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  Abstract     Fusion oncogenes are reported in many types of sarcomas. They encode 
protein products acting as growth factor ligands, their receptors, signal transduction 
components and transcription factors. The oncogenes discussed here act as regula-
tors of transcription. FET family and  PAX3/7-FOXO1  oncoproteins bind DNA with 
target gene specifi city causing specifi c tumour types with limited morphological 
variation. Tumours expressing  SS18-SSX  fusion proteins show larger morphological 
variability, perhaps refl ecting that the oncoproteins act through interactions with 
general chromatin regulators. 

 Mesenchymal stem cells are suspected target cells for transformation by fusion 
oncogenes in sarcomas.  

  Keywords     Fusion oncogenes   •   Sarcoma   •   Tumour type specifi city   •   Chromosome   
•   Rearrangements  

14.1         Fusion Oncogenes of Sarcomas 

 The formation of fusion genes requires at least two chromosome breaks coincident 
in time and space. Such events yield gene fragments that may fuse into new func-
tional constellations. The transcriptional orientation of the two partner genes must 
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be compatible, and the open reading frames maintained in the fusion transcripts. 
Simple translocations may thus lead to functional fusion genes only if partner genes 
are originally transcribed in the same centromeric/telomeric direction [ 1 ,  2 ]. Other 
gene orientations require additional chromosome breaks for inversion of partner 
genes and are probably less frequent. Translocations and gene fusions in lympho-
mas and some lymphoid leukaemia are most likely caused by errors during the rear-
rangements of immunoglobulin and T-cell receptor genes. This process involves cell 
type specifi c rearrangement mechanisms acting at specifi c target genes and 
sequences. No such mechanisms have been reported in sarcomas although sequences 
related to the lymphoid rearrangement points have been reported in, or close to the 
translocation breakpoints of some sarcomas. The frequency of tumours caused by 
fusion oncogenes is further determined by the oncogenic potency. Several observa-
tions suggest that the formation of fusion oncogenes is more frequent than the inci-
dence of the corresponding tumour, indicating that they are necessary, but not 
suffi cient, for malignant transformation. Escape from stress responses leading to 
apoptosis, or oncogene induced senescence, cell or tissue type dependence, or inter-
actions with other genetic variables are important for the fi nal outcome after forma-
tion of a new fusion oncogene [ 1 ,  3 – 5 ]. 

14.1.1     Cytogenetic Analysis of Sarcomas 

 Chromosome translocations and gene rearrangements were fi rst described in leukae-
mias and lymphomas. These early results encouraged the cytogenetic analysis of 
solid tumours, including sarcomas, and the identifi cation of recurrent translocations 
[ 6 – 10 ]. Sarcomas are tumours that show morphological similarities with mesenchy-
mal cells of different lineages and stages of development. Mesenchymal stem or 
precursor cells are the most likely cells of origin for this group of tumours. Close to 
100 entities of sarcomas are described based on morphological and genetic criteria 
[ 11 ]. Tumour cells from many sarcoma cases grow relatively well in short-term cul-
tures, and this made early cytogenetic studies possible. Most of the common sarcoma 
entities, were found to be characterized by complex chromosome aberrations typical 
for tumours with advanced genomic instability. Entities that carry simple recurrent 
aberrations such as translocations were also reported, and followed up on the molec-
ular level. These studies led to the early discovery of the chromosome translocation, 
t(12;16), resulting in the  FUS-DDIT3  fusion oncogene (also known as  TLS-CHOP)  
in myxoid liposarcoma and the t(11;22) and  EWSR1-FLI1  fusion oncogene in  Ewing 
sarcoma   [ 7 ,  9 ,  12 – 15 ]. A long line of fusion oncogenes have subsequently been 
reported in many more forms of sarcoma, and new fusions are continuously reported 
as next-generation methods are employed in the analysis of more tumours. Most of 
the currently described sarcoma fusion oncogenes encode rearranged transcription 
factors, but genes encoding ligands, membrane receptors and signal transduction 
molecules are also represented [ 16 – 18 ]. This chapter will focus on a discussion of a 
few of the transcription factors encoding sarcoma fusion oncogenes.  
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14.1.2     Tumour Type specifi city of Sarcoma Fusion Oncogenes 

