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   Abstract     Ewing sarcoma is a bone-associated malignancy arising primarily in 
childhood and adolescence. It is an aggressive cancer harbouring a characteristic 
translocation, t(11;22)(q24.3;q12.2). This rearrangement fuses the genes  EWSR1  
and  FLI1 , producing a fusion protein (EWS/FLI) that initiates an oncogenic tran-
scription programme. Other rearrangements between similar genes have also been 
found to be drivers of Ewing sarcoma in a minority of cases. Understanding the 
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molecular processes governed by these rearrangements promises to generate 
immediately actionable therapeutic strategies. This chapter discusses the defi ning 
role that translocations and their after-effects play in Ewing sarcoma.  

  Keywords     Translocation   •   EWS/FLI   •   Ewing sarcoma   •   Transcription factor   • 
  Oncogenesis  

15.1         Introduction 

 Ewing sarcoma was fi rst described by James Ewing (Fig.  15.1 ) in 1921 as a tumour 
composed of distinctive sheets of cells with “small hyperchromatic nuclei” [ 1 ]. 
He noted that these tumours were distinguishable from osteogenic sarcoma by their 
histopathological morphology. Indeed, Ewing sarcoma continues to be character-
ized by its appearance as a small, round blue cell tumour, and modern molecular 
biology techniques have enabled scientists to elucidate many mechanistic details 
important for development of this tumour [ 2 ]. One particularly important discovery – 
made roughly 60 years after Ewing’s fi rst description of the disease – was that 
Ewing sarcoma harbours a recurrent set of chromosomal translocations that drive 
oncogenesis [ 3 – 5 ]. Further study of this key translocation event and its conse-
quences have led to greater understanding of the disease and promises to provide 
improved therapies for those who fall victim to this malignancy. In this chapter, we 
discuss the biology of Ewing sarcoma with a focus on its associated translocations, 
including the two most common rearrangements t(11;22)(q24.3;q12.2) and t(21;22)
(q22.2;q12.2) (which generate the fusion proteins EWS/FLI and EWS/ERG, respec-
tively) as well as other, less common translocations.

  Fig. 15.1    James Ewing 
(ca. 1890; Source: Images 
from the History of 
Medicine, National Library 
of Medicine; record UI: 
101414702)       
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15.2        Clinical Overview 

 Ewing sarcoma is a relatively broad term for a group of tumours collectively known 
as the Ewing sarcoma family of tumours. (Previously referred to as “Ewing’s” 
sarcoma, the WHO has opted to avoid possessive nomenclature; hence, “Ewing” 
sarcoma is the current WHO-accepted term that will be utilized in this chapter.) 
This family is predominantly composed of classic Ewing sarcoma, which is a bone- 
associated tumour that harbours one of a set of oncogenic translocations (discussed 
hereafter), but also includes tumours such as Askin’s tumour, primitive neuroecto-
dermal tumours (PNETs), and Ewing tumours arising in soft-tissue, known as 
extraosseous Ewing sarcoma [ 6 – 9 ]. Despite the nuances distinguishing these 
different members of the Ewing sarcoma family of tumours, chromosomal rear-
rangements are a common feature of Ewing family tumours, and are the focus of 
this chapter [ 8 – 11 ]. 

 Ewing sarcoma is a disease of young people, occurring most commonly in chil-
dren and adolescents. The mean age at diagnosis is 15 years, and ~80 % of all cases 
occur in patients under the age of 25 [ 12 ,  13 ]. For reasons that are not understood, 
the disease occurs at a modestly higher rate in males than females (male-to-female 
ratio of 1.2) (Fig.  15.2 ) [ 13 ,  14 ]. Although the disease is relatively rare, with an 
incidence of ~3 per million per year in the United States, Ewing sarcoma is the 
second most common childhood bone tumour, after osteosarcoma [ 15 ,  16 ]. It is 
most commonly encountered in patients of European ancestry, and is exceedingly 
uncommon in populations of African or East Asian ancestry [ 17 – 21 ].

   Ewing sarcoma is an aggressive cancer with a high propensity for metastasis. In 
fact, up to 25 % of patients already have metastatic disease at the time of diagnosis 
[ 22 ]. This may well be an underestimation, as it is thought that many patients have 
undetectable micrometastatic disease at diagnosis as well. Indeed, the relapse rate is 

  Fig. 15.2    Incidence of Ewing Sarcoma per year per million grouped by age at diagnosis (SEER 
data, 1973–2010) [ 13 ]       
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~90 % for patients who undergo surgical resection of their primary tumours without 
adjuvant chemotherapy [ 23 – 25 ]. As Ewing fi rst observed, these tumours are often 
highly sensitive to radiation therapy, which was thus was a mainstay of treatment 
for much of the twentieth century [ 26 ,  27 ]. The refi nement of chemotherapeutic 
strategies and improved surgical techniques have led to great improvements in 
patient survival, and current conventional treatment modalities have achieved 5-year 
disease- free survival rates of 60–70 % for non-metastatic disease. However, prognosis 
for metastatic disease remains dismal with a 5-year disease-free survival of only 
10–30 % [ 28 – 30 ]. Moreover, survivors frequently must endure morbidities resulting 
from conventional anti-cancer therapy, such as severe deformities and amputations 
due to radical surgical resections of their tumour, and increased risk of future 
malignancy resulting from radiation and chemotherapy [ 31 ,  32 ]. Better treatments 
are clearly needed to provide greater survival and higher quality of life. To this end, 
studies continue to seek a better understanding of the molecular processes underlying 
Ewing sarcoma oncogenesis, including the molecular consequences of its associated 
chromosomal translocations.  

