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   Abstract     Chronic myeloid leukaemia (CML) was the fi rst leukaemia associated 
with a unique genetic abnormality, the Philadelphia chromosome. This results from 
a reciprocal translocation between chromosomes 9 and 22, which generates the 
 BCR - ABL1  fusion gene encoding a constitutively active tyrosine kinase. The com-
plex intracellular signalling initiated by BCR-ABL1 is responsible for disease 
development, and targeted tyrosine kinase inhibitors have been the most successful 
therapeutic advance in CML. In this chapter, we review the implications of 

        D.  A.   Casolari    
  Department of Haematology, Centre for Cancer Biology, SA Pathology , 
 University of South Australia ,   Adelaide ,  Australia     

    J.  V.   Melo      (*) 
  Department of Haematology, Centre for Cancer Biology ,  University of Adelaide , 
  Adelaide ,  Australia   
 e-mail: junia.melo@adelaide.edu.au  

mailto:junia.melo@adelaide.edu.au


108

 BCR- ABL1 signalling in CML, how this knowledge revolutionized CML treat-
ment, and discuss approaches to further improving therapeutic response by the tar-
geting of leukaemic stem cells.  

  Keywords     Chronic myeloid leukaemia   •   BCR-ABL1   •   Tyrosine kinase inhibitor   • 
  Blast crisis   •   Leukaemic stem cell  

7.1         Introduction 

 Chronic myeloid leukaemia (CML) was probably the fi rst form of leukaemia to be 
independently recognized in 1845 by John H. Bennett, in Scotland, and Rudolf 
Virchow, in Germany [ 1 ]. The discovery of the Philadelphia (Ph) chromosome, in 
1960 [ 2 ] was the fi rst consistent chromosomal abnormality associated with a spe-
cifi c type of leukaemia, and was not only a breakthrough in cancer biology but also 
the fi rst important clue to CML pathogenesis. In 1973, Rowley identifi ed the Ph 
chromosome as a shortened chromosome 22 (22q-), result of a reciprocal t(9;22)
(q34.1;q11.2) translocation [ 3 ]. In the next decade, the Ph chromosome was shown 
to carry a unique fusion gene,  BCR - ABL1  [ 4 ], the deregulated BCR-ABL1 tyrosine 
kinase activity was defi ned as the pathogenetic principle of CML [ 5 ], and the fi rst 
animal models were developed [ 6 ]. Ultimately, this knowledge provided the basis 
for the design of a targeted therapy for CML with the development of ABL1 specifi c 
tyrosine kinase inhibitors (TKIs), which selectively inhibit the growth of  BCR- 
ABL1   positive cells  in vitro  and  in vivo  [ 7 – 9 ].  

7.2     CML Characteristics and Disease Phases 

 CML is a clonal myeloproliferative disease originating in a single haematopoietic 
stem cell (HSC). It represents 15–20 % of the leukaemias in adults and has a rela-
tively low incidence (1–1.5 new cases per 100,000 people per year). However, its 
prevalence is on the rise due to the signifi cant improvement in its treatment over the 
past 15 years [ 10 ]. In the Western countries, the median age of patients at diagnosis 
is 55–65 years old, whereas it is signifi cantly lower, averaging 38–41 years, in Asia, 
Africa, Southern/Eastern Europe and Latin America [ 11 ]. The disease affects both 
sexes, with a slight male preponderance (male:female ratio of 1.3:1). 

 The only known predisposing factor to CML is high-dose ionizing radiation, as 
best demonstrated by studies of survivors of the Hiroshima and Nagasaki atomic 
bomb explosions [ 12 ]. Apart from a borderline increased risk of CML in fi rst-degree 
relatives of patients with myeloproliferative disorders [ 13 ], there is no evidence of 
an inherited disposition or association with chemical exposure. 
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 In its natural history, CML is a tri-phasic disease, predominantly presenting in a 
chronic phase (CP) averaging around 3–7 years. In most cases of CP CML, the 
neoplastic expansion involves a leukaemic clone that differentiates into mature 
granulocytes which function normally, despite being derived from malignant pro-
genitors. The ‘indolent’ phenotype of CP means that some patients are asymptom-
atic, and the diagnosis is frequently an incidental fi nding; however, the majority 
typically present with mild symptoms of fatigue, weight loss and sweats [ 14 ,  15 ]. 
CP progresses to either the transitional accelerated phase (AP) or transforms directly 
into blast crisis (BC). When present, the AP precedes BC by 2–15 months [ 16 ]. 
Transformation to BC is characterized by the presence, in the peripheral blood or 
bone marrow (BM), of 20 % or more blasts, which can be of myeloid (approxi-
mately 70 % of cases) or lymphoid (30 %) origin [ 17 ]. BC is clinically indistin-
guishable from acute leukaemia and can present leukocytosis, cytopenia, 
hepatosplenomegaly, enlarged lymph nodes, and marked refractoriness to treatment 
which results in a dismal clinical outcome, with a historical median survival of no 
more than 3–6 months [ 18 ]. Even with the advent of TKIs, response of BC to this 
type of therapy is minimal, and median survival is still only 9 months [ 19 ,  20 ]. 