 A surprisingly large proportion of the sarcoma fusion oncogenes are tumour-type 
specifi c. This specifi city could be explained by several models, including cell type- 
specifi c mechanisms for chromosome rearrangements, cell/tissue type dependence 
for survival/oncogenic activity, and phenotype instructive activity of the fusion 
oncogene [ 1 ,  2 ]. Capacity to direct the tumour phenotype has been shown for sev-
eral sarcoma fusion oncogenes [ 19 – 22 ]. Specifi c cell type requirements and interac-
tions with differentiation programmes are also important factors [ 19 – 21 ,  23 – 28 ]. In 
contrast to the specifi c rearrangement mechanisms behind immunoglobulin and 
T-cell receptor translocations in lymphoma and leukaemia, no cell type-specifi c 
rearrangement mechanisms, or target sequences have been identifi ed in sarcoma 
fusion oncogenes. Furthermore, several experimental transgenic animal or cell 
models with cDNA copies of sarcoma fusion oncogenes at random genomic loci 
recapitulate the tumour phenotypes[ 20 ,  22 – 24 ,  27 ,  29 – 31 ]. These observations rule 
out cell type-specifi c rearrangements as a necessary mechanism behind the observed 
tumour type specifi city of sarcoma fusion oncogenes. Cell type associated localiza-
tion of chromosome territories are, however, most likely important as a risk factor 
for rearrangements. Formation of fusion oncogenes is discussed elsewhere in this 
book.   

14.2     The FET Group of Fusion Oncogenes 

 The FET group of fusion oncogenes are found primarily in human sarcomas and 
leukaemia. They encode fusion oncoproteins that are considered to be primary 
tumour-initiating and driving factors [ 4 ,  19 – 22 ,  32 ]. The resulting fusion protein 
products contain an N-terminal domain (NTD) from one of the FET family proteins, 
 F US,  E WSR1 or  T AF15, juxtaposed to the DNA binding domains from one of many 
alternative transcription factor (TF) partners (Fig.  14.1  ) .

   The FET fusion oncogenes are, with a few exceptions, tumour type-specifi c and 
therefore used as diagnostic tumour markers. The FET family of fusion oncogenes 
continue to grow as new variant FET oncogenes, involved in more tumour entities, 
are continuously discovered. 

 There is considerable variation with regard to the breakpoint location in some 
FET fusion oncogenes [ 33 – 35 ]. Fusion transcripts of individual tumours may thus 
differ with regard to number of exons included from the parental genes. The 
N-terminal domains of the FET partners and the DNA binding domains of the TF 
partners are, however, always present indicating that these parts are critical for the 
oncogenic effect.  FUS ,  EWSR1  and  TAF15  may also functionally replace each other 
as fusion partners in some tumour types (Fig.  14.1 ). The FET fusion oncoproteins 
most probably act as abnormal transcription factors with FET NTDs reported to 
function as transactivation domains [ 32 ,  36 ,  37 ]. 
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 The normal FET genes encode RNA and DNA binding proteins involved in tran-
scriptional regulation [ 38 – 40 ], pre-mRNA splicing [ 41 – 43 ], RNA transport [ 44 ], 
translation [ 45 ] and DNA-repair [ 46 ,  47 ]. However, these functions involve the cen-
tral and C-terminal protein domains that are lost in most of the fusion proteins. 
Analysis and structure predictions of the FET NTDs show that their structures are 
intrinsically disordered. Such domains are reported to function as mediators of 
protein- protein interactions [ 48 ]. Many proteins have also been shown to interact 
with the FET fusion proteins and their NTDs, including chromatin modifi ers, tran-
scription factors and cyclin dependent kinases [ 41 ,  49 – 55 ]. 

