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Abstract. Due to the convoluted folding pattern of the cerebral cortex,
accurate alignment of cortical surfaces remains challenging. In this paper,
we present a multiresolution diffeomorphic surface mapping algorithm
under the framework of large deformation diffeomorphic metric mapping
(LDDMM). Our algorithm takes advantage of multiresolution analysis
(MRA) for surfaces and constructs cortical surfaces at multiresolution.
This family of multiresolution surfaces are used as natural sparse priors
of the cortical anatomy and provide the anchor points where the para-
metrization of deformation vector fields is supported. This naturally con-
structs tangent bundles of diffeomorphisms at different resolution levels
and hence generates multiresolution diffeomorphic transformation. We
show that our construction of multiresolution LDDMM surface mapping
can potentially reduce computational cost and improves the mapping
accuracy of cortical surfaces.

1 Introduction

The human cortex is a convoluted sheet that forms folding patterns. Because
of this, functionally distinct regions are close to each other in a volume space
but geometrically distant in terms of distance measured along the cortex. Such
geometric property of the cortex has been well preserved in the cortical sur-
face model [4,7,9,13,20]. Thus, surface-based analysis, in particular, surface-
based registration for optimizing the alignment of anatomical and functional
data across individuals, has received great attention in both anatomical and
functional studies [8,10,17,20,21].

Most of the advanced cortical surface registration approaches have been
implemented in the spherical coordinates based on either folding patterns [10,15]
or landmarks (sulcal or gyral curves) [8,17]. In particular, landmark-based spher-
ical mappings provide flexibility to choose sulcal or gyral curves in functional
activation areas for the improvement of the alignment in regions of interest
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(ROIs) [1] even though the gyral or sulcal curves are the coarse representa-
tion of the cortex. Nevertheless, the landmark or folding pattern based spherical
mappings require the spherical reparametrization of the cortical surface in which
adjacent gyri with distinct functions are well separated. This surface reparame-
trization process introduces large distance and area distortion that potentially
affects the quality of the surface alignment. To avoid such distortion, one would
expect to directly align the cortical surfaces in their own coordinates. Vaillant
and Glaunès [18] first introduced a vector-valued measure acting on vector fields
as geometric representation of surfaces in their own space and then imposed a
Hilbert space structure on it, whose norm was used to quantify the geometric
similarity between two surfaces in their own coordinates. Since then, the vector-
valued measure has been incorporated as a matching functional in the variational
problems of large deformation diffeomorphic metric surface and curve mapping
(LDDMM) [18,19,22]. It has been shown that first aligning gyral/sulcal curves
and then cortical surfaces have great improvement in mapping cortical surfaces
when compared to directly mapping cortical surfaces alone [21]. This gives an
idea of multiresolution mapping for reducing computational cost and improving
cortical surface alignment.

Multiresolution diffeomorphic mapping has been proposed for images.
LDDMM with a mixture of kernels was introduced for aligning images [3], pro-
viding the mathematical foundation of a multiresolution diffeomorphic image
mapping. However, the weights associated with kernels were not straightforward
to determined and its computation remained the same as that of the image
mapping algorithm in [2]. Rather than a simple weighted mixture of kernels,
large deformation diffeomorphic kernel bundle mapping (LDDKBM) was pro-
posed to allow multiple kernels at multiple scales incorporated in the registra-
tion of images [16]. It combines sparsity priors with the kernel bundle resulting
in compact representations across scales. The results demonstrated tremendous
improvement on image mapping.

Paper Contributions. This paper presents a multiresolution surface mapping
algorithm under the LDDMM framework. We take advantage of a multiresolu-
tion analysis of surfaces, constructing coarse-to-fine surfaces that become natural
sparse priors of the cortical anatomy. The vertices on the surface at individual
resolutions provide the anchor points where the parametrization of deformation
vector fields is supported. This naturally constructs tangent bundles of diffeo-
morphisms at different resolution levels, similar to LDDKBM [16], and hence
generates multiresolution diffeomorphic transformation. We show that our con-
struction of multiresolution LDDMM surface mapping can potentially reduce
computational cost and improves the mapping accuracy of cortical surfaces.

