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  Abstract     B cell lymphomas represent a diverse group of biologically and clinically 
distinct neoplasms, encompassing over 40 subtypes that derive from the malignant 
transformation of mature B cells, most commonly at the germinal centre (GC) 
stage of differentiation. Analogous to most cancer types, these tumours are caused 
by alterations of oncogenes and tumour suppressor genes, some of which have 
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specifi c roles in GC development. This chapter will focus on the mechanisms and 
consequences of chromosomal translocations and other genetic lesions involved in 
the pathogenesis of the most common types of mature B cell lymphomas, including 
Mantle Cell Lymphoma, Follicular Lymphoma, Diffuse Large B Cell Lymphoma, 
and Burkitt Lymphoma.  

  Keywords     Germinal centre   •   Lymphoma   •   Genetic lesions   •   BCL6   •   Immunoglobulin 
remodelling  

9.1         Introduction 

 This chapter will focus on the role of chromosomal translocations and other mecha-
nisms of genetic lesion in the pathogenesis of the most common and well- 
characterized types of  B cell lymphoma (BCL)  , including Mantle Cell Lymphoma 
(MCL), Follicular Lymphoma (FL), Diffuse Large B Cell Lymphoma (DLBCL), 
and Burkitt Lymphoma (BL). Two additional common lymphoid malignancies, 
Chronic Lymphocytic Leukaemia (CLL) and Hodgkin Lymphoma (HL), will not be 
discussed in this chapter since either they lack recurrent chromosomal transloca-
tions (CLL) or their genome is still incompletely characterized (HL). Emphasis will 
be placed on the mechanisms of genetic lesions and the function of the involved 
genes in the context of normal B cell biology.  

9.2     Cell of Origin of B Cell Lymphomas 

 Knowledge of the unique events that take place in the cell of origin of BCL is essen-
tial for understanding the mechanisms that are involved in the generation of 
chromosomal translocations and other BCL-associated genetic lesions. Most BCLs 
develop from the malignant expansion of mature B cells, and with the exception of 
MCL, arise from B cells that are arrested at various stages during their transit 
through a particular structure known as the germinal centre (GC). The GC is a 
specialized environment that forms in peripheral lymphoid organs when mature, 
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naive B cells encounter a foreign antigen for the fi rst time, in the context of signals 
delivered by CD4+ T cells and antigen-presenting cells (APC) (Fig.  9.1 ) [ 1 – 3 ].

   GCs are characterized by two histologically and functionally well-defi ned zones: 
the dark zone (DZ), which consists of rapidly proliferating centroblasts (CBs) 
(doubling time 6–12 h), and the light zone (LZ), which is composed of more quiescent 
cells called centrocytes (CCs), surrounded by a network of follicular dendritic cells 
(FDC) and Tfh cells [ 4 ,  5 ]. In the DZ, the process of somatic hypermutation (SHM) 
modifi es the variable region of the immunoglobulin ( IG ) genes, which encodes for 
the antigen-binding portion of the antibody, by introducing mostly point mutations 
that will change its affi nity for the antigen [ 3 ,  6 ]. Following SHM in the DZ, CBs 
move to the LZ, where they compete for limited amount of antigen presented by 
FDCs. Based on the affi nity of their B cell receptor (BCR) for the antigen, CCs will 
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  Fig. 9.1    The germinal centre reaction and lymphomagenesis. Schematic representation of a 
lymphoid follicle illustrating the germinal centre, the mantle zone, and the surrounding marginal 
zone. Upon encounter with a T-cell dependent antigen, naïve B cells undergo rapid proliferation 
and differentiate into centroblasts (CB) in the dark zone of the GC, where they also modify their 
 IG  genes by the process of SHM. CBs then transition into centrocytes (CC) in the light zone, where 
their encounter the antigen again, now presented by FDC, and, based on affi nity for the antigen, are 
either selected to differentiate into plasma cells or memory B cells, re-enter the DZ, or be elimi-
nated by apoptosis. In the light zone, CCs also undergo CSR. With the exception of mantle cell 
lymphoma (MCL), most BCL derive from cells that have experienced the GC reaction ( arrows ). 
FL, follicular lymphoma; BL, Burkitt lymphoma; DLBCL, diffuse large B cell lymphoma ( GCB  
germinal centre B cell-like,  ABC  activated B cell-like)       
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then be selected to differentiate into memory B cells and plasma cells [ 3 ,  7 ] or, 
depending on stimulation by a variety of different signals, re-enter the DZ. In the 
GC, CCs also undergo class-switch recombination (CSR) [ 8 ], a DNA remodelling 
event that confers distinct effector functions to antibodies with identical specifi cities 
[ 9 ]. Both SHM and CSR represent B cell-specifi c functions that modify the genome 
of B cells via mechanisms involving single- or double-strand breaks, and both 
depend on the function of the activation-induced cytidine deaminase ( AICDA  / AID  ) 
enzyme [ 10 ,  11 ]. 

