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   Abstract     The Mixed Lineage Leukaemia (KMT2A/MLL) gene encoding a 
H3K4me3 histone methyltransferase is a frequent target of chromosomal aberra-
tions resulting in various forms of aggressive leukaemia with poor prognosis. 
Treatment of MLL leukaemia presents a major challenge, thus novel and more 
effective therapies are urgently needed to improve patients’ outlook. While internal 
deletion and amplifi cation of MLL have been reported, MLL mutations mostly 
manifest either as chromosomal translocations resulting in the generation of fusion 
proteins, in which the C-terminus of MLL is replaced by 1 of more than 70 identi-
fi ed fusion partners, or as partial internal tandem duplications (PTD). Some of the 
most frequent MLL fusion partners exist in multiple complexes associated with 
histone methyltransferase, DOT1L or positive elongation factor b (P-TEFb). 
Aberrant recruitment of these complexes by MLL fusions among other mechanisms 
such as dimerization of MLL fusions or recruitment of other histone modifying 
enzymes resulting in aberrant transcription of downstream targets such as  HOX  
genes has been identifi ed as critical steps in MLL fusion mediated transformation. 
Among them are various key components of epigenetic machinery including 
DOT1L, PRMT1 and BRD4, which emerge as promising therapeutic targets. On the 
other hand, recent studies also identifi ed other essential pathways and molecules 
such as beta-catenin, ITGB3/SYK, polycomb proteins that are not necessarily under 
the direct control of the MLL fusions. While development of small molecule inhibi-
tors against most of these emerging targets is still in very early stages, the latest 
development of DOT1L inhibitors currently in a phase I clinical trial on MLL leu-
kaemia demonstrates the promise of translating our knowledge into novel treat-
ments to improve the outcome for  MLL  leukaemia patients.  

  Keywords     Acute leukaemia   •   KMT2A/MLL leukaemia stem cells   •   Cell of origin   
•   Epigenetics   •   Targeted therapy  

11.1         Introduction 

 Acute leukaemia is characterized by rapid expansion of immature white blood cells 
that accumulate in the bone marrow and interfere with the production of normal 
blood cells. Clinical classifi cation based on lineage characteristics of the leukaemic 
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blasts can broadly divide acute leukaemia into acute myeloid leukaemia (AML), 
acute lymphoid leukaemia (ALL) and acute biphenotypic leukaemia (ABL), which 
features markers of both myeloid and lymphoid cells. While ALL is the most com-
mon cancer in infants and children, ABL uniformly present at all ages whereas the 
incidence of AML increases with age. Recurring chromosomal aberrations tend to 
associate with particular subtype of acute leukaemia, e.g., t(15;17) with  PML- 
RARA  , t(8;21) with  RUNX1 - RUNX1T1 / AML1 - ETO  found only in AML; whereas 
t(1;19) encoding  TCF3 / E2A - PBX1  only occurs in ALL. Interestingly, 11q23 chro-
mosomal aberrations involving the  KMT2A / MLL  ( mixed lineage leukaemia ) gene, 
which generally confer very poor prognosis, are found promiscuously in ALL [ 1 ], 
AML [ 2 ] and ABL [ 3 ].  MLL  rearrangement can be found in up to 80 % in infant 
leukaemia, 3–10 % in ALL and AML, and up to 18 % in ABL. The  MLL  gene 
located at 11q23 is the human homolog of  drosophila trithorax  ( trx ), and encodes a 
SET-domain histone methyltransferase (HMT) that tri- methylates histone 3 lysine 4 
(H3K4me3) positively associated with transcription. 430 kDa MLL protein also 
contains N-terminal DNA binding domains (AT-hooks and CXXC domain) as well 
as central PHD fi ngers and a transactivation domain. MLL protein is proteolytically 
cleaved between PHD fi ngers and the transactivation domain into two fragments 
(MLL-N and MLL-C), which specifi cally associate via consensus interaction motifs 
to regulate gene expression for normal development, including haematopoiesis. In 
contrast, its mutations in the haematopoietic system lead to acute leukaemia. In this 
book chapter, we will review the recent advance in understanding the cellular and 
molecular basis of MLL leukaemia. We will discuss existing  MLL  leukaemia mod-
els, the potential cell of origin of MLL leukaemia, compare the molecular functions 
of wild-type MLL with oncogenic MLL fusions, highlight critical pathways/mole-
cules in MLL leukaemia, and fi nally describe current therapies and potential devel-
opment of novel targeted therapies for MLL leukaemia.  

11.2     11q23 Abnormalities in Acute Leukaemia 

 Four recurrent 11q23 chromosomal abnormalities have been identifi ed in acute leu-
kaemia, namely chromosomal translocations, partial tandem duplication (PTD), 
amplifi cation and internal deletion (Fig.  11.1 ).

   While  MLL -PTD, amplifi cation and deletion can be found in AML,  MLL  trans-
locations remain the most recurrent 11q23 abnormality in all different acute leukae-
mia subtypes. The treatments of leukaemia with 11q23 aberrations remain a major 
clinical challenge. Although cure rates of up to 80 % can be achieved for non- 11q23 
childhood ALL, the outlook for patients with 11q23 abnormalities is far worse [ 4 ]. 
Similarly, the presence of 11q23 translocations generally confers poor prognosis in 
AML [ 2 ] and in ABL [ 3 ].  
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11.3      MLL  Chromosomal Translocation Fusions 