2 Methods

2.1 Multiresolution Analysis for Surfaces

In this study, we adopt multiresolution analysis (MRA) for arbitrary surfaces from
Lounsbery et al. [12] to construct coarse-to-fine surface meshes. The method,
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which is related to the mathematical foundations of wavelets, decomposes a poly-
hedral surface into 2 separate components, namely a low-resolution surface and
a corresponding collection of coefficients containing the removed “details”. This
process, when performed iteratively, produces a family of surfaces, wherein each
successive surface is of a lower resolution than its predecessor. A recovery process,
known as “synthesis”, reverses the decomposition such that the original high-
resolution surface could be progressively reproduced from any member of the
family. We can thus define a chain of nested function spaces V(0) ⊂ V(1) ⊂ · · · ,
such that f ∈ V(r) is a function at resolution r, r ∈ [0, R], with the level of
detail increasing as r increases.

Let T = ({xi}, {Σijk}) be a triangular surface mesh, where {xi}, i = 1, . . . , N
is a set of vertices and {Σijk} a set of simplices, with each simplex Σijk as a
three tuple of points xi, xj , xk. Given a mesh T (r) at level r, with coordinates
X(r) = [x1, . . . , xi, . . . , xN(r) ], where xi ∈ R

3 and N (r) is the number of vertices
on T (r). The new vertices on T (r+1), denoted as X̂(r+1), can be given as

X̂(r+1) = X(r)AN(r)×M , (1)

where A is an N (r) × M matrix for a simple subdivision scheme (where all
elements of Aj = 0 except for Aij = Akj = 0.5) and M is the number of the
new vertices on T (r+1), X(r+1) = [X(r), X̂(r+1)]. Given an “averaging matrix”
BN(r+1)×N(r+1) , a general subdivision scheme can be rewritten as

X(r+1) = X(r)[IN(r)×N(r) A]B = X̃(r+1)B = X(r)P (r), (2)

where X̃(r+1) = X(r)[IN(r)×N(r) A], P (r) = [IN(r)×N(r) A]B.
As explained in [12], surfaces can be parametrized with a function S(y),

where y is defined on a base (coarsest) mesh T (0), i.e. y is a point on one of the
simplices in Σ

(0)
ijk and can be tracked through a predefined subdivision process to

a limit surface. We begin by first defining S(0)(y) := y. Let S(r−1)(y) be found in
a simplex Σ

(r)
abc with vertices (x̃a, x̃b, x̃c), x̃ found in X̃(r). Using the barycentric

coordinates (λa, λb, λc) such that S(r−1)(y) = λax̃a +λbx̃b +λcx̃c, we can induce
a bijective map S(r−1)(y) → S(r)(y) where

S(r)(y) = λaxa + λbxb + λcxc, x ∈ X(r) (3)

and (xa, xb, xc) corresponds to (x̃a, x̃b, x̃c) of the simplex Σ
(r)
abc. Then, S(y):=

limr→∞ S(r)(y). In matrix form,

S(r)(y) = λ(r)(y)(X(r))T . (4)

It follows that

S(r)(y) = λ(r)(y)(X(r−1)P (r−1))T (5)

= λ(r)(y)(P (r−1))T · · · (P (0))T (X(0))T . (6)
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(a) Level-2 (642,1280) (b) Level-3 (2563,5120) (c) Level-4 (10242,20480)

Fig. 1. Increasing levels of X(r) from left to right. Subcaptions indicates the corre-
sponding levels, number of vertices, and number of faces - “Level-r (no. of vertices, no.
of faces)”.

In other words, surfaces when parameterized into meshes, can be henceforth
understood as functions from a small collection of triangles into R

3. The subdi-
vision of triangles allows us to move from one resolution to another, providing a
family of surfaces for registration. We show three resolutions of the brain cortex
in Fig. 1.