 A master regulator of the GC reaction is the transcriptional repressor BCL6; this 
protein is specifi cally expressed in the GC and is an essential requirement for GC 
formation, as documented in vivo by mouse models where deletion of the  BCL6  
gene was associated to the complete absence of these structures in response to 
antigenic stimulation [ 12 – 14 ]. BCL6 modulates the expression of numerous genes 
involved in BCR and CD40 signalling [ 15 ,  16 ], T-cell mediated B cell activation 
[ 15 ], apoptosis [ 15 ,  17 ], sensing and response to DNA damage [ 18 – 21 ], signalling 
pathways triggered by various cytokines and chemokines (e.g., interferon and 
TGFB1) [ 15 ,  17 ], and terminal B cell differentiation [ 22 ,  23 ]. BCL6 is therefore a 
central player in sustaining the proliferative nature of CBs, while allowing the exe-
cution of specifi c DNA remodelling processes (SHM and CSR) without eliciting 
responses to DNA damage. Furthermore, BCL6 suppresses a variety of signalling 
pathways that could lead to premature activation and differentiation before the 
selection of cells producing high-affi nity antibodies. Once these processes are 
completed, multiple signals, including engagement of the BCR by the antigen and 
activation of the CD40 receptor by the CD40 ligand expressed on CD4+ T-cells, 
will induce the activation of different pathways and ultimately lead to downregulation 
of BCL6 at both the translational and transcriptional level, thus restoring the ability 
of the B cell to become activated and differentiate. 

 This simplifi ed overview of the GC reaction is important to introduce two major 
concepts that are critical for the understanding of B cell lymphomagenesis: (i) as an 
irreversible marker of transit through the GC, the presence of somatically mutated 
 IG  genes in these tumours documented that the majority of BCLs, with the excep-
tion of most MCL cases, derive from the clonal expansion of GC-experienced B 
cells [ 24 ]; (ii) mistakes occurring during SHM and CSR are responsible for the 
generation of genetic alterations associated with BCL, including chromosomal 
translocations and aberrant somatic hypermutation (ASHM).  

9.3     Mechanisms of Genetic Lesions in B Cell Lymphomas 

9.3.1     Chromosomal Translocations 

 In B cell malignancies, chromosomal translocations occur at least in part as a 
consequence of mistakes in  IG  gene modifi cation processes, and can thus be distin-
guished into three groups based on the structural features of the chromosomal 
breakpoint: (i) translocations due to errors occurring during the  RAG  -mediated 
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 V(D)J   recombination process (e.g. translocations involving   IGH    and   CCND1    in 
MCL [ 25 ] and translocations involving  IGH  and  BCL2  in FL) [ 26 ,  27 ]; (ii) translo-
cations due to errors in the  AICDA  / AID   -dependent CSR process (e.g., those 
involving the  IG  genes and   MYC    in sporadic BL) [ 26 ]; and (iii) translocations 
occurring as by-products of DNA breaks generated during the AICDA/AID- 
mediated SHM process (e.g., those joining the  IG  and  MYC  loci in endemic BL) 
[ 26 ]. Importantly, deletion of AICDA/AID in lymphoma-prone mouse models was 
shown to prevent both the occurrence of  IGH / MYC  translocations in normal B cells 
undergoing CSR [ 28 ,  29 ] and the development of GC-type lymphomas [ 30 ,  31 ], 
documenting the involvement and requirement of  IG  gene remodelling mechanisms 
in the pathogenesis of BCL. 

 In most chromosomal translocations associated with BCL, and in contrast with 
translocations associated with acute leukaemias, the coding domain of the involved 
proto-oncogene is left unaltered by the translocation, and no gene fusion is gener-
ated. Instead, heterologous regulatory sequences derived from the partner chromo-
some are juxtaposed in proximity of the oncogene, leading to deregulated expression 
of an intact protein. This process of proto-oncogene deregulation is defi ned as 
homotopic if a proto-oncogene whose expression is tightly regulated in the normal 
tumour counterpart becomes constitutively expressed in the lymphoma cell, and 
heterotopic if the proto-oncogene is not expressed in the putative normal counter-
part of the tumour cell and undergoes ectopic expression in the lymphoma. In most 
types of BCL-associated translocations, the heterologous regulatory sequences 
responsible for proto-oncogene deregulation are derived from antigen receptor 
loci, which are expressed at high levels in the target tissue [ 26 ]. However, in 
certain translocations, such as the ones involving  BCL6  in DLBCL, different 
promoter regions from distinct chromosomal sites can be found juxtaposed to the 
proto-oncogene in individual tumour cases, a concept known as “promiscuous” 
translocations [ 32 – 40 ]. 

 Only few BCL associated chromosomal translocations juxtapose the coding 
regions of the two involved genes, forming a chimeric transcriptional unit that 
encodes for a novel fusion protein, an outcome typically observed in chromosomal 
translocations associated with acute leukaemia. Examples include the t(11;18)
(q22.2;q21.3) found in mucosa associated lymphoid tissue (MALT) lymphoma 
and the t(2;5)(p23.2;q35.1) typical of anaplastic large cell lymphoma (ALCL). 
The molecular cloning of the genetic loci involved in most recurrent translocations 
has led to the identifi cation of a number of proto-oncogenes involved in lymphoma-
genesis (Supplemental Table  9.1 ).