 Pre-natal backtracking of concordant leukaemia in identical monozygotic twins 
provided evidence that 11q23 translocations can occur in utero [ 5 ], and the very 
short latency (<1 year) to develop full blown leukaemia in infants suggest few 
(if any) additional mutations are required. This may differ from the aetiology of 
leukaemia harbouring 11q23 translocations found in adults where the cellular origin 
of the disease can be very different. On the other hand,  MLL  translocations not only 
occur in de novo acute leukaemia, but are also frequently observed in therapy related 
AML (t-AML). Strikingly, compared to de novo acute leukaemia where 11q23 
translocations occur in similar frequencies in AML and ALL, the vast  majority 
(>90 %) of 11q23 translocation therapy related leukaemia is t-AML, that arise after 
topoisomerase II treatment of an unrelated primary neoplasm [ 6 ]. 
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  Fig. 11.1     Schematic overview of wild-type KMT2A/MLL protein and the aberrant KMT2A/
MLL proteins resulting from different 11q23 chromosomal aberrations . The incidence of the 
individual 11q23 aberration amongst all 11q23 re-arrangements in infant/childhood and adult ALL 
and AML are indicated (Data modifi ed from [ 7 ]). All ‘rare’ MLL translocation partners are 
presented together in ‘all others’. Functional protein domains of MLL are indicated. AT-hooks and 
CXXC, DNA binding domains; FRYN/FRYC, consensus interaction motifs; TAD, transactivation 
domain; SET domain, mediates H3K4me1,2,3 methylation       
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 All  MLL  translocations occur within the same 8.3 kb breakpoint cluster region 
between the CXXC DNA-binding domain and the central PHD fi ngers. As a result, 
all MLL fusions retain the MLL N-terminus with its DNA binding motifs, but the 
C-terminal SET domain is replaced with the fusion partner that may possess other 
transcriptional effector or homo-dimerization domains. Although more than 70 dif-
ferent MLL fusion partners have been identifi ed and can be broadly divided into 
nuclear and cytoplasmic proteins, AFF1/AF4, MLLT3/AF9, MLLT10/AF10, ELL, 
MLLT1/ENL and MLLT4/AF6 account for more than 85 % of cases [ 7 ]. With the 
exception of AF6, they are all nuclear proteins. Strikingly, the most frequent nuclear 
fusion partners biochemically interact with each other [ 8 ], and many of them were 
subsequently found co-existing in protein complexes. The fi rst description of such a 
complex was named ENL associated proteins (EAP) [ 9 ,  10 ] (Fig.  11.2 ), which 
included amongst other components also known MLL fusion partners ENL, AF9, 
AF4, AFF3/LAF4, AFF4/AF5Q31 as well as the H3K79 histone methyltransferase 
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  Fig. 11.2     Schematic overview of the complexes associated with the most common KMT2A/
MLL fusion partners.   EAP  ENL associated proteins,  AEP  AF4 family/ENL family/P-TEFb, 
 DotCom  Dot1L complex,  SEC  super elongation complex. Proteins not originally identifi ed in these 
complexes but shown to interact with components of these complexes, indicated with  blue arrows , 
are marked with a  dotted red outline. Green arrows  indicate H3K79me2 chromatin modifi cation 
mediated by Dot1L, whereas  red arrow  indicates potential positive transcriptional effects. BRD4 
recognizes and binds to acetylated histones and interacts with P-TEF-b. PAF1 promotes transcrip-
tional elongation of RNA polymerase II (Pol II) and interacts with ENL/AF9. Pol II itself interacts 
with P-TEFb and ELL/ELL2/ELL3. A mutually exclusive binding of ENL to either AF4 or DOT1L 
was suggested [ 12 ]       
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DOT1L and the positive transcription  elongation factor b (P-TEFb) that plays an 
essential role in regulation of the  transcription by RNA polymerase II.

   However, more recent biochemical and functional studies have identifi ed three 
slightly different complexes, namely the super elongation complex (SEC) [ 11 ], AF4 
family/ENL family/P-TEFb (AEP) complex [ 12 ] and DotCom [ 13 ]. While AEP and 
SEC largely overlap and contain P-TEFb as well as known MLL fusion partners 
AF4, AF5Q31 and ENL (note that SEC also contained ELL1/ELL2/ELL3 and 
AF9), they do not have DOT1L. On the other hand, DotCom lacks P-TEFb but 
contains DOT1L plus MLLT3/AF9, AF10, MLLT6/AF17 and ENL. These results 
suggest the presence of at least two different complexes (one with and one without 
DOT1L) associated with the most common nuclear MLL fusion partners (Fig.  11.2 ) 
that may link transcriptional elongation with histone methylation leading to de- 
regulated target gene expression, such as  HOX  genes. Interestingly, while the inci-
dence of the different MLL fusion partners in ALL as well as AML changes with 
the age of the patients (Fig.  11.1 ), certain MLL fusions are almost exclusively asso-
ciated with AML (MLL-ELL) or ALL (MLL-AF4) whereas others can be found in 
both (MLL-AF9, MLL-ENL). Therefore, some MLL fusions may in part determine 
the lineage specifi city, although other factors including cell of origin and microen-
vironments likely also have important roles in controlling the MLL leukaemia phe-
notypes. On the other hand, given that transcriptional complexes associated with an 
individual MLL fusion are likely similar in AML and ALL, these fi ndings suggest a 
lack of functional relationship between transcriptional complexes and the leukae-
mia lineage.  

11.4     MLL-Partial Tandem Duplication (MLL-PTD) 

  MLL -PTD occurs within the same breakpoint cluster region observed in  MLL  trans-
locations, but results in an internal duplication of N-terminal sequences fl anking the 
DNA binding domains AT hooks and CXXC. Importantly, this re-arrangement of 
MLL does not affect C-terminal sequences of MLL. Therefore MLL-PTD possesses 
a functional H3K4me3 SET domain and has been reported with strong transcrip-
tional activity [ 14 ]. MLL-PTD predominantly occur in AML (~5 %) and is enriched 
in AML with trisomy 11 [ 2 ], although very rare cases in ALL have been reported 
[ 7 ]. While MLL-PTD enhances self-renewal of haematopoietic progenitor cells, it 
does not induce AML in mouse model, suggesting additional mutations are required 
for full-blown leukaemia [ 15 – 17 ]. Similar to  MLL  translocations, the presence of 
 MLL -PTD in AML confers a poor prognosis with markedly reduced remission dura-
tion [ 18 ].  
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11.5     MLL Amplifi cation and Internal Deletion 

 In contrast to  MLL  translocation and  MLL -PTD,  MLL  amplifi cation and internal 
deletion are much less frequent 11q23 aberrations.  MLL  amplifi cation is mainly the 
result of intrachromosomal (HSR, homogenous staining regions) or extrachromo-
somal (dmin, double minute chromosome) amplifi cations, and may confer poor 
prognosis [ 19 ].  MLL  amplifi cation is predominately found in AML (up to 1 %), but 
a case report of its existence in ALL has also been described [ 20 ]. On the other 
hand, only three ALL patients have been reported with internal deletion in one  MLL  
allele, in which exon 11 together with parts of intron 10 and 11 (new nomenclature) 
were lost [ 19 ]. Since  MLL  translocations represent the most frequent 11q23 abnor-
malities in acute leukaemia and  MLL -PTD/amplifi cation has been recently reviewed 
[ 19 ], we will focus our discussion on  MLL  translocations in the rest of the 
chapter.  