2.2 Multiresolution Large Deformation Diffeomorphic Metric
Mapping for Surfaces

Now, we state a variational problem for mapping two surfaces under the frame-
work of LDDMM. LDDMM assumes that transformation can be generated from
one to another via flows of diffeomorphisms ϕt, which are solutions of ordi-
nary differential equations ϕ̇t = vt(ϕt), t ∈ [0, 1], starting from the identity map
ϕ0 = Id. They are therefore characterized by time-dependent velocity vector
fields vt, t ∈ [0, 1]. We define a metric distance between a target surface Starg

and an atlas surface Satlas as the minimal length of curves ϕt ·Satlas, t ∈ [0, 1], in
a shape space such that, at time t = 1, ϕ1 ·Satlas = Starg. Lengths of such curves
are computed as the integrated norm ‖vt‖V of the vector field, where vt ∈ V and
V is a reproducing kernel Hilbert space with kernel kV and norm ‖·‖V . To ensure
solutions are diffeomorphisms, V must be a space of smooth vector fields. The
duality isometry in Hilbert spaces allows us to express the lengths in terms of
mt ∈ V ∗, interpreted as momentum such that ∀u ∈ V , 〈mt, u◦ϕt〉2 = 〈k−1

V vt, u〉2,
and 〈m,u〉2 denotes the L

2 inner product between m and u, With a slight
abuse of symbols, it is the result of the natural pairing between m and v in
cases where m is singular (e.g., a measure). This identity is classically writ-
ten as ϕ∗

t mt = k−1
V vt, where ϕ∗

t is referred to as the pullback operation on
a vector measure, mt. Using the identity ‖vt‖2V = 〈k−1

V vt, vt〉2 = 〈mt, kV mt〉2
and the fact that energy-minimizing curves coincide with constant-speed length-
minimizing curves, we obtain the metric distance between the atlas and target,
ρ(Satlas, Starg), by minimizing ‖vt‖2V , such that ϕ1 · Satlas = Starg at time t = 1
[5]. We associate this with the variational problem in the form of

J(mt) = infmt:ϕ̇t=kV mt(ϕt),ϕ0=Id ρ(Satlas, Starg)2

+γE(ϕ1 · Satlas, Starg), (7)



Multiresolution Diffeomorphic Mapping for Cortical Surfaces 319

where E is defined based vector-valued measure as introduced in [18]. For any
two surfaces S1 and S2, E(S1, S2) is defined as

E(S1, S2) =
∑

f,g N t
fkW (cg, cf )Ng − 2

∑
f,q N t

fkW (cf , cq)Nq

+
∑

q,p N t
qkW (cq, cp)Nr,

(8)

where f, g are simplices from S1 while q, p are simplices from S2. Ng is then
the normal vector pointing out of the centre, cg, of simplex g. kW is a Gaussian
kernel with bandwidth σW . The metric distance ρ(Satlas, Starg)2 could be easily
computed as

∫ 1

0
‖vt‖2V dt.

We now construct the multiresolution diffeomorphic mapping for surfaces
under the framework of LDDMM. In the previous section, we show that a sur-
face, S, may be sequentially subsampled into meshes of decreasing resolution
T (r) . . . T (1). With a slight abuse of notation, let us define these meshes as the
discretization of the surface, rewriting T (r) as S(r), such that lim

r→∞ S(r) → S.
The duality isometry of mt with vt allows defining the smooth vector field, vt

through mt, where mt can sparsely anchor at the vertices on S(r). Therefore, it
is natural to seek m

(r)
t defined at the vertices on S(r) and then construct the

smooth vector field, w
(r)
t = k

(r)
V m

(r)
t , where the size of k

(r)
V can be adapted to the

sparse level of the vertices on S(r). From this construction, w
(r)
t , r = 0, 1, . . . , R

can be defined via momentum m
(r)
t ⊗ δx, x ∈ S(r), r = 0, 1, . . . , R and construct

independent tangent spaces of diffeomorphisms, w(r) ∈ W (r). The family of
vector fields forms reproducing kernel Hilbert spaces, which could be summed
across multiple resolutions, i.e., ϑt(wt) =

