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Abstract. We present an innovative framework for reconstructing high-
spatial-resolution diffusion magnetic resonance imaging (dMRI) from
multiple low-resolution (LR) images. Our approach combines the twin
concepts of compressed sensing (CS) and classical super-resolution to
reduce acquisition time while increasing spatial resolution. We use sub-
pixel-shifted LR images with down-sampled and non-overlapping diffu-
sion directions to reduce acquisition time. The diffusion signal in the high
resolution (HR) image is represented in a sparsifying basis of spherical
ridgelets to model complex fiber orientations with reduced number of
measurements. The HR image is obtained as the solution of a convex
optimization problem which can be solved using the proposed algorithm
based on the alternating direction method of multipliers (ADMM). We
qualitatively and quantitatively evaluate the performance of our method
on two sets of in-vivo human brain data and show its effectiveness in
accurately recovering very high resolution diffusion images.

1 Introduction

Diffusion-weighted MRI is a key technique in studying the neural architecture
and connectivity of the brain. It can be utilized as imaging-based biomarkers for
investigating several brain disorders such as Alzheimer’s disease, schizophrenia,
mild traumatic brain injury, etc. [1]. In many clinical applications such as neu-
rosurgical planning and deep brain stimulation, it is critically important to use
high-spatial-resolution diffusion images to accurately localize brain structures,
especially those that are very small (such as substantia nigra and sub-thalamic
nucleus). Moreover, HR images are critical for tracing small white-matter fiber
bundles and to reduce partial volume effects. Further, with high spatial resolu-
tion, gray-matter and white-matter structures can be better resolved, especially
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in neonate and infant brains. The typical voxel size of a dMRI image acquired
from a clinical scanner is about 1.73 to 23 mm3 which is too large to study
certain brain structures that are a few millimeters thick. Due to signal loss from
T2 decay with longer echo times, reducing the voxel size leads to a proportionate
decrease in the signal-to-noise ratio (SNR). Though SNR could be enhanced by
averaging multiple acquisitions, the total acquisition time may be too long to
apply this approach in clinical settings.

Existing techniques that obtain high-resolution (HR) dMRI can be classified
into two categories based on their data acquisition scheme. The first group of
methods obtain HR data using a single LR image via intelligent interpolations
or regularizations. These types of methods have been investigated in structural
MRI [2] and in dMRI to enhance anatomical details as in [3]. However, as pointed
out in [3], the performance of some of these methods still largely relies on the
information contained in the original LR image. The second group of methods
require multiple LR images acquired according to a specific sampling scheme to
reconstruct a HR image. Each of the LR image is modeled as the measurement
of an underlying HR image via a down-sampling operator. Then the HR image is
estimated by solving a linear inverse problem with suitable regularization. These
methods use the classical concept of super-resolution reconstruction (SRR) [4].
In dMRI, these methods were used in [5,6] to reconstruct each diffusion weighted
volume independently. A different acquisition scheme with the LR images having
orthogonal slice acquisition direction was proposed in [7]. However, the distor-
tions from LR scans with different slice directions need to be corrected prior to
applying the SRR algorithm, which involves complex non-linear spatial normal-
ization. Moreover, each diffusion-weighted image (DWI) volume is reconstructed
independently, requiring the LR images to be acquired or interpolated on the
same dense set of gradient directions. Thus, these methods require the same num-
ber of measurements (e.g., 60 gradient directions) for each LR acquisition. To
address this problem, more recently, [8] introduced a method that used the dif-
fusion tensor imaging (DTI) technique to model the diffusion signal in q-space.
However, a very simplistic diffusion tensor model was assumed, which is not
appropriate for modeling more complex diffusion phenomena (crossing fibers).
A similar method has been proposed in [9] to improve distortion corrections for
DWI’s using interlaced q-space sampling.

