languages.
An alphabet is a finite nonempty set of symbols. Usually it is denoted by

Σ. A string over an alphabet is a finite sequence of symbols from the alphabet.
We denote by Σ∗ the set of all strings over an alphabet Σ. By Σ+ = Σ∗ − {ε}
we denote the set of all nonempty strings over Σ. A language over the alphabet
Σ is any subset of Σ∗.

The number of occurrences of a given symbol a ∈ Σ in the string w ∈ Σ∗

is denoted by |w|a. ΨΣ(w) = (|w|a1 , |w|a2 , . . . , |w|an
) is called a Parikh vector

associated with the string w ∈ Σ∗, where Σ = {a1, a2, . . . , an}. For a language
L ⊆ Σ∗, ΨΣ(L) = {ΨΣ(w)|w ∈ L} is the Parikh image of L. If FL is a family of
languages, PsFL denotes the family of Parikh images of languages in FL.

A multiset over a set Σ is a mapping M : Σ → N. We denote by M(a), a ∈ Σ
the multiplicity of a in the multiset M . The support of a multiset M is the set
supp(M) = {a ∈ Σ|M(a) ≥ 1}. It is the set of items with at least one occurrence.
A multiset is empty when its support is empty. A multiset M with finite support
{a1, a2, . . . , an} can be represented by the string a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n . We say

that multiset M1 is included in multiset M2 if ∀a ∈ supp(M1) : M1(a) ≤ M2(a).
We denote it by M1 ⊆ M2. The difference of two multisets M2−M1 is defined as
a multiset where ∀a ∈ supp(M2) : (M2 − M1)(a) = max(M2(a) − M1(a), 0). The
union of two multisets M1∪M2 is a multiset where ∀a ∈ supp(M1)∪supp(M2) :
(M1∪M2)(a) = M1(a)+M2(a). The product of multiset M with natural number
n ∈ N is a multiset where ∀a ∈ supp(M) : (n · M)(a) = n · M(a).

Next, we recall notions from graph theory.
A rooted tree is a tree, in which a particular node is distinguished from the

others and called the root node. Let T be a rooted tree. We will denote its root
node by rT . Let d be a node of T\{rT }. As T is a tree, there is a unique path
from d to rT . The node adjacent to d on that path is also unique and is called a
parent node of d and is denoted by parentT (d). We will denote the set of nodes
of T by V (T) and set of its edges by E(T). Let T1, T2 be rooted trees. A bijection
f : V (T1) → V (T2) is an isomorphism iff {(f(u), f(v))|(u, v) ∈ E(T1)} = E(T2)
and f(rT1) = rT2 .

238 M. Kováč

3 Active P Systems

The fundamental ingredient of a P system is the membrane structure (see [5]).
It is a hierarchically arranged set of membranes, all contained in the skin mem-
brane. Each membrane determines a compartment, also called region, which is
the space delimited from above by it and from below by the membranes placed
directly inside, if any exists. Clearly, the correspondence membrane region is one-
to-one, that is why we sometimes use interchangeably these terms. The mem-
brane structure can be also viewed as a rooted tree with the skin membrane as
the root node.

A P system consists of a membrane structure, where each membrane is
labeled with a number from 1 to m. Each membrane contains a multiset of
objects. Objects can be transformed into other objects and sent through a mem-
brane according to given rules defined for membrane labels. The rules are known
from the beginning for each possible membrane, even for the ones that do not
exist yet, or the ones that will never exist.

In this paper we work with P systems with active membranes (Active P sys-
tems). The rules can modify the membrane structure by dissolving and creating
new membranes. That is why we will define the configuration to include the
membrane structure as well.

Let Σ be a set of objects. We denote by N
Σ a set of all mappings from Σ to

N, so it contains all multisets of objects from Σ. A membrane configuration
is a tuple (T, l, c), where:

• T is a rooted tree,
• l ∈ N

V (T) is a mapping that assigns for each node of T a number (label),
where l(rT) = 1, so the skin membrane is always labeled with 1,

• c ∈ (NΣ)V (T) is a mapping that assigns for each node of T a multiset of
objects from Σ, so it represents the contents of the membrane.

An active P system is a tuple (Σ,C0, R1, R2, . . . , Rm), where:

• Σ is a set of objects,
• C0 is initial membrane configuration,
• R1, R2, . . . , Rm are finite sets of rewriting rules associated with the labels

1, 2, . . . , m and can be of forms:
· u → w, where u ∈ Σ+, w ∈ (Σ × {·, ↑, ↓j})∗ and 1 ≤ j ≤ m,
· a dissolving rule u → wδ, where u ∈ Σ+, w ∈ (Σ × {·, ↑, ↓j})∗ and

1 ≤ j ≤ m,
· a membrane creation u → [jv]j , where u ∈ Σ+, v ∈ Σ∗ and 1 ≤ j ≤ m.

Although rewriting rules are defined as strings, u, v and w represent multisets
of objects from Σ. For the first two forms, each rewriting rule may specify for
each object on the right side, whether it stays in the current region (we will
omit the symbol ·), moves through the membrane to the parent region (↑) or to
a specific child region (↓j , where j is a label of a membrane). If there are more
child membranes with the same label, one is chosen nondeterministically. We

Decidability of Termination Problems for Sequential P Systems 239

denote these transfers with an arrow immediately after the symbol. An example
of such rule is the following: abb → ab ↓2 c ↑ cδ.

By applying the rule we mean the removal of objects specified on the left
side and the addition of the objects on the right side. Symbol δ /∈ Σ does not
represent an object. It may be present only at the end of the rule, which means
that after the application of the rule, the membrane is dissolved and its contents
(objects, child membranes) are propagated to the parent membrane.

Active P systems differ from classic (passive) P systems in ability to cre-
ate new membranes by rules of the third form. Such rule will create new child
membrane with a given label j and a given multiset of objects v as its contents.

For an active P system (Σ,C0, R1, R2, . . . , Rm), configuration C = (T, l, c),
membrane d ∈ V (T) the rule r ∈ Rl(d) is applicable iff:

• r = u → w and u ⊆ c(d) and for all (a, ↓k) ∈ w there exists d2 ∈ V (T) such
that l(d2) = k ∧ parent(d2) = d,

• r = u → wδ and u ⊆ c(d) and for all (a, ↓k) ∈ w there exists d2 ∈ V (T) such
that l(d2) = k ∧ parent(d2) = d and d �= rT ,

• r = u → [jv]j and u ⊆ c(d).

In this paper we assume only sequential systems, so in each step of the compu-
tation, there is one rule nondeterministically chosen among all applicable rules
in all membranes to be applied.

A computation step of P system is a relation ⇒ on the set of configurations
such that C1 ⇒ C2 holds iff there is an applicable rule in a membrane in C1

such that applying that rule can result in C2.
An infinite computation of a P system is an infinite sequence of configu-

rations {Ci}∞
i=0, where ∀i : Ci ⇒ Ci+1.

A finite computation of a P system is a finite sequence of configurations
{Ci}n

i=0, where for all 0 ≤ i < n : Ci ⇒ Ci+1.
A halting computation of a P systems is a finite computation {Ci}n

i=0,
where there is no applicable rule in the last configuration Cn.

The P system can work in generating or in accepting mode. For the generating
mode there are two possible ways of assigning a result of a computation:

1. By considering the multiplicity of objects present in a designated membrane
in a halting configuration. In this case we obtain a vector of natural numbers.
We can also represent this vector as a multiset of objects or as Parikh image
of a string.

2. By concatenating the objects which leave the system, in the order they are
sent out of the skin membrane (if several symbols are expelled at the same
time, then any ordering of them is considered). In this case we generate a
language.

The result of a single computation is clearly only one multiset or a string, but for
one initial configuration there can be multiple possible computations. It follows
from the fact that there can be more than one applicable rule in each config-
uration and they are chosen nondeterministically. For the accepting mode the

240 M. Kováč

input multiset is inserted in the skin membrane and it is accepted if and only if
a given accepting configuration can be reached [3].

We will now introduce a variant with a global limit upon the membrane
structure. We achieve this by restricting the rule application such that if the rule
would result in a structure exceeding the limit, the rule will not be applicable.

An active P system with a limit on the total number of membranes
is a tuple (Σ,L,C0, R1, R2, . . . , Rm), where (Σ,C0, R1, R2, . . . , Rm) is an active
P system and L ∈ N is a limit on the total number of membranes. Anytime
during the computation, a configuration (T, l, c) is not allowed to have more
than L membranes, so the following invariant holds: |V (T)| ≤ L.

This is achieved by adding a constraint for rule of the form r = u → [kv]k,
which is defined to be applicable iff u ⊆ c(d) and |V (T)| < L. If the number of
membranes is equal to L, there is no space for newly created membrane, so in
that case such rule is not applicable.

4 Termination Problems

In this section we recall the halting problem for Turing machines. The problem
is to determine, given a deterministic Turing machine and an input, whether
the Turing machine running on that input will halt. It is one of the first known
undecidable problems. On the other hand, for non-deterministic machines, there
are two possible meanings for halting. We could be interested either in:

• whether there exists an infinite computation (the machine can run forever),
or

• whether there exists a finite computation (the machine can halt).

We will prove the (un)decidability of these problems on active P systems with
limit on the total number of membranes. These problems are defined for both
generating and accepting mode, but in the accepting mode we consider the ques-
tions for a given P system along with the input multiset. The results are quite
interesting, because:

Theorem 1. Sequential active P systems with limit on the total number of mem-
branes are computationally universal.

Proof. The proof of this theorem for sequential active P systems in [3] uses
simulation of register machines and during the simulation, every configuration
has at most three membranes. Hence the active P system with limit on the total
number of membranes exists (e.g. with L = 3), so the universality holds. �

This variant is not very realistic from biological point of view. Assuming mem-
branes to know the number of membranes in the whole system is simply not
plausible. Although we believe the results also hold for the variant without limit
on the total number of membranes, due to technical difficulties it remains an
open problem.

Decidability of Termination Problems for Sequential P Systems 241

4.1 Existence of Infinite Computation

We will propose an algorithm for deciding existence of infinite computation.
Basic idea is to consider the minimal coverability graph [6], where nodes are con-
figurations and an edge leads from the configuration C1 to the configuration C2,
whenever there is a rule applicable in C1, which results in C2. The construction
in [6] is performed on Petri nets, where the configuration consists just of a vector
of natural numbers. The situation is the same for single-membrane sequential P
systems [7]. We need to modify the construction for active P systems.

A configuration C2 = (T2, l2, c2) covers configuration C1 = (T1, l1, c1) iff ∃
isomorphism f : T1 → T2 preserving membrane labels and contents: ∀d ∈ T1 the
following properties hold: l1(d) = l2(f(d)) ∧ c1(d) ⊆ c2(f(d)).

We will denote this with C1 ≤ C2.

Lemma 1. For sequential active P system with limit on the total number of
membranes, if C2 = (T2, l2, c2) covers configuration C1 = (T1, l1, c1), then there
is an isomorphism f : T1 → T2 such that if a rule r is applicable in membrane
d ∈ T1, then r is applicable in f(d).

Proof. Suppose r is applicable in d. Then the left side u of the rule r is contained
within the contents of the membrane u ⊆ c1(d). Because C1 ≤ C2, then there is
an isomorphism f : T1 → T2 such that c1(d) ⊆ c2(f(d)) and then u ⊆ c2(f(d)).

There are three possible forms of the rule r.

• If r = u → w, then because r is applicable in d, ∀(a, ↓k) ∈ w∃d2 ∈ V (T1) :
l1(d2) = k ∧ parentT1(d2) = d. Because C1 ≤ C2, then for f(d2) ∈ V (T2) the
following holds: l2(f(d2)) = l1(d2) = k and parentT2(f(d2) = f(d). Hence r
is applicable in f(d).

• If r = u → wδ, then d �= rT1 . Since f is an isomorphism, then also f(d) �= rT2 .
Other properties follows from the previous case.

• If r = u → [kv]k, then |V (T1)| < L. Isomorphism preserves number of nodes,
hence |V (T2)| = |V (T1)| < L and r is applicable in f(d). �

Now, we will define the encoding of a configuration C = (T, l, c) into a tuple of
integers.

A membrane d ∈ T will be encoded as (n+m)-tuple enc(d) ∈ N
(n+m), where

first n numbers will be actual counts of objects and next m numbers will encode
the membrane label with m − 1 zeros and one one:

enc(d)i =

⎧⎪⎨
⎪⎩

c(d)(ai) if i ≤ n

0 if n < i ≤ m ∧ i − n �= l(d)
1 if n < i ≤ m ∧ i − n = l(d).

The entire tree will be encoded into concatenated sequences of encoded nodes
in the preorder traversal order. This sequence is then padded with zeroes to have
length (n + m)L as that is the maximal length of encoded tree.

242 M. Kováč

Example 1. Suppose skin membrane with label 1 and contents a2
1a2 with a child

membrane with label 2 and contents a2
2. Then the encoding will be 21100201,

where 2110 encodes the skin membrane and 0201 encodes the child membrane.

Since there are only finitely many non-isomorphic trees with at most L nodes [8],
there is a constant z such that we can uniquely assign the tree an order number
o(T) ≤ z.

The entire configuration will be encoded in tuple which consists of z parts.
All but the part with index o(T) will contain just zeros. The part with index
o(T) will contain the encoding of the tree.

We will now show that comparing two encodings corresponds to covering of
two configurations. Recall that configurations are encoded into tuples of integers,
so the comparison is performed position by position.

Lemma 2. For configurations C1 = (T1, l1, c1) and C2 = (T2, l2, c2), enc(C1) ≤
enc(C2) ⇒ C1 ≤ C2.

Proof. Both enc(C1) and enc(C2) contain z parts and exactly one part which
contains non-zero values. The non-zero part of enc(C1) must be non-zero also
in enc(C2), because enc(C1) ≤ enc(C2). Then o(T1) = o(T2), so the trees are
isomorphic. Suppose there is an isomorphism f : T1 → T2. For every membrane
d ∈ T1, l1(d) = l2(f(d)) and c1(d) ⊆ c2(f(d)). Hence, C1 ≤ C2. �

Lemma 3. For sequential active P system with limit on the total number of
membranes L for every infinite sequence of configurations {Ci}∞

i=0 there is a
pair i < j such that Ci ≤ Cj.

Proof. Suppose an infinite sequence {enc(Ci)}∞
i=0. We use a variation of Dick-

son’s lemma [9]: Every infinite sequence of tuples from N
k contains an increas-

ing pair. Applied to our sequence, there are two positions i < j such that
enc(Ci) ≤ enc(Cj). From Lemma 2, Ci ≤ Cj . �

Theorem 2. Existence of infinite computation for active P systems with limit
on the total number of membranes is decidable.

Proof. The algorithm for deciding the problem will traverse the reachability
graph. When it encounters a configuration that covers another configuration,
from Lemma 1 follows that the same rules can be applied repeatedly, so the
algorithm will halt with the answer YES. Otherwise, the algorithm will answer
NO. Algorithm will always halt, because if there was an infinite computation,
from Lemma 3 there would be two increasing configurations which is already
covered in the YES case. �

4.2 Existence of Halting Computation

In this subsection we will focus on the opposite problem: whether there is a
computation that is halting. Recall that halting computation has no applicable
rule in the last configuration.

Decidability of Termination Problems for Sequential P Systems 243

The existence of halting configuration seems to be related to the language
emptyness problem, which is undecidable. It is the problem to decide, if there
is an input that is accepted by the P system. On the other hand, our variant of
the halting problem is defined for a given input. It remains an open problem,
whether there is a direct reduction between these two problems. If this is the
case, the proof could be much simpler.

First, we will reduce this problem to the reachability problem. It is a problem
of determining, for a given configuration C, whether there exists a computation
from C0 to C. Then, the reachability of active P systems can be then reduced
to the reachabililty of register machines, which is undecidable.

For a given P system Π and a target configuration C we will construct a P
system Π ′ such that there is a halting computation of Π ′ ⇔ C is reachable for
Π. Suppose Π = (Σ,C0, R1, . . . , Rm) and C = (T, l, c). Then we will construct
Π ′ = (Σ′, C ′

0, R
′
1, . . . , R

′
m), where:

• Σ′ = Σ ∪ {ξd|d ∈ V (T)},
• C ′

0 = (T, l, c′), where ∀d ∈ V (T)\rT : c′(d) = c(d) and c′(rT) = c(rT)∪{ξrT
},

• ∀i ∈ {1, . . . , m} : R′
i = Ri ∪ {ξdc(d) → ξd′ ↓l(d′) |d, d′ ∈ V (T), l(d) =

i, parent(d′) = d}.

The ξd objects are called verifiers, they are intended to verify if the contents of
the membrane corresponds to the contents in the target configuration C. After
this verification it descends down into child membranes for the verification of
other parts of the membrane structure. Initially, there is an object ξrT

in the
skin membrane. Verification is performed in the rule ξdc(d) → ξd′ ↓l(d′), where
on the right side there is ξd′ object for every child membrane d′ in the target
configuration C.

The construction is not complete. The system should not be able to halt
unless the verification takes place. That is why we introduce a new object ω to
each membrane with a rule ω → ω and the verifier will erase them with rule
ξdωc(d) → ξd′ ↓l(d′). One application of this rule will erase the ω object and
propagate proper ξ object to every child membrane in the target configuration
C. We also need to ensure that newly created membranes contain the ω object,
so we replace every rule for membrane creation u → [kv]k with u → [kvω]k.

There is still a problem. We actually check, whether a target configuration is
contained within the current configuration. If there are additional objects which
cannot be erased, so C cannot be reached, we need to ensure Π ′ will not halt.
We will add a rule a → a to each membrane for each object a ∈ Σ, so Π ′ can
halt only if all objects are erased.

The last issue to solve is the dissolution. It is still possible that in the middle
of the verifying, some of already verified membranes got dissolved and all yet
unverified membranes will be successfully verified causing Π ′ to halt, although
without that dissolution it would be unable to reach C. We need to ensure
all dissolution happen before the verification takes place. We will add a new
object σ, which stands as a footprint object. It will be created as a result of
the verification rule ξdωc(d) → σξd′ ↓l(d′). If a membrane is dissolved after it

244 M. Kováč

was verified, then two σs will meet in the same membrane, because the parent
membrane also contains σ as it had been verified before. We will add a rule
σσ → σσ to prevent Π ′ from halting.

The final construct is:

• Σ′ = Σ ∪ {ω, σ} ∪ {ξd|d ∈ V (T)},
• C ′

0 = (T, l, c′), where ∀d ∈ V (T)\rT : c′(d) = c(d) ∪ {ω} and c′(rT) = c(rT) ∪
{ω, ξrT

},
• ∀i ∈ {1, . . . , m} : R′

i = {r|r ∈ Ri, r = u → w ∨ r = u → wδ} ∪ {u →
[kvω]k|u → [kv]k ∈ Ri} ∪ {a → a|a ∈ Σ} ∪ {σσ → σσ, ω → ω} ∪ {ξdωc(d) →
σξd′ ↓l(d′) |d, d′ ∈ V (T), l(d) = i, parent(d′) = d}.

We can now state the main theorem.

Theorem 3. Existence of halting computation for active P systems with limit
on the total number of membranes is undecidable.

We need to prove that C is reachable for Π if and only if there is a halting
computation of Π ′. We need to prove two implications in order to formally prove
correctness of this construction. The proof is quite technical and is present in
the appendix.

5 Conclusion

We have studied the termination problems for active sequential P systems. Unlike
deterministic systems, the termination problems cannot be simply reduced to the
halting problem. We have shown that active P systems with limit on the number
of membranes have decidable existence of infinite computation and undecidable
existence of halting computation. It is currently unknown whether the same
results apply also for a variant without the limit on the number of membranes,
so it could be a subject for the future study.

Regarding the open problem stated in [3] about sequential active P systems
with hard membranes (without communication between membranes), it could
be interesting to find a connection between the universality and decidability of
these termination problems.

References

1. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press Inc., New York (2010)

2. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
3. Ibarra, O.H., Woodworth, S., Yen, H.-C., Dang, Z.: On sequential and 1-

deterministic P systems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp.
905–914. Springer, Heidelberg (2005)

4. Alhazov, A.: Properties of membrane systems. In: Gheorghe, M., Păun, G.,
Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp.
1–13. Springer, Heidelberg (2012)

Decidability of Termination Problems for Sequential P Systems 245

5. Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Păun, G.,
Pérez-Jiménez, M. (eds.) Applications of Membrane Computing. Natural Comput-
ing Series, pp. 1–42. Springer, Heidelberg (2006)

6. Finkel, A.: The minimal coverability graph for petri nets. In: Rozenberg, G. (ed.)
Advances in Petri Nets 1993. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg
(1993)

7. Dal Zilio, S., Formenti, E.: On the dynamics of PB systems: a petri net view. In:
Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2003. LNCS, vol. 2933, pp. 153–167. Springer, Heidelberg (2004)

8. Cayley, P.: On the analytical forms called trees. Am. J. Math. 4(1), 266–268 (1881)
9. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and

primitive-recursive bounds with dickson’s lemma. In: Proceedings of the 2011 IEEE
26th Annual Symposium on Logic in Computer Science, LICS 2011, pp. 269–278.
IEEE Computer Society, Washington, DC (2011)

Weihrauch Degrees of Finding Equilibria
in Sequential Games

Stéphane Le Roux1 and Arno Pauly2(B)

1 Département d’informatique, Université libre de Bruxelles, Bruxelles, Belgique
Stephane.Le.Roux@ulb.ac.be

2 Clare College, University of Cambridge, Cambridge, UK
Arno.Pauly@cl.cam.ac.uk

Abstract. We consider the degrees of non-computability (Weihrauch
degrees) of finding winning strategies (or more generally, Nash equilib-
ria) in infinite sequential games with certain winning sets (or more gen-
erally, outcome sets). In particular, we show that as the complexity of
the winning sets increases in the difference hierarchy, the complexity of
constructing winning strategies increases in the effective Borel hierarchy.

1 Overview

We consider questions of (non)computability related to infinite sequential games
played by any countable number of players. The best-known example of such
games are Gale-Stewart games [10], which are two-player win/lose games. The
existence of winning strategies in (special cases of) Gale-Stewart games is often
employed to show that truth-values in certain logics are well-determined. The
degrees of noncomputability of variations of (Borel) determinacy [17] can be
studied using our techniques, and several are fully classified.

This work falls within the research programme to study the computational
content of mathematical theorems in the Weihrauch lattice, which was outlined
by Brattka and Gherardi in [3]. In particular, it continues the investigation
of the Weihrauch degrees of operations mapping games to their equilibria started
in [21]. There, finding pure and mixed Nash equilibria in two-player games with
finitely many actions in strategic form were classified.

One motivation for this line of inquiry is the general stance that solution
concepts in game theory can only be convincing if the players are capable of (at
least jointly) computing them, taken e.g. in [22]. Even if we allow for some degree
of hypercomputation, or are, e.g., willing to tacitly replace actually attaining a
solution concept by some process (slowly) converging to it, we still have to reject
solution concepts with too high a Weihrauch degree.

The results for determinacy of specific pointclasses that we provide are a
refinement of results obtained in reverse mathematics by Nemoto, MedSalem
and Tanaka [20]; the first is also a uniformization of a result by Cenzer and
Remmel [7]. For some represented pointclass Γ , let DetΓ : Γ ⇒ {0, 1}N be

A full version is available as [16].

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 246–257, 2015.
DOI: 10.1007/978-3-319-20028-6 25

Weihrauch Degrees of Finding Equilibria in Sequential Games 247

the map taking a Γ -subset A of Cantor space to a (suitably encoded) Nash
equilibrium in the sequential two-player game with alternating moves where the
first player wins if the induced play is in A, and the second player wins otherwise.
Let A be the closed subsets of Cantor space, and D := {U \ U ′ | U,U ′ ∈ A}.
Some of our results are:

Theorem. DetA ≡W C{0,1}N and DetD ≡W C{0,1}N � lim.

We have two remarks. One, by combining the preceding theorem with the main
result of [6], we find that DetD is equivalent to the Bolzano-Weierstrass-Theorem.
This may be a bit unexpected in particular seeing that C{0,1}N � lim is not (yet)
known to contain a plethora of mathematical theorems (unlike, e.g., C{0,1}N).
Two, we already need to use a limit operator in order to move up one level of
the difference hierarchy – rather than being able to move up one level in the
Borel hierarchy as one may have expected naively. Thus, this observation may
complement Harvey Friedman’s famous result [9] that proving Borel determinacy
requires repeated use of the axiom of replacement.

Another group of results is based on inspecting the various results extend-
ing Borel determinacy to more general classes of games (and solution concepts)
in [13–15]. If we instantiate these generic results with specific determinacy ver-
sion as above, we can prove for some of them that they are actually optimal
w.r.t. Weihrauch reducibility. We shall state two such classifications explicitly.

Consider two-player sequential games with finitely many outcomes and antag-
onistic (inverse of each other) linear preferences over the outcomes. For any upper
set of outcomes w.r.t. some player’s preference let the corresponding set of plays
be open or closed. Let NEap

O∪A be the operation taking such a game (suitably
encoded) and producing a Nash equilibrium. Then:

Theorem. NEap
O∪A ≡W C{0,1}N × LPO∗.

Next, we restrict the aforementioned class of games to antagonistic games, that
is, games where the preferences of one player are the inverse of the preferences
of the other player. Those games will have subgame-perfect equilibria, and we
let SPEO∪A be the operation mapping such games to a subgame-perfect equi-
librium.

Theorem. SPEO∪A ≡W lim .

2 Fundamentals

We proceed to give brief, informal introductions to represented spaces,
Weihrauch reducibility and infinite sequential games. For a formal treatment
and further references, we refer to the extended version of the present paper
[16].

248 S. Le Roux and A. Pauly

2.1 Informal Background on Represented Spaces
and Weihrauch Reducibility

We use representations to induce computability notions on the spaces of interest
to us, in particular on pointclasses (i.e. sets of subsets of Cantor space) and
derived from that, infinite sequential games. A represented space is a set X
together with a partial surjection δ :⊆ N

N → X. A function between represented
spaces is computable, iff there is a matching computable function on Baire space.

An open subset U of Cantor space is represented by some list of finite words
(wi)i∈N such that U =

⋃
i∈N

wi{0, 1}N. For other derived pointclasses their rep-
resentation follows directly from how they are defined; i.e. closed sets are given
via their complement as an open set, a Σ0

2 -set is given by a sequence of closed
sets whose union it is, etc. (this idea is explored in more detail in [2]).

Weihrauch reducibility is a relation between multivalued functions on repre-
sented spaces, where f ≤W g means that f can be computed with the help of a
single oracle call to g. We make use of some operations on Weihrauch degrees:
With f × g we denote the ability to make a call to f and an independent call
to g. Having f∗ means being able to make any given finite number of indepen-
dent calls to f , whereas f̂ allows countably many parallel calls. Given f � g, one
can first use g, and then use the answer to choose the query for f . By f (n) we
denote the n-th fold iteration of � on f . Finally, f [n] means that one does not
have to provide the input to f explicitly, but merely a sequence converging to a
sequence. . . (n-times) converging to the input to f (so f [0] = f , f [1] = f ′ with
f ′ as in [6]).

There is a zoo of Weihrauch degrees commonly appearing in the classifica-
tion of theorems. Relevant for us are C{0,1}N , which takes a non-empty closed
subset of Cantor space (i.e. an infinite binary tree) and produces a point in it
(i.e. an infinite path through the tree), LPO, which decides whether a sequence
is constant 0 or not, and lim, which computes the limit of a sequence in Cantor
space.

2.2 Informal Background on Infinite Sequential Games

We use the formal definitions of sequential games and related concepts from [15]
and [13]. Informally, given a fixed (wlog) set C, we let the players sequentially
choose elements in C until an infinite sequence in Cω is generated. Whose turn
it is depends on the finite history of choices. The outcome (from a set O) of the
game depends on the generated sequence in Cω, and each player may compare
outcomes via a binary relation over O, called preference. A strategy of a player
is an object that fully specifies what the choice of the player would be for each
possible finite history that requires this player to play. A combination of one
strategy per player is called a strategy profile and it induces one unique infinite
sequence in Cω, and thus one unique outcome. So, preferences may be lifted
from outcomes to strategy profiles. A Nash equilibrium is a profile such that no
player can unilaterally change strategies and induce a (new) outcome that he
or she prefers over the old one. We also consider a refinement of the concept

Weihrauch Degrees of Finding Equilibria in Sequential Games 249

of a Nash equilibrium, namely subgame-perfect Nash equilibria. Intuitively, a
strategy profile is subgame-perfect, if it still forms an equilibrium if the game
were started at an arbitrary history.

As a important special case we consider win/lose games. These are games
with two players a, b and two outcomes wa, wb, where a prefers wa to wb and b
prefers wb to wa. We say that a wins the game, if outcome wa is reached, and
call the set of all plays that induce outcome wa as the winning set for a (likewise
for b and wb).

2.3 Defining the Problems of Interest

Let Γ be a represented pointclass over {0, 1}N. In a straightforward fashion, we
can obtain a representation of the infinite sequential games with countably many
agents, countably many outcomes, sets of choices C = {0, 1} and Γ -measurable
valuation function v : {0, 1}N → O. The representation encodes the number of
agents and outcomes available, for each upper set of outcome the Γ -set of plays
resulting in it, the map d as a look-up table, and the relations ≺a as look-up
tables. We always assume that the inverse of any preference relation is well-
founded (this guarantees that equilibria exist). Using a canonic isomorphism
{0, 1}∗ ∼= N, we will pretend that the space of strategy profiles in such a game
is {0, 1}N.

We now consider the following multivalued functions:

1. DetΓ takes a two-player win/lose game as input, where the first player has
a winning set in Γ . Valid outputs are the Nash equilibria, i.e. the pairs of
strategies where one strategy is a winning strategy.

2. WinΓ has the same inputs as DetΓ , and decides which player (if any) has a
winning strategy.

3. FindWSΓ is the restriction of DetΓ to games where the first player has a
winning strategy.

4. NEΓ takes as input a game with countably many players, finitely many out-
comes, and linear preferences, where each upper set of outcomes (w.r.t. each
player preference) comes from a Γ -set. The valid outputs are the Nash equi-
libria.

5. NEap
Γ is the restriction of NEΓ to the two-player games with antagonistic

preferences (i.e. ≺a=≺−1
b).

6. SPEΓ takes as input a two-player game with finitely many outcomes and
antagonistic preferences, where each upper set of outcomes comes from a
Γ -set. Valid outputs are the subgame perfect equilibria.

We abbreviate Γ := {UC | U ∈ Γ}. Some trivial reducibilities between these
problems are: WinΓ ≡W WinΓ , DetΓ ≡W DetΓ , FindWSΓ ≤W DetΓ ≤W

NEap

Γ∪Γ
≤W SPEΓ∪Γ and NEap

Γ ≤W NEΓ .
Throughout the paper we assume that Γ is determined (which implies that

all operations are well-defined in the first place), closed under rescaling and finite
intersection with clopens, and that ∅, {0, 1}N ∈ Γ . All such closure properties

250 S. Le Roux and A. Pauly

(including those appearing as conditions in the results) are assumed to hold in a
uniformly computable way, e.g. given a name for a set in Γ and a clopen, we can
compute a name for the intersection of the set with the clopen. With rescaling
we refer to the operation (w,A)
→ {wp | p ∈ A} : {0, 1}∗ × Γ → Γ and its
inverse.

2.4 The Difference Hierarchy

The pointclasses we shall study in particular are the levels of the Hausdorff dif-
ference hierarchy. Intuitively, these are the sets that can be obtained as boolean
combinations of open sets; and their level denotes the least complexity of a suit-
able term. Roughly following [12, Sect. 22.E], we shall recall the definition of the
difference hierarchy. We define a function par from the countable ordinals to
{0, 1} by par(α) = 0, if there is a limit ordinal β and a number n ∈ N such that
α = β + 2n; and par(α) = 1 otherwise. For a fixed ordinal α, we let Dα be the
collection of sets D definable in terms of a family (Uλ)λ<α of open sets via:

x ∈ D ⇔ par (inf{β | x ∈ Uβ}) �= par(α)

In the preceding formula, we understand that inf ∅ = α. In particular, D0 =
{∅} and D1 = O.

For our constructions, a different characterization is more useful, though: For
some pointclass Γ , let D(Γ) := {⋃i∈I viUi | ∀i, j ∈ Ivi ∈ {0, 1}∗ ∧ Ui ∈ Γ ∧ vi ⊀ vj}.

Lemma 1. Dα+1 = D(Dα) and, more generally, Dα = D
(⋃

λ<α Dλ

)
.

Observation 1. If An is in Dα for all n ∈ N, so is A := ∪n∈N0n1An.

Corollary 1. If Bn is in Dα for all n ∈ N, so is B := {0N} ∪ ⋃
n∈N

0n1Bn.

A fundamental result on the difference hierarchy is the Hausdorff-Kuratowski
theorem stating that

⋃
α<ω1

Dα = Δ0
2 (where ω1 is the smallest uncountable

ordinal), see e.g. [12, Theorem 22.27].

3 The Computational Content of Some
Determinacy Principles

We begin by classifying the simplest non-computable games, namely games
where the first player wants to reach some closed set. This classification essen-
tially is a uniform version of a result by Cenzer and Remmel [7].

Theorem 2. FindWSA ≡W DetA ≡W C{0,1}N .

Proof. C{0,1}N ≤W FindWSA. Given a closed subset A ∈ A({0, 1}N), we can
easily obtain the game where only player 1 moves, and player 1 wins iff
the induced play falls in A. If A is non-empty, then player 1 has a winning
strategy: Play any infinite sequence in A.

Weihrauch Degrees of Finding Equilibria in Sequential Games 251

FindWSA ≤W DetA. Trivial.
DetA ≤W C{0,1}N . Given the open winning set of player 2, we can modify

the game tree by ending the game once we know for sure that player 2 will
win. Now the set of strategy profiles where either player 1 wins and player
2 cannot win, or player 2 wins and player 1 cannot prolong the game, is a
closed set effectively obtainable from the game. Moreover, it is non-empty,
and any such strategy profile is a Nash equilibrium. ��

Proposition 1. WinA ≡W LPO.

Proof. This follows by combining the constructions from the preceding theorem
with the fact that IsEmpty : A({0, 1}N) → {0, 1} is equivalent to LPO. ��
We can use the results for A as the base case for classifying the strength of
determinacy for the difference hierarchy.

Lemma 2 (1). DetD(Γ) ≤W C{0,1}N � ̂(DetΓ × WinΓ) and WinD(Γ) ≤W LPO �

̂WinΓ .

We will relate deciding the winner and finding a winning strategy for games
induced by sets from some level of the difference hierarchy to the lessor lim-
ited principle of omniscience and the law of excluded middle for Σ0

n-formulae
of the corresponding level. These principles were studied in [1,6,11] (among
others). Let

(
Σ0

n − LLPO
)

:⊆ {0, 1}N × {0, 1}N ⇒ {0, 1} be defined via
i ∈ (

Σ0
n − LLPO

)
(p0, p1) iff ∀k1∃k2 . . .
kn pi(〈k1, . . . , kn〉) = 1 (where
 = ∀

if n is odd and
 = ∃ otherwise). Let
(
Σ0

n − LEM
)

: {0, 1}N → {0, 1} be
defined via

(
Σ0

n − LEM
)
(p) = 1 iff ∀k1∃k2 . . .
kn p(〈k1, . . . , kn〉) = 1 and(

Σ0
n − LEM

)
(p) = 0 otherwise. Then:

Proposition 2.
(
Σ0

n+1 − LLPO
) ≡W LLPO[n] and

(
Σ0

n+1 − LEM
) ≡W

LPO[n].

Lemma 3. ̂(Σ0
n − LLPO) ≤W DetDn

and
(
Σ0

n − LEM
) ≤W WinDn

.

Partial proof. The game for the first claim works as follows: The second player
may pick some k1 ∈ N, or refuse to play. If the second player picks a number,
then the first player may pick k2 ∈ N or refuse to play. This alternating choice
continues until kn−1 has been chosen, or a player refuses to pick. A player refusing
to pick a number loses. If all numbers are picked, the winner depends on the input
p to Σ0

n −LEM as follows: If n is even and ∃kn p(〈k1, . . . , kn〉) = 1, then player 1
wins. If n is odd, and ∃kn p(〈k1, . . . , kn〉) = 0, then player 2 wins. Note that this
always describes an open component Upicked of the winning set of the respective
player.
1 This is a generalization of the proof idea for [20, Theorem 3.7] by Nemoto, Med-
Salem and Tanaka. [20, Theorem3.7] states that ACA0 proves determinacy for
D(Σ0

1).

252 S. Le Roux and A. Pauly

Furthermore, note that the set of plays Uj where a value for kj was chosen is
always an open set. Now the condition that the second player refused to pick first
is UC

1 ∪(U2∩U3)∪(U4∩U5)∪. . .. This makes for a winning set in Dn, as required.
If player 1 has a winning strategy in the game, the answer to

(
Σ0

n − LEM
)
(p)

is 1, if player 2 wins, it is 0. ��
Combining the results above yields:

Theorem 3. DetDn+1 ≡W C[n]

{0,1}N and WinDn+1 ≡W LPO[n].

Knowing the Weihrauch degree of a mapping entails some information about
the Turing degrees of outputs relative to the Turing degrees of inputs, this was
explored in e.g. [4–6,22]. Thus, we can obtain the following corollaries:

Corollary 2. Any computable game with a winning condition in Dn+1 has a
winning strategy s such that s′ is computable relative to ∅(n+1), and there is a
computable game of this type such that any winning strategy computes the n-th
Turing jump of a completion of Peano arithmetic.

Corollary 3. Let (Gi)i∈N be an effective enumeration of computable games with
winning conditions in Dn+1, and define w ∈ {0, 1}N via w(i) = 1 iff the first
player has a winning strategy in Gi. Then w ≤T ∅(n+1), and there is an enu-
meration (Gi)i∈N such that w ≡T ∅(n+1).

Corollary 4. There is a Σ0
n+1-measurable function mapping games with win-

ning conditions in Dn to winning strategies, but no Σ0
n-measurable such function.

4 The Complexity of Equilibrium Transfer

In [13–15], various results were provided that transfer Borel determinacy (or,
somewhat more general, determinacy for some pointclass), to prove the existence
of Nash equilibria (and sometimes even subgame-perfect equilibria) in multi-
player multi-outcome infinite sequential games. In this section, we shall inspect
those constructions and extract Weihrauch reductions from them.

In [14], the first author gave a very general construction that allows to extend
determinacy of win/lose games to the existence of Nash equilibria for two-player
games of the same type. For brevity, we only consider the strength of the toy
example from [14] here:

Theorem 4 (Equilibrium transfer). NEap
Γ ≤W Det∗Γ × Win∗

Γ .

Proof. For any upper set of outcomes (for either players preferences), we con-
struct the win/lose derived game where that player wins, iff he enforces the set,
and loses otherwise. There are finitely many such games, so we can use Win∗

Γ

to decide which are won and which are lost. As shown in [14], there will be a
combination of upper sets of outcomes for each player, such that if both players
enforce their upper set, this forms a Nash equilibrium. We use Det∗

Γ to com-
pute Nash equilibria for all derived games in parallel, and then simply select the
suitable strategies. ��

Weihrauch Degrees of Finding Equilibria in Sequential Games 253

Techniques suitable for multiplayer sequential games were then introduced in
[13], again by the first author. Again for brevity, we only consider the version
with finitely many outcomes:

Theorem 5 (Constructing Nash equilibria). NEΓ ≤W
̂WinΓ × ̂DetΓ .

A further improvement on the techniques in [13] were provided by the authors
in [15]. These techniques in particular suffice to prove the existence of subgame-
perfect equilibria in antagonistic games (this implies two players and finitely
many outcomes).

Theorem 6. SPEΓ ≤W
̂WinΓ × ̂DetΓ .

5 Deciding the Winner and Finding Nash Equilibria

The results in Sect. 3 show that for many concrete examples of Γ , the prob-
lem DetΓ is inherently multivalued, i.e. not equivalent to any functions between
admissible spaces. On the other hand, the upper bounds provided in Sect. 4
all include WinΓ , which is of course single-valued. In the current section, we
will explore some converse reductions, from deciding the winner to finding Nash
equilibria. This generally requires some (rather tame) requirements on the point-
classes involved.

Lemma 4. Let Γ be obtained by Γ1 by first closing under finite union, rescaling
and union with clopens; and then adding complements. Then:

Win∗
Γ1

≤W NEap
Γ

Proof sketch. Given n win/lose games, the first player starts by announcing
which of these games she believes she can win. Then the second player can
choose one of the listed games to play. If the first player did not claim any
winnable games, the game ends and the outcome is 0. If the first player claimed
to be able to win k out of n games, then the outcomes of the games subsequently
chosen by the second player are scaled up to k,−k. Thus, the first player has
every reason to list precisely those games she can actually win: If she would not
list a game she could win, she trades payoff k −1 for payoff k. If she lists a game
she cannot win, the second player will subsequently chose and win it, and then
the first player is punished by −k. ��
Lemma 5. Let Γ be closed under taking unions with Γ1 and Γ1. Then:

NEap
Γ × FindWSΓ1 ≡W NEap

Γ

Lemma 6. Let Γ be obtained by Γ1 by first closing under finite union, rescaling
and union with clopens; and then adding complements. Then:

FindWS∗
Γ1

× Win∗
Γ1

≤W NEap
Γ

254 S. Le Roux and A. Pauly

If we have access to subgame perfect equilibria (and are in a context where they
are guaranteed to exist), then we can even decide the winner of countably many
games in parallel:

Lemma 7. Let Γ1 contain the closed sets and be closed under finite unions and
the operation (An)n∈N
→ ({0N} ∪ ⋃

n∈N
0n1An

)
. Let Γ be obtained from Γ1 by

closing under complements. Then:

̂WinΓ1 ≤W SPEΓ

Proof sketch. Combine the input games like this:
a

a

G0
1
2

a

a

G1
1
2

a

a

Gn
1
2

1

��

6 General Games with Concrete Pointclasses

The general constructions put together with the classifications for specific point-
classes allow us to obtain some concrete Weihrauch degrees. First, we shall see
that moving from a win/lose game with closed and open outcomes to a two-
player game with several outcomes just complicates the operation of finding
Nash equilibria by finitely many uses of LPO in parallel:

Theorem 7. NEap
O∪A ≡W C{0,1}N × LPO∗.

Proof. For the reduction NEap
O∪A ≤W C{0,1}N × LPO∗, instantiate Theorem 4

with the results from Theorem 2 and Proposition 1.
For the other direction, note that FindWSA ≡W FindWSO∪A ≡W C{0,1}N

as in Theorem 2; and that Γ1 := A and Γ := O ∪ A satisfy the requirements of
Lemma 6, which then provides the desired result. ��
The result can actually be strengthened into the following (by noting that the
second game constructed in Lemma 3 is always won by the first player):

Theorem 8. NEap

Dn+1∪Dn+1
≡W C[n]

{0,1}N ×
(
LPO[n]

)∗
.

If one wishes to have subgame-perfect equilibria instead of mere Nash equilibria,
then countably many uses of LPO become necessary, and the problem becomes
equivalent to lim. Note that as long as there are at least three distinct outcomes,

Weihrauch Degrees of Finding Equilibria in Sequential Games 255

the number of outcomes has no further impact on the Weihrauch degree (due
to the nature of the construction used to prove Lemma 7)– unlike the situation
in Theorem 7, where the number of outcomes is related to the number of times
that LPO is used.

Theorem 9. SPEDn∪Dn
≡W lim(n).

Proof. For SPEDn∪Dn
≤W lim(n), instantiate Theorem 6 with the results from

Theorem 3, and note that ̂LPO(n) ≡W lim(n) and C[n]

{0,1}N ≤W lim(n+1).
For the other direction, we use Lemma 7 (applicable by Corollary 1) together

with Proposition 1. ��
Regarding Theorem 5, we do not (yet?) have matching lower bounds for any
particular pointclass. The gap is exemplified by the following:

Corollary 5. C{0,1}N × LPO∗ ≤W NEO∪A ≤W lim.

7 Conclusions and Outlook

With Theorem 3, we have shown that the computational strength of determinacy
provides a tight connection between the difference hierarchy and the Borel hier-
archy (in form of Corollary 4). Note that winning sets from the difference hier-
archy correspond to Boolean combinations of reachability and safety conditions.
Corollary 3 then provides an upper bound and a worst case for corresponding
decidability questions for logic. Theorem3 also shows that the computational
powers of the players required to find a winning strategy vastly exceeds the
computational power required to determine the outcome, thus casting doubt on
the adequateness of winning strategies (or Nash equilibria) as adequate solution
concepts for infinite sequential games.