∑R
r=0 w

(r)
t , to form one single vector

field for the flow equation ϕ̇ϑ
t = ϑt(ϕϑ

t ). Through this family of vector fields,
we redefine ρMRA(Satlas, Starg) by minimizing

∫ 1

0

∑R
r=0 ‖w

(r)
t ‖2

W (r)dt such that
ϕϑ
1 · Satlas = Starg at time t = 1, where ‖w

(r)
t ‖2

W (r) =
〈
(k(r)

V )−1w
(r)
t , w

(r)
t

〉
2

=
〈
m

(r)
t , k

(r)
V m

(r)
t

〉
2
. This construction of ρMRA(Satlas, Starg) is in turn similar to

that proposed for the large deformation diffeomorphic kernel bundle mapping
(LDDKBM) for the registration of images [16].

We now modify Eq. (7) to the variational problem for the multiresolution
LDDMM surface mapping in the form of

J(mt) = inf
m

(r)
t :ϕ̇ϑ

t =
∑R

r=0 k
(r)
V mr

t (ϕ
ϑ
t ),ϕ

ϑ
0=Id

ρMRA(Satlas, Starg)2

+γE(ϕ1 · S
(R)
atlas, S

(R)
targ), (9)

where mt = {m
(r)
t }. We can rewrite this variational problem as

J(mt) = inf
m

(r)
t :ϕ̇ϑ

t =
∑R

r=0 k
(r)
V mr

t (ϕ
ϑ
t ),ϕ

ϑ
0=Id

∫ 1

0

∑R
r=0 ‖w

(r)
t ‖2

W (r)dt

+γE(ϕ1 · S
(R)
atlas, S

(R)
targ), (10)

where w
(r)
t (·) =

∑N(r)

i=1 k
(r)
V (·, xi)m

(r)
t (xi) and xi ∈ S(r).
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2.3 Gradient Computation and Implementation

To reduce the computational cost, we minimize Eq. (10) at each resolution level
when R gradually increases from 0, 1, 2, · · · . We use the gradient descent method
to solve Eq. (10) when R is fixed and the method presented in [14] to speed up
the computation of the Gaussian transform.

We now compute the gradient of J in Eq. (10) with respect to mt = {m
(r)
t }.

We begin by considering a variation in the vector field w
(r)
t,ε = w

(r)
t + εw̃

(r)
t . The

corresponding variation of xj,1 = ϕϑ
1 (xj) is

x̃j,1 = ∂εxj,1|ε=0 =
∫ 1

0

dxj,t
ϕϑ

t1w̃
(r)
t (xj,t)dt, (11)

where ϕt1 := ϕ1 ◦ ϕ−1
t . Based on the derivation from [18], the variation of E is

∂εE|ε=0 =
∫ 1

0

〈k(r)
V (xj,t, ·)(dxj,t

ϕϑ
t1)

∗∇xj,t
E, w̃

(r)
t 〉dt.

This implies that the gradient of E in the space L
2([0, 1],W (r)) of vector fields,

at a particular level r is of the form

∇E(t, ·) =
∑

j

k
(r)
V (xj,t, ·)(dxj,t

ϕϑ
t1)

∗∇xj,t
E. (12)

In this way, we have reduced the gradient computations to ∇xj,t
E, (the derivative

of the data attachment term, E, with respect to the vertices in xj,t). When the
surface is represented using vector-valued measure, ∇xj,t1E is given in [18]. The
Jacobian of the transformation, dxj,t

ϕϑ
t1, is given by the following relationship

(refer to [11] for further details)

d

dt
(dxj,t

ϕϑ
t1) = −dxj,t

ϕϑ
t1dxj,t

ϑ. (13)

