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Abstract. Magnetic resonance imaging (MRI) is the dominant modal-
ity for neuroimaging in clinical and research domains. The tremendous
versatility of MRI as a modality can lead to large variability in terms of
image contrast, resolution, noise, and artifacts. Variability can also man-
ifest itself as missing or corrupt imaging data. Image synthesis has been
recently proposed to homogenize and/or enhance the quality of existing
imaging data in order to make them more suitable as consistent inputs
for processing. We frame the image synthesis problem as an inference
problem on a 3-D continuous-valued conditional random field (CRF). We
model the conditional distribution as a Gaussian by defining quadratic
association and interaction potentials encoded in leaves of a regression
tree. The parameters of these quadratic potentials are learned by max-
imizing the pseudo-likelihood of the training data. Final synthesis is
done by inference on this model. We applied this method to synthesize
T2-weighted images from T1-weighted images, showing improved syn-
thesis quality as compared to current image synthesis approaches. We
also synthesized Fluid Attenuated Inversion Recovery (FLAIR) images,
showing similar segmentations to those obtained from real FLAIRs.
Additionally, we generated super-resolution FLAIRs showing improved
segmentation.

Keywords: Magnetic resonance · Image synthesis · Conditional random
field

1 Introduction

Image synthesis in MRI is a process in which the intensities of acquired MRI
data are transformed in order to enhance the data quality or render them more
suitable as input for further image processing. Image synthesis has been gaining
traction in the medical image processing community in recent years [6,15], as
a useful pre-processing tool for segmentation and registration. It is especially
useful in MR brain imaging, where a staggering variety of pulse sequences like
Magnetization Prepared Gradient Echo (MPRAGE), Dual Spin Echo (DSE),
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FLAIR etc. are used to interrogate the various aspects of neuroanatomy. Ver-
satility of MRI is a boon for diagnosticians but can sometimes prove to be a
handicap when performing analysis using image processing. Automated image
processing algorithms are not always robust to variations in their input [13].
In large datasets, sometimes images are missing or corrupted during acquisition
and cannot be used for further processing. Image synthesis can be used as a
tool to supplement these datasets by creating artificial facsimiles of the miss-
ing images by using the available ones. An additional source of variability is
the differing image quality between different pulse sequences for the same sub-
ject. An MPRAGE sequence can be quickly acquired at a resolution higher than
1 mm3, which is not possible for FLAIR. Image synthesis can be used to enhance
the resolution of existing low resolution FLAIRs using the corresponding high
resolution MPRAGE images, thus leading to improved tissue segmentation.

Previous work on image synthesis has proceeded along two lines, (1)
registration-based, and (2) example-based. Registration-based [3,12] approaches
register the training/atlas images to the given subject image and perform inten-
sity fusion (in the case of multiple training/atlas pairs) to produce the final
synthesis. These approaches are heavily dependent on the quality of registra-
tion, which is generally not accurate enough in the cortex and abnormal tissue
regions. Example-based approaches involve learning an intensity transforma-
tion from known training data pairs/atlas images. A variety of example-based
approaches [5,8,15] have been proposed. These methods treat the problem as
a regression problem and estimate the synthetic image voxel-by-voxel from the
given, available images. The voxel intensities in the synthetic image are assumed
to be independent of each other, which is not entirely valid as intensities in a
typical MR image are spatially correlated and vary smoothly from voxel-to-voxel.

In this work, we frame image synthesis as an inference problem in a prob-
abilistic discriminative framework. Specifically, we model the posterior distrib-
ution p(y|x), where x is the collection of known images and y is the synthetic
image we want to estimate, as a Gaussian CRF [10]. Markov random field (MRF)
approaches lend themselves as a robust, popular way to model images. How-
ever in a typical MRF, the observed data x are assumed to be independent
given the underlying latent variable y, which is a limiting assumption for typi-
cal images. A CRF, by directly modeling the posterior distribution allows us to
side-step this problem. CRFs have been used in discrete labeling and segmen-
tation problems [9]. A continuous-valued CRF, modeled as a Gaussian CRF,
was first described in [17]. Efficient parameter learning and inference procedures
of a Gaussian CRF were explored in the Regression Tree Fields concept in [7].
We also model the posterior distribution as a Gaussian CRF, the parameters of
which are stored in the leaves of a single regression tree. We learn these parame-
ters by maximizing a pseudo-likelihood objective function given training data.
Given a subject image, we build the Gaussian distribution parameters from the
learned tree and parameters. The prediction of the synthetic subject image is
a maximum a posteriori (MAP) estimate of this distribution and is estimated
efficiently using conjugate gradient descent.
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We refer to our method as Synthesis with Conditional Random Field Tree
or SyCRAFT. We applied SyCRAFT to synthesize T2-weighted (T2-w) images
from T1-w (T1-w) images and showed a superior quality of synthesis compared to
state-of-the-art methods. We also applied our method to synthesize FLAIRs from
corresponding T1-w, T2-w, and PD-weighted (PD-w) images and showed that
tissue segmentation on synthetic images is comparable to that achieved using
real images. Finally, we used our method in an example-based super-resolution
framework to estimate a super-resolution FLAIR image and showed improved
tissue segmentation. In Sect. 2, we describe our method in detail, followed by
experiments and results in Sect. 3 and discussion in Sect. 4.

