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Abstract. Construction of Statistical Shape Models (SSMs) from arbi-
trary point sets is a challenging problem due to significant shape varia-
tion and lack of explicit point correspondence across the training data
set. In medical imaging, point sets can generally represent different shape
classes that span healthy and pathological exemplars. In such cases, the
constructed SSM may not generalize well, largely because the probabil-
ity density function (pdf) of the point sets deviates from the underlying
assumption of Gaussian statistics. To this end, we propose a generative
model for unsupervised learning of the pdf of point sets as a mixture
of distinctive classes. A Variational Bayesian (VB) method is proposed
for making joint inferences on the labels of point sets, and the princi-
pal modes of variations in each cluster. The method provides a flexible
framework to handle point sets with no explicit point-to-point corre-
spondences. We also show that by maximizing the marginalized likeli-
hood of the model, the optimal number of clusters of point sets can be
determined. We illustrate this work in the context of understanding the
anatomical phenotype of the left and right ventricles in heart. To this
end, we use a database containing hearts of healthy subjects, patients
with Pulmonary Hypertension (PH), and patients with Hypertrophic
Cardiomyopathy (HCM). We demonstrate that our method can outper-
form traditional PCA in both generalization and specificity measures.

Keywords: Statistical shape models · Variational bayes · Model
selection

1 Introduction

Statistical shape models (SSMs) from point sets, proposed by Cootes et al. in [2],
are powerful tools in medical imaging to encode the natural variability of
anatomical structures. To construct an SSM, traditionally, points are selected on
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training surfaces and point-to-point correspondences are required. By consistently
concatenating the points on each training data set, shapes are represented as high-
dimensional vectors and assumed to be sampled from a Gaussian distribution;
under this hypothesis the major modes of variation are then extracted by PCA. In
reality, however, the training data can have a multi-modal distribution and repre-
sent various classes of shapes. As a result, no particular class is fully represented
by the mean model and the constructed SSM often does not generalize well. To
alleviate this problem, Zhang et al. [15] proposed sparse non-parametric shape
description, and Cootes et al. [3] used a Gaussian Mixture Model (GMM) to rep-
resent the pdf of the training sets; the shape space is first partitioned and then
PCA is applied in each cluster. But, it is likely that clustering of point sets and the
estimation of variation modes may mutually benefit from each other. In addition,
this approach requires having point-to-point correspondences, and a user-selected
a priori number of components, which is difficult.

Establishing point-to-point correspondences across training point sets is a
major challenge that undermines the practicality of the SSMs. Manually speci-
fying correspondences over landmarks could be an ambiguous subjective task. 3D
automatic techniques based on image registration [5] or minimizing the descrip-
tion length [4] have a varying performance, in particular for complex structures
such as the heart. EM-ICP based methods [7,11] offer more flexibility by com-
puting probabilistic matchings between points and are shown to be robust to
the matching errors. Recently, Hufnagel et al. [8] proposed a generative model
for estimating modes of variation in point sets without resourcing to PCA from
point sets with no correspondences. This method, however, still assumes that
the distribution is a monomodal Gaussian distribution.

We present a hierarchical clustering scheme to estimate pdfs of unstructured,
rigidly aligned, point sets having no point-to-point correspondences. Points at
each set are regarded as samples from a low dimensional GMM, whose means
are concatenated to form higher dimensional vector. This vector is considered
to be a sample drawn from a Mixture of Probabilistic Principal Component
Analyzers (PPCA) [13]. The latter is essentially a higher dimensional GMM,
where the covariance matrices of its clusters can be decomposed to subspaces of
local principal components. An inference algorithm based on variational Bayes
(VB) [1] is proposed for unsupervised learning of class labels and variations.

Thanks to this hierarchical structure, the proposed method estimates prob-
abilistic point matchings across the training data sets; and handles mixtures
of different shape classes. Another important advantage of the proposed VB
approach is that the number of clusters is automatically learned from data. It
is noteworthy that, in machine learning, VB has been successfully applied for
inferring mixtures of subspace analyzers [6] from training vectors having equal
lengths. However, adopting the framework for point sets, as order-less random
variables having different cardinalities (point counts), is a challenging problem.
In the rest of this paper, we first present our generative model, derive an efficient
inference algorithm and finally compare the method to the standard PCA model
using cardiac data with different pathologies.
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Fig. 1. The graphical representation of the proposed model; shaded and hollow circles
represent observed and latent variables, respectively, arrows imply the dependencies
and plates embrace numbered incidences of events.