 Until the emergency of TKIs, the only curative treatment for CML was HSC 
transplantation, but this was restricted to a minority of patients, due to age restric-
tions and the need for a histocompatible donor. The prognosis has now substantially 
improved for most CML patients who respond well to TKIs, a proportion of whom 
are able to survive indefi nitely without evidence of disease.  

7.3     Molecular Pathogenesis 

7.3.1     The BCR-ABL1 Gene 

 The t(9;22)(q34.1;q11.2) reciprocal translocation gives rise to two pathognomonic 
fusion genes,  BCR - ABL1  on the der(22) (Ph) chromosome, and  ABL1 - BCR , on the 
der(9) (Fig.  7.1 ). Although the latter is transcribed, there is no evidence that it has 
functional relevance to the disease [ 21 ]. Thus, it is the translation of the  BCR - ABL1  
gene into an abnormal fusion protein that is responsible for the leukaemic process.

   The breakpoints within  ABL1  at 9q34.1 can occur anywhere over a large (>300 
kb) area at its 5′ end, either upstream of exon 1b, downstream of exon 1a or, more 
frequently, between the two [ 22 ]. Regardless of the exact location of the breakpoint, 
splicing of the transcript yields an mRNA molecule where  BCR  is fused to  ABL1  
exon a2 (Fig.  7.2 ).

   In contrast to  ABL1 , breakpoints within  BCR  localize to one of three breakpoint 
cluster regions (bcr). In most CML cases and in about one third of Ph + acute lym-
phoblastic leukaemias (ALL), the break occurs within  BCR  exons 12–16 (previ-
ously exons b1–b5), defi ned as the major bcr (M-bcr) [ 22 ]. Due to alternative 
splicing, the mRNA usually contains the  BCR - ABL1  junctions e13a2 or e14a2 
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  Fig. 7.1    Schematic 
representation of the t(9;22)
(q34.1;q11.2) chromosomal 
translocation, the cytogenetic 
hallmark of chronic myeloid 
leukaemia. Breaks within the 
ABL1 and BCR genes on 
chromosomes 9 and 22, 
respectively, followed by 
recombination of the broken 
DNA ends, give origin to two 
derivative chromosomes, the 
der(22) or Philadelphia (Ph) 
and the der(9). The BCR- 
ABL1 gene, which is the 
pathogenetic product of this 
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  Fig. 7.2    Schematic representation of the ABL1 and the BCR genes disrupted in the t(9;22)
(q34.1;q11.2). Exons are represented by  boxes  and introns by connecting  horizontal lines . 
Breakpoint regions in ABL1 are illustrated as  vertical arrows , and in BCR by the three double- 
headed  horizontal arrows . The lower half of the fi gure shows the structure of the various BCR- 
ABL1 mRNA transcripts which are formed in accordance with the position of the breakpoint in 
BCR. Breaks in m- bcr  give origin to BCR-ABL1 mRNA molecules with an e1a2 junction. The 
breaks in M- bcr  occur either between exons e13 and e14 or between e14 and e15, generating 
fusion transcripts with a e13a2 or a e14a2 junction, respectively. Breakpoints in μ- bcr , the most 3′ 
cluster region, result in BCR-ABL1 transcripts with an e19a2 junction       
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(originally b2a2 or b3a2) and is translated into a 210 kDa protein (P210 BCR-ABL ). The 
majority of Ph + ALL and very rare cases of CML, characterized by prominent 
monocytosis [ 23 ,  24 ], have breakpoints further upstream between exons e2′ and e2, 
termed the minor bcr (m- bcr ). The resulting e1a2 mRNA is translated into a 190 
kDa protein (P190 BCR-ABL ). A third bcr (μ- bcr ) is located downstream of exon 19, 
giving rise to a 230 kDa fusion protein (P230 BCR-ABL ), which is sometimes associ-
ated with an uncommon neutrophilic variant of CML [ 25 ,  26 ]. Although all three 
major BCR-ABL1 fusion proteins induce a CML-like disease in mice, they differ in 
their ability to induce lymphoid leukaemia [ 27 ]. 

 The mechanism by which the Ph chromosome is fi rst formed and the time 
required for overt disease to appear are unknown.  BCR - ABL1  fusion transcripts can 
be induced in haematopoietic cells by exposure to ionizing radiation  in vitro  [ 28 ]; 
such induced translocations may not be random events but may depend on the cel-
lular background and the particular genes involved. Translocations between  BCR  
and  ABL1  may be favoured by their relative proximity during the interphase of 
cycling haematopoietic cells [ 29 ]. Furthermore, a 76 kb ‘duplicon’ near  ABL1  and 
 BCR  has been implicated in the translocation, but this mechanism is purely specula-
tive [ 30 ]. 

 The  BCR - ABL1  gene is expressed in all CML patients, but the reciprocal  ABL1- 
BCR   gene on the der(9) occurs in only 70 % of cases [ 21 ]. Approximately 20 % of 
CML patients have deletions on the der(9) and have signifi cantly shorter survival 
than those lacking the deletions [ 31 ,  32 ]. Notably, absence of the  ABL1 - BCR  gene, 
which is always included in the deleted region, does not by itself have the same 
ominous prognostic implication [ 33 ]. Similarly, no prognostic relevance of the 
der(9) deletions was observed on patients treated with TKIs [ 34 ,  35 ]. 