15.3     Translocations in Ewing Sarcoma 

 In 1983, scientists at the Curie Institute in France identifi ed a balanced reciprocal 
translocation between chromosomes 11 and 22 in patient samples and cell lines of 
Ewing sarcoma [ 3 ,  4 ,  33 ]. This rearrangement, t(11;22)(q24.3;q12.2), was success-
fully cloned several years later, and the translocation breakpoint was characterized 
[ 34 ]. It was revealed that this translocation resulted in an in-frame fusion of two 
genes: Ewing Sarcoma Breakpoint Region 1 ( EWSR1 ) on chromosome 22 and 
Friend Leukaemia Virus Integration Site 1 ( FLI1 ) on chromosome 11 [ 34 ]. The 
fusion protein encoded by the joining of these two genes is known as EWS/
FLI. Approximately 85 % of Ewing sarcoma tumours carry this hallmark cytoge-
netic abnormality [ 9 ,  11 ,  28 ,  33 ]. The remaining 15 % of tumours carry other chro-
mosomal rearrangements resulting in similar fusions of other genes in the same 
families as  EWSR1  and  FLI1  [ 35 – 39 ]. A list of these chromosomal rearrangements 
found in Ewing sarcoma is provided in Table  15.1 . Details regarding each of these 
translocations will be discussed in the following sections.

   Table 15.1    Chromosomal 
rearrangements found in 
Ewing sarcoma  

 Fusion  Translocation  References 

 EWSR1/FLI1  t (11;22)(q24;q12)  [ 3 ,  4 ,  33 ] 
 EWSR1/ERG  t(21;22)(q22;q12)  [ 38 ,  72 ] 
 EWSR1/ETV1  t(7;22)(p22;q12)  [ 35 ] 
 EWSR1/ETV4  t(7;22)(q21;q12)  [ 36 ] 
 EWSR1/FEV  t(2;22)(q35;q12)  [ 37 ] 
 FUS/ERG  t(16;21)(p11;q22)  [ 111 ] 
 FUS/FEV  t(2;16)(q35;p11)  [ 110 ] 
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15.4        EWS/FLI 

15.4.1     Wild-Type EWS and the FET Family of Proteins 

 Prior to its cloning as part of  EWSR1 / FLI1  in Ewing sarcoma, the  EWSR1  gene had 
not been identifi ed and hence bears the name of the disease.  EWSR1  encodes a 
656- amino acid protein called EWS. EWS is part of the FET (FUS, EWS, TAF15) 
family of proteins, which are involved in diverse cellular functions including gene 
expression and RNA processing (Fig.  15.3 ) [ 34 ,  40 ,  41 ].

   It is ubiquitously expressed and is principally found in the nucleus, although it 
can be cytoplasmic or localized to the cell membrane [ 42 – 44 ]. The amino terminus 
of EWS contains a transcriptional activation region comprised of multiple pseudo-
repeats rich in serine, tyrosine, glycine, and glutamine (SYGQ) (Fig.  15.3 ) [ 45 – 48 ]. 
This SYGQ transactivation domain is critical for interaction between EWS and 
RNA polymerase II; indeed, wild-type EWS has also been shown to interact with 
other members of the transcriptional machinery including TFIID and CREBBP/
CBP/p300 [ 45 ,  46 ,  49 ]. The C-terminus of EWS contains arginine-glycine-glycine 
(RGG) motifs and an RNA recognition motif (RRM), possibly implicating full- 
length EWS in RNA binding, processing and transcription [ 41 ,  50 ]. The two other 
members of the FET family of proteins, FUS (also known as TLS) and TAF15, 
can also be involved in the development of other non-Ewing sarcoma cancers 
(Table  15.2 ) [ 51 – 58 ]. These proteins bear striking similarities to EWS, particularly 
with respect to the domain organization found in the N-termini of EWS and 
FUS [ 59 – 61 ].