The results in Sect. 4 contrasted with those in Sect. 6 essentially show that the
proofs in [13–15] are not too wasteful from a constructive perspective – i.e. the
constructions employed are not far less constructive than the theorems proven
with them.

There are several immediate avenues for extending the work presented here:
The restriction to finite action sets (i.e. finitely branching trees) can mostly be
lifted without a significant impact on the proof techniques. Note though that the
concrete Weihrauch degrees would change drastically, as in Theorem 2 we would
need to replace C{0,1}N by CNN , with the latter residing in a less explored part
of the Weihrauch lattice. The results in [15] are more general than covered here,
too (with the same proof complexity).

The study of the strength of determinacy for particular pointclasses in reverse
mathematics presumably offers further proofs adaptable into the framework of
Weihrauch reducibility, e.g. [8,18,19].

Further afield, understanding the Weihrauch degrees of determinacy prin-
ciples may be a contribution to the development of descriptive set theory in
computational/category-theoretical terms as suggested in [23].

256 S. Le Roux and A. Pauly

Acknowledgements. This work benefited from the Royal Society International
Exchange Grant IE111233 and the Marie Curie International Research Staff Exchange
Scheme Computable Analysis, PIRSES-GA-2011- 294962.

References

1. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An arithmetical hierarchy of
the law of excluded middle and related principles. In: 19th IEEE Symposium on
Logic in Computer Science (LICS 2004), pp. 192–201 (2004)

2. Brattka, V.: Effective Borel measurability and reducibility of functions. Math.
Logic Q. 51(1), 19–44 (2005)

3. Brattka, V., Gherardi, G.: Effective choice and boundedness principles in com-
putable analysis. Bull. Symbolic Logic 1, 73–117 (2011). arXiv:0905.4685

4. Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak
computability. J. Symbolic Logic 76, 143–176 (2011). arXiv:0905.4679

5. Brattka, V., Gherardi, G., Hölzl, R.: Probabilistic computability and choice.
arXiv 1312.7305 (2013). http://arxiv.org/abs/1312.7305

6. Brattka, V., Gherardi, G., Marcone, A.: The Bolzano-Weierstrass theorem is the
jump of weak König’s Lemma. Ann. Pure Appl. Logic 163(6), 623–625 (2012).
arXiv:1101.0792

7. Cenzer, D., Remmel, J.: Recursively presented games and strategies. Math. Soc.
Sci. 24(2–3), 117–139 (1992)

8. Eguchi, N.: Infinite games in the cantor space over admissible set theories. In:
Higuchi, K. (ed.) Proceedings of Computability Theory and Foundations of Math-
ematics (2014)

9. Friedman, H.: Higher set theory and mathematical practice. Ann. Math. Logic
2(3), 325–357 (1971)

10. Gale, D., Stewart, F.: Infinite games with perfect information. In: Contributions
to the Theory of Games, Annals of Mathematical Studies, vol. 28, pp. 245–266.
Princeton University Press (1953)

11. Higuchi, K., Kihara, T.: Inside the muchnik degrees I: discontinuity, learnability
and constructivism. Ann. Pure Appl. Logic 165(5), 1058–1114 (2014)

12. Kechris, A.: Classical Descriptive Set Theory. Graduate Texts in Mathematic, vol.
156. Springer, New York (1995)

13. Le Roux, S.: Infinite sequential Nash equilibria. Logical Methods Comput. Sci.
9(2), 14 (2013)

14. Le Roux, S.: From winning strategy to Nash equilibrium. Math. Logic Q. 60(4–5),
354–371 (2014). http://dx.doi.org/10.1002/malq.201300034, arXiv 1203.1866

15. Le Roux, S., Pauly, A.: Infinite sequential games with real-valued payoffs. In: CSL-
LICS 2014, pp. 62:1–62:10. ACM (2014). http://doi.acm.org/10.1145/2603088.
2603120

16. Le Roux, S., Pauly, A.: Weihrauch degrees of finding equilibria in sequential games.
arXiv:1407.5587 (2014)

17. Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975). http://
www.jstor.org/stable/1971035

18. Montalbán, A., Shore, R.A.: The limits of determinacy in second-order arithmetic.
Proc. London Math. Soc. 104(2), 223–252 (2012). http://plms.oxfordjournals.
org/content/104/2/223.abstract

http://arxiv.org/abs/0905.4685
http://arxiv.org/abs/0905.4679
http://arxiv.org/abs/1312.7305
http://arxiv.org/abs/1101.0792
http://dx.doi.org/10.1002/malq.201300034
http://doi.acm.org/10.1145/2603088.2603120
http://doi.acm.org/10.1145/2603088.2603120
http://arxiv.org/abs/1407.5587
http://www.jstor.org/stable/1971035
http://www.jstor.org/stable/1971035
http://plms.oxfordjournals.org/content/104/2/223.abstract
http://plms.oxfordjournals.org/content/104/2/223.abstract

Weihrauch Degrees of Finding Equilibria in Sequential Games 257

19. Nemoto, T.: Determinacy of wadge classes and subsystems of second order arith-
metic. Math. Logic Q. 55(2), 154–176 (2009). http://dx.doi.org/10.1002/malq.
200710081

20. Nemoto, T., MedSalem, M.O., Tanaka, K.: Infinite games in the Cantor space and
subsystems of second order arithmetic. Math. Logic Q. 53(3), 226–236 (2007)

21. Pauly, A.: How incomputable is finding Nash equilibria? J. Univ. Comput. Sci.
16(18), 2686–2710 (2010)

22. Pauly, A.: Computable Metamathematics and its Application to Game Theory.
Ph.D. thesis, University of Cambridge (2012)

23. Pauly, A., de Brecht, M.: Towards synthetic descriptive set theory: an instantiation
with represented spaces. arXiv 1307.1850

http://dx.doi.org/10.1002/malq.200710081
http://dx.doi.org/10.1002/malq.200710081

Prefix and Right-Partial Derivative Automata

Eva Maia(B), Nelma Moreira, and Rogério Reis

CMUP & DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{emaia,nam,rvr}@dcc.fc.up.pt

Abstract. Recently, Yamamoto presented a new method for the conver-
sion from regular expressions (REs) to non-deterministic finite automata
(NFA) based on the Thompson ε-NFA (AT). The AT automaton has two
quotients discussed: the suffix automaton Asuf and the prefix automaton,
Apre. Eliminating ε-transitions in AT, the Glushkov automaton (Apos) is
obtained. Thus, it is easy to see that Asuf and the partial derivative
automaton (Apd) are the same. In this paper, we characterise the Apre

automaton as a solution of a system of left RE equations and express
it as a quotient of Apos by a specific left-invariant equivalence relation.

We define and characterise the right-partial derivative automaton (
←−Apd).

Finally, we study the average size of all these constructions both exper-
imentally and from an analytic combinatorics point of view.

1 Introduction

Conversion methods from regular expressions to equivalent nondeterministic
finite automata have been widely studied. Resulting NFAs can have ε-transitions
or not. The standard conversion with ε-transitions is the Thompson automaton
(AT) [15] and the standard conversion without ε-transitions is the Glushkov
(or position) automaton (Apos) [9]. Other conversions such as partial derivative
automaton (Apd) [1,13] or follow automaton (Af) [10] were proved to be quotients
of the Apos, by specific right-invariant equivalence relations [6,10]. In particu-
lar, for REs under special conditions, Apd is an optimal conversion method [12].
Moreover, asymptotically and on average, the size of Apd is half the size of
Apos [2]. Reductions on the size of NFAs using left-relations was studied recently
by Ko and Han [11].

Yamamoto [16] presented a new conversion method based on the AT. Given
a AT, two automata are constructed by merging AT states: in one, the suffix
automaton (Asuf), states with the same right languages and in the other, the
prefix automaton (Apre), states with the same left languages. Asuf corresponds
to Apd, which is not a surprise because it is known that if ε-transitions are
eliminated from AT, the Apos is obtained [8]. Apre is a quotient by a left-invariant

This work was partially funded by the European Regional Development Fund
through the programme COMPETE and by the Portuguese Government through the
FCT under project UID/MAT/00144/2013 and project FCOMP-01-0124-FEDER-
020486. Eva Maia was also funded by FCT grant SFRH/BD/78392/2011.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 258–267, 2015.
DOI: 10.1007/978-3-319-20028-6 26

Prefix and Right-Partial Derivative Automata 259

relation. In this paper, we further study conversions from REs to NFAs based on
left-invariant relations. Using the notion of right-partial derivatives introduced
by Champarnaud et al. [4], we define the right-partial derivative automaton←−Apd, characterise its relation with Apd and Apos, and study its average size.
We construct the Apre automaton directly from a regular expression without
use the AT automaton, and we show that it is also a quotient of the Apos.
However, the experimental results suggest that, on average, the reduction on the
size of the Apos is not large. Considering the framework of analytic combinatorics
we study this reduction.

2 Regular Expressions and Automata

Given an alphabet Σ = {σ1, σ2, . . . , σk} of size k, the set RE of regular expres-
sions α over Σ is defined by the following grammar:

α := ∅ | ε | σ1 | · · · | σk | (α + α) | (α · α) | (α)�, (1)

where the · is often omitted. If two REs α and β are syntactically equal, we write
α ∼ β. The size of a RE α, |α|, is its number of symbols, disregarding parenthesis,
and its alphabetic size, |α|Σ , is the number of occurrences of letters from Σ. A RE
α is linear if all its letters occurs only once. The language represented by a RE
α is denoted by L(α). Two REs α and β are equivalent if L(α) = L(β), and we
write α = β. We define the function ε by ε(α) = ε if ε ∈ L(α) and ε(α) = ∅,
otherwise. This function can be naturally extended to sets of REs and languages.
We consider REs reduced by the following rules: εα = α = αε, ∅+α = α = α+∅,
and ∅α = ∅ = α∅. Given a language L ⊆ Σ� and a word w ∈ Σ�, the left quotient
of L w.r.t. w is the language w−1L = {x | wx ∈ L}, and the right quotient of
L w.r.t. w is the language Lw−1 = {x | xw ∈ L}. The reversal of a word
w = σ1σ2 · · · σn is wR = σn · · · σ2σ1. The reversal of a language L, denoted by
LR, is the set of words whose reversal is on L. The reversal of α ∈ RE is denoted
by αR. The reversal of set of REs is the set of the reversal of its elements. It is
not difficult to verify that Lw−1 = ((wR)−1LR)R.

A nondeterministic finite automaton (NFA) is a five-tuple A = (Q,Σ, δ, I, F)
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of
initial states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the
transition function. The transition function can be extended to words and to
sets of states in the natural way. When I = {q0}, we use I = q0. Given a state
q ∈ Q, the right language of q is Lq(A) = {w ∈ Σ� | δ(q, w) ∩ F 	= ∅}, and
the left language is

←−L q(A) = {w ∈ Σ� | q ∈ δ(I, w)}. The language accepted
by A is L(A) =

⋃
q∈I Lq(A). Two NFAs are equivalent if they accept the same

language. If two NFAs A and B are isomorphic, we write A
 B. An NFA is
deterministic if for all (q, σ) ∈ Q × Σ, |δ(q, σ)| ≤ 1 and |I| = 1. The reversal of
an automaton A is the automaton AR, where the sets of initial and final states
are swapped and all transitions are reversed. Given an equivalence relation ≡ in
Q, the quotient automaton A/≡ = (Q/≡, Σ, δ/≡, I/≡, F/≡) is defined in the usual

260 E. Maia et al.

way. A relation ≡ is right invariant w.r.t. A if and only if: ≡⊆ (Q − F)2 ∪ F 2

and ∀p, q ∈ Q,σ ∈ Σ, if p ≡ q, then δ(p,σ)/≡ = δ(q,σ)/≡. A relation ≡ is a left
invariant relation w.r.t. A if and only if it is a right-invariant relation w.r.t. AR.

The right languages Li, for i ∈ Q = [0, n], define a system of right equations,
Li =

⋃k
j=1 σj

(⋃
m∈Iij

Lm

)
∪ ε(Li), where Iij ⊆ [0, n], m ∈ Iij ⇔ m ∈ δ(i, σj),

and L(A) =
⋃

i∈I Li. In the same manner, the left languages of the states of A

define a system of left equations
←−L i =

⋃k
j=1

(⋃
m∈Iij

←−L m

)
σj ∪ ε(

←−L i), where

Iij ⊆ [0, n], m ∈ Iij ⇔ i ∈ δ(m,σj), and L(A) =
⋃

i∈F

←−L i.

2.1 Glushkov and Partial Derivative Automata

In the following we review two constructions which define NFAs equivalent to
a given regular expression α ∈ RE. Let pos(α) = {1, 2, . . . , |α|Σ} be the set of
letter positions in α, and let pos0(α) = pos(α)∪{0}. We consider the expression
α obtained by marking each letter with its position in α, i.e. L(α) ∈ Σ

�
where

Σ = {σi | σ ∈ Σ, 1 ≤ i ≤ |α|Σ}. The same notation is used to remove the
markings, i.e., α = α. For α ∈ RE and i ∈ pos(α), let first(α) = {i | ∃w ∈
Σ

�
, σiw ∈ L(α)}, last(α) = {i | ∃w ∈ Σ

�
, wσi ∈ L(α)} and follow(α, i) = {j |

∃u, v ∈ Σ
�
, uσiσjv ∈ L(α)}. The Glushkov automaton (or position automaton)

for α is Apos(α) = (pos0(α), Σ, δpos, 0, F), with δpos = {(0, σj , j) | j ∈ first(α)} ∪
{(i, σj , j) | j ∈ follow(α, i)} and F = last(α) ∪ {0} if ε(α) = ε, and F = last(α),
otherwise. We note that the number of states of Apos(α) is exactly |α|Σ + 1.

The partial derivative automaton of a regular expression was introduced inde-
pendently by Mirkin [13] and Antimirov [1]. Champarnaud and Ziadi [5] proved
that the two formulations are equivalent. For a regular expression α ∈ RE and
a symbol σ ∈ Σ, the set of left-partial derivatives of α w.r.t. σ is defined induc-
tively as follows:

∂σ(∅) = ∂σ(ε) = ∅
∂σ(σ′) =

{{ε} if σ′ = σ
∅ otherwise

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β)
∂σ(α�) = ∂σ(α)α�

(2)

where for any S ⊆ RE, S∅ = ∅S = ∅, Sε = εS = S, and Sβ = {αβ|α ∈ S} if
β 	= ∅, ε (and analogously for βS). The definition of left-partial derivatives can be
extended in a natural way to sets of regular expressions, words, and languages.
We have that w−1L(α) = L(∂w(α)) =

⋃
τ∈∂w(α) L(τ), for w ∈ Σ�. The set of all

partial derivatives of α w.r.t. words is denoted by PD(α) = ∂Σ�(α). The partial
derivative automaton of α is Apd(α) = (PD(α), Σ, δpd, α, Fpd), where δpd =
{(τ, σ, τ ′) | τ ∈ PD(α), σ ∈ Σ, τ ′ ∈ ∂σ(τ)} and Fpd = {τ ∈ PD(α) | ε(τ) = ε}.

As noted by Broda et al. [2] and Maia et al. [12], following Mirkin’s con-
struction, the partial derivative automaton of α can be inductively constructed.
A (right) support for α is a set of regular expressions {α1, . . . , αn} such that
αi = σ1αi1 + · · · + σkαik + ε(αi), i ∈ [0, n], α0 ∼ α and αij is a linear combina-
tion of αl, l ∈ [1, n] and j ∈ [1, k]. The set π(α) inductively defined below is a
right support of α.

Prefix and Right-Partial Derivative Automata 261

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α + β) = π(α) ∪ π(β)
π(αβ) = π(α)β ∪ π(β)
π(α�) = π(α)α�.

(3)

Champarnaud and Ziadi proved that PD(α) = π(α)∪{α} and the transition func-
tion of Apd can also be defined inductively from the system of equations above.
Let ϕ(α) = {(σ, γ) | γ ∈ ∂σ(α), σ ∈ Σ} and λ(α) = {α′ | α′ ∈ π(α), ε(α′) = ε},
where both sets can be inductively defined using (2) and (3). We have, δpd =
{α} × ϕ(α) ∪ F (α) where the result of the × operation is seen as a set of triples
and the set F is defined inductively by:

F (∅) = F (ε) = F (σ) = ∅, σ ∈ Σ
F (α + β) = F (α) ∪ F (β)

F (αβ) = F (α)β ∪ F (β) ∪ λ(α)β × ϕ(β)
F (α�) = F (α)α� ∪ (λ(α) × ϕ(α))α�.

(4)

Note that the concatenation of a transition (α, σ, β) with a RE γ is defined
by (α, σ, β)γ = (αγ, σ, βγ) (similarly γ(α, σ, β) = (γα, σ, γβ)), if γ 	∈ {∅, ε},
(α, σ, β)∅ = ∅ and (α, σ, β)ε = (α, σ, β). Then, Apd(α) = (π(α) ∪ {α}, Σ, {α} ×
ϕ(α) ∪ F (α), α, λ(α) ∪ ε(α){α}). In Fig. 1 are represented Apos(α) and Apd(α),
where α = βb and β = (a�b + a�ba + a�)�.

0 1

2

3

4 5

6 7

a

b

b

b

b

a
a

b
b

b

a

b

b

a

b
a

b

a

a

b

a
b

a

b

b

a

a

b

(a) Apos(α)

α a α

a bα

a baα

ε aα

a

b

a

b

b

a

b

a
a

b

b

a

b

a

b

a

a

(b) Apd(βb)

Fig. 1. Automata for α = βb with β = (a�b + a�ba + a�)�.

Champarnaud and Ziadi [6] showed that the partial derivative automaton is
a quotient of the Glushkov automaton by the right-invariant equivalence relation
≡c, such that i ≡c j if ∂wσi

(α) = ∂wσj
(α), for i, j ∈ pos0(α) and let σ0 = ε. It is

known that ∂wσi
(α) is either empty or an unique singleton for all w ∈ Σ

�
.

262 E. Maia et al.

3 Right-Partial Derivative Automata

The concept of right-partial derivative was introduced by Champarnaud et al.
For a regular expression α ∈ RE and a symbol σ ∈ Σ, the set of right-partial
derivatives of α w.r.t. σ,

←−
∂ σ(α), is defined in the same way as the set of left-

partial derivatives except for the following two rules:
←−
∂ σ(αβ) = α

←−
∂ σ(β) ∪ ε(β)

←−
∂ σ(α)

←−
∂ σ(α�) = α�←−∂ σ(α). (5)

This definition can be extended in a natural way to sets of regular expressions,
words, and languages. The set of all right-partial derivatives of α w.r.t. words is
denoted by

←−
PD(α) =

←−
∂ Σ�(α). The right- and left-partial derivatives of α w.r.t.

w ∈ Σ� are related by
←−
∂ w(α) = (∂wR(αR))R. Thus, L(

←−
∂ w(α)) = L(α)w−1. The

right-partial derivative automaton of α,
←−Apd(α), can be defined inductively as a

solution of a left system of expression equations, αi = αi1σ1+ · · ·+αikσk +ε(αi),
i ∈ [0, n], α0 ∼ α, αij is a linear combination of αl, l ∈ [1, n] and j ∈ [1, k].

Proposition 1. The set of regular expressions ←−π (α) defined in the same way
as the set π, except for the concatenation and Kleene star rules, is a solution of
a left system of expression equations,

←−π (αβ) = α←−π (β) ∪ ←−π (α) ←−π (α�) = α�←−π (α). (6)

Again, the solution of the system of equations also allows to inductively define
the transition function. Let ←−ϕ (α) = {(γ, σ) | γ ∈ ←−

∂ σ(α), σ ∈ Σ} and
←−
λ (α) =

{α′ | α′ ∈ ←−π (α), ε(α′) = ε}, where both sets can be inductively defined using
(5) and (6). The set of transitions of

←−Apd(α) is ←−ϕ (α) × {α} ∪ ←−
F (α) and the set←−

F (α) is defined similarly to the set F (α) except for the two following rules:
←−
F (αβ) = α

←−
F (β) ∪ ←−

F (α) ∪ ϕ(α) × (α
←−
λ (β))←−

F (α�) = α�←−F (α) ∪ α�(←−ϕ (α) × ←−
λ (α)).

(7)

The right-partial derivative automaton of α is
←−Apd(α) = (←−π (α)∪{α}, Σ,←−ϕ (α)×

{α}∪←−
F (α),

←−
λ (α)∪ε(α){α}, {α}). In Fig. 3(a) is represented the

←−Apd of the RE
βb considered in Fig. 1. Note that the sizes of π(α) and ←−π (α) are not comparable
in general. For example, |π(βb)| > |←−π (βb)|, but if we consider α = b(ba� +aba� +
a�)� then |π(α)| < |←−π (α)|. The following result relates the functions defined
above to the ones used to define the Apd is given by the following result.

Proposition 2. Let α be a regular expression. Then ←−π (α) = (π(αR))R,
←−
λ (α) =

(λ(αR))R, ←−ϕ (α) = (ϕ(αR))R and
←−
F (α) = (F (αR))R.

From the previous result and the fact that Apd(α)
 Apos(α)/≡c we have

Proposition 3. For any α ∈ RE,

1. (Apd(αR))R
 ←−Apd(α).
2. L(

←−Apd(α)) = L(α).
3.

←−Apd(α)
 (Apos(α
R))R

/≡c.

Prefix and Right-Partial Derivative Automata 263

4 Prefix Automata

Yamamoto [16] presented a new algorithm for converting a regular expression
into an equivalent NFA. First, a labeled version of the usual Thompson NFA
(Q,Σ, δ, I, F) is obtained, where each state q is labeled with two regular expres-
sions, one that corresponds to its left language, LP (q), and the other to its right
language, LS(q). States which in-transitions are labeled with a letter are called
sym-states. Then the equivalence relations ≡pre and ≡suf are defined on the
set of sym-states: for two states p, q ∈ Q, p ≡pre q if and only if LP (p) =
LP (q); and p ≡suf q if and only if LS(p) = LS(q). The prefix automaton Apre

and the suffix automaton Asuf are the quotient automata by these relations.
The final automaton is a combination of these two. The author also shows that
Asuf coincides with Apd. This relation between Apd and Asuf could lead us to
think that

←−Apd coincide with Apre, which is not true. For instance, considering
α = a+b, the

←−Apd(α) has 2 states and the Apre(α) has 3 states (see Fig. 2). Note
that both automata are obtained from another automaton by merging the states
with the same left language: while the

←−Apd(α) is obtained from (Apos(αR))R, we
will see that the Apre(α) is obtained from Apos(α).

q0

q1

q2

a

b

(a) Apos(α)

q0

q1

q2

a

b

(b) (Apos(α
R))R

ε

a

b

a

b

(c) Apre(α)

ε a + b
a, b

(d)
←−Apd(α)

Fig. 2. Automata for α = a + b.

The LP labelling scheme proposed by Yamamoto can be obtained as a solu-
tion of a system of expression equations for a RE α, as done both for Apd and←−Apd. Consider a system of left equations αi = αi1σ1 + · · · + αikσk, i ∈ [1, n],
where α =

∑
i∈I⊆[0,n] αi, αij =

∑
l∈Iij⊆[0,n] αl and α0 ∼ ε.

Proposition 4. The set Pre(α) inductively defined as follows:

Pre(∅) = ∅
Pre(ε) = ∅
Pre(σ) = {σ}

Pre(α + β) = Pre(α) ∪ Pre(β)
Pre(αβ) = αPre(β) ∪ Pre(α)
Pre(α�) = α�Pre(α).

(8)

is a solution (left support) of the system of left equations defined above.

The set Pre0(α) = Pre(α) ∪ {ε} constitutes the set of states of the prefix
automaton Apre(α). It also follows from the resolution of the above system of
equations, that the set of transitions of Apre(α) can be inductively defined. Let
P(α), ψ(α), and T(α) be defined, respectively, as follows:

P(∅) = ∅
P(ε) = {ε}
P(σ) = {σ}

P(α + β) = P(α) ∪ P(β)
P(αβ) = αP(β) ∪ ε(β)P(α)
P(α�) = α�P(α).

(9)

264 E. Maia et al.

q0

q1

q2 q3

b

a, b

a, b

a

a

a

(a)
←−Apd(βb) : q0 = βa ,
q1 = βa b, q2 = β, q3 = βb

q0 q1

q2

q3 q4
a

b

b

a

b

b

b
a

b
a

b b

b

(b) Apre(βb) : q0 = ε, q1 = β(a a),
q2 = β(a b), q3 = β((a b)a),
q4 = βb.

Fig. 3. Automata for βb, where β = (a�b + a�ba + a�)�

ψ(∅) = ∅
ψ(ε) = ∅
ψ(σ) = {(σ, σ)}

ψ(α + β) = ψ(α) ∪ ψ(α)
ψ(αβ) = ψ(α) ∪ ε(α) α ψ(β)
ψ(α�) = α�ψ(α)

(10)

T(∅) = T(ε) = T(σ) = ∅, σ ∈ Σ
T(α + β) = T(α) ∪ T(β)

T(αβ) = T(α) ∪ αT(β) ∪ P(α) × (αψ(β))
T(α�) = α�T(α) ∪ α�(P(α) × ψ(α)).

(11)

Therefore, Apre(α) = (Pre0(α), Σ, {ε} × ψ(α) ∪ T(α), ε,P(α) ∪ ε(α)). In
Fig. 3(b) we can see the Apre(βb), where the RE βb is the one of Fig. 1. From
both figures we observe that

←−Apd(βb) is the smallest of the four automaton
constructions. We now show that the Apre is a quotient of Apos. If α is a
linear regular expression, Apos(α) is deterministic and thus all its states have
distinct left languages. Therefore, in this case, Apre(α) coincides with Apos(α)
and |Pre(α)| = |α|Σ . For an arbitrary RE α, Apre(α)
 Apos(α). Let ≡l

be the equivalence relation in Pre(α) such that for any regular expression α,
∀α1, α2 ∈ Pre(α), α1 ≡l α2 ⇔ α1 = α2. It is not difficult to see that ≡l is a
left-invariant relation.

Proposition 5. Let α be a regular expression. Then Apre(α)
 Apos(α)/≡l.

By construction, the Glushkov automaton is homogeneous, i.e. the in- transitions
of each state are all labelled by the same letter. It follows from Proposition 5
that this property also holds for Apre.

5 Average-Case Complexity

We conducted some experimental tests in order to compare the sizes of Apos,
Apd,

←−Apd and Apre automata. We used the FAdo library1 that includes imple-
mentations of the NFA conversions and also several tools for uniformly random
generate regular expressions. In order to obtain regular expressions uniformly
1 http://fado.dcc.fc.up.pt.

http://fado.dcc.fc.up.pt

Prefix and Right-Partial Derivative Automata 265

Table 1. Experimental results for uniform random generated regular expressions.

k |α| |pos0| |δpos| |PD| |δπ| |π|
|pos| |←−

PD| |δ←−π | |←−π |
|pos| |Pre0| |δpre| |Pre|

|pos| 1 − ηk

2 100 28.9 167.5 15.7 56.0 0.55 15.9 56.4 0.55 20.1 73.7 0.71 0.90

500 139.9 1486.5 71.6 389.8 0.51 71.5 393.1 0.51 91.9 530.8 0.66

10 100 42.5 159.4 23.8 73.7 0.56 23.8 72.9 0.56 38.5 130.4 0.91 0.99

500 207.1 1019.1 113.2 423.8 0.55 112.4 425.6 0.54 186 807.1 0.90

1000 412.1 2182.1 223.7 884.1 0.54 223.1 884.5 0.54 369.5 1717.6 0.90

generated in the size of the syntactic tree, a prefix notation version of the gram-
mar was used. For each alphabet size, k, and |α|, samples of 10 000 REs were
generated, which is sufficient to ensure a 95% confidence level within a 1% error
margin. Table 1 presents the average values obtained for |α| ∈ {100, 500, 1000}
and k ∈ {2, 10}. These experiments suggest that in pratice the

←−Apd and the
Apd have the same size and the Apre is not significantly smaller then the Apos.
By Proposition 3, |αR|Σ = |α|Σ and by the fact that ε ∈ π(α) if and only if
ε ∈ ←−π (α), the analysis of the average size of Apd(α) presented in Broda et al. [3]
carries on to

←−Apd(α). Thus the average sizes of Apd and
←−Apd are asymptotically

the same. However,
←−Apd(α) has only one final state and its number of initial

states is the number of final states of Apd(αR). As studied by Nicaud [14], the
size of last(α) tends asymptotically to a constant depending on k and |λ(α)| is
half that size [2]. Thus, that constant value will be also the number of initial
states of

←−Apd. Following, again, the ideas in Broda et al., we estimate the number
of mergings of states that arise when computing Apre from Apos. The Apre has
at most |α|Σ + 1 states and this only occurs when all unions in Pre(α) are dis-
joint. However there are cases in which this does not happen. For instance, when
σ ∈ Pre(β)∩Pre(γ), then |Pre(β+γ)| = |Pre(β)∪Pre(γ)| ≤ |Pre(β)|+ |Pre(γ)|−1
and |Pre(β�γ)| = |β�Pre(γ) ∪ β�Pre(β)| ≤ |Pre(β)| + |Pre(γ)| − 1. In what fol-
lows we estimate the number of these non-disjoint unions, which correspond to
a lower bound for the number of states merged in the Apos automaton. This is
done in the framework of analytic combinatorics as expounded by Flajolet and
Sedgewick [7]. The methods apply to generating functions A(z) =

∑
n anzn for

a combinatorial class A with an objects of size n, denoted by [zn]A(z), and also
bivariate functions C(u, z) =

∑
α uc(α)z|α|, where c(α) is some measure of the

object α ∈ A.
The regular expressions ασ for which σ ∈ Pre(ασ), σ ∈ Σ, are generated by

following grammar:

ασ := σ | ασ + α | ασ + ασ | ασ · α | ε · ασ (12)

The regular expressions that are not generated by ασ are denoted by ασ. The
generating function for ασ, Rσ,k(z) satisfies

Rσ,k(z) = z + zRσ,k(z)Rk(z) + z(Rk(z) − Rσ,k(z))Rσ,k(z)

+ zRσ,k(z)Rk(z) + z2Rσ,k(z)

266 E. Maia et al.

From this one gets

Rσ,k(z) =
(z2 + 3zRk(z) − 1) +

√
(z2 + 3zRk(z) − 1)2 + 4z2

2z
. (13)

where Rk(z) = 1−z−
√

Δk(z)

4z is the generating function for REs given by gram-
mar (1) but omitting the ∅, Δk(z) = 1 − 2z − (7 + 8k)z2 and following Nicaud,

[zn]Rk(z) ∼
√

2(1 − ρk)
8ρk

√
π

ρ−n
k n−3/2, where ρk =

1
1 +

√
8k + 8

(14)

Using the techniques in Broda et al. and namely Proposition 3 one has

[zn]Rσ,k(z) ∼ 3
16

√
π

(
1 − b(ρk)√

a(ρk)

)√
2(1 − ρk)ρ−(n+1)

k n− 3
2 , (15)

where a(z) and b(z) are polynomials. Thus, the asymptotic ratio of regular
expressions with σ ∈ Pre(α) is:

[zn]Rσ,k(z)
[zn]Rk(z)

∼ 3
2

(
1 − b(ρk)√

a(ρk)

)
. (16)

As lim
k→∞

ρk = 0, lim
k→∞

a(ρk) = 1, and lim
k→∞

b(ρk) = 1, this asymptotic ratio tends

to 0 with k → ∞.
Let i(α) be the number of non-disjoint unions appearing during the compu-

tation of Pre(α) originated by the two cases above. Then i(α) verifies

i(ε) = i(σ) = 0
i(ασ + ασ) = i(ασ) + i(ασ) + 1
i(ασ + ασ) = i(ασ) + i(ασ)
i(ασ + α) = i(ασ) + i(α)

i(α�
σασ) = i(α�

σ) + i(ασ) + 1
i(α�

σασ) = i(α�
σ) + i(ασ)

i(αασ) = i(α) + i(ασ)
i(α�) = i(α).

From these equations we can obtain the cost generating function for the
number of mergings:

Iσ,k(z) =
(z + z2)Rσ,k(z)2√

Δk(z)
. (17)

Using again the same Proposition 3 from Broda et al., we conclude that:

[zn]Iσ,k(z) ∼ 1 + ρk

64

(
a(ρk) + b(ρk)2 − 2b(ρk)

√
a(ρk)

)
√

π
√

2 − 2ρk
ρ

−(n+1)
k n− 1

2 . (18)

The cost generating function for the number of letters in α ∈ RE, computed
by Nicaud, is Lk(z) = kz√

Δk(z)
and [zn]Lk(z) ∼ kρk√

π(2−2ρk)
ρ−n

k n−1/2. With these,

we get an asymptotic estimate for the average number of mergings given by:

[zn]Iσ,k(z)
[zn]Lk(z)

∼ 1 − ρk

4ρ2k
λk = ηk, (19)

Prefix and Right-Partial Derivative Automata 267

where λk = (1+ρk)
16(1−ρk)

(
a(ρk) + b(ρk)2 − 2b(ρk)

√
a(ρk)

)
. It is not difficult to con-

clude that lim
k→∞

λk = 0, therefore lim
k→∞

ηk = 0. As it is evident from the last two

columns of Table 1, for small values of k, the lower bound ηk does not capture all
the mergings that occur in Apre. Although we must study other contributions for
those mergings, it seems that for larger values of k, the average number of states
of the Apre automaton approaches the number of states of the Apos automaton.

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

2. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov
and partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984 (2012)

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity of
partial derivative automata. Int. J. Found. Comput. Sci. 22(7), 1593–1606 (2011)

4. Champarnaud, J.M., Dubernard, J.P., Jeanne, H., Mignot, L.: Two-sided deriva-
tives for regular expressions and for hairpin expressions. In: Dediu, A.H., Mart́ın-
Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 202–213. Springer,
Heidelberg (2013)

5. Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fundam. Inform. 45(3), 195–205 (2001)

6. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theor. Comput. Sci. 289(1), 137–163 (2002)

7. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. CUP, Cambridge (2008)
8. Giammarresi, D., Ponty, J.L., Wood, D.: The Glushkov and Thompson construc-

tions: a synthesis (1998) (unpublished manuscript)
9. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16(5), 1–53

(1961)
10. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
11. Ko, S., Han, Y.: Left is better than right for reducing nondeterminism of NFAs. In:

Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 238–251. Springer,
Heidelberg (2014)

12. Maia, E., Moreira, N., Reis, R.: Partial derivative and position bisimilarity
automata. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp.
264–277. Springer, Heidelberg (2014)

13. Mirkin, B.: An algorithm for constructing a base in a language of regular expres-
sions. Eng. Cybern. 5, 110–116 (1966)

14. Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer,
Heidelberg (2009)

15. Thompson, K.: Regular expression search algorithm. Com. ACM 11(6), 410–422
(1968)

16. Yamamoto, H.: A new finite automaton construction for regular expressions. In:
Bensch, S., Freund, R., Otto, F. (eds.) NCMA, pp. 249–264. Österreichische Com-
puter Gesellschaft, Kassel (2014). books@ocg.at

A Note on the Computable Categoricity
of �p Spaces

Timothy H. McNicholl(B)

Iowa State University, Ames, IA 50011, USA
mcnichol@iastate.edu

Abstract. Suppose that p is a computable real and that p ≥ 1. We show
that in both the real and complex case, �p is computably categorical if
and only if p = 2. The proof uses Lamperti’s characterization of the
isometries of Lebesgue spaces of σ-finite measure spaces.

1 Introduction

When p is a positive real number, let �p denote the space of all sequences of
complex numbers {an}∞

n=0 so that

∞∑
n=0

|an|p < ∞.

�p is a vector space over C with the usual scalar multiplication and vector addi-
tion. When p ≥ 1 it is a Banach space under the norm defined by

‖{an}n‖ =

(∞∑
n=0

|an|p
)1/p

.

Loosely speaking, a computable structure is computably categorical if all of
its computable copies are computably isomorphic. In 1989, Pour-El and Richards
showed that �1 is not computably categorical [10]. It follows from a recent result
of A.G. Melnikov that �2 is computably categorical [8]. At the 2014 Conference
on Computability and Complexity in Analysis, A.G. Melnikov asked “For which
computable reals p ≥ 1 is �p computably categorical?” The following theorem
answers this question.

Theorem 1. Suppose p is a computable real so that p ≥ 1. Then, �p is com-
putably categorical if and only if p = 2.

We prove Theorem 1 by proving the following stronger result.

Theorem 2. Suppose p is a computable real so that p ≥ 1 and p �= 2. Suppose
C is a c.e. set. Then, there is a computable copy of �p, B, so that C computes
a linear isometry of �p onto B. Furthermore, if an oracle X computes a linear
isometry of �p onto B, then X must also compute C.
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 268–275, 2015.
DOI: 10.1007/978-3-319-20028-6 27

A Note on the Computable Categoricity of �p Spaces 269

These results also hold for �p-spaces over the reals. In a forthcoming paper it
will be shown that �p is Δ0

2-categorical.
The paper is organized as follows. Section 2 covers background and motiva-

tion. Section 3 presents the proof of Theorem 2. Concluding remarks are pre-
sented in Sect. 4.

2 Background

2.1 Background from Functional Analysis

Fix p so that 1 ≤ p < ∞. A generating set for �p is a subset of �p with the
property that �p is the closure of its linear span.

Let en be the vector in �p whose (n + 1)st component is 1 and whose other
components are 0. Let E = {en : n ∈ N}. We call E the standard generating
set for �p.

Recall that an isometry of �p is a norm-preserving map of �p into �p. We will
use the following classification of the surjective linear isometries of �p.

Theorem 3. (Banach/Lamperti). Suppose p is a real number so that p ≥ 1
and p �= 2. Let T be a linear map of �p into �p. Then, the following are equivalent.

1. T is a surjective isometry.
2. There is a permutation of N, φ, and a sequence of unimodular points, {λn}n,

so that T (en) = λneφ(n) for all n.
3. Each T (en) is a unit vector and the supports of T (en) and T (em) are disjoint

whenever m �= n.

In his seminal text on linear operators, S. Banach stated Theorem 3 for the case of
�p spaces over the reals [2]. He also stated a classification of the linear isometries
of Lp[0, 1] in the real case. Banach’s proofs of these results were sketchy and did
not easily generalize to the complex case. In 1958, J. Lamperti rigorously proved
a generalization of Banach’s claims to real and complex Lp-spaces of σ-finite
measure spaces [7]. Theorem 3 follows from J. Lamperti’s work as it appears in
Theorem 3.2.5 of [4]. Note that Theorem 3 fails when p = 2. For, �2 is a Hilbert
space. So, if {f0, f1, . . .} is any orthonormal basis for �2, then there is a unique
surjective linear isometry of �2, T , so that T (en) = fn for all n.

2.2 Background from Computable Analysis

We assume the reader is familiar with the fundamental notions of computability
theory as covered in [3].

Suppose z0 ∈ C. We say that z0 is computable if there is an algorithm that
given any k ∈ N as input computes a rational point q so that |q−z0| < 2−k. This
is equivalent to saying that the real and imaginary parts of z0 have computable
decimal expansions.

Our approach to computability on �p is equivalent to the format in [10]
wherein a more expansive treatment may be found.

270 T.H. McNicholl

Fix a computable real p so that 1 ≤ p < ∞. Let F = {f0, f1, . . .} be a
generating set for �p. We say that F is an effective generating set if there is an
algorithm that given any rational points α0, . . . , αM and a nonnegative integer
k as input computes a rational number q so that

q − 2−k <

∥∥∥∥∥∥
M∑

j=0

αjfj

∥∥∥∥∥∥ < q + 2−k.

That is, the map

α0, . . . , αM �→
∥∥∥∥∥∥

M∑
j=0

αjfj

∥∥∥∥∥∥
is computable. Clearly the standard generating set is an effective generating set.

Suppose F = {f0, f1, . . .} is an effective generating set for �p. We say that a
vector g ∈ �p is computable with respect to F if there is an algorithm that given
any nonnegative integer k as input computes rational points α0, . . . , αM so that∥∥∥∥∥∥g −

M∑
j=0

αjfj

∥∥∥∥∥∥ < 2−k.

Suppose gn ∈ �p for all n. We say that {gn}n, is computable with respect to F if
there is an algorithm that given any k, n ∈ N as input computes rational points
α0, . . . , αM so that ∥∥∥∥∥∥gn −

M∑
j=0

αjfj

∥∥∥∥∥∥ < 2−k.

When f ∈ �p and r > 0, let B(f ; r) denote the open ball with center f
and radius r. When α0, . . . , αM are rational points and r is a positive rational
number, we call B

(∑M
j=0 αjfj ; r

)
a rational ball.

Suppose F = {f0, f1, . . .} and G = {g0, g1, . . .} are effective generating sets
for �p. We say that a map T : �p → �p is computable with respect to (F,G) if
there is an algorithm P that meets the following three criteria.

– Approximation: Given a rational ball B(
∑M

j=0 αjfj ; r) as input, P either
does not halt or produces a rational ball B(

∑N
j=0 βjgj ; r′).

– Correctness: If B(
∑N

j=0 βjgj ; r′) is the output of P on input B(
∑M

j=0

αjfj ; r), then T (f) ∈ B(
∑N

j=0 βjgj ; r′) whenever f ∈ B(
∑M

j=0 αjfj ; r).
– Convergence: If U is a neighborhood of T (f), then f belongs to a rational

ball B1 = B(
∑M

j=0 αjfj ; r) so that P halts on B1 and produces a rational ball
that is included in U .

When we speak of an algorithm accepting a rational ball B(
∑M

j=0 αjfj ; r) as
input, we of course mean that it accepts some representation of the ball such as
a code of the sequence (r,M,α0, . . . , αM).

A Note on the Computable Categoricity of �p Spaces 271

All of these definitions have natural relativizations. For example, if F =
{f0, f1, . . .} is an effective generating set, then we say that X computes a vector
g ∈ �p with respect to F if there is a Turing reduction that given the oracle X and
an input k computes rational points α0, . . . , αM so that

∥∥∥g − ∑M
j=0 αjfj

∥∥∥ < 2−k.

2.3 Background from Computable Categoricity

For the sake of motivation, we begin by considering the following simple example.
Let ζ be an incomputable unimodular point in the plane. For each n, let fn =
ζen. Let F = {f0, f1, . . .}. Thus, F is an effective generating set. However, the
vector ζe0 is computable with respect to F even though it is not computable
with respect to the standard generating set E. In fact, the only vector that
is computable with respect to E and F is the zero vector. The moral of the
story is that different effective generating sets may yield very different classes of
computable vectors and sequences. However, there is a surjective linear isometry
of �p that is computable with respect to (E,F); namely multiplication by ζ. Thus,
E and F give the same computability theory on �p even though they yield very
different classes of computable vectors. This leads to the following definition.

Definition 4. Suppose p is a computable real so that p ≥ 1. We say that �p is
computably categorical if for every effective generating set F there is a surjective
linear isometry of �p that is computable with respect to (E,F).

The definitions just given for �p can easily be adapted to any separable Banach
space. Suppose G = {g0, g1 . . . , } is an effective generating set for a Banach
space B. The pair (B, G) is called a computable Banach space. Suppose that B is
linearly isometric to �p, and let T denote a linear isometric mapping of B onto
�p. Let fn = T (gn), and let F = {f0, f1, . . .}. Then, F is an effective generating
set for �p, and T is computable with respect to (G,F). Thus, Theorem 2 can be
rephrased as follows.

Theorem 5. Suppose p is a computable real so that p ≥ 1 and p �= 2. Suppose
C is a c.e. set. Then, there is an effective generating set for �p, F , so that with
respect to (E,F), C computes a surjective linear isometry of �p. Furthermore,
any oracle that computes a surjective linear isometry of �p with respect to (E,F)
must also compute C.

A.G. Melnikov and K.M. Ng have investigated computable categoricity questions
with regards to the space C[0, 1] of continuous functions on the unit interval with
the supremum norm [8,9]. The study of computable categoricity for countable
structures goes back at least as far as the work of Goncharov [5]. The text of
Ash and Knight has a thorough discussion of the main results of this line of
inquiry [1]. The survey by Harizanov covers other directions in the countable
computable structures program [6].

272 T.H. McNicholl

3 Proof of Theorems 1 and 2

We begin by noting the following easy consequence of the definitions and Theo-
rem 3.

Proposition 6. Suppose p is a computable real so that p ≥ 1 and so that p �= 2.
Let F be an effective generating set for �p. Then, the following are equivalent.

