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Abstract. Computer-aided detection (CAD) can help colonoscopists
reduce their polyp miss-rate, but existing CAD systems are handicapped
by using either shape, texture, or temporal information for detecting
polyps, achieving limited sensitivity and specificity. To overcome this
limitation, our key contribution of this paper is to fuse all possible polyp
features by exploiting the strengths of each feature while minimizing its
weaknesses. Our new CAD system has two stages, where the first stage
builds on the robustness of shape features to reliably generate a set of
candidates with a high sensitivity, while the second stage utilizes the
high discriminative power of the computationally expensive features to
effectively reduce false positives. Specifically, we employ a unique edge
classifier and an original voting scheme to capture geometric features of
polyps in context and then harness the power of convolutional neural
networks in a novel score fusion approach to extract and combine shape,
color, texture, and temporal information of the candidates. Our experi-
mental results based on FROC curves and a new analysis of polyp detec-
tion latency demonstrate a superiority over the state-of-the-art where
our system yields a lower polyp detection latency and achieves a sig-
nificantly higher sensitivity while generating dramatically fewer false
positives. This performance improvement is attributed to our reliable
candidate generation and effective false positive reduction methods.

1 Introduction

Colon cancer most often develop from colonic polyps. However, polyp grow slowly
and it typically take years for polyps to develop into cancer, making colon cancer
amenable to prevention. Colonoscopy is the preferred procedure for preventing
colon cancer. The goal of colonoscopy is to find and remove polyps before turning
into cancer. Despite its demonstrated utility, colonoscopy is not a perfect proce-
dure. A recent clinical study [5] reports that a quarter of polyps are missed dur-
ing colonoscopy. Computer-aided polyp detection can help colonoscopists reduce
their polyp miss-rate, in particular, during long and back-to-back procedures
where fatigue and inattentiveness may result in miss detection of polyps.
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Fig. 1. Significant variation in visual characteristics of polyps. (a) Color and appear-
ance variation of the same polyp due to varying lighting conditions. (b) Texture
and shape variation among polyps. Note how the distance between the polyps and
colonoscopy camera determines the availability of polyp texture. (c) Other polyp-like
structures in the colonoscopic view (Color figure online).

However, designing a high-performance system for computer-aided polyp
detection is challenging: (1) Polyps appear differently in color, and even the
same polyp, as shown in Fig. 1(a), may look differently due to varying lighting
conditions. (2) Polyps have large inter- and intra-morphological variations. As
shown in Fig. 1(b), the shapes of polyps vary considerably from one to another.
The intra-shape variation of polyps is caused by various factors, including the
viewing angle of the camera and the spontaneous spasms of the colon. (3) Vis-
ibility of the texture on the surface of polyps is also varying due to biological
factors and distance between the polyps and the colonoscopy camera. This can
be seen in Fig. 1(b) where texture visibility decrease as the polyps distance from
the capturing camera. The significant variations among polyps suggest that there
is no single feature that performs the best for detecting all the polyps.

As a result, to achieve a reliable polyp detection system, it is critical to fuse
all possible features of polyps, including shapes, color, and texture. Each of these
features has strengths and weaknesses. Among these features, geometric shapes
are most robust because polyps, irrespective of their morphology and varying
levels of protrusion, have at least one curvilinear head at their boundaries. How-
ever, this property is not highly specific to polyps. This is shown in Fig. 1(c)
where non-polyp structures exhibit similar geometric characteristics to polyps.
Texture features have the weakness of limited availability; however, when visi-
ble, they can distinguish polyps from some non-polyp structures such as specular
spots, dirt, and fecal matter. In addition, temporal information is available in
colonoscopy and may be utilized to distinguish polyps from bubbles or other
artifacts that only briefly appear in colonoscopy videos.