9.3.2        Gain-of-Function Mutations and Copy Number Gains 

 The biological properties of a proto-oncogene can be altered by two additional 
mechanisms, including somatic point mutations and copy number gains/amplifi cations. 
Genomic mutations in the coding and/or regulatory region of a proto- oncogene may 
lead to stabilization or constitutive activation of its protein product. CN gains and 
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amplifi cations typically result in the overexpression of an intact protein. Over the 
past few years, the use of next-generation sequencing technologies and high density 
genomic arrays have led to the identifi cation of numerous recurrent targets of 
somatic mutations and CN changes that likely play central roles in transformation. 
These genes will be discussed in individual disease sections. Of note, point mutations 
of the  RAS  genes, a very frequent proto-oncogene alteration in human neoplasia, are 
rare in lymphomas [ 41 ]. Also, only a few genes have been identifi ed so far as specifi c 
targets of amplifi cation in BCLs, including  REL  and  BCL2  in DLBCL [ 42 – 45 ] 
and the genes encoding for the PD ligands in primary mediastinal B cell lymphoma 
(PMBCL)[ 46 ].  

9.3.3     Deletions and Inactivating Mutations 

 Recent genomic efforts have uncovered several new candidate tumour suppressor 
genes that are lost in BCLs due to chromosomal deletions and/or deleterious muta-
tions. Among these genes,  PRDM1  (also known as  BLIMP1 ) on 6q21 is biallelically 
inactivated in ~25 % of ABC-DLBCL cases [ 47 – 49 ]; and  TNFAIP3 , the gene encod-
ing for the negative NF-κB-regulator A20 on 6q23, is inactivated in ~30 % of ABC- 
DLBCL, as well as in PMBCL, marginal-zone lymphoma and HL [ 50 – 53 ]. 
Heterozygous mutations and deletions inactivating the acetyltransferase genes 
 CREBBP  and  EP300  are observed in a signifi cant fraction of DLBCL and FL, sup-
porting a haploinsuffi cient tumour suppressor role [ 54 ]. DLBCL and FL also carry 
loss-of-function mutations of  KMT2D / MLL2 , a gene encoding for a methyltransfer-
ase found mutated in multiple cancer types [ 55 ,  56 ]. More than half of all CLL cases 
are associated with CN losses encompassing the  DLEU2 / miR15 - a / 16.1  cluster on 
13q14.3 [ 57 – 59 ], while the  CDKN2A / CDKN2B  locus is targeted by focal homozy-
gous deletions in a large proportion of transformed FL (tFL), Richter syndrome 
(RS) and ABC-DLBCL cases [ 60 – 62 ], and is epigenetically silenced in various 
MCL cases [ 63 ]. Loss of the   TP53    tumour suppressor gene, likely the most com-
monly mutated gene in human cancer [ 64 ], is observed at relatively low frequencies 
in BCL, where these lesions seem preferentially associated with specifi c disease 
subtypes, including BL and DLBCL derived from the transformation of FL or CLL 
[ 65 ,  66 ]. Analogous to other neoplasms, the mechanism of  TP53  inactivation in 
BCL entails point mutation of one allele and chromosomal deletion or mutation of 
the second allele.  

9.3.4     Aberrant Somatic Hypermutation 

 In normal GC B cells, the process of SHM is tightly regulated, introducing muta-
tions only in the rearranged  IG  variable sequences [ 67 ] as well as in the 5′ region of 
a few other loci, including  BCL6  and the  CD79  components of the B cell receptor 
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[ 68 – 70 ], although the functional role of mutations found in non- IG  genes remains 
obscure. On the contrary, multiple mutational events have been found to affect 
numerous loci in over half of DLBCL cases [ 71 ] and, at lower frequencies, in other 
lymphoma types [ 72 – 76 ], as the result of a pathologic phenomenon called aberrant 
somatic hypermutation (ASHM). These mutations are typically distributed within 
~2 Kb from the transcription initiation site [ 77 ] and, depending on the genomic 
confi guration of the target gene, may affect both coding and non- coding regions, 
thus holding the potential to alter the function of the encoded protein and its tran-
scriptional regulation. The target loci identifi ed to date include several well-known 
proto-oncogenes, such as  PIM1 ,  PAX5  and   MYC    [ 71 ]. However, the mechanism 
underlying ASHM and a comprehensive genome-wide characterization of its conse-
quences are still incompletely defi ned.   

9.4     Molecular Pathogenesis of Common B Cell Lymphomas 

9.4.1     Mantle Cell Lymphoma 

 Mantle cell lymphoma is a tumour of mature B cells expressing specifi c differentia-
tion markers and characterized in most cases by unmutated   IGH    variable sequences, 
consistent with the derivation from naive, pre-GC peripheral B cells (Fig.  9.1 ). 
However, recent studies revealed the existence of cases that carry SHM-associated 
mutations (15–40 % of diagnoses), refl ecting the infl uence of the GC environment. 