 The idea that CML may result from a multi-step process was fi rst broached over 
30 years ago [ 36 ] but there is little evidence of additional abnormalities that precede 
the t(9;22) translocation. Even so, the presence of  BCR - ABL1  in any haematopoietic 
cell is not in itself suffi cient to cause leukaemia, since  BCR - ABL1  is detectable at 
low frequency in the blood of many normal individuals [ 37 ,  38 ]. Thus the genera-
tion of a  correct BCR - ABL1  in a  multipotent HSC , possibly under reduced 
 immunological surveillance, is necessary to initiate the clonal expansion that leads 
to CML. This hypothesis is supported by the production of a CML-like disease in 
mice transplanted with  BCR - ABL1 -positive stem cells [ 6 ,  39 ,  40 ]. However, once 
established, the ‘tempo’ or aggressiveness of the CP disease varies in different 
patients and must be infl uenced by other factors.  

7.3.2     The BCR-ABL1 Protein 

 The BCR-ABL1 oncoprotein includes several important domains of its parental 
BCR and ABL1 normal counterparts, which endow it of specifi c biological proper-
ties (Fig.  7.3 ).
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   In ABL1, they include the SRC-homology SH1, SH2 and SH3, a nuclear 
 localisation signal, DNA and actin-binding domains, and in BCR a coiled-coil motif 
contained in amino acids 1–63 [ 41 ], the tyrosine at position 177 [ 42 ] and phospho-
serine/threonine rich sequences between amino acids 192–242 and 298–413 [ 43 ]. 
The most important feature for its leukaemogenic potential resides in the fact that 
the tyrosine kinase of the ABL1 protein is constitutively activated by the juxtaposi-
tion of BCR. The BCR dimerization domains connect two BCR-ABL1 molecules 
which then phosphorylate their respective partners on tyrosine residues in the kinase 
activation loops [ 41 ]. The consequent increase of phosphotyrosine residues on 
BCR- ABL1 itself creates binding sites for the SH2 domains of other proteins. 
A host of substrates can be tyrosine phosphorylated by BCR-ABL1, the net result 
of which is deregulated cellular proliferation, decreased adherence of leukaemia 
cells to the BM stroma, reduced response to apoptotic stimuli, increased genomic 
instability and increased capacity for self-renewal [ 44 ,  45 ]. 

 Tyrosine phosphatases counterbalance and regulate the effects of tyrosine kinases 
under physiological conditions. Two tyrosine phosphatases, SYP and PTPN1, have 
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  Fig. 7.3    Schematic representation of the normal ABL1 (p145), the normal BCR (p160) and the 
leukaemia-associated BCR-ABL1 fusion proteins. Note that the variation between the three forms 
of BCR-ABL1 proteins is due to the different contributions of BCR rather than of ABL1 sequences 
to the hybrid product. The arrows in BCR indicate the sites of protein fusion arising from m- bcr  
(p190 BCR-ABL ), M- bcr  (p210 BCR-ABL ) and μ- bcr  (p230 BCR-ABL ) breakpoints. Some special features and 
regions of these proteins are shown: In the ABL1 protein these are the myristoylation (MYR) site 
present in the human type 1b protein, the regulatory  src -homology (SH) regions SH3 and SH2, the 
SH1 (kinase domain) with its principal site of autophosphorylation (Y412), the nuclear localisa-
tion signal (NLS), the DNA- and the actin-binding domains. In the BCR protein these are the 
dimerization domain (DD), the phospho-serine/threonine (P-S/T)-rich SH2-binding domain, the 
 dbl -like and the GAP  rac   domains       
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been shown to form complexes with BCR-ABL1, and both appear to dephosphory-
late BCR-ABL1 [ 46 ,  47 ]. On the other hand, BCR-ABL1 protects itself from the 
protein tyrosine phosphatase 1 (PTPN6/SHP1), which can dephosphorylate BCR- 
ABL1 and induce its proteasomal degradation, by inhibiting the PTPN6/SHP1 acti-
vator PP2A [ 48 ].  

7.3.3     Signalling and Disease 

7.3.3.1     Proliferation and Survival 

 BCR-ABL1 shifts the balance towards inhibition of apoptosis while simultaneously 
providing a proliferative stimulus through multiple signals. These are frequently 
diffi cult to separate but mostly involve PI3K/AKT1, JAK/STAT, RAS/RAF/MEK/
ERK and MYC pathways (Fig.  7.4 ).