11.6     Modelling  MLL  Leukaemia 

11.6.1     AML Models of  MLL  Fusions 

 In the past two decades, a number of  MLL  leukaemia models have been reported 
that recapitulate several aspects of the human disease. A breakthrough in modelling 
 MLL  fusions came around 4–5 years after the identifi cation [ 21 ] and cloning of  MLL  
gene at 11q23 [ 22 ,  23 ] when Rabbitts lab [ 24 ] created the fi rst  MLL  fusion mouse 
model. Using knock-in technologies in ES cells, the cDNA of the fusion partner 
AF9 was inserted just after the exon 8 (old nomenclature) of the  MLL  gene resulting 
in an MLL-fusion gene under the expression of the endogenous  MLL  promoter. 
Chimeric MLL-AF9 knock- in mice developed AML with a latency of 4–11 month. 
The second seminal  MLL  leukaemia model was established by the Cleary lab using 
retroviral transduction to transfer MLL-ENL into murine primary haematopoietic 
progenitor cells. MLL-ENL expressing murine primary haematopoietic cells 
induced myeloid leukaemia when transplanted into mice with a shorter latency of 
2–5 months [ 25 ]. This system has also been used to defi ne and describe the  disease 
progression from pre-LSC (pre-leukaemic stem cell) to LSC [ 2 ,  26 ]. In order to 
mimic and recreate the chromosomal translocations found in human acute  leukaemia 
patients rather than just the expression of the dominant der(11)  transcripts, the 
Rabbitts lab further pioneered in the generation of the translocator mice [ 27 ]. These 
mice harboured loxp sites within the Mll and Af9 genes at specifi c introns, which 
correspond to the breakpoint regions found in MLL-AF9 acute leukaemia patients. 
Exposure to  Cre -recombinase resulted in the interchromosomal recombination of 
Mll and Af9, thus creating both derivative transcripts and resulting in AML [ 28 ]. A 
similar approach was also used in Mll-Enl translocator mice that rapidly developed 
myeloid leukaemia after  Cre -recombination [ 29 ] with latencies similar to that 
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observed in the retroviral transduction model. The use of a conditional  MLL  fusion 
by employing either the mutant oestrogen receptor/tamoxifen [ 30 ] or Tet off/doxy-
cycline system [ 31 ] together with retroviral transduction of murine primary cells 
has further demonstrated the biological relevance of MLL fusions and their down-
stream targets such as  HOX / MEIS  genes in MLL leukaemia. Modifi ed retroviral 
transduction approaches using MLL fusions and human lineage negative or CD34+ 
primary haematopoietic cells isolated from cord blood led to the fi rst humanized 
in vivo leukaemia model [ 32 ,  33 ]. Together, these landmark studies demonstrated 
the feasibility of modelling AML as a result of 11q23 translocations/fusions, and 
these models have been widely used to gain mechanistic insights into the underlying 
disease mechanisms. However, modelling the ALL phenotype observed in 11q23 
patients proved to be more challenging.  

11.6.2     ALL Models of MLL Fusions 

 The fi rst ALL model of MLL leukaemia was reported in a murine retroviral trans-
duction approach using  MLL - GAS7 , which was capable of transforming HSCs lead-
ing to multiple lineage leukaemia including ALL, AML and ABL [ 34 ].  Mll - Enl  
translocator mice developed T-ALL among other haematological malignancies 
when  Cre  expression was restricted to the t-cell compartment using a  Lck - Cre  [ 28 ]. 
On the other hand, immuno-compromised NOD/SCID mice transplanted with 
 MLL - ENL  or  MLL   - AF9  transduced human primary cells developed ALL, or ALL/
AML respectively [ 33 ]. Interestingly, the phenotype of leukaemia seems to depend 
largely on the microenvironment of the recipient mice as  MLL - AF9  transduced 
human CD34+ cells have shown different disease outcomes, ALL vs AML, depend-
ing on the recipient mouse strain [ 32 ]. Modelling the ALL disease phenotype of 
 MLL - AF4 , the most frequent  MLL  fusion associated with ALL has also been chal-
lenging. Early unsuccessful attempts to model  MLL -   AF4  in murine primary cells 
using a retroviral approach were succeeded by two mouse models (knock-in and 
inverter), in which  MLL - AF4  expression led to B-cell lymphomas with long latency 
and low penetrance [ 35 – 37 ]. A much improved conditional  MLL - AF4  model was 
reported to have about half of the knock-in mice develop B-ALL [ 38 ]. However, the 
observed ALL phenotype was still different from that observed in patients and the 
other half of the animals developed AML, suggesting that the right cellular target 
might have been missed in these studies [ 39 ]. Of note, another  MLL - AF4  murine 
retroviral transduction model has been reported, in which  MLL - AF4  as well as the 
reciprocal translocation product  AF4 - MLL  causes B-ALL with a long latency and 
low penetrance [ 40 ]. Surprisingly, this study also showed that  AF4 - MLL  alone is 
suffi cient to cause leukaemia, suggesting a critical role for the reciprocal product in 
the pathogenesis of  MLL    - AF4  leukaemia. However, it should be noted that the 
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reciprocal MLL fusions, including AF4-MLL cannot be detected in all patients har-
bouring  MLL  translocations [ 7 ,  41 ,  42 ].  

11.6.3     ABL Generated by MLL Fusion 

 While ABL comprises only 2–5 % of all acute leukaemia cases [ 3 ], bi-phenotypic 
leukaemia expressing MLL fusions have been frequently described in different 
model systems. The fi rst ABL models were reported using retroviral transduction 
approach on murine cells with  MLL - ENL  [ 43 ] or  MLL - GAS7  [ 34 ]. In both cases, 
 MLL fusion   transformed cells expressed both myeloid and lymphoid markers, and 
induced ABL in mice with a relative short latency. ABL was also observed in three 
 MLL - AF4  mice [ 38 ] and one  AF4 - MLL  mouse [ 40 ], respectively, Interestingly, 
ABL was recurrently observed in the retroviral transduction approach with human 
CD34+ primary haematopoietic cells isolated from cord blood [ 32 ]. These results 
provide further experimental evidence for the specifi c association of  MLL  fusions 
with lineage infi delity/promiscuity.   

11.7     Cell of Origin for MLL Leukaemia 

 In order to defi ne potential origins of MLL LSCs, phenotypically and functionally 
defi ned haematopoietic populations (such as HSC, haematopoietic stem cell; MPP, 
multipotent progenitor; CMP, common myeloid progenitor; GMP, granulocyte- 
macrophage progenitor; MEP, megakaryocyte erythroid progenitor) were purifi ed 
from mouse bone marrow for retroviral transduction and transformation assays. 
While MLL-ENL failed to transform MEP, it induced phenotypically identical 
myeloid leukaemia when expressed in HSC, CMP and GMP populations [ 44 ]. In 
contrast, MLL-GAS7 was reported to transform HSC, CMP and GMP but with dif-
ferent leukaemia phenotypes. MLL-GAS7 expression in HSCs could produce 
multi-lineage leukaemia whereas its expression in CMP and GMP led to exclusive 
myeloid transformation [ 34 ]. These results together with subsequent global expres-
sion analyses on MLL LSC-enriched populations [ 45 ,  46 ] revealed that MLL fusion 
can induce a self-renewal programme in otherwise short-lived myeloid progenitor 
cells in AML, whereas HSCs may be the cell of origin for multi-lineage leukaemia. 
On the other hand, an important insight about the potential origin of LSC was 
obtained in a study examining the transformation abilities of HSCs, CMPs and 
GMPs expressing MLL-AF9 driven by endogenous  MLL  promoter in  MLL - AF9  
knock-in mice. While  MLL - AF9  expressing HSCs led to AML, GMPs expressing 
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 MLL - AF9  driven by the endogenous  MLL  promoter, which is in contrast to those 
driven by MSCV retroviral promoter [ 45 ], failed to induce leukaemia, highlighting 
the importance of the expression level in determining the transformation ability of 
MLL fusions in different cellular targets [ 47 ]. Although it is feasible to compare 
murine retroviral and knock-in models, it is more challenging to assess the impact 
on MLL fusion expression levels in the human system. Recent technological 
advances in genome editing technologies utilizing custom made zinc fi nger nucle-
ases (ZFNs) [ 48 ] or transcriptional activator- like effector nucleases (TALENs) [ 49 ] 
that recognize any given DNA sequence with high specifi city can facilitate the cre-
ation of novel MLL leukaemia models in human primary cells where the MLL 
fusion is expressed at physiological levels. Such a model system could also provide 
unique insights into the long sought-after infant ALL leukaemia with an extremely 
brief latency. Given that MLL fusions arise in utero, it would be important to assess 
the impact of physiologically expressed MLL fusion in early, embryonic haemato-
poiesis if hES or iPS cell are employed.  