2 Method

2.1 Model

We start with the definition of a CRF, initially proposed in [10]. A CRF is defined
over a graph G = (V,E), V and E are the sets of vertices and edges respectively, of
G. In an image synthesis context, the set of all voxels i in the image domain form
the vertices of V . A pair of voxels (i, j), i, j ∈ V , that are neighbors according
to a predefined neighborhood, form an edge in E. Let x = {x1, . . . ,xm} be the
observed data. Specifically, x represents the collection of available images from
m pulse sequences from which we want to synthesize a new image. Let y be the
continuous-valued random variable over V , representing the synthetic image we
want to predict. In a CRF framework, p(y|x) is modeled and learned from training
data of known pairs of (x,y). Let y = {yi, i ∈ V }. Then (y,x) is a CRF if, con-
ditioned on x, yi exhibit the Markov property, i.e. p(yi|x,yV \i) = p(yi|x,yNi

),
where Ni = {j | (i, j) ∈ E}, is the neighborhood of i.

Assuming p(y|x) > 0,∀y, from the Hammersley-Clifford theorem, we can
express the conditional probability as a Gibbs distribution. The factorization of
p(y|x) in terms of association potentials and interaction potentials is given as,

p(y|x) =
1
Z

exp[−{
∑

i∈V

EA(yi,x; θ) + λ
∑

i∈V

∑

j∈Ni

EI(yi, yj ,x; θ)}]. (1)

EA(yi,x; θ) is called an association potential, defined using the parameter set θ,
EI(yi, yj ,x; θ) is called an interaction potential, λ is a weighting factor, and Z
is the partition function. If EA and EI are defined as quadratic functions of y,
we can express this distribution as a multivariate Gaussian as below,

p(y|x) =
1

(2π)
|V |
2 |Σ| 1

2

exp(−1
2
(y − μ(x))T Σ(x)−1(y − μ(x)))

=
1
Z

exp(−1
2
(yTA(x)y) − b(x)Ty). (2)

The parameters A(x) and b(x) are dependent on the association and interaction
potential definitions. In most classification tasks involving CRF’s the association
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potential is defined as the local class probability as provided by a generic classifier
or a regressor [9]. Image synthesis being a regression task, we chose to model
and extract both association and interaction potentials from a single regressor,
in our case a regression tree. We define a quadratic association potential as

EA(yi,x; θ) =
1
2
(aL(i)y

2
i ) − bL(i)yi, (3)

where {aL(i), bL(i)} ∈ θ are the parameters defined at the leaf L(i). L(i) is the
leaf where the feature vector fi(x) extracted for voxel i from the observed data x,
lands after having been passed through successive nodes of a learned regression
tree, Ψ . The features and regression tree construction are described in Sect. 2.2.

The interaction potential usually acts as a smoothing term, but can also be
designed in a more general manner. We define interaction potentials for each
type of neighbor. A ‘neighbor type’ r ∈ {1, . . . , |Ni|} is given by a voxel i and
one of its n (= |Ni|) neighbors. For example, a neighborhood system with four
neighbors (up, down, left, right) has four types of neighbors, and hence four
types of edges. The complete set of edges E can be divided into non-intersecting
subsets {E1, . . . , Er, . . . , En} of edges of different types. Let the voxel j be such
that (i, j) ∈ E is a neighbor of type r, that is (i, j) ∈ Er. Let the corresponding
feature vectors fi(x) and fj(x) land in leaves L(i) and L(j) of the trained tree
Ψ , respectively. The interaction potential is modeled as