1. There is a surjective linear isometry of �p that is computable with respect to
(E,F).

2. There is a permutation of N, φ, and a sequence of unimodular points {λn}n,
so that {λneφ(n)}n is computable with respect to F .

3. There is a sequence of unit vectors {gn}n so that {gn}n is computable with
respect to F , G = {g0, g1, . . .} is a generating set for �p, and so that the
supports of gn and gm are disjoint whenever n �= m.

Proof. Parts (2) and (3) just restate each other. It follows from Theorem 3 that
(1) implies (2).

Suppose (3) holds. Let T be the unique linear map of the span of E onto
the span of G so that T (en) = gn for all n. Since the supports of g0, g1, . . . are
pairwise disjoint, and since each gn is a unit vector, T is isometric. It follows that
there is a unique extension of T to a unique linear isometry of �p; denote this
extension by T as well. We claim that T is computable with respect to (E,F).
For, suppose a rational ball B(

∑M
j=0 αjej ; r) is given as input. Since {gn}n is

computable with respect to F , it follows that we can compute a non-negative
integer N and rational points β0, . . . , βN so that

∥∥∥∑M
j=0 αjgj − ∑N

j=0 βjfj

∥∥∥ < r.

We then output B(
∑N

j=0 βjgj ; 2r). It follows that the Approximation, Correct-
ness, and Convergence criteria are satisfied and so T is computable with respect
to (E,F).
�
We now turn to the proof of Theorem 5 which, as we have noted, implies
Theorem 2. Our construction of F is a modification of the construction used
by Pour-El and Richards to show that �1 is not computably categorical [10]. Let
C be an incomputable c.e. set. Without loss of generality, we assume 0 �∈ C. Let
{cn}n∈N be an effective one-to-one enumeration of C. Set

γ =
∑
k∈C

2−k.

Thus, 0 < γ < 1, and γ is an incomputable real. Set:

f0 = (1 − γ)1/pe0 +
∞∑

n=0

2−cn/pen+1

fn+1 = en+1

F = {f0, f1, f2, . . .}
Since 1 − γ > 0, we can use the standard branch of p

√ .
We divide the rest of the proof into the following lemmas.

A Note on the Computable Categoricity of �p Spaces 273

Lemma 7. F is an effective generating set.

Proof. Since

(1 − γ)1/pe0 = f0 −
∞∑

n=1

2−cn−1/pfn

the closed linear span of F includes E. Thus, F is a generating set for �p. Note
that ‖f0‖ = 1.

Suppose α0, . . . , αM are rational points. When 1 ≤ j ≤ M , set

Ej = |α02−cj−1/p + αj |p − |α0|p2−cj−1 .

It follows that

‖α0f0 + . . . + αMfM‖p = |α0|p ‖f0‖p + E1 + . . . + EM

= |α0|p + E1 + . . . + EM .

Since E1, . . ., EM can be computed from α0, . . . , αM , ‖α0f0 + . . . + αMfM‖ can
be computed from α0, . . . , αM . Thus, F is an effective generating set.
�
Lemma 8. Every oracle that with respect to F computes a scalar multiple of e0
whose norm is 1 must also compute C.

Proof. Suppose that with respect to F , X computes a vector of the form λe0
where |λ| = 1. It suffices to show that X computes (1 − γ)−1/p.

Fix a rational number q0 so that (1 − γ)−1/p ≤ q0. Let k ∈ N be given as
input. Compute k′ so that 2−k′ ≤ q02−k. Since X computes λe0 with respect to
F , we can use oracle X to compute rational points α0, . . . , αM so that∥∥∥∥∥∥λe0 −

M∑
j=0

αjfj

∥∥∥∥∥∥ < 2−k′
. (1)

We claim that |(1−γ)−1/p −|α0|| < 2−k. For, it follows from (1) that |λ−α0(1−
γ)1/p| < 2−k′

. Thus, |1 − |α0|(1 − γ)1/p| < 2−k′
. Hence,

|(1 − γ)−1/p − |α0|| < 2−k′
(1 − γ)−1/p ≤ 2−k′

q0 ≤ 2−k.

Since X computes α0 from k, X computes (1 − γ)−1/p.
�
Lemma 9. If X computes a surjective linear isometry of �p with respect to
(E,F), then X must also compute C.

Proof. By Lemma 8 and the relativization of Proposition 6.
�
Lemma 10. With respect to F , C computes e0.

274 T.H. McNicholl

Proof. Fix an integer M so that (1 − γ)−1/p < M .
Let k ∈ N. Using oracle C, we can compute an integer N1 so that N1 ≥ 3 and∥∥∥∥∥

∞∑
n=N1

2−cn−1/pen

∥∥∥∥∥ ≤ 2−(kp+1)/p

2−(kp+1)/p + M
.

We can use oracle C to compute a rational number q1 so that |q1−(1−γ)−1/p| ≤
2−(kp+1)/p. Set

g = q1

[
f0 −

N1−1∑
n=1

2−cn−1/pfn

]
.

It suffices to show that ‖e0 − g‖ < 2−k. Note that since 1−γ < 1, |q1(1−γ)1/p −
1| ≤ 2−(kp+1)/p. Note also that |q1| < M + 2−(kp+1)/p. Thus,

‖e0 − g‖p =

∥∥∥∥∥e0 − q1(1 − γ)1/pe0 − q1

∞∑
n=N1

2−cn−1/pen

∥∥∥∥∥
p

≤ |q1(1 − γ)1/p − 1|p + |q1|p
∥∥∥∥∥

∞∑
n=N1

2−cn−1/pen

∥∥∥∥∥
p

< 2−(kp+1) + 2−(kp+1) = 2−kp

Thus, ‖e0 − g‖ < 2−k. This completes the proof of the lemma.
�
Lemma 11. With respect to (E,F), C computes a surjective linear isometry
of �p.

Proof. By Lemma 10 and the relativization of Proposition 6.
�

4 Concluding Remarks

We note that all of the steps in the above proofs work just as well over the real
field.

Lamperti’s result on the isometries of Lp spaces hold when 0 < p < 1. For
these values of p, �p is a metric space under the metric

d({an}n, {bn}n) =
∞∑

n=0

|an − bn|p.

The steps in the above proofs can be adapted to these values of p as well.
In a forthcoming paper it will be shown that �p is Δ0

2-categorical.

Acknowledgement. The author thanks the anonymous referees who made helpful
comments. The author’s participation in CiE 2015 was funded by a Simons Foundation
Collaboration Grant for Mathematicians.

A Note on the Computable Categoricity of �p Spaces 275

References

1. Ash, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy.
Studies in Logic and the Foundations of Mathematics, vol. 144. North-Holland
Publishing Co., Amsterdam (2000)

2. Banach, S.: Theory of Linear Operations. North-Holland Mathematical Library,
vol. 38. North-Holland Publishing Co., Amsterdam (1987). Translated from the
French by F. Jellett, With comments by A. Pe�lczyński and Cz. Bessaga

3. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)
4. Fleming, R.J., Jamison, J.E.: Isometries on Banach Spaces: Function Spaces. Chap-

man & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol.
129. Chapman & Hall/CRC, Boca Raton (2003)

5. Goncharov, S.: Autostability and computable families of constructivizations.
Algebr. Log. 17, 392–408 (1978). English translation

6. Harizanov, V.S.: Pure computable model theory. Handbook of Recursive Mathe-
matics. Volume 1, Studies in Logic and the Foundations of Mathematics, vol. 138,
pp. 3–114. North-Holland, Amsterdam (1998)

7. Lamperti, J.: On the isometries of certain function-spaces. Pac. J. Math. 8, 459–466
(1958)

8. Melnikov, A.G.: Computably isometric spaces. J. Symb. Log. 78(4), 1055–1085
(2013)

9. Melnikov, A.G., Ng, K.M.: Computable structures and operations on the space of
continuous functions. Available at https://dl.dropboxusercontent.com/u/4752353/
Homepage/C[0,1] final.pdf

10. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer,
Berlin (1989)

https://dl.dropboxusercontent.com/u/4752353/Homepage/C(0,1)_final.pdf
https://dl.dropboxusercontent.com/u/4752353/Homepage/C(0,1)_final.pdf

On the Computational Content
of Termination Proofs

Georg Moser and Thomas Powell(B)

Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{georg.moser,thomas.powell}@uibk.ac.at

Abstract. Given that a program has been shown to terminate using a
particular proof, it is natural to ask what we can infer about its complex-
ity. In this paper we outline a new approach to tackling this question in
the context of term rewrite systems and recursive path orders. From an
inductive proof that recursive path orders are well-founded, we extract
an explicit realiser which bounds the derivational complexity of rewrite
systems compatible with these orders. We demonstrate that by analysing
our realiser we are able to derive, in a completely uniform manner, a num-
ber of results on the relationship between the strength of path orders and
the bounds they induce on complexity.

1 Introduction

Proof theory emphasises proofs over theorems, as put most succinctly by Kreisel’s
famous question “What more do we know if we have proved a theorem by
restricted means than if we merely know that it is true?”. One application of
this quest in the context of program analysis is the link between termination and
complexity. Is it possible to derive computational content from a given termina-
tion argument, so that we can automatically deduce bounds on the complexity
of our programs?

We study this question in the abstract framework of term rewrite systems
and recursive path orders, which we take to encompass multiset path orders,
lexicographic path orders, and recursive path orders with status. Our main con-
tribution is to analyse the proof that recursive path orders are well-founded and
extract an explicit term in Gödel’s system ᵀ which bounds the derivational com-
plexity of rewrite systems reducing under these orders. Our framework is uniform
in the sense that our term applies to any variant of recursive path order studied,
by just adapting its parameters. We then demonstrate that a simple analysis of
our term allows us to uniformly derive the well-known primitive recursive bounds
on the derivational complexity of multiset path orders [1] (see Theorem 1) and
the multiple recursive bounds on lexicographic path orders [2] (see Theorem 2).

The emphasis of this work is less on the technical results achieved, but in
the method used to achieve them. Our re-derivation of the standard bounds for
multiset and lexicographic path orders contrasts greatly to the somewhat ad-hoc

This work is supported by FWF (Austrian Science Fund) project P-25781.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 276–285, 2015.
DOI: 10.1007/978-3-319-20028-6 28

On the Computational Content of Termination Proofs 277

originally carried out by Hofbauer and Weiermann, and are much more closely
related to the study of Buchholz [3], which forms the starting point of our work.
However, whereas in [3] complexity bounds are obtained via a suitable formal-
isation of termination proofs in fragments of arithmetic and rely on Parson’s
fundamental work [4], our focus is on extracting an explicit subrecursive bound.
Therefore, not only is our proof completely elementary and self-contained, but
our concrete realising term is amenable to a much finer analysis of complexity
for restricted path orders.

In addition to the aforementioned results, we obtain a novel derivational com-
plexity analysis of recursive path orders with status [5], where we confirm that
the induced complexity is multiple recursive, which follows as a corollary to our
general boundedness result Theorem 2. This general bound is not surprising in
the context of the well-known multiple-recursive bound on the lexicographic path
orders and follows with relative ease from earlier work [6]. However, our smooth
framework allows us to get rid of the technicalities involved in earlier work.

Throughout the history of term rewriting, a general link has been sought
between the strength of a termination argument and the complexity of rewrite
systems it admits. An early attempt at such a correspondence is the so-called
Cichon’s principle, which states that the derivational complexity function of a
TRS R for which termination is provable using a termination order of order
type α is eventually dominated by a function from the slow-growing hierarchy
Gα along α, cf. [7]. Unfortunately, while this principle holds for the standard
recursive path orders, it is not true in general, even for its relaxed version as
proposed by Touzet [8] - see [9] for a proof. It is now accepted that the link
between termination orders and complexity is dependent in a much more subtle
way on the structure of the termination proof. Therefore, we believe that apply-
ing proof-theoretic techniques to analyse the computational meaning of path
orders could provide some important insight into the relationship between ter-
mination and complexity. This approach has already been successfully pioneered
in e.g. [10,11], and we hope that the work outlined here constitutes a first step
towards a similarly successful program in the context of rewriting.

2 Recursive Path Orders

We assume familiarity with term rewriting [5,12], and recall only some basic nota-
tion. Let V denote a countable infinite set of variables, F a finite set of function
symbols, and T (F ,V) (T for short) the set of terms constructed from these. A
term rewrite system (TRS) R over T (F ,V) is a finite set of rewrite rules l → r.
For a given term t, |t| denotes its size (the total number of variables and function
symbols in t), dp(t) its depth (the maximal number of nesting function symbols)
and Var(t) the set of variables in t. The rewrite relation is denoted as →R and we
use the standard notations for its transitive and reflexive closure. The derivation
height of a term s with respect to a well-founded, finitely branching relation → is
defined as: dh(s,→) = max{n | ∃t s →n t}. The derivational complexity function
dcR is defined as follows: dcR(n) := max{dh(t,→R) | |t| � n}.

Well-founded path orders are a powerful method for proving the termination
of rewrite systems, and recursive path orders are one of the best known of these.

278 G. Moser and T. Powell

For an arbitrary relation > defined on some set X, we let >mul and >lex denote
respectively the multiset and lexicographic extensions of > to finite tuples Xn.
We write <mul for the reverse of >mul, and analogously for all other annotated
inequality symbols used below.

Definition 1 (Recursive path order). Let � be a well-founded precedence
(i.e. a proper order) on a finite signature F . The recursive path order (RPO)
�rpo with respect to some status function τ : F → {mul, lex} is defined recursively
as follows: we say that t = f(t1, . . . , tn) �rpo s if one of the following holds:

(a) ti �rpo s for some i = 1, . . . , m;
(b) s = g(s1, . . . , sm) with f � g and t �rpo si for all i = 1, . . . , n;
(c) s = f(s1, . . . , sn), t �rpo si for all i = 1, . . . , n and (t1, . . . , tn) �rpo,τ(f)

(s1, . . . , sn).

Here �rpo denotes the reflexive closure of �rpo.

Recall that the multiset path order �mpo is the instance of RPO for which τ(f) =
mul for all f , and analogously for the lexicographic path-order. We say that a
TRS R is compatible with �rpo for some suitable choice of � and τ if R ⊆ �rpo.
It is easy (but tedious) to show that �rpo is closed under both substitutions and
contexts, and therefore from compatibility we obtain that →R ⊆ �rpo. In the
latter case, we say that R is reducing with respect to �rpo. It is well-known that
�rpo is well-founded, so any TRS compatible with �rpo is terminating.

There are two well-known basic strategies to show that a RPO is well-
founded. One can either appeal to some variant of the minimal-bad-sequence
argument to show that there cannot exist an infinite descending chain of terms
t0 �rpo t1 �rpo . . ., either in the form of Kruskal’s theorem or directly applied
to path orders as in [13], or alternatively one can take what is essentially the
contrapositive of this statement and proceed via a series of nested inductions on
terms, as in e.g. [3,14]. This second approach is most amenable for the purposes
of program extraction, so we sketch the inductive proof below.

Theorem 1. �rpo is well-founded.

Proof. Let t ∈ WF denote that t is a well-founded term, i.e. there are no infinite
descending sequences starting from t. We prove that

∀f ∈ F ∀t1, . . . , tn ∈ WF . f(t1, . . . , tn) ∈ WF︸ ︷︷ ︸
A(f)

. (1)

Then, since we trivially have x ∈ WF for all variables x, we obtain ∀t(t ∈ WF)
from (1) by well-founded induction over the structure of terms. Therefore it
remains to prove ∀fA(f). Let us fix, for now, f ∈ F and t1, . . . , tn ∈ WF and
make the following assumptions:

(A) ∀g ≺ fA(g)
(B) ∀(s1, . . . , sn) ≺rpo,τ(f) (t1, . . . , tn)(s1, . . . , sn ∈ WF → f(s1, . . . , sn) ∈ WF),

On the Computational Content of Termination Proofs 279

where we note that ≺rpo,τ(f) is only ever applied to tuples of well-founded terms.
We prove that f(t1, . . . , tn) ∈ WF is well-founded by showing that

∀s(s ≺rpo f(t1, . . . , tn) → s ∈ WF︸ ︷︷ ︸
B(s)

),

using induction over �, where � denotes the immediate subterm relation. Let
us fix s and assume that ∀s′ � s B(s′). Then if t = f(t1, . . . , tn) �rpo s there are
three possibilities:

(a) ti �rpo s for some i = 1, . . . , n, in which case s ∈ WF by assumption that
ti ∈ WF;

(b) s = g(s1, . . . , sm) with f � g and t �rpo si for all i. Then by our induction
hypothesis we must have s1, . . . , sm ∈ WF, and therefore by assumption (A)
we have g(s1, . . . , sm) ∈ WF too;

(c) s = f(s1, . . . , sn) with t �rpo si for all i and (t1, . . . , tn) �rpo,τ(f) (s1, . . . , sn).
Then again s1, . . . , sn ∈ WF, and this time by assumption (B) we have
f(s1, . . . , sn) ∈ WF.

This establishes B(s), and thus by �-induction we obtain ∀sB(s) and hence well-
foundedness of f(t1, . . . , tn). We now carry out two further inductions to elimi-
nate the assumptions (A) and (B) in turn. First, from (A) → (B)→ (t1, . . . , tn ∈
WF → f(t1, . . . , tn) ∈ WF) and well-founded induction over (WF,�rpo,τ(f))
we obtain (A)→ A(f), and this yields ∀fA(f) by induction on (F ,�), and
we’re done. �

2.1 A Finitary Formulation of Theorem1

In general, we know that an arbitrary rewrite system R compatible with some
�rpo must terminate by well-foundedness of �rpo. However, for a fixed rewrite
system, the full strength of Theorem 1 is never used, since unlike �rpo the rewrite
relation →R is only finitely branching. Rather, R will always lie in some finitary
approximation of �rpo, where the size of this approximation will depend in some
suitable sense on the ‘size’ of R. Thus, in order to successfully analyse the
complexity of the termination proof, we are not interested in analysing the well-
foundedness of �rpo itself, but only these finitary approximations to it.

A precise characterisation of the approximation of �rpo needed to prove well-
foundedness of a given TRS is established by Buchholz in [3], and we reformulate
his idea below in a slightly simplified way (the simplification being possible
because here we do not consider varyadic function symbols).

In what follows, we use the abbreviation RPO(>, t, s) for the statement that
one of the conditions (a)–(c) in Definition 1 holds for s, t and >. Thus one defines
�rpo by f(t1, . . . , tn) �rpo s iff RPO(�rpo, f(t1, . . . , tn), s).

Definition 2. The approximation �k of �rpo is recursively defined as follows:
we have t = f(t1, . . . , tn) �k s iff

RPO(�k, f(t1, . . . , tn), s) ∧ dp(s) � k + dp(t) ∧ Var(s) ⊆ Var(t),

where dp(t) denotes the depth of t.

280 G. Moser and T. Powell

We call �k finitary because by definition for each t there are only finitely many
s for which t �k s. The proof of the next theorem can essentially be read-off
from Buchholz’s proof in [3]. However, our later proof extraction is based on the
simplified proof given here.

Theorem 2 (Buchholz [3]). Any R compatible with an �rpo is contained in
�k for some k depending on R.

Proof. It is first shown that

(i) t �rpo s implies tσ �dp(s) sσ for any substitution σ,
(ii) tj �k s implies f(t1, . . . , tn) �k f(t1, . . . , tj−1, s, tj+1, . . . , tn) for any f .

Property (i) is most easily established as in [3]; as usual t �rpo s implies that
Var(sσ) ⊆ Var(tσ). Furthermore, induction on �rpo yields that t �rpo s implies
dp(sσ) � dp(s) + dp(tσ). Yet another induction over �rpo derives (i), and prop-
erty (ii) is similarly straightforward. Now, for a given R let k := max{dp(r) : l →
r ∈ R}. It is then clear that if R is compatible with �rpo then t →R s implies t �k

s, since by (i) we have lσ �k rσ for all rules l → r, and therefore C[lσ] �k C[rσ]
by induction on (ii). �

3 Bounding the Derivational Complexity of R
We now construct a term which forms a recursive analogue to Theorem 1, but
takes into account the fact that we only need to consider finitary approximations.
Let R, a RPO �rpo compatible with R and a suitable approximation �k of �rpo

be fixed for the remainder of the paper.

3.1 Term and Tree Encodings, Gödel’s System ᵀ

We assume that the terms T of our rewrite system can be primitive recursively
encoded into N, and write s <T t to denote that the code of s is less than the
code of t. Let T � denote the set of all finite trees of terms. For T ∈ T � we write
rt(T) to denote the root of T , and write S ⊂ T if S is an immediate subtree of
T . Again, we assume that T � has been primitive recursively encoded into N.

In what follows we work in the standard language of system ᵀ in all finite
types ρ: terms are built from the usual arithmetic constants, λ-abstraction and
application, and Gödel’s primitive recursor Rh

ρ(n) = hn(λm < n . Rh
ρ(m)) whose

output can have arbitrary type ρ. It is clear that recursion over the decidable
relations � and ⊂ can be defined in terms of the recursor of base type N, since
without loss of generality we can assume that if s � t then s <T t, and similarly
for ⊂. Therefore terms build up from these forms of recursion are primitive
recursive in the usual sense. On the other hand, given a well-founded lifting
⊂∗ of ⊂ to tuples (T �)n (where in the sequel ⊂∗ will be either the multiset or
lexicographic lifting) we let TR⊂∗ denote the transfinite recursor over ⊂∗ of base
output type. We leave open for now how this can be formally defined within
system ᵀ as this will depend on the lifting.

On the Computational Content of Termination Proofs 281

3.2 Computing Derivation Trees

Let t be a term and let Φk(t) denote the finite tree T with root t, whose branches
(t, t1, . . . , tn) are precisely �k-derivations t �k t1 �k . . . �k tn from t; terms
will be denoted by lower-case letters and derivation trees by upper-case letters.
Finiteness of Φk(t) follows since �k is well-founded and finitely branching. We
now show how Φk(t) can be computed. Let t = f(t1, . . . , tn) for some f ∈
F and terms t1, . . . , tn, and suppose that for each g ≺ f we have a function
Fg : (T �)m → T � where m = ar(g) that satisfies

Fg(Φk(s1), . . . , Φk(sm)) = Φk(g(s1, . . . , sm)) for all s1, . . . , sm. (A)

Suppose, in addition, that we have a function Gt1,...,tn
: (T �)n → T � satisfying

Gt1,...,tn
(Φk(s1), . . . , Φk(sn)) = Φk(f(s1, . . . , sn)) for all s ≺k,τ(f) t. (B)

Here ≺k,τ(f) abbreviates the τ(f)-extension of the approximation ≺k and t =
t1, . . . , tn.

Lemma 1. Given T1, . . . , Tn ∈ T � define the function HFg≺f ,Gt,T1,...,Tn : T →
T � (where Fg≺f , Gt, T1, . . . , Tn are treated as parameters) by subterm recursion
as follows (suppressing parameters):

H(s) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

for the least i such that s is equal to
Ti[s] either rt(Ti) or some child of rt(Ti) in Ti,

if such an i exists
Fg(H(s1), . . . , H(sm)) if s = g(s1, . . . , sm) for g ≺ f
Gt(H(s1), . . . , H(sn)) if s = f(s1, . . . , sn)
[] otherwise,

where [] denotes the empty tree and T [s] the subtree of T with root s. Then

HFg≺f ,Gt,Φk(t1),...,Φk(tn)(s) = Φk(s),

for all s ≺k t, assuming (A) and (B).

Proof. By induction on �. If s ≺k t there are three possibilities. First, if s �k ti
for some i then either s = ti or s is a child of ti in Φk(ti), and so H(s) =
Φk(ti)[s] = Φk(s). Otherwise, suppose s = g(s1, . . . , sm) for g ≺ f and si ≺k t
for all i, by the induction hypothesis we obtain H(si) = Φk(si) and therefore

H(s) = Fg(Φk(s1), . . . , Φk(sm)) = Φk(g(s1, . . . , sm)),

by assumption (A). Similarly, if s = f(s1, . . . , sn), where for all i, si ≺k t and
(s1, . . . , sn) ≺k,τ(f) (t1, . . . , tn), then the induction hypothesis together with (B)
yields

H(s) = Gt(Φk(s1), . . . , Φk(sn)) = Φk(f(s1, . . . , sn)).

From this the lemma follows. �

282 G. Moser and T. Powell

Let t be a term and let (Si)i∈I be a finite collection of trees. Then the tree
t ∗ ∏

i∈I Si is the finite tree with root t and immediate subtrees Si.

Lemma 2. Define the function KFg≺f ,Gt : (T �)n → T � as follows:

KFg≺f ,Gt(T1, . . . , Tn) := t′ ∗
∏

s≺kt′
HFg≺f ,Gt,T1,...,Tn(s),

where t′ = f(rt(T1), . . . , rt(Tn)). Then assuming (A) and (B) we have

KFg≺f ,Gt(Φk(t1), . . . , Φk(tn)) = Φk(t).

Proof. First, we remark that KFg≺f ,Gt is primitive recursive in Fg≺f and Gt,
since s ≺k t is a primitive recursive predicate, and

∏
s≺kt a finite search bounded

by some primitive recursive term, by definition of ≺k. Now, due to Lemma 1 we
have

KFg≺f ,Gt(Φk(t1), . . . , Φk(tn)) = t ∗
∏

s≺kt

HFg≺f ,Gt,Φk(t1),...,Φk(tn)(s)

= t ∗
∏

s≺kt

Φk(s),

and this is just the tree whose branches are �k-derivations t �k s �k . . . �k sn,
which is exactly Φk(t). �

Lemma 3. Define function F
Fg≺f

f : (T �)n → T � using the transfinite recursor
over ⊂τ(f) as follows

F
Fg≺f

f (T1, . . . , Tn) := K
Fg≺f ,Ff �(S1,...,Sn)⊂τ(f)(T1,...,Tn)(T1, . . . , Tn).

Then assuming (A), for all t1, . . . , tn we have

F
Fg≺f

f (Φk(t1), . . . , Φk(tn)) = Φk(f(t1, . . . , tn)).

Proof. By induction on ≺k,τ(f); suppose for all (s1, . . . , sn) ≺k,τ(f) (t1, . . . , tn)
the lemma is true. Then (B) holds for Gt1,...,tn

= Ff �(S1,...,Sn)⊂τ(f)(Φ(t1),...,Φ(tn))

and by Lemma 2 we have

Ff (Φk(t1), . . . , Φk(tn)) = Φk(f(t1, . . . , tn)).

This completes the induction step, so the result holds for all arguments
t1, . . . , tn. �

Lemma 4. For each f ∈ F there exists a function Ff : (T �)n → T � for n =
ar(f) satisfying

Ff (Φk(t1), . . . , Φk(tn)) = Φk(f(t1, . . . , tn)).

Proof. By Lemma 3 we construct Ff in terms of Fg for g ≺ f assuming (A), and
since ≺ is well-founded this construction is well-defined and correct for all f . �

On the Computational Content of Termination Proofs 283

Theorem 3. There exists a function F : T → T � primitive recursive in TR⊂τ(f)

for f ∈ F such that
F (t) = Φk(t),

for all terms t.

Proof. Define F using subterm recursion as

F (t) :=

{
[x] if t = x

Ff (F (t1), . . . , F (tn)) if t = f(t1, . . . , tn).

Then theorem follows by Lemma 4 and induction over the structure of t. �

3.3 Derivational Complexity

Let |·| : T � → N denote the recursive function which returns the length of the
longest branch of trees in T �.

Theorem 4. Suppose that the TRS R is compatible with RPO for some suitable
status function τ . Then its derivational complexity is bounded by a function
primitive recursive in TR⊂τ(f) for f ∈ F .

Proof. By Theorem 2, if R is compatible with RPO then it is compatible with
�k for some k, and so by Theorem 3 →R derivations from t are contained
in the tree F (t), where F is primitive recursive in the TR⊂τ(f) . In particular,
dh(t,→R) � |F (t)|, and therefore

dcR(n) � max
|t|�n

|F (t)|

which is primitive recursive in F since we can bound the search |t| ≤ n because
we only need to search over a finite number of variables. �

We can now re-derive, in a completely uniform way, some of the well-known
complexity results concerning recursive path orders. To do this, first let TRmul(n)

denote multiset recursion of lowest type over tuples (x1, . . . , xn) : Nn of size n,
and TRlex(n) lexicographic recursion. Then we have the following.

Lemma 5. (a) TRmul(n) is definable from the Gödel recursor of lowest type;
(b) TRlex(n) is definable from the Gödel type 1 recursor.

Proof. Part (a) is straightforward, as one can easily find a (primitive recursive)
encoding of Nn into N that preserves the multiset order.

For (b) we use induction on n. It’s clear that TRlex(1) is just primitive recur-
sion in the usual sense. Now, assuming that TRlex(n−1) has been defined, use
this to construct the functional hH : N → (N → N

n−1 → N) → N
n−1 → N,

parametrised by H : N → N
n−1 → (N → N

n−1 → N) → N, and defined by

hHxFx := Hxx

(
λy,y .

{
hHxFy ify = x ∧ y <lex(n−1) x

Fyy ify < x

)
.

284 G. Moser and T. Powell

Now by unwinding definitions we see that the term Rh
1 : N → N

n−1 → N satisfies

Rh(x1)(x2, . . . , xn) = H(x1)(x2, . . . , xn)(λy <lex(n) x . Rh(y1)(y2, . . . , yn)),

where now x = (x1, . . . , xn). But this is just recursion over lex(n). �

Corollary 1 (Hofbauer [1]). If R is compatible with MPO then R has primi-
tive recursive derivational complexity.

Proof. This follows from Lemma 5(a) and the observation that TR⊂mul
is defin-

able from TRmul since (T �,⊂) can be recursively encoded in (N, <). �

Corollary 2 (Weiermann [2]). If R is compatible with RPO then R has mul-
tiply recursive derivational complexity.

Proof. This follows analogously to Corollary 1, this time using Lemma 5(b).
The fact that type one functions definable from the Gödel level 1 recursor are
multiply recursive is folklore, see e.g. [15]. �

4 Conclusion

The most important feature of our work is not the rederivation of known com-
plexity bounds, but in the manner in which we were able to do this. By construct-
ing a concrete realising term F as a computational analogue to Theorem 1 which
computes finitary �k-derivation trees, we provided a bridge which relates the
proof-theoretic complexity of well-founded recursive path orders to the deriva-
tional complexity of rewrite systems compatible with these orders.

A crucial point that we want to explore in future work is that our realising
term is uniformly dependent on the parameters of the recursive path order used
to prove termination, along with the size of the rewrite system, and any restric-
tion in these parameters will cause a corresponding restriction in the complexity
of F . Therefore a further, more detailed analysis of the structure of the realiser
should enable us to obtain more refined complexity bounds.

For example, it follows from Weiermann’s original derivational complexity
analysis of the lexicographic path order that the induced multiple recursive
bound allows parametrisation in the maximal arity of the function symbols,
cf. [2], see also [16, Chap. 8]. Similar results follow from Hofbauer’s analysis of
the multiset path order, cf. [1]. We expect that these and similar finer charac-
terisations of the derivational complexity induced by specific parameters of the
recursive path orders can be obtained with relative ease in our context. More
generally, we hope to extend these results and in particular derive new criteria
on path orders which guarantee feasible complexity of rewrite systems.

As another example, one could study restricted variants of the lexicographic
lifting on tuples which do not require type 1 recursion to define the corresponding
recursor, giving us strengthenings of the multiset path order which allow us to
prove interesting closure properties for the primitive recursive functions, an idea
initiated by Cichon and Weiermann in [17].

On the Computational Content of Termination Proofs 285

References

1. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive recur-
sive derivation lengths. TCS 105, 129–140 (1992)

2. Weiermann, A.: Termination proofs for term rewriting systems with lexicographic
path ordering imply multiply recursive derivation lengths. TCS 139, 355–362
(1995)

3. Buchholz, W.: Proof-theoretic analysis of termination proofs. APAL 75, 57–65
(1995)

4. Parsons, C.: On a number theoretic choice schema and its relation to induction.
In: Proceedings of the Intuitionism and Proof Theory, pp. 459–473 (1970)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

6. Moser, G., Weiermann, A.: Relating derivation lengths with the slow-growing hier-
archy directly. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 296–310.
Springer, Heidelberg (2003)

7. Cichon, E.A.: Termination orderings and complexity characterisations. In: Aczel,
P., Simmons, H., Wainer, S.S. (eds.) Proof Theory, pp. 171–193. Cambridge Uni-
versity Press, Cambridge (1992)

8. Touzet, H.: Encoding the hydra battle as a rewrite system. In: Brim, L., Gruska,
J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, p. 267. Springer, Heidelberg
(1998)

9. Moser, G.: KBOs, ordinals, subrecursive hierarchies and all that. JLC (2015, to
appear)

10. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
primitive-recursive bounds with dickson’s lemma. In: Proceedings of the 26th LICS,
pp. 269–278. IEEE (2011)

11. Berardi, S., Oliva, P., Steila, S.: Proving termination with transition invariants of
height ω. In: Proceedings of the 15th ICTCS, pp. 237–240 (2014)

12. Terese, : Term Rewriting Systems. Cambridge Tracks in Theoretical Computer
Science. Cambridge University Press, Cambridge (2003)

13. Ferreira, M.C.F., Zantema, H.: Well-foundedness of term orderings. In: Linden-
strauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 106–123.
Springer, Heidelberg (1995)

14. Goubault-Larrecq, J.: Well-founded recursive relations. In: Fribourg, L. (ed.) CSL
2001 and EACSL 2001. LNCS, vol. 2142, p. 484. Springer, Heidelberg (2001)

15. Weiermann, A.: How is it that infinitary methods can be applied to finitary math-
ematics? Gödel’s T: a case study. JSL 63, 1348–1370 (1998)

16. Arai, T.: Some results on cut-elimination, provable well-orderings, induction, and
reflection. APAL 95, 93–184 (1998)

17. Cichon, E.A., Weiermann, A.: Term rewriting theory for the primitive recursive
functions. APAL 83, 199–223 (1997)

Local Compactness for Computable Polish
Metric Spaces is Π1

1 -complete

André Nies1(B) and Slawomir Solecki2

1 Department of Computer Science, University of Auckland, Auckland, New Zealand
andre@cs.auckland.ac.nz

2 Department of Mathematics, University of Illinois at Urbana-Champaign,
Champaign, IL, USA

Abstract. We show that the property of being locally compact for com-
putable Polish metric spaces is Π1

1 complete. We verify that local com-
pactness for Polish metric spaces can be expressed by a sentence in Lω1,ω.

1 Introduction

Computable model theory is a well-established field of research that studies
effectiveness aspects of countable structures and of model-theoretic concepts.
Structures occurring in mathematics are often of size the continuum; in partic-
ular, separable complete metric spaces (also called Polish) play a central role in
analysis, measure theory, and other areas. In order to carry out studies similar to
computable model theory in the metric setting, computable Polish metric spaces
have been introduced. Recall that a pseudo-metric satisfies symmetry and the
triangle inequality, but allows pairs of distinct points to have distance 0.

Definition 1. (i) We represent a Polish metric space as follows. A point V =
〈vi.k〉i,k∈N

∈ R
N×N is a distance matrix if V is a pseudo-metric on N. Let MV

denote the completion of the corresponding pseudo-metric space. In MV we have
a distinguished dense sequence of points 〈pi〉 and present the space by giving
their distances.
(ii) Let 〈φe〉 be an effective listing of the rational-valued partial computable
functions. A computable presentation of a Polish metric space is a distance matrix
as in (i) where |vi,k − φe(〈i, k, t〉)| ≤ 2−t. We call e an index for the space, and
write Ve for the distance matrix given by φe in case φe is total.

Melnikov and Nies [2] studied the complexity of isomorphism for compact com-
putable metric spaces. They showed that being compact is a Π0

3 property of (an
index for) a computable metric space, and that the complexity of isomorphism
is Π0

2 within that Π0
3 class.

They also studied the complexity of a more general class. Recall that a topo-
logical space is locally compact if every point has a compact neighbourhood. For
computable Polish metric spaces, this property is Π1

1 : one has to express that for
every point x, there is a positive rational r such that the closed ball B of radius
c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 286–290, 2015.
DOI: 10.1007/978-3-319-20028-6 29

Local Compactness for Computable Polish Metric Spaces is Π1
1 -complete 287

r around x is compact (which is Π0
3 in a Cauchy name for x by relativizing the

bound for compactness mentioned above).
Melnikov and Nies [2] asserted in Proposition 9 that being locally compact is

Π1
1 complete. Unfortunately, the proof sketch for the Π1

1 -hardness given there
was incorrect (the reduction introduced is not Borel). In this note we give a
proof of that result.

One can ask for the descriptive complexity of other important classes of
(computable) Polish metric space. As an example we mention connectedness,
where the only bound known is the trivial one, namely Π1

2 . To be compact and
connected (i.e., a continuum) is Π0

3 by [2, Proposition 11].

2 Main Result

We need a few well-known facts from topology. Firstly, let X be a Hausdorff
space, Y ⊆ X be a subspace, and K ⊆ Y . Then K is compact in Y iff K is
compact in X. Next, suppose also that Y is dense in X. If V is open in X and
V ∩ Y ⊆ K where K ⊆ Y is compact, then V ⊆ K. (Otherwise, V − K �= ∅ is
open in X, so that Y ∩ (V − K) �= ∅, a contradiction.)

Lemma 2. Let X be a Hausdorff space. Suppose Y is dense in X. If Y is locally
compact as a subspace of X, then Y is open in X.

Proof. Let z ∈ Y . There is compact K ⊆ Y such that

∃V open in X [z ∈ V ∩ Y ⊆ K].

Then V ⊆ K ⊆ Y .

Lemma 3. Let X be a compact space, Y dense in X. Then

Y is locally compact ⇔ Y is open in X.

Proof. ⇒: This follows from previous lemma.
⇐: Let v ∈ Y . As a compact space, X is regular. So there are open sets U, V

such that v ∈ U and X −Y ⊆ V . Then X −V ⊆ Y is a compact neighbourhood
of v. This shows the lemma.

It is easy for a closed subset of IQ = Q ∩ [0, 1] to be non-compact: for instance,
the set of members of any sequence converging to an irrational is closed but
not compact. On the other hand, for any successor ordinal α, the range of an
embedding of a countable well-order of type α into Q is a compact set of Cantor-
Bendixson (CB)-rank α. By an index for a computable subset R of IQ we mean
a number e such that φe, interpreted as a function IQ → N, is the characteristic
function of S. We write R = Re. The following is a straightforward effectivization
of the classic result of Hurewicz from descriptive set theory (e.g. [1, Exercise
27.4]) that the compact subsets of IQ form a Π1

1 -complete set. For detail on the
effective version, see the proof of the main result in [3]. Let O ⊆ ω denote a Π1

1

complete set.

288 A. Nies and S. Solecki

Fact 4. The set of indices for compact computable subsets of IQ is Π1
1 -complete.

Moreover, there is a computable function g such that Rg(e) is closed in IQ for
each e, and e ∈ O ↔ Rg(e) is compact.

We will effectively assign to a closed subset of IQ a Polish metric space in order
to show:

Theorem 5. (i) {V : MV is locally compact } is properly Π1
1 .

(ii) {i : MVi
is locally compact } is a Π1

1 -complete set.

Proof. Write N = [0, 1] − Q (as this space is homeomorphic to Baire space
ωω). Since Q is Fσ, by Alexandrov’s result (see [1, 3.11]) we have a compatible
complete metric on N given by

d(x, y) = |x − y| +
∞∑

k=0

min{2−k−1, | 1
|x − qk| − 1

|y − qk| |},

where 〈qk〉k∈N
list IQ without repetitions in some effective way.

For topological space X and sets S ⊆ Y ⊆ X, denote by CY (S) = S̄ ∩ Y the
closure of S in Y with the subspace topology.

(i) We describe the coding procedure turning a closed subset of IQ into a
representation of a Polish metric space as above so that compactness of the
subset corresponds to local compactness of the space. Let R be a closed subset
of IQ. For each v ∈ R the set Θ(R) contains a certain sequence of irrationals
converging to v, as follows:

Θ(R) = [0, 1] ∩ {qk − 2−m
√

2: qk ∈ R ∧ m ≥ k}.

To obtain a representation of Θ(R) as a Polish metric space, let Δ(R) be a
sequence that lists [0, 1] ∩ {qk − 2−m

√
2: m ≥ k} without repetitions. Let vi,j =

d(Δ(R)i,Δ(R)j) where d is the distance on N defined above. Recall Definition 1
and note that (vi,j)i,j∈N ∈ R

N×N is a metric on N and MV
∼= CN (Θ(R)).

Claim. C[0,1](Θ(R)) = R
·∪ CN (Θ(R)).

The inclusion “⊇” is clear. For the inclusion “⊆”, suppose that x ∈ C[0,1](Θ(R)).
There are sequences of numbers 〈kt〉t∈N

and 〈mt〉t∈N
such that qkt

− 2−mt
√

2 ∈
Θ(R) and x = limt→∞[qkt

− 2−mt
√

2]. Clearly qkt
∈ R for each t.

If the sequence 〈kt〉 is bounded, by passing to a subsequence we may assume
that it is constant. Then mt → ∞, so x ∈ R.

Otherwise, by passing to a subsequence we may assume that kt → ∞. Then
mt → ∞ because we chose m ≥ k in the definition of Θ(R), and so x = limt qkt

.
If x ∈ Q then x ∈ R because R is closed. Otherwise, x ∈ CN (Θ(R)). This proves
the claim.

Claim. Let R ⊆ IQ be closed. Then

R is compact ⇔ CN (Θ(R)) is locally compact.

Local Compactness for Computable Polish Metric Spaces is Π1
1 -complete 289

First suppose that R is compact. By the first claim,

CN (Θ(R)) = C[0,1](Θ(R)) − R.

Since R is closed in [0, 1], the set CN (Θ(R)) is open in its closure which is a
compact set, so it is locally compact.

Now suppose that CN (Θ(R)) is locally compact. This set is dense in
C[0,1](Θ(R)), so it is open in C[0,1](Θ(R)) by Lemma 3. By the first claim again,
this means that R is closed in C[0,1](Θ(R)), and hence compact. This estab-
lishes (i).

For (ii), we use the function g from Fact 4. Uniformly in e, we can obtain
a computable sequence Δ(Rg(e)) as above. For any effective listing 〈xe〉 of a
countable subset of N , the function e, i → d(xe, xi) is computable. Hence we can
determine an index i = p(e) such that MVi

∼= CN (Θ(Rg(e))). So e ∈ O ↔ MVp(e)

is locally compact.

3 Expressive Power of Lω1,ω

Recall that for a signature S, the language Lω1,ω(S) is the extension of first-
order language that allows countable conjunctions and disjunctions over a set of
formulas with a shared finite reservoir of free variables. In the setting of countable
structures, the class of models for a sentence in Lω1,ω(S) is Borel. In this section
we use our main result to show that this fails when countability is replaced by
separability in the context of complete metric spaces.

A metric space (M,d) can be turned into a structure in the classical sense by
introducing a binary relation Rqxy for each positive rational q, with the intended
meaning that d(x, y) < q. Let S denote the signature consisting of these relation
symbols.

Proposition 6. Local compactness among Polish metric spaces can be described
by an Lω1,ω(S) sentence α.

Proof. The sentence α expresses

∀x
∨

t∈Q+ [Bt(x) is compact].

Recall that for a complete metric space M , compactness is the same as total
boundedness: for each rational r > 0, M is the union of k many balls of radius
r for some k. We can use this to express that M = Bt(x) is compact by a
conjunction over rationals r > 0, of a disjunction over the number of balls k, of
first-order sentences of ∃∀ type asserting that there are k balls covering M . This
shows the proposition.

Thus, the set of Polish metric models of α is not Borel.

Question 7. Determine the descriptive complexity of being connected among
[locally compact] Polish metric spaces.

290 A. Nies and S. Solecki

Question 8. Can connectedness be expressed by an Lω1,ω(S) sentence?

As suggested by T. Tsankov, it would also be interesting to study the meaning
of the Π1

1 -rank for the class of locally compact spaces.

Acknowledgment. This work was carried out at the Hausdorff Institute for Mathe-
matics in October 2013, and at the Research Centre Whiritoa in December 2014.