2 Methods

2.1 Probabilistic Generative Model

Our observation consists of K point sets, denoted as Xk = {xkn}Nk
n=1, 1 ≤ k ≤ K,

where xkn is a D dimensional feature vector corresponding to the nth landmark
in the kth point set. The model can be explained as two interacting layers of
mixture models. In the first (lower-dimension) layer, Xk is assumed to be a
collection of D-dimensional samples from a GMM with M Gaussian components.
Meanwhile, by concatenating the means of the GMM (with a consistent order),
a vector representation for Xk can be derived in M · D dimension. Clustering
and linear component analysis for Xk takes place in this space.

More specifically, we consider a mixture of J probabilistic principal compo-
nent analyzers (MPPCA). A PPCA is essentially an M ·D-dimensional Gaussian
specified by a mean vector, μ̄j ∈ RMD, 1 ≤ j ≤ J , and a covariance matrix hav-
ing a subspace component in the form of WjWT

j [13]. Here, Wj is a MD × L

dimensional matrix, whose column l, i.e. W(l)
j , represents one mode of variation

for the cluster j. Let vk be an L dimensional vector of loading coefficients cor-
responding to Xk and let us define: μjk = Wjvk + μ̄j . These vectors can be
thought of as variables that bridge the two layers of our model: In the higher
dimension, μjk is a re-sampled representation of Xk in the space spanned by
principal components of the jth cluster; meanwhile, if we partition μjk into a
series of M subsequent vectors, and denote each as μ

(m)
jk , we obtain the means

of D dimensional Gaussians of the corresponding GMM.
Let Zk = {zkn}Nk

n=1 be a set of Nk, 1-of-M coded latent membership vec-
tors for the points in Xk. Each zkn ∈ {0, 1}M is a vector of zeros, whose mth
component equals one (zknm = 1) indicates that xkn is a sample from the D
dimensional Gaussian m. The precision (inverse of the variance) of Gaussians is
globally denoted by βID×D. Similarly, let tk ∈ {0, 1}J be a latent, 1-of-J coded
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vector whose component j being one (tkj = 1) indicates the membership of the
Xk to cluster j. The conditional pdf of xkn is then given by:

p(xkn|zkn, tk, β,W,vk) =
J∏

j=1

M∏

m=1

(
N (xkn|μ(m)

jk , β−1ID×D)zknm

)tkj

(1)

where W = {Wj}J
j=1 is the set of principal component matrices. To facilitate

our derivations, we introduce the following prior distributions over Wj , vk, and
β, which are conjugate to the normal distribution in Eq. (1):

p(Wj)=
L∏

l=1

N (W(l)
j |0, α−1

jl I), p(vk)=N (vk|0, I), p(β)=Γ (β|a0, b0) (2)

The hyper-parameters of the Gamma distribution in the last line are set to
a0 = 10−3 and b0 = 1 to have a flat prior over β. Next, we respectively denote
the mixture weights of GMMs and MPPCA by πz and πt vectors, each hav-
ing a Dirichlet distribution as priors: p(πz) = Dir(πz|λz

0), p(πt) = Dir(πt|λt
0).

where we set λz
0 = λt

0 = 10−3. The conditional distributions of membership
vectors of zkn (for points) and tk (for point sets) given mixing weights are
specified by two multi-nomial distributions: p(zkn|πz) =

∏M
m=1 (πz

m)zknm , and
p(tk|πt) =

∏J
j=1 (πt

j)
tkj , where 0 ≤ πz

m, 0 ≤ πt
j are the components m, j of πz,

πt, respectively. We now construct the joint pdf of the sets of all random vari-
ables, by assuming (conditional) independence and multiplying the pdfs where
needed. Let X = {Xk}K

k=1, Z = {Zk}K
k=1, V = {vk}K

k=1, and T = {tk}K
k=1, then

the distributions of these variables can be written as:

p(W)=
∏

j

p(Wj |αj), p(Z|πz)=
∏

k

p(Zk|πz)=
∏

k

∏

n

p(zkn), p(T|πt)=
∏

k

p(tk|πt)

p(V) =
∏

k

p(Vk), p(X|Z,T,W,V, β) =
∏

k

p(Xk|Zk, tk, β,W,vk), (3)

p(Xk|Zk, tk, β,W,vk) =

Nk∏

n=1

p(xkn|zkn, tk, β,W,vk) (4)