   As will be discussed in the following sections, translocations between FET genes 
and various partners can result in fusion proteins that alter transcriptional pro-
grammes and drive oncogenic transformation. Thus, the aforementioned  interactions 
between FET proteins and members of the transcriptional machinery have important 
implications for molecular mechanisms underlying Ewing sarcoma tumourigenesis, 

  Fig. 15.3    Diagrammatic representation of FET-family proteins and their functional domains.  TAD  
Transcriptional activation domain,  RGG  arginine-glycine-glycine motif,  RRM  RNA recognition 
motif,  ZF  zinc fi nger       
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as well as other cancers driven by translocations of FET genes. Recent experiments 
have elegantly demonstrated that FUS and EWS are able to form both homotypic 
and heterotypic “amyloid-like” polymers via interactions between disordered 
regions of polypeptides with little diversity in amino acid sequence, termed low 
complexity domains [ 49 ,  62 ]. Such aggregates could form a platform for intermo-
lecular binding similar to molecular “velcro”, leading to alteration of various cel-
lular processes. Indeed, these polymers have been shown to bind to the C-terminal 
domain (CTD) of RNA polymerase II and induce transcription [ 49 ]. Accordingly, 
improper localization of FET proteins and their corresponding low complexity 
domains could disrupt gene expression at multiple loci, potentially contributing to 
an oncogenic phenotype. Such a model remains unproven, but is currently being 
actively tested.  

15.4.2     Wild-Type FLI and the ETS Family 
of Transcription Factors 

 The  FLI1  gene encodes the 452 amino acid FLI protein, which is a member of the 
ETS (E26 transformation-specifi c) family of transcription factors. ETS transcrip-
tion factors share a highly conserved DNA binding domain. This binding domain is 
known as the ETS domain, and is a winged helix-turn-helix that binds to DNA, most 
avidly at DNA motifs containing a core sequence of GGAA or GGAT [ 63 ,  64 ]. 
Full- length murine  Fli1  is capable of oncogenic function; indeed, the  Fli1  gene was 
fi rst characterized as an integration site for the Friend murine leukaemia virus, a 
function from which the gene derives its name (Friend Leukaemia Virus Integration 
Site 1) [ 65 ]. Integration of the virus at the murine  Fli1  locus results in overexpres-
sion of  Fli1  and produces erythroleukaemia in mice [ 66 ]. Wild-type FLI appears to 
play important roles in haematopoiesis, particularly in megakaryocyte development 
[ 67 ]. Deletion of  Fli1  in mice results in dysfunctional megakaryocyte differentia-
tion, and overexpression of  Fli1  in erythroleukaemia cells pushes them toward a 
megakaryocytic programme of differentiation [ 68 ,  69 ].  

   Table 15.2    Representative non-Ewing sarcoma cancers involving translocations of FET-family 
proteins   

 Fusion  Translocation  References 

 Clear cell sarcoma  EWSR1/ATF1  t(12;22)(q13;q12)  [ 53 ] 
 Desmoplastic small round cell tumour  EWSR1/WT1  t(11;22)(p13;q12)  [ 54 ] 
 Extraskeletal myxoid chondrosarcoma  EWSR1/NR4A3  t(9;22)(q22;q12)  [ 56 ] 
 Extraskeletal myxoid chondrosarcoma  TRF15/NR4A3  t(9;17)(q22;q11)  [ 52 ] 
 Myxoid liposarcoma  FUS/DDIT3  t(12;16)(q13;p11)  [ 51 ] 
 Myxoid liposarcoma  EWSR1/DDIT3  t(12;22)(q13;q12)  [ 58 ] 
 Small round cell sarcoma  EWSR1/ZNF278  t(1;22)(p36.1;q12)  [ 134 ] 
 Acute myelogenous leukaemia  FUS/ERG  t(16;21)(p11;q22)  [ 55 ] 
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15.4.3     The EWS/FLI Fusion 

 To form EWS/FLI, the 5′ portion of the  EWSR1  gene and the 3′ region of the  FLI1  
gene are joined together, allowing transcription of in-frame fusion transcripts and 
ultimately synthesis of the EWS/FLI fusion protein. The reciprocal fusion of the 5′ 
end of  FLI1  and the 3′ end of  EWSR1  is not expressed, and the reciprocal derivative 
chromosome is sometimes lost [ 9 ,  70 ]. Interestingly, the oncogenic  EWSR1 / FLI1  
fusion can result from several distinct translocation breakpoints occuring within 
introns of  EWSR1  and  FLI1  [ 71 – 73 ]. Classic splicing processes then generate fusion 
transcripts joining 5′ exons of  EWSR1  with 3′ exons of  FLI1 . EWS/FLI can thus be 
categorized into subtypes based upon the location of the translocation breakpoint 
and which exons are fused together [ 34 ]. For instance, the most commonly observed 
translocation in Ewing sarcoma joins exons 1–7 of  EWSR1  to exons 6–10 of  FLI1 . 
This rearrangement is sometimes termed a “Type I” fusion, but it is more commonly 
referred to simply as a “7/6” EWS/FLI fusion. Likewise, other fusions of EWS/FLI 
can be referred to by the exons that are fused, and a partial list of observed EWS/
FLI fusions is illustrated in Fig.  15.4 .