References

1. Kechris, A.S.: Classical descriptive set theory, vol. 156. Springer, New York (1995)
2. Melnikov, A.G., Nies, A.: The Classification Problem for Compact Computable

Metric Spaces. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS,
vol. 7921, pp. 320–328. Springer, Heidelberg (2013)

3. Naulin, R., Aylwin, C.: On the complexity of the family of compact subsets of Q.
Notas de Mat. 5(2), 283 (2009)

Iterative Forcing and Hyperimmunity
in Reverse Mathematics

Ludovic Patey(B)

Laboratoire PPS, Université Paris Diderot, Paris, France
ludovic.patey@computability.fr

Abstract. The separation between two theorems in reverse mathemat-
ics is usually done by constructing a Turing ideal satisfying a theo-
rem P and avoiding the solutions to a fixed instance of a theorem Q.
Lerman, Solomon and Towsner introduced a forcing technique for iter-
ating a computable non-reducibility in order to separate theorems over
omega-models. In this paper, we present a modularized version of their
framework in terms of preservation of hyperimmunity and show that it
is powerful enough to obtain the same separations results as Wang did
with his notion of preservation of definitions.

1 Introduction

Reverse mathematics is a mathematical program which aims to capture the prov-
ability content of ordinary (i.e. non set-theoretic) theorems. It uses the frame-
work of subsystems of second-order arithmetic, with a base theory RCA0 which
is composed of the basic axioms of Peano arithmetic together with the Δ0

1 com-
prehension scheme and the Σ0

1 induction scheme. Thanks to the equivalence
between Δ0

1-definable sets and computable sets, RCA0 can be thought as cap-
turing “computational mathematics”. See [8] for a good introduction.

Many theorems are Π1
2 statements (∀X)(∃Y)Φ(X,Y) and come with a nat-

ural class of instances X. The sets Y such that Φ(X,Y) holds are solutions to X.
For example, König’s lemma (KL) states that every infinite, finitely branching
tree has an infinite path. An instance of KL is an infinite, finitely branching
tree T . A solution to T is an infinite path through T . Given two Π1

2 statements P
and Q, proving an implication Q → P over RCA0 consists in taking a P-instance
X and constructing a solution to X through a computational process involving
several applications of the Q statement. Empirically, many proofs of implications
are in fact computable reductions [9].

Definition 1. (Computable reducibility). Fix two Π1
2 statements P and Q.

We say that P is computably reducible to Q (written P ≤c Q) if every P-
instance I computes a Q-instance J such that for every solution X to J , X ⊕ I
computes a solution to I.

If the computable reduction between from P to Q can be formalized over RCA0,
then RCA0 � Q → P. However, P may not be computably reducible to Q

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 291–301, 2015.
DOI: 10.1007/978-3-319-20028-6 30

292 L. Patey

while RCA0 � Q → P. Indeed, one may need more than one application of Q to
solve the instance of P. This is for example the case of Ramsey’s theorem for
pairs with n colors (RT2

n) which implies RT2
n+1 over RCA0, but RT2

n+1 �≤c RT2
n

for n ≥ 1 (see [21]).
In order to prove the non-implication between P and Q, one needs to iterate

the computable non-reducibility in order to build a model of Q which is not a
model of P. This is the purpose of the framework developed by Lerman, Solomon
and Towsner in [14]. They successfully used their framework for separating the
Erdős-Moser theorem (EM) from the stable ascending descending sequence prin-
ciple (SADS) and separating the ascending descending sequence (ADS) from
the stable chain antichain principle (SCAC). Their approach has been reused
by Flood & Towsner [5] and the author [19] on diagonal non-computability
statements.

However, their framework suffers some drawbacks. In particular the forc-
ing notions involved are heavy and the deep combinatorics witnessing the non-
implications are hidden by the complexity of the proof. Moreover, the P-instance
chosen in the ground forcing depends on the forcing notion used in the itera-
tion forcing and therefore the overall construction is not modular. On the other
hand, Wang [23] recently introduced the notion of preservation of definitions and
made independent proofs of preservations for various statements included EM.
Then he deduced that the conjunction of those statements does not imply SADS,
therefore strengthening the result of Lerman, Solomon & Towsner in a modular
way. Variants of this notion have been reused by the author [21] for separating
the free set theorem (FS) from RT2

2.
In this paper, we present a modularized version of the framework of Lerman,

Solomon & Towsner and use it to reprove the separation results obtained by
Wang [23]. We thereby show that this framework is a viable alternative to the
notion introduced by Wang for separating statements in reverse mathematics. In
particular, we reprove the following theorem, in which COH is the cohesiveness
principle, WKL0 is weak König’s lemma, RRT2

2 the rainbow Ramsey theorem for
pairs, Π0

1G the Π0
1-genericity principle and STS2 the stable thin set theorem for

pairs.

Theorem 2. (Wang [23]) Let Φ be the conjunction of COH, WKL0, RRT2
2,

Π0
1G, and EM. Over RCA0, Φ does not imply any of SADS and STS2.

In Sect. 2, we introduce the framework of Lerman, Solomon & Towsner in its
original form and detail its drawbacks. Then, in Sect. 3, we develop a modu-
larized version of their framework. In Sect. 4, we establish basic preservation
results, before reproving in Sect. 5 Wang’s theorem. Last, we reprove in Sect. 6
the separation obtained by the author in [21].

1.1 Notation

String, sequence. Fix an integer k ∈ ω. A string (over k) is an ordered tuple of
integers a0, . . . , an−1 (such that ai < k for every i < n). The empty string is

Iterative Forcing and Hyperimmunity in Reverse Mathematics 293

written ε. A sequence (over k) is an infinite listing of integers a0, a1, . . . (such
that ai < k for every i ∈ ω). Given s ∈ ω, ks is the set of strings of length s
over k and k<ω is the set of finite strings over k. Given a string σ ∈ k<ω, we
denote by |σ| its length. Given two strings σ, τ ∈ k<ω, σ is a prefix of τ (written
σ � τ) if there exists a string ρ ∈ k<ω such that σρ = τ . A binary string (resp.
real) is a string (resp. sequence) over 2. We may equate a real with a set of
integers by considering that the real is its characteristic function.

Tree, path. A tree T ⊆ ω<ω is a set downward-closed under the prefix relation.
The tree T is finitely branching if every node σ ∈ T has finitely many immediate
successors. A binary tree is a tree T ⊆ 2<ω. A set P ⊆ ω is a path though T if
for every σ ≺ P , σ ∈ T . A string σ ∈ k<ω is a stem of a tree T if every τ ∈ T
is comparable with σ. Given a tree T and a string σ ∈ T , we denote by T [σ] the
subtree {τ ∈ T : τ � σ ∨ τ � σ}.

Sets. Given two sets X and Y , X ⊆∗ Y means that X is almost included
into Y , X =∗ Y means X ⊆∗ Y ∧Y ⊆∗ X and X ⊆fin Y means that X is a finite
subset of Y . Given some x ∈ ω, A > x denotes the formula (∀y ∈ A)[y > x].

2 The Iteration Framework

An ω-structure is a structure M = (ω, S,+, ·, <) where ω is the set of standard
integers, +, · and < are the standard operations over integers and S is a set of
reals such that M satisfies the axioms of RCA0. Friedman [7] characterized the
second-order parts S of ω-structures as those forming a Turing ideal, that is,
a set of reals closed under Turing join and downward-closed under the Turing
reduction.

Fix two Π1
2 statements P and Q. The construction of an ω-model of P which

is not a model of Q consists in creating a Turing ideal I together with a fixed
Q-instance I ∈ I , such that every P-instance J ∈ I has a solution in I ,
whereas I contains no solution in I . In the first place, let us just focus on the
one-step case, that is, a proof that Q �≤c P. To do so, one has to choose carefully
some Q-instance I such that every I-computable P-instance has a solution X
which does not I-compute a solution to I. The construction of a solution X
to some I-computable P-instance J will have to satisfy the following scheme of
requirements for each index e:

Re : ΦX⊕I
e infinite → ΦX⊕I

e is not a solution to I

Such requirements may not be satisfiable for an arbitrary Q-instance I. The
choice of the instance and the satisfaction of the requirement is strongly depen-
dent on the combinatorics of the statement Q and the forcing notion used for
constructing a solution to J . A recurrent approach in the framework of Lerman,
Solomon & Towsner consists in constructing a Q-instance I which satisfies some
fairness property. The forcing notion P

I used in the construction of a solution
to J is usually designed so that

(i) There exists an I-computable set encoding (at least) every condition in P

I

294 L. Patey

(ii) Given some forcing condition in P

I , one can uniformly find in a c.e. search
a finite set of candidate extensions such that one of them is in P

I (e.g. the
notion of split pair in [14], of finite cover for a tree forcing, ...).

The fairness property states the following:
“For every condition in P

I , if for every x ∈ ω, there exists a finite Q-
instance A > x and a finite set of candidate extensions d0, . . . , dm such
that Φdi⊕I

e is not a solution to A for each i ≤ m, then one of the A’s is a
subinstance of I.”

This property is designed so that we can satisfy it by taking each condition c ∈
P

I one at a time, find some finite Q-instance A on which I is not yet defined,
and define I over A. One can think of the instance I as a fair adversary who,
if we have infinitely often the occasion to beat him, will be actually beaten at
some time.

Suppose now we want to extend this computable non-reducibility into a sep-
aration over ω-structures. One may naturally try to make the instance I satisfy
the fairness property at every level of the iteration forcing. At the first iteration
with an I-computable P-instance J , the property is unchanged. At the second
iteration, the P-instance J1 is X0 ⊕ I-computable, but the set X0 is not yet
constructed. Hopefully, the fairness property requires a finite piece of oracle X0.
Therefore we can modify the fairness property which becomes

“For every condition c0 ∈ P

I and every condition c1 ∈ P

c0⊕I , if for
every x ∈ ω, there exists a Q-instance A > x, a finite set of candidate exten-
sions d0, . . . , dm ∈ P

I and d0,i, . . . , dni,i ∈ P

di⊕I for each i ≤ m such that
Φdj,i⊕di⊕I

e is not a solution to A for each i ≤ m and j ≤ ni, then one of the A’s
is a subinstance of I.”

Since this property becomes overly complicated in the general case, Lerman,
Solomon and Towsner abstracted the notion of requirement and made it a Σ0,I

1

black box which takes as parameters a condition and a finite Q-instance. Instead
of making the instance I in charge of satisfying the fairness property at every
level of the iteration forcing, the instance I satisfies the property only at the
first level. Then, by encoding a requirement at the next level into a requirement
at the current level, the iteration forcing ensures the propagation of this fairness
property from the first level to every level. The property in its abstracted form
is then

“For every condition in P

I and every Σ0,I
1 predicate K I , if for every x ∈

ω, there is a finite Q-instance A > x and a finite set of candidate exten-
sions d0, . . . , dm such that K I(A, di) is satisfied for each i ≤ m, then one of
the A’s is a subinstance of I.”

In particular, by letting K I(A, c) be the predicate “Φdi⊕I
e is not a solution

to A”, the requirements Re will be satisfied.
The problem of such an approach is that the construction of the Q-instance

strongly depends on the forcing notion used in the iteration forcing. A slight
modification of the latter requires to modify the ground forcing. Moreover, if
someone wants to prove that the conjunction of two statements does not imply

Iterative Forcing and Hyperimmunity in Reverse Mathematics 295

a third one, we need to construct an instance I which will satisfy the fairness
property for the two statements, and in each iteration forcing, we will need
to ensure that both properties are propagated to the next iteration. The size
of the overall construction explodes when trying to make a separation of the
conjunction of several statements at the same time.

3 Preservation of Hyperimmunity

In this section, we propose a general simplification of the framework of Lerman,
Solomon & Towsner [14] and illustrate it in the case of the separation of EM
from SADS. The corresponding fairness property happens to coincide with the
notion of hyperimmunity. The underlying idea ruling this simplification is the
following: since each condition in the iteration forcing can be given an index and
since the finite set of candidate extensions of a condition c, can be found in a
c.e. search, given a Σ0,I

1 predicate K I , the following formula is again Σ0,I
1 :

ϕ(U) = “there exists a finite set of candidate extensions d0, . . . , dm of c such
that K I(U, di) is satisfied for each i ≤ m”

We can therefore abstract the iteration forcing and ask the instance I to
satisfy the following property:

“For every Σ0,I
1 predicate ϕ(U), if for every x ∈ ω, there exists a finite Q-

instance A > x such that ϕ(A) is satisfied, then one of the A’s is a subinstance
of I.”

Let us illustrate how this simplification works by reproving the separation of
the Erdős-Moser theorem from the ascending descending sequence principle.

Definition 3. (Ascending descending sequence). A linear order is stable
if it is of order type ω + ω∗. ADS is the statement “Every linear order admits
an infinite ascending or descending sequence”. SADS is the restriction of ADS
to stable linear orders.

The ascending descending sequence principle has been studied within the frame-
work of reverse mathematics by Hirschfeldt & Shore [10]. Lerman, Solomon &
Towsner [14] constructed an infinite stable linear order I with ω and ω∗ parts
respectively B0 and B1, such that for every condition c and every Σ0,I

1 predicate
K I , if for every x ∈ ω, there exists a finite set A > x and a finite set of candi-
date extensions d0, . . . , dm of c such that K I(A, di) is satisfied for each i ≤ m,
then one of the A’s will be included in B0 and another one will be included
in B1. In particular, taking K I(A, c) = Φc⊕I

e ∩ A �= ∅, no infinite solution to
the constructed tournament I-computes a solution to I. After abstraction, we
obtain the following property:

“For every Σ0,I
1 predicate ϕ(U), if for every x ∈ ω, there exists a finite

set A > x such that ϕ(A) is satisfied, one of the A’s is included in B0 and one
of the A’s is included in B1.”

Following the terminology of [14], we say that a formula ϕ(U) is essential if
for every x ∈ ω, there exists some finite set A > x such that ϕ(A) holds. This
fairness property coincides with the notion of hyperimmunity for B0 and B1.

296 L. Patey

Definition 4. (Preservation of hyperimmunity).

1. Let D0,D1, . . . be a computable list of all finite sets and let f be computable.
A c.e. array {Df(i)}i≥0 is a c.e. set of mutually disjoint finite sets Df(i). A
set B is hyperimmune if for every c.e. array {Df(i)}i≥0, Df(i) ∩ B = ∅ for
some i.

2. A Π1
2 statement P admits preservation of hyperimmunity if for each set Z,

each countable collection of Z-hyperimmune sets A0, A1, . . . , and each P-
instance X ≤T Z there exists a solution Y to X such that the A’s are
Y ⊕ Z-hyperimmune.

The following lemma establishes the link between the fairness property for SADS
and the notion of hyperimmunity.

Lemma 5. Fix a set Z. A set B is Z-hyperimmune if and only if for every
essential Σ0,Z

1 predicate ϕ(U), ϕ(A) holds for some finite set A ⊆ B.

Hirschfeldt, Shore & Slaman constructed in [11, Theorem 4.1] a stable com-
putable linear order such that both the ω and the ω∗ part are hyperimmune. As
every ascending (resp. descending) sequence is an infinite subset of the ω (resp.
ω∗) part of the linear order, we deduce the following theorem.

Theorem 6. SADS does not admit preservation of hyperimmunity.

A slight modification of the forcing in [14] gives preservation of hyperimmunity
of the Erdős-Moser theorem. We will however reprove it in a later section with a
simpler forcing notion. As expected, the notion of preservation of hyperimmunity
can be used to separate statements in reverse mathematics.

Lemma 7. Fix two Π1
2 statements P and Q. If P admits preservation of hyper-

immunity and Q does not, then P does not imply Q over RCA0.

Before starting an analysis of preservations of hyperimmunity for basic state-
ments, we state another negative preservation result which enables to reprove
that the Erdős-Moser theorem does not imply the stable thin set theorem for
pairs [15].

Definition 8. (Thin set theorem). Let k ∈ ω and f : [ω]k → ω. A set A is
f-thin if f([A]n) �= ω, that is, if the set A “avoids” at least one color. TSk is the
statement “every function f : [ω]k → ω has an infinite f-thin set”. STS2 is the
restriction of TS2 to stable functions.

Introduced by Friedman in [6], the basic reverse mathematics of the thin set
theorem has been settled by Cholak, Hirst & Jockusch in [2]. Its study has
been continued by Wang [24], Rice [22] and the author [17,21]. The author
constructed in [20] an infinite computable stable function f : [ω]2 → ω such that
the sets Bi = {n ∈ ω : lims f(n, s) �= i} are all hyperimmune. Every infinite
f -thin set being an infinite subset of one of the B’s, we deduce the following
theorem.

Theorem 9. STS2 does not admit preservation of hyperimmunity.

Iterative Forcing and Hyperimmunity in Reverse Mathematics 297

4 Basic Preservations of Hyperimmunity

When defining a notion, it is usually convenient to see how it relates with typical
sets. There are two kinds of typicalities: genericity and randomness. Both notions
admit preservation of hyperimmunity.

Theorem 10. Fix some set Z and a countable collection of Z-hyperimmune
sets B0, B1, . . .

1. If G is sufficiently Cohen generic relative to Z, the B’s are G ⊕ Z-
hyperimmune.

2. If R is sufficiently random relative to Z, the B’s are R ⊕ Z-hyperimmune.

Note that this does not mean that the sets G and R are hyperimmune-free
relative to Z. In fact, the converse holds: if G is sufficiently generic and R suffi-
ciently random, then both are Z-hyperimmune. Some statements like the atomic
model theorem (AMT), Π0

1-genericity (Π0
1G) and the rainbow Ramsey theorem

for pairs (RRT2
2) are direct consequences of genericity and randomness [4,11]. We

can deduce from Theorem 10 that they all admit preservation of hyperimmunity.
Cohesiveness is a very useful statement in the analysis of Ramsey-type the-

orems as it enables to transform an arbitrary instance into a stable one [3]. A
set C is cohesive for a sequence of sets R0, R1, . . . if C ⊆∗ Ri or C ⊆∗ Ri for
each i.

Theorem 11. COH admits preservation of hyperimmunity.

The proof is done by the usual construction of a cohesive set with Mathias
forcing, combined with the following lemma.

Lemma 12. For every set Z, every Z-computable Mathias condition (F,X),
every Σ0,Z

1 formula ϕ(G,U) and every Z-hyperimmune set B, there exists an
extension (E, Y) such that X =∗ Y and either ϕ(G,U) is not essential for every
set G satisfying (E, Y), or ϕ(E,A) holds for some finite set A ⊆ B.

Proof. Define
ψ(U) = (∃G ⊇ F)[G ⊆ F ∪ X ∧ ϕ(G,U)]

The formula ψ(U) is Σ0,Z
1 . By hyperimmunity of B, either ψ(U) is not essential,

or ψ(A) holds for some finite set A ⊆ B. In the first case, the condition (F,X)
already satisfies the desired property. In the second case, let A ⊆fin B be such
that ψ(A) holds. By the use property, there exists a finite set E satisfying (F,X)
such that ϕ(E,A) holds. Let Y = X � [0,max(E)]. The condition (E, Y) is a
valid extension. ��
Weak König’s lemma (WKL0) states that every infinite, binary tree admits an
infinite path.

Theorem 13. WKL0 admits preservation of hyperimmunity.

298 L. Patey

Wei Wang [personal communication] observed that WKL0 preserves hyperimmu-
nity in a much stronger sense than COH, since cohesive sets are of hyperimmune
degree [12], whereas by the hyperimmune-free basis theorem [13], WKL0 can pre-
serve hyperimmunities of every hyperimmune set simultaneously and not only
countably many.

5 The Erdős-Moser Theorem and Preservation
of Hyperimmunity

The Erdős-Moser theorem is a statement from graph theory which received a
particular interest from reverse mathematical community as it provides, together
with the ascending descending sequence principle, an alternative proof of Ram-
sey’s theorem for pairs.

Definition 14. (Erdős-Moser theorem). A tournament T is an irreflexive
binary relation such that for all x, y ∈ ω with x �= y, exactly one of T (x, y) or
T (y, x) holds. A tournament T is transitive if the corresponding relation T is
transitive in the usual sense. EM is the statement “Every infinite tournament T
has an infinite transitive subtournament.”

The Erdős-Moser theorem was introduced in reverse mathematics by Bovykin
& Weiermann [1] and then studied by Lerman, Solomon & Towsner [14] and the
author [16–18]. In this section, we give a simple proof of the following theorem.

Theorem 15. EM admits preservation of hyperimmunity.

The proof of Theorem 15 exploits the modularity of the framework by using
preservation of hyperimmunity of WKL0. Together with the previous preserva-
tions results, this theorem is sufficient to reprove Theorem 2. We must first
introduce some terminology.

Definition 16. (Minimal interval). Let T be an infinite tournament and
a, b ∈ T be such that T (a, b) holds. The interval (a, b) is the set of all x ∈ T such
that T (a, x) and T (x, b) hold. Let F ⊆ T be a finite transitive subtournament of
T . For a, b ∈ F such that T (a, b) holds, we say that (a, b) is a minimal interval
of F if there is no c ∈ F ∩ (a, b), i.e., no c ∈ F such that T (a, c) and T (c, b) both
hold.

Definition 17. An Erdős Moser condition (EM condition) for an infinite tour-
nament T is a Mathias condition (F,X) where

(a) F ∪ {x} is T -transitive for each x ∈ X
(b) X is included in a minimal T -interval of F .

EM extension is Mathias extension. A set G satisfies an EM condition (F,X) if
it is T -transitive and satisfies the Mathias extension (F,X). Basic properties of
EM conditions have been stated and proven in [18].

Iterative Forcing and Hyperimmunity in Reverse Mathematics 299

Fix a set Z and some countable collection of Z-hyperimmune sets B0, B1, . . .
Our forcing notion is the partial order of Erdős Moser conditions (F,X) such that
the B’s are X ⊕ Z-hyperimmune. Our initial condition is (∅, ω). By Lemma 5.9
in [18], EM conditions are extendable, so we can force the transitive subtourna-
ment to be infinite. Therefore it suffices to prove the following lemma to deduce
Theorem 15.

Lemma 18. Fix a condition (F,X), some i ∈ ω and some Σ0,Z
1 for-

mula ϕ(G,U). There exists an extension (E, Y) such that either ϕ(G,U) is not
essential for every set G satisfying (E, Y), or ϕ(E,A) holds for some finite
set A ⊆ Bi.

Proof. Let ψ(U) be the formula “For every partition X0 ∪ X1 = X, there exists
some j < 2, a T -transitive set G ⊆ Xj and a set Ã ⊆ U such that ϕ(F ∪ G, Ã)
holds.” By compactness, ψ(U) is a Σ0,X⊕Z

1 formula. By X ⊕ Z-hyperimmunity
of Bi, we have two cases:

– Case 1: ψ(A) holds for some finite set A ⊆ Bi. By compactness, there exists
a finite set H ⊂ X such that for every partition H0 ∪ H1 = H, there exists
some j < 2, a T -transitive set G ⊆ Hj and a set Ã ⊆ A such that ϕ(F ∪G, Ã)
holds. Given two sets U and V , we denote by U →T V the formula (∀x ∈
U)(∀y ∈ V)T (x, y). Each element y ∈ X induces a partition H0 ∪ H1 = H
such that H0 →T {y} →T H1. There exists finitely many such partitions,
so by the infinite pigeonhole principle, there exists an X-computable infinite
set Y ⊂ X and a partition H0 ∪ H1 = H such that H0 →T Y →T H1.
Let j < 2 and G ⊆ Hj be the T -transitive set such that ϕ(F ∪ G, Ã) holds for
some Ã ⊆ A ⊆ Bi. By Lemma 5.9 in [18], (F ∪ G,Y) is a valid extension.

– Case 2: ψ(U) is not essential with some witness x. Then the Π0,X⊕Z
1 class C

of sets X0⊕X1 such that X0∪X1 = X and for every j < 2, every T -transitive
set G ⊆ Xj and every finite set Ã > x, the formula ϕ(F ∪G, Ã) does not hold
is not empty. By preservation of hyperimmunity of WKL0, there exists some
partition X0 ⊕X1 ∈ C such that the B’s are X0 ⊕X1 ⊕Z-hyperimmune. The
set Xj is infinite for some j < 2 and the condition (F,Xi) is the desired EM
extension. ��

6 Thin Set Theorem and Preservation of Hyperimmunity

There exists a fundamental difference in the way SADS and STS2 witness their
failure of preservation of hyperimmunity. In the case of SADS, we construct
two hyperimmune sets whereas in the case of STS2, a countable collection of
hyperimmune sets is used. This difference can be exploited to obtain further
separation results.

Definition 19. (Preservation of n hyperimmunities). A Π1
2 statement P

admits preservation of n hyperimmunities if for each set Z, each Z-hyperimmune
sets A0, . . . , An−1, and each P-instance X ≤T Z there exists a solution Y to X
such that the A’s are Y ⊕ Z-hyperimmune.

300 L. Patey

Theorem 6 shows that SADS does not admit preservation of 2 hyperimmunities.
On the other hand, we shall see that STS2 admits preservation of n hyperimmu-
nities for every n ∈ ω. Consider the following variants of the thin set theorem.

Definition 20. (Thin set theorem). Given a function f : [ω]k → n, an infi-
nite set H is f -thin if |f([H]k)| ≤ n − 1 (i.e. f avoids one color over H). For
every k ≥ 1 and n ≥ 2, TSk

n is the statement “Every function f : [ω]k → n has
an infinite f-thin set”. STS2n is the restriction of TS2n to stable colorings.

Note that TS22 is Ramsey’s theorem for pairs. The following theorem is sufficient
to separate TS2 from Ramsey’s theorem for pairs as TS2 ≤c TS2n for every n ≥ 2.
The proof of preservation is rather technical and is therefore proven in appendix.

Theorem 21. For every n ≥ 1, TS2n+1 admits preservation of n but not n + 1
hyperimmunities.

In the case n = 1, noticing that the arithmetical comprehension scheme (ACA0)
does not preserve 1 hyperimmunities as witnessed by taking any Δ0

2 hyperim-
mune set, we re-obtain the separation of Ramsey’s theorem for pairs from ACA0.
Hirschfeldt & Jockusch [9] asked whether TS2n+1 implies TS2n over RCA0. The
author answered negatively in [21]. Preservation of n hyperimmunities gives the
same separation.

Theorem 22. (Patey [21]). For every n ≥ 2, let Φ be the conjunction of COH,
WKL0, RRT2

2, Π0
1G, EM, TS2n+1. Over RCA0, Φ does not imply any of SADS and

STS2n.

Acknowledgements. The author is thankful to Wei Wang for useful comments and
discussions.

References

1. Bovykin, A., Weiermann, A.: The strength of infinitary ramseyan principles can
be accessed by their densities. Ann. Pure Appl. Log. 4 (2005)

2. Cholak, P.A., Giusto, M., Hirst, J.L., Jockusch Jr, C.G.: Free sets and reverse
mathematics. Reverse Math. 21, 104–119 (2001)

3. Cholak, P.A., Jockusch, C.G., Slaman, T.A.: On the strength of Ramsey’s theorem
for pairs. J. Symb. Log. 66, 1–55 (2001)

4. Csima, B.F., Mileti, J.R.: The strength of the rainbow Ramsey theorem. J. Symb.
Log. 74(04), 1310–1324 (2009)

5. Flood, S., Towsner, H.: Separating principles below WKL0 (2014). In preparation
6. Friedman, H.M.: Fom:53:free sets and reverse math and fom:54:recursion theory

and dynamics (1999). http://www.math.psu.edu/simpson/fom/
7. Friedman, H.M.: Some systems of second order arithmetic and their use. In: Pro-

ceedings of the International Congress of Mathematicians, Vancouver, vol. 1, pp.
235–242 (1974)

8. Hirschfeldt, D.R.: Slicing the truth. Lecture Notes Series, Institute for Mathemat-
ical Sciences, National University of Singapore, vol. 28 (2014)

http://www.math.psu.edu/simpson/fom/

Iterative Forcing and Hyperimmunity in Reverse Mathematics 301

9. Hirschfeldt, D.R., Jockusch Jr, C.G.: On notions of computability theoretic reduc-
tion between Π1

2 principles. To appear
10. Hirschfeldt, D.R., Shore, R.A.: Combinatorial principles weaker than Ramsey’s

theorem for pairs. J. Symb. Log. 72(1), 171–206 (2007)
11. Hirschfeldt, D.R., Shore, R.A., Slaman, T.A.: The atomic model theorem and type

omitting. Trans. Am. Math. Soc. 361(11), 5805–5837 (2009)
12. Jockusch, C., Stephan, F.: A cohesive set which is not high. Math. Log. Q. 39(1),

515–530 (1993)
13. Jockusch, C.G., Soare, R.I.: Π0

1 classes and degrees of theories. Trans. Am. Math.
Soc. 173, 33–56 (1972)

14. Lerman, M., Solomon, R., Towsner, H.: Separating principles below Ramsey’s the-
orem for pairs. J. Math. Log. 13(2), 1350007 (2013)

15. Patey, L.: A note on “Separating principles below Ramsey’s theorem for pairs”
(2013). Unpublished

16. Patey, L.: Controlling iterated jumps of solutions to combinatorial problems (2014).
In preparation

17. Patey, L.: Combinatorial weaknesses of ramseyan principles (2015). In preparation
18. Patey, L.: Degrees bounding principles and universal instances in reverse mathe-

matics (2015). Submitted
19. Patey, L.: Ramsey-type graph coloring and diagonal non-computability (2015).

Submitted
20. Patey, L.: Somewhere over the rainbow Ramsey theorem for pairs (2015).

Submitted
21. Patey, L.: The weakness of being cohesive, thin or free in reverse mathematics

(2015). Submitted
22. Rice, B.: Thin set for pairs implies DNR. Notre Dame J. Formal Log. To appear
23. Wang, W.: The definability strength of combinatorial principles (2014)
24. Wang, W.: Some logically weak Ramseyan theorems. Adv. Math. 261, 1–25 (2014)

Completely Regular Bishop Spaces

Iosif Petrakis(B)

University of Munich, Munich, Germany
petrakis@math.lmu.de

Abstract. Bishop’s notion of a function space, here called a Bishop
space, is a constructive function-theoretic analogue to the classical set-
theoretic notion of a topological space. Here we introduce the quotient,
the pointwise exponential and the completely regular Bishop spaces. For
the latter we present results which show their correspondence to the
completely regular topological spaces, including a generalized version of
the Tychonoff embedding theorem for Bishop spaces. All our proofs are
within Bishop’s informal system of constructive mathematics BISH.

1 Why Bishop Spaces

The theory of Bishop spaces is so far the least developed approach to construc-
tive topology with points. Bishop introduced them in [1], where he established
their connection to his notion of neighborhood spaces, a set-theoretic construc-
tive version of a topological space, and he defined the least Bishop space over
a subbase, the product of Bishop spaces and a notion of a connected Bishop
space. In [2], p. 80, Bishop added some comments on them, while in [4] Bridges
revived the subject, studying the morphisms between various metric spaces seen
as Bishop spaces and relating Bishop spaces to apartness spaces. In [6] Ishihara
related the subcategory Fun of the category Bis of Bishop spaces to the category
of neighborhood spaces Nbh. In [8] we reported on our current development of
the theory of Bishop spaces.

Our approach to topology is constructive, since we work within Bishop’s
informal system of constructive mathematics BISH, it is function-theoretic, since
most of the notions involved are based on the concept of function, and we accept
points from the beginning. Hence, the theory of Bishop spaces is an approach to
constructive point-function topology, and its study is motivated by the following
remarks:

(i) Function-based concepts are more suitable to constructive study than set-
based ones. That’s why Bishop, in [2] p. 77, suggested to focus attention
on Bishop spaces instead of on neighborhood spaces.

(ii) Bishop’s topology of functions F corresponds to the ring of real-valued
continuous functions C(X) on a topological space X. This allows a direct
“communication” between the two theories, which does not mean though,
a direct translation, due to the classical set-theoretic character of C(X).

(iii) The theory of Bishop spaces meets the standards of Bishop for a construc-
tive mathematical theory: it has simple foundation and it follows the style
of standard mathematics.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 302–312, 2015.
DOI: 10.1007/978-3-319-20028-6 31

Completely Regular Bishop Spaces 303

2 Basic Definitions and Facts

If X is an inhabited set, we denote by F(X) the set of all functions of type
X → R, where R is the set of constructive reals. A constant function in F(X)
with value a ∈ R is denoted by a, and their set by Const(X). In BISH a compact
metric space is a complete and totally bounded metric space, and a locally
compact metric space is one in which every bounded subset is included in a
compact one. If X is a locally compact metric space, Bic(X) denotes the subset
of F(X) of all Bishop-continuous functions, where φ ∈ Bic(X), if φ is uniformly
continuous on every bounded subset of X. Since R with its standard metric is
locally compact, Bic(R) denotes the Bishop-continuous functions on R.

A Bishop space is a pair F = (X,F), where X is an inhabited set and
F ⊆ F(X) satisfies the following conditions:

(BS1) Const(X) ⊆ F .
(BS2) f ∈ F → g ∈ F → f + g ∈ F .
(BS3) f ∈ F → φ ∈ Bic(R) → φ ◦ f ∈ F .
(BS4) f ∈ F(X) → ∀ε>0∃g∈F ∀x∈X(|g(x) − f(x)| ≤ ε) → f ∈ F .

Bishop used the term function space for F and topology for F . Since the former
is used in many different contexts, we prefer the term Bishop space for F , while
we use the latter, since the topology of functions F on X corresponds nicely to
the standard topology of opens T on X. A topology F is a ring and a lattice; by
BS2 and BS3 if f, g ∈ F , then f ·g, f ∨ g = max{f, g}, f ∧ g = min{f, g} and
|f | ∈ F . The sets Const(X) and F(X) are topologies on X, called the trivial and
the discrete topology, respectively. If F is a topology on X, then Const(X) ⊆
F ⊆ F(X). It is straightforward that Fb(X) := {f ∈ F(X) | f is bounded} is
a topology on X, and if F = (X,F) is a Bishop space, then Fb = (X,Fb) is
a Bishop space, where Fb = Fb(X) ∩ F corresponds to the ring C∗(X) of the
bounded elements of C(X). If X is a locally compact metric space, it is easy
to see that Bic(X) is a topology on X. The structure R = (R,Bic(R)) is the
Bishop space of reals.

Most of the new Bishop spaces generated from old ones are defined through
Bishop’s inductive concept, found in [2] p. 78, of the least topology F(F0) gener-
ated by a given inhabited subbase F0 of real-valued functions on X. Conditions
BS1-BS4, seen as inductive rules, together with the rule f0 ∈ F0 → f0 ∈ F(F0)
induce the following induction principle IndF on F(F0):

∀f0∈F0(P (f0)) →
∀a∈R(P (a)) →
∀f,g∈F(F0)(P (f) → P (g) → P (f + g)) →
∀f∈F(F0)∀φ∈Bic(R)(P (f) → P (φ ◦ f)) →
∀f∈F(F0)(∀ε>0∃g∈F(F0)(P (g) ∧ ∀x∈X(|g(x) − f(x)| ≤ ε)) → P (f)) →
∀f∈F(F0)(P (f)),

where P is any property on F(X). Since the identity function idR on R belongs
to Bic(R), we get that Bic(R) = F(idR).

304 I. Petrakis

If F = (X,F) and G = (Y,G) are Bishop spaces, their product is defined as
the structure F × G = (X × Y, F × G), where

F × G := F({f ◦ π1 | f ∈ F} ∪ {g ◦ π2 | g ∈ G}).

If F0 is a subbase of F and G0 is a subbase of G, then using IndF we get that

F(F0) × F(G0) = F({f0 ◦ π1 | f0 ∈ F0} ∪ {g0 ◦ π2 | g0 ∈ G0}).

Consequently, Bic(R) × Bic(R) = F({idR ◦ π1} ∪ {idR ◦ π2}) = F(π1, π2). If I
is a given index set and F0,i ⊆ F(X, R), for every i ∈ I, we define

∨
i∈I F0,i =

F(
⋃

i∈I F0,i). If Fi is a topology on Xi, for every i ∈ I, the product topology on∏
i∈I Xi is defined by

∏
i∈I Fi =

∨
i∈I(Fi ◦ πi), where Fi ◦ πi = {f ◦ πi | f ∈ Fi}.

As expected,
∏

i∈I F(F0,i) =
∨

i∈I(F0,i ◦ πi). If Xi = X, for every i ∈ I, we
use the notation FI = (XI , F I). A Euclidean Bishop space is a product RI .
Simplifying our notation, Bic(R)I =

∨
i∈I(idR ◦ πi) =

∨
i∈I πi.

If F ,G are Bishop spaces, a Bishop morphism, or simply a morphism, from
F to G is a function h : X → Y such that ∀g∈G(g ◦ h ∈ F)

We denote the morphisms from F to G by Mor(F ,G). If Const(X,Y) denotes
the constant functions from X to Y , then Const(X,Y) ⊆ Mor(F ,G). Thus,
the category Bis of Bishop spaces is formed with the Bishop morphisms as
arrows. It is straightforward to see that F ×G satisfies the universal property for
products and that F ×G is the least topology which turns the projections π1, π2

into morphisms. If h ∈ Mor(F ,G) is onto Y , then h is called an epimorphism,
and we denote their set by Epi(F ,G). If F is a topology on X, then clearly
F = Mor(F ,R). If G0 is a subbase of G, then using the induction principle we
get that h ∈ Mor(F ,G) iff ∀g0∈G0(g0 ◦ h ∈ F), a fundamental property that
we call the lifting of morphisms. We call a morphism h from F to G open, if
∀f∈F ∃g∈G(f = g ◦ h), and strongly open, if ∀f∈F ∃!g∈G(f = g ◦ h). Clearly, if
h ∈ Mor(F ,G) such that h is 1-1 and onto Y , then h−1 ∈ Mor(G,F) iff h is
open. In this case h is called an isomorphism between F and G.
Next we prove inductively the lifting of openness, a fundamental fact that we
use here in the proof of the Theorem4. First we need a lemma.

Lemma 1 (Well-definability lemma). Suppose that X,Y are inhabited sets
and h : X → Y is onto Y . If f : X → R such that for every ε > 0 there exists
some g : Y → R such that ∀x∈X(|(g ◦ h)(x) − f(x)| ≤ ε), then the function
Φ : Y → R defined by Φ(y) = Φ(h(x)) := f(x), for every y ∈ Y , is well-defined
i.e., ∀x1,x2∈X(h(x1) = h(x2) → f(x1) = f(x2)).

Completely Regular Bishop Spaces 305

Proof. We fix x1, x2 ∈ X such that h(x1) = h(x2) = y0, and some ε > 0. By our
hypothesis on f there exists some g : Y → R such that ∀x∈X(|(g◦h)(x)−f(x)| ≤
ε
2). Hence, |g(h(x1)) − f(x1)| = |g(y0) − f(x1)| ≤ ε

2 and |g(h(x2)) − f(x2)| =
|g(y0) − f(x2)| ≤ ε

2 . Consequently, |f(x1) − f(x2)| ≤ |f(x1) − g(y0)| + |g(y0) −
f(x2)| ≤ ε

2 + ε
2 = ε. Since ε is arbitrary, we get that |f(x1) − f(x2)| ≤ 0, which

implies that f(x1) = f(x2).

Proposition 1 (Lifting of openness). If F = (X,F(F0)), G = (Y,G) are
Bishop spaces and h ∈ Epi(F ,G), then

∀f0∈F0∃g∈G(f0 = g ◦ h) → ∀f∈F(F0)∃g∈G(f = g ◦ h).

Proof. If f = f0 ∈ F0, then we just use our premiss. Of course, a constant
function a : X → R is written as the composition a ◦ h, where we use the same
notation for the constant function of type Y → R with value a. If f = f1 + f2
such that f1 = g1 ◦h and f2 = g2 ◦h, for some g1, g2 ∈ G, then f = (g1 + g2) ◦h,
where g1 + g2 ∈ G by BS2. If f = φ ◦ f ′, where φ ∈ Bic(R), and there is some
g ∈ G such that f ′ = g ◦ h, then f = (φ ◦ g) ◦ h, where φ ◦ g ∈ G by BS3.
Suppose next that ε > 0 and f ′ ∈ F(F0) such that f ′ = g ◦ h, for some g ∈ G,
and ∀x∈X(|f ′(x) − f(x)| = |g(h(x)) − f(x)| ≤ ε). If Φ : Y → R is the function
determined by the well-definability lemma such that f = Φ ◦ h, we get, since h
is onto Y , that ∀y∈Y (|g(y) − Φ(y)| ≤ ε). Since ε > 0 is arbitrary, we conclude by
condition BS4 that Φ ∈ G.

A morphism h from F to G induces the mapping h∗ : G → F , g → h∗(g), where
h∗(g) := g ◦ h, which is a ring and a lattice homomorphism. If h is an epimor-
phism, then h∗ is a partial isometry i.e., ||h∗(g)|| exists whenever ||g|| exists and
moreover ||h∗(g)|| = ||g||. Recall that constructively ||g|| = sup{|g(y)| | y ∈ Y }
does not always exist for some bounded element of a topology G.

The pointwise exponential Bishop space F → G = (Mor(F ,G), F → G)
corresponds to the point-open topology within the category of topological spaces
Top and it is defined by

F → G := F({ex,g | x ∈ X, g ∈ G}), ex,g : Mor(F ,G) → R, ex,g(h) = g(h(x)),

for every h ∈ Mor(F ,G). A simple induction shows that if G0 is a subbase of G,
then F → F(G0) = F({ex,g0 | x ∈ X, g0 ∈ G0}). The dual Bishop space of F is
the space F∗ = (F, F ∗), where

F ∗ := F({x̂ | x ∈ X}), x̂ : F → R, x̂(f) = f(x),

for every f ∈ F . Clearly, F∗ = F → R = (Mor(F ,R), F → Bic(R)).
Although Ishihara and Palmgren constructed in [7] the quotient topological

space using predicative methods, our definition of the quotient Bishop space is
straightforward and permits a smooth translation of the standard classical theory
of quotient topological spaces into the theory of Bishop spaces. If F = (X,F) is a
Bishop space, Y is an inhabited set and e : X → Y is onto Y , it is straightforward
to see that the set of functions Ge, defined as

Ge := {g ∈ F(Y) | g ◦ e ∈ F},

306 I. Petrakis

is a topology on Y . We call Ge = (Y,Ge) the quotient Bishop space, and Ge

the quotient topology on Y , with respect to e. As in standard topology, the
quotient topology Ge is the largest topology on Y which makes e a morphism,
while if H = (Z,H) is a Bishop space, a function h : Y → Z ∈ Mor(Ge,H) iff
h ◦ e ∈ Mor(F ,H). The next proposition is easy to prove.

Proposition 2. Let F = (X,F) be a Bishop space and ∼ be the equivalence
relation on X defined by x1 ∼ x2 ↔ ∀f∈F (f(x1) = f(x2)). If π : X → X/∼ is
the function x → [x]∼ and F/∼ = (X/∼, Gπ) is the quotient Bishop space, then
π is a strongly open morphism from F to F/∼, and the function ρ : F → Gπ,
f → ρ(f), where ρ(f)([x]∼) := f(x), is a ring and a lattice homomorphism and
a partial isometry onto Gπ.

If F = (X,F) is a Bishop space and A ⊆ X, the relative Bishop space of F on
A is the structure F|A = (A,F|A), also called a subspace of F , where

F|A := F({f|A | f ∈ F}).

If F0 is a subbase of F , we get inductively that F|A = F({f0|A | f0 ∈ F0}).
The topology F|A is the smallest topology G on A such that idA ∈ Mor(G,F).
If G = (Y,G) is a Bishop space and e : X → B ⊆ Y , then e ∈ Mor(F ,G) ↔ e ∈
Mor(F ,G|B), and if e is open as a morphism from F to G, it is trivially open as
a morphism from F to G|B . An isomorphism between F and a subspace of G is
called a topological embedding of F into G.

A topology F on X induces the canonical apartness relation on X, which is
introduced in [4] and it is defined, for every x1, x2 ∈ X, by

x1 ��F x2 :↔ ∃f∈F (f(x1) ��R f(x2)),

where a ��R b :↔ a > b ∨ a < b ↔ |a − b| > 0, for every a, b ∈ R. Moreover,
a ��Bic(R) b ↔ a ��R b; if a ��Bic(R) b, then φ(a) ��R φ(b), for some φ ∈ Bic(R). By
the obvious pointwise continuity of φ at a we have that if 0 < ε = |φ(b) − φ(a)|,
∃δ(ε

2)>0∀x∈R(|x − a| < δ(ε
2) → |φ(x) − φ(a)| ≤ ε

2). Hence, ¬(|a − b| < δ(ε
2)) i.e.,

|a − b| ≥ δ(ε
2) > 0. For the converse we just use the equivalence a ��R b ↔

idR(a) ��R idR(b). An apartness relation �� on X is called tight, if ¬(x1 �� x2) →
x1 = x2, for every x1, x2 ∈ X. It is easy to see that if F is a topology on X,
then ��F is tight iff

∀x1,x2∈X(∀f∈F (f(x1) = f(x2)) → x1 = x2).

