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Abstract. We investigate the problem of diagnostic lung nodule clas-
sification using thoracic Computed Tomography (CT) screening. Unlike
traditional studies primarily relying on nodule segmentation for regional
analysis, we tackle a more challenging problem on directly modelling raw
nodule patches without any prior definition of nodule morphology. We
propose a hierarchical learning framework—Multi-scale Convolutional
Neural Networks (MCNN)—to capture nodule heterogeneity by extract-
ing discriminative features from alternatingly stacked layers. In particu-
lar, to sufficiently quantify nodule characteristics, our framework utilizes
multi-scale nodule patches to learn a set of class-specific features simul-
taneously by concatenating response neuron activations obtained at the
last layer from each input scale. We evaluate the proposed method on
CT images from Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI), where both lung nodule screening and
nodule annotations are provided. Experimental results demonstrate the
effectiveness of our method on classifying malignant and benign nodules
without nodule segmentation.

Keywords: Lung nodule classification · Computed Tomography (CT)
Imaging · Convolutional Neural Networks · Computer-Aided Diagnoses
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1 Introduction

Lung cancer is notoriously aggressive with a low long-term survival rate [1].
Quantitative analysis in lung nodules using thoracic Computed Tomography
(CT) has been a central focus for early cancer diagnosis, where CT phenotype
provides a powerful tool to comprehensively capture nodule characteristics [2].
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Fig. 1. An overview of the MCNN. Our approach first extracts multiple nodule patches
to capture the wide range of nodule variability from input CT images. The obtained
patches are then fed into the networks simultaneously to compute discriminative fea-
tures. Finally, our approach applies a classifier to label the input nodule malignancy.

The importance of diagnostically classifying malignant and benign nodules
using CT images is to facilitate radiologists for nodule staging assessment and
individual therapeutic planning. Despite different approaches proposed for nod-
ule analysis such as parametric texture feature extraction [4,8,13], they are prob-
lematic in finding well-suited parameters for robust analysis. It comes without
doubt that, technical challenges still remain in defining and extracting quantita-
tive features from clinical images for improving image-guided disease diagnosis.
Furthermore, prior studies mostly focused on nodule morphology [5,19], which
may not be able to provide an accurate description of the nodule. For example,
the definition of nodule boundaries is obscure and subjective—inter-reader vari-
ability from radiologists makes precise nodule delineation a challenging task. In
view of these challenges, the following specific questions arise: (a) What should
be done to learn discriminative features from heterogeneous nodule data for
representing different diagnostic groups? (b) How could one design a robust
framework that is capable of extracting quantitative features from original nod-
ule patches—instead of segmented nodules—that is advantageous in completely
eliminating onerous preprocessing steps such as a nodule segmentation?

In this paper, we study the problem of lung nodule diagnostic classifica-
tion based on thoracic CT scans. In contrast to the current methods primarily
relying on nodule segmentation and textural feature descriptors for the classifi-
cation task, we propose a hierarchical learning framework to capture the nodule
heterogeneity by utilizing Convolutional Neural Networks (CNN) to extract fea-
tures (as illustrated in Fig. 1). The learned features can be readily combined
with state-of-the-art classifiers (e.g., Support Vector Machine (SVM) and Ran-
dom Forest (RF)) for related Computer-Aided Diagnoses (CADs). Our method
achieves 86.84 % accuracy on nodule classification using only nodule patches. We
also observe that the proposed method is robust against noisy corruption—the
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classification performance is quite stable at different levels of noise inputs, indi-
cating a well generalized property.

Contributions. We introduced an MCNN model to tackle the lung nodule
diagnostic classification without delineation on nodule morphology and explored
a hierarchical representation from raw patches for lung nodule classification. Our
methodological contribution is three-fold:

– Our MCNN take multi-scale raw nodule patches, rather than the segmented
regions, providing evidence that information gained from the raw nodule
patches is valuable for lung nodule diagnosis.

– Our MCNN remove the need of any hand-crafted feature engineering work,
such as nodule texture, shape compactness, and nodule sphericity. The MCNN
can automatically learn the discriminative features.