 MCL is characteristically associated with the t(11;14)(q13.3;q32.3) transloca-
tion, which juxtaposes the   IGH    gene to chromosomal region 11q13.3, containing 
the   CCND1    gene [ 25 ,  78 ,  79 ]. The translocation causes the heterotopic deregulation 
of cyclin D1, a member of the D-type G 1  cyclins that regulates the early phases of 
the cell cycle and is normally not expressed in resting B cells [ 80 – 82 ]. Another 
~10 % of MCL patients over-express aberrant or shorter cyclin D1 transcripts result-
ing from secondary rearrangements, microdeletions or point mutations in the gene 
3′ untranslated region [ 78 ,  83 – 85 ]. The tumourigenic role of cyclin D1 deregulation 
in human neoplasia is suggested by the ability of the overexpressed protein to 
transform cells in vitro and to induce B cell lymphomas in transgenic mice, although 
only when combined to other oncogenic alterations [ 86 ,  87 ]. Because of the ele-
vated frequency and specifi city of alterations, the ectopic expression of cyclin D1 in 
the tumour cells constitutes a standard immunohistochemical marker for MCL 
diagnosis [ 88 ]. 

 Additional genetic alterations accompanying the t(11;14)(q13.3;q32.3) in MCL 
include deletions and mutations inactivating the   ATM    gene (~40 % of patients) [ 89 ], 
loss of   TP53    (20 %) [ 90 ], and inactivation of the  CDKN2A  gene by deletions, point 
mutations or promoter hypermethylation, more frequently observed in aggressive cases 
(67 %) [ 91 ]. Aggressive tumours are associated with mutations in   NOTCH1    (12 % of 
clinical samples) and   NOTCH2    (5 % of samples), which are mutually exclusive 
and are typically represented by frameshift or nonsense events leading to the loss 
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of the PEST sequences required for protein degradation and thus to stabilization of 
the NOTCH protein [ 92 ,  93 ]. Less common, yet recurrent and therefore presumably 
functionally relevant mutations involve  BIRC3 , the Toll-like receptor 2 (TLR2), the 
chromatin modifi ers WHSC1 and KMT2D/MLL2, and the MEF2B transcription 
factor [ 92 ]. Finally, in a small number of cases,  BMI1  is amplifi ed and/or overex-
pressed, possibly as an alternative mechanism to the loss of the  CDKN2A  cell cycle 
regulator gene [ 94 ].  

9.4.2     Burkitt Lymphoma 

 BL derives from GC B cells displaying phenotypic and molecular features of trans-
formed centroblasts, as documented by the presence of highly mutated  IG  variable 
sequences [ 95 – 97 ] and the expression of a distinct transcriptional signature [ 98 , 
 99 ]. BL includes three clinical variants: sporadic BL (sBL), endemic BL (eBL) and 
HIV-associated BL, which is often diagnosed as a manifestation of AIDS [ 88 ]. 

 The genetic hallmark of BL is a chromosomal translocation involving the   MYC    
gene on chromosome 8q24.2 and one of the  IG  loci on the partner chromosome 
[ 100 ,  101 ], with   IGH    (14q32.3) being the most frequently involved (80 % of cases) 
and  IGK  (2p12) or  IGL  (22q11.2) being found in the remaining 20 % of cases [ 100 –
 103 ]. These translocations show a high degree of molecular heterogeneity, since the 
breakpoints are located 5′ and centromeric to  MYC  in  t(8;14)  , but map 3′ to  MYC  in 
 t(2;8)   and  t(8;22)   [ 100 – 104 ]. Further molecular heterogeneity derives from the 
breakpoint sites observed on chromosomes 8 and 14 in t(8;14): translocations of 
eBL tend to involve sequences at an undefi ned distance (>100 kb) 5′ to  MYC  on 
chromosome 8 and sequences within or in proximity to the Ig J H  region on chromo-
some 14 (Fig.  9.2 ) [ 105 ,  106 ]. In sBL, t(8;14) preferentially involves sequences 
within or immediately 5′ to  MYC  (<3 kb) on chromosome 8 and within the Ig switch 
regions on chromosome 14 (Fig.  9.2 ) [ 105 ,  106 ].

   The different molecular architecture of these translocations is thought to refl ect 
distinct mechanisms of  IG  gene remodelling involved in their generation, namely 
CSR in sBL and AIDS-BL and SHM in eBL [ 26 ]. 

 All  t(8;14)  ,  t(2;8)   and  t(8;22)   lead to the ectopic expression of the  MYC   proto- 
oncogene [ 107 – 109 ], which is normally absent in the majority of proliferating GC 
B cells [ 1 ], where it is repressed by BCL6 [ 110 ]. Oncogenic activation of  MYC  in 
BL is mediated by at least three distinct mechanisms: (i) juxtaposition of the MYC 
coding sequences to heterologous enhancers derived from the  IG  loci [ 107 – 109 ]; 
(ii) point mutations in the gene 5′ regulatory sequences, which alter the responsiveness 
to cellular factors controlling its expression [ 111 ]; (iii) amino acid substitutions 
within the gene exon 2, encoding for the protein transactivation domain [ 112 ,  113 ]; 
these mutations can abolish the ability of RBL1/p107, a nuclear protein related to 
 RB1 , to suppress  MYC  activity [ 114 ], or can increase protein stability [ 115 ,  116 ]. 