 The full-length FET proteins were recently found as major interaction partners in 
pull-down experiments with FET NTDs and FUS-DDIT3. A common evolution-
arily conserved “FET Binding Motif 1” (FETBM1) is present in the NTDs of all 
three FET proteins [ 56 ]. Specifi cally placed tyrosine residues, that have been 
reported to facilitate homotypic complex formation of FUS and similar sequences, 
are present in EWSR1 and TAF15 enabling formation of heterocomplexes [ 57 ]. A 
detailed study of the sequence requirement of the transactivating and transforming 
activity of EWSR1 NTD further pointed out the importance of the tyrosine residues 
and underscored the potential effects of their phosphorylation [ 58 ]. 
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  Fig. 14.1    The FET group of fusion oncogenes. The 5′ sequences of FET family genes  FUS, 
EWSR1  and  TAF15  are fused to genes encoding various transcription factors ( middle column ). The 
respective fusion genes are found in the tumour types as indicated in the right column (Note that 
the FET genes may replace each other in some fusion combinations. The fi gure is not complete as 
additional FET gene fusions are continuously discovered in more tumour entities)       
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 Experiments with deletion mutants of the full-length FUS showed that binding to 
the FUS NTD required amino acids 176–284, whereas residues 1–175 showed no 
signifi cant affi nity [ 56 ]. This observation rules out direct binding between FETBM1 
sequences and indicates target structures elsewhere in the FET proteins. Combined 
results from several studies suggest that the FUS sequence between residues 176 
and 214 forms an important target structure for FETBM1. Alignment experiments 
with this part of FUS, TAF15 and EWSR1 suggested that stretches containing 
repeats of G and RGG might form common target structures for FETBM1. 

 The normal recruitment of FET proteins to chromatin, genes and RNA mole-
cules, is probably dependent on their RNA and DNA binding domains [ 38 ]. Each of 
the normal FET proteins binds thousands of different RNA species of several classes 
[ 59 ], and they also bind important protein components of transcription and RNA 
processing complexes [ 41 ,  51 – 55 ]. Recruitment of normal FET proteins to promot-
ers targeted by oncogenic FET proteins may thus be an important part in deregula-
tion of target genes. 

 Forced expression of FET fusion oncogenes in normal or various tumour cell 
lines most often results in apoptosis or cell senescence. Riggi et al. [ 19 ,  21 ] showed 
that FET oncogene- transduced mouse mesenchymal stem cells maintain prolifera-
tive capacity and are tumourigenic in mouse. Although FET oncogene-transduced 
human mesenchymal stem cells fail to form tumours after xenografting in mice, 
these data show that mesenchymal stem cells can survive and grow while express-
ing the fusion oncogenes. These observations suggest that FET fusion oncogenes 
lead to tumour formation only if they are formed in compatible cell types such as 
mesenchymal stem cells. 

 The most frequent FET oncogene-carrying tumour types are  Ewing sarcoma   
(reviewed elsewhere in this book) and myxoid liposarcoma/round cell liposarcoma 
(MLS/RCLS), the latter with an incidence of 0,2 per 100,000/year [ 11 ]. The  DDIT3  
partner of the myxoid liposarcoma fusion gene encodes a stress response protein 
induced under several stress conditions. It also has a role in the regulation of adipo-
cyte differentiation, and forced expression of DDIT3 protein in fi brosarcoma cells 
has been reported to change the tumour morphology into liposarcomas [ 20 ].  DDIT3  
is also overexpressed as a result of the typical gene amplifi cations in well differenti-
ated/dedifferentiated liposarcomas and may contribute to the liposarcoma pheno-
type of these tumours.  DDIT3  is by itself not considered an oncogene, whereas 
 FUS-DDIT3  transforms 3T3 cells and can turn transfected mesenchymal stem cells 
to liposarcoma-initiating cells in mice [ 19 ,  32 ].  