The sufficiency is mentioned in [4] and for its proof one uses the obvious fact
that ��R is tight. If F0 is a subbase of F and the restriction of every f0 ∈ F0 to
some A ⊆ X is constant, then an induction shows that the restriction of every
f ∈ F(F0) to A is constant. If F = F(F0), we get that ��F is tight iff

∀x1,x2∈X(∀f0∈F0(f0(x1) = f0(x2)) → x1 = x2),

applying the previous lifting to the set A = {x1, x2}, where x1, x2 ∈ X.

Completely Regular Bishop Spaces 307

3 Completely Regular Topologies of Functions

A completely regular topological space (X, T) is one in which any pair (x,B),
where B is closed and x /∈ B, is separated by some f ∈ C(X, [0, 1]). A completely
regular and T1-space satisfies classically the property

∀x1,x2∈X(∀f∈C(X)(f(x1) = f(x2)) → x1 = x2).

The importance and the “sufficiency” of the completely regular topological
spaces in the theory of C(X) is provided by the Stone-Čech theorem accord-
ing to which, for every topological space X there exists a completely regular
space ρX and a continuous mapping τ : X → ρX such that the induced func-
tion g → τ∗(g), where τ∗(g) = g ◦ τ , is a ring isomorphism between C(ρX) and
C(X) (see [5] p. 41).

We call a Bishop space F = (X,F) completely regular, if its canonical apart-
ness relation ��F is tight, hence the equality of X is determined by F , which
we call a completely regular topology. Since ��Bic(R)↔��R and ��R is tight, R is
completely regular. It is immediate to see that F is completely regular iff Fb

is completely regular, while if X has at least two points, then Const(X) is not
completely regular.

In this section we prove some first fundamental results on completely regular
Bishop spaces. The following version of the Stone-Čech theorem expresses the
corresponding “sufficiency” of the completely regular Bishop spaces within Bis.
Its proof is a translation of the classical one, since the quotient Bishop spaces
behave as the quotient topological spaces.

Theorem 1 (Stone-Čech theorem for Bishop spaces). For every Bishop
space F = (X,F) there exists a completely regular Bishop space ρF = (ρX, ρF)
and a mapping τ : X → ρX ∈ Mor(F , ρF) such that the induced mapping τ∗ is
a ring isomorphism between ρF and F .

Proof. We use the equivalence relation x1 ∼ x2 ↔ ∀f∈F (f(x1) = f(x2)), for
every x1, x2 ∈ X, and if τ = π : X → X/∼, where x → [x]∼, we consider the
quotient Bishop space ρF = F/∼ = (X/∼, Gπ) = (ρX, ρF). By the Proposi-
tion 2 we have that π is a morphism from F to F/∼ and ρ : F → Gπ is a ring
homomorphism onto Gπ. We also know that π∗ : Gπ → F is a ring homomor-
phism. Since ρ(g ◦ π)([x]∼) = (g ◦ π)(x) = g([x]∼), for every [x]∼ ∈ X/∼, we
get that ρ ◦ π∗ = idGπ

. Since π∗(ρ(f)) = ρ(f) ◦ π = f , for every f ∈ F , we
get that π∗ ◦ ρ = idF . Hence, π∗ is a bijection (see [2] p. 17). Finally, ρF is
completely regular; if ∀g∈ρF (g([x1]∼) = g([x2]∼)), then ∀f∈F (f(x1) = f(x2)),
since ρ(f) ◦ π = f and ρ(f) ∈ ρF , therefore x1 ∼ x2 i.e., [x1]∼ = [x2]∼.

Proposition 3. Suppose that F = (X,F),G = (Y,G) are Bishop spaces.
(i) If G is isomorphic to the completely regular F , then G is completely regular.
(ii) If A ⊆ X and F is a completely regular, then F|A is completely regular.
(iii) F and G are completely regular iff F × G is completely regular.
(iv) F → G is completely regular iff G is completely regular.
(v) The dual space F∗ of F is completely regular.

308 I. Petrakis

Proof. (i) Suppose that e is an isomorphism between F and G, and y1, y2 ∈ Y .
Since e is onto Y and e∗ is onto G, we get that ∀g∈G(g(y1) = g(y2)) ↔
∀g∈G(g(e(x1)) = g(e(x2))) ↔ ∀f∈F (f(x1) = f(x2)) → x1 = x2. Hence,
y1 = y2.

(ii) If a1, a2 ∈ A, it suffices to show that ∀f∈F (f|A(a1) = f|A(a2)) → a1 = a2.
The premiss is rewritten as ∀f∈F (f(a1) = f(a2)), and since F is completely
regular, we conclude that a1 = a2.

(iii) The hypotheses ∀f∈F ((f ◦ π1)(x1, y1) = (f ◦ π1)(x2, y2)) and ∀g∈G((g ◦
π2)(x1, y1) = (g◦π2)(x2, y2)) imply ∀f∈F (f(x1) = f(x2)) and ∀g∈G(g(y1) =
g(y2)). For the converse we topologically embed in the obvious way F ,G
into F × G and we use (i) and (ii).

(iv) If G is completely regular and ∀h1,h2∈Mor(F,G)∀x∈X∀g∈G(ex,g(h1) = ex,g(h2))
i.e., ∀h1,h2∈Mor(F,G)∀x∈X∀g∈G(g(h1(x)) = g(h2(x))), then the tightness of
��G implies that ∀x∈X(h1(x) = h2(x)) i.e., h1 = h2. For the converse we
suppose that ∀h1,h2∈Mor(F,G)∀x∈X∀g∈G(ex,g(h1) = ex,g(h2)) → h1 = h2. We
fix y1, y2 ∈ G and we suppose that ∀g∈G(g(y1) = g(y2)). Since y1, y2 ∈
Const(X,Y) ⊆ Mor(F ,G), we have that ∀x∈X∀g∈G(ex,g(y1) = g(y1(x)) =
g(y1) = g(y2) = g(y2(x)) = ex,g(y2)). Hence, y1 = y2 i.e., y1 = y2.

(v) Since F∗ = F → R and R is completely regular, we use (iv).

The proof of the Proposition 3(iii) works for an arbitrary product of Bishop
spaces too. As in classical topology one can show that the quotient of a com-
pletely regular Bishop space need not be completely regular. If F = (X,F)
and Gi = (Yi, Gi) are Bishop spaces, for every i ∈ I, the family (hi)i∈I , where
hi : X → Yi, for every i ∈ I, separates the points of X, if ∀x,y∈X(∀i∈I(hi(x) =
hi(y)) → x = y).

Theorem 2 (Embedding lemma for Bishop spaces). Suppose that F =
(X,F) and Gi = (Yi, Gi) are Bishop spaces and hi : X → Yi, for every i in
some index set I. If the family of functions (hi)i∈I separates the points of X,
hi ∈ Mor(F ,Gi), for every i ∈ I, and ∀f∈F ∃i∈I∃g∈Gi

(f = g ◦ hi), then the
evaluation map e : X → Y =

∏
i∈I Yi, defined by x → (hi(x))i∈I , is a topological

embedding of F into G =
∏

i∈I Gi.

Proof. First we show that e is 1−1; e(x1) = e(x2) ↔ (hi(x1))i∈I = (hi(x2))i∈I ↔
∀i∈I(hi(x1) = hi(x2)) → x1 = x2. By the lifting of morphisms we have that
e ∈ Mor(F ,G) ↔ ∀g∈G(g ◦ e ∈ F) ↔ ∀i∈I∀g∈Gi

((g ◦ πi) ◦ e = g ◦ (πi ◦ e) ∈ F) ↔
∀i∈I∀g∈Gi

(g ◦ hi ∈ F) ↔ ∀i∈I(hi ∈ Mor(F ,Gi)). Next we show that e is open
i.e., ∀f∈F ∃g∈G(f = g ◦ e). If f ∈ F , by hypothesis (iii) there is some i ∈ I and
some g ∈ Gi such that f = g ◦ hi. Since g ◦ πi ∈ G =

∏
i∈I Gi we have that

(g ◦ πi)(e(x)) = (g ◦ πi)((hi(x))i∈I) = g(hi(x)) = f(x), for every x ∈ X, hence
f = (g ◦ πi) ◦ e. Thus, e is open as a morphism from F to G, therefore it is open
as a morphism from F to G|e(X).

According to the classical Tychonoff embedding theorem, the completely regular
topological spaces are precisely those which can be embedded in a product of
the closed unit interval I. In the following characterization of the tightness of
the canonical apartness relation it is R which has the role of I.

Completely Regular Bishop Spaces 309

Theorem 3 (Tychonoff embedding theorem for Bishop spaces). Sup-
pose that F = (X,F) is a Bishop space. Then, F is completely regular iff F is
topologically embedded into the Euclidean Bishop space RF .

Proof. If F is completely regular, using the embedding lemma we show that the
mapping e : X → R

F , defined by x → (f(x))f∈F , is a topological embedding of
F into RF . The topology F is a family of functions of type X → R that separates
the points of X, since the separation condition is exactly the tightness of ��F .
That every f ∈ F is in Mor(F ,R) is already mentioned. If we fix some f ∈ F ,
then f = idR ◦ f , and since idR ∈ Bic(R), the condition (iii) of the embedding
lemma is satisfied. If F is topologically embedded into RF , then F is completely
regular, since by Proposition 3 a Euclidean Bishop space is completely regular
and F is isomorphic to a subspace of a completely regular space.

If F = (X,F), G = (Y,G) are Bishop spaces and h ∈ Mor(F ,G), then using
Theorem 3 one shows, as in the classical case, the existence of a mapping ρh :
ρX → ρY ∈ Mor(ρF , ρG) such that the following diagram commutes

X Y

ρX ρY,

...h

...
.
.........
...

τ

...
.
.........
...

τ

..

ρh

where τ, τ ′ are the morphisms determined by Theorem 1. Next we prove directly
a generalized form of the Tychonoff embedding theorem.

Theorem 4 (General Tychonoff embedding theorem). Suppose that F =
(X,F(F0)) is a Bishop space. Then, F is completely regular iff F is topologically
embedded into the Euclidean Bishop space RF0 .

Proof. If F is completely regular, we show directly that the mapping e :
X → R

F0 , defined by x → (f0(x))f0∈F0 , is a topological embedding of F into
RF0 . Since the tightness of ��F(F0) is equivalent to ∀x1,x2∈X(∀f0∈F0(f0(x1) =
f0(x2)) → x1 = x2)), we get that e is 1−1. Using our remark on the relative
topology given with a subbase, we get that, since Bic(R)F0 =

∨
f0∈F0

πf0 , its
restriction to e(X) is (Bic(R)F0)|e(X) = (

∨
f0∈F0

πf0)|e(X) =
∨

f0∈F0
(πf0)|e(X).

By the lifting of morphisms we have that e ∈ Mor(F , (RF0)|e(X)) iff
∀f0∈F0((πf0)|e(X) ◦ e = f0 ∈ F(F0)), which holds trivially. In order to prove that
e is open it suffices by the lifting of openness on the epimorphism e : X → e(X)
to show that ∀f0∈F0∃g∈(Bic(R)F0)|e(X)

(f0 = g ◦ e). Since f0 = (πf0)|e(X) ◦ e and
(πf0)|e(X) ∈ (Bic(R)F0)|e(X), for every f0 ∈ F0, we are done. The converse is
proved as in the proof of the Theorem3.

If we consider F0 = F , then F(F0) = F and the general Tychonoff embedding
theorem implies Theorem 3. If X = R

n, then Bic(R)n = F(π1, . . . , πn), and the
above embedding e is idRn , since x → (π1(x), . . . , πn(x)) = x.

310 I. Petrakis

Proposition 4. Suppose that F = (X,F) is a completely regular Bishop space,
G = (Y,G) is Bishop space, and τ : X → Y ∈ Mor(F ,G). Then, τ∗ is onto F iff
τ is a topological embedding of F into G such that G|τ(X) = {g|τ(X) | g ∈ G}.
Proof. We suppose that τ∗ is onto F and we show first that τ is 1−1; suppose
that τ(x1) = τ(x2), for some x1, x2 ∈ X. We have that ∀f∈F (f(x1) = f(x2)),
since by the onto hypothesis of τ∗, if f ∈ F , there is some g ∈ G such that
f(x1) = (g◦τ)(x1) = g(τ(x1)) = g(τ(x2)) = (g◦τ)(x2) = f(x2). By the complete
regularity of F we conclude that x1 = x2. By the lifting of morphisms we get
directly that if τ ∈ Mor(F ,G), then τ ∈ Mor(F ,G|τ(X)). The onto hypothesis
of τ∗ i.e., ∀f∃g∈G(f = g ◦ τ), implies that ∀f∃g′∈G|τ(X)(f = g′ ◦ τ), where
g′ = g|τ(X). Hence, τ : X → τ(X) is an isomorphism between F and G|τ(X).
Next we show that {g|τ(X) | g ∈ G} is a topology on τ(X), therefore by the
definition of the relative topology we get that G|τ(X) = {g|τ(X) | g ∈ G}. Clearly,
a|τ(X) = a, (g1 + g2)|τ(X) = g1|τ(X) + g2|τ(X) and (φ ◦ g)|τ(X) = φ ◦ g|τ(X),
where φ ∈ Bic(R). Suppose that h : τ(X) → R, ε > 0 and g ∈ G such that
∀y∈τ(X)(|g(y)−h(y)| ≤ ε) ↔ ∀x∈X(|g(τ(x))−h(τ(x))| ≤ ε). Since g ◦ τ ∈ F and
ε is arbitrary, we conclude by the condition BS4 that h ◦ τ ∈ F , hence, by our
onto hypothesis of τ∗, there is some g ∈ G such that g ◦τ = h◦τ i.e., g|τ(X) = h.
For the converse we fix some f ∈ F and we find g ∈ G such that f = τ∗(g).
Since τ : X → τ(X) is open, there exists some g′ ∈ G|τ(X) such that f = g′ ◦ τ ,
and since G|τ(X) = {g|τ(X) | g ∈ G}, there is some g ∈ G such that g′ = g|τ(X),
hence f = g|τ(X) ◦ τ = g ◦ τ = τ∗(g).

As in [5] p. 155 for C(X), the Proposition 4 implies the Tychonoff embedding
theorem; if F is completely regular and e : X → R

F is defined by x → (f(x))f∈F ,
then e∗ :

∨
f∈F πf → F is onto F , since e∗(πf) = πf ◦ e = f , therefore e is an

embedding of F into RF such that (
∨

f∈F πf)|e(X) = {g|e(X) | g ∈ ∨
f∈F πf}.

Proposition 5. If F = (X,F) and G = (Y,G) are Bishop spaces, then:

(i) If e ∈ Mor(F ,G), then x̂◦e∗ = ê(x), for every x ∈ X, and e∗ ∈ Mor(G∗,F∗).
(ii) The mapping ˆ: X → F ∗, defined by x → x̂, is in Mor(F ,F∗∗) and it is

1−1 iff F is completely regular.
(iii) If G is completely regular, then ∀e1,e2∈Mor(F,G)(e∗

1 = e∗
2 → e1 = e2).

Proof. (i) By the lifting of morphisms we have that e∗ ∈ Mor(G∗,F∗) ↔
∀x∈X(x̂ ◦ e∗ ∈ G∗). But x̂ ◦ e∗ = ê(x) ∈ G∗, since (x̂ ◦ e∗)(g) = x̂(e∗(g)) =
x̂(g ◦ e) = (g ◦ e)(x) = g(e(x)) = ê(x)(g), for every g ∈ G.

(ii) Since F∗∗ = (F ∗, F ∗∗), where F ∗∗ = F({f̂ | f ∈ F}), f̂ : F ∗ → R, and
f̂(θ) = θ(f), for every θ ∈ F ∗, by the lifting of morphisms we have that
ˆ∈ Mor(F ,F∗∗) ↔ ∀f∈F (f̂ ◦ˆ∈ F). But f̂ ◦ˆ= f , since (f̂ ◦ˆ)(x) = f̂(x̂) =
x̂(f) = f(x), for every x ∈ X. Since x̂ = ŷ ↔ ∀f∈F (x̂(f) = ŷ(f)) ↔
∀f∈F (f(x) = f(y)), the injectivity of ˆ implies the tightness of ��F and vice
versa.

Completely Regular Bishop Spaces 311

(iii) By (i) we have that x̂ ◦ e∗
1 = ̂e1(x) and x̂ ◦ e∗

2 = ̂e2(x), for every x ∈ X.
Since e∗

1 = e∗
2, we get that ̂e1(x) = ̂e2(x), for every x ∈ X. By (ii) and the

complete regularity of G we get that e1(x) = e2(x), for every x ∈ X.

Proposition 6. Suppose that F = (X,F) and G = (Y,G) are completely regular
Bishop spaces and E : G → F is an isomorphism between G∗ and F∗. Then, there
exists an (unique) isomorphism e : X → Y between F and G such that E = e∗

iff ∀x∈X∃y∈Y (x̂ ◦ E = ŷ) and ∀y∈Y ∃x∈X(ŷ = x̂ ◦ E).

Proof. The necessity follows by applying the Proposition 5(i) on e and e−1.
For the converse we suppose that ∀x∈X∃y∈Y (x̂ ◦ E = ŷ) and we show that
∀x∈X∃!y∈Y (x̂◦E = ŷ); if x̂◦E = ŷ1 = ŷ2, then by the complete regularity of G we
get that y1 = y2. We define e : X → Y by x → y, where y is the unique element
of Y such that x̂ ◦ E = ŷ. Similarly, we suppose that ∀y∈Y ∃x∈X(ŷ = x̂ ◦ E)
and we show that ∀y∈Y ∃!x∈X(ŷ = x̂ ◦ E); if ŷ = x̂1 ◦ E = x̂2 ◦ E , then
ŷ ◦ E−1 = x̂1 = x̂2 and by the complete regularity of F we conclude that
x1 = x2. We define j : Y → X by y → x, where x is the unique element of X
such that x̂ ◦ E = ŷ. Next we show that j = e−1, or equivalently that e ◦ j = idY

and j ◦ e = idX ; for the first equality we have that ŷ = ĵ(y) ◦ E and also that
ĵ(y) ◦ E = ̂e(j(y)), which implies that ŷ = ̂e(j(y)). By the complete regularity
of G we get that y = e(j(y)). For the second equality we have that x̂ ◦ E = ê(x)
and ê(x) = ̂j(e(x)) ◦ E , which implies that x̂ ◦ E = ̂j(e(x)) ◦ E , and consequently
x̂ = ̂j(e(x)). By the complete regularity of F we get that x = j(e(x)). Hence,
e is a bijection. Next we show that E(g) = g ◦ e, for every g ∈ G; since the
first part of our hypothesis can be written as ∀x∈X(x̂ ◦ E = ê(x)), we get that
(x̂ ◦ E)(g) = ê(x)(g) ↔ E(g)(x) = g(e(x)) ↔ E(g)(x) = (g ◦ e)(x), for every
g ∈ G and x ∈ X. Since g ◦ e = E(g) ∈ F , for every g ∈ G, we conclude that
e ∈ Mor(F ,G), while if f ∈ F , since E is onto F , there exists some g ∈ G such
that E(g) = g ◦ e = f i.e., e is open.

A formalization of the previous proof requires Myhill’s axiom of nonchoice, which
is considered compatible with BISH (see [3], p. 75).

References

1. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
2. Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der Mathematischen

Wissenschaften 279. Springer, Heidelberg (1985)
3. Bridges, D., Reeves, S.: Constructive mathematics in theory and programming prac-

tice. Philosophia Mathe. 3, 65–104 (1999)
4. Bridges, D.S.: Reflections on function spaces. Ann. Pure Appl. Logic 163, 101–110

(2012)
5. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton

(1960)

312 I. Petrakis

6. Ishihara, H.: Relating bishop’s function spaces to neighborhood spaces. Ann. Pure
Appl. Logic 164, 482–490 (2013)

7. Ishihara, H., Palmgren, E.: Quotient topologies in constructive set theory and type
theory. Ann. Pure Appl. Logic 141, 257–265 (2006)

8. Petrakis, I.: Bishop spaces: constructive point-function topology. In: Mathema-
tisches Forschungsinstitut Oberwolfach Report No. 52/2014, Mathematical Logic:
Proof Theory, Constructive Mathematics, pp. 26–27. doi:10.4171/OWR/2014/52

http://dx.doi.org/10.4171/OWR/2014/52

Computing Equality-Free String Factorisations

Markus L. Schmid(B)

Fachbereich IV – Abteilung Informatikwissenschaften,
Universität Trier, 54286 Trier, Germany

MSchmid@uni-trier.de

Abstract. A factorisation of a string is equality-free if each two factors
are different; its size is the number of factors and its width is the max-
imum length of any factor. To decide, for a string w and a number m,
whether w has an equality-free factorisation with a size of at least (or a
width of at most) m are NP-complete problems. We further investigate
the complexity of these problems and also study the converse problems
of computing a factorisation that is to a large extent not equality-free,
i.e., a factorisation of size at least (or width at most) m such that the
total number of different factors does not exceed a given bound k.

Keywords: String factorisations · NP-hard string problems · FPT

1 Introduction

Many classical hard string problems can be defined in terms of factorisations
of strings that satisfy certain properties. For example, the well-known problem
of computing the shortest common superstring of given strings w1, . . . , wk (see,
e. g., [1]) asks whether there exists a short string x that, for every i, 1 ≤ i ≤ k,
has a factorisation ui · wi · vi. Since a string w is a subsequence of a string u
if u has a factorisation v1 · v2 · · · vk and w has a factorisation vi1 · vi2 · · · vin

with 1 ≤ i1 < . . . < in ≤ k, the famous Longest Common Subsequence
and Shortest Common Supersequence problems can as well be described
in terms of factorisations. Another example of a string problem that has recently
attracted much attention is the problem to decide for two words x and y and a
given k whether they have factorisations u1 · u2 · · · uk and v1 · v2 · · · vk, respec-
tively, such that (u1, . . . , uk) is a permutation of (v1, . . . , vk), i. e., the Minimum
Common String Partition problem. See [1] for a survey on the multivariate
analysis of NP-hard string problems.

In this paper we are concerned with so-called equality-free factorisations,
recently introduced in [2,3]. A factorisation u1 · u2 · · · uk is equality-free if every
factor is distinct, i. e., |{u1, u2, . . . , uk}| = k. In [2,3], Condon et al. investigate
the problem of deciding whether a given string w has an equality-free factorisa-
tion of width at most m, where the width is the maximum length of any factor.1

1 This problem is also mentioned in [1]; furthermore, in [6], the hardness of computing
an equality-free factorisation with only palindromes as factors is investigated.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 313–323, 2015.
DOI: 10.1007/978-3-319-20028-6 32

314 M.L. Schmid

A motivation for this problem comes from gene synthesis. Since it is only possi-
ble to produce short pieces of DNA (so-called oligo fragments) artificially, longer
DNA sequences are usually obtained by a self-assembly of many oligos into the
desired DNA sequence; thus, the task is to find the right oligos for successful
self-assembly. Computing equality-free factorisations with bounded width is an
abstraction of this problem: the width bound represents the necessity for short
oligos and the equality-freeness models the condition that each two oligos must
not be too similar in order to not hybridise with each other (see [2,3] for more
details). This problem is NP-complete, even if the width bound is 2 or the alpha-
bet is binary (see [3]). We revisit this problem and show that it is fixed-parameter
tractable if both the width bound and the alphabet size are parameters.

If instead of a small width, we are looking for an equality-free factorisation
with a large size, i. e., a large number of factors, then we obtain a different
NP-complete problem (see [4]). This variant is motivated by injective pattern
matching with variables (which is identical to the special case of solving word
equations, where the left side of the equation does not contain variables and
different variables must be replaced by different words), see [4] for more details.
We show that computing equality-free factorisations with large size is fixed-
parameter tractable if parameterised by the size bound. However, the question
whether the problem remains hard for fixed alphabets is still open.

We also consider the converse of computing equality-free factorsations, i. e.,
computing factorisations that are to a large extent not equality-free (or repet-
itive). Our measure of repetitiveness is the number of different factors in the
factorisation. If this number is small (in comparison to the size or width of the
factorisation), then many factors are repeated. This yields an interesting combi-
natorial question in its own right: how many different words are needed in order
to cover a given word? Furthermore, it is motivated by data compression, since
a factorisation with many repeated factors can be used in order to compress
a word, e. g., by using a dictionary of the different factors. We can show that
deciding on whether a word w has a factorisation of width at most m and with
at most k different factors is NP-complete, even if m = 2. On the other hand, if k
or the alphabet size is a constant, then the problem can be solved in polynomial
time. In contrast to this, if m is a lower bound on the size of the factorisation,
then the problem can be solved in polynomial time if either m, k or the alphabet
size is a constant, but it is open, whether the problem is NP-complete in general.

As a tool for proving some of our main results, we also investigate the problem
of deciding whether a given word w has an equality-free factorisation with only
factors from a given finite set F of words. It turns out that this problem is NP-
complete even for binary alphabets. However, it is in FPT if |F | is a parameter
and in P if we drop the equality-freeness condition.

Due to space constraints, not all results are formally proven.

2 Basic Definitions

Let N = {1, 2, 3, . . .}. By |A|, we denote the cardinality of a set A. Let Σ be a
finite alphabet of symbols. A word or string (over Σ) is a sequence of symbols

Computing Equality-Free String Factorisations 315

from Σ. For any word w over Σ, |w| denotes the length of w and ε denotes the
empty word, i. e., |ε| = 0. The symbol Σ+ denotes the set of all non-empty words
over Σ and Σ∗ = Σ+ ∪{ε}. For the concatenation of two words w1, w2 we write
w1 · w2 or simply w1w2. For every symbol a ∈ Σ, by |w|a we denote the number
of occurrences of symbol a in w. We say that a word v ∈ Σ∗ is a factor of a word
w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1vu2. If u1 = ε or u2 = ε, then
v is a prefix (or a suffix, respectively) of w. For every i, 1 ≤ i ≤ |w|, by w[1..n]
we denote the prefix of w with length n. As a convention, in this work every set
of words is always a finite set.

By the term trie, we refer to the well-known ordered tree data structure for
representing sets of words.

Factorisations. For any word w ∈ Σ+, a factorisation of w is a tuple p =
(u1, u2, . . . , uk) ∈ (Σ+)k, k ∈ N, with w = u1u2 . . . uk. Every word ui, 1 ≤ i ≤
k, is called a factor (of p) or simply p-factor. For the sake of readability, we
sometimes represent a factorisation (u1, u2, . . . , uk) in the form u1 � u2 � . . . � uk.

Let p = (u1, u2, . . . , uk) be an arbitrary factorisation. We define the following
parameters: sf(p) = {u1, u2, . . . , uk} (the set of factors), s(p) = k (the size),
c(p) = |sf(p)| (the cardinality) and w(p) = max{|ui| | 1 ≤ i ≤ k} (the width). A
factorisation p is equality-free if s(p) = c(p).

Problems. We now define the different problems to be investigated in this work.

Equality-Free Factor Cover (EFFC)
Instance: A word w and a set F of words represented as a trie.
Question: Does there exist an equality-free factorisation p of w with sf(p) ⊆ F?

Maximum Equality-Free Factorisation Size (MaxEFF-s)
Instance: A word w and a number m, 1 ≤ m ≤ |w|.
Question: Does there exist an equality-free factorisation p of w with s(p) ≥ m?

Maximum Repetitive Factorisation Size (MaxRF-s)
Instance: A word w, numbers m, 1 ≤ m ≤ |w|, and k, 1 ≤ k ≤ |w|.
Question: Does there exist a factorisation p of w with s(p) ≥ m and c(p) ≤ k?

The problems MaxEFF-s and MaxRF-s where m is interpreted as an
upper bound on the width instead of a lower bound on the size are denoted
by MinEFF-w and MinRF-w. In the remainder of the paper, the symbol m is
reserved as the bound on the size or width (depending on the problem under
consideration) of the factorisation and k as the bound on the cardinality of the
factorisation, respectively. For any problem K from above and any fixed alphabet
Σ, KΣ denotes the problem K, where the input word is over Σ.

We shall now illustrate these definitions with an example.

Example 1. Let p = aab � ba � cba � aab � ba � aab be a factorisation. We note
that sf(p) = {aab, ba, cba}, s(p) = 6, c(p) = 3 and w(p) = 3. The factorisation p
is not equality-free. Furthermore, (abbcbaabbc, 6) ∈ MaxEFF-s (witnessed by
a �bb �c �ba �ab �bc), whereas (abbcbaabbc, 7) /∈ MaxEFF-s. On the other hand,
((aabbcc)2,m) ∈ MinEFF-w if and only if m ≥ 2, whereas ((aabbcc)3,m) ∈
MinEFF-w if and only if m ≥ 3.

316 M.L. Schmid

Parameterised Complexity. We consider decision problems as languages over
some alphabet Γ . A parameterisation (of Γ) is a polynomial time computable
mapping κ : Γ ∗ → N and a parameterised problem is a pair (Q,κ), where Q is a
problem (over Γ) and κ is a parameterisation of Γ . We usually define κ implicitly
by describing which part of the input is the parameter. A parameterised problem
(Q,κ) is fixed-parameter tractable if there is an fpt-algorithm for it, i. e., an
algorithm that solves Q on input x in time O(f(κ(x)) × p(|x|)) for recursive f
and polynomial p. The class of fixed-parameter tractable problems is denoted by
FPT. Note that if a parameterised problem becomes NP-hard if the parameter is
set to a constant, then it is not in FPT unless P = NP. For detailed explanations
on parameterised complexity, the reader is referred to [5].

3 Main Results

We begin this section with some preliminary observations that are necessary for
proving some of the main results.

If in an equality-free factorisation p, we join one of the longest factors with
one of its neighbours, then the resulting factorisation is still equality-free and
has size s(p) − 1.

Observation 1. A word w has an equality-free factorisation p with s(p) ≥ m,
m ∈ N, if and only if it has an equality-free factorisation p′ with s(p′) = m.

We can check whether a factorisation p of a word w is equality-free in time
O(|w|) by inserting all factors in a trie and checking for each factor if it is
already contained in the trie. If a set F of words is given as a trie, then we can
check in a similar way whether or not sf(p) ⊆ F in time O(|w|).
Observation 2. Let w ∈ Σ+ and let p be a factorisation of w. It can be decided
in time O(|w|) whether or not p is equality-free.

Observation 3. Let w ∈ Σ+ and let F be a set of words over Σ represented as
a trie. It can be decided in time O(|w|) whether or not sf(p) ⊆ F .

The following result is straightforward, but it nevertheless contributes to our
understanding of the complexity of the considered problems.

Proposition 1. The problems EFFC, MaxEFF-s, MinEFF-w, MaxRF-s
and MinRF-w are in FPT with respect to parameter |w|.

3.1 The Problem EFFC

As mentioned in the introduction, the problem EFFC is not our main concern.
However, its investigation, as we shall see, yields some valuable insights with
respect to equality-free factorisations and we also obtain an algorithm that shall
be used later in order to prove tractability results with respect to the problems
MaxRF-s and MinRF-w.

We first show that EFFC is NP-complete, even for fixed binary alphabets.

Computing Equality-Free String Factorisations 317

Theorem 1. Let Σ be an alphabet with |Σ| = 2. Then EFFCΣ is NP-complete.

Proof. Since we can guess a factorisation p and check in polynomial time whether
it is equality-free and sf ⊆ F , EFFCΣ is in NP. Let (w,m) be an instance of
MinEFF-wΣ and let F be the set of all factors of w of length at most m. We
note that |F | ≤ ∑m

i=1 |w| − (i − 1) ≤ m × |w| and F can be constructed in time
O(|F |×m). The word w has an equality-free factorisation p with w(p) ≤ m if and
only it has an equality-free factorisation p′ with sf(p′) ⊆ F . Since MinEFF-wΣ

is NP-complete (see [3]), EFFCΣ is NP-complete as well. �	
In addition to the alphabet size, the cardinality of the given set F of factors is
another natural parameter and we can show that the hardness is not preserved
if we bound |F | by a constant (in contrast to bounding |Σ| (Theorem 1)).

Theorem 2. The Problem EFFC can be solved in time O(|w||F |+1).

Theorem 2 is obtained by an analysis of a brute-force algorithm, coupled with
the observation that if an equality-free factorisation p satisfies sf(p) ⊆ F , then
its size must be bounded by |F |. As we shall see next, a more sophisticated
approach, which relies on encoding the different factors of F as single symbols
and factorisations as words over these symbols, yields an fpt-algorithm for EFFC
with respect to the parameter |F | (note that this does not make the algorithm
of Theorem 2 obsolete, since for large |F | it might still be faster than the fpt-
algorithm).

Theorem 3. The Problem EFFC can be solved in time O(|w|×(2|F |−1)×|F |!).
Proof. Let w ∈ Σ∗ and F = {u1, u2, . . . , u�} be an instance of EFFC. Fur-
thermore, let Γ = {1, 2, . . . , �}, let h : Γ ∗ → Σ∗ be a morphism defined by
h(i) = ui, i ∈ Γ , and let S = {v ∈ Γ+ | |v|i ≤ 1, i ∈ Γ}. There exists a word
v = j1j2 . . . jm ∈ S with h(v) = w if and only if p = (uj1 , uj2 , . . . , ujm

) is an
equality-free factorisation of w with sf(p) ⊆ F . Therefore, we can solve EFFC
by checking for each word v ∈ S whether or not h(v) = w, which can be done in
time O(|w|×|S|). We conclude the prove by observing that S =

⋃
Γ ′⊆Γ,Γ ′ �=∅ SΓ ′ ,

where SΓ ′ = {v ∈ Γ ′+ | |v|i = 1, i ∈ Γ ′}. Since |SΓ ′ | = |Γ ′|! and the sets SΓ ′

are pairwise disjoint, we have |S| =
∑

Γ ′⊆Γ,Γ ′ �=∅ |Γ ′|! ≤ ∑2�−1
i=1 �! = (2� − 1) × �!.

Since � = |F |, we obtain a total running time of O(|w| × (2|F | − 1) × |F |!). �	
Next, we investigate the impact of the equality-freeness condition itself, i. e., we
consider the problem FC, which is identical to EFFC with the only difference
that the factorisation p of w with sf(p) ⊆ F does not need to be equality-
free. This problem is similar to the problem Exact Block Cover (recently
investigated by Jiang et al. in [8]), which differs from FC only in that instead of
a set we are given a sequence of factors and every factor of the sequence has to
be used exactly once (in particular, this coincides with the variant of Minimum
Common String Partition where the partition of one of the two strings is
already fixed). While Exact Block Cover is NP-complete (see [8]), FC can be

318 M.L. Schmid

solved in polynomial time by dynamic programming. This demonstrates that it
is really the equality-freeness condition that makes EFFC hard and, in addition,
we obtain a useful tool to devise algorithms for solving variants of the problems
MaxRF-s and MinRF-w later on in Sect. 3.3.

Theorem 4. The problem FC can be solved in time O(|F | × |w|2).
Proof. We define a dynamic programming algorithm. Let w be a word and F =
{u1, u2, . . . , u�}. For every n,m, 1 ≤ m ≤ n ≤ |w|, let T [n,m] = 1 if there exists
a factorisation p of size m of w[1..n] with sf(p) ⊆ F and T [n,m] = 0 otherwise.
Obviously, (w,F) is a positive instance of FC if and only if T [|w|,m] = 1 for
some m, 1 ≤ m ≤ |w|. We can now solve FC on instance (w,F) by computing
all the T [n,m], 1 ≤ m ≤ n ≤ |w|, in the following way.

In time O(|w|×|F |), we first construct a table S with |w| rows and � columns
with S[n, i] = 0, 1 ≤ n ≤ |w|, 1 ≤ i ≤ �. Then, by using the Knuth-Morris-Pratt
algorithm [9], for every i, 1 ≤ i ≤ �, we set S[n, i] = 1 if ui is a suffix of w[1..n].
Since the Knuth-Morris-Pratt algorithm has running time O(|w|+ |ui|), building
up this table can be done in time

∑�
i=1(|w| + |ui|) ≤ ∑�

i=1 2|w| = O(|F | × |w|).
Then, for every n,m, 1 ≤ m ≤ n ≤ |w|, we initialise T [n,m] = 0, which requires
time O(|w|2), and, for every i, 1 ≤ i ≤ �, we set T [|ui|, 1] = 1 if S[|ui|, i] = 1,
which requires time O(|F |). We note that, for every n,m with 2 ≤ m ≤ n ≤ |w|,
T [n,m] = 1 if and only if there exists a word ui ∈ F that is a suffix of w[1..n] (i. e.,
S[n, i] = 1) with T [n−|ui|,m−1] = 1. Thus, for every n,m, 2 ≤ m ≤ n ≤ |w|, we
can compute T [n,m] in time O(|F |), provided that all T [n′,m−1], n′ < n, have
already been computed, which is satisfied if we iterate over m, 2 ≤ m ≤ |w|, in
an outer loop and over n, m ≤ n ≤ |w|, in an inner loop. Hence, all the elements
T [n,m], 1 ≤ m ≤ n ≤ |w|, are computed in time O(|F | × |w|2). �	

3.2 The Problems MaxEFF-s and MinEFE-w

In this section, we investigate the problems MinEFF-w and MaxEFF-s. Their
NP-completeness is established in [2,4], respectively, but in [3] it is additionally
shown that MinEFF-w remains NP-complete even if the bound on the width
is 2 or the alphabet is fixed and binary. In particular, this means that, unless
P = NP, MinEFF-w is not in FPT with respect to parameter m or |Σ|. However,
if we let both m and |Σ| be parameters at the same time, then MinEFF-w is
fixed-parameter tractable:

Theorem 5. MinEFF-wΣ can be solved in time O(mm2×|Σ|m+2 × |Σ|m).

Proof. Let (w,m) be an instance of MinEFF-wΣ . For every �, 1 ≤ � ≤ m,
there are |Σ|� words of length � and therefore

∑m
�=1 |Σ|� ≤ m × |Σ|m words of

length at most m. Consequently, if a factorisation p satisfies w(p) ≤ m, then
s(p) ≤ m × |Σ|m. Furthermore, if for an equality-free factorisation p of w we
have s(p) ≤ m × |Σ|m and w(p) ≤ m, then |w| ≤ m2 × |Σ|m. Hence, if |w| >

m2 × |Σ|m (which can be checked in time O(mm2×|Σ|m+2 × |Σ|m)), then there
is no equality-free factorisation p of w with w(p) ≤ m. If, on the other hand,

Computing Equality-Free String Factorisations 319

|w| ≤ m2 × |Σ|m, then we can enumerate all factorisations of w that have a
width of at most m and check for each such factorisation whether or not it is
equality-free in time O(|w|) = O(m2 × |Σ|m) (see Observation 2). Since there
are at most m|w| ≤ mm2×|Σ|m such factorisations, the statement of the theorem
follows. �	
For the problem MaxEFF-s, i. e., deciding on the existence of an equality-free
factorisation with a size of at least m (instead of a width of at most m), we
encounter a slightly different situation. First of all, it is still an open problem
whether MaxEFF-s remains NP-complete if the alphabet is fixed:

Open Problem 1. Let Σ be an alphabet. Is MaxEFF-sΣ NP-complete?

From an intuitive point of view, for the problem MinEFF-w, the bound on the
width can conveniently be exploited in order to design gadgets for encoding an
NP-hard problem (see [3] and also the proof of Theorem12). A lower bound on
the size seems to provide fewer possibilities for controlling the structure of the
factorisation, which makes it difficult to express another NP-complete problem
by MaxEFF-s (especially if we have only a constant number of symbols at our
disposal). On the other hand, a constant alphabet does not seem to help in order
to find an equality-free factorisation with a size of at least m in polynomial time.

However, if we consider m as a constant, then the problem is not NP-complete
anymore; in fact, it is even fixed-parameter tractable with respect to m:

Theorem 6. The problem MaxEFF-s can be solved in time O((m2+m
2 − 1)m).

Proof. Let (w,m) be an instance of MaxEFF-s. If |w| ≥ Σm
i=1i = m2+m

2 , which
can be checked in time O((m2+m

2 − 1)m), then the factorisation (u1, u2, . . . , um)
of w with |ui| = i, 1 ≤ i ≤ m−1, and |um| = |w|−|u1u2 . . . um−1| is equality-free,
since each two factors have a different length. If, on the other hand, |w| ≤ m2+m

2 −
1, then we can enumerate all factorisations of size m of w in time O(|w|m−1)
and, by Observation 2, check in time O(|w|) for each such factorisation whether
or not it is equality-free. Since w has an equality-free factorisation of size at
least m if and only if it has an equality-free factorisation of size exactly m
(see Observation 1), this solves the problem MaxEFF-s in time O(|w|m) =
O((m2+m

2 − 1)m). �	

3.3 The Problems MaxRF-s and MinRF-w

In this section, we investigate the problem of finding a factorisation of a word w
with as few different factors as possible. Since (w) is always a solution, we also
impose an upper bound on the width of the factorisation or a lower bound on
its size. In a sense, a factorisation p of this kind is to a large extent repetitive,
since if k is much smaller than s(p) or |w|

w(p) , then many factors must be repeated.
We shall see that if k or |Σ| are constants, then both MaxRF-s and

MinRF-w can be solved in polynomial time. If, on the other hand, m is a

320 M.L. Schmid

constant, then MaxRF-s can be solved in polynomial time as well, whereas
MinRF-w is NP-complete even for m = 2. Unfortunately, we are not able to
answer whether MaxRF-s is NP-complete in general.

We now first investigate the problem MaxRF-s.

Theorem 7. The problem MaxRF-s can be solved in time O(k2 × |w|2k+3).

Proof. Let (w,m, k) be an instance of MaxRF-s with m ≤ |w| and k ≤ |w|
(otherwise, it would be a negative instance). Let Fw = {u | u is a factor of w}.
For every F ⊆ Fw with |F | ≤ k, we run the algorithm defined in the proof
of Theorem 4 on input (w,F). If T [|w|, �] = 1, for an �, m ≤ � ≤ |w|, then
there is a factorisation p of w with s(p) ≥ m and sf(p) ⊆ F ; since |F | ≤ k,
this implies c(p) ≤ k. To carry out this procedure, we have to enumerate all
subsets F ⊆ Fw with |F | ≤ k. Since |Fw| ≤ |w|2, for every �, 1 ≤ � ≤ k,
there are at most |Fw|� ≤ |w|2� subsets F ⊆ Fw with |F | = �. Thus, there are∑k

i=1 |w|2i ≤ k × |w|2k subsets to investigate. For each subset F , we run the
algorithm of the proof of Theorem4 in time O(|F | × |w|2), and check for every
�, m ≤ � ≤ |w|, whether or not T [|w|, �] = 1, which requires time O(|w|). Hence,
the total running time of this procedure is O(k × |w|2k × k × |w|3) = O(k2 ×
|w|2k+3). �	
From Theorem 7 we can conclude with moderate effort that MaxRF-s can also
be solved in time that is exponential only in m or |Σ|. To this end, we observe
that if, for an instance (w,m, k) of MaxRF-s, we have k ≥ |Σ|, then splitting
w in only factors of length 1 yields a factorisation p with c(p) ≤ |Σ| ≤ k and
s(p) = |w| ≥ m, and if k ≥ m, then any factorisation p of w of size m satisfies
c(p) ≤ m ≤ k and s(p) ≥ m. If, on the other hand, k is bounded by |Σ| or m,
then the procedure used in the proof of Theorem7 has a running time that is
exponential only in |Σ| or m, respectively, which yields the following results:

Theorem 8. Let Σ be an alphabet. Then the problem MaxRF-sΣ can be solved
in time O(|Σ|2 × |w|2|Σ|+1).

Theorem 9. The problem MaxRF-s can be solved in time O(m2 × |w|2m+1).

The probably most interesting question, which, unfortunately, is still open is
whether the general version of MaxRF-s can also be solved in polynomial time.

Open Problem 2. Is MaxRF-s NP-complete?

We now turn to the problemMinRF-w. In an analogous way as done in the proof of
Theorem 7, we can show that MinRF-w can be solved in time exponential only in
k, too. The only difference is that instead of running the algorithm of Theorem4
for every subset of the set of all factors of w, it is sufficient to only consider all
subsets of the set of all factors of w that have a length of at most m.

Theorem 10. MinRF-w can be solved in time O(k2 × mk × |w|k+3).

Computing Equality-Free String Factorisations 321

In a similar way as Theorem 8 follows from Theorem 7, i. e., by bounding k in
terms of |Σ|, we can conclude from Theorem 10 the next result.

Theorem 11. Let Σ be an alphabet. Then the problem MinRF-wΣ can be solved
in time O(|Σ|2 × m(|Σ|−1) × |w||Σ|+2).