  MYC   is a nuclear phosphoprotein that binds and transcriptionally regulates 
thousand of target genes with diverse roles in regulating cell growth by affecting 
DNA replication, energy metabolism, protein synthesis, and telomere elongation 
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[ 117 – 119 ]. The deregulated expression of these functions is typically involved in 
malignant transformation. In addition, deregulated  MYC  expression is thought to 
cause genomic instability and, thus, contribute to tumour progression by facilitating 
the occurrence of additional genetic lesions [ 120 ]. Several transgenic mouse models 
of deregulated MYC expression have been generated and shown to develop aggres-
sive B cell lymphomas with high penetrance and short latency [ 116 ,  121 ,  122 ]. In 
particular, the combination of deregulated expression of  MYC  and PI3K signalling 
activation in GC B cells leads to lymphomas recapitulating the features of human 
BL [ 123 ]. 

 Genome sequencing has recently revealed additional oncogenic mechanisms that 
cooperate with  MYC   in the development of BL. Mutations affecting the genes 
encoding for the TCF3 transcription factor and for its negative regulator ID3 are 
frequently observed in all BL subtypes (10–25 % and 35–38 % of cases, respectively). 
These mutations trigger tonic (antigen-independent) BCR signalling and promote 
cell survival through activation of the PI3K signalling pathway (Fig.  9.3 ) [ 124 ].

   TCF3 can also transactivate   CCND3   , promoting cell-cycle progression, while in 
38 % of sBL, mutations within the carboxyl terminus domain of CCND3 stabilize 
the protein leading to higher expression levels. Other recurrent alterations associated 
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with BL include   TP53    loss by mutation and/or deletion (35 % of both sBL and eBL 
cases) [ 65 ],  CDKN2B  inactivation by deletion or hypermethylation (17 % of samples) 
[ 125 ], and 6q deletions (~30 % of cases, independent of the clinical variant) [ 126 ]. 
Finally, one contributing factor to the development of BL is monoclonal EBV 
infection, present in virtually all cases of eBL and in ~30 % of sBL and AIDS-BL 
[ 127 – 130 ]. However, BL cells lack the expression of both EBV transforming 
antigens (LMP1 and EBNA2); considering also that this virus is endemic in humans 
worldwide, these observations raise some doubts on the pathogenic role of EBV in 
this disease [ 131 ].  
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9.4.3     Follicular Lymphoma 

 FL is characterized by an indolent clinical course but remains incurable and 
ultimately leads to death often accompanied by histologic transformation to an 
aggressive lymphoma with a DLBCL phenotype (20–30 % of cases) [ 132 ,  133 ]. 
The derivation of FL from a GC B cell is supported by the expression of specifi c GC 
B cell markers together with the presence of SHM-mutated  IG  genes [ 24 ]. 

 Eighty to ninety percent of FL cases are characterized by chromosomal translo-
cations that affect the  IG  locus and the  BCL2  gene on chromosome band 18q21.3 
[ 78 ,  134 – 137 ]. These rearrangements join the 3′ untranslated region of  BCL2  to an 
 IG J   H   segment, leading to ectopic expression of the BCL2 protein in GC B cells 
[ 134 ,  135 ,  138 – 142 ], where its transcription is normally repressed by BCL6 [ 17 ,  143 ]. 
Approximately 70 % of the breakpoints on chromosome 18 cluster within the major 
breakpoint region, while the remaining 5–25 % map to the more distant minor clus-
ter region, located ~20 kb downstream of the  BCL2  gene (Fig.  9.4 )[ 134 ,  135 ,  138 , 
 139 ]. More rarely, rearrangements involve the 5′ fl anking sequences of  BCL2  
(Fig.  9.4 )[ 144 ].  BCL2  encodes for a major negative regulator of programmed cell 
death and may thus contribute to lymphomagenesis by conferring resistance to 
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apoptosis independent of antigen selection. Other genes recurrently targeted by 
mutations in FL include those encoding for the methyltransferase KMT2D/MLL2 
(up to 80 % of cases), the polycomb-group oncogene  EZH2  (7–20 % of patients), 
and the acetyltransferases  CREBBP  and  EP300  (40 % of cases), all of which may 
facilitate transformation by epigenetic remodelling of the precursor cancer cell.

   The genomic analysis of clonally related FL and tFL biopsies has recently 
allowed the identifi cation of the genetic lesions that are specifi cally acquired 
during histologic progression to DLBCL. These lesions include inactivation of 
 CDKN2A / CDKN2B  through deletion, mutation and hypermethylation (one third of 
patients) [ 61 ,  91 ], rearrangements and amplifi cations of   MYC    [ 145 ],   TP53     mutations/
deletions (25–30 % of cases) [ 66 ,  146 – 148 ], loss of chromosome 6 (20 %) [ 126 ], 
and ASHM [ 61 ]. Additionally, Biallelic inactivation of the gene encoding  B2M , 
leading to the loss of HLA class I expression on the cell surface of the tumour cells 
(see below) suggests that escape from immune surveillance may be important for 
FL transformation to DLBCL.  