Our key contribution of this paper is an idea to exploit the strengths of each
feature and minimize its weaknesses. To realize this idea, we have developed
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a new system for polyp detection with two stages. The first stage builds on the
robustness of shape features of polyps to reliably generate a set of candidate
detections with a high sensitivity, while the second stage utilizes the high dis-
criminative power of the computationally expensive features to effectively reduce
false positive detections. More specifically, we employ a unique edge classifier
coupled with a voting scheme to capture geometric features of polyps in con-
text and then harness the power of convolutional deep networks in a novel score
fusion approach to capture shape, color, texture, and temporal information of
the candidates. Our experimental results based on the largest annotated polyp
database demonstrate that our system achieves high sensitivity to polyps and
generates significantly less number of false positives compared to state-of-the-art.
This performance improvement is attributed to our reliable candidate generation
and effective false positive reduction methods.

2 Related Works

Automatic polyp detection in colonoscopy videos has been the subject of research
for over a decade. Early methods, e.g., [1,3] for detecting colonic polyps utilized
hand-crafted texture and color descriptors such as LBP and wavelet transform.
However, given large color variation among polyps and limited texture availabil-
ity on the surface of polyps (See Fig. 1), such methods could offer only a partial
solution. To avoid such limitations, more recent techniques have considered tem-
poral information [6] and shape features [2,7,9–11], reporting superior perfor-
mance over the early polyp detection systems. Despite significant advancements,
state-of-the-art polyp detection methods fail to achieve a clinically acceptable
performance. For instance, to achieve the polyp sensitivity of 50 %, the system
suggested by Wang et al. [11] generates 0.15 false positives per frame or approx-
imately 4 false positive per second. Similarly, the system proposed in [10], which
is evaluated on a significantly larger dataset, generates 0.10 false positives per
frame. Clearly, such systems that rely on a subset of polyp characteristics are
not clinically viable—a limitation that this paper aims to overcome.

3 Proposed Method

Our computer-aided polyp detection system is designed based on our algorithms
[7,8,10], consisting of 2 stages where the first stage utilizes geometric features
to reliably generate polyp candidates and the second stage employs a compre-
hensive set of deep features to effectively remove false positives. Figure 2 shows
a schematic overview of the suggested method.

3.1 Stage 1: Candidate Generation

Our unique polyp candidate generation method exploits the following two prop-
erties: (1) polyps have distinct appearance across their boundaries, (2) polyps,
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Fig. 2. Our system consists of 2 stages: candidate generation and classification. Given
a colonoscopy frame (A), we first obtain a crude set of edge pixels (B). We then refine
this edge map using a classification scheme where the goal is to remove as many non-
polyp boundary pixels as possible (C). The geometric features of the retained edges
are then captured through a voting scheme, generating a voting map whose maximum
indicates the location of a polyp candidate (D). In the second stage, a bounding box
is estimated for each generated candidate (E) and then a set of convolution neural
networks—each specialized in one type of features—are applied in the vicinity of the
candidate (F). Finally, the CNNs are aggregated to generate a confidence value (G) for
the given polyp candidate.

irrespective of their morphology and varying levels of protrusion, feature at least
one curvilinear head at their boundaries. We capture the first property with our
image characterization and edge classification schemes, and capture the second
property with our voting scheme.

Constructing EdgeMaps. Given a colonoscopy image, we use Canny’s method
to extract edges from each input channel. The extracted edges are then put
together in one edge map. Next, for each edge in the constructed edge map, we
determine edge orientation. The estimated orientations are later used for extract-
ing oriented patches around the edge pixels.

Image Characterization. Our patch descriptor begins with extracting an ori-
ented patch around each edge pixel. The patch is extracted so that the contain-
ing boundary is placed vertically in the middle of the patch. This representation
allows us to capture desired information across the edges independent of their
orientations. Our method then proceeds with forming 8×16 sub-patches all over
the extracted patch. Each sub-patch has 50 % overlap with the neighboring sub-
patches. For a compact representation, we compress each sub-patch into a 1D
signal S by averaging intensity values along each column. We then apply a 1D
discrete cosine transform (DCT) to the resulting signal:

Ck =
2
n

w(k)
n−1∑

i=0

S[i] cos(
2i + 1

2n
πk) (1)

where

w(k) = 1/
√

2, k = 0 and w(k) = 1, 1 ≤ k ≤ n − 1.
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With the DCT, the essential information of the intensity signal can be summa-
rized in a few coefficients. We discard the DC component C0 because the average
patch intensity is not a robust feature—it is affected by a constant change in
patch intensities. However, the next 3 DCT coefficients C1−C3 are more reliable
and provide interesting insight about the intensity signal. C1 measures whether
the average patch intensity along the horizontal axis is monotonically decreasing
(increasing) or not, C2 measures the similarity of the intensity signal against
a valley (ridge), and finally C3 checks for the existence of both a valley and a
ridge in the signal. The higher order coefficients C4−C15 may not be reliable for
feature extraction because of their susceptibility to noise and other degradation
factors in the images.