While for problem MaxRF-s it was also possible to bound k in terms of m,
for MinRF-w, we can only observe that (w,m, k) must be a positive instance
if k ≥
 |w|

m �, but in case k <
 |w|
m �, the algorithm of the proof of Theorem10

has a running time exponential in |w| and it does not seem possible to solely
bound k in terms of m. We now justify this intuition by showing that MinRF-w
is NP-complete, even if m = 2. First, we recall the hitting set problem (see [7]):

Hitting Set (HS)
Instance: U = {x1, . . . , x�}, S1, . . . , Sn ⊆ U and q ∈ N.
Question: Does there exist T ⊆ U with |T | ≤ q and T ∩ Si = ∅, 1 ≤ i ≤ n?

We now give a reduction from HS to MinRF-w with m = 2. Let (U, S1, . . . , Sn, q)
be an instance of HS. We assume that, for every i, j, 1 ≤ i < j ≤ n, |Si| = |Sj | =
r (note that HS reduces to the variant where all sets Si have the same cardinality
r by adding r − |Si| new elements to every Si). For the sake of concreteness, we
assume Si = {yi,1, yi,2, . . . , yi,r}, 1 ≤ i ≤ n. We define an alphabet Sigma =
U ∪ {$i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ r − 1} ∪ {¢} and a word w = ¢¢ v1 ¢ v2 ¢ . . . ¢ vn ¢,
where, for every i, 1 ≤ i ≤ n, vi = yi,1$i,1yi,2$i,2 . . . $i,r−1yi,r. The following
lemma states that this transformation from an HS instance to a word over Σ is
in fact a reduction from HS to MinRF-w.

Lemma 1. There exists a set T ⊆ U with |T | ≤ q and T ∩ Si = ∅, 1 ≤ i ≤ n, if
and only if w has a factorisation p with w(p) ≤ 2 and c(p) ≤ n(r − 1) + q + 1.

Proof. We start with the only if direction and assume that there exists a set
T ⊆ U with |T | ≤ q and T ∩Si = ∅, 1 ≤ i ≤ n. We now construct a factorisation
p of w with the desired properties. We let every single occurrence of ¢ be a factor
of p; thus, it only remains to split every vi, 1 ≤ i ≤ n, into factors of size at
most 2, which is done as follows. For every i, 1 ≤ i ≤ n, let ji, 1 ≤ ji ≤ r, be
arbitrarily chosen such that yi,ji

∈ T (since T ∩Si = ∅, 1 ≤ i ≤ n, such ji exist).
Then, for every i, 1 ≤ i ≤ n, we factorise vi into

yi,1$i,1 � yi,2$i,2 � . . . � yi,ji−1$i,ji−1 � yi,ji
� $i,ji

yi,ji+1 � . . . � $i,r−1yi,r.

Obviously, this results in a factorisation p of w with w(p) ≤ 2. Furthermore, sf(p)
contains the factor ¢, at most |T | factors x with x ∈ T and, for every i, 1 ≤ i ≤ n,
j, 1 ≤ j ≤ r − 1, a distinct factor of length 2 that contains the symbol $i,j (the
distinctness of these factors follows from the fact that each symbol $i,j has only
one occurrence in w). This implies that c(p) ≤ 1+|T |+n(r−1) ≤ 1+q+n(r−1),
which concludes the only if direction of the proof.

In order to prove the if direction, we assume that there exists a factorisation
p of w with w(p) ≤ 2 and c(p) ≤ 1 + q + n(r − 1). We now modify p step by step

322 M.L. Schmid

such that every modification maintains w(p) ≤ 2 and c(p) ≤ 1 + q + n(r − 1).
Since w starts with ¢¢ and w(p) ≤ 2, we can conclude that ¢ or ¢¢ is a factor
of p. If ¢¢ is a factor of p, then we can split it into ¢ � ¢ without increasing c(p),
since the factor ¢¢ is then not a factor of p anymore and we get at most ¢ as a
new factor. Every factor of p that contains the symbol ¢ is either the factor ¢ or
of the form x¢ or ¢x for some x ∈ U . If, for an x ∈ U , we split all occurrences of
factor x¢ in p into x � ¢, then we may produce the new factor x (recall that ¢ is
already a factor), but we also necessarily lose x¢ as a factor; thus, c(p) does not
increase. If we apply this modification with respect to all x ∈ U and all factors
x¢ and ¢x, then we obtain a factorisation in which every single occurrence of the
symbol ¢ in w is also a factor of p, w(p) ≤ 2 and c(p) ≤ 1+q+n(r−1). For every
i, 1 ≤ i ≤ n, |vi| is odd, which implies that the factorisation of vi (according to
p) must contain a factor of length 1 and, by the structure of vi, this factor must
be of the form x ∈ U . This particularly implies that for the set T of all elements
of U that occur as a factor in p, we must have T ∩ Si = ∅, 1 ≤ i ≤ n. Now sf(p)
contains ¢, all n(r−1) factors containing a symbol $i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ r−1,
and the factors in T . Thus, c(p) = 1 + n(r − 1) + |T | ≤ 1 + n(r − 1) + q, which
implies |T | ≤ q. �	
We note that the MinRF-w instance (w, 2, n(r − 1) + q + 1) can be constructed
from the HS instance (U, S1, . . . , Sn, q) in polynomial time and that MinRF-w is
in NP (we can guess and verify a factorisation). Hence, from the NP-completeness
of HS (see [7]) and Lemma 1, we can conclude the following:

Theorem 12. The problem MinRF-w is NP-complete even if m ≤ 2.

References

1. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorith-
mics for NP-hard string problems. EATCS Bull. 114, 31–73 (2014)

2. Condon, A., Maňuch, J., Thachuk, C.: Complexity of a collision-aware string parti-
tion problem and its relation to oligo design for gene synthesis. In: Hu, X., Wang, J.
(eds.) COCOON 2008. LNCS, vol. 5092, pp. 265–275. Springer, Heidelberg (2008)

3. Condon, A., Maňuch, J., Thachuk, C.: The complexity of string partitioning. In:
Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 159–172. Springer,
Heidelberg (2012)

4. Fernau, H., Manea, F., Mercaş, R., Schmid, M.L.: Pattern matching with variables:
fast algorithms and new hardness results. In: Leibniz International Proceedings
in Informatics (LIPIcs), Proceedings 32nd Symposium on Theoretical Aspects of
Computer Science, STACS 2015, vol. 30, pp. 302–315 (2015)

5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006)
6. Gagie, T., Inenaga, S., Karkkainen, J., Kempa, D., Piatkowski, M., Puglisi, S.J.,

Sugimoto, S.: Diverse palindromic factorization is NP-complete. Technical report
1503.04045 (2015). http://arxiv.org/abs/1503.04045

7. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and
Company, San Francisco (1979)

http://arxiv.org/abs/http://arxiv.org/abs/1503.04045

Computing Equality-Free String Factorisations 323

8. Jiang, H., Su, B., Xiao, M., Xu, Y., Zhong, F., Zhu, B.: On the exact block cover
problem. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp.
13–22. Springer, Heidelberg (2014)

9. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. Commun.
ACM 6(2), 323–350 (1977)

Towards the Effective Descriptive Set Theory

Victor Selivanov(B)

A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia
vseliv@iis.nsk.su

Abstract. We prove effective versions of some classical results about
measurable functions and derive from this extensions of the Suslin-Kleene
theorem, and of the effective Hausdorff theorem for the computable Pol-
ish spaces (this was established in [2] with a different proof) and for
the computable ω-continuous domains (this answers an open question
from [2]).

Keywords: Weakly computable cb0-space · Computable Polish space ·
Computable ω-continuous domain · Effective hierarchy · Suslin-Kleene
theorem · Effective Hausdorff theorem

1 Introduction

Classical descriptive set theory (DST) [11] deals with hierarchies of sets, func-
tions and equivalence relations in Polish spaces. Theoretical Computer Science,
in particular Computable Analysis [23], motivated an extension of the classi-
cal DST to non-Hausdorff spaces; a noticeable progress was achieved for the
ω-continuous domains and quasi-Polish spaces [4,20].

Theoretical Computer Science and Computable Analysis especially need an
effective DST for some effective versions of the mentioned classes of topological
spaces. A lot of useful work in this direction was done within Classical Com-
putability Theory but only for the discrete space ω, the Baire space N , and
some of their relatives [17,22]. For a systematic work to develop the effective
DST for effective Polish spaces see e.g. [8,13,15]. There was also some work on
the effective DST for effective domains and approximation spaces [2,20,21].

In this paper we try to make a next step towards the “right” version of
effective DST beyond effective Polish spaces. The task seems non-trivial since
even the recent search for the “right” effective versions of topological spaces for
Computable Analysis resulted in proliferation of different notions of effective
spaces of which it is quite hard to choose really useful ones.

We start in the next section with fixing some classes of effective spaces which
have good effective DST-properties. Section 3 recalls definitions of effective ver-
sions of the classical hierarchies. In Sect. 4 we prove effective versions of some

V. Selivanov—Supported by a Marie Curie International Research Staff Exchange
Scheme Fellowship within the 7th European Community Framework Programme, by
DFG Mercator Programme at the University of Würzburg, and by RFBR project
13-01-00015a.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 324–333, 2015.
DOI: 10.1007/978-3-319-20028-6 33

Towards the Effective Descriptive Set Theory 325

classical DST-results about measurable functions. In Sects. 5 and 6 we derive
from this an extension of the Suslin-Kleene theorem [15] and the effective Haus-
dorff theorem for computable metric spaces (this is earlier established in [2] with
a different proof) and for the computable ω-continuous domains (this answers
Open Problem 5.15 from [2]).

2 Classes of Effective Spaces

All topological spaces considered here are assumed to be countably based and
satisfying the T0-separation axiom (cb0-spaces, for short). By weakly computable
cb0-space we mean a pair (X, τ) where X is a non-empty set of points and
τ : ω → P (X) is a numbering of a base of a T0-topology in X such that for some
computable functions f, g we have τx ∩ τy = τf(x,y) and

⋃
τ [Wx] = τg(x) (where

{Wn} is the standard numbering of c.e. sets [17]). Note that, for a function
h : X → Y and a set A ⊆ X, h[A] denotes the image {h(a) | a ∈ A}. Abusing
notation, we often abbreviate (X, τ) to X. Informally, τ [ω] is a collection of open
sets (called effectively open sets) which is rich enough to have the usual closure
properties of open sets effectively.

As morphisms between weakly computable cb0-spaces (X, ξ) and (Y, η) we
use effectively continuous functions, i.e. functions f : X → Y such that the
numbering λn.f−1(ηn) is reducible to ξ (in particular, f−1(A) ∈ ξ[ω] whenever
A ∈ η[ω]). Recall that numbering is any function with domain ω, the reducibility
relation μ ≤ ν on numberings means that μ = ν◦f for some computable function
f on ω, and numberings μ, ν are equivalent (in symbols, μ ≡ ν) iff μ ≤ ν and
ν ≤ μ. By effective homeomorphism between X,Y we mean a bijection f between
X and Y such that both f and f−1 are effectively continuous.

If (X, τ) is a weakly computable cb0-space then any non-empty subset Y
of X has the induced structure τY of weakly computable cb0-space defined by
τY (n) = Y ∩ τ(n). For weakly computable cb0-spaces (X, ξ) and (Y, η), by a
weakly computable embedding of X into Y we mean an injection f : X → Y
such that λn.f [ξn] ≡ ηf [X]. Obviously, such an f is an effective homeomorphism
between (X, ξ) and (f [X], ηf [X]).

By weakly computable cb0-base structure we mean a pair (X,β) where X is
a non-empty set of points and β : ω → P (X) is a numbering of a base of a T0-
topology in X such that there is a c.e. sequence {Aij} with βi ∩βj =

⋃
β[Aij] for

all i, j ≥ 0. It is easy to check that any weakly computable cb0-space is a weakly
computable cb0-base structure, and any cb0-base structure (X,β) induces the
weakly computable cb0-space (X,β∗) where β∗(n) =

⋃
β[Wn]. We say that a

weakly computable cb0-base structure (X,β) induces a weakly computable cb0-
space (X, τ) if τ ≡ β∗.

By c.e. cb0-space we mean a weakly computable cb0-space (X, τ) such that
the predicate τn
= ∅ is c.e. The notion of c.e. cb0-base structure is obtained by a
similar strengthening of the notion of weakly computable cb0-base structure. Note
that if (X,β) is a c.e. cb0-base structure then (X,β∗) is a c.e. cb0-space. Similar
spaces were introduced and studied in [9,12,21] under different names. For such

326 V. Selivanov

spaces one can naturally define the notions of a computable function and show
that the computable functions coincide with the effectively continuous ones.

Any computable metric space (X, d, ν) [23] gives rise to a c.e. cb0-base struc-
ture (X,β) were β〈m,n〉 = B(νm, κm) is the basic open ball with center νm and
radius κm (κ is a computable numbering of the rationals). Note that the recur-
sively presented metric spaces from [15] are computable metric spaces but not
vice versa; nevertheless, they give rise to the same class of Polish spaces [6].
By computable Polish space we mean a c.e. cb0-space (X, τ) induced by a com-
putable complete metric space (X, d, ν), i.e. τ ≡ β∗. Most of the popular Polish
spaces are computable.

By computable ω-continuous domain [1] we mean a pair (X, {bn}) where X is
an ω-continuous domain and {bn} is a numbering of a (domain) base in X modulo
which the approximation relation � is c.e. Any computable ω-continuous domain
(X, {bn}) gives rise to a c.e. cb0-base structure (X,β) where βn = {x | bn � x}.
Most of the popular ω-continuous domains are computable.

As we will see below, both computable Polish spaces and computable ω-
continuous domains have some attractive effective DST-properties. In contrast,
arbitrary c.e. cb0-spaces seem too general to admit a reasonable effective DST.
Thus, it makes sense to look for a subclass of c.e. cb0-spaces with good effective
DST that contains both computable Polish spaces and computable ω-continuous
domains. A similar problem in classical DST was resolved by M. de Brecht
[4] suggested the important notion of a quasi-Polish space, so it makes sense
to search for a natural effective version of quasi-Polish spaces. A reasonable
candidate was suggested in [2]. A convergent approximation space is a triple
(X,B,�) consisting of a T0-space X and a binary relation � on a basis B such
that for all U, V, T ∈ B: U � V implies V ⊆ U , U ⊆ T and U � V imply T � V ,
for any x ∈ U there is W ∈ B with x ∈ W U , any sequence U0 � U1 � · · · is
a neighborhood basis of some point. By effective convergent approximation space
we mean a triple (X,β,�), β : ω → P (X), where (X,β[ω],�) is a convergent
approximation space such that the relation βm � βn is c.e. and any βn is non-
empty. In particular, (X,β) is a c.e. cb0-base structure. We immediately obtain
the following effectivization of Proposition 3.5 in [2].

Proposition 1. Computable Polish spaces and computable ω-continuous
domains can be naturally considered as effective convergent approximation
spaces.

Proof. If X is computable Polish, choose a compatible computable metric space
(X, d, ν), and let β be the numbering of basic open balls. For such balls U, V , let
U � V iff the closure of V is contained in U and diam(V) ≤ diam(U)/2. Then
(X,β �) is an effective convergent approximation space.

If Xis a computable ω-continuous domain, choose a domain basis {bn} such
that “bm � bn” is c.e. and all basic open sets βn := {x | bn � x} are non-empty.
For such basic opens U, V , let U � V iff V = {x | c � x} for some c ∈ U . Then
(X,β,�) is an effective convergent approximation space. �

Towards the Effective Descriptive Set Theory 327

Note that if (X, ξ) and (Y, η) are weakly computable cb0-base structures then
so is also (X ×Y, ξ × η) where (ξ × η)〈m,n〉 = ξm × ηn, and the product topology
on X × Y is induced by the basis (ξ × η)[ω]. One easily checks that all classes of
effective spaces defined in this section are closed under this cartesian product.

3 Effective Hierarchies in Weakly Computable
Cb0-Spaces

In any weakly computable cb0-space (X, τ) one can naturally define [21] effective
versions of the classical hierarchies of DST [11,15,22] denoting, as usual, levels
of the effective hierarchies in the same manner as levels of the corresponding
classical hierarchies, using the lightface letters Σ,Π,Δ instead of the boldface
Σ,Π,Δ used for the classical hierarchies. We are not completely precise here,
in the precise version we have to define levels of the hierarchies together with
their “canonical” numberings (an alternative apparently equivalent approach to
the effective Borel hierarchy uses the so called effective Borel codes [14]), [15].

First let us sketch the definition of the effective Borel hierarchy. Finite effec-
tive Borel hierarchy in (X, τ) is the sequence {Σ0

n(X)}n<ω defined as follows:
Σ0

0(X) = {∅}; Σ0
1(X) is the class of effective open sets equipped with the num-

bering τ ; Σ0
2(X) is the class of sets

⋃
β[Wx], x ≥ 0, where β : ω → P (X) is

the numbering of finite Boolean combinations of effective open sets induced by
τ and a Gödel numbering of Boolean terms; Σ0

n(X) (n ≥ 3) is the class of sets⋃
γ[Wx], x ≥ 0, where γ is the numbering of Π0

n−1(X) induced by the numbering
of Σ0

n−1(X) existing by induction.
The transfinite extension of {Σ0

n(X)}n<ω is also defined in a natural way. In
place of ω1 in classical DST one has to take the first non-computable ordinal
ωCK
1 . In fact, to obtain reasonable effectivity properties one should enumerate

levels Σ0
(a) of the transfinite hierarchy not by computable ordinals α < ωCK

1

but rather by their names |a|O = α in the Kleene notation system (O;<O)
(a �→ |a|O is a surjection from O ⊆ ω onto ωCK

1), see [17]. Levels of the transfinite
version are defined in the same way as for the finite levels, using the effective
induction along the well-founded set (O;<O). In this way we obtain the effective
Borel hierarchy {Σ0

(a)(X)}a∈O in X = (X, τ). This hierarchy is extensional, i.e.
Σ0

(a)(X) = Σ0
(b)(X) whenever |a|O = |b|O, so it may be sometimes easier denoted

as {Σ0
α(X)}α<ωCK

1
.

For every ordinal α, define the operation Dα sending sequences of sets
{Aβ}β<α to sets by

Dα({Aβ}β<α) =
⋃

{Aβ \
⋃

γ<β

Aγ |β < α, r(β)
= r(α)}

where r : α → {0, 1} is the parity function distinguishing even and odd ordinals.
For any ordinal α and class of sets C, let Dα(C) be the class of sets Dα({Aβ}β<α),
where Aβ ∈ C for all β < α.

328 V. Selivanov

The effective Hausdorff hierarchy {Σ−1,α
(a) (X)}a∈O over Σ0

α(X) is defined

as follows: Σ−1,α
(a) (X) is the class of sets of the form D|a|({Ab}b<Oa), where

{Ab}b<Oa ranges over the Σ0
α(X)-computable sequences (naturally identified

with sequences {Aβ}β<|a|). For α = 1, we abbreviate Σ−1,α
(a) (X) to Σ−1

(a)(X).
WARNING: the effective Hausdorff hierarchy is not extensional.

The effective Luzin hierarchy is the family of pointclasses {Σ1
n}n<ω defined by

induction as follows: Σ1
0(X) = Σ0

2(X), Σ1
n+1(X) = {prX(A) | A ∈ Π1

n(N × X)}
where prX(A) is the projection of A along the N -axis. In this way we obtain
the sequence {Σ1

n(X)} of pointclasses in any weakly computable cb0-space X =
(X, τ).

The introduced hierarchies have many properties well known in particular
cases from effective DST [15,17]: the natural inclusions of levels of any given
hierarchy, the mutual inclusions between levels of different hierarchies, the clo-
sure of any level under certain set-theoretic operations and under preimages of
effectively continuous functions. For a future reference, we only give an example
of such a property related to subspaces.

Proposition 2. Let (X, τ) be a weakly computable cb0-space, (Y, τY) a subspace,
and Γ a level of an introduced hierarchy. Then Γ (Y) = {Y ∩ A | A ∈ Γ (X)}.
We also give the following effective version of a result in [4].

Proposition 3. For any weakly computable cb0-space (X, τ), the equality rela-
tion =X on X is in Π0

2 (X × X).

Proof. For any x, y ∈ X we have: x
= y iff there is some n such that x ∈ τn
� y or
y ∈ τn
� x, i.e.
=X coincides with

⋃
n(((τn×X)\(X×τn))∪((X×τn)\(τn×X))).

By the definition of X × X,
=X is in Σ0
2(X × X). �

4 On the Effective Descriptive Theory of Functions

For levels Γ,E of the effective Borel hierarchy and for any weakly computable
cb0-spaces X,Y , let ΓE(X,Y) (resp. ΓE[X,Y]) denote the class of functions
f : X → Y such that f−1(B) ∈ Γ (X) for each B ∈ E(Y) effectively in B,
(resp. f [A] ∈ E(Y) for each A ∈ Γ (X) effectively in A). In the case Γ = E we
abbreviate ΓE(X,Y) to Γ (X,Y) and ΓE[X,Y] to Γ [X,Y].

The introduced notions are effective versions of the corresponding notions
from [16] and include some notions already considered in Computable Analysis
(see e.g. [3,23]. In particular, Σ0

1(X,Y) is the class of effectively continuous
functions, Σ0

1 [X,Y] is the class of effectively open functions, Σ0
2Σ0

1(X,Y) is the
class of effectively Σ0

2 -measurable (or effective Baire class 1) functions.
Our first result is an effective version of the classical fact that any Polish

space is a continuous open image of the Baire space [22, Theorem 1.3.7] (for
Polish spaces a closely related fact was announced in [7]).

Towards the Effective Descriptive Set Theory 329

Theorem 1. Let X be a computable Polish space or a computable ω-continuous
domain. Then there exist functions f : N → X and s : X → N such that
f ◦ s = idX , f ∈ Σ0

1(N ,X) ∩ Σ0
1 [N ,X], and s ∈ Σ0

2Σ0
1(X,N) ∩ Π0

2 [X,N].

Proof. Let (X,β,�) be the effective convergent approximation space for X from
the proof of Proposition 1. Since the relation “βm � βn” is c.e., there is a
computable function g : ω+ → ω such that g(n) = n for each n < ω and
{g(σn) | n < ω} = {m | βg(σ) � βm} for each σ ∈ ω+. In particular, for the sets
Uσ := βg(σ) we have X =

⋃
n Un, Uσ =

⋃
n Uσn, and Uσ � Uσn.

For any p ∈ N , let f(p) ∈ X be the unique element with the neighborhood
base {Up[n+1]} [2] where p[m] := (p(0) · · · p(m−1)). Note that if X is computable
Polish then f(p) = limnxn (where xn is the center of the ball Up[n+1]), and if
X is a computable ω-continuous domain then f(p) = sup{bg(p)[n+1] | n < ω}
(obviously, bg(p[1]) � bg(p[2]) � · · ·). Therefore, f : N → X is computable, hence
f ∈ Σ0

1(N ,X).
For any x ∈ X, define p = s(x) ∈ N as follows. If X is computable Polish

then (by induction on i) p(i) := μn(x ∈ Up[i]n), and if X is a computable ω-
continuous domain then p(i) := μn(x ∈ Up[i]n ∧ ∀j < i(bj � x → bj ∈ Up[i]n)).
Then we clearly have f ◦ s = idX , in particular f is surjective (in the “Polish
case” this is obvious while in the “ω-continuous case” the second conjunction
summand guarantees that x = sup{bg(s(x))[n+1] | n < ω} = f(s(x))). The same
argument shows that f [σ · N] = Uσ for each σ ∈ ω+, hence f ∈ Σ0

1 [N ,X].
Furthermore, s−1(σ · N) is a finite Boolean combination of basic open sets

in X that may be explicitly written for any given σ ∈ ω+, namely s−1(σ · N) =
Uσ \A where A is the union of Uρ for all ρ lexicographically less than σ. It follows
that s ∈ Σ0

2Σ0
1(X,N).

Obviously, s[X] = {p ∈ N | s(f(p)) = p}, hence s[X] = {p | ∀i(p(i) =
μn(f(p) ∈ Up[i]n))} in the “Polish case” and

s[X] = {p | ∀i(p(i) = μn(f(p) ∈ Up[i]n ∧ ∀j < i(bj � f(p) → bj ∈ Up[i]n))}
in the “ω-continuous case”. Since f is computable and {Uσ}σ∈ω+ is Σ0

1 -
computable, s[X] ∈ Π0

2 (N). For any A ⊆ X, we have s[A] = {p ∈ s[X] |
f(p) ∈ A} = s[X] ∩ f−1(A). If now A ∈ Π0

2 (X) then f−1(A) ∈ Π0
2 (N), hence

s[A] ∈ Π0
2 (N). It follows that s ∈ Π0

2 [X,N]. �

For weakly computable cb0-spaces X and Y , we say that X is an effective retract
of Y iff there exist effectively continuous functions s : X → Y (called a section)
and r : Y → X (called a retraction) such that r ◦ s = idX . We will use the
following

Proposition 4. Let (X, ξ) and (Y, η) be weakly computable cb0-spaces and Γ a
non-zero level of the effective Borel hierarchy.

(1) If f : X → Y is a weakly computable embedding with f [X] ∈ Γ (Y) then
f ∈ Γ [X,Y].

(2) If X is an effective retract of Y via a section-retraction pair (s, r) then
s ∈ Π0

2 [X,Y].

330 V. Selivanov

Proof. 1. Let A ∈ Γ (X). Since (X, ξ) is effectively homeomorphic to the subspace
(f [X], ηf [X]), f [A] ∈ Γ (f [X]). By Proposition 2, f [A] = f [X] ∩ S for some
S ∈ Γ (Y). Since Γ is closed under intersection, f [A] ∈ Γ (Y).

2. First we check that s is a weakly computable embedding, i.e. λn.s[ξn] ≡
ηs[X] = λn.s[X] ∩ ηn. Since s[ξn] = s[X] ∩ f−1(ξn), λn.s[ξn] ≤ ηs[X] via a
computable function g satisfying f−1(ξn) = ηg(n). Since s[s−1(ηn)] = s[X] ∩ ηn,
ηs[X] ≤ λn.s[ξn] via a computable function h satisfying s−1(ηn) = ξh(n), s is
really an effective embedding. Since s[X] = {y ∈ Y | sr(y) = y}, s[X] ∈ Π0

2 (Y)
by Proposition 3. It remains to use item 1. �

Our second result is an effective version of the classical fact that any perfect
Polish space contains a homeomorphic copy of the Cantor (or Baire) space (see
e.g. [11]):

Theorem 2. Let X be a perfect computable Polish space, or a computable
reflective ω-algebraic domain, or a computable 2-reflective ω-algebraic domain.
Then there exists a weakly computable embedding g : C → X such that
g ∈ Σ0

1(C,X) ∩ Π0
2 [C,X]. The same holds with N in place of C.

Proof. In the “Polish case”, there is a basic open ball B which is perfect in the
subspace topology. Clearly, there is a computable sequence {Bσ}σ∈2∗ of basic
open balls such that B∅ = B, Bσ0 ∩Bσ1 = ∅, the closure B̄σi of Bσi is contained
in Bσ, and diam(Bσi) ≤ diam(Bσ)/2.

For any p ∈ C, let g(p) be the unique element of
⋂

n Bp[n]. Then g : C → X
is a computable topological embedding, hence g ∈ Σ0

1(C,X). Since

g[C] = B̄∅ ∩ (B̄0 ∪ B̄1) ∩ (B̄00 ∪ B̄01 ∪ B̄10 ∪ B̄11) ∩ · · ·

and B̄σ ∈ Π0
1 (X) uniformly in σ, g[C] ∈ Π0

1 (X). By Proposition 4, g ∈ Π0
1 [C,X],

and also g ∈ Π0
2 [C,X]. Since there is a weakly computable embedding h : N → C

with h[N] ∈ Π0
2 (C]), h ∈ Π0

2 [N , C] by Proposition 4. Thus, g ◦ h ∈ Π0
2 [N ,X].

In the “reflective case” we use the result in [19,20] that the domain ω≤ω

is an effective retract of X, let s : ω≤ω → X be the corresponding effectively
continuous section. By Proposition 4, s ∈ Π0

2 [ω≤ω,X]. The inclusion i : N →
ω≤ω is a weakly computable embedding such that i[N] ∈ Π0

2 (ω≤ω), hence s◦ i ∈
Π0

2 [N ,X]. Since C is an effective retract of N , the assertion also holds for the
Cantor space.

For the “2-reflective case” the proof is almost the same as for the “reflective
case”. We use the result in [19,20] that the domain ω≤ω	 obtained from ω≤ω by
joining a top element �, is an effective retract of X. The inclusion i : N → ω≤ω	

is again a weakly computable embedding with i[N] ∈ Π0
2 [ω≤ω]. �

We call weakly computable cb0-spaces X,Y Γ -isomorphic iff there is a
Γ -isomorphism between them, i.e. a bijection f : X → Y from Γ (X,Y)∩Γ [X,Y].
Below we use this notion for the pointclass Γ = Δ0

<ω :=
⋃

n<ω Σ0
n.

Our third result is an effective version of the classical fact that any two
uncountable Polish spaces are Borel isomorphic (see e.g. [11]):

Towards the Effective Descriptive Set Theory 331

Theorem 3. Let X be a perfect computable Polish space, or a computable reflec-
tive ω-algebraic domain, or a computable 2-reflective ω-algebraic domain. Then
X is Δ0

<ω-isomorphic to N .

Proof. By Theorem 1, there is an injection s : X → N such that s ∈
Σ0

2Σ0
1(X,N) ∩ Π0

2 [X,N]. By Theorem 2, there is an injection g : N → X
such that g ∈ Σ0

1(N ,X) ∩ Π0
2 [N ,X]. Let h be the bijection between N and

X obtained from g, s by the standard Schröder-Bernstein back-and-fourth argu-
ment. One easily checks that h is a desired Δ0

<ω-isomorphism. �

5 The Suslin-Kleene Theorem

We say that a weakly computable cb0-space X satisfies the Suslin-Kleene theo-
rem iff

⋃{Σ0
α(X) | α < ωCK

1 } = Δ1
1(X) (since the inclusion from left to right

holds for any X, the condition is equivalent to
⋃{Σ0

α(X) | α < ωCK
1 } ⊇ Δ1

1(X)).
Which weakly computable cb0-spaces satisfy the Suslin-Kleene theorem? Accord-
ing to classical results of Kleene [17], ω,N are among these spaces. The next
theorem extends this to many natural spaces but first we establish the following:

Proposition 5. Let (X, ξ) and (Y, η) be weakly computable cb0-spaces, f :
X → Y a function in Δ0

<ω(X,Y) and Γ an infinite level of the effective Borel
hierarchy or a non-zero level of the effective Luzin hierarchy. Then A ∈ Γ (Y)
implies f−1(A) ∈ Γ (X) effectively w.r.t. the canonical numberings.

Proof. The case Γ ∈ {Σ0
α,Π0

α | ω ≤ α < ωCK
1 } is checked by a straightforward

induction on α ≥ ω. The case Γ ∈ {Σ1
n,Π1

n | 1 ≤ n < ω} is checked by a
straightforward induction on n, so we give some details only for Γ = Σ1

1 . Let A ∈
Σ1

1(Y), then A = prY (B) for some B ∈ Π0
2 (N × Y), then f−1(A) = prXg−1(B)

for some g ∈ Δ0
<ω(N × X,N × Y). Since g−1(B) ∈ Δ0

<ω(N × X) ⊆ Σ1
1(N × X)

and Σ1
1 is closed under the projection along N -axis, f−1(A) ∈ Σ1

1(X). �

Theorem 4. Let X be a perfect computable Polish space, or a computable reflec-
tive ω-algebraic domain, or a computable 2-reflective ω-algebraic domain. Then
X satisfies the Suslin-Kleene theorem.

Proof. By Theorem 3, there is a Δ0
<ω-isomorphism h : N → X. Let A ∈ Δ1

1(X).
By Proposition 5, h−1(A) ∈ Δ1

1(N), hence h−1(A) ∈ Σ0
α(N) for some infinite

computable ordinal α. By Proposition 5, A ∈ Σ0
α(X). �

As it follows from Theorem 1.2.(9) in [15], the Suslin-Kleene Theorem holds in
any computable Polish space.

6 The Effective Hausdorff Theorem

We say that a weakly computable cb0-space X satisfies the effective Hausdorff
theorem iff Δ0

2(X) =
⋃{Σ−1

(a)(X) | a ∈ O}. Since the inclusion from right to left
holds for any X, the equality is equivalent to the converse inclusion. Here we
investigate which weakly computable cb0-spaces satisfy the effective Hausdorff
theorem. We need the following easy fact.

332 V. Selivanov

Proposition 6. Let X,Y be weakly computable cb0-spaces, f : X → Y an effec-
tively continuous, effectively open surjection, and X satisfy the effective Haus-
dorff theorem. Then Y satisfies the effective Hausdorff theorem.

Proof. We have to show the inclusion Δ0
2(Y) ⊆ ⋃{Σ−1

(a)(Y) | a ∈ O}. Let A ∈
Δ0

2(Y). Since f is effectively continuous, f−1(A) ∈ Δ0
2(X), hence f−1(A) ∈

Σ−1
(a)(X) for some a ∈ O, i.e. f−1(A) =

⋃
b<Oa{Bb \ ⋃

c<Ob Bc | r(b)
= r(a)}
for some Σ0

1(X)-computable sequence {Bb}b<Oa. Since f is effectively open,
the sequence {Ab}b<Oa, Ab := f [Bb], is Σ0

1(Y)-computable, so it suffices to
check that A =

⋃
b<Oa{Ab \ ⋃

c<Ob Ac | r(b)
= r(a)}. Let y ∈ A, and choose
x ∈ f−1(y). Then x ∈ f−1(A), hence x ∈ ⋃

b<Oa Bb, hence y ∈ ⋃
b<Oa Ab. Choose

the smallest (w.r.t. <O) b <O a with y ∈ Ab, then it remains to check that
r(b)
= r(a). Suppose toward a contradiction that r(b) = r(a). Since Ab = f [Bb],
y = f(x′) for some x′ ∈ Bb. Since x′ ∈ f−1(y) ⊆ f−1(A), x′ ∈ Bd for some
d <O b. Then y ∈ f(Bd) = Ad, contradicting the choice of b.

Conversely, let y ∈ Y \ A. If y
∈ ⋃
b<Oa Ab we are done. Otherwise, the

argument of the previous paragraph applies. �

Since N satisfies the effective Hausdorff theorem by [18] and any computable
Polish space (as well as any computable ω-continuous domain) is an effectively
continuous and effectively open image of N by Theorem 1, the next result is an
immediate corollary of Proposition 6.

Theorem 5. Let X be a computable Polish space or a computable ω-continuous
domain. Then X satisfies the effective Hausdorff theorem.

In [5] the last result was proved for the space ω, in [18] the fact was established
for the Baire space, in [10] it was obtained for the finite-dimensional Euclidean
spaces, and for the computable Polish spaces the result was established in [2].
Our proof here is different from and shorter than the proof in [2]. The case of
ω-continuous domain was left open in [2].

7 Conclusion

The effective DST is still in its early stage, in particular there are many
open questions related to this paper. E.g., the “right” computable version of
quasi-Polish space is still not completely clear. Also, the status of the effective
Hausdorff-Kuratowski theorem seems to be widely open.

Acknowledgement. I thank the anonymous referees for useful comments and bibli-
ographical hints.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–
168. Clarendon Press, Oxford (1994)

Towards the Effective Descriptive Set Theory 333

2. Becher, V., Grigorieff, S.: Borel and Hausdorff hierarchies in topological spaces of
Choquet games and their effectivization. Math. Struct. Comput. Sci. Available on
CJO (2014). doi:10.1017/S096012951300025X

3. Brattka, V.: Effective Borel measurability and reducibility of functions. Math.
Logic Q. 51(1), 19–44 (2005)

4. de Brecht, M.: Quasi-Polish spaces. Ann. Pure Appl. Logic 164, 356–381 (2013)
5. Ershov, Y.L.: On a hierarchy of sets 1,2,3 (in Russian). Algebra i Logika 7(4),

15–47 (1968)
6. Gregoriades, V., Kispeter, T., Pauly, A.: A comparison of concepts from com-

putable analysis and effective descriptive set theory. Mathematical structures in
computer science (submitted to). arxiv.org/pdf/1403.7997

7. Gregoriades V.: Effective refinements of classical theorems in descriptive set theory
(informal presentation). Talks at Conference “Computability and Complexity in
Analysis” in Nancy (2013). http://cca-net.de/cca2013/slides/

8. Gregoriades, V.: Classes of polish spaces under effective Borel isomorphism. Mem.
Amer. Math. Soc. (to appear). www.mathematik.tu-darmastadt.de/gregoriages/
papers/eff.webpage.pdf

9. Grubba, T., Schröder, M., Weihrauch, K.: Computable metrization. Math. Logic
Q. 53, 381–395 (2007)

10. Hemmerling, A.: The Hausdorff-Ershov hierarchy in Euclidean spaces. Arch. Math.
Logic 45, 323–350 (2006)

11. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics,
vol. 156. Springer, New York (1995)

12. Korovina, M.V., Kudinov, O.V.: Basic principles of Σ-definability and abstract
computability. Schriften zur Theoretischen Informatik, Bericht Nr 08–01, Univev-
ersität Siegen (2008)

13. Louveau, A.: Recursivity and compactness. In: Müller, G.H., Scott, D.S. (eds.)
Higher Set Theory. Lecture Notes in Mathematics, vol. 669, pp. 303–337. Springer,
Heidelberg (1978)

14. Louveau, A.: A separation theorem for Σ1
1 -sets. Trans. Amer. Math. Soc. 260(2),

363–378 (1980)
15. Moschovakis, Y.N.: Descriptive Set Theory. North Holland, Amsterdam (2009)
16. Motto Ros, L., Schlicht, P., Selivanov, V.: Wadge-like reducibilities on arbitrary

quasi-Polish spaces. Mathematical structures in computer science (to appear).
arXiv:1304.1239 [cs.LO]

17. Rogers Jr, H.: Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York (1967)

18. Selivanov, V.L.: Wadge degrees of ω-languages of deterministic Turing machines.
Theor. Inf. Appl. 37, 67–83 (2003)

19. Selivanov, V.L.: Variations on the Wadge reducibility. Siberian Adv. Math. 15,
44–80 (2005)

20. Selivanov, V.L.: Towards a descriptive set theory for domain-like structures. Theor.
Comput. Sci. 365(3), 258–282 (2006)

21. Selivanov, V.L.: On the difference hierarchy in countably based T0-spaces. Electron.
Notes Theor. Comput. Sci. 221, 257–269 (2008)

22. Gao, S.: Invariant Descriptive Set Theory. CRC Press, New York (2009)
23. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

http://dx.doi.org/10.1017/S096012951300025X
http://cca-net.de/cca2013/slides/
www.mathematik.tu-darmastadt.de/gregoriages/papers/eff.webpage.pdf
www.mathematik.tu-darmastadt.de/gregoriages/papers/eff.webpage.pdf
http://arxiv.org/abs/1304.1239

On Computability of Navier-Stokes’ Equation

Shu Ming Sun1, Ning Zhong2, and Martin Ziegler3(B)

1 Virginia Tech, Blacksburg, USA
sun@math.vt.edu

2 University of Cincinnati, Cincinnati, USA
zhongn@ucmail.uc.edu

3 TU Darmstadt, Darmstadt, Germany
ziegler@mathematik.tu-darmstadt.de

http://m.zie.de

Abstract. We approach the question of whether the Navier-Stokes
Equation admits recursive solutions in the sense of Weihrauch’s Type-2
Theory of Effectivity: A suitable encoding (“representation”) is carefully
constructed for the space of solenoidal vector fields in the Lq sense over
the d-dimensional open unit cube with zero boundary condition. This is
shown to render both the Helmholtz projection and the semigroup gen-
erated by the Stokes operator uniformly computable in the case q = 2.

1 Introduction

The (physical) Church-Turing Hypothesis [10] postulates that every physical
phenomenon or effect can, at least in principle, be simulated by a sufficiently
powerful digital computer up to arbitrarily prescribable precision. Its validity
had been challenged, though, in the rigorous framework of Recursive Analysis:
there is a computable C1 initial condition to the Wave Equation that leads to an
incomputable solution [6,8]. The controversy was later resolved by demonstrating
that, in the both physically [1,18] and mathematically more appropriate Sobolev
space settings, the solution is computable uniformly in the initial data [13].
Recall that functions f in a Sobolev space are not defined pointwise but by local
averages in the Lq sense 1 (e.g. q = 2 corresponding to energy) with derivatives
understood in the distributional sense. This led to a series of investigations on
the computability of linear and nonlinear partial differential equations [14–16].

The (incompressible) Navier-Stokes Equation

∂tu − �u + (u · ∇)u + ∇P = f, ∇ · u = 0, u(0) = u0 (1)

describes the motion of a viscous incompressible fluid filling a rigid box Ω. The
vector field u = u(x, t) =

(
u(1), u(2), . . . , u(d)

)
represents the velocity of the

The first author is partially supported by the National Science Foundation under
grant No. DMS-1210979; the last author acknowledges support from German
Research Foundation (DFG) under grant Zi 1009/4-1 and from IRTG 1529.

1 We use q ∈ [1,∞] to denote the norm index, P for the pressure field, p for polyno-
mials, P for sets of (tuples of) the latter, and P for the Helmholtz Projection.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 334–342, 2015.
DOI: 10.1007/978-3-319-20028-6 34

On Computability of Navier-Stokes’ Equation 335

fluid and P = P (x, t) is the scalar pressure with gradient ∇P ; ∇·u denotes com-
ponentwise divergence; u ·∇ means, in Cartesian coordinates, u(1)∂x+u(2)∂y+. . .;
and the function u0 = u0(x) describes the initial velocity and f a given external
force. Equation (1) thus constitutes a system of d+1 partial differential equations
for d + 1 functions.

The question of global existence and smoothness of its solutions is one of
the Millennium Prize Problems posted by the Clay Mathematics Institute at the
beginning of the 21st century; cmp. [17]. Local strong existence in time has been
established, though, over various spatial Lq settings [3]. Numerical solution meth-
ods are abundant, often based on pointwise (or even uniform, rather than Lq)
approximation and struggling with computational artefacts [5]. In fact, the very
last of seven open problems listed in the addendum to [7] asks for a “recursion
theoretic study of [...] the Navier-Stokes equation”. Moreover, it has been sug-
gested [9] that a hydrodynamical system could in principle be incomputable in the
sense that it allows simulation of universal Turing computation and thus ‘solves’
the Halting problem. Indeed, recent progress towards (a negative answer to) the
Millennium Problem [11] proceeds by simulating a computational process in the
vorticity dynamics to construct a blowup in finite time for a PDE similar to (1).

1.1 Overview

Using the rigorous framework of Recursive Analysis we approach the problem
of computing, given an initial condition u0 and inhomogenity f , the strong
solution of (1) in the space X2(Ω) of square-integrable vector fields u on the
open unit cube Ω := (−1; 1)d with zero boundary condition u

∣∣
∂Ω

≡ 0 which are
divergence-free (aka solenoidal) in the sense that � · u ≡ 0 holds. We follow a
common strategy used in classical existence proofs over spaces Lq(Ω), cmp [2]:

(i) Eliminate the pressure P by (Helmholtz) projecting the equation onto the
space Xq(Ω) of solenoidal (i.e. divergence-free) solutions;

(ii) solve the associated linear equation for the Stokes operator A := −P� using
semigroup methods and spectral estimates;

(iii) extend (ii) to incorporate the nonlinearity, e.g. using an iterative approxi-
mation/Banach fixed point argument;

(iv) recover the pressure by solving a Poisson Problem.

The present work effectivizes steps (i) and (ii): We introduce a natural represen-
tation (in the sense of Weihrauch’s TTE) of the space Xq(Ω) of solenoidal Lq

functions on Ω = (−1; 1)d with zero boundary conditions; and derive a represen-
tation for all (total but not necessarily bounded) linear operators on this space.
We employ spectral analysis in order to establish that the Stokes operator gives
rise to a computable semigroup; hence showing that the solution to the Stokes
Dirichlet problem is uniformly computable. We also show that the Helmholtz
Projection P :

(
L2(Ω)

)2 → X2(Ω) is computable.