14.3     Alveolar Rhabdomyosarcoma (ARMS) 

 Alveolar rhabdomyosarcoma make up around 20 % of childhood rhabdomyosar-
coma cases [ 60 ]. Early cytogenetic studies, reported the recurrent t(2;13)
(q36.1;q14.1) in Rhabdomyosarcomas [ 6 ,  10 ]. A detailed mapping of the chromo-
somal breakpoint regions led to the discovery of a rearranged   PAX3    gene and sub-
sequently identifi ed the  PAX3-FOXO1  (also known as  PAX3-FKHR ) fusion 
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oncogene [ 61 – 63 ]. Further studies showed that the less frequent t(1;13), also recur-
rent in ARMS, resulted in the variant  PAX7-FOXO1  fusion [ 63 ]. In the fusion pro-
teins, the C-terminal transcriptional activation domains of PAX3 or PAX7 are 
replaced by the bisected forkhead transacting domain of FOXO1 retaining the 
N-terminal PAX3 paired box and homeodomains. The chimeric protein product of 
this translocation has been shown to promote cell proliferation and tumour forma-
tion by acting as an aberrant transcription factor with oncogenic properties. The 
fusion oncogenes have, however not been shown to cause ARMS by themselves in 
mesenchymal stem cells, but additional gene changes affecting   TP53    and the RAS 
pathway are needed [ 64 ,  65 ]. A number of PAX3-FOXO1 target or downstream 
genes have been identifi ed. Some data suggest that the fusion oncoprotein promotes 
a myogenic differentiation pathway [ 64 ], and the formation of ARMS outside mus-
cle tissue suggest that cell types other than myo-precursors may be reprogrammed 
by the fusion protein. Other studies show that the fusion protein blocks myocyte 
differentiation, partially by interfering with regulation of MyoD activity [ 23 ,  24 , 
 27 ]. The normal PAX3 and PAX7 proteins have several isoforms with partially dif-
ferent functions and effects in myogenic differentiation, and the abnormal PAX3/7- 
FOXO1 proteins may cause dysregulation of this delicate system and arrest cells in 
a proliferative stage [ 66 ]. Normal myoblasts, with forced expression of the fusion 
oncoprotein, were still capable of cell fusion and myotube formation with wild type 
myoblasts [ 29 ]. Formation of such mixed myotubes and fi bres was IL-4 receptor 
dependent [ 29 ]. Co-injection of myoblasts with tumour cells in mice, enhanced 
tumour take and growth/metastasis in an IL-4 receptor dependent manner. This sug-
gests that cell fusions and complex interactions with normal cells are involved in the 
development of ARMS.  

14.4     Synovial Sarcoma 

  Synovial sarcoma  s account for up to 10 % of soft-tissue sarcomas. A characteristic 
chromosomal translocation, t(X;18)(p11.2;q11.2), was originally reported by Turc-
Carel in 1986 [ 8 ]. Molecular mapping and analysis of the breakpoint regions showed 
at least two different breakpoint regions on the X chromosome [ 67 ]. The transloca-
tions were subsequently shown to result in several alternative fusion genes. In the 
fi rst described fusion oncogene, the 5′ end and major parts of  SS18  (also known as 
 SYT ) from chromosome 18 is fused to the 3′ partner  SSX1  on X [ 68 ]. Further studies 
showed that  SSX1  belongs to a large family of highly homologous genes and pseu-
dogenes [ 69 ], and that several of them form fusion oncogenes with  SS18  [ 70 ]. The 
different  SSX  partner genes are highly similar. Still, the alternative fusion genes are 
associated with several morphological tumour variants, indicating functional differ-
ences in the SSX partners. This also shows that the SS18-SSX fusion oncogenes 
have some instructive activity that determine the tumour phenotype. As for other 
sarcoma fusion oncogenes, the  SS18-SSX  genes appear to be tumourigenic only in 
specifi c cell types [ 71 ,  72 ]. 
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  SS18–SSX  encoded proteins lack DNA binding functions, but are shown to 
 function as aberrant transcriptional regulators.  SS18  encodes a subunit of the SWI-
SNF chromatin remodelling complex, and the SS18 containing fusion oncoprotein 
disrupts the normal formation and function of this complex [ 73 – 78 ]. The SSX part-
ners interact with polycomb group protein complexes, and this activity is main-
tained in SS18-SSX fusion proteins [ 77 ]. Through these interactions with general 
chromatin remodelers and transcriptional repressors, the fusion protein may deregu-
late a very large numbers of genes. This very broad effect may explain the potency 
of this oncogene. Many direct target genes and downstream deregulated genes and 
functions, have been shown to be important for the oncogenic activity [ 73 ,  79 ,  80 ] 
and thus been proposed as therapeutic targets.  

14.5     Summary 

 The sarcoma fusion oncogenes discussed in this chapter function as abnormal tran-
scriptional regulators. The FET family and   PAX3    /7-FOXO1  oncogenes carry DNA 
binding domains with sequence and target gene specifi city and they cause specifi c 
tumour types with limited morphological variation. Tumours expressing  SS18-SSX  
fusion proteins show larger morphological variability, perhaps refl ecting the fact 
that these oncoproteins lack DNA binding parts but instead act by interactions with 
general chromatin regulators. 

 Stem cells of mesenchymal tissues have been proposed as the cell of origin for 
sarcomas. In experimental systems with forced expression of sarcoma fusion onco-
genes, stem cells proliferate and form tumours, whereas other cell types fail to sur-
vive or grow. This highlights the importance of stem cells as targets for fusion 
oncogene-induced transformation.     
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