   The functional signifi cance of these subtly different EWS/FLI fusion products 
remains largely unknown. However, some data exist that suggest that the “7/6” 
EWS/FLI fusion (“Type I”) is more weakly transactivating compared to other EWS/
FLI fusion subtypes [ 74 ]. This distinction was thought to be potentially useful as a 
prognostic variable, and retrospective analyses of patient cohorts suggested that 
patients with “7/6” EWS/FLI fusions had better survival rates compared to patients 
whose tumours harboured EWS/FLI from other translocation breakpoints [ 75 ,  76 ]. 
However, recent studies have revealed that prognostic differences no longer exist 
within current treatment protocols [ 77 ,  78 ]. Hence, the functional signifi cance of 
different breakpoints, if any exists at all, remains unknown.  

  Fig. 15.4    Diagrammatic representation of  EWSR1  and  FLI1  exons. Known translocation break-
points are indicated       
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15.4.4     Oncogenic Function of EWS/FLI 

  EWSR1  and  FLI1  genes are fused in-frame, encoding the EWS/FLI oncoprotein 
(Fig.  15.5 ). This translocation-derived oncoprotein contains the N-terminal transac-
tivation domain of EWS fused with the DNA-binding domain of FLI, forming an 
oncogenic transcription factor that is indispensible for tumourigenesis [ 34 ,  42 ,  79 – 81 ]. 
The fi rst studies implicating EWS/FLI as a driver in Ewing sarcoma observed that 
overexpression of EWS/FLI in NIH3T3 murine fi broblasts induced oncogenic 
transformation, measured by anchorage-independent growth in soft agar. This was 
later confi rmed by experiments demonstrating the ability of EWS/FLI-expressing 
NIH3T3 cells to form tumours in mouse xenografts [ 80 ,  82 ,  83 ]. Furthermore, studies 
utilizing patient-derived Ewing sarcoma cell lines have shown that disruption of 
EWS/FLI expression by RNA interference (RNAi) and other means results in loss 
of transformation [ 70 ,  84 – 92 ]. Together, these fi ndings clearly indicate that EWS/
FLI is the driver mutation underlying Ewing sarcoma oncogenesis.

   This loss of transformation is accompanied by changes in gene expression, 
including activation and repression of numerous EWS/FLI target genes [ 70 ,  89 , 
 92 – 94 ]. Importantly, when EWS/FLI is reintroduced after being silenced by RNAi, 
the oncogenic expression profi le and transformed phenotype of Ewing sarcoma 
are restored, indicating that EWS/FLI is at the head of an oncogenic programme 
of gene expression [ 70 ,  92 ,  94 ]. Studies show that thousands of genes are either 

  Fig. 15.5    Illustration of the EWS/FLI fusion protein, joining the N-terminal portion of EWS with 
the C-terminal portion of FLI.  PTD  pointed domain,  DBD  DNA binding domain,  Pro  proline-rich 
activation domain,  TAD  Transcriptional activation domain,  RGG  arginine-glycine-glycine motif, 
 RRM  RNA recognition motif,  ZF  zinc fi nger       
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upregulated or downregulated by EWS/FLI, leading to “transcriptional mayhem” 
[ 70 ,  81 ,  95 ]. This dysregulation of EWS/FLI target gene expression has been the 
focus of investigations into the mechanisms by which EWS/FLI drives tumourigenesis, 
and studies have revealed several EWS/FLI-regulated genes that are also required 
for tumourigenesis, including NR0B1, NKX2.2 and GLI1 [ 70 ,  92 ,  94 ,  96 ,  97 ]. 

 The exact mechanisms by which EWS/FLI causes up-regulation of target genes 
is an area of active study. It is known that EWS/FLI alters expression of some genes 
in a direct manner, while it dysregulates other genes indirectly [ 98 ,  99 ]. Nevertheless, 
it has been defi nitively shown that the ability of EWS/FLI to bind DNA is essential 
for Ewing sarcoma oncogenesis [ 79 ]. Chromatin immunoprecipitation experiments 
followed by microarray analysis (ChIP-chip) and deep sequencing (ChIP-seq) 
have clearly demonstrated that EWS/FLI binds to high-affi nity ETS sequences 
(ACCGGAAGTG) [ 63 ,  64 ,  100 ,  101 ]. Interestingly, it was also revealed that EWS/
FLI binds to microsatellite repeats of the sequence GGAA [ 102 ,  103 ]. In fact, bind-
ing of EWS/FLI to microsatellites is required for upregulation of  NR0B1 ,  CAV1 , 
and  GSTM4 ; genes that are critical downstream effectors of EWS/FLI-driven 
tumourigenesis [ 102 ,  103 ]. 