EI(yi, yj ,x; θ) =
1
2
(αL(i)r

y2
i +βL(i)r

yiyj +γL(i)r
y2

j )−ωL(i)1r
yi −ωL(i)2r

yj . (4)

Let the set of leaves of the regression tree Ψ be LΨ . Each leaf l ∈ LΨ stores the set
of parameters θl = {al, bl, αl1, βl1, γl1, ωl11, ωl21, . . . , αln, βln, γln, ωl1n, ωl2n}.
The complete set of parameters is thus, θ = {θl|l ∈ LΨ}. Our approach bears
similarity to the regression tree fields concept introduced in [7], where the authors
create a separate regression tree for each neighbor type. Thus with a single asso-
ciation potential and a typical 3D neighborhood of 26 neighbors, they would
need 27 separate trees to learn the model parameters. Training a large num-
ber of trees with large training sets makes the regression tree fields approach
computationally expensive. It was especially not feasible in our application with
large 3D images, more neighbors, and high dimensional feature vectors. We can
however train multiple trees using bagging to create an ensemble of models to
create an average, improved prediction. The training of a single regression tree
is described in the next section.

2.2 Learning a Regression Tree

As mentioned before, let x = {x1,x2, . . . ,xm} be a collection of co-registered
images, generated by modalities Φ1, . . . , Φm, respectively. The image synthesis
task entails predicting the image y of a target modality Φt. The training data
thus consists of known co-registered pair of {x,y}. At each voxel location i, we
extract features fi(x), derived from x. For our experiments we use two types
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of features, (1) small, local patches, (2) context descriptors. A small 3D patch,
denoted by pi(x) = [pi(x1), . . . ,pi(xm)], where the size of the patch is typically
3 × 3 × 3 and provides us with local intensity information.

We construct the context descriptors as follows. The brain images are rigidly
aligned to the MNI coordinate system [4] with the center of the brain approx-
imately at the center of the image. Thus for each voxel we can find out the
unit vector u from the voxel i to the origin. We can define 8 directions by
rotating the component of u in the axial plane by angles {0, π

4 , . . . , 7π
4 }. In

each of these directions, we select average intensities of cubic regions of cube-
widths {w1, w2, w3, w4} at four different radii {r1, r2, r3, r4} respectively. This
becomes a 32-dimensional descriptor of the spatial context surrounding voxel i.
In our experiments we used w1 = 3, w2 = 5, w3 = 7, w4 = 9 and r1 = 4, r2 =
8, r3 = 16, r4 = 32. These values were chosen empirically. We denote this con-
text descriptor by ci(x). The final feature vector is thus fi(x) = [pi(x), ci(x)].
fi(x) is paired with the voxel intensity yi at i in the target modality image y
to create training data pairs (fi(x), yi). We train the regression tree Ψ on this
training data using the algorithm described in [2]. Once the tree is constructed,
we initialize θl at each of the leaves l ∈ LΨ . θl is estimated by a pseudo-likelihood
maximization approach.

2.3 Parameter Learning

An ideal approach to learn parameters would be to perform maximum likelihood
using the distribution in Eq. 2. However as mentioned in [7], estimation of the
mean parameters Σ and μ, requires calculation of A−1 (see Eq. 2). The size of
A is |V × V | where |V | is the number of voxels in y and for large 3D images,
|V | is of the order of ∼106, which makes the computation practically infeasible.
We follow [7] and implement a pseudo-likelihood maximization-based parameter
learning.

Pseudo-likelihood is defined as the product of local conditional likelihoods,

θ̂MPLE = argmaxθ

∏

i∈V

p(yi | yNi
,x; θ). (5)

The local conditional likelihood can be expanded as

p(yi | yNi
,x; θ) =

p(yi,yNi
,x; θ)∫

R
p(yi,yNi

,x; θ)dyi
,

− log p(yi | yNi
,x; θ) = − log p(yi,yNi

,x; θ) + log Zi, (6)

where Zi =
∫
R

p(yi,yNi
,x; θ)dyi. Using the CRF definition in Eq. 1, we can write

− log p(yi,yNi
,x; θ) as

− log p(yi,yNi
,x; θ) = EA(yi,x; θ) + λ

∑

j∈Ni

EI(yi, yj ,x; θ)