– Although it is challenging to directly deal with noisy data in nodule CT,
we show that the proposed MCNN model is effective in capturing nodule
characteristics in nodule diagnostic classification even with a high-level noisy
corruption.

Related Work. Image-based lung nodule analysis is normally performed with
nodule segmentation [5], feature extraction [2], and labelling nodule cate-
gories [8,17,19]. Way et al. [19] first segmented the nodules and then extracted
texture features to train a linear discriminant classifier. El-Baz et al. [5] used
shape analysis for diagnosing malignant lung nodules. Han et al. [8] used 3-D
texture feature analysis for the diagnosis of pulmonary nodules by consider-
ing extended neighbouring structures. However, all of these mentioned methods
relied on nodule segmentation as a prerequisite for nodule feature extraction.
Notably, automated nodule segmentation can affect classification since segmen-
tation usually depends on initialization, such as region growing and level set
methods. Working on these segmented regions may yield inaccurate features
that lead to erroneous outputs.

Descriptors of Histogram of Oriented Gradients (HOG) [4] and Local Binary
Patterns (LBP) [13] are widely used for feature representation in medical image
analysis. However, it is known that they are domain agnostic [15]. In other words,
the required hyper-parameters make these approaches sensitive to specific tasks.
For example, a repetitious parameter tuning is needed for the neighbourhood
points in LBP and the size of the cell window in HOG.

Our work is conceptually similar to the massive training artificial neural net-
work [17], which suggested a feasibility on learning knowledge from artificial
neural networks. However, the work was an integrated classifier that required
extra support from a 2-D Gaussian distribution for the decision-making, where
an image-to-image mapping based on local pixels was learned. Our approach,
without knowing any extra distributions, aims at feature extraction globally
from the original nodule image space through stacked convolutional operations
and max-pooling selections. In contrast to [17], our work is more computationally
effective in reducing the feature dimensionality and resulting in highly discrimi-
native features from hierarchical layers.
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2 Learning Multi-scale Convolutional Neural Networks

Given a lung nodule CT image, our goal is to discover a set of globally discrim-
inative features using the proposed MCNN model, which captures the essence
of class-specific nodule information. The challenge is that the image space is
extremely heterogeneous since both healthy tissues and nodules are included. In
this work, we make full use of the CNN to learn discriminative features, and
build three CNN in parallel to extract multi-scale features from nodules with
different sizes. Details are given in this section.

2.1 Convolutional Neural Networks Architecture

Our Convolutional Neural Networks contain two convolutional layers, both of
which are followed by a max-pooling layer, and a fully connected layer which
represents the final output feature. The detailed structure of the network is
shown in Fig. 2. From the input nodule patch to the final feature layer, the sizes
of feature maps keep decreasing, which helps remove the potential redundant
information in the original nodule patch and obtains discriminative features in
nodule classification.
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Fig. 2. The structure of the Convolutional Neural Networks learned in our work. The
numbers along each side of the cuboid indicate the dimensions of the feature maps.
The inside cuboid represents the 3D convolution kernel and the inside square stands
for the 2D pooling region. The number of the hidden neurons in the final feature layer
is marked aside.

The network starts from a convolutional layer, which convolves the input
feature map with a number of convolutional kernels and yields a corresponding
number of output feature maps. Formally, the convolution operation between an
input feature map f and a convolutional kernel h is defined by:

y = max

(
0,

∑
c

fc ∗ hc + b

)
, (1)
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where fc and hc denote the cth slice from the feature map and that from the
convolutional kernel respectively, and b is the bias scalar. ∗ is the convolution
operation. Both h and b are continuously learned in the training process. In order
to perform a non-linear transformation from the input to the output space, we
adopt the rectified linear unit (ReLu) non-linearity in Eq. 1 for each convolu-
tion [11]. It is expressed as y = max(0, x), where x is the convolution output.