9.4.4     Diffuse Large B Cell Lymphoma 

 DLBCL is an aggressive disease that includes cases arising  de novo  as well as cases 
derived from the clinical evolution of FL and CLL [ 88 ]. Gene expression profi le 
analysis has identifi ed three well-characterized molecular subtypes of DLBCL, 
which refl ect the derivation from different stages of B cell development. Germinal 
centre B cell-like (GCB) DLBCL is thought to derive from GC B cells with a phe-
notype intermediate between CB and CC; activated B cell-like (ABC) DLBCL is 
related to B cells committed to plasmablastic differentiation; and PMBCL arises 
from thymic B cells that have experienced the GC; the remaining 15–30 % of cases 
is still unclassifi ed [ 149 – 153 ]. Of note, patients diagnosed with GCB-DLBCL have 
favourable prognosis compared to ABC-DLBCL [ 45 ]. 

 Compared to other B cell malignancies, DLBCL shows a signifi cantly higher 
degree of genomic complexity, carrying on average 50–100 lesions/case, with sig-
nifi cant heterogeneity across patients [ 55 ,  56 ,  154 ]. Many of the lesions identifi ed 
can be variably found in both molecular subtypes of the disease, consistent with a 
general role during transformation, while others appear to be preferentially or 
exclusively associated with individual DLBCL subtypes, indicating that GCB-
DLBCL, ABC-DLBCL and PMBCL are genetically, phenotypically and clinically 
distinct diseases (Fig.  9.5 ).

9.4.4.1       Genetic Lesions Common to GCB- and ABC-DLBCL 

 A major contributor to DLBCL pathogenesis, in both GCB- and ABC-DLBCL, is 
represented by the deregulated activity of the BCL6 oncoprotein, which results 
from multiple genetic lesions. Chromosomal translocations involving the  BCL6  
gene at band 3q27 are observed in up to 35 % of cases [ 155 – 157 ], with a twofold 
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higher frequency in the ABC-DLBCL subtype [ 158 ]. These translocations juxtapose 
the coding exons of  BCL6  downstream and in the same transcriptional orientation to 
heterologous sequences derived from a variety of partner chromosomes, including 
  IGH    (14q32.3),  IGK  (2p11.2),  IGL  (22q11.2), and at least 20 other chromosomal 
sites unrelated to the  IG  loci (Fig.  9.6 ) [ 32 – 39 ].

   Most translocations result in a fusion transcript in which the promoter region and 
the fi rst non-coding exon of  BCL6  are replaced by sequences derived from the part-
ner gene [ 33 ,  159 ]. Since the common denominator of these promoters is the expres-
sion in the post-GC differentiation stage, the translocation is thought to prevent the 
downregulation of  BCL6  expression that is normally associated with differentiation 
into post-GC cells. Deregulated expression of an intact BCL6 gene product is also 
sustained by a variety of indirect mechanisms, including gain-of-function mutations 
in its positive regulator MEF2B (~11 % of cases) [ 160 ], inactivating mutations/deletions 
of  CREBBP / EP300  [ 54 ], which in normal cells impair BCL6 activity (see below) 
[ 161 ], and mutations/deletions of  FBXO11  (~5 %) [ 162 ], encoding a ubiquitin ligase 
involved in the control of BCL6 protein degradation. As documented by a mouse 
model in which deregulated BCL6 expression in GC B cells leads to the development 

ABC PMBLGCB

BCL2 Tx/M 34

MYC Tx 10

EZH2 M 22
GNA13 M 25

BCL6 BSE1 M 15

PTEN D 6-11
miR17-92 G 6-12

%

TNFAIP3 M/D 30
MYD88 M 30

CD79A/B M 20
CARD11 M 9

BCL2 Amp 24-30
PRDM1 M/D 25
CDKN2A/B D 30

% PDL1/2 Amp/Tx 49

JAK2 Amp 30

CIITA Tx 38

STAT6 M 36

SOCS1 M 45

TNFAIP3 M 36

TP53 M 20

%

MLL2/MLL3 M 32-38

CREBBP/EP300 M/D 32
B2M/CD58 M/D 21-29

BCL6 Tx 20-35

MEF2B M 10
FOXO1 M 8

TP53 M 20

%

all subtypes

Apoptosis
Proliferation
Epigenetic remodelling
Cell cycle
BCL6 deregulation
Terminal differentation
NFkB/BCR activation
JAK/STAT activation
Other signalling
Immune escape
DNA damage response

Biological program Genetic lesion consequence
Loss of function
Gain of function
Unknown

PTPN1 M 20

  Fig. 9.5    Genetic lesions associated with DLBCL. Most common genetic alterations identifi ed in 
GCB-DLBCL, ABC-DLBCL and PMBCL. The biological function/signalling pathway affected 
by the lesion is indicated by colour-coded squares and is explained in the  upper right panel . 
 M  mutation,  D  deletion,  Tx  translocation,  Amp  amplifi cation       

 

9 Chromosomal Translocations in B Cell Lymphomas



172

of DLBCL [ 163 ], BCL6 plays a critical role in lymphomagenesis by enforcing the 
proliferative phenotype typical of GC cells, suppressing proper DNA damage 
responses, and blocking terminal differentiation. 