=
1
2
aCiy

2
i − bCiyi, (7)
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where we can find aCi(Eq. 8) and bCi,(Eq. 9) by matching quadratic and linear
terms. Equations 8 and 9 show the contribution of interaction potentials induced
by the neighbors of voxel i. The r̃ denotes the type of edge which is symmetric to
type r. For example, if edges of type r are between voxel i and its right neighbor,
then r̃ denotes the type that is between a voxel and its left neighbor.

aCi = aL(i) + λ(
∑

j|(i,j)∈Er

αL(i)r
+

∑

h|(h,i)∈Er̃

γL(h)r̃
) (8)

bCi = bL(i) + λ(
∑

j|(i,j)∈Er

ωL(i)1r
+

∑

h|(h,i)∈Er̃

ωL(h)2r̃

−1
2

∑

j|(i,j)∈Er

βL(i)r
yj − 1

2

∑

h|(h,i)∈Er̃

βL(h)r̃
yh). (9)

The integral of exponential terms Zi in Eq. 6, is also known as the log partition
term. To optimize objective functions with log partition terms, we express Zi

in its variational representation using the mean parameters μi = [μi, σi] [18].
The parameter set θCi = {bCi, aCi} that defines the exponential distribution
is known as the canonical parameter set. The conjugate dual function of Zi is
defined as follows,

Z∗
i (μi, σi) = supθCi

〈θCi,μi〉 − Zi(θCi), (10)

where 〈〉 denotes inner product. Substituting θCi and the expression for
− log p(yi,yNi

,x; θ) from Eq. 7, we get the negative pseudo-likelihood con-
tributed by voxel i to be,

NPLi(θ) = bCi(μi − yi) +
1
2
aCi(y2

i − σi) + log(σi − μ2
i ) + log(2πe), (11)

where the mean parameters are given by μi = bCi

aCi
and σi = 1

aCi
+ μ2

i .
Equation 11 is similar to the one in [7], as the overall model is a Gaussian

CRF. The objective function is linearly related to θ and is thus convex [7,18]. We
minimize

∑
i∈V NPLi(θ) using gradient descent. The weighting factor λ = 0.1,

was chosen empirically in our experiments. The regression tree fields concept per-
formed a constrained, projected gradient descent on the parameters to ensure
positive definiteness of the final precision matrix (A(x) in Eq. 1) [7]. We observed
that unconstrained optimization in our model and applications generated a posi-
tive definite A(x). Training in our experiments takes about 20–30 min with ∼106

samples of dimensionality of the order of ∼102 and neighborhood size of 26, on
a 12 core 3.42 GHz machine.

2.4 Inference

Given a test image set x̂ = {x̂1, . . . , x̂m}, which are co-registered, we first extract
features fi(x̂) from all voxel locations i. Next, we apply the learned regression
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(a) (b) (c) (d) (e)

Fig. 1. Shown are (a) the input MPRAGE image, (b) the true T2-w image, and the
synthesis results from the MPRAGE for each of (c) FUSION, (d) MIMECS, and
(e) SyCRAFT (our method). The lesion (green circle) and the cortex (yellow circle)
in the true image are synthesized by MIMECS and SyCRAFT, but not by FUSION
(Colour figure online).

tree Ψ to each of fi(x̂) to determine the leaf node L(i) in Ψ . Using the learned
parameters at these leaves, we construct the matrix A(x̂) and the vector b(x̂),
(see Eq. 2). The diagonal and off-diagonal elements of A(x̂) are populated by
matching the linear and quadratic terms from Eq. 2. The MAP estimate for
p(y|x̂) as well as the conditional expectation E[y|x̂] is the mean of the multi-
variate Gaussian described in Eq. 2. The expression for the mean and hence the
estimate ŷ is given by,

ŷ = A(x̂)−1b(x̂). (12)

A(x̂) is a large (∼106×106), sparse (∼27×106 non-zero entries), symmetric posi-
tive definite matrix. Thus, we use an iterative preconditioned conjugate gradient
descent method to solve the linear system in Eq. 12. The estimate ŷ is our syn-
thetic image. Estimates from multiple (5 in our experiments) trained models
using bagging can also be averaged to produce a final result.