 Furthermore, as previously mentioned, it has been shown that wild-type EWS is 
capable of forming a molecular “velcro”-like polymer that facilitates protein- protein 
interactions between EWS and other proteins, including RNA polymerase II [ 49 , 
 62 ]. The low complexity domain in the N-terminal region of wild-type EWS is 
retained in the EWS/FLI fusion protein, fused to the DNA-binding ETS domain of 
FLI. It is tempting to speculate, therefore, that the DNA-binding domain of FLI acts 
to re-direct the molecular “velcro” of EWS to different loci throughout the genome, 
leading to disruption of regulatory protein complexes and transcriptional activation 
of EWS/FLI target genes. For instance, GGAA microsatellite repeats could facili-
tate EWS/FLI polymerization as multiple DNA sequence repeats could permit 
EWS/FLI to bind in series, forming a scaffold of EWS low complexity domains to 
which coactivator complexes and transcriptional machinery (e.g., RNA polymerase 
II) could bind, thus upregulating that locus. Similarly, such a phenomenon could 
allow EWS/FLI to recruit repressive regulatory complexes to various loci, resulting 
in down-regulation of target genes. This model, while intriguing, remains unproven, 
and further testing will shed light on the true mechanisms underlying EWS/FLI- 
mediated transcriptional dysregulation. 

 EWS/FLI also down-regulates thousands of genes in Ewing sarcoma. This is 
particularly interesting considering the presence of the N-terminal transactivation 
domain of EWS in the EWS/FLI oncoprotein. The mechanisms by which such a 
transactivator-containing transcription factor causes direct repression of genes 
remains another active area of study, and several mechanistic insights have been 
revealed. For instance, it has been demonstrated that a corepressor complex called 
the Nucleosome Remodelling and Deacetylase (NuRD) complex plays an important 
role in repression of EWS/FLI targets. Interestingly, disruption of NuRD complex 
function by vorinostat treatment (a histone deacetylase inhibitor) or RNAi-mediated 
silencing of  CHD4  (a core NuRD component) resulted in de-repression of EWS/
FLI-repressed target genes [ 104 ]. Additionally, inhibition of lysine-specifi c demethylase 1 
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(LSD1) resulted in de-repression of EWS/FLI-regulated target genes. This effect 
was lost upon silencing of EWS/FLI, implicating EWS/FLI-mediated disruption of 
associated epigenetic factors in Ewing sarcoma oncogenesis [ 104 ,  105 ]. Continued 
investigation of these phenomena is likely to generate a clearer mechanistic under-
standing of EWS/FLI-driven up- and down-regulation of target genes, potentially 
providing targets for new and better therapeutics.   

15.5     EWS/ERG 

 In 1993 it was found that a distinct translocation event between the  EWSR1  gene 
and another ETS family member,  ERG  (ETS-Related Gene), also generated a fusion 
protein, termed EWS/ERG [ 38 ]. The t(21;22)(q22.2;q12.2) rearrangement produc-
ing this alternate fusion oncoprotein is present in approximately 10 % of Ewing 
tumours, making it the most common alternate translocation in Ewing sarcoma [ 38 , 
 72 ]. Tumours carrying the EWS/ERG mutation do not carry the EWS/FLI fusion, 
indicating that EWS/ERG likely drives Ewing sarcoma oncogenesis in ways very 
similar to EWS/FLI. Indeed, the DNA-binding ETS domain of ERG is shares 98 % 
amino acid identity with the ETS domain of FLI, and the full-length proteins are 
68 % similar [ 38 ,  106 ]. Furthermore, EWS/ERG-harbouring Ewing sarcoma 
tumours were no different compared to cases of EWS/FLI-containing tumours with 
respect to age at diagnosis, primary site, metastasis, as well as overall and event-free 
survival [ 107 ]. 

 Like EWS/FLI, EWS/ERG induces oncogenic transformation when it is 
expressed in NIH3T3 cells [ 83 ]. Functionally, EWS/ERG is presumed to bind simi-
lar, if not identical, sets of loci as EWS/FLI, likely dysregulating expression of 
target genes in similar ways. This presumption is supported by evidence indicating 
that EWS/FLI and EWS/ERG dysregulate the same core subset of genes when 
introduced into NIH 3T3 cells, although these results must be interpreted cautiously 
considering the inaccuracies of this model [ 70 ,  108 ].  