11.8     Transcription Regulation by MLL and MLL Fusions 
During Normal and Disease Development 

11.8.1     Wild-Type MLL and Its 
Transcriptional Complex 

 It had been realized very early on that the  MLL  gene shares signifi cant homology 
with the drosophila trithorax ( trx ) gene [ 22 ]. Trx is the founding member of the 
trithorax-group (Trx-G) proteins, which antagonize the polycomb group (Pc- G) 
proteins to maintain cellular memory/identity by epigenetically maintaining infor-
mation about gene expression of key developmental master regulators such as hox 
genes [ 50 ]. Consistently,  MLL  knockout mice were embryonic lethal and showed 
homeotic transformations with abnormal  Hox  gene expression [ 51 ], indicating 
MLL as the functional homolog of trx with critical roles in cellular memory and the 
transcriptional regulation. Important cues to the molecular function of MLL came 
from the discovery that MLL is the mammalian homolog to yeast set1 [ 52 ], which 
was later shown to possess histone methyltransferase activity specifi c for H3K4 
[ 53 ]. Subsequently, this enzymatic activity was also confi rmed in MLL [ 54 ] and Trx 
[ 55 ]. The H3K4me3 mark is generally associated with active transcription (active 
mark) although it can also be present together with K3K27me3 (a repressive mark) 
at bivalent genes poised for transcription. The exact role of the H3K4me3 SET 
domain of MLL in normal development is still unclear since mice expressing a 
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mutant MLL without the SET domain (MLLΔSET) are viable and fertile, although 
they displayed homeotic transformations and reduced hox expression [ 56 ]. 

 Purifi cation of the yeast set1 (COMPASS), mammalian MLL (mammalian MLL 
COMPASS-like) and  Drosophila  trx ( Drosophila  trithorax COMPASS-like) com-
plexes revealed that many core components are indeed common between these com-
plexes [ 57 ], further endorsing a conserved function of trx/set1/MLL in transcriptional 
regulation of target genes across different  species. The core components of the dro-
sophila trithorax COMPASS-like and mammalian MLL COMPASS-like complex 
(Fig.  11.3a ) include WDR5, RBBP5, DPY30, ASH2L, which are similar to yeast 
COMPASS core components Cps30, Cps50, Cps25, Cps60 respectively. In contrast 
to the yeast COMPASS complex,  Drosophila  and mammalian COMPASS-like 
complexes contain MEN1 [ 57 ,  58 ], which binds to trx/MLL N-terminal sequences. 
There are also other critical cofactors not originally co-purifi ed but later shown to 
interact with components of the mammalian COMPASS-like complex. These 
include (1) polymerase associated factor complex, PAFc, which is thought to play a 
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complex . Proteins not originally identifi ed but shown to interact with components of the MLL 
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at  MLL  target genes. ( b – d )  Proposed different oncogenic transcriptional MLL fusion com-
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role in targeting MLL complex to target loci [ 59 ]; (2) acetylated histone binding 
proteins of the BET family such as BRD4 potentially via interaction with PAFc 
[ 60 ]; and (3) the chromatin associated protein PSIP1/LEDGF via its interaction 
with MEN1 [ 61 ].

11.8.2        MLL Fusion Complexes 

 Over the past few years, it has become clear that multiple common MLL fusion 
partners co-exist in various endogenous complexes (EAP, AEP, SEC, DotCom) that 
are aberrantly recruited to MLL target genes resulting in abnormal transcriptional 
regulation of target genes such as  HOX  genes. These complexes often contain the 
H3K79me2 histone methyltransferase DOT1L and/or the positive elongation factor 
P-TEFb that is critical for the transition of transcriptional initiation to elongation by 
phosphorylating of the CTD of RNA polymerase II. Moreover MLL fusion com-
plexes also interact with mammalian MLL COMPASS-like associated proteins such 
as MEN1, LEDGF and PAFc. Hence it is believed that these MLL fusions may 
transform haematopoietic cells by aberrant recruitment of histone modifying 
enzymes (e.g., DOT1L) and elongation factors (e.g., PAFc, P-TEFb) (Fig.  11.3b ). 
For the less common MLL fusions, several alternative transformation mechanisms 
(Fig.  11.3c, d ) have been described including (1) dimerization of MLL fusions 
observed in MLL-EPS15/AF1p and MLL-GAS7 [ 62 ], MLL-GPHN [ 63 ] and syn-
thetic MLL-FKBP [ 14 ]; (2) recruitment of different histone modifying enzymes 
such as the protein-arginine methyltransferase, PRMT1 in MLL-SH3GL1/EEN 
[ 64 ]; or (3) indirect recruitment of AEP in case of MLL-MLLT4/AF6 [ 12 ], all 
resulting in de-regulated gene expression of critical targets such as  HOX  genes.  