3 Results

3.1 Synthesis of T2-w Images from T1-w Images

In this experiment, we used MPRAGE images from the publicly available multi-
modal reproducibility (MMRR) data [11] and synthesized the T2-w images of the
DSE sequence. The multimodal reproducibility data consists of 21 subjects, each
with two imaging sessions, acquired within an hour of each other. Thus there are
42 MPRAGE images. We excluded data of five subjects (ten images), which were
used for training and synthesized the remaining 32. We compared SyCRAFT to
MIMECS [15] and multi-atlas registration and intensity fusion (FUSION) [3].
We used five subjects as the atlases for FUSION with the parameters β = 0.5
and κ = 4 (fuse the four best patch matches).

We used PSNR (peak signal to noise ratio), universal quality index
(UQI) [19], and structural similarity (SSIM) [20] as metrics. UQI and SSIM
take into account image degradation as observed by a human visual system.
Both have values that lie between 0 and 1, with 1 implying that the images
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Table 1. Mean and standard deviation (Std. Dev.) of the PSNR, UQI, and SSIM
values for synthesis of T2-w images from 32 MPRAGE scans.

PSNR UQI SSIM

Mean (Std) Mean (Std.) Mean (Std)

FUSION 52.73 (2.78)a 0.78 (0.02) 0.82 (0.02)

MIMECS 36.13 (2.23) 0.78 (0.02) 0.77 (0.02)

SyCRAFT 49.73 (1.99) 0.86 (0.01)a 0.84 (0.01)a

a Statistically significantly better than either of the other
two methods (α level of 0.01) using a right-tailed test.

Fig. 2. Subject input images along with the SyCRAFT FLAIR and true FLAIR images.

are equal to each other. SyCRAFT performs significantly better than both the
methods for all metrics except PSNR. Figure 1 shows the results for all three
methods along with the true T2-w image. FUSION results (Fig. 1(b)) have the
highest PSNR, but produce anatomically incorrect images, especially in the pres-
ence of abnormal tissue anatomy (lesions for example) and the cortex. Overall,
SyCRAFT produces an image that is visually closest to the true T2-w image
(Table 1).

3.2 Synthesis for FLAIR Images

In this experiment, given atlas PD-w, T2-w, T1-w, and FLAIR images, we trained
SyCRAFT and applied it to subject PD-w , T2-w, and T1-w images, to predict the
subject synthetic FLAIR image. We used our in-house multiple sclerosis (MS)
patient image dataset with 49 subject images, with four training subjects and
testing on the remaining 45. We computed average PSNR (20.81, std = 1.19),
UQI (0.81, std = 0.03) and SSIM (0.78, std = 0.03), over these 45 subjects.
These values indicate that the synthetic FLAIRs are structurally and visually
similar to their corresponding real FLAIRs. Figure 2 shows the input images and
the synthetic FLAIR image along side the real FLAIR image.

Next, we investigated the segmentations acquired from these synthetic
FLAIRs. We would like the segmentation algorithm, LesionTOADS [16], to
behave identically for real and synthetic images. LesionTOADS uses a T1-w and
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Fig. 3. LesionTOADS segmentations for real and synthetic FLAIRs.

Fig. 4. A Bland-Altman plot of lesion volumes for synthetic FLAIRs vs real FLAIRs.

a corresponding FLAIR to generate a multi-class, topologically correct segmenta-
tion in the presence of lesions. We compared the overlap of segmentations obtained
using synthetic FLAIRs to those obtained using real FLAIRs in terms of Dice coef-
ficients (averaged over 45 subjects) for white matter (0.97, std = 0.01) (WM),
gray matter (0.99, std = 0.01) (GM), cerebrospinal fluid (0.97, std = 0.01) (CSF)
and white matter lesions (0.52, std = 0.17) (WML). Figure 3 shows the segmenta-
tions by LesionTOADS on real and synthetic FLAIRs. The overlap is very good
for WM, GM, and CSF, however it is low for the WML class. The lesions being
small and diffuse, even a small difference in the overlap can cause a low value for
the Dice coefficient. So, we looked at the overall lesion volumes as provided by
the algorithm for real and synthetic FLAIRs. To understand how different the
lesion volumes are for the synthetic images as compared to the real images, we
created a Bland-Altman [1] plot shown in Fig. 4. Let RFlv be the lesion volumes
given by LesionTOADS using real FLAIRs as input. Let SFlv be the lesion vol-
umes using synthetic FLAIRs as input. Bland-Altman plot is a scatter plot of
(RFlv −SFlv)/2 (y axis) vs. RFlv +SFlv (x axis). The measurements are consid-
ered to be interchangeable if 0 lies within ±1.96σ where σ is the standard devia-
tion of (RFlv − SFlv)/2. There is a small bias between RFlv and SFlv (mean =



742 A. Jog et al.

0.88 × 103) however, 0 does lie between the prescribed limits and hence based on
this plot we can say that these two measurements are interchangeable.