Following the convolutional layer, a max-pooling layer is introduced to select
feature subsets. It is formulated as

y(i,j) = max
0≤m,n≤s

{x(i·s+m,j·s+n)}, (2)

where s is the pooling size and x denotes the output of the convolutional layer.
An advantage of using the max-pooling layer is its translation invariability which
is especially helpful when different nodule images are not well-aligned.

2.2 Multi-scale Nodule Representation

Our idea of the multi-scale sampling strategy is motivated from the clinical fact
that nodule sizes vary remarkably, ranging from less than 3 mm to more than
30 mm in the Lung Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) [3] datasets. In the proposed MCNN architecture, three
CNN that take nodule patches from different scales (as shown in Fig. 3) as inputs
are assembled in parallel. We briefly refer to the three CNN as CNN0, CNN1, and
CNN2. In order to reduce the parameters of the MCNN, we follow the setting
in [6] to share parameters among all the CNN. The resulting output of our MCNN
is the concatenation of the three CNN outputs, forming the final discriminative
feature vector, which will be directly fed to the final classifier without any feature
reduction. We also follow the idea of deeply supervised networks (DSN) in [12]
to construct our objective function. Unlike the traditional objective function
in CNN, DSN introduced “companion objectives” [12] into the final objective
function to alleviate the vanishing gradients problem so the training process can
be fast and stable. The entire objective function is thus represented as

F (W ) = P (W ) + Q(W ), (3)

(a) Benign nodule at different scales (b) Malignant nodule at different scales

Fig. 3. Nodule slice examples from a benign nodule patch (a) and a malignant nodule
patch (b). The scales are 96×96×96, 64×64×64, and 32×32×32 in pixel respectively.
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In our work, P (W ) = LOSS(W,w(out)) is the overall hinge loss function for the
concatenated feature layer, and Q(W ) =

∑M
m=1 αmloss(W,w(m)) is the sum of

the companion hinge loss functions from all CNN. αm is the coefficient for the
mth CNN. W denotes the combination of the weights from all of the CNN, while
w(m) and w(out) are the weights of the feature layer of the mth CNN and the
weights of the final concatenated feature layer respectively. In this way, F (W )
keeps each network optimized and also makes the assembly sensible. Figure 4
shows the concatenated features projected into a 2-D subspace. It shows that
the proposed MCNN model is able to remove the redundant information in the
original images and extract discriminative features.

(a) Features from the training set (b) Features from the test set

Fig. 4. Feature visualization. The learned features by the MCNN from both training
set (a) and test set (b) are illustrated by projecting them into a 2-D subspace with
principal component analysis (PCA) [10].

3 Experiments

3.1 Datasets and Setup

We evaluated our method on the LIDC-IDRI datasets [3]. It consists of 1010
patients with lung cancer screening thoracic CT scans as well as mark-up anno-
tated lesions. The nodules are rated from 1 to 5 by four experienced thoracic
radiologists, indicating an increasing degree of malignancy (1 denotes low malig-
nancy and 5 is high malignancy). In this study, we included nodules along with
their annotated centers from the nodule report1. We chose the averaged malig-
nancy rating for each nodule as in [8]. For those with an average score lower
than 3, we labelled them as benign nodules; for those with an average score
higher than 3, we labelled them as malignant nodules. We removed nodules with
ambiguous IDs and those with an average score of 3. Overall, there were 880
benign nodules and 495 malignant nodules. Since the resolution of the images
varied, we resampled those images to set the resolution to a fixed 0.5 mm/pixel

1 http://www.via.cornell.edu/lidc/.

http://www.via.cornell.edu/lidc/
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along all three axes. Thus, the effect of resolution on the classification perfor-
mance was removed. Then each nodule patch is cropped from the resampled CT
image based on the marked nodule centers. The three scale inputs are 32×32×32,
64×64×64, and 96×96×96 in pixels. Patches are all resampled to 32×32×32
so that they can be uniformly fed into each CNN.