11.8.3     Crosstalk Between Wild-Type MLL and MLL Fusion 
Complexes 

 Interestingly, the N-terminus of MLL is preserved in all MLL fusions (Fig.  11.1 ), 
yet it is still unclear how wild-type and MLL fusion complexes are recruited to 
specifi c downstream targets. Proteins that interact within the N-terminus of MLL 
such as MEN1 and LEDGF are present in wild- type MLL as well as MLL fusion 
complexes suggesting putative binding to the same target genes. Indeed, up to 80 % 
of MLL-ENL target genes overlap with wild-type MLL targets [ 65 ]. On the other 
hand, MLL fusion target genes (n = 223) represent only a small minority (~7 %) of 
wild-type MLL targets (n = 2595), suggesting a highly selective binding exhibited 
by MLL-fusions to these loci. In contrast to wild-type MLL, all MLL fusions lack 
the C-terminal H3K4me3 SET domain. Yet, MLL fusion target genes are enriched 
not only with the H3K79me2 but also with the H3K4me3 chromatin mark [ 66 ,  67 ] 
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suggesting a possible crosstalk of MLL fusions and H3K4me3 HMTs. Although 
there are six different mammalian HMTs (MLL, KMT2B/MLL4, KMT2C/MLL3, 
KMT2D/MLL2, SETD1A and SETD1B) that can all contribute to the H3K4me3 
mark, it is generally believed that MLL fusions may interact with wild-type MLL 
probably through proteins associated with both complexes. Supporting this hypoth-
esis, experimental evidence for roles of PAFc and MEN1 in mediating this crosstalk 
has been reported. Wild-type MLL/PAFc complex is required for the effi cient 
recruitment of MLL fusion to the same loci [ 68 ] as MLL fusion could not bind to 
 Hoxa9  in the absence of wild-type MLL or PAFc recruitment in MEFs. On the other 
hand, it was shown that knockout of  Men1  resulted in not only loss of H3K79me2 
but also H3K4me3 at MLL fusion target genes in KMT2A/MLL fusion transduced 
cells [ 69 ], suggesting that enzymatic activities from wild- type MLL as well as MLL 
fusion complexes are acting in concert simultaneously on the  Hoxa9  gene locus. 
Consistently, wild-type MLL and MLL fusion complexes are recruited to  Hoxa9  in 
a Men1 dependent manner, and a conditional deletion of wild-type MLL inhibited 
MLL fusion mediated leukaemogenesis. While this suggests a critical role of wild- 
type MLL in  MLL  fusion mediated transformation, it should be noted that the con-
ditional  MLL  mouse used in the Thiel et al. study suffered from a much more severe 
haematopoietic phenotype [ 70 ] than what has been reported for another conditional 
 MLL  mouse model [ 71 ]. It is not clear if these cells are generally compromised for 
any transformation. Interestingly, it was very recently reported that  MLL - AF9  AML 
is initiated and propagated normally in MLLΔSET haematopoietic cells [ 72 ] sug-
gesting that the wild- type MLL H3K4me3 activity is dispensable for MLL fusion 
transformation. Furthermore, the leukaemic cell line ML2 [ 73 ], which was derived 
from an AML patient with  MLL - AF6 , lacks wild-type MLL. Further studies includ-
ing comparison of both conditional mouse models and their impact on MLL fusion 
mediated transformation as well as the role of H3M4me3 and other histone modifi -
cations in MLL fusion mediated transformation will further advance our under-
standing of this fascinating crosstalk.   

11.9     Pathways and Downstream Targets Critical 
in MLL Leukaemia 

 While characterizing the oncogenic MLL fusion transcriptional complexes in  MLL  
leukaemia revealed several target genes and transcriptional programmes critical for 
self-renewal of  MLL  LSC [ 45 ,  46 ], recent data suggest that also other pathways and 
molecules which are neither under the direct control nor recruited to MLL fusion 
complexes play important roles in MLL leukaemia. Furthermore, it has been known 
for many years that several mutations such as  FLT3  and RAS genes recurrently 
found in AML and ALL patients also co-exist in MLL leukaemia patients, albeit 
their functional contribution, requirement and therapeutic value is much less clear. 
FLT3 has been reported to cooperate with some MLL fusions (e.g. MLL-ENL, 
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MLL-SEPT6) [ 74 ] and is expressed in high levels in  MLL  leukaemia patients [ 75 , 
 76 ], but patient’s responses in early FLT3 monotherapy clinical trials were rather 
limited both in depth and duration which severely dented the promise of FLT3 inhi-
bition in acute leukaemia treatment [ 77 ]. Consistently, it was more recently shown 
that MLL fusions were able to induce leukaemia in  Flt3  knockout cells with 
expected latency and phenotype as by MLL fusion transformed wild type cells [ 78 ]. 
Moreover, co-expression of Flt3 or its constitutively activated mutant (Flt3-TKD) 
did not cooperate with MLL- AF4 in the transformation of human primary stem/
progenitor cells [ 79 ] adding further doubt to the exact functional role and therapeu-
tic value of Flt3 in  MLL  leukaemia. 

11.9.1     MLL Downstream Targets 

 Identifi cation of the oncogenic transcriptional MLL fusion complexes revealed that 
MLL fusions act as transcriptional activators and enhance gene expression of down-
stream targets. Among them,  Hox ,  Meis1 ,  Pbx3 ,  Myb  and  Mef2c  [ 30 ,  45 ,  80 ] repre-
sent the best characterized MLL downstream targets which are all part of a wider 
transcriptional programme critical for self-renewal of MLL LSCs. Knockdown or 
knockout of  Meis1 / Pbx3  [ 81 ] or  Myb  [ 80 ] resulted in impaired MLL fusion cell 
growth and colony formation, whereas conditional deletion of  Mef2c  [ 82 ] did not 
impair induction or maintenance of MLL fusion mediated leukaemia but affected 
homing and invasiveness of MLL leukaemic cells in vivo. The functional role of 
 Hox  genes in MLL leukaemia remains controversial. While  HOXA9  has been shown 
to be required for human MLL leukaemia cell lines [ 83 ], which is in line with fi nd-
ings that  MLL - ENL  cannot transform  Hoxa9 −/− or  Hoxa7 −/− cells [ 84 ], it is also 
reported that both  MLL - AF9  and  MLL- GAS7   mediated transformations are indepen-
dent of  Hoxa9  [ 85 ,  86 ]. Interestingly, only one microRNA, miR-495, is expressed at 
very low levels in  MLL  leukaemia compared to non- MLL  leukaemia and it has been 
shown to target  Meis1  and  Pbx3  transcripts [ 87 ]. Indeed over-expression of miR-
495 prolonged the latency of  MLL  leukaemia in vivo, providing a potential avenue 
to target the expression of certain MLL fusion downstream target genes. 

 More recently, MLL fusions have been reported to activate expression of the 
DNA demethylase  TET1  gene (ten eleven translocation 1) [ 88 ], and  miR - 9  [ 89 ]. 
Moreover it has been shown that MLL fusions maintain the expression of 
 MECOM / EVI1  [ 90 ] in LSK (Lineage − , Sca1 + , Kit + ) cells. However, expression of 
MLL fusion did not lead to an up-regulation of  MECOM / EVI1  in GMPs that have 
only basal expression levels of  MECOM / EVI1 . Common to these target genes is 
their requirement for MLL fusion mediated leukaemia as knockdown/depletion of 
 Tet1  and  Mecom / Evi1  has been reported to impair cell growth and leukaemia induc-
tion, whereas overexpression of  miR - 9  promotes MLL-AF9 leukaemia in vivo.  
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11.9.2     Critical Pathways/Molecules Not Directly Regulated 
by MLL Fusions 

11.9.2.1     Canonical WNT/beta-catenin 

 The evolutionarily conserved WNT/CTNNB1 pathway has been implicated in the 
pathogenesis of AML [ 91 ], and is required for the development of  MLL  LSCs [ 26 , 
 92 ]. MLL fusions fail to induce leukaemia in the absence of CTNNB1 and its activa-
tion confers drug resistance to  MLL  LSCs [ 26 ]. Interestingly, deletion of  Ctnnb1  in 
haematopoietic cells has little/no effect on the function of adult haematopoiesis [ 93 , 
 94 ], suggesting a therapeutic window. Consistently, pharmacological inhibition of 
Ctnnb1 by Indomethacin showed effi cacy in inhibiting  MLL  leukaemia in vivo [ 95 ], 
although these experiments were done in serially transplanted animals probably due 
to the drug toxicity. It is noted that CTNNB1 also plays important roles in other 
haematological malignancies including CML-blast crisis [ 96 – 98 ], suggesting its 
broad therapeutic application.  