   Once the adapter molecule GRB2 binds to P-Tyr177 on BCR-ABL1, it recruits 
SOS and constitutively activates RAS, which, in turn, activates MAPK3/ERK1 and 
MAPK1/ERK2 [ 42 ,  49 ]. Two other adapter molecules, SHC1 and CRKL, can also 
activate RAS after binding to BCR-ABL1 [ 50 ,  51 ]. Ultimately, activated MAPKs 
indirectly induce gene transcription and cell proliferation [ 49 ,  52 ]. 
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 Signalling from RAS can be relayed via RAC GTPases [ 53 ] to activate MAPK8/
JNK, which is required for BCR-ABL1 malignant transformation [ 54 ]. Accordingly, 
downregulation of the JNK pathway negative regulator JUNB, by promoter hyper-
methylation, has been described in CML primary cells [ 55 ]. RAC GTPases them-
selves play an important role in BCR-ABL1 leukaemogenesis, activating STAT5, 
PI3K and MAPKs pathways [ 56 ]. Moreover, concomitant loss of  Rac1  and  Rac2  
impaired the development of a myeloproliferative disease and increased survival of 
mice transplanted with BCR-ABL1-expressing cells [ 57 ]. 

 Constitutive phosphorylation of STAT1 and STAT5 has been reported in several 
 BCR - ABL1  positive cell lines [ 58 ] and primary CML cells [ 59 ], and seems to be 
independent of JAK. STAT5 can be directly activated by BCR-ABL1 [ 60 ] or 
 indirectly through GRB2/RAS/RAC or HCK [ 56 ] to then up-regulate target genes, 
such as  CCND1  (leading to cell cycle progression) and the anti-apoptotic 
 BCL2L1 / BCL-XL  [ 61 ,  62 ]. Although one study found that BCR-ABL1 induced a 
CML like disease in Stat5a/b −/−  mice [ 63 ], another reported that complete deletion 
of Stat5a/b locus turned mice resistant to BCR-ABL1 transformation [ 64 ]. In addi-
tion, knock-down of STAT5 in primary CML cells blocks Ph + colony formation 
[ 62 ], and cells expressing a mutant BCR-ABL1 unable to activate STAT5 or wild 
type BCR-ABL1 with a dominant negative STAT5 are more apoptotic than wild 
type cells [ 65 ]. Altogether, these results support a role for STAT5 in BCR-ABL1 
transformation. 

 BCR-ABL1 forms complexes with PI3K, CBL and the adapters CRK and CRKL 
[ 66 ], in which PI3K, and the downstream AKT1 and mTOR, are constitutively acti-
vated [ 67 ]. In addition, activation of RAS and the adapter GAB2 by GRB2 cause 
constitutive activation of PI3K [ 62 ]. PI3K exerts its oncogenic effects mainly by 
activation of mTOR, which forms the mTORC1 and mTORC2 complexes that play 
important roles in the proliferation and survival of BCR-ABL1-positive cells [ 49 , 
 68 ]. PI3K activity is required for BCR-ABL1-mediated leukaemogenesis, since its 
inhibition impairs BCR-ABL1 transformation of HSCs [ 49 ,  67 ]. PI3K also hyper-
phosphorylates the transcription factor (TF) IRF8/ICSBP, preventing its DNA bind-
ing and reverting its transcriptional repression of the antiapoptotic  BCL2  gene [ 69 ]. 

  AKT1  itself is an oncogene, and is essential for the resistance to apoptosis of 
BCR-ABL1-positive cells. It phosphorylates BAD, which promotes its sequestra-
tion by 14-3-3, and blocks its binding to BCL2 family members, consequently 
inhibiting apoptosis [ 70 ]. AKT1 also blocks apoptosis through phosphorylation of 
caspases [ 67 ], and downregulation of antiapoptotic BCL2L11/BIM [ 49 ]. 

 Activation of MYC by BCR-ABL1 is dependent on the SH2 domain [ 71 ]. In 
addition, RAS/MAPK and PI3K/AKT1 pathways contribute to inducing  MYC  tran-
scription or promoting MYC stability [ 67 ,  72 ]. Depending on the cellular context, 
MYC may transduce proliferative or apoptotic signals [ 67 ]; however, considering 
BCR-ABL1-mediated antiapoptotic mechanisms, the apoptotic arm of MYC is 
most likely inhibited in CML. Proliferation, on the other hand, may be induced by 
MYC’s activation of cyclin and CDK transcription, repression of CIP/KIP family 
cyclin/CDK inhibitors’ expression, and indirect induction of mTORC1 transcrip-
tion [ 67 ].  
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7.3.3.2     Progression to Blast Crisis 

 CML progression is characterized by the occurrence of non-random chromosomal 
abnormalities. The most frequent are trisomy 8 (33 %), an additional Ph (30 %), 
isochromosome 17 (20 %), trisomy 19 (12 %), loss of the Y chromosome (8 % of 
males), trisomy 21 (7 %) and monosomy 7 (5 %) [ 73 ]. Although these changes are 
used as markers of disease progression, they may not necessarily be causal agents 
of transformation. Two important mechanisms and phenotypes related to the emer-
gence of BC are addressed below. 

   Block in Differentiation 

 With progression of CML, the leukaemic clone undergoes differentiation arrest, 
resulting in a major increase of immature blasts at the expense of the terminally dif-
ferentiated leucocytes. This differentiation arrest implies pathological interference 
with differentiation programmes involving the targeted activation/inactivation of 
tissue-specifi c genes by TF [ 74 ]. 