Our Contributions: We propose a compressed-sensing-based super-resolution
reconstruction (CS-SRR) approach for reconstructing HR diffusion images from
multiple sub-pixel-shifted thick-slice acquisitions. As illustrated in Fig. 1, we use
three LR images with anisotropic voxel sizes that are shifted in the slice acquisi-
tion direction. Each LR image is acquired with a different (unique) set
of gradient directions to construct a single HR image with isotropic voxel
size and a combined set of gradient directions. This is in contrast to classical
SRR techniques which require each LR scan to have the same set of gradient
directions. In the proposed framework, only a subset (one-third) of the total
number of gradient directions are acquired for each LR scan, which reduces scan
time significantly while making the technique robust to head motion. To account
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Fig. 1. An illustration of the CS-SRR scheme: a high-resolution image is reconstructed
using three overlapping thick-slice volumes with down-sampled diffusion directions.

for the correlation between diffusion signal along different gradients, we repre-
sent the signal in the HR image in a sparsifying basis of spherical ridgelets. To
obtain the HR image, we propose a framework based on the ADMM algorithm,
where we enforce sparsity in the spherical-ridgelet domain and spatial consis-
tency using total variation regularization. We perform quantitative validation of
our technique using very high resolution data acquired on a clinical 3 T scanner.

2 Background

We consider diffusion images acquired on single spherical shell in q-space [10].
Hence, the problem of super resolution reduces to that of reconstructing the
spherical signal at each voxel of the HR image. Before introducing the proposed
method, we provide a brief note on the concepts of compressed sensing and
spherical ridgelets that are used to model and estimate the diffusion signals.

Compressed Sensing: The theory of compressed sensing provides the math-
ematical foundation for accurate recovery of signals from set of measurements
far fewer than that required by the Nyquist criteria [11]. In the CS framework,
a signal of interest s ∈ R

n is represented in an over-complete basis Φ ∈ R
n×m

with n � m such that s = Φc with c ∈ R
m being a sparse vector, i.e. c only

has few non-zero elements. Let y ∈ R
p denote a measurement vector given by

y = Ψs+µ = ΨΦc+µ where µ is the noise component and Ψ ∈ R
p×n is a down-

sampling operator. If the matrix ΨΦ satisfies certain incoherent properties, then
the CS theory [11] asserts that the sparse vector c can be robustly recovered by
solving the �1-norm regularized problem

min
c

1
2
‖y − ΨΦc‖2 + λ‖c‖1 (1)

for a suitable λ ≥ 0. Hence, the signal s can be accurately recovered as Φc using
the lower dimensional measurement y. This CS methodology has been used to
estimate the dMRI signal from reduced number of measurements [12–14] with
the basis given by the spherical ridgelets.

Spherical Ridgelets: Spherical ridgelet functions were introduced in [12] as a
frame to represent L2 functions on the sphere. Each spherical ridgelet function
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is specially designed to represent diffusion signals with a particular orientation
and certain degree of anisotropy. A sparse combination of such basis functions
is suitable to model the diffusion data with complex fiber orientations [13,14].
Specifically, the spherical ridgelets are constructed as follows: For x ∈ R+ and
ρ ∈ (0, 1), let κ(x) = exp{−ρx(x + 1)} be a Gaussian function. Further, we let

κj(x) = κ(2−jx) = exp
{

−ρ
x

2j

( x

2j
+ 1

)}
for j = 0, 1, 2, . . . .

Then the spherical ridgelets with their energy spread around the great circle
supported by a unit vector v ∈ S

2 is given by

ψj,v(u) =
1
2π

∞∑
n=0

2n + 1
4π

λn(κj+1(n) − κj(n))Pn(u · v),∀u ∈ S
2 (2)

where Pn denotes the Legendre polynomial of order n, κ−1(n) = 0, ∀n and
λn = 2π(−1)n/2 1.3...(n−1)

2.4...n if n is even, otherwise λn = 0.
To construct a finite over-complete dictionary, we follow the method in [13,14]

and restrict the values for the resolution index j to the set {−1, 0, 1}. For each
resolution index j, the set of all possible orientations v ∈ S

2 is discretized
to a set of Mj directions on the unit sphere with M−1 = 25, M0 = 81 and
M1 = 289. To this end, the set of over-complete spherical ridgelets is given by
ΨSR =

{
φj,vi

j
| j = −1, 0, 1, i = 1, 2, . . . ,Mj

}
. Since the spherical ridgelets are

anisotropic, the isotropic diffusion signal in the CSF areas is not efficiently mod-
eled as a sparse combination of the basis functions. To resolve this issue, we
expand the basis functions by adding one isotropic element as Ψ := {ψiso, ΨSR}
where ψiso denotes a constant function on the unit sphere. For convenience, we
denote the functions in Ψ as ψ1, ψ2, . . . , ψM with ψ1 = ψiso. Given the diffu-
sion signal measured along N diffusion directions {un}N

n=1, we construct a basis
matrix A with Anm = ψm(un) for m = 1, . . . ,M and n = 1, . . . , N .