15.6     EWS/ETV1, EWS/ETV4, EWS/FEV 

 In addition to EWS/FLI and EWS/ERG, other EWS/ETS translocations have also 
been described in Ewing sarcoma. These alternate rearrangements result in the 
fusion of the  EWSR1  gene with  ETV1  (ETS variant gene 1),  ETV4  (ETS variant 
gene 4) and  FEV  (fi fth Ewing sarcoma variant) (Table  15.1 ) [ 35 – 37 ,  39 ]. Each of 
these additional fusion proteins occurs in <1 % of all Ewing sarcoma cases, making 
them exceptionally rare. Being members of the same family of transcription factors, 
ERG, ETV1, ETV4 and FEV are all highly similar, particularly in their ETS DNA- 
binding domains. In fact, ETS domains of FLI, ERG and FEV are 98 % similar. 
ETV1 and ETV4 are also similar to other ETS proteins, but are more similar to each 
other because they have identical DNA-binding domains. 
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 These rare alternate fusions have been less well studied than EWS/FLI. However, 
their structural similarities suggest that they share much of the same oncogenic 
functions required for Ewing sarcoma tumourigenesis. Indeed, the mutually exclu-
sive nature of these different types of EWS/ETS fusions suggests that they may be 
largely interchangeable. Notwithstanding the relative paucity of data regarding 
these uncommon rearrangements, some functional differences have been observed 
in experiments utilizing NIH3T3 cells. Using this model, it was shown that EWS/
FLI, EWS/ERG and EWS/FEV were capable of inducing anchorage-independent 
growth in soft agar assays, whereas EWS/ETV1 and EWS/ETV4 were incapable of 
inducing such transformation [ 108 ]. Interestingly, each fusion protein enabled 
tumour formation by NIH3T3 cells in murine xenografts. The mechanism and 
relevance of these differences remain unknown. It has also been suggested that 
EWS/FEV, EWS/ETV1 and EWS/ETV4 exist predominantly in extraosseous Ewing 
sarcoma [ 109 ]. However, insuffi cient data exists at the present time to draw any 
defi nitive conclusions about this potential correlation. It is also unknown whether 
these different fusion proteins have any signifi cance with regard to outcome.  

15.7     FUS/ERG and FUS/FEV 

  EWSR1  is the founding member of the FET ( FUS ,  EWSR1 ,  TAF15 ) family of RNA- 
binding proteins involved in Ewing sarcoma translocations. However, in rare 
instances, other members of the family are involved. Chromosomal rearrangements 
between  FUS  (also known as  TLS ) and  ERG  or  FEV , both ETS family member 
genes, have been identifi ed in rare cases of Ewing sarcoma [ 110 ,  111 ]. 

 The FUS protein has a similar domain structure to that of EWS, containing an 
N-terminal transactivation domain with SYGQ repeats, and C-terminal RGG and 
RRM motifs (Fig.  15.5 ). Considering these shared structural features, it is likely 
that FUS/ETS fusions drive oncogenesis via mechanisms similar to those utilized 
by EWS/FLI. However, this hypothesis has not been thoroughly tested, in large part 
due to the relative scarcity of these alternate chromosomal rearrangements. 
Nevertheless, some functional similarities have been observed. For instance, both 
EWS/FLI and FUS/ERG have been shown to disrupt RNA splicing by similar 
mechanisms [ 112 ]. Expression of insulin-like growth factor 1 ( IGF1 ) is also induced 
by several FET/ETS fusion proteins, including FUS/ERG [ 113 ]. However, these 
data must be interpreted with some caution as they are based largely on murine 
cells, which may lack some features important for EWS/FLI function [ 114 ]. 

 Currently, only FUS/ERG and FUS/FEV fusions have been described, but it is 
possible that other FET/ETS fusions could exist in Ewing sarcoma. However, such 
instances would be exceedingly rare. The uncommon nature of such alternate 
fusions makes it diffi cult to elucidate whether specifi c rearrangements have impor-
tant implications for prognosis, probability of relapse, or other factors. As men-
tioned before, these alternate translocations do pose a potential complication for 
molecular diagnosis of the disease, as a tumour that appears negative for all known 
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translocations may harbour an oncogenic FET/ETS rearrangement that has not yet 
been characterized and thus evades detection. These fusions are so scarce, however, 
that only a small minority of patients would be impacted by such a scenario.  

15.8     “Ewing-Like Sarcomas” and Their Translocations 

 The existence of multiple alternate chromosomal rearrangements in Ewing sarcoma 
raises the question of how best to molecularly defi ne the disease. In general, histo-
pathological features and patient presentation give good pre-test probability for 
diagnosis, and defi nitive diagnosis commonly given by detection of CD99, a cell 
surface marker found on most Ewing sarcoma cells [ 115 ]. Biopsies are often 
subjected to molecular tests detecting the presence of the t(11;22)(q24.3;q12.2) 
translocation. Presence of EWS/FLI transcript are detected with RT-PCR, and 
translocations involving  EWSR1  are detected via breakapart FISH assays. These 
methods will detect almost all known FET/ETS chromosomal rearrangements in 
Ewing sarcoma. However, a family of tumours exists in which non-FET/ETS 
fusions are present (Table  15.3 ). These cancers are termed “Ewing-like sarcomas”.

   One such “Ewing-like” tumour was fi rst reported in 2009 as a new t(20;22)
(q13;q12) rearrangement between  EWSR1  and  NFATC2  (nuclear factor of activated 
T-cells, cytoplasmic, calcineurin-dependent 2) [ 116 ]. The wild-type NFATC2 
protein is a member of the NFAT family of transcription factors and is a key player 
in T-cell and neuronal development. NFATC2 binds DNA cooperatively with Fos 
and Jun, members of the activator protein 1 (AP1) family of regulatory transcription 
factors [ 117 – 120 ]. Interestingly, ETS proteins and the EWS/FLI fusion protein are 
also capable of cooperative DNA binding with AP1 proteins [ 121 – 123 ]. Also, 
NFAT proteins, like ETS proteins, recognize DNA sequences with a core motif of 
GGAA/T [ 116 ]. Together these fi ndings suggest possible shared mechanisms of 
oncogenesis between EWS/ETS and EWS/NFATC2 fusions. 