The selected DCT coefficients C1 − C3 are still undesirably proportional
to linear illumination scaling. We therefore apply a normalization treatment.
Mathematically,

Ci =
Ci√

C2
1 + C2

2 + C2
3

, i = 1, 2, 3.

Note that we use the norm of the selected coefficients for normalization rather
than the norm of entire DCT coefficients. By doing so, we can avoid the expensive
computation of all the DCT components. The final descriptor for a given patch
is obtained by concatenating the normalized coefficients selected from each sub-
patch.

The suggested patch descriptor has 4 advantages. First, our descriptor is
fast because compressing each sub-patch into a 1D signal eliminates the need for
expensive 2D DCT and that only a few DCT coefficients are computed from each
intensity signal. Second, due to the normalization treatment applied to the DCT
coefficients, our descriptor achieves invariance to linear illumination changes,
which is essential to deal with varying lighting conditions (see Fig. 1). Third,
our descriptor is rotation invariant because the patches are extracted along the
dominant orientation of the containing boundary. Fourth, our descriptor handles
small positional changes by selecting and averaging overlapping sub-patches in
both horizontal and vertical directions.

Edge Classification. Our classification scheme has 2 layers. In the first layer,
we learn a discriminative model to distinguish between the boundaries of the
structures of interest and the boundaries of other structures in colonoscopy
images. The structures of interest consists of polyps, vessels, lumen areas, and
specular reflections. Specifically, we collect a stratified set of N1 = 100, 000 ori-
ented patches around the boundaries of structures of interest and r andom struc-
tures in the training images, S1 = {(pi, yi)|yi ∈ {p, v, l, s, r}, i = 1, 2, ..., N1}.
Once patches are extracted, we train a five-class random forest classifier with
100 fully grown trees. The resulting probabilistic outputs can be viewed as the
similarities between the input patches and the predefined structures of inter-
est. Basically, the first layer receives low-level image features from our patch
descriptor and then produces mid-level semantic features.
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Fig. 3. (a) A pair of image patches {p1i , p2i } extracted from an edge pixel. The green and
red arrows show the two possible normal directions {n1

i , n
2
i } for a number of selected

edges on the displayed boundary. The normal directions are used for patch alignment.
(b) The suggested edge classification scheme given a test image. The edges that have
passed the classification stage are shown in green. The inferred normal directions are
visualized with the blue arrows for a subset of the retained edges (Color figure online).

In the second layer, we train a 3-class random forest classifier with 100 fully
grown trees. Specifically, we collect N2 = 100, 000 pairs of oriented patches, of
which half are randomly selected from the polyp boundaries and the rest are
selected from random non-polyp edge segments. For an edge pixel at angle θ,
one can obtain two oriented image patches {p1i , p

2
i } by interpolating the image

along the two possible normal directions {n1
i , n

2
i }. As shown in Fig. 3(a), for

an edge pixel on the boundary of a polyp, only one of the normal directions
points to the polyp region. Our classification scheme operates on each pair of
patches with two objectives: (1) to classify the underlying edge into polyp and
non-polyp categories, and (2) to determine the desired normal direction among
n1

i and n2
i such that it points towards the polyp location. Henceforth, we refer

to the desired normal direction as “voting direction”.
Once image pairs are collected, we order the patches {p1i , p