3.2 Implementation Details

We used a 5-fold cross validation for evaluating classification performance based
on features learned from the MCNN. During each round of validation, there
were originally 1100 nodules (704 benign nodules and 396 malignant nodules)
in the training set and 275 nodules (176 benign nodules and 99 malignant nod-
ules) in the test set. To enlarge the training samples to train the MCNN, we
augmented both benign nodules and malignant nodules by translating the nod-
ule patches along three axes with ±2 pixels as in [16]. Thus, each patch was
translated 6 times. Such a setting helps capture a range of translation invariant
features. Note that the number of benign nodules is almost twice as large as
that of malignant nodules. Thus, for the purpose of balancing the datasets, all
of the malignant nodules were augmented and only half of the benign nodules
were selected for augmentation, resulting in 5588 ((396 + 704/2)× 6 + 396 + 704)
multi-scale nodules in the training set. Considering that the three CNN share
the same parameters, the equivalent number of total augmented nodules can be
16,764. The test set always remained its original number of 275 nodule samples
at each validation round.

To systematically evaluate the performance of the MCNN, we covered dif-
ferent network configurations, i.e. different numbers of convolutional kernels of
each convolutional layer and that of the hidden neurons in the feature layer.
The numbers of the convolutional kernels were n1 = {50, 100}, n2 = {50, 100}
for the first and second layer and the number of neurons in the hidden layer was
n3 = {20, 50}. Therefore, there were 8 configurations in total for the MCNN.
Note that we set αm = 0.001 for all m as found best in [12]. The convolutional
kernel size is 5 × 5 × k which is quite typical in traditional CNN. k represents
the third dimension of the input feature map. The pooling size was fixed to a
2 × 2 window. We added L2 norm weight decay during the training process to
relieve overfitting. Two classifiers were used in experiments including SVM with
a Radial Basis Function (RBF) kernel and RF. The hyper-parameters in both
SVM and RF were obtained via a grid search on the training set.

We compared our results with two competing methods including HOG and
LBP descriptors. For the HOG descriptor, we included different cell window sizes,
sw = {8, 16, 32} with the number of orientations no = 8. For the LBP descriptor,
the uniform LBP descriptor was computed with different neighbourhood points
npt = {8, 16, 24}. Computation was done on all three scales of nodule patches
for both descriptors.

Speaking of time complexity, although training deep networks often takes
time, we choose a strategy of off-line training and on-line testing. In other words,
once the network is finely trained off-line, it will be fast when a new sample
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comes in. In our study, using the NVIDIA Tesla K40 GPU, the test time for
a single nodule patch was within 0.1 s. The CNN implementation used in this
work was the deep learning toolkit CAFFE [9]. The classifiers of SVM and RF
were from the scikit-learn package [14]. The HOG descriptor and the uniform
LBP descriptor were from the scikit-image package [18].

3.3 Binary Nodule Classification Results

In this section, we evaluated the binary nodule classification. We used the aver-
age accuracy to observe the classification performance, i.e. the average ratio of
corrected classified nodules from both classes from a 5-fold cross validation. Note
that in the test set during each round of cross validation, 176 benign nodules and
99 malignant nodules made a baseline accuracy of 64 % by voting the majority
class. From Fig. 5, it was immediately observed that the proposed MCNN showed
competitive results above 84% with different configurations. The highest clas-
sification accuracy was obtained with the RF classifier with 86.84 % under the
configuration of n1 = 100, n2 = 100 and n3 = 50 (see Fig. 2). The overall per-
formance of both classifiers suggested that our method can achieve promising
results. The advantages can be ascribed to a factor that the hierarchical learning
strategy selected high-level features, eliminating a number of redundant features.
As already proven in [7], convolutional networks can produce useful dimensional
reduction that is very helpful for image-related classification.

Fig. 5. The classification performance of SVM with the RBF kernel and RF based
on features from the MCNN using 8 different configurations. Each configuration is
assigned to a unique ID for display convenience.