11.9.2.2     ITGB3 

 In vivo shRNA screen carried out in a  MLL  mouse model identifi ed integrin beta 3 
(Itgb3) signalling amongst others as essential for MLL-AF9 mediated leukaemia 
[ 99 ]. Loss of Itgb3 signalling reversed the transcriptional programmes established 
by  MLL - AF9  such as self-renewal and led to up- regulation of differentiation pro-
grammes. Itgb3 dimerizes with Itgav on the cell surface, and transmits extra-cellular 
signals via a cascade of protein kinases such as Syk, Src and Ptk2b, guanine nucleo-
tide exchange factors such as Vav1, Vav2, Vav3, and GTPases such as Rho and 
Cdc42. In the same study, Syk was identifi ed and validated as a critical mediator of 
Itgb3 signalling in  MLL  leukaemia. Although the functional relationship between 
Itgb3/Syk and MLL fusion proteins in leukaemia are still largely unknown [ 100 ], 
the identifi cation of tractable signalling molecules and the availability of Syk inhibi-
tors that have already been shown effective in various diseases including B cell 
malignancies [ 101 ] add to our expanding repertoire of promising targets for  MLL  
leukaemia.  

11.9.2.3     Polycomb Group Proteins 

 Classically, trithorax and polycomb group proteins have been viewed as antagonis-
tically acting proteins for regulating gene expression and cellular memory during 
normal development. However, increasing evidence suggests that polycomb pro-
teins such as Bmi1 also play an important role in  MLL  leukaemia, which cannot be 
simply explained by their antagonistic functions [ 102 ,  103 ]. In addition, the poly-
comb protein CBX8, which has been shown to interact with the MLL fusion 
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partners ENL and AF9 [ 104 ], is critical for MLL-AF9 mediated transcriptional acti-
vation and transformation [ 105 ]. While it was suggested that CBX8 is critical for 
 MLL  leukaemia because of its recruitment of KAT5/TIP60 to the MLL fusion com-
plex [ 105 ], another study provided evidence that the interaction between ENL and 
CBX8 allows MLL-ENL to inhibit the repressive function of polycomb group pro-
teins on MLL fusion downstream target genes such as  HOX  [ 106 ]. Interestingly, two 
more polycomb group proteins (EZH2 and EED) genes have been reported to play 
key roles in  MLL  leukaemia [ 107 ,  108 ]. While the functional requirement of 
EZH2 in MLL leukaemia is less well defi ned, ablation of Eed impaired MLL-AF9 
leukaemia although it is not clear if Eed is generally required for cell survival.  

11.9.2.4     RUNX1 

 The heterodimeric core binding factors composed of RUNX1/AML1 and CBFB 
subunits are critical for defi nitive and adult normal haematopoiesis. Interestingly, 
RUNX1 and CBFB are also the most frequently translocated genes in acute leukae-
mia resulting in  RUNX1 - RUNX1T1 / AML1 - ETO /t(8;21) or  CBFB - MYH11 /inv(16) 
fusion genes. It has been recently shown that RUNX1 recruits wild-type MLL to 
activate RUNX1 target genes such as  SPI1 / PU.1 , and the MLL- RUNX1 interaction 
prevents RUNX1 proteasome degradation [ 109 ]. Despite the RUNX1 interaction 
domain being located in the C-terminal portion of MLL, the N-terminus seemed 
required for enhancing RUNX1 protein levels, suggesting a differential effect of 
MLL fusion on RUNX1. Indeed a role for RUNX1 in MLL fusion mediated trans-
formation was subsequently suggested since suppression of RUNX1 inhibited the 
growth of various MLL fusion transformed cells [ 110 ,  111 ]. However, it was very 
recently reported that MLL fusion down-regulates  RUNX1 / CBFB  expression [ 112 ]. 
In contrast to the previous reports, down-regulation of  RUNX1 / CBFB  expression 
levels accelerated MLL-AF9 leukaemia, whereas overexpression of  RUNX1  
impaired  MLL  - AF9  leukaemia. Therefore, further studies are needed to defi ne the 
role and exact contribution of RUNX1 in  MLL  leukaemia.  

11.9.2.5     Other Emerging Molecules 

 Involvement of myeloid specifi c transcription factors (such as CEBPA [ 113 ] and 
SPI1/PU.1 [ 114 ]), general transcription factor (NFKB [ 115 ]) and ubiquitin ligase 
(RNF20 [ 116 ]), which are all not under the direct transcriptional control of MLL 
fusion, further highlight a widespread crosstalk of other signalling pathways in  MLL  
leukaemia. Genetic ablation/knockdown of  NFKB ,  Rnf20 ,  Spi1 / Pu.1 , or  Cebpa  
impaired leukaemia growth. Interestingly, CEBPA is only important for the devel-
opment of MLL fusion LSCs but not for their maintenance. While transcription 
factors are poor therapeutic targets to date, signalling cascades upstream of these 
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transcription factors may represent more promising targets. Inhibition of the IKK 
complex, a major upstream regulator of NFKB signalling suppresses cell growth 
and colony formation of murine  MLL  fusion transformed cells, suggesting that ther-
apeutic targeting of this pathway is possible in  MLL  leukaemia. Moreover, a recently 
identifi ed TNFa/NFKB autocrine positive feedback loop critical for the establish-
ment of both MLL and non- MLL LSCs further highlights the role of NFKB, and the 
possibility of targeting TNFa for leukaemia therapy [ 117 ].    

11.10     Current Therapies and Development of Novel 
Targeted Therapies 

 Currently, AML patients with 11q23 aberrations receive standard induction cyto-
toxic therapy “3 + 7” of daunorubicin and cytarabine, and they represent one of the 
worst prognostic subgroups [ 2 ]. Treatment of ALL patients, including those har-
bouring 11q23 abnormalities usually comprise a remission-induction phase, con-
solidation phase and continuation therapy [ 4 ]. While allogeneic HSCT is a key 
element in adult treatment, it confers no survival advantage in infant ALL with 
11q23 aberrations and may only have limited benefi ts in a small subset of 11q23 
patients, which possess additional poor prognostic factors [ 118 ,  119 ]. Strikingly, the 
drugs currently in use for these ALL and AML treatment regimens were developed 
in the 1950s–1970s. Although their dosage and schedule have been optimized 
resulting in higher survival rates accompanied by less general cytotoxicity in the 
majority of ALL cases and some AML cases, patients with 11q23 aberrations in 
general have had little to no benefi ts from these improvements, highlighting the 
need for novel drugs and therapies especially for this poor prognostic subgroup. The 
recent advances in identifying critical molecules, which are mainly part of the onco-
genic MLL fusion complex and essential for  MLL  leukaemia, have provided novel 
targets for effective treatment, some of which are already being developed for early 
phases of clinical trials (Fig.  11.4 ). 