  EWSR1  can fuse to a number of other non-ETS proteins to drive formation of 
“Ewing-like” tumours. Another such fusion is EWS/POU5F1 [ 124 ]. POU5F1 (POU 
class 5 homeobox 1) is also known as OCT4 (octamer-binding transcription factor 4), 
and is a transcription factor important for regulating pluripotency of stem cells 
[ 125 – 127 ]. It is thought that this fusion protein functions as an aberrant transcription 

  Table 15.3    Non-FET/ETS 
chromosomal rearrangements 
found “Ewing-like sarcomas”  

 Fusion  Translocation  References 

 EWSR1/NFATC2  t(20;22)(q13;q12)  [ 116 ] 
 EWSR1/POU5F1  t(6;22)(p21;q12)  [ 124 ] 
 EWSR1/SMARCA5  t(4;22)(q31;q12)  [ 133 ] 
 EWSR1/PATZ1  t(22;22)(q12;q12)  [ 134 ] 
 EWSR1/SP3  t(2;22)(q31;q12)  [ 109 ] 
 CIC/DUX4  t(4;19)(q35;q13)  [ 136 ] 
 BCOR/CCNB3  inv(X)(p11.4p11.22)  [ 137 ] 
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factor in these tumours, transcriptionally reprogramming cells and generating an 
oncogenic phenotype. 

 Fusions between  EWSR1  and  PATZ1  (POZ (BTB) and AT Hook Containing Zinc 
Finger 1, also known as  ZSG ) or  SP3  are also found in some “Ewing-like” tumours 
[ 109 ,  128 ]. Both ZSG and SP3 are zinc fi nger-containing transcription factor pro-
teins and, therefore, potentially function by binding DNA and allowing the EWS 
portion of the fusion to dysregulate gene expression profi les, similar to EWS/FLI 
and other Ewing sarcoma rearrangements [ 109 ,  129 ]. Wild-type SP3 also contains 
an inhibitory domain that is lost in the translocation event generating EWS/SP3, 
potentially contributing to its oncogenic function. 

  EWSR1  can also fuse with  SMARCA5  (SWI/SNF related, matrix associated, 
actin dependent regulator of chromatin, subfamily A, member 5), an ATPase found 
in various chromatin remodelling complexes [ 130 – 135 ]. While the EWS/SMARCA5 
fusion protein does not directly bind DNA in a sequence-specifi c manner, it alters 
expression of key target genes perhaps by altering a chromatin remodelling func-
tion. Interestingly, SMARCA5 can function as part of the NuRD complex, which 
plays an important role in EWS/FLI-mediated repression of target genes (discussed 
previously) [ 104 ]. Whether any relationship exists between EWS/SMARCA5 and 
NuRD has not been tested. 

  CIC / DUX4  and  BCOR / CCNB3  fusions have also been described [ 136 ,  137 ]. 
However, it has not been fully determined whether these tumours represent Ewing 
sarcoma, “Ewing-like” sarcoma, or a distinct type of bone sarcoma. More in-depth 
study of the molecular mechanisms underlying these oncogenic chromosomal rear-
rangements must be undertaken to answer this question. Indeed, a clear molecular- 
based defi nition of Ewing sarcoma and its variations may hinge upon achieving a 
clearer picture of how these fusions generate an oncogenic phenotype.  

15.9     Molecular Defi nitions of Ewing Sarcoma 
and Diagnostic Challenges 

15.9.1     Defi ning the Disease 

 The classic diagnostic defi nition of Ewing sarcoma relies largely upon histopatho-
logical features of these tumours, assessed by light microscopy and/or immunohis-
tochemistry [ 138 ,  139 ]. This cancer appears as a small, round cell cancer with 
hyperchromatic nuclei when viewed by light microscopy after H&E staining [ 140 ]. 
Immunohistochemical staining often reveals high levels of CD99 at the cell mem-
brane, and is used as another diagnostic marker of Ewing sarcoma cells [ 115 ,  138 ]. 

 Additionally, the presence of a balanced translocation involving  EWSR1  and one 
of the  ETS  family of transcription factors are considered pathognomonic for the 
disease [ 138 ]. However, as discussed in this chapter, a number of different translo-
cations involving FET family members other than  EWSR1  (e.g.,  FUS ) also exist. 
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Additionally, several “Ewing-like” cancers have been found with fusions of EWSR1 
to non-ETS proteins. These alternate molecular lesions, rare as they may be, add 
complexity to the question of how to properly defi ne this disease and its variations. 