3.3 Super-Resolution of FLAIR

Next, we applied SyCRAFT to synthesize super-resolution (SR) FLAIRs using
corresponding high resolution (HR) MPRAGE and low resolution (LR) FLAIRs.
During a clinical or a research scan, not all the pulse sequences acquired are
acquired at the same fixed resolution. Sequences like the T1-w MPRAGE can
be acquired very fast and hence are easy to image at a high resolution–usually
higher than 1mm3 isotropic. However sequence like DSE and FLAIR have long
repetition times (TR) and inversion times (TI), which limits the amount of scan
time, and therefore, are acquired at a low (2–5mm) through plane resolution.

MPRAGE LR FLAIR HR FLAIR SR FLAIR

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5. Coronal slices of LR, HR, and SR FLAIRs along with their corresponding
LesionTOADS segmentation are shown. It is evident that using a LR FLAIR affects
the segmentation of the lesions and even the cortex.

Our approach can be described as an example-based super-resolution [14]
technique. Example-based methods leverage the high resolution information
extracted from a HR image—an MPRAGE, for example—in conjunction with
a LR input image—corresponding FLAIR image—to generate a SR version of
the LR image. We used HR (1 × 1 × 1 mm3) MPRAGE and FLAIR data, and
downsampled the HR FLAIR to create a LR (1 × 1 × 4 mm3) FLAIR. The
atlas data included an HR MPRAGE + LR FLAIR and we trained SyCRAFT
to predict the HR FLAIR. Given a test HR MPRAGE and LR FLAIR, we
applied SyCRAFT to synthesize a SR FLAIR. We ran the LesionTOADS [16]
segmentation algorithm on three scenarios for each subject: (a) HR MPRAGE
+ LR FLAIR (b) HR MPRAGE + SR FLAIR (c) HR MPRAGE + HR FLAIR.
The last case acting as the ground truth for how the segmentation algorithm
should behave on best case data. We aim to show that the tissue segmentation
using SR FLAIR is closer to that achieved using HR FLAIR, than using LR
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FLAIR. Figure 5(d) shows the super-resolution results, the LR FLAIR image
is shown in Fig. 5(b), and the HR FLAIR image in Fig. 5(c). The correspond-
ing LesionTOADS segmentations are shown in Figs. 5(e, f, g), respectively. The
lesion boundaries as well as the cortex is overestimated when a LR FLAIR is
used. Shown in Fig. 6 are the lesion volumes on 13 subjects for each of the three
scenarios.

Fig. 6. Shown are the lesion volumes acquired by LesionTOADS on HR FLAIR+HR
MPRAGE (black), LR FLAIR+HR MPRAGE (blue), and SR FLAIR+HR
MPRAGE (red). Note that the black plot is closer to the red plot than the blue plot
for all but one of the subjects (Colour figure online).

4 Conclusion

We have described an image synthesis framework, SyCRAFT, as a learning and
inference problem on a Gaussian CRF. The parameters of the Gaussian CRF are
built from parameters stored at the leaves of a single regression tree. Parame-
ter learning is done by maximizing a pseudo-likelihood objective function. Our
approach is extremely flexible in terms of features it can use to create the initial
regression tree. It is also general enough to add larger neighborhoods and long-
range relationships among voxels. Adding more neighbors leads to additional
parameters, but these can be stored in the same initial tree and we do not need
to create any more trees. Our approach is also computationally efficient, train-
ing from millions of samples in 20–30 min, and inference taking less than five
minutes. We compared SyCRAFT to competitive image synthesis algorithms
and showed that the image quality is superior. We also demonstrated practical
benefits of using our algorithm to synthesize FLAIRs and validated the syn-
thesis by showing tissue segmentation equivalent to that obtained using real
FLAIRs. This shows that our image synthesis algorithm can be used in realistic
scenarios, where imaging data is missing and needs to be replaced by a feasible
alternative. Finally we also applied our algorithm to enhance the resolution of
low resolution FLAIRs and showed improved tissue segmentation as a result.
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