2
i } within each

pair according to the angles of their corresponding normal vectors, ∠n1
i <∠n2

i .
In this way, the patches are represented in a consistent order. Each pair of ordered
patches is then assigned a label yi ∈ {0, 1, 2}, where “0” indicates that the under-
lying edge does not lie on a polyp boundary, “1” indicates that the edge lies on
a polyp boundary and that n1

i is the voting direction, and “2” indicates that the
edge lies on a polyp boundary but n2

i shows the voting direction. Mathematically,
S2 = {(p1i , p

2
i , yi)|yi ∈ {0, 1, 2}, i = 1, 2, ..., N2}. To generate semantic features,

each pair of ordered patches undergoes the image characterization followed by
the first classification layer. The resulting mid-level features are then concate-
nated to form a feature vector fi. This process is repeated for N2 pairs of ordered
patches, resulting in a labeled feature set, {(fi, yi)|yi ∈ {0, 1, 2}, i = 1, 2, ..., N2},
which is needed to train the second classifier. We train a 3-class classifier to
learn both edge labels and the voting directions (embedded in yi). Figure 3(b)
illustrates how the suggested edge classification scheme operates given a test
image.

Candidate Localization. Our voting scheme is designed to generate polyp
candidates in regions surrounded by curvy boundaries. The rationale is such
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boundaries can represent the heads of polyps. In our voting scheme, each edge
that has passed the classification stage, casts a vote along its voting direction
(inferred by the edge classifier). The vote cast by the voter v at a receiver pixel
r = [x, y] is computed as

Mv(x, y)=

{
Cv exp(−‖ �vr‖2

σF
) cos(∠ �n∗ �vr), if ∠ �n∗ �vr < π/2

0, if ∠ �n∗ �vr ≥ π/2
(2)

where the exponential and cosinusoidal functions enable smooth vote propaga-
tion, which we will later use to estimate a bounding box around each generated
candidate. In Eq. 2, Cvi

is the classification confidence, �vr is the vector connect-
ing the voter and receiver, σF controls the size of the voting field, and ∠ �n∗ �vr is
the angle between the voting direction �n∗ and �vr. Figure 4(a) shows the voting
field for an edge pixel lying at 135 degree. As seen, due to the condition set on
∠ �n∗ �vr, the votes are cast only in the region pointed by the voting direction.

It is essential for our voting scheme to prevent vote accumulation in the
regions that are surrounded by low curvature boundaries. For this purpose, our
voting scheme first groups the voters into 4 categories according to their voting
directions, V k={vi|kπ

4 < mod(∠n∗
i , π)< (k+1)π

4 }, k = 0...3. Our voting scheme
then proceeds by accumulating votes of each category in a separate voting map.
To produce the final voting map, we multiply the accumulated votes generated
in each category. A polyp candidate is then generated where the final voting
map has the maximum vote accumulation (MV A). Mathematically,

MV A = arg max
x,y

3∏

k=0

∑

v∈V k

Mv(x, y). (3)

Comparing Fig. 4(b) and (c) clarifies how the suggested edge grouping mitigates
vote accumulation between parallel lines, assigning higher temperature to only
regions surrounded by curvy boundaries. Another important characteristic of
our voting scheme is the utilization of voting directions. As shown in Fig. 4(d),
casting votes along both possible normal directions can result in mislocalized
candidates; however, incorporating voting directions allows for more accurate
candidate localization (Fig. 4(e)).

3.2 Stage 2: Candidate Classification

Our candidate classification method begins with estimating a bounding box
around each polyp candidate followed by a novel score fusion framework based
on convolutional neural networks (CNNs) [4] to assign a confidence value to each
generated candidate.

Bounding Box Estimation. To measure the extent of the polyp region, we
estimate a narrow band around each candidate, so that it contains the voters
that have contributed to vote accumulation at the candidate location. In other
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Fig. 4. (a) The generated voting map for an edge pixel lying at 135 degree. (b) With-
out edge grouping, all the votes are accumulated in one voting map, which results
in undesirable vote accumulation between the parallel lines. (c) With the suggested
edge grouping, higher temperature is assigned to only within the curvy boundaries. (d)
Casting votes along both possible normal directions can result in a candidate placed
outside the polyp region. (e) Casting votes only along the inferred voting directions
results in a successful candidate localization. (f) A narrow band is used for estimating
a bounding box around candidates. (g) A synthetic shape and its corresponding voting
map. The isocontours and the corresponding representative isocontour are shown in
blue and white, respectively (Color figure online).

words, the desired narrow band will enclose the polyp boundary and thus can
be used to estimate a bounding box around the candidate location. As shown in
Fig. 4(f), the narrow band B consists of a set of radial lines �θ parameterized as
�θ : MV A + t[cos(θ), sin(θ)]T , t ∈ [tθ − δ

2 , tθ + δ
2 ], where δ is the bandwidth, and

tθ is the distance between the candidate location and the corresponding point
on the band skeleton at angle θ. Once the band is formed, the bounding box is
localized so that it fully contains the narrow band around the candidate location
(see Fig. 4(f)). The bounding box will be later used for data augmentation where
we extract patches in multiple scales around the polyp candidates.