3 Method

Let Lk, k = 1, . . . ,K, denote the K low-resolution diffusion weighted imaging
(DWI) volumes. For each Lk, the diffusion signal is acquired along a set of
gradient directions Uk = {u(k)

1 , . . . ,u
(k)
Nk

} at the same b-value. The set of gradient
directions for each LR image Lk is assumed to be different, i.e. Uk ∩ U� = ∅ for
k 	= �. The HR image that has nx × ny × nz voxels and N =

∑K
k=1 Nk gradient

directions is denoted by a matrix H of size nxnynz × N . Then, each LR image
Lk is given by

Lk = DkBkHQT
k + μk for k = 1, . . . ,K, (3)

where Dk denotes the down-sampling matrix that averages neighboring slices,
Bk denotes the blurring (or point-spread function) and Qk is the sub-sampling
matrix in q-space. The main difference between the above model and the one
used in [6,15] is given by the Qk’s that allow the LR images to have different
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sets of gradient directions. Further, we use the spherical ridgelets basis to model
the diffusion signal at each voxel of H. To this end, H is assumed to satisfy
H = V AT with A being the basis matrix of spherical ridgelets (SR) constructed
along the set of gradient directions {U1, . . . , UK} and each row vector of V
being the SR coefficients at the corresponding voxel. Since each basis function
is designed to model a diffusion signal with certain degree of anisotropy, a non-
negative combination of spherical ridgelets provides more robust representation
for diffusion signals especially when the SNR is low. Hence, the coefficients V
are restricted to be non-negative. Following (1), we estimate H by solving

min
H,V ≥0

{
1
2

K∑
k=1

‖Lk − DkBkHQT
k ‖2 + λ‖W ◦ V ‖1

}
s.t. H = V AT (4)

where ◦ denotes the element-wise multiplication, ‖M‖2 is the squared Frobenius
norm of a matrix M and ‖M‖1 is the summation of the absolute values of
all the entries of M . W is the weighting matrix with each row having the form
[w, 1, . . . , 1] where w is used to adjust the penalty for choosing the isotropic basis
function in a voxel. The value of w can be obtained a-priori from a probabilistic
segmentation of the T1-weighted image of the brain. Thus, w is small in the CSF
and large in white and gray-matter areas.

3.1 Total-Variation (TV) Regularization

Let hr(un) denote the diffusion signal along the direction un at the voxel r ∈ Ω
with Ω being the set of all voxels of the HR image. The diffusion signal along
the gradient un in all voxels forms a 3D image volume denoted by Hn. The cor-
relation of the diffusion signal in neighboring voxels implies that Hn is spatially
smooth. A standard technique to utilize this fact is to minimize the TV semi-

norm of Hn defined as ‖Hn‖TV =
∑

r∈Ω

[∑
p∈N (r) |hr(un) − hp(un)|2

]1/2

,

where N (r) denotes a set of neighbors around r. For a collection of image vol-
umes H = {Hn}N

n=1, the TV semi-norm of H is defined as the sum of the TV
semi-norm of each image volume Hn, i.e. ‖H‖TV =

∑N
n=1 ‖Hn‖TV. By adding a

regularization term for ‖H‖TV in (4), we rewrite the optimization problem as

min
V ≥0,H

{
1
2

K∑
k=1

‖Lk − DkBkHQT
k ‖2 + λ1‖W ◦ V ‖1 + λ2‖H‖TV

}
s.t. H = V AT

(5)
where the positive parameters λ1, λ2 determine the relative importance of the
data fitting terms versus the sparsity and the total regularization terms. Next, we
introduce an efficient algorithm for solving (5) based on the alternating directions
method of multipliers (ADMM) [16].