 Abnormal CTNNB1/β-catenin signalling leads granulocyte-macrophage 
 progenitors to acquire the stem cell-like capacity of unrestricted self-renewal [ 75 ]. 
In addition, interaction between CTNNB1 and BCR-ABL1 increases β-catenin 
transcriptional activity infl uencing leukaemic stem cell (LSC) lineage commitment 
as early as in CP, and loss of CTNNB1impairs the self-renewal of CML stem-cells 
[ 76 ,  77 ]. 

 Another mechanism of differentiation arrest is the down-modulation of the TF 
CEBPA by BCR-ABL1, in BC but not in CP, through regulation of pre- and post- 
transcriptional mechanisms [ 78 ,  79 ]. CEBPA activates transcription of the 
 CSFR3 / GCSFR  and  ID1  genes in myeloid cells, and its ectopic expression restores 
differentiation in BCR-ABL1-transformed cell lines or BC CML primary cells 
[ 80 – 83 ]. 

 Additional causes of the block in differentiation in BC CML include mutations, 
translocations or deletions in genes that regulate differentiation and self-renewal of 
haematopoietic stem and progenitor cells, such as  GATA2  [ 84 ,  85 ],  RUNX1  [ 86 – 88 ], 
 ASXL1  [ 79 ,  87 ,  89 ],  IKZF1  [ 87 ,  90 ,  91 ] and  PAX5  [ 90 ,  92 ].  

   Genomic Instability 

 BCR-ABL1-transformed cell lines and CD34+ primary CML cells produce 2–6 
times more ROS than the normal controls [ 93 ]. ROS can damage the DNA generat-
ing oxidized bases and double strand brakes (DSB). Accordingly, CD34+ CML 
cells accumulate three to eight times more oxidized bases and DSBs than normal 
cells [ 93 ]. At the same time, they display defective mismatch repair; stimulate DSBs 
repair but with low fi delity, through homologous recombination repair (HRR), non-
homologous end-joining (NHEJ), and single strand annealing (SSA) repair mecha-
nisms; and induce mutagenic nucleotide excision repair (NER), all of which 
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exacerbate genomic instability and contribute to disease progression (Fig.  7.5 ). The 
mechanisms of altered DNA repair in CML are addressed below.

   ATR is a DNA damage ‘sensor’ that controls cell cycle check points. BCR-ABL1 
was reported to translocate to the nucleus, following exposure to genotoxic agents, 
where it bound and inhibited ATR and CHEK1, allowing inappropriate DNA 
 replication [ 95 ,  96 ]. In a contradictory study, however, ATR signalling was stimu-
lated in BCR-ABL1-positive cells in response to genotoxic agents [ 97 ]. This result 
was further corroborated by recent fi ndings that BCR-ABL1 inhibition reduces 
CHEK1 activation and cell cycle arrest in G2/M phase, and induces apoptosis in 
cells exposed to genotoxic agents [ 98 ]. Therefore, ATR signalling might contribute 
to chemotherapeutics resistance in CML. 

 The tumour suppressor BRCA1 is another ‘sensor’ that detects DNA damage 
and mediates cell cycle check points and HRR [ 99 ]. BRCA1 is virtually undetect-
able in CML cells and  BCR - ABL1 -transformed cell lines [ 100 ] and this absence 
contributes to the genomic instability observed in BCR-ABL1 cells [ 101 ]. To over-
come BRCA1 defi ciency, HRR occurs through the alternative RAD52-RAD51 
pathway [ 102 ,  103 ]. 
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 Both HRR and NHEJ promote less faithful ROS-induced DSB repair in  BCR-
ABL1- transformed   cells [ 104 ]. Downregulation of PRKDC/DNA-PKcs, LIG4/
DNA ligase IV and DCLRE1C/Artemis, and upregulation of LIG3/DNA ligase IIIα, 
WRN nuclease and RBBP8/CtIP in BCR-ABL1-positive cells may be responsible 
for the alternative error-prone NHEJ pathway observed in CML [ 105 – 108 ]. HRR, 
in turn, is abnormally stimulated to the detriment of its fi delity in CML due to BCR-
ABL1- mediated overexpression and activation of RAD51, which promotes errone-
ous HRR when overstimulated [ 109 – 111 ]. Incorrect DNA repair can be prevented 
by mismatch repair, but BCR-ABL1 inhibits this process by abrogating heterodi-
merization of the mismatch repair proteins MLH1 and PMS2 [ 112 ]. SSA is a rare 
and unfaithful mechanism of DSB repair and BCR-ABL1 stimulates SSA activity 
in a dose-dependent manner and through up-regulation of  RBBP8 / CtIP  [ 108 ,  113 ]. 

 NER activity status in CML is controversial. In initial reports, BCR-ABL1 was 
found to interfere with NER proteins reducing NER activity [ 114 ,  115 ]. It was later 
suggested that P210 BCR-ABL  induced NER in myeloid but repressed it in lymphoid 
cell lines [ 116 ]. However, more recent fi ndings reported no difference in NER activ-
ity between lymphoid and myeloid CML cell lines, and a BCR-ABL1 kinase- 
dependent increase in NER activity in CML cell lines [ 117 ]. 