Accuracy of the HOG and LBP descriptors are shown in Table 1 (numbers in
bold denote the best results in columns). It was apparent that the HOG descrip-
tor was quite sensitive to the size of the cell window (sw). The results of the HOG
descriptor dropped and were even worse than the baseline when sw expanded,
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indicating that the information gained is minimal when the size was becoming
larger. For the LBP descriptor, we observed that the number of neighbourhood
points (npt) was positively related to the performance since sophisticated neigh-
bourhood structures led to better results. However, when comparing best results
among different approaches, our MCNN outperformed HOG and LBP descrip-
tors with 10.91 % and 13.17 %, respectively. Overall, our observation confirmed
that parametric textural descriptors were sensitive to parameters.

Table 1. Performance using the HOG and LBP descriptors with different sw and npt.

Classifier Scales HOG LBP

sw = 8 sw = 16 sw = 32 npt = 8 npt = 16 npt = 24

SVM 32 74.18 % 63.27 % 49.82 % 64.58% 66.40 % 67.35 %

64 66.69 % 66.40 % 56.15 % 49.24% 59.93 % 59.20 %

96 64.07 % 65.16 % 56.58 % 36.00% 52.22 % 54.84 %

RF 32 75.93% 67.71 % 60.07 % 71.27% 72.07% 73.67%

64 73.16 % 67.78% 62.84% 62.54% 62.25 % 66.55 %

96 67.56 % 64.58 % 61.75 % 60.07% 60.15 % 62.84 %

3.4 Robustness to Noise Corruption

We further trained and tested the proposed MCNN on the challenging noisy
data. In particular, we imposed a Gaussian noise to the original CT data. Dif-
ferent levels of noises were considered, including a mean value μ = 0 and dif-
ferent standard deviations σ = {0.5, 1.0, 2.0} (as shown in Fig. 6). As seen in
Table 2, it was surprising that the MCNN still achieved 83.56 % and 83.27 % with
σ = 2.0, indicating the robustness of the MCNN against noisy inputs. The suc-
cess could be probably explained by the fact that the max-pooling layers, which
use the selective downsampling strategy, “filter out” noisy outliers, rendering the
network robust to corrupted information. Therefore, the performance reaffirmed
that the MCNN were capable of finding specific patterns that were inherently
associated with different nodule classes.

3.5 Discussion

We have shown promising results of the proposed MCNN framework on classify-
ing diagnostic nodule classes. Convolutional network is a powerful tool for image
analysis because its capacities can be easily adjusted to a specific task and it
makes strong and mostly correct assumptions about the nature of images [11].
In our study, although it suggested a clear need to further investigate the appro-
priate scales of nodules that lead to improved performance, we experimentally
found that even with a single scale, the results remained competitive (for CNN0,
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(a) original slice (b) σ = 0.5 (c) σ = 1.0 (d) σ = 2.0

Fig. 6. Slice demonstration with different levels of noise. Gaussian noises with a mean
value μ = 0 and different standard deviations were imposed.

Table 2. Performance of the MCNN under different levels of noise

Classifier σ = 0.5 σ = 1.0 σ = 2.0

SVM 85.82 % 84.22 % 83.56 %

RF 85.60 % 85.24 % 83.27 %

CNN1, and CNN2, it achieved 86.12 %, 83.88 %, and 79.00 % respectively). How-
ever, using the multi-scale strategy eliminated the careful designing of the patch
sizes, which could be a tedious work. Rather than using isotropic kernels, we kept
the third dimension of the kernels to be the same with the dimension of the input
feature map which is quite common in the intermediate layers of conventional
CNN. It also enabled us to directly use CAFFE out of the box.

4 Conclusion

In this paper, we proposed a Multi-scale Convolutional Neural Networks
(MCNN) architecture to tackle the challenging problem on learning from lung
nodule patches for nodule diagnostic classification. We demonstrated that the
learned compact features are able to capture nodule heterogeneity. It is partic-
ularly promising that the MCNN model is robust against noisy inputs, which
is valuable in the medical image analysis field. Extensive experiments showed
that our method achieved 86.84 % for nodule classification and outperformed
competing benchmark textural descriptors. In future work, we plan to expand
data inclusion for a large-scale evaluation, and we will perform an investigation
to seek appropriate scales for improving image-guided nodule analysis.
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