11.10.1     Targets with Enzymatic Activities 

11.10.1.1     DOT1L 

 DOT1L has been identifi ed in several MLL fusion partner complexes (Fig.  11.2 ) 
and is essential for MLL fusion mediated leukaemia as demonstrated by conditional 
knockout of  Dot1l  for in vitro transformation [ 120 ] and in vivo leukaemogenesis 
[ 66 ,  122 ]. Noticeably, loss of Dot1l impaired haematopoiesis in all three different 
conditional knockout models, albeit with different severity possibly due to the use 
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of slightly different gene targeting strategies, Cre recombinases or/and incomplete 
Cre-mediated  Dot1l  deletion. Whereas one study found that loss of Dot1l had lim-
ited effects on haematopoietic progenitors [ 66 ], the others reported an indispensable 
function of Dot1l in the maintenance of adult haematopoiesis as the numbers and 
function of haematopoietic stem and progenitor cells were greatly compromised in 
the absence of Dot1l [ 120 ,  121 ]. Despite this controversy, the essential role of Dot1l 
in MLL leukaemia and its unique HMT enzymatic activity associated with non-SET 
domain makes Dot1l an attractive target. In fact, the fi rst DOT1L inhibitor 
EPZ004777, a competitive analog of the co-factor S-adenosylmethionine (SAM), 
has been developed and shown to selectively kill  MLL  rearranged cells in vitro with 
reported IC50 levels 5–100× higher in non- MLL  cells [ 123 ]. While EPZ004777 was 
tolerated in mice, it had quite poor in vivo pharmacokinetics, which only resulted in 
a very modest survival benefi t in treated animals compared to the controls. The 
structural data on EPZ004777 binding to DOT1L revealed remodelling of the cata-
lytic site of DOT1L, and identifi ed positions of the compound that can be optimized 
to improve its pharmacokinetics and potency [ 124 ]. Indeed SGC0946, a brominated 
analogue of EPZ00477, has been reported to improve molecular effects on 
H3K79me2 level as well as selectively killing of  MLL  leukaemia cells. Another 
molecule evolved from EPZ004477 with improved potency is EPZ-5676 that has 
recently entered into phase I clinical trial [ 125 ]. Although future studies are needed 
to clarify their in vivo pharmacokinetic and effi cacy on  MLL  leukaemia in the clin-
ics, these studies demonstrate the promise of translating basic research results into 
potential patient’s benefi ts.  

ITGB3, SYK signalling
WNT, beta-catenin 
Polycomb
RUNX1/CBFb
CEBPa
NFKB signalling
PU.1
RNF20
EVI-1

iSyk

Novel inhibitors against 
proposed targets

MLL

H3K4me3H3K4me3

Pol II

DOT1L

P-TEFb

H3K4me3

H3K79me2
H3K79me2

BRD4

H3Ac
H4Ac H3Ac

H4Ac

PRMT1

Leukaemic stem cell  
transcrip�onal programme

Differen�a�on programme

iPRMT1

i-BET, JQ1

iDOT1L

Pep�de
MLL-PAFc

iMENIN
fusion

Pep�de
MLL-PAFc

iWDR5-MLL

BRD4 iIKK

BRD4MLLN
H4R3me2

  Fig. 11.4     Novel players in KMT2A/MLL leukaemia and development of targeted therapies . 
Schematic generic MLL fusion complex together with wild-type MLL complex at target gene 
locus driving distinct gene expression profi les. Highlighted in larger font size are individual mol-
ecules that have been shown important for MLL fusion-mediated transformation and have been 
experimentally targeted by small molecule inhibitors. On the right are emerging molecules and 
pathways listed with reported importance in MLL fusion- mediated transformation infl uencing 
MLL fusion protein transcriptional programmes. Small molecule inhibitors with already reported 
effi cacy are indicated       
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11.10.1.2     PRMT1 

 Protein arginine methyltransferase 1 (PRMT1) with H4R3me2 specifi city has been 
identifi ed to be critical for MLL-EEN mediated transformation [ 64 ] as knockdown 
of PRMT1 resulted in impaired MLL-EEN in vitro transformation. Moreover, direct 
fusion of PRMT1 but not a catalytic dead mutant to the truncated MLL resulted in 
oncogenic transformation of primary murine haematopoietic stem/progenitor cells. 
While the role of  Prmt1  in other leukaemia remains to be determined, a small mol-
ecule inhibitor targeting PRMT1 has shown promising in vivo effi cacy in a  MLL  
fusion leukaemia model (N.C., B.B.Z. and C.W.E.S. unpublished data). Although 
EEN is a rare translocation partner of MLL, it is evident that transformation medi-
ated by other MLL and non-MLL fusions may also depend on Prmt1 (N.C., B.B.Z. 
and C.W.E.S. unpublished data). Future studies using Prmt1 conditional knockout 
mouse and additional pharmacological PRMT1 inhibitors will be critical to clearly 
defi ne the role of PRMT1 in  MLL  leukaemia and as a therapy target.  

11.10.1.3     KDM1A/LSD1 

 Although LSD1 (KDM1A) mono- and di-demethylase does not directly associate 
with either wild-type MLL or MLL fusion complexes, shRNA mediated knock-
down and pharmacological inhibition of LSD1 impaired in vitro growth and in vivo 
leukaemogenesis of cells transformed by various MLL fusions [ 126 ]. While inhibi-
tion of LSD1 induced differentiation of  MLL - AF9  transformed cells and spared nor-
mal bone marrow cells in vitro, its in vivo effi cacy and the specifi city (if any) 
towards MLL fusions remains unclear. Interestingly, another study reported that 
knockdown or pharmacological inhibition of LSD1 potentiated all-trans retinoic 
acid (ATRA) induced differentiation of non- MLL  AML cells and reduced the 
engraftment ability of human primary AML samples in recipient mice [ 127 ]. These 
results suggest that inhibition of LSD1 alone or in combination with ATRA may 
have therapeutic value in treatment of other AMLs including those with 11q23 
aberrations.   