3.2 Optimization Algorithm

The optimization problem (5) typically involves high dimensional optimization
variables. A suitable implementation of the ADMM algorithm may distribute the
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computational cost and decompose the optimization into a sequence of simpler
problems. First, we note that (5) can be equivalently written as

min
V ≥0,H,Z

{
1
2

K∑
k=1

‖Lk − DkBkHQT
k ‖2 + λ1‖W ◦ V ‖1 + λ2‖Z‖TV

+
ρ1
2

‖H − V AT ‖2 +
ρ2
2

‖H − Z‖2
}

s.t. H − V AT = 0, H − Z = 0,

where Z is an auxiliary variable that equals to H, and the augmented terms
ρ1
2 ‖H − V AT ‖2 + ρ2

2 ‖H − Z‖2 with ρ1, ρ2 ≥ 0 do not change the optimal value.
Let Λ1, Λ2 be the multipliers for H−V AT = 0 and H−Z = 0, respectively. Then,
each iteration of the ADMM algorithm consists of several steps of alternately

minimizing the augmented Lagrangian
{

1
2

∑K
k=1 ‖Lk − DkBkHQT

k ‖2 + λ1‖W ◦

V ‖1 + λ2‖Z‖TV + ρ1
2 ‖H − V AT + Λ1‖2 + ρ2

2 ‖H − Z + Λ2‖2
}

over H,V,Z and

one step of updating Λ1, Λ2. More specifically, let V t,Ht, Zt and Λt
1, Λ

t
2 denote

the values of these variables at iteration t. Then, iteration (t+1) consists of two
steps of estimating {V t+1, Zt+1} and Ht+1 by solving

min
V ≥0,Z

{
λ1‖W ◦ V ‖1 + λ2‖Z‖TV +

ρ1

2
‖Ht − V AT + Λt

1‖2 +
ρ2

2
‖Ht − Z + Λt

2‖2

}
(6)

min
H

{
1

2

K∑
k=1

‖Lk − DkBkHQT
k ‖2 +

ρ1

2
‖H − V t+1AT + Λt

1‖2 +
ρ2

2
‖H − Zt+1 + Λt

2‖2

}

(7)

and one step of updating the multipliers as

Λt+1
1 = Λt

1 + (Ht+1 − V t+1AT ), Λt+1
2 = Λt

2 + (Ht+1 − Zt+1).

A typical stopping criteria is to check if Λt
1 and Λt

2 have “stopped changing”, i.e.
‖Λt+1

1 − Λt
1‖2 ≤ ε1 and ‖Λt+1

2 − Λt
2‖2 ≤ ε2 for some user defined choice of ε1, ε2.

We point out some important notes for the above iterative algorithm: (1)
Problem (6) can be decomposed into two independent optimization problems
on V and Z, respectively. The update for V t is obtained by solving an �1-
minimization problem. In particular, the solution for each voxel can be obtained
independently (parallely). We have also developed an ADMM-based algorithm
for solving the non-negative weighted �1-regularization problem, which is not
presented here due to page limitations. (2) The update for Zt is a standard
TV denoising problem. (3) Problem (7) is a least-squared problem which needs
a matrix inversion to compute the closed-form solution. Though, in general
a huge matrix needs to be inverted, in this particular situation where the
LR images are sub-pixel-shifted scans with Bk’s representing a blurring oper-
ation along the slice-selection direction and [QT

1 , . . . , QT
K ] is a permutation

matrix, the computation reduces to inverting K matrices of size nz × nz, i.e.(
BT

k DT
k DkBk + (ρ1 + ρ2)I

)
for k = 1, . . . , K, which can be easily done on stan-

dard workstations. We also note that in extreme situations, when the matrix
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size is too large, the steepest descent iterative method in [6] or the conjugate
gradient method can be used alternatively.

4 Experiments

We tested the performance of the proposed method using two experiments. In
the first one, we used artificially generated thick-slice acquisitions based on the
high resolution data set from the Human Connectome Project (HCP) while the
second experiment consisted of an actual validation setup where both the LR
and HR images were acquired on a 3T Siemens clinical scanner. We compared
the recovered CS-SRR result with the corresponding gold-standard (GS) HR
data using the following metrics:

– FA and Trace difference: Whole brain multi-tensor tractography [17] was com-
puted on the GS and the reconstructed data, and several fiber bundles were
extracted. The average fractional anisotropy (FA) and trace for tensors along
the fiber bundles were computed.

– Fiber-bundle overlap: The Bhattacharyya coefficient described in [18] was used
to compare the fiber bundle overlap. This measure ranges between [0, 1], with
0 being no overlap, while 1 being complete overlap of fibers.