Having defined the required distributions through Eqs. (1)-(3), the distribution
of the complete observation is given as

p(X,Z,T,W,V,πt, πz, β) = p(X|Z,T,W,V,β)p(Z|πz)p(T|πt)p(πz)p(πt)p(W)p(V)p(β) (5)

Figure 1 is a graphical representation for the generative model considered in
this paper. Given observations (colored dark gray) as D dimensional points, our
problem is to estimate the posterior distributions of all the latent random vari-
ables (hollow circles) and hyper-parameters, which include the discrete cluster
and the continuous variables (e.g. means and modes of variations).

2.2 Approximated Inference

If we denote the set of latent variables as θ = {Z,T,W,V,πt,πz, β}, direct
inference of p(θ|X) (as our objective) is analytically intractable thus an approxi-
mated distribution, q(θ), is sought. Owing to the dimensionality of the data, we
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prefer Variational Bayes (VB) over sampling based methods. The VB principle
for obtaining q(θ) is explained briefly. The model evidence, i.e. p(X) 1, can be
decomposed as p(X) = L + KL(p(θ|X)||q(θ)), where 0 ≤ KL(·||·) denotes the
Kullback-Leilber divergence, and

L =
∫

q(θ) ln
p(X,θ)
q(θ)

dθ ≤ p(X) (6)

is a lower bound on p(X). To obtain q(θ), the KL divergence between the true and
the approximated posterior should be minimized. However, this is not feasible
because the true posterior is not accessible to us. Thus, q(θ) can be computed
by maximizing L. We approximate the true posterior as a factorized form, i.e.,
q(θ) =

∏
i q(θi), where θi refers to any of our latent variables. This factorization

leads to the following tractable result: let ε be the variable of interest in θ, and
ξ = θ − ε, then the variational posterior of ε is given by ln q(ε) = 〈ln p(X,θ)〉ξ +
const, where p(X,θ) is given in Eq. (5), 〈·〉ξ denotes the expectation w.r.t. to the
product of q(·) of all variable in ξ.

2.3 Update of Posteriors and Hyper-Parameters

In this section, we provide equations to update the variational posteriors. Thanks
to conjugacy of priors to likelihoods, these derivations are done by inspecting
expectations of logarithms and matching posteriors to their corresponding like-
lihood template forms. Detailed proof of our derivations is skipped for brevity.
Starting from Z variables we have q(Z) =

∏
k q(Zk) =

∏
k,m,n(rknm)zknm Under

this equation, we have 〈zknm〉 = rknm, where the right hand side can be com-
puted using the following relationships:

rknm =
ρknm∑
m′ ρknm′

, ln ρknm = −〈β〉
2

∑

j

〈tkj〉〈|xkn − μ
(m)
jk |2〉+〈ln πz

m〉 (7)

The first term can be directly computed using the expectations of W and V as
follows: 〈|xkn − μ

(m)
jk |2〉 = |xkn − 〈μ(m)

jk 〉|2+Tr[Cov[μjk](m,m)], where the super
indexes (·), (·, ·) specify the D and D × D dimensional block numbers of the
vector 〈μjk〉 = 〈Wj〉〈vk〉 + μ̄j and the matrix defined by:

Cov[μjk] = 〈Wj〉〈vkvT
k 〉〈Wj〉T+

∑

l

〈vkvT
k 〉llCov[W(l)

j ] (8)

To simplify the rest our notations, we introduce the following auxiliary variables:

Rk = Diag(Rk1 · · · Rk1︸ ︷︷ ︸
D copies

, · · · , RkM · · · RkM︸ ︷︷ ︸
D copies

), x̄k = [x̄T
k1, · · · , x̄T

kM ]T (9)

1 More precisely, p(X) is conditioned on parameters with no prior distribution. Hence,
it is equivalently referred to as marginal likelihood.
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where: Rkm =
∑

n rknm, and x̄km =
∑

n rknmxkn. Under these definitions, the
posteriors of T is given by q(T) =

∏
k q(tk) =

∏
k,j(r

′
kj)

tkj where, in analogy to
Eq. (7), we have: 〈tkj〉 = r′

kj and

r′
kj =

ρ′
kj

Σj′ρ′
kj′

, ln ρ′
kj = 〈β〉Tr[−1

2
Rk〈μjkμT

jk〉 + μjkx̄T
k ] +〈ln πt

j〉 (10)