 Expression of BCR-ABL1 is also associated with upregulation of DNA poly-
merase β [ 118 ,  119 ], an enzyme involved in HRR, NER and base excision repair 
(BER) [ 120 – 122 ]. Due to its low-fi delity DNA repair, it might be expected that 
DNA polymerase β overexpression contributes to CML genomic instability. 
Accumulation of point mutations in CML might also result from BCR-ABL1 inhi-
bition of UNG, the most active glycosylase during BER, in both CML primary and 
 BCR - ABL1 -transformed cells [ 123 ].     

7.4     Targeted Therapy 

 The knowledge on BCR-ABL1 structure and function that accumulated over the 
past 30 years set up the scene for the design of ‘molecularly targeted’ therapy for 
CML. Since the tyrosine kinase activity of BCR-ABL1 is essential for disease 
development, it was the most attractive target for designer therapy, although not the 
only one approached [ 124 – 132 ]. Undoubtedly, the advent of TKIs, which block or 
prevent BCR-ABL1 oncogenic signalling, has been so far the most exciting and 
successful therapeutic advance in CML. 

7.4.1     First Generation TKI: Imatinib 

 Imatinib mesilate (IM) is a small chemical compound which competes with ATP for 
binding to its pocket in the BCR-ABL1 kinase domain (KD), thus blocking the 
BCR-ABL1 oncogenic signal [ 45 ]. IM inhibits the kinase activity of all ABL1- and 
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ARG-containing proteins, the PDGFR family and the KIT receptor [ 133 – 135 ]. 
Such inhibition results in transcriptional modulation of various genes involved in 
the control of cell cycle, cell adhesion and cytoskeletal organization, leading the Ph 
+ cell to an apoptotic death [ 44 ]. In addition, IM inhibits growth of CML primary 
cells and cell lines  in vitro  and  in vivo  [ 7 ,  8 ,  136 ]. 

 In a phase I trial, IM showed little toxicity but proved to be highly effective 
[ 137 ]. The 8-year follow-up of the phase III IRIS trial reported an overall free sur-
vival rate (excluding discontinuation of therapy) of 85 % for CP CML patients 
under IM as fi rst-line therapy, with 86 % of major molecular responses (MMR) 
[ 138 ]. In contrast, most of the responses of patients in BC are short-lived with very 
low (12–17 %) cytogenetic responses and median survival of 6.5–10 months [ 20 ]. 

7.4.1.1     Resistance to IM 

 While the effi cacy of IM is unquestioned, resistance to TKIs became a pressing 
challenge in CML treatment. The persistence of minimal residual disease and, more 
worryingly, the development of refractoriness to single drug therapy, have damp-
ened the initial enthusiasm. At the 8-year follow-up on the IRIS study, only 55 % of 
patients remained on IM therapy, and in 16 % of those who discontinued this was 
due to unsatisfactory therapeutic outcome [ 138 ]. Other studies have reported even 
higher resistance rates, varying from 12 to 50 % [ 19 ]. 

 The defi nition of resistance can be based on its time of onset as primary resis-
tance, i.e., failure to achieve a signifi cant cytogenetic response, and secondary or 
acquired resistance, i.e., progressive reappearance of the leukaemic clone after an 
initial response to the drug. In addition, resistance can also be classifi ed as BCR-
ABL1- dependent and -independent. The fi rst group encompasses the emergence of 
leukaemic clones with mutations in the BCR-ABL1 KD [ 139 ], overexpression of 
the BCR-ABL1 protein [ 140 ,  141 ] and amplifi cation of the BCR-ABL1 oncogene 
[ 142 ,  143 ]. The mechanisms of BCR-ABL1-independent resistance include mostly 
defects in drug transport in and out of the leukaemic cells, and activation of onco-
genic pathways downstream of BCR-ABL1 [ 144 ]. 

 The most common mechanism for acquired IM resistance is through the devel-
opment of point mutations in the ABL1 KD of BCR-ABL1 [ 144 ]. These mutations 
are not induced by the drug but, rather, confer resistance to rare populations of 
progenitors which are selected due to their capacity to survive and expand in the 
presence of the drug. 

 Mutations can be broadly categorized into four groups: (i) those which directly 
impair IM binding; (ii) those within the ATP binding site; (iii) those within the acti-
vation loop; and (iv) those within the catalytic domain (Fig.  7.6 ).

   The substitution of isoleucine for threonine at position 315 of ABL1, or T315I, 
reduces the affi nity for the drug by preventing the formation of a hydrogen bond 
between T315 and the secondary amino group of IM, and by sterically preventing 
the binding of IM [ 143 ]. Another amino acid that makes contact with IM is phenyl-
alanine 317, and its mutation to leucine (F317L) also leads to resistance. 
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 The ATP-binding loop (or P-loop) domain spans amino acids 248–256 [ 147 ]. 
Mutations in this domain are the most common and modify the fl exibility of the 
P-loop destabilizing the conformation required for IM binding [ 148 ]. The most fre-
quent of such mutations are substitutions at G250, Q252, Y253 and E255. An addi-
tional feature of clinical relevance is that IM-treated patients who harbour P-loop 
mutations have a worse prognosis than those with non-P-loop mutations 
[ 149 – 152 ]. 