4.1 Evaluation on HCP Data

In this experiment, we used HCP data, which has spatial resolution of 1.25 ×
1.25 × 1.25 mm3 with 90 gradient directions at b = 2000 s/mm2. To construct
LR images, we first artificially blurred the DWI volumes along the slice direction
using a Gaussian kernel with full width at half maximum (FWHM) of 1.25 mm.
Then the data was down-sampled by averaging three contiguous slices to obtain
a single thick-slice volume with spatial resolution of 1.25×1.25×3.75 mm3. Sim-
ilarly, two additional LR volumes were obtained so that all the three LR volumes
were slice-shifted in physical space (see Fig. 1). The thick-slice volumes were also
sub-sampled in q-space so that each set had 30 unique gradient directions. We
also obtained a segmentation of the brain into three tissue types, namely, gray,
white and CSF, from the T1-weighted MR images. This tissue classification was
used as a prior to set w = 10−4 in CSF and w = 1 in gray and white matter
areas. The auxiliary parameter ρ1 was set to ρ1 = 1.

To compare the tractography results, we first obtained the whole-brain trac-
tography using the method in [17] for the GS and the reconstructed data sets,
respectively. Next, we extracted the cingulum bundle (CB), the corticospinal
tract (CST), the superior longitudinal fasiculus II (SLF-II) and a sub-part of
the corpus callosum called caudal middle frontal bundle (CC-CMF), respectively,
using the white matter query language (WMQL) [19] which uses Freesurfer cor-
tical parcellations. The four pairs of fiber bundles are shown in Fig. 2a to d,
respectively. The fiber-bundle overlap measure is very close to one, indicating
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(a) CB (b) CST

(c) SLF-II (d) CC-CMF

Fig. 2. (a), (b) (c) and (d) are the tractography results for the cingulum bundle (CB),
the corticospinal tract (CST), the superior longitudinal fasciculus II (SLF-II) and the
corpus callosum caudal middle frontal (CC-CMF) bundle (with red and yellow tracts
obtained using the GS and CS-SRR data sets respectively). The comparison metrics
for the tractography results are shown in the following table.

GS FA CS-SRR FA GS Trace CS-SRR Trace Fiber-bundle overlap

CB 0.54 0.52 2.1 × 10−3 2.0 × 10−3 0.97

CST 0.69 0.66 2.0 × 10−3 2.0 × 10−3 0.97

SLF-II 0.63 0.60 2.0 × 10−3 2.0 × 10−3 0.95

CC-CMF 0.63 0.61 2.2 × 10−3 2.1 × 10−3 0.95

a significant overlap between the fiber bundles obtained using the GS and CS-
SRR data. Further, the estimated average FA and trace are very similar for both
data sets.

Another important goal of this work is to demonstrate the advantage of using
high-resolution DWI image in studying small white-matter fascicles. For this
purpose, we generated a low-resolution DWI volume by averaging every 2×2×2
neighboring voxels from the GS data to obtain a LR dMRI data with isotropic
voxel size of 2.53 mm3. Figure 3a–c shows the single tensor glyphs color coded
by the direction of the dominant eigenvector for the GS, LR and SRR data sets
in the same brain region from a coronal slice. Linear interpolations were used to
increase the spatial resolution of the LR image. The background of the glyphs is
the corresponding T1 weighted image. As pointed out in the rectangular area in
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Fig. 3b, due to partial-volume effects, the LR image was not able to capture the
fine curvature of of fiber bundles near the gray matter areas. Figure 3d–f show
the tractography results for tracts originating from the sub-thalamic nucleus
with fibers being color-coded by orientation. While the tracts obtained from the
GS and CS-SRR data are very similar, as pointed out by the arrow in Fig. 3e,
most of the green fibers are missing in the LR image, though the number of
seeds in the LR image is 8 times higher than the HR images.

(a) GS Glyph (b) LR Glyph (c) CS-SRR Glyph

(d) GS Tractography (e) LR Tractography (f) CS-SRR Tractography

Fig. 3. (a), (b) and (c) show the single tensor glyphs for the GS, LR and CS-SRR
HCP data sets, respectively. The rectangle in (b) shows the partial-volume effects in
the LR image where the orientations of the glyphs are not estimated correctly. (d), (e)
and (f) are the fiber tracts, color-coded with tract orientation for the three data sets
with seeds in sub-thalamic nucleus. The arrow points out some missing fiber tracts in
the LR image.