 Generally, Ewing sarcoma can be broadly subdivided into three groups, based on 
the type of translocation present in the tumour cells: (1)  EWSR1 / FLI1  and function-
ally similar translocations (i.e., FET/ETS fusions), (2) non-FET/ETS fusions 
(e.g., EWS/SMARCA5), and (3) totally distinct translocations (e.g.,  CIC / DUX4 ). 
Furthermore, tumours of EWS/FLI and other FET/ETS fusions (e.g., EWS/ERG) 
can be considered classic Ewing sarcoma, while rarer, non-FET/ETS fusions and 
distinct translocations can be generally termed “Ewing-like” sarcomas. These defi -
nitions provide a useful categorical structure for the various molecular lesions 
driving oncogenesis in these tumours, but defi nitions will be continuously refi ned as 
our understanding of the molecular mechanisms of this disease expands. 

 Accurate and useful defi nitions are important insomuch as they may assist in 
grouping patients in clinically useful ways, such as into groups receiving different 
treatments or with different prognoses. These goals are especially challenging 
 considering the rarity of non-EWS/FLI fusion variants, and little variation currently 
exists in the clinical management of different types of fusions.  

15.9.2     Challenges of Molecular Diagnosis 

 The existence of alternate chromosomal rearrangements has clear implications for 
the diagnosis of Ewing sarcoma. Current diagnostic methods utilized to identify the 
EWS/FLI fusion may not identify the less common translocations. For instance, 
breakapart FISH (fl uorescence in situ hybridization) probes for  EWSR1  are com-
monly utilized to determine that a translocation involving EWSR1 exists and are, 
thus, useful for detecting the most common rearrangements in Ewing sarcoma 
(i.e., EWS/FLI and EWS/ERG) [ 138 ,  139 ]. This method, however, is unable to 
detect Ewing sarcoma driven by non- EWSR1  rearrangements, such as the rarer 
FUS/ERG and FUS/FEV fusions (Fig.  15.6 ).

   Reverse-transcriptase (RT)-PCR assays have also been utilized to detect the 
fusion transcript [ 139 ]. Such an approach suffers from the same weakness as the 
EWSR1 breakapart FISH assay in that it is unable to detect transcripts of all possi-
ble gene fusions. For instance, primers designed to amplify specifi c  EWSR1 / FLI1  
fusions will not anneal to  EWSR1 / ERG  or other alternate transcripts. Despite this 
weakness, one potential benefi t to using a PCR-based assay is the ability to detect 
specifi c breakpoints, although this may not be clinically useful, as discussed earlier 
[ 75 ,  76 ,  78 ]. 

 Hence, the rare cases of Ewing sarcoma driven by alternate translocations may 
theoretically result in delayed or incorrect diagnosis in uncommon cases. Clearly, 
the correct diagnosis of Ewing sarcoma must not rely on one single test but rather 
on a collection of various criteria, including patient presentation, imaging studies 
(e.g., X-ray, CT, MRI), histopathology, and pathognomonic molecular lesions such 
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as EWS/FLI. Such a practice of integrating distinct pieces of data to come to a 
defi nitive diagnosis is the current practice, allowing for prompt and accurate 
diagnosis in almost all cases.   

15.10     Conclusions 

 Although it is rare compared to other malignancies, Ewing sarcoma is a devastating 
disease affecting many young people, resulting in many years of life lost to morbidity 
and mortality. Over the past 30 years, scientists have made great strides in under-
standing the molecular mechanisms underlying this cancer. Nevertheless, the 
increased knowledge gained through studying the cellular and molecular biology of 
this disease has not yet led to improvements in clinical management. Current stan-
dards of care rely on conventional therapies like surgery and chemotherapy, and 

  Fig. 15.6    Diagrammatic representation of a breakapart fl uorescence in situ hybridization (FISH) 
assay for  EWSR1 . Fluorescent red and green probes fl ank the  EWSR1  gene. Intact  EWSR1  with 
both probes appears  yellow . A translocation splits the gene, resulting in split  red  and  green  signals. 
In diploid cells, separate  red  and  green  signals result from the split chromosome, and the normal 
second allele appears  yellow        
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improved usage of these treatment modalities have achieved remarkable success in 
overall survival. No molecularly targeted therapy has been found to be effi cacious 
against Ewing sarcoma, despite increased understanding of the molecular biology 
of the disease. 

 The EWS/FLI fusion protein, and the other fusions found in Ewing sarcoma, 
clearly offer a unique pathogenic feature of this disease that could be targeted. 
However, transcription factors have proven to be extraordinarily challenging targets 
for inhibition, often earning them the epithet “undruggable”. Thus most efforts have 
focused on developing deeper understanding of the functions of critical effectors of 
EWS/FLI-driven oncogenesis. Although progress has been slow, a few promising 
targets have recently emerged [ 141 ]. Future work will continue to pursue a clearer 
understanding of the oncogenic consequences of the chromosomal rearrangements 
discussed in this chapter. Understanding why these translocations drive oncogenesis 
will assist in developing new therapies, likely increasing the odds of survival and 
bettering post-survival quality of life in these patients.     
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