To estimate the unknown δ and tθ for a given candidate, we use the isocon-
tours of the corresponding voting map. The isocontour Φc of the voting map V
is defined as Φc = {(x, y)|V (x, y) = c × M} where M denotes the maximum of
the voting map and c is a constant between 0 and 1. As shown in Fig. 4(g), the
isocontours of the voting map, particularly those located farther away from the
candidate, have the desirable feature of following the shape of the actual bound-
ary from which the votes have been cast at the candidate location. Therefore,
one can estimate the narrow band’s parameters from the isocontours such that
the band encloses the object’s boundary. However, in practice, the shape of far
isocontours are undesirably influenced by other nearby voters in the scene. We
therefore obtain the representative isocontour Φ̄ by computing the median shape
of the isocontours of the voting map (see Fig. 4(g)). We have experimented with
different sets of isocontours and found out that as long as their parameter c
is uniformly selected between 0 and 1, the resulting representative isocontour
serves the desired purpose.

Let di
iso denotes the distance between the ith point on the representative iso-

countour Φ̄ and the candidate location. We use di
iso to predict di

obj , the distance
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between the corresponding point on the object boundary and the candidate loca-
tion. For this purpose, we employ a second order polynomial regression model

di
obj = b0 + b1(di

iso) + b2(di
iso)

2, (4)

where b0, b1, and b2 are the regression coefficients that are estimated using a
least square approach. Once the model is constructed, we take the output of
the model dobj at angle θ with respect to MV A as tθ and the corresponding
prediction interval as the bandwidth δ.

Probability Assignment. We propose a score fusion framework based on con-
volutional neural networks (CNNs) that can learn and integrate color, texture,
shape, and temporal information of polyps in multiple scales for more accurate
candidate classification. We choose to use CNNs because of their superior per-
formance in major object detection challenges. The attractive feature of CNNs
is that they jointly learn a multi-scale set of image features and a discriminative
classifier during a supervised training process. While CNNs are known to learn
discriminate patterns from raw pixel values, it turns out that preprocessing and
careful selection of the input patches can have a significant impact on the per-
formance of the subsequent CNNs. Specifically, we have found out that partial
illumination invariance achieved by histogram equalizing the input patches sig-
nificantly improves the performance of the subsequent CNNs and that curse of
dimensionality caused by patches with more than 3 channels results in CNNs
with inferior performance.

Considering these observations, we propose a 3-way image presentation that
is motivated by the three major types of polyp features suggested in the liter-
ature: (1) for color and texture features, we collect histogram-equalized color
patches PC around each polyp candidate; (2) for temporal features, we form
3-channel patches PT by stacking histogram-equalized gray channel of the cur-
rent frame and that of the previous 2 frames; (3) for shape in context, we form
3-channel patches PS by stacking the gray channel of the current frame and the
corresponding refined edge channel and voting channel produced in the candi-
date generation stage (see Fig. 2).

We collect the three sets of patches PC , PT , and PS from candidate locations
in the training videos, label each individual patch depending on whether the
underlying candidate is a true or false positive, and then train a CNN for each
set of the patches. Figure 5(a) shows the test stage of the suggested score fusion
framework. Given a new polyp candidate, we collect the three sets of patches in
multiple scales and orientations around the candidate location, apply each of the
trained CNNs on the corresponding patches, and take the maximum response
for each CNN, resulting in three probabilistic scores. The final classification
confidence is computed by averaging the resulting three scores.
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Fig. 5. (a) The test stage of the suggested score fusion framework. (b) Network layout
used for training the deep convolution networks.