4.2 True CS-SRR Scenario

The second experiment was based on a data set acquired on a 3T Siemens clinical
scanner. We acquired three overlapping thick-slice scans with spatial resolution
1.2 × 1.2 × 3.6 mm3. The DWI volumes were sub-pixel shifted by 1.2 mm
along the slice-selection direction. Each LR DWI had a set of 30 unique gradi-
ent directions with b = 1000. For comparison, we also acquired 9 acquisitions
(with 90 gradient directions each) of the same subject with a spatial resolution
of 1.2×1.2×1.2 mm3, which was used as the “gold standard” data. Due to time
limitations, these high resolution scans had partial brain coverage (it took about
1.5 hours to obtain these 9 scans). The average of these 9 scans (after motion
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(a) CC tracts (b) CST tracts

Fig. 4. (a), (b) are the tractography results with manually selected seeds in corpus
callosum (CC) and the corticospinal tract (CST) (with red and yellow tracts obtained
using the GS and CS-SRR data sets respectively). The comparison metrics for the
tractography results are shown in the following table.

correction) was considered as the gold standard. We also acquired a high resolu-
tion B0 image, i.e. the b = 0 image with no diffusion encoding, and a T1-weighted
image to obtain tissue classifications for prior-information used in our algorithm.
To ensure that the LR DWI’s were in the same spatial co-ordinate system, we
first down-sampled the whole-brain B0 image to produce three thick-slice vol-
umes which were considered as the reference images. These images were only
used for spatial normalization and not in the actual reconstruction algorithm.
Then, the three acquired thick-slice LR DWI scans were registered to the cor-
responding reference volumes. The T1 image was registered to the whole-brain
B0 image using a nonlinear transformation. From the registered T1 image, the
tissue brain segmentation was used for adjusting the parameters of the algorithm
in different tissue types. We set the FWHM of the blurring kernel to 1.2 mm,
λ1 = 0.005, λ2 = 0.05, and w = 0.01 in CSF area and w = 1 in gray and white
matters. These parameters were learned using exhaustive search experiments
based on one slice of the image so that the reconstruction error was small com-
pared with the gold-standard. For computing quantitative metrics, we registered
the reconstructed whole-brain data to the partial-brain GS data set.

We first obtained the tractography results from the reconstructed (CS-SRR)
and GS partial-brain data sets using the method in [17]. Since whole-brain
Freesurfer cortical parcellation was not available, we could not employ WMQL
for tract extraction. Consequently, we use manually selected ROI’s to extract
fiber bundles in the corpus callosum (CC) and the corticospinal tract (CST),
respectively. The extracted fiber bundles are shown in Fig. 4a and b, respec-
tively. We note that there is minor difference between FA and Trace obtained
from both the data sets. The value of the Bhattacharyya coefficient also indicates
a significant overlap between the fiber bundles.

GS FA CS-SRR FA GS Trace CS-SRR Trace Fiber-bundle overlap

CC 0.64 0.65 2.2 × 10−3 2.4 × 10−3 0.96

CST 0.62 0.64 2.0 × 10−3 2.2 × 10−3 0.94

To demonstrate the difference between HR and LR images, we also generated
a LR image by averaging every 2× 2× 2 neighboring voxel in the GS data set to
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obtain a LR dMRI data set with isotropic voxel size of 2.43 mm3. Figure 5 shows
the single tensor glyphs color coded by direction for the GS, LR and the CS-
SRR data sets in the same brain region from a coronal slice. The background
of the glyphs is the corresponding T1 weighted image. As pointed out in the
rectangular region in Fig. 5b, due to partial-volume effects, the LR image was
not able to capture the correct fiber orientations near the gray matter areas.
Figure 5c is similar to Fig. 5a, indicating that the proposed method was able to
correctly reconstruct the fiber orientations near gray-matter areas.

(a) GS Glyph (b) LR Glyph (c) CS-SRR Glyph

Fig. 5. (a), (b) and (c) show the single tensor glyphs colored coded by fiber orientation
for the GS, LR and CS-SRR data sets, respectively. The rectangle in (b) points out
the partial-volume effects in the LR image where the directions of the glyphs are not
estimated correctly (shown by different colors from the GS glyphs).

5 Conclusion

We introduced a novel method for reconstructing very high-resolution diffusion
data on a standard clinical scanner. By combining the concepts of compressed
sensing and super-resolution, we were able to with significantly reduce scan time
while increasing the spatial resolution. Preliminary results show that the our
method is capable of accurately recovering complex fiber orientations in white
and gray matter regions at a high spatial resolution, similar to a physically
acquired gold-standard data. Future work involves doing extensive validation on
several subjects in different brain regions.
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