 The activation loop of the ABL1 kinase begins at amino acid 381 and can adopt 
a closed (inactive) or an open (active) conformation. IM forces ABL1 into the inac-
tive conformation and is incapable of binding to the active one [ 153 ]. Mutations in 
the activation loop may disturb the energetic balance required to stabilize the closed 
conformation of the loop and, thus, favour the open conformation resulting in IM 
resistance [ 148 ]. 

 Finally, some substitutions cluster in the catalytic domain (amino acids 350–
363), a region that has a close topologic relation to the base of the activation loop. 
Therefore, mutations in this region can also infl uence IM binding [ 148 ]. 
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 The degree of IM resistance varies between mutations and is predicted to affect 
prognosis and response to treatment. Thus far, more than 100 different point muta-
tions leading to a substitution of approximately 50 amino acids in the ABL1 KD 
have been identifi ed in patients resistant to IM and this number is likely to increase 
with more sensitive methods of detection [ 154 ].   

7.4.2     Second and Third Generation TKIs 

7.4.2.1     Dasatinib 

 Dasatinib is a dual SRC/ABL1 kinase inhibitor that also binds to the ATP-binding 
site, but extends in the opposite direction from IM. It binds the inactive and active 
conformation of the ABL1 KD, has a greater affi nity to this domain, and is more 
potent than IM [ 155 ]. In clinical trials, dasatinib showed signifi cantly higher MMR 
and overall survival rates than IM for CP CML patients [ 156 ,  157 ]. CML patients in 
advanced phase also showed improved complete cytogenetic response (CCyR) rates 
under dasatinib; however, those are still low, at 32 % [ 158 ]. 

 Dasatinib requires fewer contact points with ABL1 residues; therefore, it is 
active against several IM-associated mutations. The T315I and F317L mutations, 
however, lead to the least favourable responses [ 159 – 162 ]. Due to a direct interac-
tion between F317 and dasatinib, several amino acid substitutions in this position 
result in dasatinib-resistant mutants, such as F317L, F317V, F317I, and F317S 
[ 150 ,  163 ]. In a phase III study of dasatinib in CP CML patients, development of 
 mutations T315I, F317L, V299L, and, rarely, E255K correlated with loss of 
response [ 19 ].  

7.4.2.2     Nilotinib 

 Nilotinib was designed as a chemical modifi cation of IM and is 10–50 times more 
potent [ 164 ]. It also inhibits the activity of ARG, KIT, and PDGFRA and PDGFRB, 
but not SRC kinase. CP patients treated with nilotinib showed higher CCyR, MMR 
and overall survival rates, and lower transformation events than those under IM [ 19 , 
 165 ,  166 ]. Moreover, in trials for patients with advanced CML, nilotinib treatment 
also resulted in higher CCyR rates than IM [ 19 ]. 

 Similar to dasatinib, nilotinib inhibits the  in vitro  proliferation of most of the 
clinically relevant BCR-ABL1 mutants, except for the T315I [ 167 – 170 ]. 
Likewise, the degree of sensitivity/resistance to nilotinib also varies for individ-
ual mutants. Accordingly, the mutations T315I, E255K/V, F359C/V, and Y253H 
have shown association with lack of CCyR to nilotinib, followed by disease pro-
gression [ 170 ].  
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7.4.2.3    Bosutinib 

 Bosutinib is a potent second generation TKI that, like dasatinib, also has SRC inhib-
itory activity. In a phase III trial it showed higher MMR rates, and lower disease 
progression than IM [ 171 ]. Bosutinib also induces CCyR, albeit at a low rate (23 %), 
in patients resistant to IM or to either nilotinib or dasatinib [ 172 ]. At present, bosu-
tinib is registered in many countries as a second- or third-line therapeutic agent.  

7.4.2.4    Ponatinib 

 Ponatinib is a third generation TKI rationally designed to inhibit the T315I muta-
tion, whilst still keeping activity against the unmutated and the majority of other 
BCR-ABL1 mutants. It also inhibits VEGFA, FGF, KIT and SRC kinases [ 173 ]. In 
a clinical trial of patients resistant or intolerant to nilotinib or dasatinib, or with the 
T315I mutation, ponatinib treatment caused CCyR and MMR in 46 % and 34 % of 
CP patients, respectively [ 174 ]. Moreover, 24 % of AP patients achieved CCyR and 
16 % MMR, while only 18 % of BC patients experienced CCyR. Ponatinib’s toxic-
ity profi le, however, can be a major drawback, since 5 % of patients suffered pan-
creatitis, and there was a signifi cant association between ponatinib treatment and 
cardiovascular, cerebrovascular, and peripheral vascular events [ 174 ]. As a conse-
quence, its indication is currently restricted to patients with a T315I mutation or for 
whom no other TKI is indicated.  

7.4.2.5    Rebastinib 

 Rebastinib (or DCC-2036) is a switch pocket TKI rationally designed to induce an 
inactive conformation on BCR-ABL1. It retains full activity against the majority of 
BCR-ABL1 mutations, including T315I, but fi ve P-loop mutants, G250E, Q252H, 
Y253H and E255K/V, in addition to F359I, have shown resistance to it [ 175 ,  176 ]. 
Preliminary results from a phase I trial (NCT00827138;   www.clinicaltrials.gov    ) 
suggest it has anti-leukaemic activity in patients intolerant/refractory to other TKIs 
or positive for T315I [ 177 ], but a Phase II trial is not presently planned.    