4 Experiments

For evaluation, we have used 40 short colonoscopy videos. We have randomly
halved the database at video level into the training set containing 3800 frames
with polyps and 15100 frames without polyps, and the test set containing 5700
frames with polyps and 13200 frames without polyps. Each colonoscopy frame
in our database comes with a binary ground truth image. For performance eval-
uation, we consider a detection as a true (false) positive if it falls inside (outside)
the white region of the ground truth image.

Our candidate generation stage yielded a sensitivity of 73.6 % and 0.8 false
positives/frame. For candidate classification, we used Krizhevsky’s GPU imple-
mentation [4] of CNNs. With data augmentation, we collected 400,000 32× 32
patches for PC , PT , and PS where half of the patches were extracted around false
positive candidates and the rest around true positive candidates. Specifically, for
a candidate with an N × N bounding box, we extracted patches at three scales
sN × sN with s ∈ {1, 1.2, 1.4} and then resized them to 32× 32 patches. Fur-
thermore, we performed data augmentation [4] by extracting patches at multiple
orientations and translation in each given scale. We have used the layout shown
in Fig. 5(b) for all the CNNs used in this paper.

Figure 6(a) shows FROC analysis of the suggested system. As seen, our sys-
tem based on the suggested score fusion approach shows a relatively stable
performance over a wide range of voting fields. For comparison, we have also
reported the performance of our system based on individual CNNs trained using
color patches (PC), temporal patches (PT ), and shape in context patches (PS).
We have also experimented with the channel fusion approach where color, shape,
and temporal patches are stacked for each polyp candidate followed by training
one CNN for the resulting 9-channel training patches. To avoid clutter in the
figure, only their best performance curves obtained by σF = 70 are shown. As
seen in Fig. 6(a), the proposed score fusion framework yields the highest perfor-
mance, achieving 50 % sensitivity at 0.002 FPs/frame, outperforming [10] with
0.10 FPs/frame at the same sensitivity.

FROC analysis is widely used for evaluating computer-aided detection sys-
tems designed for static datasets such as CT scans and mammograms. However,
for temporal or sequence-based datasets such as colonoscopy videos, it has the
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(a) (b)

Fig. 6. (a) Analysis of FROC. (b) Analysis of polyp detection latency.

drawback of excluding the factor of time. While it is desirable for a polyp detec-
tion system to detect as many polyp instances as possible, it is also important
to measure how quickly a polyp is detected after it appears in the video. We
therefore employ a new performance curve [8] that measures the polyp detection
latency with respect to the number of false positives. Briefly, if t1 denotes the
arrival frame of the polyp, t2 denotes the frame in which the polyp is detected,
and fps is the frame rate of the video, the detection latency is then computed
as ΔT = (t2 − t1)/fps. As with FROC, we change a threshold on the detec-
tion confidences and then at each operating point measure the median polyp
detection latency of the test positive shots and the number of false positives in
the entire test set. As seen in Fig. 6(b), different variations of our system yield
significantly less number of false positives than our previous work [10] at nearly
all operating points.

On a desktop computer with a 2.4 GHz quad core Intel and an Nvidia GeForce
GTX 760 video card, our system processes each image at 2.65 s, which is signif-
icantly faster than [11] with run-time of 7.1 s and [2] with run-time of 19 s. We
should note that a very large fraction of the computation time (2.6 s) is caused
by the candidate generation stage and that the candidate classification based on
CNNs is extremely fast because CNNs are only applied to the candidate loca-
tion in each frame. We expect a significant speedup of our system using parallel
computing optimization.

5 Conclusion

We proposed a new computer-aided polyp detection system for colonoscopy
videos. Our system was based on context-aware shape features to generate a
set of candidates and convoluational neural networks to reduce the generated
false positives. We evaluated our system using the widely-used FROC analysis,
achieving 50 % sensitivity at 0.002 FPs/frame, outperforming state-of-the-art
systems [10,11], which generate 0.15 FPs/frame and 0.10 FPs/frame at 50 %
sensitivity, respectively. We also evaluated our system using a latency analysis,
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demonstrating a significantly lower polyp detection latency than [10] particularly
in low false positive rates.
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