 The most frequently disrupted function in DLBCL, independent of subtype, is 
represented by epigenetic remodelling, due to mutations in the  CREBBP / EP300  
acetyltransferase genes (35 % of cases) [ 54 ] and the  KMT2D / MLL2  H3K4 methyl-
transferase (~30 % of all DLBCL) [ 54 – 56 ]. These lesions may favour malignant 
transformation by reprogramming the cancer epigenome, and in the case of 
 CREBBP / EP300 , by altering the balance between the activity of the  BCL6   oncogene, 
which is typically inactivated by acetylation, and the tumour suppressor  TP53  , 
which requires acetylation at specifi c residues for its function as a tumour 
suppressor [ 54 ]. 

 Escape from both arms of immune surveillance, including CTL-mediated 
cytotoxicity (through genetic loss of the  B2M/HLA-I  genes) and NK cell-mediated 
death (through genetic loss of the CD58 molecule) also appears a major feature of 
the DLBCL phenotype [ 164 ]. Analogous effects may be achieved in PMBCL by 
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disruption of the MHC-II transactivator CIITA [ 165 ] and amplifi cation of the genes 
encoding for the immunomodulatory proteins PDL1/PDL2 [ 46 ]. 

 Finally, approximately 50 % of all DLBCL are associated with ASHM [ 71 ]. 
The number and identity of the genes that accumulate mutations in their coding 
and non- coding regions due to this mechanism varies in different cases and is still 
largely undefi ned [ 166 ]. ASHM may therefore contribute to the heterogeneity of 
DLBCL via the alteration of different cellular pathways in different cases.  

9.4.4.2     Genetic Lesions of GCB-DLBCL 

 These include the t(14;18) and  t(8;14)   translocations, which deregulate the  BCL2  
and   MYC    oncogenes in 34 % and 10 % of cases, respectively [ 45 ,  143 ,  167 – 169 ]. 
Virtually restricted to this subtype are also mutations of EZH2 [ 170 ], a histone 
methyltransferase that trimethylates Lys27 of histone H3 (H3K27); mutations of 
several genes in the Galpha13 pathway, including the  GNA13  gene, which are 
involved in the ability of DLBCL cells to spread from their lymphoid sites to the 
peripheral blood and bone marrow; and deletions of the tumour suppressor  PTEN  
[ 62 ,  171 ]. Mutations affecting an autoregulatory domain within the  BCL6  5′ 
untranslated exon 1 [ 158 ,  172 ,  173 ] are detected in up to 75 % of DLBCL cases [ 69 , 
 174 ,  175 ], and refl ect the activity of the physiologic SHM mechanism that operates 
in normal GC B cells [ 69 ,  176 ]. Functional analysis of numerous mutated  BCL6  
alleles uncovered a subset of mutations that are specifi cally associated with GCB-
DLBCL [ 172 ], and deregulate  BCL6  transcription by disrupting an autoregulatory 
circuit through which the BCL6 protein controls its own expression levels via binding 
to the promoter region of the gene [ 172 ,  173 ] or by preventing CD40-induced BCL6 
downregulation in post-GC B cells [ 177 ]. However, the full extent of mutations 
deregulating BCL6 expression has not been characterized, and therefore the fraction 
of DLBCL cases carrying abnormalities in the  BCL6  gene remains undefi ned.  

9.4.4.3     Genetic Lesions of ABC-DLBCL 

 ABC-DLBCL depends on the constitutive activation of the NF-κB signalling 
pathway caused by a variety of alterations in positive and negative regulators of 
NF-κB. In ~30 % of cases, the  TNFAIP3  gene, encoding for the negative regulator 
A20, is biallelically inactivated by mutations and/or deletions, thus preventing 
termination of NF-κB-responses [ 50 ,  51 ]. In an additional ~10 % of ABC-DLBCL, 
the  CARD11  gene is targeted by oncogenic mutations clustering in the protein 
coiled- coil domain and enhancing its ability to transactivate NF-κB-target genes 
[ 178 ]. Finally, nearly 30 % of ABC-DLBCL cases recurrently show a hotspot 
mutation (L265P) in the intracellular Toll/interleukin-1 receptor domain of the 
MYD88 adaptor molecule, which has the potential to activate NF-κB as well as 
JAK/STAT3 transcriptional responses [ 179 ]. At lower frequencies, mutations were 
found in a number of additional genes encoding for NF-κB pathway components. 
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Overall, lesions affecting NF-κB activation account for over 50 % of all ABC-
DLBCL [ 50 ,  51 ], suggesting that additional mechanisms and/or yet unidentifi ed 
lesions are responsible for the constitutive NF-κB activity in the remaining cases. 

 ABC-DLBCLs also depend upon chronic active BCR signalling (which also lead 
to NF-κB activation). This is associated in ~10 % of cases with somatic mutations 
of  CD79B  and  CD79A  [ 180 ], typically located within the immunoreceptor tyrosine- 
based activation motif (ITAM). Since silencing of several BCR proximal and distal 
subunits is toxic to ABC-DLBCL [ 180 ], there is conceptual support for the develop-
ment of therapies that target BCR signalling components. In fact, preliminary data 
suggest that the Bruton Tyrosine Kinase (BTK) inhibitor  Ibrutinib  , may be effective 
against a subset of ABC-DLBCL cases. 