7.5     LSC as a Therapeutic Target in CML 

 Despite the success of TKI treatment, the persistence of minimal residual disease or 
the recurrence of disease upon cessation of therapy in most patients with undetect-
able BCR-ABL1, indicate that LSC persist even when response to treatment is opti-
mal [ 178 ,  179 ]. 

 Although primitive CML cells were shown to stop proliferating and enter a 
reversible cell cycle arrest upon IM treatment, they are resistant to TKI-induced 
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apoptosis both  in vitro  and  in vivo , even when BCR-ABL1 signalling is effectively 
inhibited [ 180 – 188 ]. These results suggest that the LSCs are capable of surviving 
independently of BCR-ABL1. 

 It has been suggested that the LSC quiescent state was responsible for their resis-
tance to IM. In fact, stimulating quiescent LSCs to enter the cell cycle with CSF3/G- 
CSF reduces the overall non-cycling cell population  in vitro  [ 189 ,  190 ]; however, in 
clinical practice, this does not impact on disease outcome [ 191 ]. Accordingly, even 
the cycling primitive CML cells resist apoptosis due to BCR-ABL1 inhibition [ 187 ]. 
Therefore, LSCs capacity to survive BCR-ABL1 inhibition may be mediated by 
their ability to escape apoptosis and/or to self-renew, or by interactions with the BM 
stroma [ 192 ]. Indeed, the resistance of primitive LSC is not confi ned to apoptosis 
induced by TKI but apparently extends to multiple pro-apoptotic agents, such as 
cytosine arabinoside and arsenic trioxide [ 183 ]. 

 From the self-renewal aspect the Wnt/CTNNB1 and Hedgehog (Hh) pathways 
are altered in CML and are potential targets [ 193 ,  194 ]. For instance, knockout or 
pharmacological inhibition of either CTNNB1 or SMO in combination with TKI 
effi ciently reduces LSC numbers  in vivo  and delays disease relapse [ 195 ,  196 ]. 
These data support the hypothesis that targeting self-renewal is effective to eradi-
cate LSCs and is the basis of ongoing clinical trials with inhibitors of these path-
ways (NCT01606579, NCT01357655, NCT01218477, NCT01456676;   www.
clinicaltrials.gov    ). 

 It has been proposed that sequestration of LSCs in the BM niche induces the 
phenotype of environment-mediated drug resistance (EMDR) [ 197 ]. The mecha-
nisms so far identifi ed for EMDR include interaction of β1 integrins and CD44 with 
fi bronectin on BM stromal cells, degradation of BCL2L11/BIM due to β1 integrin- 
mediated cell adhesion, activation of AKT1 through integrin-linked kinase, activa-
tion of JAK/STAT and HIF1A pathways, increase in STAT3 phosphorylation and 
subsequent expression of anti-apoptotic proteins, and interactions of CXCR4 in 
CML cells with extra cellular-matrix components and BM stromal cells [ 197 ,  198 ]. 
Special focus on CXCR4 as a possible drug target in CML has produced  contradictory 
results with two studies showing that combination of CXCR4 antagonists with TKIs 
reduced leukaemia burden on CML mouse models [ 199 ,  200 ], while a third showed 
that combination of plerixafor with dasatinib had no advantage over dasatinib alone 
[ 201 ]. 

 On a different approach, a farnesyltransferase inhibitor, BMS-214662, was found 
to selectively kill quiescent and dividing CML stem/progenitor cells  in vitro , and its 
effect was enhanced when combined with either TKIs or a MEK inhibitor, 
PD184352, making it a promising agent for clinical development [ 202 ,  203 ]. 

 Recent reports have also focused on manipulating the PP2A tumour suppressor 
activity to target LSCs. PP2A reactivation had been shown to effectively kill CML 
lines and primary cells from BC and both TKI-sensitive and -resistant patients [ 48 , 
 204 ,  205 ]. Recently, the same group demonstrated that reactivating PP2A can errad-
icate quiescent LSCs, but not normal HSCs, through inhibition of the BCR-ABL1- 
JAK2-CTNNB1 signalling axis [ 206 ]. 

 Other potential molecular targets in the CML LSC are listed on Table  7.1 .
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7.6        Conclusion 

 The knowledge about the biology of CML increased exponentially since the Ph 
chromosome was fi rst described. Even though this knowledge has led to the devel-
opment of TKIs, which revolutionized CML treatment, there are still challenges to 
be overcome. Progression to BC, due to either primary failure to respond to a TKI 
or ‘acquired’ resistance, is still a major problem, since this aggressive disease stage 
is refractory to all types of available therapy. In addition, persistence of minimal 
residual disease in the majority of patients means they will have to continue under 
TKI therapy indefi nitely. This raises two main problems, i.e., the risk that these 
patients develop resistance, which can then cause progression to BC, and the fi nan-
cial burden to families and/or Government’s medical systems, which will have to 
provide lifelong expensive treatment for those patients. Therefore, there is still 
much to be investigated and learned about this apparently benign leukaemia before 
we can achieve the fi nal goal of a cure for the great majority of patients.     
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