Finally, using Eq. (13), we can directly compute

d

dt
∇xj,t

E = −(dxj,t
ϑ(wt))∗∇xj,t

E, (14)

which can be integrated backwards from t = 1 to 0. For a given resolution, the

gradient of
1∫

0

∑R
r=0‖w

(r)
t ‖2

W (r)dt is 2w
(r)
t . The gradient of the cost functional J

with respect to w
(r)
t is then

∇
w

(r)
t

J(x) = 2
∑

j

k
(r)
V (xj,t, x)

[
γ(dxj,t

ϕϑ
t1)

∗∇xj,t
E + m

(r)
j,t

]
. (15)

We can hence write the gradient of J with respect to m
(r)
t as

∇
m

(r)
t

J(x) = 2γ(dxj,t
ϕϑ

t1)
∗∇xj,t

E + 2m
(r)
t . (16)
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We now summarize the optimization with the following algorithm:
Algorithm 1

Given Satlas, Starg, use Eq. (5) and obtain {S
(r)
atlas}, {S

(r)
targ}, r ∈ {0, 1, · · · , R}.

for R = 0, 1, 2, · · · do

Step 1: Compute the gradient ∇
m

(R)
t

Jt(x) using Eqs. (13), (14) and (16).

Step 2: Update m
(R)
t using m

(R)
t = m

(R),old
t − ε∇

m
(R)
t

J(x),

where ε is an adaptive gradient descent step size. Evaluate J .

Step 3: Repeat steps 1,2 until J is optimized at level R.

Step 4: Initialize m
(R+1)
t . Assume X(R) and X(R+1) to be sets

respectively containing vertices of S(R) and S(R+1).

if x ∈ X(R+1) ∩ X(R) then

m
(R+1)
t (x) = m

(R)
t (x).

else if x ∈ X(R+1)/X(R) then

m
(R+1)
t (x) = m

(R)
t (x)P (R)

end if

end for

3 Experiments

In this section, we will first show experiments on real datasets using the pro-
posed registration algorithm and the LDDMM surface mapping in [18]. We will
then show the computation time and evaluate the mapping accuracy of the
two mapping algorithms. For all experiments, we use a Gaussian kernel, i.e.
kV (x, y) := exp(−‖x − y‖2/σV ).

Figure 2 illustrates one example of the mapping results using the proposed
method. Both atlas and target surfaces have 10242 vertices and 20480 faces.
The final deformed atlas showed on panel (d) was obtained using the proposed
mapping algorithm with four resolution levels respectively associated with the
diffeomorphic kernels of σV = {25, 10, 5, 1}. In panel (f), we visually examine
the deformed atlas by plotting the minimum distance (mm) from every vertex
of the target surface to every other vertex on the deformed source. The mean
and standard deviation of the minimum distance is 0.8238 ± 0.565.

We visually compared this mapping result with that obtained using the
LDDMM surface mapping in [18]. To make the two mapping algorithms com-
parable, the mapping procedure was the same except that the LDDMM surface
mapping was only applied to the finest level of the surfaces and σV = 1. From
Fig. 3(c), we can see that the LDDMM surface mapping method tends to have
the undesirable behaviour of ‘inwards folding’ (regions with in-folding indicated
with tiny black arrows) along the precentral gyrus, while this is not observed
using the proposed coarse-to-fine method.

Next, we aligned the atlas to 5 cortical surfaces using the same mapping
procedures as those introduced above for both the proposed method and the
LDDMM surface mapping. Table 1 lists the parameter setting and the computa-
tional cost averaged across the 5 cortical surfaces. In general, the computational
time is much less for the all four levels in the proposed method. This is due to
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(a) deformed atlas, t = 0 (b) deformed atlas, t = 10 (c) deformed atlas, t = 20

(d) deformed atlas, t = 30 (e) target (f) minimum distance plot

Fig. 2. An example of cortical surface mapping using the proposed algorithm with time
for the diffeomorphic flow was discretized into 30 steps. Panels (a, e) respectively show
the atlas and target surfaces, while panels (b,c) show the intermediate mapping results
(deformed atlas at time steps of 10 and 20) and panel (d) illustrates the deformed atlas.
Panel (f) shows the minimum distance from a point on the target to every other point
on the deformed atlas.