 Biallelic truncating or missense mutations and/or genomic deletions of the 
 PRDM1 / BLIMP1  gene, which encodes for a zinc fi nger transcriptional repressor 
required for terminal B cell differentiation [ 181 ], block DLBCL cells in the plasma-
blastic stage in ~25 % of ABC-DLBCL [ 47 – 49 ]. In an additional 25 % of cases, the 
same consequence is caused by transcriptional repression of PRDM1/BLIMP1 by 
constitutively active BCL6 alleles [ 47 – 49 ]. Accordingly, translocations deregulat-
ing the  BCL6  gene and  BLIMP1  inactivation are mutually exclusive in DLBCL, 
consistent with these alterations representing alternative oncogenic mechanisms 
contributing to blocking differentiation during lymphomagenesis (Fig.  9.7 ).

9.4.4.4        Genetic Lesions of DLBCL Derived from CLL 
and FL Transformation 

 The genomic analysis of sequential biopsies of CLL and FL pre- and post- 
transformation to DLBCL have provided insights onto the mechanisms underlying 
these transformation processes. These studies have revealed that the transformation 
of CLL into DLBCL (called Richter Syndrome) derives from the dominant CLL 
clone through a linear pattern, involving the maintenance of the CLL-associated 
lesions and the acquisition of new ones, namely   NOTCH1    mutations, 
 CDKN2A / CDKN2B  loss,   TP53    loss, and   MYC    translocations [ 60 ]. Conversely, FL 
and tFL derive from a common mutated precursor clone by divergent evolution 
involving the disruption of distinct genes and pathways; lesions specifi cally acquired 
at transformation include  CDKN2A / B  loss,  TP53  loss,  MYC  translocations, ASHM 
and  B2M  inactivation [ 61 ,  182 ]. Comparison with  de novo  DLBCL showed that, 
despite their morphologic resemblance, the genomic landscapes of RS and tFL are 
largely unique since they are characterized in part by distinct combinations of alter-
ations otherwise not commonly observed in  de novo  DLBCL [ 60 ,  61 ]. Thus, the 
histologic diagnosis of DLBCL may include at least fi ve genetically distinct dis-
eases: GCB-DLBCL, ABC-DLBCL, PMBCL, tFL, and RS DLBCL. This distinc-
tion has implications for the development of targeted therapies.  
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  Fig. 9.7    Pathway lesions in ABC-DLBCL. Schematic representation of the signalling pathways 
induced following engagement of the BCR by the antigen, CD40-CD40L interaction, and activa-
tion of the TLR. These signals share the ability to activate the NF-κB pathway, leading to upregu-
lated expression of hundreds of genes, including  IRF4  and  TNFAIP3 / A20 . IRF4, in turn, represses 
BCL6, thus releasing the expression of its target PRDM1/BLIMP1. In ABC-DLBCL, multiple 
genetic lesions converge on this pathway, causing the constitutive activation of NF-κB, as well as 
chronic active BCR and JAK/STAT3 signalling, while blocking terminal B cell differentiation 
through mutually exclusive BCL6 deregulation and PRDM1/BLIMP1 inactivation. Genes targeted 
by gain-of-function mutations or translocations are in red, and genes targeted by loss-of-function 
genetic lesions are in blue       
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9.4.4.5     Genetic Lesions of PMBCL 

 This lymphoma displays a unique transcriptional profi le that is similar to HL and 
suggests the derivation from post-GC thymic B cells [ 149 – 153 ]. One of the most 
common alterations in both PMBCL and HL is represented by amplifi cation of 
chromosomal region 9p24, found in up to 50 % of patients [ 46 ,  183 ]. The amplifi ed 
region encompasses multiple candidate genes, including the gene encoding for 
the JAK2 tyrosine kinase and the  PDL1 / PDL2  genes, which encode for inhibitors 
of T-cell responses and may thus favour immune evasion of the tumour cells. 
Genomic breakpoints and mutations have also been described in the  CIITA  gene, 
encoding for the MHC class II transactivator; these lesions may reduce tumour 
cell immunogenicity by downregulating the expression of surface HLA class II 
molecules [ 46 ,  165 ,  184 ]. Analogous to HL, PMBCL patients harbour multiple 
genetic lesions affecting the NF-κB pathway and the JAK-STAT signalling pathway 
[ 185 ], including mutations of the transcription factor  STAT6 , amplifi cations/
overexpression of  JAK2  (which promote STAT6 activation via IL3/IL4), and inacti-
vating mutations of the STAT6 negative regulator  SOCS1 . More recently, recurrent 
inactivating somatic mutations of PTPN1 were reported in 22 % of PMBCL cases, 
where they lead to reduced phosphatase activity and increased phosphorylation of 
JAK-STAT pathway members [ 186 ]. Deregulation of these two signalling pathways 
is thus a central contributor to PMBCL pathogenesis.       
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