11.10.2     Targeting the Protein-Protein Interactions 

11.10.2.1     BRD4 

 BRD4 is a member of the bromodomain containing proteins of the BET family that 
binds to acetylated histone, and may be recruited to MLL fusion complexes via its 
interaction with P-TEFb or PAF1. Its functional requirement in  MLL  leukaemia has 
recently been demonstrated in a shRNA screen [ 128 ]. Although BRD4 itself does 
not possess an enzymatic activity, small molecule inhibitors JQ1 [ 129 ] and i-BET 
[ 130 ] have been reported to competitively interfere with the binding of the 
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bromodomain to acetylated histones. In murine  MLL  fusion leukaemia models, 
treatment with JQ1 [ 128 ] or i-BET [ 60 ] has been very encouraging as it increased 
the survival of the treated animals compared to controls. Gene expression analysis 
showed that JQ1/i-BET treatment resulted in down- regulation of the LSC signature 
and reduced expression of  BCL2  and  MYC . Transcriptional programmes master-
minded by MYC have important roles in a variety of LSCs [ 131 ], suggesting that 
BRD4 inhibitors may have a broader effi cacy and effects also in non  MLL  leukae-
mia. Indeed two recent reports highlighted the effi cacy of i-BET in non- MLL  AML 
[ 132 ] and in  JAK2  V617F  driven MPN [ 133 ]. They also observed down-regulation of 
 BCL2  and  MYC  upon treatment, suggesting that BET proteins control transcription 
of key targets such as MYC and BCL2, independently of the presence of MLL 
fusions proteins. Nevertheless, these studies provide a strong rationale to use BET 
inhibition as a novel experimental treatment for AML with and without 11q23 
aberrations.  

11.10.2.2     MEN1/MENIN 

 Another molecule associated with wild-type MLL as well as MLL fusion com-
plexes is MEN1, which bridges MLL with the chromatin factor LEDGF. Interestingly, 
while MEN1 was originally identifi ed as the product of the tumour suppressor gene 
 MEN1 , whose loss of function mutation causes sporadic neoplasm of various endo-
crine organs [ 134 ], it is critical for  MLL  fusion mediated transformation [ 61 ]. In its 
dual role as tumour suppressor and tumour promoting protein, structural analysis 
of free Men1 as well as Men1- MLL or Men1-JunD complexes revealed both MLL 
and JunD bind Men1 in the same pocket. However while Men1-JunD binding 
results in suppressing JunD-mediated transcription, Men1-MLL binding promotes 
MLL transcriptional activity [ 135 ]. Consequentially, MI-2, a small molecule inhib-
itor disrupting the Men1-MLL interaction was developed and showed in vitro effi -
cacy in  MLL  fusion expressing cells [ 136 ]. Although the vivo effi cacy has yet to be 
demonstrated, in vitro treatments of  MLL  fusion cells with MI-2 led to differentia-
tion and down-regulation of MLL target genes with little effects on non- MLL  trans-
formed cells. Based on the high-resolution crystal structure of the Men1-MI-2 
complex, a second generation inhibitor MI-2-2 has been developed and shows 
7–9× higher affi nity to Men1 compared to MI-2. Crucially, MI-2-2 displayed fur-
ther enhanced cellular activities and more potent inhibition of MLL fusion har-
bouring human cell lines [ 137 ] although its in vivo effi cacy has not been reported. 
It is noted that targeting the Men1-MLL interaction could potentially also amongst 
others inhibit the Men1-JunD interaction resulting in the conversion of prolifera-
tion suppressing JunD to proliferation promoting JunD with adverse consequences. 
Although targeting the Men1-MLL interaction may have therapeutic value in  MLL  
leukaemia, Men1 is also a tissue specifi c tumour suppressor and small molecules 
targeting Men1-MLL or Men1 in general may have undesirable consequences in 
other tissues, which may result in the development of endocrine tumours. Future 
in vivo studies undoubtedly will shed lights onto these important issues.  
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11.10.2.3    WDR5 

 WDR5 is a component of the mammalian COMPASS-like MLL complex, which is 
not only absolutely required for its integrity but also for optimal MLL H3K4me3 
activity [ 138 ]. Recently, a small molecule inhibitor MM-401 targeting the MLL1-
WDR5 interaction has been reported and shows in vitro effi cacy towards different 
MLL fusion proteins in primary cell line models and in patient samples [ 139 ]. 
Interestingly, while WDR5 is also found in other mammalian COMPASS and 
COMPASS-like complexes associated with different H3K4me3 methyltransferases 
(e.g., SETD1A, SETD1B, MLL, MLL2, MLL3, MLL4), MM-401 specifi cally 
inhibits the MLL1 COMPASS-like complex histone methyltransferase activity. 
Although its in vivo effi cacy has yet to be demonstrated, the in vitro inhibition data 
provide further evidence that  MLL  fusion mediated transformation may be depen-
dent on the presence of functional wild-type MLL COMPASS-like complex.  

11.10.2.4    PAF1/PAFc 

 Polymerase associated factor complex (PAF1/PAFc) is recruited via MLL N-terminal 
sequences including its CXXC domain to both wild-type MLL and MLL fusion 
proteins. It has been reported that knockdown of CDC73 or CTR9, critical compo-
nents of PAFc, inhibits MLL fusion transformation in vitro and that the interaction 
with PAF1 is necessary for MLL fusion transformation [ 59 ]. The use of a genetic 
model to delete  Cdc73  confi rmed the initial fi ndings, however it also affected non-
 MLL  transformed cells raising questions about the specifi city towards the MLL 
fusion [ 140 ]. Nevertheless, a competitive peptide that disrupts the binding of MLL 
fusion with PAF1 suppressed MLL fusion activity and did not adversely affect nor-
mal haematopoiesis [ 140 ]. These results suggest disruption of PAF1/MLL may also 
be a potential therapeutic avenue although its in vivo effi cacy and potential transla-
tion into small molecule inhibitors need further investigations.    

11.11     Concluding Remarks and Perspective 

 In the past decade, our understanding of the mechanisms mediating MLL fusion 
transformation of normal haematopoietic cells into leukaemic stem cells has dra-
matically expanded. Novel insights into the underlying molecular mechanisms and 
their crosstalk with other pathways/molecules have helped to identify a number of 
new therapeutic targets. Although development of small molecule inhibitors target-
ing these molecules with critical functions in  MLL  leukaemia is still in a very early 
stage, the successful application of DOT1L inhibitor, EPZ-5676 into phase I clinical 
trial for  MLL  leukaemia demonstrates the promise of  translating our knowledge into 
novel treatments. Therefore continuous efforts in characterizing the molecular and 
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cellular basis of  MLL  leukaemia is expected to provide further important biological 
insights and more effective novel treatments for  MLL  leukaemia.   

11.12    Appendix 

 During the production of this book chapter the fi rst in vivo studies of MENIN inhi-
bition in solid tumors and leukemia had been published [ 141 ,  142 ]. Using MI-2- 2, 
a structure-based design combined with medical chemistry resulted in the develop-
ment of MI-463 and MI-503 which improved survival of MLL leukaemic mice 
in vivo. Conversely, MI-463 or MI-503 had little impact on normal haematopoietic 
development. Although long-term experiments interrogating the effect of MI-463 
and MI-503 on the MENIN-JunD interaction have not been performed, this work 
demonstrates the feasibility of targeting MENIN in MLL leukaemia.   
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