336 S.M. Sun et al.

2 Representing Divergence-Free Boundary-Free Lq

Functions on Ω

Assume that Ω is the d-dimensional open cube (−1; 1)d, d = 2, 3. Let Xq(Ω) (or
Xq if the context is clear) be the closure of the set {u ∈ C∞

0 (Ω)d : ∇·u = 0} in
Lq-norm, P the set of all polynomials of d real variables with rational coefficients,
and P0

div the set of all d–tuples of polynomials in P which are divergence-free
in Ω and vanish on ∂Ω. Let us call a vector field f satisfying ∇ · f = 0 on Ω
and f = 0 on ∂Ω divergence-free and boundary-free. A vector-valued function
p is called a polynomial of degree N if each of its components is a polynomial
of degree less than or equal to N with respect to each variable and at least one
component is a polynomial of degree N .

Proposition 1. (a) P0
div is dense in Xq (in Lq-norm).

(b) A polynomial p = (p1, p2) = (
∑N

i,j=0 a1
i,jx

iyj ,
∑N

i,j=0 a2
i,jx

iyj) belongs to
P0
div iff its coefficients satisfy the following systems of equations:

(i + 1)a1
i+1,j + (j + 1)a2

i,j+1 = 0, 0 ≤ i, j ≤ N − 1;

(i + 1)a1
i+1,N = 0, 0 ≤ i ≤ N − 1; (2)

(j + 1)a2
N,j+1 = 0, 0 ≤ j ≤ N − 1;

and for all 0 ≤ i, j ≤ N ,

∑N

i=0
a1

i,j =
∑N

i=0
a2

i,j =
∑N

i=0
(−1)ia1

i,j =
∑N

i=0
(−1)ia2

i,j = 0; (3)∑N

j=0
a1

i,j =
∑N

j=0
a2

i,j =
∑N

j=0
(−1)ja1

i,j =
∑N

j=0
(−1)ja2

i,j = 0. (4)

One may attempt to use P0
div as a set of names for coding the elements in

the space Xq(Ω). However the closure of P0
div in Lq-norm contains Xq(Ω) as a

proper subspace - already in the one-dimensional case, 1 − x2n is boundary-free
on (−1; 1) but its Lq–limit is not - P0

div is therefore “too big”for representing
Xq(Ω). We need to “trim” polynomials in P0

div so that for any such modified
convergent sequence its limit also belongs to Xq(Ω). Recall that Xq(Ω) is the
closure in Lq-norm of all divergence-free C∞ functions with compact supports
in Ω. Thus, if we can modify the polynomials in P0

div to meet the conditions
that each modified polynomial is divergence-free on Ω with a compact support
contained in Ω and the set of all modified polynomials is still dense in Xq, then
these modified polynomials can be used as Cauchy codes for representing Xq(Ω).

Now for the details. For readability, we only show the modifying process in the
case where Ω = (−1, 1)2. The same argument applies to the three dimensional
case. Let Ωk = (−1 + 2−k, 1 − 2−k)2, k ∈ N, and Γk = ∂Ωk be the boundary of
Ωk. We first use a scaling argument to “trim”the supports of the polynomials in
P0
div to compact sets contained in Ω. For each k ≥ 1, each p = (p1, p2) ∈ P0

div,
and j = 1 or 2, define

On Computability of Navier-Stokes’ Equation 337

Gj,k,p(x, y) =
{

pj(x
1−2−k , y

1−2−k), −1 + 2−k ≤ x, y ≤ 1 − 2−k

0, otherwise
(5)

Then Gj,k,p and Gk,p(x, y) =
(
G1,k,p(x, y), G2,k,p(x, y)

)
have the following prop-

erties:

(a) Gk,p has compact support Ω̄k contained in Ω.
(b) Gj,k,p is a polynomial of rational coefficients in Ωk.
(c) Gk,p is continuous on [−1, 1]2.
(d) Since p vanishes on the boundary of Ω, it follows from (5) that Gk,p(x, y)

vanishes in the exterior region of Ωk, including its boundary ∂Ωk.
(e) Gk,p is divergence-free in Ωk following the calculation below:

For (x, y) ∈ Ωk, we have that (x
1−2−k , y

1−2−k) ∈ Ω and

∂G1,k,p

∂x
(x, y) +

∂G2,k,p

∂y
(x, y) =

1
1 − 2−k

∂p1
∂u

(u, v) +
1

1 − 2−k

∂p2
∂v

(u, v)

=
1

1 − 2−k

[
∂p1
∂u

(u, v) +
∂p2
∂v

(u, v)
]

= 0

where u = x
1−2−k and v = y

1−2−k . We note that the last equality holds because
p is divergence-free in Ω.

Definition 2 For each k ∈ N, let P0,k
div =

{
Gk,p |p ∈ P0

div

}
.

From the discussion above it follows that every function in P0,k
div is a divergence-

free polynomial of rational coefficients on Ωk that vanishes in [−1, 1]2 \Ωk and is
continuous on [−1, 1]2. However, although the functions in P0,k

div are continuous
on [−1, 1]2 and C∞ in Ωk, they can be non-differentiable on Ω. To use these
functions as names for coding elements in Xq(Ω), they need to be smoothed
along the boundary ∂Ωk so that they become C∞ on Ω. A standard technique
for smoothing a function is to convolute it with a C∞ function. We use this
technique to modify functions in P0,k

div . Let

γ(x) =

{
αe

− 1
1−‖x‖2 if ‖x‖ = max{|x1|, |x2|} < 1,

0 otherwise,
(6)

where α is a constant such that the integral
∫
R2 γ(x) dx = 1. The constant

α is computable, since integration on continuous functions is computable [12].
Let γk(x) = 22kγ(2kx). Then, for all k ∈ N, γk is a C∞ function having for
support the closed square [−2−k, 2−k]2 and

∫
R2 γk(x) dx = 1. Let P̃k = {γn ∗

p |p ∈ P0,k
div , n ≥ k + 1}, where γn ∗ p is the convolution of γn and p defined

componentwise as follows:

(γn ∗ p)(x, y) =
∫ 1

−1

∫ 1

−1

γn(x − s, y − t) p(s, t) ds dt

338 S.M. Sun et al.

It is easy to see that the support of γn ∗ p is contained in the closed square
[−1 + 2−(k+1), 1 − 2−(k+1)]2. It is also known classically that γn ∗ p is a C∞

function. Since γn is a computable function and the integration is computable,
the map (n,p) �→ γn ∗ p is computable.

Lemma 3 Every function in P̃k =
{
γn ∗p | p ∈ P0,k

div , n ≥ k +1
}

is divergence-
free in Ω, k ∈ N.

Lemma 4 The set P̃ =
⋃∞

k=1 P̃k is dense in Xq(Ω).

From Lemmas 3 and 4 it follows that P̃ is a countable set that is dense in Xq(Ω)
(in Lq-norm) and every function in P̃ is C∞, divergence-free in Ω, and having a
compact support contained in Ω; in other words, P̃ ⊂ {u ∈ C∞

0 (Ω)d : ∇ · u =
0}, d = 2 or 3. Thus, Xq(Ω) = the closure of P̃ in Lq-norm. This fact indicates
that P̃ is qualified to serve as codes for representing Xq(Ω). But, in order to get a
“computable name” for the Stokes operator (the definition will be given shortly),
we need to expand P̃ as follows. For each n ∈ N, since γn is computable and
C∞, the Laplace �γn is also computable and C∞. We also note that, following
from Lemma 3 and (�γn) ∗ p = �(γn ∗ p), (�γn) ∗ p is divergence-free. Let
P = {γn ∗ p, �γn ∗ p : p ∈ P0,k

div , n ≥ k + 1}. Then P is countable and is dense
in Xq. It is this set P which we use as a set of “codes.” We now introduce the
desired representation for Xq(Ω).

Since the function φ :
⋃∞

N=0 Q
(N+1)2 × Q

(N+1)2 → {0, 1}, where

φ
(
(ri,j)0≤i,j≤N , (si,j)0≤i,j≤N

)
=

⎧⎨
⎩

1 if (2), (3), and (4) are satisfied
(with ri,j = a1

i,j and si,j = a2
i,j)

0 otherwise

is computable, there is a total computable function on N that enumerates P0
div.

Then it follows from the definition of P̃ that there is a total computable function
α : N → P that enumerate P; thus (Xq, d,P, α) is a computable metric space
with d(f, g) = ‖f − g‖Lq

. Let δXq
: Nω → Xq be the standard Cauchy represen-

tation of Xq; that is, every function w ∈ Xq is encoded by a sequence (wk)
k

in
P such that ‖w −wk‖Lq

≤ 2−k. The sequence (wk)
k

is called a δXq
-name of w .

2.1 Representing Closed Operators

Since a Cauchy representation is admissible [12, Definition 3.2.7], a mapping
A : Xq → Xq is continuous if and only if it is (δXq

, δXq
)-continuous. Therefore,

the standard representation [δXq
→ δXq

] :⊂ N
ω → C(Xq,Xq) constitutes a

representation of the set of all continuous total functions from Xq to Xq and, in
particular, of the linear continuous operators.

In the following, we will mainly consider closed unbounded linear operators
defined on Xq with q = 2. Let A be the set of all linear operators, bounded
or unbounded, on Xq with non-empty closed graphs. Since A ⊆ C(Xq,Xq), A
cannot be represented by [δXq

→ δXq
]. Instead, we use the representation δG of

A defined in [16, p.516] as follows.

On Computability of Navier-Stokes’ Equation 339

Definition 5 δG(p) = A : ⇐⇒ there are pi, qi in the domain of δXq
such that

p = 〈p0, q0, p1, q1, . . .〉 and
{(

δXq
(pi), δXq

(qi)
) ∣∣ i ∈ N

}
is dense in graph(A).

Thus a δG-name of A ∈ A lists a set dense in the graph of A.

3 Computability of the Stokes Semigroup

Let A = −P� be the Stokes operator (see, for example, [2, §2]) with the domain

D(A)q = Xq ∩ {
u ∈ H2

q (Ω);u = 0 on ∂Ω
}

where P :
(
Lq(Ω)

)2 → Xq is the Helmholtz projection and H2
q (Ω) the Sobolev

space of twice weakly (in space) differentiable functions. It is known from the
classical study that A is a closed linear operator whose domain D(A)q is dense in
Xq. When q = 2, A is a positive self-adjoint linear operator on X2; thus A∗ = A

and 0 < 〈Au , u〉 :=
∫

Ω
Au(x) · u(x) dx for u ∈ D(A)2, u ≡ 0. Hence −A is

the infinitesimal generator of an analytic semigroup. We note that P ⊂ D(A)q.
Moreover, for any p ∈ P0,k

div and n ≥ k+1, it follows from Lemma 3 that �γn ∗p
is divergence-free with a compact support contained in Ω and, consequently,
�γn ∗ p ∈ Xq; thus −A(γn ∗ p) = P � (γn ∗ p) = P(�γn ∗ p) = �γn ∗ p. It
then follows from Definition 5 that {(γn ∗ p,�γn ∗ p) |p ∈ P0k

div, n ≥ k + 1} is a
computable δG-name of −A.

Using the Stokes operator A the Eq. (1) can be rewritten as an evolution
equation in Xq:

∂tu + Au + Bu = P f (t > 0), u(0) = a ∈ Xq (7)

where Bu = P (u · ∇)u and, since a ∈ Xq, Pa = a .
For the linear homogeneous part of (7)

∂t v + A v = 0, v(0) = a (8)

its solution is v(t) = e−Ata , where e−At is the analytic semigroup generated by
the infinitesimal generator −A. It follows from [16, Theorem 5.4.2] that v
can be computed by a Turing algorithm from any data type (−A, δ,M), where
0 < δ < π/2 satisfying ρ(−A) ⊃ Σδ = {λ ∈ C : | arg λ| < π

2 + δ} ∪ {0} and
M > 0 satisfying

∣∣(λ + A)−1
∣∣ ≤ M/|λ| for all λ ∈ Σδ and λ = 0, ρ(−A) is the

resolvent of −A. Thus to show that v can be computed from the data defining
the initial-boundary value problem (8), it suffices to show that δ and M are
computable from A.

Proposition 6 For the linear homogenous Eq. (8), the solution operator S :
X2 → C(R;X2), a �→ e−At a is (δX2 , [ρ → δX2])-computable.

Proof Recall that for the Stokes operator −A, {(γn ∗p,�γn ∗p) : p ∈ P0,k
div , n ≥

k + 1} is a δG-name of −A. We show that for any given 0 < δ < π/2 satisfying
ρ(−A) ⊃ Σδ, we have ∣∣(λ + A)−1

∣∣ ≤ 1
|λ| sin δ

(9)

340 S.M. Sun et al.

for all λ ∈ Σδ = {λ ∈ C | | arg λ| < π
2 +δ}∪{0}, λ = 0, where

∣∣(λ + A)−1
∣∣ denotes

the operator norm of (λ+A)−1. Since the spectrum of the Stokes operator A lies
on the positive real line, we can choose δ = π/4; thus M = 1/ sin(π/4) =

√
2.

Then it follows from (9) and [16] that the solution v(t) = e−At a of the linear
homogenous Eq. (8) is computable from (−A, π/4,

√
2).

It remains to show the claim (9). For any λ ∈ Σ(δ), write λ = |λ|(cos θ +
i sin θ), where |θ| < π − δ. Then for u ∈ D(A)2,∣∣〈(λ+ A)u, u〉∣∣2 =

∣∣|λ| cos θ ‖u‖22 + 〈Au, u〉 + i|λ| sin θ ‖u‖22
∣∣2 =

= |λ|2 cos2 θ‖u‖42 + 2|λ| cos θ 〈Au, u〉 + 〈Au, u〉2 + |λ|2 sin2 θ ‖u‖42
where ‖u‖2 =

√〈u ,u〉 denotes the L2-norm of u . Now if −π/2 < θ < π/2,
then cos θ > 0 and we have |〈(λ + A)u, u〉| > |λ|‖u‖22 > |λ| sin δ ‖u‖22; recall
that 〈Au, u〉 > 0. If π/2 ≤ θ < π − δ or π + δ < θ ≤ 3π/2, then we have
|〈(λ+A)u, u〉| =

∣∣|λ| cos θ ‖u‖22+〈A u, u〉+ i|λ| sin θ ‖u‖22
∣∣ ≥ |λ| | sin θ| ‖u‖22 >

|λ| sin δ ‖u‖22. Thus for any λ ∈ Σδ with λ = 0, we have

|〈(λ + A)u ,u〉| > |λ| sin δ ‖u‖22 (10)

Note that, by the Schwartz-Cauchy inequality, |〈(λ + A)u, u〉| ≤ ‖(λ +
A)u‖2 ‖u‖2. Thus it follows from (10) that ‖(λ + A)u‖2‖u‖2 ≥ |λ| sin δ‖u‖22.
Let us set f = (λ + A)u . Then u = (λ + A)−1f and ‖f ‖2‖(λ + A)−1f ‖2 =
‖(λ+A)u‖2‖u‖2 ≥ |λ| sin δ ‖(λ+A)−1f ‖22, which implies that ‖(λ+A)−1f ‖2 ≤

1
|λ| sin δ ‖f ‖2. ��

4 Extension to the Nonlinear Problem and Helmholtz
Projection

Next we consider the nonlinear problem

∂tu + Au + Bu = 0, u(0) = a (11)

where A = −P� is the Stokes operator and Bu = P(u ·∇)u . In its integral form
the problem (11) can be rewritten as follows

u(t) = e−tAa −
∫ t

0

e−(t−s)A
Bu(s) ds, t > 0 (12)

Classically, the existence of the solution of the problem (12) is proved by showing
that the sequence of approximate solutions constructed by the following iteration
scheme

u0(t) = e−tAa , un+1(t) = u0(t) −
∫ t

0

e−(t−s)A
Bun(s) ds, n ≥ 0 (13)

is contracting near t = 0; thus the sequence converges to a unique limit. Since the
limit satisfies the integral Eq. (12), it is the solution of the initial value problem
(11) near t = 0.

Thus, as an important step towards a rigorous algorithm computing the
solution of Eq. (12) on input a , we establish

On Computability of Navier-Stokes’ Equation 341

Proposition 7. The Helmholtz projection P :
(
L2(Ω)

)2 → X2 is (δL2 , δX2)-
computable.

Proof (Sketch). It follows from [4, pp.40] that for each u =
(

u(1)

u(2)

)
=(

u(1), u(2)
)T with

(
u(1), u(2)

) ∈ (
L2(Ω)

)2
Pu =

(−∂yϕ
∂xϕ

)
= (−∂yϕ, ∂xϕ)T (14)

where the scalar function ϕ is the solution of the boundary value problem:

� ϕ = ∂xu(2) − ∂yu(1) in Ω, ϕ = 0 on ∂Ω (15)

To show that the projection is (δL2 , δX2)-computable, it suffices to show that
a δX2-name of Pu can be computed from any given δL2 -name of u ,u ∈(
L2(Ω)

)2. ��

5 Conclusion and Perspectives

We have, in the rigorous sense of Recursive Analysis, established effectivizations
of two of the four steps of common classical existence proofs of strong in time
and spatially L2–solutions to the Navier-Stokes Equation on the open unit cube
with zero boundary condition: computability of the Helmholtz projection and of
the analytic semigroup generated by the Stokes operator.

Future endeavors will cover the remaining two steps, thus proving local com-
putability of strong solutions; and extend to more general domains and boundary
conditions.

References

1. Beggs, E., Costa, J.F., Tucker, J.V.: Axiomatising physical experiments as Oracles
to algorithms. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 370, 3359–3384 (2012)

2. Giga, Y.: Time and spatial analyticity of solutions of the Navier-Stokes equations.
Comm. Partial Differ. Equ. 8, 929–948 (1983)

3. Giga, Y., Miyakawa, T.: Solutions in Lr of the Navier-Stokes initial value problem.
Arch. Ration. Mech. Anal. 89(3) 5.VIII, 267–281 (1985)

4. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations.
Series in Computational Mathematics, vol. 5. Springer, Heidelberg (1986)

5. Patel, M.K., Markatos, N.C., Cross, M.: A critical evaluation of seven discretization
schemes for convection-diffusion equations. Int. J. Numer. Meth. Fluids 5(3), 225–
244 (1985)

6. Pour-El, M.B., Richards, J.I.: The wave equation with computable initial data such
that its unique solution is not computable. Adv. Math. 39(4), 215–239 (1981)

7. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer,
Heidelberg (1989)

342 S.M. Sun et al.

8. Pour-El, M.B., Zhong, N.: The wave equation with computable initial data whose
unique solution is nowhere computable. Math. Logic Q. 43(4), 499–509 (1997)

9. W.D. Smith: On the uncomputability of hydrodynamics, NEC preprint (2003)
10. Soare, R.I.: Computability and recursion. Bull. Symbolic Logic 2, 284–321 (1996)
11. Tao, T.: Finite time blowup for an averaged three-dimensional Navier-Stokes equa-

tion. arXiv:1402.0290 (submitted); http://terrytao.wordpress.com/2014/02/04/
12. Weihrauch, K.: Computable Analysis: An Introduction. Texts in Theoretical Com-

puter Science. An EATCS Series. Springer, Heidelberg (2000)
13. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers

beat the turing machine? Proc. Lond. Math. Soc. 85(2), 312–332 (2002)
14. Weihrauch, K., Zhong, N.: Computing the solution of the Korteweg-de Vries equa-

tion with arbitrary precision on turing machines. Theor. Comput. Sci. 332, 337–366
(2005)

15. Weihrauch, K., Zhong, N.: Computing schrödinger propagators on type-2 turing
machines. J. Complex. 22(6), 918–935 (2006)

16. Weihrauch, K., Zhong, N.: Computable analysis of the abstract Cauchy problem
in Banach spaces and its applications I. Math. Logic Q. 53, 511–531 (2007)

17. Wiegner, M.: The Navier-Stokes equations - a neverending challenge? Jahres-
bericht der Deutschen Mathematiker Vereinigung (DMV) 101(1), 1–25 (1999).
http://dml.math.uni-bielefeld.de/JB DMV/JB DMV 101 1.pdf

18. Ziegler, M.: Physically-relativized church-turing hypotheses: physical foundations
of computing and complexity theory of computational physics. Appl. Math. Com-
put. 215(4), 1431–1447 (2009)

http://arxiv.org/abs/1402.0290
http://terrytao.wordpress.com/2014/02/04/
http://dml.math.uni-bielefeld.de/JB_DMV/JB_DMV_101_1.pdf

Kalmár and Péter: Undecidability
as a Consequence of Incompleteness

Máté Szabó(B)

Department of Philosophy, Carnegie Mellon University,
161 Baker Hall, Pittsburgh, PA 15213, USA

mszabo@andrew.cmu.edu

Abstract. László Kalmár and Péter Rózsa “proved that the existence
of (...) undecidable problems follows from Gödel’s Theorem on relatively
undecidable problems” ([6], p. vii). Unfortunately, the only available doc-
ument of their joint work is Kalmár’s sketch of the proof in his [3]. In the
following, I assemble a paper from Kalmár’s manuscripts on this issue.

Keywords: History of computing · Undecidability · Incompleteness ·
László Kalmár · Péter Rózsa

1 Introduction

László Kalmár gave a talk, entitled On Unsolvable Mathematical Problems [3]
at The Tenth International Congress of Philosophy in Amsterdam in 1948. In it
he sketched a proof to show that “Church’s theorem1 is a consequence, or even
a particular case, of the (generally formulated) Gödel–Rosser [incompleteness]
theorem.” (p. 758) Before turning to his sketch of the proof Kalmár refers to
Péter Rózsa’s work:

In a paper which has not been published yet, Miss Péter has shown
that Church’s theorem is a consequence of Gödel’s theorem, applied to
a formal system due to Hilbert and Bernays, in which all calculations of
values of effectively calculable functions can be carried out. Miss Péter’s
proof led me to the following remark. (pp. 757–758.)

This remark is actually Kalmár’s sketch. Péter’s paper that was mentioned by
Kalmár was never published.

Péter also mentions this result in the Preface to the English Edition of her
book, Playing with Infinity, written in 1960:

I would like to thank Wilfried Sieg, Jeremy Avigad, Zalán Gyenis, Réka Bence, and
the anonymous referees for their insightful comments, and the cordial assistance of
the employees of the Klebelsberg Library at the University of Szeged.

1 That is, the undecidability of predicate logic.

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 343–352, 2015.
DOI: 10.1007/978-3-319-20028-6 35

344 M. Szabó

The reader should remember that the book mirrors my methods of think-
ing as they were in 1943;2 I have hardly altered anything in it. Only
the end has been altered substantially. Since then, László Kalmár and I
have proved that the existence of (...) undecidable problems follows from
Gödel’s Theorem on relatively undecidable problems (...). ([6], p. vii).

The details of the proof were not published in this book, as it was written for a
wider audience.

Thus, unfortunately, the only publicly available document of their joint work
is Kalmár’s 3 page conference summary [3]. However, the Kalmár Nachlass at the
Klebelsberg Library at the University of Szeged contains multiple manuscripts
on this topic. Out of the boxes dedicated to published papers, which also contain
preprints and alternate versions of his published papers:

– Folder 23 contains a 12 page (cca. A4 or letter size) typed version of Kalmár’s
[3] in English.

Among the regular boxes which contain manuscripts, notes, sketches, etc.:

– Folder 156 contains a proof on 6 typed pages (cca. A4 or letter size) in Hungar-
ian, but is labeled as if it contained some notes for a talk at the Institute Henri
Poincarè, about Gödel’s results in French. The notes are undated but they are
most likely from the 1960s. Kalmár visited Paris twice in 1963. If the manuscript
was found among those papers it suggests that it was written in that year.

– Folder 213 contains a 10 page (cca. A5 or half of letter size) handwritten doc-
ument in English, entitled Two more abstract forms of Gödel’s theorem. The
manuscript was prepared for a talk Kalmár gave at the Polish Mathematical
Society on 7 October 1966. Although this manuscript does not contain the
proof, I will use it, as it is almost identical to the first 4 pages of Folder 156,
but was written in English.

– Folder 221 contains 26 handwritten pages (cca. A5 or half of letter size) in
English, that constitutes two versions of a document, entitled On the appli-
cation of Gödel’s theorem to a proof of Church’s Theorem. The manuscripts
were prepared for talks Kalmár gave at the University of Oxford, the Univer-
sity of Leicester, and the London School of Economics on 12, 16, and 18 of
May 1967, respectively.

– Folder 347 contains a 19 page (cca. A5 or half of letter size) handwritten
document in English, entitled On the relation between Gödel’s and Church’s
theorems. László Kalmár and Rózsa Péter are listed as the authors. The man-
uscript is unfinished and incomplete at some places but was clearly intended
for publication. Again, the manuscript is undated, but it can be found among
the boxes which are labeled as “Most likely from the 1970s.”

In the following, I have assembled a paper from the above manuscripts. It
begins with the introductory paragraph of Folder 347. It is followed, to preserve
the authenticity of Kalmár’s work,3 by the whole content of Folder 213. The

2 The year of the completion of the first Hungarian edition.
3 Even in cases where the wording is unusual.

Kalmár and Péter: Undecidability as a Consequence of Incompleteness 345

remaining part is my translation of Folder 156 where I unified the notation with
that of Folder 213. While translating Folder 156 I took the similar parts of Folder
347 into account and used Kalmár’s wording.4 The structures and the typesetting
of the original manuscripts are preserved. In the assembled paper the footnotes
either point to smaller differences between the manuscripts or quote different
versions to make the arguments more comprehensible. ‘Hungarian version’ will
always refer to Folder 156 while ‘English version’ will always refer to Folder 213.

Before presenting the details of the actual paper, I want to convey to the
reader the broad idea behind the proof. Péter’s work led Kalmár to the following
observation:

In the conditions under which Gödel’s (or Rosser’s) theorems hold for a
formal system S, nowhere is postulated that the proofs in S are real
proofs of some standard form, based on generally accepted ways of
inference. ([3], p. 758).

Based on this observation, abstract forms of Gödel’s Theorem are formulated
with as few restrictions as possible on proofs of formal systems. The theorem is
formulated in such a broad way that the application of any algorithm, for solving
a fixed problem set, can be considered as a proof. Thus, the broadly formulated
Gödel Theorem allows us to infer that, for any algorithm, either it does not give
an answer for a problem from the set or it does not give a correct answer. I hope
this will help the reader in following the paper.

In the assembled paper, after the introduction of Folder 347, points 1–4 of
Folder 213 contain the definitions and terminology for what Kalmár calls “weak
arithmetics” and in point 5 the abstract form of Gödel’s Theorem is asserted
and proved for these arithmetics. Points 6–7 present the notion of “strong arith-
metics” in a similar way and, once again, point 8 contains the abstract form
of Gödel’s Theorem for those arithmetics. It is followed by the last part of
Folder 156 in which Church’s Theorem is shown to be “a consequence, or even a
particular case” of Gödel’s Theorem.

2 Kalmár and Péter: Undecidability as a Consequence
of Incompleteness

From Folder 347:5

This paper contains a proof of the existence of arithmetical problems unsolvable
by any method of a certain kind [as a “consequence, or even a particular case”of

4 Although Folder 221 also contains the result and is entirely in English, but its pre-
sentation is significantly different from that of Folder 156. I chose to use Folder 213,
written in English, supplemented by my translation of the last one and a half pages
of Folder 156, as the latter is easier to follow.

5 The title was given by me. I believe it is more indicative of the content than other
titles of the manuscripts, such as: On the relation between Gödel’s and Church’s
theorems, and On the application of Gödel’s theorem to a proof of Church’s Theorem.

346 M. Szabó

Gödel’s theorem].6 The proof in question takes its origin from discussions made
in words and in correspondence since 1942 about Gödel’s and Church’s theorems.
The authors of the present paper played the principal part in these discussions;
however, also Mr. J. Surányi,7 Th. Vargha,8 T. Szele,9 P. Bernays, G. Alexits,10

St. Fenyő11 and others took part in them and the authors are very much indebted
for their valuable suggestions.12

From Folder 213:

1. Definition. Deductive theory:13 θ =< F,P, ω >, where
(i) F, P are [arbitrary]14 sets;
(ii) ω ∈ FP .

Terminology: (i) F is called the set of formulae (of θ);
(ii) P is called the set of proofs (in θ);
(iii) for p ∈ P , f = ω(p) ∈ F is called the conclusion of

the proof p;
and p is called a proof of the formula f ;

(iv) f is called a thesis15 (of θ) (notation: � f), iff
∃p (p ∈ P ∧ ω(p) = f).

2. Gödel’s theorem applies for deductive theories in which at least a part of
arithmetic can be formulated; such deductive theories will be called arithmetics.
They are not particular deductive theories (as, e.g., Abelian groups are particular
groups) but rather deductive theories supplied with an additional structure (as,
e.g., ordered groups are groups supplied with order structure).

We shall consider two forms of Gödel’s theorem:
(i) a more general one for so-called weak arithmetics,
(ii) and a more familiar one for so-called strong arithmetics.

6 The parenthetical comment was added by me. The quote is from ([3], p. 758).
7 János Surányi (1918–2006), mathematician working in the fields of logic and algebra.
8 Tamás Varga (1919–1987), educationist, expert in the education of mathematics.
9 Tibor Szele (1918–1955), mathematician working in the field of algebra.

10 György Alexits (1899–1978), mathematician working in the field of analysis.
11 István Fenyő (1917–1987), mathematician working in the field of analysis.
12 The first page of Folder 221 lists some additional information on the development of

their results: “Idea of proof of Church’s theorem based on a general form of Gödel’s
theorem: Rózsa Péter, letter to Bernays, 1945.” Sadly, the letters from Péter to
Bernays which have been written around this time and are preserved in the library
of ETH Zürich do not mention this result. About the development towards abstract
forms of Gödel’s Theorem, Kalmár cites Chauvin’s [1] which led to [4] and [5],
his early, abstract formulations of Gödel’s Theorem in French. Finally, he quotes
Henkin’s review [2] of [4] and [5]: “The abstractions are not fruitful because no new
particular cases which are of importance in themselves are brought by these means
within the scope of Gödel’s theorems.” (p. 230).

13 It is called “Formal system” in Hungarian. Thus, in this paper “deductive theory”
and “formal system” are interchangeable.

14 The parenthetical comment was added by me. The word ‘arbitrary’ occurs only in
the Hungarian version.

15 In manuscripts written in English, Kalmár uses “thesis” instead of “theorem.” I
conjecture that he uses “thesis” because of the unrestricted character of proofs in θ.

Kalmár and Péter: Undecidability as a Consequence of Incompleteness 347

3. Definition. Weak arithmetic: A =< F,P, ω, T, ψ, ι, ι >, where
(i) < F,P, ω >= θ is a deductive theory (hence the notions

‘formula’, ‘proof’, ‘conclusion’, ‘thesis’ can be regarded
as already defined for weak arithmetics);

(ii) T is a set;
(iii) ψ ∈ NT×N with N = {0, 1, 2, · · · };
(iv) ι ∈ FT×N and ι ∈ FT×N .

Terminology: (i) T is called the set of terms [not necessarily of θ;
terms are used to represent arithmetical functions
of one argument];16

(ii) for t ∈ T , k ∈ N , n = ψ(t, k) ∈ N is called the
value of the function represented by t for the argument k;
and the function ϕt = k̂ψ(t, k) (= λk.ψ(t, k))
defined by ϕt(k) = ψ(t, k) for k ∈ N is called
the function represented by t;
and a function ϕ ∈ NN is called representable
(in A) iff ∃t(t ∈ T ∧ ϕt = ϕ), i.e.

∃t(t ∈ T ∧ ∀k(k ∈ N → ψ(t, k) = ϕ(k)));
(iii) for t ∈ T , n ∈ N , f = ι(t, n) ∈ F is called the

identical inequality of ϕt to n (or the formula expressing
that ϕt does not take the value n for any argument);
and g = ι(t, n) ∈ F is called the negated identical
inequality of ϕt to n (or the formula expressing that ϕt

does take the value n for some argument).

4. Conditions for Gödel’s theorem.
1.1, 1.2,· · · : “expressivity condition” (requiring that some reasonings can

be expressed in the arithmetic in question; the conditions
requiring that some propositions can be expressed in it are
included in the definitions);

2.1, 2.2: “regularity (or recursivity) conditions”;
3.1, 3.2: “consistency conditions”.

For the first form of Gödel’s theorem we need one expressivity and two reg-
ularity conditions but no consistency condition.

1.1. ∀t1t2n1n2(t1 ∈ T ∧ t2 ∈ T ∧ n1 ∈ N ∧ n2 ∈ N ∧ ι(t1, n1) = ι(t2, n2) →
→ n1 = n2),

i.e., n is uniquely determined by ι(t, n) (It would be quite reasonable to
require that also t is uniquely determined by ι(t, n); however, such a condition
is not needed.)17

16 The parenthetical comment was added by me. In Folder 347 Kalmár mentions some
instances of classes of functions that the terms T can range over: (1) general recursive
functions; (2) primitive recursive functions; (3) elementary functions.

17 Here ι(t1, n1) = ι(t2, n2) states the identity of two formulas. In the Hungarian version
the same property is required for ι as well. Furthermore, the Hungarian version
contains only the informal assertion of this property, that is, n is uniquely determined
by ι(t, n).

348 M. Szabó

2.1. The sets T and P are enumerable.
Terminology: Let be τ a fixed one-to-one mapping of T into

N ′ = N − {0} = {1, 2, · · · } and π a fixed one-to-one
mapping of P into N ′. Then
(i) n = τ(t) is called the Gödel number of the term t;

and if there is a t (and therefore only one)
with n = τ(t), this t is denoted also by tn;
otherwise, tn is not defined;

(ii) k = π(p) is called the Gödel number of the proof p;
and if there is a p (and hence only one)
with k = π(p), this p is denoted also by pk;
otherwise, pk is not defined;

(iii) f ∈ F is called a diagonal formula iff
∃tn(t ∈ T ∧ n ∈ N ∧ f = ι(t, n) ∧ τ(t) = n);
i.e. the diagonal formulae are the formulae
of the form ι(tn, n) with tn defined;

(iv) for a diagonal formula f = ι(t, n), the number
n (uniquely determined owing to 1.1) is called

the index of f ;
(v) p ∈ P is called a diagonal proof iff ω(p) is a

diagonal formula;
and in this case its index is called also the index of p;

(vi) the arithmetical function γ defined then:

γ(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the index of pk if pk is defined and
it is a diagonal proof;

0 if pk is either not defined or it is defined
but it is not a diagonal proof

18

is called the Gödel function of A (belonging to
the mappings τ and π).

2.2. For suitable mappings τ and π, the Gödel function γ is representable.19

5. First form of Gödel’s theorem. For every weak arithmetic A for which the
conditions 1.1, 2.1 and 2.2 are satisfied, ∃tn(t ∈ T ∧ n ∈ N ∧ (10 ∨ 20 ∨ 30))
where

10 � ι(t, n) ∧ ∃k(k ∈ N ∧ ϕt(k) = n),
20 � ι(t, n) ∧ ∀k(k ∈ N → ϕt(k) 	= n),
30 ¬ � ι(t, n) ∧ ¬ � ι(t, n);20

18 pk is defined and is a diagonal proof means that ω(pk) is a diagonal formula, thus
ω(pk) = ι(tn, n) for some t ∈ T , n ∈ N where tn is defined. The index of pk is the
index of ω(pk), thus n.

19 Here the Hungarian version says that for suitable mappings γ is an elementary
function (and thus representable) and adds the following remark: “From now on let
τ and π be such fixed mappings [that γ is an elementary function]. In theory it is
easy but technically it is tedious to show that 2.2 holds for those formal (axiomatic)
systems that are used in mathematics.” (Folder 156, p. 3).

20 ¬ � should be understood as �.

Kalmár and Péter: Undecidability as a Consequence of Incompleteness 349

i.e. either ι(t, n) is a thesis but what it expresses is false for some argument
k, ϕt takes the value n; or ι(t, n) is a thesis but what it expresses is false,
for ϕt does not take the value n for any argument k; or neither ι(t, n),
nor ι(t, n) is a thesis.

(Meta-)Proof. Owing to 2.2, we have (for suitable mappings τ and π) ∃t(t ∈
T ∧ γ = ϕt). Be n = τ(t). Then we have n ∈ N ′ (hence n 	= 0) and t = tn. Now,

(i) if we have � ι(t, n), be p one of the proofs of ι(t, n) and k = π(p). Then
p = pk is a diagonal proof with index n, for we have ω(pk) = ι(t, n) = ι(tn, n).
Hence, by the definition of the function γ, we have

ϕt(k) = γ(k) = n,

hence we have case 10.
(ii) if we have ¬ � ι(t, n)21 then for any k ∈ N ,

either pk is not defined,
or pk is defined but not a diagonal proof,
or pk is defined and it is a diagonal proof, i.e.
the proof of some diagonal formula ι(tm,m) 	= ι(tn, n), hence m 	= n.

Hence, by the definition of the function γ, we have
either ϕt(k) = γ(k) = 0 	= n,
or ϕt(k) = γ(k) = m 	= n;
thus, we have ϕt(k) 	= n for any k ∈ N .

Hence, if � ι(t, n), we have case 20,
and if ¬ � ι(t, n), we have case 30, qu.e.d.

6. Definition. Strong arithmetic: A =< F,P, ω, T, ψ, ι, ι, ε, ε >, where
(i) A =< F,P, ω, T, ψ, ι, ι > is a weak arithmetic
(hence the notions ‘formula’, ‘proof’, ‘conclusion’, ‘thesis’,
‘term’, ‘value of the function represented by a term for an
argument k ∈ N ’, ‘function represented by a term’,
‘representable function’, ‘identical inequality’, ‘negated
identical inequality’ can be regarded as already defined for
strong arithmetics too, and provided conditions 1.1, 2.1
and 2.2 to be satisfied, first form of Gödel’s theorem holds);
(ii) ε ∈ FT×N×N and ε ∈ FT×N×N .

Terminology. For t ∈ T , k ∈ N , n ∈ N , f = ε(t, k, n) ∈ F
is called the equation of ϕt(k) to n (or the formula
expressing that ϕt takes the value n for the argument k);
and g = ε(t, k, n) ∈ F is called the inequality of ϕt(k) to n
(or the formula expressing that ϕt does not take the value n
for the argument k).

21 ¬ � should also here be understood as �. Thus, in (ii) it is assumed ι(t, n) is not
provable, and depending on whether ι(t, n) is provable or not, it leads to 20 or 30,
respectively. See the last two lines of the proof.

350 M. Szabó

7. Additional conditions for the second form of Gödel’s theorem (three more
expressivity as well as two consistency conditions):

1.2. ∀tkn(t ∈ T ∧ k ∈ N ∧ n ∈ N ∧ ϕt(k) = n →� ε(t, k, n));
1.3. ∀tkln(t ∈ T ∧ k ∈ N ∧ l ∈ N ∧ n ∈ N ∧ � ε(t, k, l) ∧ l 	= n →

→� ε(t, k, n));
1.4. ∀tkn(t ∈ T ∧ k ∈ N ∧ n ∈ N ∧ � ι(t, n) →� ε(t, k, n));
3.1. ∀tkn(t ∈ T ∧ k ∈ N ∧ n ∈ N → ¬(ε(t, k, n) ∧ ε(t, k, n));
3.2. ∀tn(t ∈ T ∧ n ∈ N → ¬(� ι(t, n) ∧ ∀k(k ∈ N →� ε(t, k, n)))).

(1.2 is a particular case of the condition to the effect that numerical facts
can be proved; 1.3 is another particular case of the same condition (for numer-
ically true inequalities); 1.4 is a particular case of the dictum de omni; 3.1 is a
particular case of the consistency and 3.2 a particular case of the ω-consistency
of A.)

8. Second form of Gödel’s theorem. For every strong arithmetic A for which
the conditions 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 3.1, and 3.2 are satisfied, ∃tn(t ∈ T ∧ n ∈
N ∧ 30), i.e. for which neither ι(t, n) nor ι(t, n) is a thesis.

(Meta-)Proof. Owing to 1.1, 2.1 and 2.2 as well as first form of Gödel’s
theorem, ∃tn(t ∈ T ∧ n ∈ N ∧ (10 ∨ 20 ∨ 30)). Hence, it satisfies to prove that if
also 1.2, 1.3, 1.4, 3.1 and 3.2 are satisfied, neither case 10 nor case 20 can arise.

Now, in case 10, we should have on the one hand � ι(t, n), hence, owing to
1.4, ∀k � ε(t, k, n); on the other hand, for a suitable k ∈ N , ϕt(k) = n, hence,
owing to 1.2, � ε(t, k, n), which is impossible if 3.1 is satisfied.

On the other hand, in case 20, we should have, on the one hand, � ι(t, n),
on the other hand, for any k ∈ N , ϕt(k) = n; hence, if we put ϕt(0) = l0,
ϕt(1) = l1,· · · , we have lk 	= n for any k ∈ N . Now, owing to 1.2 we have
� ε(t, k, lk), hence, owing to 1.3, � ε(t, k, n) for any k ∈ N which is impossible if
3.2 is satisfied.

Hence, only 30 can be the case, qu.e.d.

From Folder 156:

Church’s theorem as a consequence of the first form of Gödel’s theorem.
Consider the following problem set (with the parameter (e, i) where e ∈ E

[the set of elementary expressions containing at most one free variable]22 and
i ∈ N):

In case of which e ∈ E and i ∈ N does the ϕe elementary function take the
value i somewhere?

22 The parenthetical comment was added by me. As the Hungarian version deals only
with elementary functions, E is used everywhere instead of T . Hopefully, this will
not lead to any confusion.

Kalmár and Péter: Undecidability as a Consequence of Incompleteness 351

An algorithm for solving this problem set is a method23 which is applicable
for every value of (e, i) as the “input parameter” (maybe even multiple ways)
and it always (for every input parameter and for every application) gives an
answer, which is either “it does take the value” or “it does not take the value”.
An algorithm is good if all applications of it lead to true results.24

Let A25 be such an algorithm and let us assign the following deductive theory
< F,P, ω > to it:

F is the set of ordered triples in the form 〈e, i, 0〉 and 〈e, i, 1〉 where e runs
through the set E and i runs through N . (F = E × N × {0, 1}.)

P is the set of all applications of A (for any input parameter (e, i)).
ω: if the application a (∈ P) of A on input parameter (e, i) gives the answer

“it does take the value” then let ω(a) = 〈e, i, 1〉, if it gives the answer “it does
not take the value” then let ω(a) = 〈e, i, 0〉.

We call the algorithm A regular if < F,P, ω > satisfies the conditions 2.1
and 2.2. It can be shown (in theory it is easy but technically it is tedious) that
Markov’s normal algorithms and partially recursive algorithms are regular, for
instance.26

23 The word “method” (instead of procedure) comes from Folder 347. Although it is
unusual wording I tried to incorporate as much of Kalmár’s original manuscripts
in English as I could. In the following pages the words “application”, “good” and
“regular” algorithm are also taken from Folder 347.

24 Here, once again, the wording comes from Folder 347. At a similar point of that folder
Kalmár remarks that “instead of defining formally” what an algorithm or method
is, “we formulate the facts needed in the sequel, concerning (...) their applications
and results.” (p. 14).

25 In the Hungarian version Kalmár uses A instead of A because previously it was
not used to denote deductive theories. This distinction between the two A-s almost
disappears since in the next step a deductive theory is assigned to the algorithm.

26 In the English version 2.1 requires T and P to be enumerable. In the Hungarian
version it requires only P to be enumerable. It does not lead to any problems, since
the set E which is used here instead of T is clearly enumerable and thus satisfies the
enumerability requirement. Thus, 2.1 is obviously satisfied.

2.2 is a “regularity condition” which requires that the relationship between the
terms T and the applications (proofs) P is regular in some sense. In particular, here,
it requires that there are such Gödel numberings of the elementary functions and of
the applications of the algorithm that the Gödel function γ is an elementary func-
tion as well (and thus it is representable). In footnote 19 I already quoted Kalmár,
claiming that 2.2 can be satisfied.

If instead of elementary functions some other class of arithmetical functions is
used, e.g. the class of general recursive functions, then the task is to show that the
corresponding Gödel function is a member of the class in question, and hence it is
representable.

The last comment about Markov’s normal algorithms and partially recursive algo-
rithms being regular claims that the usual notions of algorithms or procedures all
fall under the above open ended informal definition.

352 M. Szabó

Church’s Theorem:
There is no algorithm that is good (always leads to true results), regular,

and solves the above problem set.