The posterior of the principal components is given by

q(W) =
∏

j,l

q(W(l)
j ), q(W(l)

j ) = N (W(l)
j |〈W(l)

j 〉,Cov[W(l)
j ]) (11)

where the means and covariance matrices are specified as:

Cov[W(l)
j ] = [αjlI + 〈β〉

∑

k

〈tkj〉〈vkvT
k 〉llRk]−1

〈W(l)
j 〉 = 〈β〉Cov[W(l)

j ](
∑

k

〈tkj〉Qkj
(l)) (12)

Here, the auxiliary matrix Qkj is defined as

Qkj = (x̄k − Rkμ̄j)〈vk〉T − Rk〈Wj〉
[
〈vkvT

k 〉 − Diag(diag〈vkvT
k 〉)

]
(13)

where the inner diag operator copies the main diagonal of 〈vkvT
k 〉 into a vector,

and the outer Diag transforms the vector back into a diagonal matrix. The
posterior of vk vectors is given by

q(V)=
∏

k

q(vk)=N (vk|〈vk〉,Cov[vk]), Cov[vk]=
[
I + 〈β〉

∑

j

〈tkj〉〈WT
jRkWj〉

]−1

〈WT
jRkWj〉=〈Wj〉TRk〈Wj〉 + Diag

(
Tr[RkCov[W(1)

j ]], · · · ,Tr[RkCov[W(L)
j ]]

)

〈vk〉 = 〈β〉Cov[vk]
∑

j

〈tkj〉〈Wj〉T (x̄k − Rkμ̄j) (14)

The posterior of the precision β is a Gamma distribution specified by:

q(β) = Γ (β|a, b), a = a0+
DN

2
, b = b0+

1
2

∑

k,n,m,j

〈zknm〉〈tkj〉〈|xkn − μ
(m)
jk |2〉 (15)

Under these definitions, we have 〈β〉 = a/b and 〈ln β〉 = ψ(a) − ln(b), where ψ
is the Digamma function. Finally, the posteriors of the mixing coefficients are
Dirichlet distributions:

q(πt)=Dir(πt|λt), λt
j=λt

0+
∑

k

〈tkj〉, q(πz)=Dir(πz|λz), λz
m=λz

0 +
∑

k,n

〈zknm〉 (16)
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Using Eq. (16), the expectations related to the mixing coefficients are computed
as 〈πz

m〉 = λz
m/

∑
m′ λz

m′ , and 〈ln λt
j〉 = ψ(λt

j)−ψ(
∑

j′ λt
j′). Finally, by maximiz-

ing Eq. (6) with regard to μ̄j and αjl, we obtain:

μ̄j =
[ ∑

k

〈tkj〉Rk

]−1[ ∑

k

〈tkj〉(x̄k − Rk〈Wj〉〈vk〉)
]
, (17)

αjl = MD/
[
|〈W(l)

j 〉|2 + Tr[Cov[W(l)
j ]]

]
(18)

2.4 Predictive Distribution

For a new test point set Xr = {xrn}Nr
n=1, with K < r, we can obtain a model

projected point set as X̂r = {〈x̂rn〉}Nr
n=1, where 〈x̂rn〉 =

∫
x̂rnp(x̂rn|Xr,X)dx̂rn.

Here, the predictive distribution should be computed by marginalizing the cor-
responding latent and model variables by

p(x̂rn|Xr,X)=
∑

zrn,tr

∫
p(x̂rn|zrn, tr, β,W,vr)p(zrn, tr, β,W,vr|Xr,X)dWdvrdβ

Because this integral is analytically intractable, we use an approximation for
the posterior using p(zrn, tr, β,W,vr|Xr,X) ≈ q(zrn)q(tr)q(vr)q(β)q(W). Thus,
having Xr we iterate over updating q(zrn),q(tr) and q(vr), and replace q(β) and
q(W) from the training step.

2.5 Initialization and Computational Burden

To initialize the model, a GMM with M Gaussians is fit to the set of all points.
Next, for the Gaussian component m in the GMM, a corresponding point from Xk

is identified having the maximum posterior probability in Xk. Iterating over M
Gaussian components, all the corresponding points from point set k are identified
and concatenated to form an MD dimensional vector. This procedure is then
repeated over K training point sets and the obtained vectors are clustered using
k-means. Next, by applying PCA at each cluster, we identify the mean μ̄j , Wj

as the first L components, and vk as the projections of the original vectors to
these components. Finally, β is initialized as the component wise average L2
difference of the original and the PCA projected vectors. In practice, we have
observed that for a set of fifty point sets each having 4000 points, sufficient
convergence is achieved by 50 VB iterations in nearly an hour.