(a) LDDMM surface (b) proposed method (c) undesirable infold-
ings

(d) no undesirable in-
foldings

Fig. 3. This figure shows the comparison between the LDDMM surface mapping and
the proposed method for cortical surface registration. Panels (a) and (b) are the
deformed atlases obtained using LDDMM surface mapping and the proposed method,
respectively. The second row shows a closer view of the region around the central sul-
cus. Panels (c,d) respectively correspond to those from the LDDMM algorithm and
the proposed method. Black arrows on panel (c) point out the locations with undesired
infolding features.

the initialization provided by the low resolution surfaces, which allows the gra-
dient optimization at high resolutions, (where the computation is more costly),
to converge quickly.

We also evaluated the mapping accuracy of the two methods using surface
alignment consistency (SAC) that was initially introduced by Van Essen [6].
The SAC quantifies the anatomical variability of a sulcal region among a group
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Table 1. Average computational parameters and time for both methods, using the
Matlab software. For the MRA-LDDMM, the average time taken is the runtime for
the entire set of σV for that particular level, at a specific σW (bandwidth of the data-
attachment term). The LDDMM runtime records the entire time taken to go through
the same set of decreasing σW used by the MRA-LDDMM.

Method Level # of faces # of points σV Time taken

MRA-LDDMM 1 320 162 25 49.4s

MRA-LDDMM 2 1280 642 25,10 541.3s

MRA-LDDMM 3 5120 2563 25,10,5 1986.7s

MRA-LDDMM 4 20480 10242 25,10,5,1 3903.0s

LDDMM - 20480 10242 1 96341s

of subjects that can be characterized by the cortical mapping. A larger value
indicates better mapping. With prior information such as delineated surface
regions, the SAC is given as

∑N
i=1(i − 1)n(i)/(N − 1)(Ntotal), where N is the

total number of subjects used, n(i) is the number of points that were mapped
correctly for i number of times and Ntotal is the total number of nodes associated
with a particular region.

In our experiment, we manually delineated seventeen sulcal regions on all
the cortical surfaces (see details in [21]). The delineated regions are shown in
Fig. 4. Figure 5 shows the comparison of SAC values for the LDDMM surface
mapping and the proposed method at the last 2 levels. As expected, the SAC
values of the proposed method increases as the surface resolution becomes finer.
The SAC was also higher for the larger and more prominent sulci such as the
Central Sulcus, Cingulate Sulcus, Sylvian Fissure, Superior Precentral Sulcus
and Superior Temporal Sulcus. At level 3 (or 4) of the proposed mapping method,
the SAC values were uniformly greater than those obtained using the LDDMM
surface mapping for all seventeen sulcal regions.

(a) Lateral View of Atlas (b) Medial View of Atlas

Fig. 4. Seventeen sulcal regions are illustrated on the atlas surface.
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Fig. 5. Surface alignment consistency (SAC) for the LDDMM surface mapping and the
proposed method. Indexed sulci regions 1-17 are respectively: Dorsal bank of Calcarine
Sulcus(1), Ventral bank of Calcarine Sulcus(2), Central Sulcus(3), Cingulate Sulcus(4),
Collateral Sulcus(5), Inferior Frontal Sulcus(6), Intraparietal Sulcus(7), Inferior Pre-
central Sulcus(8), Inferior Temporal Sulcus(9), Lateral Occipital Sulcus(10), Occiptal
Temporal Sulcus(11), Parietal Occipital Sulcus(12), Postcentral Sulcus(13), Superior
Frontal Sulcus(14), Sylvian Fissure(15), Superior Precentral Sulcus(16), Superior Tem-
poral Sulcus(17).

4 Conclusion

This paper introduced the multiresolution diffeomorphic mapping for cortical
surfaces. We showed that this algorithm improves alignment as compared to the
LDDMM-surface algorithm [18]. It has potential to reduce the computational
time.
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