Proof. The above < F,P, ω > deductive theory satisfies 1.1 if ι(e, i) = 〈e, i, 0〉
and ι(e, i) = 〈e, i, 1〉. Let A be a regular algorithm; then 2.1 and 2.2 are satisfied.
Thus, the first form of Gödel’s theorem holds for < F,P, ω >, hence there exists
e ∈ E and i ∈ N such that

(1) either 〈e, i, 0〉 is provable, that is, an a (∈ P) application of A gives the
answer on the input parameter (e, i), i.e. for the question whether ϕe takes the
value i or not, that “it does not take the value”, however the answer is not
correct because at the same time, according to 10, there exists an n ∈ N that
ϕe(n) = i;

(2) or 〈e, i, 1〉 is provable, that is, an a (∈ P) application of A gives the
answer for the question above that “it does take the value”, however the answer
is not correct because at the same time (according to 20)

ϕe(0) 	= i, ϕe(1) 	= i, ϕe(2) 	= i, ...;

(3) or neither 〈e, i, 0〉 nor 〈e, i, 1〉 is provable, that is, the algorithm A (in
contradiction with the definition of the notion of algorithm) does not answer the
question above.

References

1. Chauvin, A.: Structures logiques. CR Hebdomadaires Séances Acad. Sci. 228, 1085–
1087 (1949)

2. Henkin, L.: Review of Kalmár’s [4] and [5]. J. Symbolic Logic 15(3), 230 (1950)
3. Kalmár, L.: On unsolvable mathematical problems. In: Beth, E.W., Pos, J., Hollak,

J. (eds.) Proceedings of the Tenth International Congress of Philosophy (Amster-
dam), pp. 756–758. North-Holland, Amsterdam (1949)

4. Kalmár, L.: Une forme du théorème de Gödel sous des hypothèses minimales. CR
Hebdomadaires Séances Acad. Sci. 229, 963–965 (1949)

5. Kalmár, L.: Quelques formes générales du théorème de Gödel. CR Hebdomadaires
Séances Acad. Sci. 229, 1047–1049 (1949)

6. Péter, R.: Playing with Infinity. Translated by Zoltan Dienes. Dover, New York
(1976)

How to Compare Buchholz-Style Ordinal
Notation Systems with Gordeev-Style

Notation Systems

Jeroen Van der Meeren(B) and Andreas Weiermann

Department of Mathematics, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
{jeroen.vandermeeren,andreas.weiermann}@ugent.be

Abstract. By a syntactical construction we define an order-preserving
mapping of Gordeev’s ordinal notation system PRJ(P) into Buchholz’s
ordinal notation system OT (P) where P represents a limit ordinal. Since
Gordeev already showed that OT (P) can be considered as a subsystem
of PRJ(P), we obtain a direct proof of the equality of the order types
of both systems. We expect that our result will contribute to the general
program of determining the maximal order types of those well-quasi-
orders which are provided by gap-embeddability relations considered by
Friedman [10], Gordeev [5,7] and Kriz [8].

Keywords: Ordinal notation systems · Embeddings · Buchholz’s nota-
tion system · Gordeev’s notation system · Order type · Well-partial-
orderings

1 Introduction

Over the last decades ordinal notation systems played a central role in deter-
mining the proof-theoretic strength of various formal systems for arithmetic and
set theory. Proof-theoretic ordinals have in the meantime successfully been cal-
culated for the standard systems of reverse mathematics and even for theories
as strong as (Π1

2 -CA0)− although the details for the latter, even after polishing,
remain notoriously complicated (e.g., see [9]).

An important but still widely open problem in this area of proof theory is
Feferman’s natural well-ordering problem [4]. It is a conceptual question about
when a representation of a well-ordering is considered natural. In this article we
are not aiming at answering this problem, but we think that it is worthwhile
to single out natural properties of existing ordinal notation systems since they
might be typical for notation systems in general.

An important facet of this investigation is to study the role of associated well-
quasi-orders or well-partial-orders. These orders recently regained considerable
interest due to a general formula (suggested by the second author) which predicts

J. Van der Meeren—The first author wants to thank his funding organization Fel-
lowship of the Research Foundation - Flanders (FWO).

c© Springer International Publishing Switzerland 2015
A. Beckmann et al. (Eds.): CiE 2015, LNCS 9136, pp. 353–362, 2015.
DOI: 10.1007/978-3-319-20028-6 36

354 J. Van der Meeren and A. Weiermann

the maximal order type of a given well-partial-order which is defined in terms of
finite trees [11,12]. Recent investigations show that this formula is able to handle
Friedman-style gap-embeddability for finite labels and a remaining challenge is
to verify it for Friedman [10], Gordeev [5,7] and Kriz-style [8] embeddability
relations for possibly transfinite ordinal labels.

It turns out that the maximal order types of the associated well-partial-
orders can be represented by different natural ordinal notations systems and the
question is whether there exists a natural embedding between such represen-
tations. In this article we carry out this investigation for the systems PRJ(P)
defined by Gordeev [6] and OT (P) defined by Buchholz [2]. Gordeev [6] already
showed that OT (P) can be considered as a subsystem of PRJ(P). Other natural
embeddings between different systems have already been defined. E.g., Buchholz
[1] presented an embedding between systems based on the θ-functions and ordi-
nal diagrams. Using the embedding of this article one gets a complete picture
by composing the embeddings under consideration.

Gordeev’s ordinal notation system [6] is particularly appealing because of its
nice behavior with respect to iterated collapsing: DμDνα = Dmin{μ,ν}α, where
equality means here that the normal forms of the terms are the same. By way
of contrast, the treatment of terms of the form DμDνα requires very delicate
considerations and Pohlers called this the worst understood part of local predica-
tivity [3].

We have not succeeded in defining the Dμ of the Gordeev system by natural
functions on the ordinals. Instead, we use, for defining our embedding, a pecu-
liar syntactical operation on terms from Buchholz’s system. This definition is
different from corresponding definitions for ordinal diagrams and it seems that
the nature of Gordeev’s system differs considerably from ordinal diagrams. In
our perspective Gordeev’s approach to notation systems is largely independent
of the approaches studied in other sources.

2 Preliminaries

Given a limit ordinal (P,<). In this section, we introduce the notation systems
of Buchholz and Gordeev. For α > 0, let Ωα be the αth uncountable cardinal
and define Ω0 as 1. So Ω1 = ℵ1 and Ωω = ℵω.

2.1 Buchholz’s Ordinal Notation System

Buchholz’s ordinal notation system is based on the ψν-functions [2]. For the
sake of completeness, we give the definition of these functions. In [2], the ψν are
introduced for ν ≤ ω, but we can generalize them to ν ∈ P , where (P,<) is a
limit ordinal (see [6]).

Definition 1. The definitions of Cν(α) and ψνα proceeds by transfinite recur-
sion on α simultaneously for all ν ∈ P . Assume that we have Cν(ξ) and ψνξ for
all ξ < α. Define Cν(α) as the least set X of ordinals such that

Comparing Buchholz’s Notation Systems with Gordeev’s Notation Systems 355

1. Ων ⊆ X,
2. ∀β, γ ∈ X(β + γ ∈ X),
3. (∀ξ ∈ X ∩ α)(∀μ ∈ P)(ψμξ ∈ X).

Define ψνα as min{γ : γ /∈ Cν(α)}.
For more information on Buchholz’s ψ, we refer to [2]. We state some basic facts
of these collapsing functions without mentioning the proofs.

Lemma 1. For ordinals ν ∈ P and α, β,

1. ψν0 = Ων .
2. Ων ≤ ψνα < Ων+1.
3. μ < ν yields ψμα < ψνβ.
4. α ≤ β yields ψνα ≤ ψνβ.
5. ψνα is additively closed.

Based on these functions, one can define the following notation system.

Definition 2. Let T (P) be the least set of terms satisfying

– 0 ∈ T (P).
– If α ∈ T (P) and ν ∈ P , then Dνα ∈ T (P). We call Dνα a principal term.
– If α0, . . . , αn ∈ T (P) are principal terms and n ≥ 1, then α0⊕· · ·⊕αn ∈ T (P).

απ(0)⊕· · ·⊕απ(n) is seen as the same term as α0⊕· · ·⊕αn for every permutation
π of {0, . . . , n}. Therefore, ⊕ can be interpreted as the natural commutative sum
between ordinals.

Definition 3. Assume α, β ∈ T (P). Then α < β is valid if one of the conditions
is satisfied.

– α = 0 and β
= 0.
– α = Dμα′, β = Dνβ′ and μ < ν or μ = ν and α′ < β′.
– α = α0 ⊕ · · · ⊕ αn, β = β0 ⊕ · · · ⊕ βm (n + m ≥ 1) with α0 ≥ · · · ≥ αn,

β0 ≥ · · · ≥ βm and
• either n < m and ∀i ≤ n(αi = βi),
• or ∃i ≤ min{n,m}(αi < βi and ∀j < i(αj = βj)).

It is easy to see that D00 is the successor of 0 in (T (P), <). Furthermore, Dνα
is additively closed. We want to define a subset of T (P) which corresponds to
terms which are in normal form. For this purpose, we introduce Gμα, a set of
coefficients.

Definition 4

– Gμ0 := ∅.
– Gμ(α0 ⊕ · · · ⊕ αn) := Gμ(α0) ∪ · · · ∪ Gμ(αn).

– Gμ(Dνα) :=

{
∅ if ν < μ,

Gμ(α) ∪ {α} if ν ≥ μ.

356 J. Van der Meeren and A. Weiermann

Definition 5. OT (P) is a subset of T (P) which only uses terms in a specific
normal form.

– 0 ∈ OT (P),
– If α0, . . . , αn are principal terms in OT (P), n ≥ 1 and α0 ≥ · · · ≥ αn, then

α0 ⊕ · · · ⊕ αn ∈ OT (P).
– If α ∈ OT (P), ν ∈ P and Gν(α) < α, then Dνα ∈ OT (P).

The elements of OT (P) are called ordinal terms.

One can prove that OT (P) is a linear ordering. In general, the interpretation of
Dνα in the ordinal numbers is ψνα. For clarity reasons (Gordeev’s system also
uses the notation Dν), we write ψν instead of Dν from now on. It is also worth
to mention that the normal non-commutative sum α + β between ordinals can
be well-defined on OT (P).

2.2 Gordeev’s Ordinal Notation System

Gordeev’s ordinal notation system can be found in [6]. We remark that in [6]
the Ων are defined in a different way: there the Ων are equal to our Ων+1.
The main difference between Gordeev’s system and Buchholz’s system is that
DμDνα = Dmin{μ,ν}α holds in Gordeev’s system, whereas this is in general not
the case in the system of Buchholz. Equality here means the identity of normal
forms.

Definition 6. Let T ′(P) be the least set of terms satisfying

– 0 ∈ T ′(P) and Ων ∈ T ′(P) if ν ∈ P and ν > 0.
– If α ∈ T ′(P) and ν ∈ P , then Dνα ∈ T ′(P). We call Dνα and Ων principal

terms.
– If α0, . . . , αn ∈ T ′(P) are principal terms and n ≥ 1, then α = α0⊕· · ·⊕αn ∈

T ′(P).

We define the normal form α∗ of α ∈ T ′(P) and the ordering < on T ′(P)
simultaneously as follows.

Definition 7. Assume that α, β ∈ T ′(P).

– 0∗ := 0 and Ω∗
ν := Ων .

– (α0 ⊕ · · · ⊕ αn)∗ := (απ(0))∗ ⊕ · · · ⊕ (απ(n))∗, where π is a permutation on
{0, . . . , n} such that (απ(0))∗ ≥ · · · ≥ (απ(n))∗.

– (Dνα)∗ :=

⎧⎪⎨
⎪⎩

α∗ if α < Ων+1,

Dν(β) if α ≥ Ων+1 and α∗ = Dμβ with μ > ν,

Dν(α∗) otherwise.
– α < β is valid if one of the following holds

• α = 0 and β
= 0.
• α∗ = α0 ⊕· · ·⊕αn and β∗ = β0 ⊕· · ·⊕βm and one of the following is valid.

Comparing Buchholz’s Notation Systems with Gordeev’s Notation Systems 357

1. n < m and ∀i ≤ n(αi = βi),
2. ∃i ≤ min{n,m}(αi < βi and ∀j < i(αj = βj)).

• α∗ = Ωμ and β∗ = Ων with μ < ν.
• α∗ = Dμα′ and β∗ = Ων with μ < ν.
• α∗ = Ωμ and β∗ = Dνβ′ with μ ≤ ν.
• α∗ = Dμα′ and β∗ = Dνβ′ with μ < ν.
• α∗ = DμΩσ and β∗ = DμΩδ with σ < δ.
• α∗ = Dμ(α1 ⊕ · · · ⊕ αn) and β∗ = Dμ(β1 ⊕ · · · ⊕ βm), where all αi, βi are

principal and one of the following holds
1. α1 ⊕ · · · ⊕ αn < β1 ⊕ · · · ⊕ βm and ∀i ≤ n(Dμ(αi) < β),
2. m > 1 and ∃j ≤ m(α ≤ Dμ(βj)).

We remark that these definitions yield α < β ⇔ α∗ < β∗ for α, β ∈ T ′(P).
Furthermore, if α ∈ T ′(P), then t = DνDμs can never be a subterm of α∗: if
β ∈ T ′(P), then (DμDνβ)∗ = (Dmin{μ,ν}β)∗. Additionally, α + β is also here
well-defined. Let r(α) be the least ν ∈ P such that α < Ων+1.

Gordeev’s ordinal notation system PRJ(P) is defined as (T ′(P), <), where
the unique normal form of every term α is α∗. Following [6], one can approximate
the Veblen hierarchy ϕαβ for α, β ∈ T ′(P) as follows in T ′(P). First define ωα

as D0(Ω1) if α∗ = 0 and let ωα be α if α∗ = Ωγ for a certain γ. Otherwise, define
ωα as Dr(α)(Ωr(α)+1 + α). Now, for α, β ∈ T ′(P), define ϕαβ as ωβ if α∗ = 0.
Otherwise, define ϕαβ as Dr(β)(Dγ(Ωγ+1 +α)+β), where γ = max{r(α), r(β)}.

3 Connection Between the Two Notation Systems

Both ordinal notation systems have Dμ in their constructions. In Buchholz’s app-
roach, we will write ψμ instead of Dμ for clarity reasons. In section four of [6] it is
shown that OT (P) can be seen as a proper subsystem of PRJ(P), although it has
the same order type. Gordeev’s indirect proof of the equality of the order types
is based on underlying well-partial-orders. More specifically, Gordeev showed
that α# is an order-preserving embedding from OT (P) to PRJ(P), where α#

is defined by replacing every subterm ψμβ by Dμ(Ωμ+1 + β#). In this section,
we will show that PRJ(P) can be seen as a subsystem of OT (P) using a direct
embedding. Hence, the equality of order types follows directly. First, we define
inductively a subsystem G of OT (P). We remark that if we talk about Ων in
the context of OT (P), we actually mean the ordinal ψν0.

Definition 8. For α = ψμ1α1 ⊕· · ·⊕ψμn
αn ∈ OT (P), define Sα as the ordinal

max{μ1, . . . , μn}. If this sum is in normal form, the maximum is equal to μ1.
Define S0 as 0.

Definition 9

– 0 ∈ G and if ν ∈ P , then Ων = ψν0 ∈ G.
– If α0, . . . , αn are principal terms in G , n ≥ 1 and α0 ≥ · · · ≥ αn, then

α0 + · · · + αn ∈ G.

358 J. Van der Meeren and A. Weiermann

– If ν ∈ P and α ∈ G, then ψν(g∗
να + ωα) ∈ G, where we define ωα as

ψSα(g∗
Sαα + α). Here + is non-commutative, hence g∗

να + ωα can be equal
to ωα.

– If ν ∈ P , then g∗
ν(0) = 0.

– If ν, μ ∈ P , then g∗
ν(Ωμ) = 0.

– If ν ∈ P , then g∗
ν(α0 ⊕ · · · ⊕ αn) = max{g∗

ν(α0), . . . , g∗
μ(αn)}.

– If ν, μ ∈ P , then g∗
νψμ(g∗

μα + ωα) =

{
0 if ν > μ,

g∗
να + ωα if ν ≤ μ.

Ordinals of the form ψνξ where ξ is not zero or not of the form g∗
να + ωα with

α ∈ G, do not appear in G. This syntactical definition of G is very crucial
and different from the ones you can find in the literature. In G, the ordinal
1 is equal to Ω0 = ψ00 and the ordinal ω is equal to ψ0(g∗

00 + ω0), because
ω0 = ψS0(g∗

S00 + 0) = ψ00 = 1.
We remark that ωα in OT (P) does not represent the usual exponentiation

function as it is always strictly bigger than α (assertion 5 of the next lemma).
The main needed property about ωα is that it is additively closed. Assertion 7
of the next lemma shows that G is indeed a subset of OT (P).

Lemma 2. Define gμα as max Gμα. For all α, β, γ, δ in G and μ, ν in P we
have

1. gμα ≤ g∗
μα.

2. μ ≤ ν ⇒ g∗
μg∗

να ≤ g∗
μα.

3. μ ≤ ν ⇒ gμg∗
να ≤ g∗

μα.
4. γ, δ < ωα ⇒ γ + δ < ωα.
5. α < ωα.
6. α < β ⇒ ωα < ωβ.
7. gν(g∗

να + ωα) < g∗
να + ωα.

Proof. Assertion 1–3 can be proven by induction on α.
Assertion 4 is trivial because ψSα(g∗

Sαα + α) is additively closed in OT (P).
If α = 0, then the assertion 5 is trivial. Assume α = ψμ1α1 + · · · + ψμn

αn.
Then α < ωα is true if ψμ1α1 < ωα = ψSα(g∗

Sαα + α) = ψμ1(g
∗
μ1

α + α).
This is the case if α1 < g∗

μ1
α + α. If α1 = 0, this is trivial. Assume α1
= 0.

g∗
μ1

α+α = max{g∗
μ1

(ψμ1α1), . . . , g∗
μ1

(ψμn
αn)}+α > g∗

μ1
(ψμ1α1). We know that

α1 = g∗
μ1

ξ + ωξ (because ψμ1α1 ∈ G), hence g∗
μ1

(ψμ1α1) = g∗
μ1

ξ + ωξ = α1.
Assertion 6 can be proven by induction on the sum of the lengths of con-

struction of α and β.
Assertion 7 follows from the previous ones. If ν > Sα, then gν(g∗

να + ωα) =
max{gν(g∗

να), gν(ωα)} = gν(g∗
να) ≤ g∗

να, hence we are done. Assume ν ≤ Sα.
Then g∗

Sαα ≤ g∗
να. Therefore, gν(g∗

να + ωα) = max{gν(g∗
να), gν(ωα)} ≤

max{g∗
να, gν(ψSα(g∗

Sαα + α))} = max{g∗
να, gν(g∗

Sαα + α), g∗
Sαα + α} =

max{g∗
να, gν(α), g∗

Sαα + α} < g∗
να + ωα. ��

Now, for every ν ∈ P , we define a function D̃ν : G → G. This will be the
translation of Dν in PRJ(P). The definition of D̃ν is rather syntactical and it
is the crucial idea of the embedding.

Comparing Buchholz’s Notation Systems with Gordeev’s Notation Systems 359

Definition 10. For every ν ∈ P , define D̃ν : G → G as follows. If α < Ων+1

let D̃ν(α) be α. Now, for α ≥ Ων+1, define D̃ν(α) as follows:

– If μ ≥ ν + 1, then D̃ν(Ωμ) := ψν(g∗
νΩμ + ωΩμ).

– D̃ν(β0 + · · · + βn) := ψν(g∗
ν(β0 + · · · + βn) + ωβ0+···+βn) if n ≥ 1.

– If μ ≥ ν + 1, then D̃ν(ψμ(g∗
μβ + ωβ)) := ψν(g∗

νβ + ωβ).

Note that D̃να < Ων+1.

Definition 11. Define o : PRJ(P) → G ⊆ OT (P) in the following recursive
way. If α ∈ T ′(P) is not in normal form, then o(α) := o(α∗). Assume α = α∗,
then define o(α) as follows.

– o(0) := 0.
– o(Ων) := Ων .
– o(α0 + · · · + αn) := o(α0) + · · · + o(αn).
– o(Dνα) := D̃ν(o(α)).

If α ∈ PRJ(P) is in normal form, then α is either 0, Ων or α = Dμ1α1 +
· · · + Dμn

αn, where αi is also in normal form and αi is different from Dνγ
for all γ. Therefore, αi ≥ Ωμi+1 and it is equal to Ων for a certain ν or it
is a sum. Hence, o(Dμ1α1) = D̃μ1o(α1) = ψμ1(g

∗
μ1

(o(α1)) + ωo(α1)). Note that
o(1) = o(D0Ω1) = D̃0Ω1 = ψ0(ωΩ1) = ψ0(ψ1(Ω1)).

Lemma 3. Assume α1, . . . , αn,Dγ(α1 + · · ·+αn),Dγβ (n ≥ 2) are elements of
PRJ(P) in normal from, αi are principal terms, o(α1 + · · · + αn) < o(β) and
o(Dγ(αi)) < o(Dγ(β)). Then o(Dγ(α1 + · · · + αn)) < o(Dγβ).

Proof. It is important to notice that the Dγ(αi)’s are not necessarily in normal
form. o(Dγ(α1 + · · · + αn)) < o(Dγβ) is the same as saying

ψγ(g∗
γ(o(α1) + · · · + o(αn)) + ωo(α1+···+αn)) < ψγ(g∗

γ(o(β)) + ωo(β)),

which is equivalent with

g∗
γ(o(α1) + · · · + o(αn)) + ωo(α1+···+αn) < g∗

γ(o(β)) + ωo(β).

Because o(α1 + · · · + αn) < o(β), we only have to prove that g∗
γ(o(α1) + · · · +

o(αn)) < g∗
γ(o(β))+ωo(β) (this is because ωo(β) is additively closed). g∗

γ(o(α1)+
· · · + o(αn)) = g∗

γ(o(αi)) for a certain i. Because αi is principal, we know that
αi = Ων or αi = Dνδ for certain ν, δ. In the former case g∗

γ(o(αi)) = 0, hence
g∗

γ(o(α1) + · · · + o(αn)) < g∗
γ(o(β)) + ωo(β) follows trivially. Assume that we are

in the latter case. Then g∗
γ(o(αi)) = g∗

γ(ψν(g∗
ν(o(δ)) + ωo(δ))). If ν < γ, again

g∗
γ(o(αi)) = 0 and we are done. Assume ν ≥ γ. Then g∗

γ(o(αi)) = g∗
γ(o(δ)) +

ωo(δ). Now, o(Dγ(αi)) = o(DγDνδ) = o(Dγδ) < o(Dγ(β)), hence ψγ(g∗
γ(o(δ)) +

ωo(δ)) < ψγ(g∗
γ(o(β)) + ωo(β)). This implies

g∗
γ(o(δ)) + ωo(δ) < g∗

γ(o(β)) + ωo(β),

so g∗
γ(o(αi)) < g∗

γ(o(β)) + ωo(β). ��

360 J. Van der Meeren and A. Weiermann

Lemma 4. Assume β1, . . . , βn, β = Dγ(β1 + · · · + βn) (n ≥ 2) are in normal
form. Furthermore, suppose they are principal terms. Then o(Dγβi) < o(β) for
all i.

Proof. It is worth to mention that Dγ(βi) is not necessarily in normal form. We
see that o(β) = ψγ(g∗

γ(o(β1 + · · ·+βn))+ωo(β1+···+βn)). Because βi is in normal
form, we obtain that βi = Dγi

β′
i or βi = Ωγi

.
Assume that βi = Ωγi

. Then o(Dγβi) = D̃γ(Ωγi
). If γi < γ + 1, then

o(Dγβi) = Ωγi
= ψγi

0 ≤ ψγ0 < o(β). If γi ≥ γ + 1, then o(Dγβi) =
ψγ(g∗

γΩγi
+ ωΩγi) = ψγ(ωΩγi) ≤ ψγ(ωo(β1+···+βn)) ≤ ψγ(g∗

γ(o(β1 + · · · + βn)) +
ωo(β1+···+βn)) = o(β).

Assume that βi = Dγi
β′

i. If γi < γ, then o(Dγβi) = o(DγDγi
β′

i) =
o(Dγi

β′
i) = ψγi

(g∗
γi

(o(β′
i)) + ωo(β′

i)) < ψγ(g∗
γ(o(β1 + · · · + βn)) + ωo(β1+···+βn)) =

o(β). If γi ≥ γ, then o(Dγβi) = o(DγDγi
β′

i) = o(Dγβ′
i) = ψγ(g∗

γ(o(β′
i))+ωo(β′

i)).
Therefore, o(Dγβi) < o(β) is valid iff

g∗
γ(o(β′

i)) + ωo(β′
i) < g∗

γ(o(β1 + · · · + βn)) + ωo(β1+···+βn).

This is true because g∗
γ(o(β1 + · · · + βn)) ≥ g∗

γ(o(βi)) = g∗
γ(D̃γi

(o(β′
i))) =

g∗
γ(ψγi

(g∗
γi

(o(β′
i)) + ωo(β′

i))) = g∗
γ(o(β′

i)) + ωo(β′
i). ��

Theorem 1. o is an order preserving embedding from PRJ(P) to OT (P).

Proof. We prove that α < β implies o(α) < o(β) by induction on the sum of the
lengths of constructions of α and β. If α or β are not in normal form, then we
can easily conclude the assertion from the induction hypothesis. Assume from
now on that α and β are in normal form. If β = 0, then the assertion is trivial.
Suppose that β > 0.

Case (i) β = Ωδ with δ ∈ P .
If α
= Dγα′, then o(α) < o(β) easily follows from α < β. Assume α = Dγα′.
Then γ < δ, hence o(α) = D̃γo(α′) < Ωγ+1 ≤ Ωδ = o(Ωδ).

Case (ii) β = β0 + · · · + βn with n ≥ 1.
If α
= Dγα′, then o(α) < o(β) easily follows from α < β. Assume α = Dγα′.
Then β0 = α or α < β0. Hence, α ≤ β0. So, o(α) ≤ o(β0) < o(β).

Case (iii) β = Dδβ
′.

Because β is in normal form, we obtain β′ ≥ Ωδ+1. If α = 0, then o(α) < o(β)
follows easily.
Subcase 1: α = α0 + · · · + αn.

α < β yields αn ≤ · · · ≤ α0 < β. Therefore, o(α) < o(β).
Subcase 2: α = Ωγ .

α < β implies γ ≤ δ. We know o(α) = Ωγ . Furthermore, β′ ≥ Ωδ+1 yields
Ωδ+1 = o(Ωδ+1) ≤ o(β′). So, o(β) = D̃δ(o(β′)) = ψδ(ξ) > Ωδ ≥ Ωγ =
o(α). We conclude that o(α) < o(β).

Subcase 3: α = Dγα′.

Comparing Buchholz’s Notation Systems with Gordeev’s Notation Systems 361

Because both α and β are in normal form, we obtain that α′ ≥ Ωγ+1 and
β′ ≥ Ωδ+1. Hence, o(α) = ψγξ and o(β) = ψδζ for certain ξ and ζ. α < β yields
either γ < δ (hence o(α) < o(β)) or γ = δ and one of the following holds

1. α′ = Ων , β′ = Ωμ and ν < μ.
2. α′ = α1 + · · · + αn, β′ = β1 + · · · + βm and one of the following is valid

(a) α′ < β′ and ∀i ≤ n(Dγ(αi) < β = Dγ(β′)).
(b) m > 1 and ∃j ≤ m(α ≤ Dγ(βj)).

If we are in case 1, o(α) < o(β) easily follows.
Assume that we are in case 2(a). It is not possible that both n = m = 1

in this case, otherwise we would be in case 1 (αi, βi are principal). Assume
n > 1. Then α = Dγ(α1 + · · · + αn), β = Dγβ′, α1, . . . , αn are in normal
form and α1 + · · · + αn < β′. Additionally, the induction hypothesis yields
o(Dγ(αi)) < o(β) = o(Dγβ′) and o(α1 + · · · + αn) < o(β′). Lemma 3 then
implies o(α) = o(Dγ(α1 + · · · + αn)) < o(Dγβ′) = o(β).

Assume now that we are in case 2(a) and n = 1. The normal form of α yields
α = Dγα1 and α1 is equal to Ων for ν ≥ γ + 1. Then α′ = α1 < β′ yields that
there is a certain βj bigger than Ων , hence Ων ≤ o(βj) < o(β′). Now,

o(α) = ψγ(g∗
γΩν + ωΩν) = ψγ(ωΩν) < ψγ(g∗

γ(o(β′)) + ωo(β′)) = o(β)

holds iff ωΩν < g∗
γ(o(β′)) + ωo(β′). The latter is true because Ων < o(β′).

If we are in case 2(b), the induction hypothesis yields o(α) ≤ o(Dγβj). From
Lemma 4 we also obtain o(Dγβj) < o(β). Hence o(α) < o(β). ��
The main theorem implies that Gordeev’s PRJ(P) can be interpreted as a sub-
system G of Buchholz’s OT (P). Hence, the order type of PRJ(P) is less than
or equal to the order type of OT (P). In section four of [6] it is shown that
OT (P) can be seen as a subsystem of PRJ(P), from which we can conclude
that they have exactly the same order type. It is also worth the mention that
the composition of o(·) and ·# from the beginning Sect. 3 is not the identity:

o((ψνβ)#) = D̃ν(Ων+1 + o(β#)) = ψν(g∗
ν(o(β#)) + ωΩν+1+o(β#)),

which is in general not equal to ψνβ. To explain our results more intuitively, we
present the image under o of the approximation of (the first level of) Veblen’s
hierarchy ϕ0β in PRJ(P) (see Subsect. 2.2) without mentioning the proofs:
o(ϕ0β) is equal to o(1) = ψ0(ψ1(Ω1)) if β∗ = 0. If β = Ωγ , then o(ϕ0β) is
Ωγ . Otherwise,

o(ϕ0β) = ψr(β)(g∗
r(β)(β) + ψr(β)+1(g∗

r(β)+1(β) + Ωr(β)+1 + β)).

In a similar way, one can also calculate o(ϕαβ) for arbitrary α, β ∈ T ′(P).
With regard to this topic, some open questions remain. E.g. what is the order

type of Gordeev’s system if we only have +1 and not the general + operator? Is
it ε0 if P = ω? Furthermore, what happens if P is a well-partial-order? Is the
maximal order type of OT (P) then equal to the order type of OT (o(P)), where
o(P) is the maximal order type of the well-partial-order P?

362 J. Van der Meeren and A. Weiermann

References

1. Buchholz, W.: Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In:
|= ISILC Proof Theory Symposion (Proceedings of the International Summer Insti-
tute and Logic Colloquium, Kiel, 1974). Lecture Notes in Mathematics, vol. 500,
pp. 4–25. Springer, Berlin (1975)

2. Buchholz, W.: A new system of proof-theoretic ordinal functions. Ann. Pure Appl.
Log. 32(3), 195–207 (1986)

3. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions
and Subsystems of Analysis: Recent Proof-theoretical Studies. Lecture Notes in
Mathematics, vol. 897. Springer, Berlin (1981)

4. Crossley, J.N., Kister, J.B.: Natural well-orderings. Arch. Math. Logik Grundlag.
26(1–2), 57–76 (1986/1987)

5. Gordeev, L.: Generalizations of the one-dimensional version of the Kruskal-
Friedman theorems. J. Symb. Log. 54(1), 100–121 (1989)

6. Gordeev, L.: Systems of iterated projective ordinal notations and combinatorial
statements about binary labeled trees. Arch. Math. Log. 29(1), 29–46 (1989)

7. Gordeev, L.: Generalizations of the Kruskal-Friedman theorems. J. Symb. Log.
55(1), 157–181 (1990)

8. Kř́ıž, I.: Well-quasiordering finite trees with gap-condition. Proof of Harvey Fried-
man’s conjecture. Ann. of Math. (2) 130(1), 215–226 (1989)

9. Rathjen, M.: An ordinal analysis of parameter free Π1
2 -comprehension. Arch. Math.

Log. 44(3), 263–362 (2005)
10. Simpson, S.G.: Nonprovability of certain combinatorial properties of finite trees. In:

Harrington, L.A., Morley, M.D., Ščedrov, A., Simpson, S.G. (eds.) Harvey Fried-
man’s Research on the Foundations of Mathematics. Studies in Logic and the
Foundations of Mathematics, vol. 117, pp. 87–117. North-Holland, Amsterdam
(1985)

11. Van der Meeren, J., Rathjen, M., Weiermann, A.: Well-partial-orderings and the
big Veblen number. Arch. Math. Log. 54(1–2), 193–230 (2015)

12. Weiermann, A.: A computation of the maximal order type of the term ordering
on finite multisets. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009.
LNCS, vol. 5635, pp. 488–498. Springer, Heidelberg (2009)

Author Index

Baartse, Martijn 107
Bazhenov, Nikolay 117
Bonfante, Guillaume 127

Cardone, Felice 3
Carl, Merlin 137
Ceterchi, Rodica 145
Crosilla, Laura 13

de Brecht, Matthew 156
Dumitru, Mircea 23

Ehlers, Thorsten 167
El-Aqqad, Mohamed 127

Fang, Chengling 177
Fujiwara, Makoto 186

Galicki, Alex 196
Goč, Daniel 34
Greenbaum, Benjamin 127

Halava, Vesa 206
Harju, Tero 206
Hoyrup, Mathieu 127

Joosten, Joost J. 216

Kjos-Hanssen, Bjørn 44
Korovina, Margarita 226
Kováč, Michal 236
Kudinov, Oleg 226

Le Roux, Stéphane 246
Liu, Jiang 177

Maia, Eva 258
McNicholl, Timothy H. 268
Meer, Klaus 107
Moreira, Nelma 258
Moser, Georg 276
Mousavi, Hamoon 34

Müller, Mike 167
Muscholl, Anca 54

Nies, André 286
Niskanen, Reino 206

Patey, Ludovic 291
Pauly, Arno 246
Păun, Gheorghe 63
Petrakis, Iosif 302
Pin, Jean-Éric 71
Potapov, Igor 206
Powell, Thomas 276

Reis, Rogério 258

Schaeffer, Luke 34
Schmid, Markus L. 313
Schröder, Matthias 156
Selivanov, Victor 156, 324
Shallit, Jeffrey 34
Simpson, Stephen G. 83
Solecki, Slawomir 286
Stephan, Frank 44
Subramanian, K.G. 145
Sun, Shu Ming 334
Szabó, Máté 343

Terwijn, Sebastiaan A. 44

Van der Meeren, Jeroen 353
Venkat, Ibrahim 145
Verlan, Sergey 95

Weiermann, Andreas 353
Wu, Guohua 177

Yamaleev, Mars M. 177

Zhong, Ning 334
Ziegler, Martin 334

	Preface
	Organization
	Franco Montagna
	Contents
	Invited Papers
	Computers and the Mechanics of Communication
	1 Overview
	2 Computers, Systems and Communication
	2.1 Communication Mechanics
	2.2 Communication Disciplines

	3 Continuous Discrete Behavior
	References

	Error and Predicativity
	1 Certainty and Certification
	2 Predicativity
	3 Plurality of Predicativity
	References

	Is Human Mind Fully Algorithmic? Remarks on Kurt Gödel's Incompleteness Theorems
	1 Sketch of the Main Programs and Responses to the Mind-Body Problem in Philosophy of Mind
	2 A Short Informal Overview of the Two Gödelian Incompleteness Theorems
	3 Comments upon Some of the Main Views Advocated by Gödel
	3.1 Gödel About Minds and Machines
	3.2 Gödel About Mind and Matter
	3.3 Turing Machines vs. the So-Called Gödel Minds

	References

	A New Approach to the Paperfolding Sequences
	1 Introduction
	2 The Main Idea
	3 Our Results
	3.1 Orders of Squares
	3.2 Cubes
	3.3 Higher Powers
	3.4 Orders of Almost-Squares
	3.5 Appearance Function for Paperfolding Sequences
	3.6 The Minimum of the Appearance Function
	3.7 Recurrence and the Recurrence Function
	3.8 Intersection of Sets of Paperfolding Factors

	4 Remarks on Correctness
	References

	Covering the Recursive Sets
	1 Introduction
	2 Solutions to Open Problems
	3 Infinitely Often Subuniformity and Covering
	3.1 Infinitely Often Subuniformity
	3.2 A Nonrecursive Set that Does Not Cover REC
	3.3 Computing Covers Versus Uniform Computation

	References

	On Distributed Monitoring and Synthesis
	1 Context
	2 Mazurkiewicz Traces and Zielonka Automata
	3 Distributed Synthesis
	4 Related Work
	References

	Unconventional Computing: Do We Dream Too Much?
	1 Motivation of Unconventional Computing
	2 Dreams of Unconventional Computing
	3 Difficulties and Limits
	4 Research Topics
	References

	Newton's Forward Difference Equation for Functions from Words to Words
	1 The Difference Operator
	2 Near-Rings
	3 Noncommutative Magnus Transformation
	3.1 Definition of the Magnus Transformation
	3.2 The Inverse of the Magnus Transformation

	4 Forward Difference Equation
	4.1 Difference Expansion
	4.2 The Inversion Formula

	References

	Degrees of Unsolvability: A Tutorial
	1 Turing Degrees
	2 Muchnik Degrees
	3 The Lattices Ew and Sw
	4 Applications
	5 The Muchnik Topos
	References

	Universality in Molecular and Cellular Computing
	1 Introduction
	2 Models in Molecular Computing
	3 Splicing Based Models
	4 Networks of Evolutionary Processors
	5 Cellular Computing Based Models
	6 Conclusions
	References

	Contributed Papers
	Some Results on Interactive Proofs for Real Computations
	1 Introduction
	2 Basic Notions
	3 Upper and Lower Bounds for IPR
	3.1 Upper Bound: Recursive Evaluation of Verifier Action
	3.2 Lower Bounds

	References

	Prime Model with No Degree of Autostability Relative to Strong Constructivizations
	1 Introduction
	2 Preliminaries
	2.1 Colored Algebras

	3 The Proof of Theorem 1
	References

	Immune Systems in Computer Virology
	1 Introduction
	1.1 Semantics of While
	1.2 While as an Acceptable Language

	2 On Cons-Free Programs
	2.1 While{cons} Does Not Contain a Specializer

	3 Tiny, a Whippersnapper Programming Language
	3.1 Program Equivalence in Tiny

	4 Conclusion
	References

	ITRM-Recognizability from Random Oracles
	1 Introduction
	2 Infinite Time Register Machines
	3 Further Work
	References

	P Systems with Parallel Rewriting for Chain Code Picture Languages
	1 Introduction
	2 Basic Definitions and Results
	3 Parallel Chain Code P System
	4 Space-Filling Curves: The Hilbert Curve
	5 The Peano Curve
	6 Conclusions
	References

	Base-Complexity Classifications of QCB0-Spaces
	1 Introduction
	2 Topological Embeddings Versus Sequential Embeddings
	3 Y-based Spaces
	4 Sequentially Y-based Spaces
	5 On Universal Spaces
	References

	New Bounds on Optimal Sorting Networks
	1 Introduction
	2 Preliminaries
	3 Improved Techniques
	3.1 Prefix Optimization
	3.2 Iterative Encoding
	3.3 Improved SAT Encoding

	4 Obtaining New Lower Bounds
	5 Finding Faster Networks
	5.1 Using Hand-Crafted Prefixes
	5.2 Results

	6 Tools
	References

	Nonexistence of Minimal Pairs in L[d]
	1 Introduction
	2 Basic Idea of the Construction
	3 Construction
	4 Verification
	References

	Intuitionistic Provability versus Uniform Provability in RCA
	1 Introduction
	2 Results
	3 Proofs
	References

	Randomness and Differentiability of Convex Functions
	1 Introduction
	1.1 Overview of the Paper
	1.2 Notation and Conventions
	1.3 Convex, Monotone and Lipschitz Functions

	2 Differentiability of Convex and Monotone Real Functions of One Variable
	2.1 Sets of Non-differentiability of Computable Convex Functions
	2.2 Monotone and Convex Functions
	2.3 New Characterisations of Computable Randomness

	3 Effective Aleksandrov's Theorem
	3.1 Two Propositions
	3.2 Differentiability of A.E. Computable Monotone Functions
	3.3 Main Result

	References

	Weighted Automata on Infinite Words in the Context of Attacker-Defender Games
	1 Introduction
	2 Notations and Definitions
	3 Universality for Weighted Automata on A
	4 Applications to Attacker-Defender Games
	4.1 Weighted Word Game
	4.2 Word Games on Pairs of Group Words
	4.3 Matrix Games and Braid Games

	References

	Turing Jumps Through Provability
	1 Introduction and Preliminaries
	2 Witness-Comparisons: Rosser and the FGH Theorem
	3 Generalizations of the FGH Theorem and Applications
	4 Graded Provability via Turing Jumps
	References

	Rice's Theorem in Effectively Enumerable Topological Spaces
	1 Introduction
	2 Preliminaries
	3 Effectively Enumerable Topological Spaces
	4 Computable elements of Effectively Enumerable Topological Spaces
	References

	Decidability of Termination Problems for Sequential P Systems with Active Membranes
	1 Introduction
	2 Preliminaries
	3 Active P Systems
	4 Termination Problems
	4.1 Existence of Infinite Computation
	4.2 Existence of Halting Computation

	5 Conclusion
	References

	Weihrauch Degrees of Finding Equilibria in Sequential Games
	1 Overview
	2 Fundamentals
	2.1 Informal Background on Represented Spaces and Weihrauch Reducibility
	2.2 Informal Background on Infinite Sequential Games
	2.3 Defining the Problems of Interest
	2.4 The Difference Hierarchy

	3 The Computational Content of Some Determinacy Principles
	4 The Complexity of Equilibrium Transfer
	5 Deciding the Winner and Finding Nash Equilibria
	6 General Games with Concrete Pointclasses
	7 Conclusions and Outlook
	References

	Prefix and Right-Partial Derivative Automata
	1 Introduction
	2 Regular Expressions and Automata
	2.1 Glushkov and Partial Derivative Automata

	3 Right-Partial Derivative Automata
	4 Prefix Automata
	5 Average-Case Complexity
	References

	A Note on the Computable Categoricity of p Spaces
	1 Introduction
	2 Background
	2.1 Background from Functional Analysis
	2.2 Background from Computable Analysis
	2.3 Background from Computable Categoricity

	3 Proof of Theorems 1 and 2
	4 Concluding Remarks
	References

	On the Computational Content of Termination Proofs
	1 Introduction
	2 Recursive Path Orders
	2.1 A Finitary Formulation of Theorem1

	3 Bounding the Derivational Complexity of R
	3.1 Term and Tree Encodings, Gödel's System
	3.2 Computing Derivation Trees
	3.3 Derivational Complexity

	4 Conclusion
	References

	Local Compactness for Computable Polish Metric Spaces is 11-complete
	1 Introduction
	2 Main Result
	3 Expressive Power of L1,
	References

	Iterative Forcing and Hyperimmunity in Reverse Mathematics
	1 Introduction
	1.1 Notation

	2 The Iteration Framework
	3 Preservation of Hyperimmunity
	4 Basic Preservations of Hyperimmunity
	5 The Erdős-Moser Theorem and Preservation of Hyperimmunity
	6 Thin Set Theorem and Preservation of Hyperimmunity
	References

	Completely Regular Bishop Spaces
	1 Why Bishop Spaces
	2 Basic Definitions and Facts
	3 Completely Regular Topologies of Functions
	References

	Computing Equality-Free String Factorisations
	1 Introduction
	2 Basic Definitions
	3 Main Results
	3.1 The Problem EFFC
	3.2 The Problems MaxEFF-s and MinEFE-w
	3.3 The Problems MaxRF-s and MinRF-w

	References

	Towards the Effective Descriptive Set Theory
	1 Introduction
	2 Classes of Effective Spaces
	3 Effective Hierarchies in Weakly Computable Cb0-Spaces
	4 On the Effective Descriptive Theory of Functions
	5 The Suslin-Kleene Theorem
	6 The Effective Hausdorff Theorem
	7 Conclusion
	References

	On Computability of Navier-Stokes' Equation
	1 Introduction
	1.1 Overview

	2 Representing Divergence-Free Boundary-Free Lq Functions on
	2.1 Representing Closed Operators

	3 Computability of the Stokes Semigroup
	4 Extension to the Nonlinear Problem and Helmholtz Projection
	5 Conclusion and Perspectives
	References

	Kalmár and Péter: Undecidability as a Consequence of Incompleteness
	1 Introduction
	2 Kalmár and Péter: Undecidability as a Consequence of Incompleteness
	References

	How to Compare Buchholz-Style Ordinal Notation Systems with Gordeev-Style Notation Systems
	1 Introduction
	2 Preliminaries
	2.1 Buchholz's Ordinal Notation System
	2.2 Gordeev's Ordinal Notation System

	3 Connection Between the Two Notation Systems
	References

	Author Index