3 Results

We evaluate our method on both synthetic and real data sets of cardiac MRI as
follows. The reliability of the lower bound as a criterion to select the number of
clusters of point sets is evaluated in both data types. We also measure generaliza-
tion and specificity errors, and compare them to the standard PCA based SSM
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Fig. 2. Clustering and mode estimation of synthetic point sets. (a) overlay of 750
point sets, (b) corresponding color separated ground true clusters, (c) estimated labels
(colors), GMM centroids showing local modes of variations, (d) lower bound L on the
model evidence versus number of clusters, indicating J = 3 as the optimal number
(Color figure online).

Fig. 3. Short axis MR images from normal (a), PH (b), and HCM patients (c).

on the real data sets. Generalization ability is the error between the actual and
the model projected point sets. Specificity is related to the ability of the model to
instantiate correct samples resembling the training data. We randomly divide the
available point sets into the testing and training subsets and trained the model
using latter. Next, we measure the generalization and specificity using the test-
ing, and model generated point sets as explained in [4]. To measure the distances
between point sets, we considered: d(Xk, X̂k) = 1/Nk

∑
x miny∈X̂k

||x − y||2.
Here, Nk is the number of points in Xk, and X̂k denote the model projected point
set. Furthermore, since d is asymmetric, we also compute d̂(Xk, X̂k) = d(X̂k,Xk)
and report both.

3.1 Synthetic Dataset

We investigate the problem of selecting a proper number of clusters, J , from
the data by generating synthetic point sets using ancestral sampling [1]. We
expect the model evidence, i.e. p(X|J), to reach a maximum for the proper
number of clusters used to generate data, due to the marginalization of the
latent variables. Three distinctive 2D point set patterns are generated as the
cluster means. To help visualization, by setting L = 1, a single mode of variation
per cluster is considered and sampled from p(Wj). Next, a set of 250 point



106 A. Gooya et al.

Fig. 4. Quantitative results for models trained by clustering normal-HCM (top row)
and normals-PH (bottom row) cases versus number of clusters, (a-b) Generalization
errors as distances between the model projected and original test sets (red), and vice
versa (blue), (c-d) Specificity errors as distances between model generated and training
point sets (red), and vice versa (blue). (e-f) show the model evidecene (Color figure
online).

sets for each cluster is generated by sampling from p(vk) and by applying the
corresponding variations at each point (local Gaussians in Fig. 2), by adding the
measurement noise (by the precision of β = 1). The number of points in each
point set is around 100, but this is variable over the population and thus no
correspondence is assumed. For 1 ≤ J ≤ 5, we repeated 15 rounds of experiments
with variable patterns (one shown in Fig. 2), and recorded the mean and one
standard deviation on L (Fig. 2(d)). As shown, for J = 3 a maximum for the
model evidence is correctly found, and the color match between (b)-(c) indicates
correct clustering of point sets. In addition, the linear patterns of GMM means,
i.e. μ

(m)
jk , in (c) match the local structures of the points in (d), showing that

variation modes are estimated reasonably.

Table 1. Generalization and Specificity errors (in mm) for PCA and the proposed
method at J = 2, 6. Significant differences between results of PCA and our method
are indicated in bold (p-value < 0.001). Double lines separate d|d̂ distances computed
from the models trained by clustering PH or HCM patients versus normals.

Generalization Specificity

PH HCM PH HCM

PCA 2.9±0.4 2.9±0.4 3.1±0.4 3.2±0.5 3.2±0.3 3.2±0.3 3.5±0.4 3.5± 0.6

J = 2 2.5±0.5 1.9±0.2 2.4±0.3 1.9±0.2 3.0±0.1 2.8±0.2 3.3±0.1 3.2±0.2
J = 6 2.2±0.5 1.7±0.2 2.2±0.3 1.8±0.2 2.8±0.1 2.8±0.3 2.9±0.1 2.8±0.1
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3.2 Cardiac Datasets

We apply the proposed approach to the analysis of cardiac data sets, which are
known to display significant variability and geometrical complexity. We consider
three groups of individuals, 36 normal cases, 20 subjects with Pulmonary Hyper-
tension (PH), and 20 subjects with Hypertrophic Cardiomyopathy (HCM). The
data acquisition of these data sets were done using a balanced Steady State Free
Precession protocol under various brands of 1.5 MR scanners, resulting in image
matrices of 256 × 256 in short axial direction and slice thicknesses of 8 − 10 mm.

These subjects differ in the properties of the cardiac shapes. For PH patients,
which are associated with pulmonary vascular proliferation [12], complex shape
remodeling of both the left and right ventricles occurs (see Fig. 3). As a result,
the RV becomes very dilated, pushing onto the LV, which deforms and loses its
roundness [14]. On the other hand, HCM [9] is a condition in which the muscle of
the heart shows an excessive thickening, and the most characteristic feature is a
hypertrophied LV (asymmetric thickening prominently involving the ventricular
septum) without abnormal enlargement of the ventricular cavities.

Fig. 5. Means and variation modes for normal (a), PH (b), and HCM (c) cases, with
mean models in the middle and variations in opposite directions at two sides, (d-f)
axial and coronal cross sections of the mean models for each population.

To derive cardiac surfaces, the initial shape was obtained by labeling the
MRI slices, thus obtaining binary masks, then a volume mesh was generated
form the binary images, finally, we extracted a surface mesh and considered



108 A. Gooya et al.

vertices of the mesh as a point set. Next, we registered the point sets removing
scaling, rotation the translation effects. Because we want to compare our method
to standard PCA, point correspondences between training sets was needed and
established using the projection method proposed in [10]. However, to implement
our proposed method we ignore this information.

We cluster mixtures of normal-PH and normal-HCM cases in two sets of
experiments. We randomly pick 33 (20 normals and 13 pathological) cases, ignore
the labels and perform clustering. We then sample random point sets from the
trained generative model and compute specificity. To quantify generalization
on the test point sets, we use Eqn. (19) to compute model projected point sets
for the test set. The number of clusters, i.e. J , is varied from 1 to maximum 20.
At each number, we compare both measures to the PCA model, taking 13-15
number of modes to cover 95% of the full trace of the covariance matrix.

Figure 4 shows the quantitative results obtained as described above. It can
be seen that the generalization distances, i.e., d (blue) and d̂ (red), are mini-
mum at J = 6. Compared to PCA, both generalization and specificity improve
(indicated in Table 1). Also, note that as the number of clusters increases and
the variations within each cluster are eliminated, specificity error improves. To
understand this behavior, consider an extreme case, where every training point
set becomes the cluster of it own. In that case, all the intra-cluster variations are
eliminated and the trained model becomes strictly specific to the training data.
It is noteworthy that the model evidence is maximized at J = 2 (see Fig. 4(c)),
which is the expected number of clusters at each experiment. The discrepancy
between this number of clusters and J = 6 where the generalization error is
minimum could be due to the approximations that are made in computing the
predictive distribution. Nevertheless, as shown in Table 1, at both J = 2, 6 results
are significantly improved over PCA model.

Next, we evaluate the clustering efficiency by comparing the estimated labels
of the point sets to ground truths. For these experiments, by setting L = 2,
J = 2, we independently apply the method to cluster all the available normal-
PH and normal-HCM cases. We observe that at both experiments only 2 out of
53 cases are clustered incorrectly as normals cases. The first mode of variation
both in 3D and in longitudinal cross sections are visualized in Fig. 5. It can be
seen that, in the normal heart (see (a) and (d)), LV is significantly larger than
RV, and when compared to PH and HCM, it is more spherical. On the other
hand, in the PH heart ((b) and (e)), the RV is evidently dilated and the LV loses
it roundness. Finally, significant thickening of the septum and shrinkage of LV
are noticeable in the HCM heart ((c) and (f)). These morphological variations
in the normal heart have been reported for both pathologies [9,14].

4 Conclusion

We proposed a unified framework for joint clustering and component analysis
of point sets. We modeled the pdf of point sets as a mixture of principal com-
ponent analyzers, where the labels of the point sets and variations of clusters
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are derived through a Variational Bayesian framework. The method is flexible
to handle point sets with no point-to-point correspondences. We showed that
the method can identify the number of clusters automatically, and outperform
traditional PCA based SSMs in generalization and specificity. Application of the
proposed framework to heart data sets shows successful clustering of normal and
pathological cases, as well as extraction of their intra-cluster variations.
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