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  Abstract     The molecular characterization of recurrent chromosome aberrations in 
the early 1980s laid the foundation for gene fusion detection in cancer. This approach 
remained the unrivalled method to identify fusion genes for a quarter of a century 
and led to the detection of more than 700 neoplasia-associated fusion genes. The 
advancement of deep sequencing in the mid-2000s revolutionized the search for 
cytogenetically undetectable fusions, and such studies have dramatically changed 
the gene fusion landscape. A myriad of new gene fusions – more than 1,300 – the 
great majority involving previously unsuspected genes, have been identifi ed by 
sequencing-based analyses during the past 10 years.  

  Keywords     Cytogenetics   •   Karyotype   •   Chromosome aberrations   •   Gene fusions   • 
  Oncogenes  

1.1         Introduction 

 One hundred years ago, Theodor Boveri in his famous book  Zur Frage der 
Entstehung maligner Tumoren  [ 1 ] proposed an idea that later became known as the 
somatic mutation theory of cancer, which essentially states that cancer originates in 
a single cell by a mitotic disturbance leading to chromosomal damage. The acquired 
genetic change is then propagated during subsequent mitoses to all descendants of 
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the originally transformed cell. This concept is today the paradigmatic view of can-
cer pathogenesis, supported by a wealth of experimental evidence. It long remained 
a theoretical idea, however, which could not be examined critically until technical 
improvements in human cytogenetic analysis were made half a century later, culmi-
nating in the description of the normal human chromosome complement by Tjio and 
Levan in 1956 [ 2 ]. 

 The discovery only 4 years later by Nowell and Hungerford [ 3 ] of an acquired 
characteristic marker chromosome consistently seen in patients with chronic 
myelogenous leukaemia (CML), later designated the Philadelphia chromosome 
(Ph) after the city where it had been found, immediately provided strong support for 
the idea that chromosome aberrations indeed may play a major role in the initiation 
of the carcinogenic process. It was reasonable to assume that the specifi c chromo-
somal abnormality – a perfect example of a somatic mutation in a haematopoietic 
stem cell – was the direct cause of the neoplastic state, i.e., the true verifi cation of 
Boveri’s somatic mutation theory. The discovery of the Ph chromosome greatly 
stimulated interest in cancer cytogenetics in the 1960s. However, the results obtained 
over the next decade were disappointing. Chromosome aberrations were detected in 
most tumours but no specifi c change comparable to the Ph was found. The abnor-
malities varied within the same tumour types and among patients, and at the end of 
the 1960s most scientists agreed that chromosome aberrations were secondary epi-
phenomena – not the cause, but the consequence, of neoplasia. The Ph was the 
exception to the rule that chromosome changes did not play any important pathoge-
netic role in carcinogenesis. 

1.2      Chromosome Banding 

 The situation changed dramatically in 1970 with the introduction of chromosome 
banding by Caspersson and co-workers [ 4 ]. Each chromosome, chromosome arm, 
and even chromosome region could now be precisely identifi ed on the basis of its 
unique banding pattern, and hence aberrations that previously had not been possible 
to detect could now be visualized. The fi rst characteristic cytogenetic changes in 
cancer cells discovered with the help of the new technique appeared in 1972 (see 
Mitelman and Heim [ 5 ] for a review of the early data): a 14q+ marker chromosome 
in Burkitt lymphoma (BL), a deletion of the long arm of a chromosome 20 in poly-
cythemia vera, +8 in acute myeloid leukaemia (AML), and −22 in meningiomas. 
The fi rst balanced rearrangements were reported shortly afterwards. In 1973, 
Rowley fi rst identifi ed a reciprocal translocation between chromosomes 8 and 21, 
i.e., t(8;21)(q22;q22), in the bone marrow cells of a patient with AML [ 6 ] and the 
very same year she showed that the Ph in CML originated through a t(9;22)
(q34;q11), not a deletion of the long arm of chromosome 22 as previously thought 
[ 7 ]. A steadily increasing number of characteristic, specifi c, sometimes even pathog-
nomonic balanced rearrangements, in particular translocations, were soon described 
in various haematologic disorders and malignant lymphomas, including t(8;14)
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(q24;q32), t(2;8)(p11;q24), and t(8;22)(q24;q11) in BL [ 8 – 11 ], t(15;17)(q22;q21) 
in acute promyelocytic leukaemia [ 12 ], t(4;11)(q21;q23) in acute lymphoblastic 
leukaemia [ 13 ], t(8;16)(p11;p13) in acute monocytic leukaemia [ 14 ], and t(14;18)
(q32;q21) in follicular lymphoma [ 15 ]. The fi rst specifi c translocations in experi-
mental neoplasms and, as it turned out, the perfect equivalents of the characteristic 
rearrangements in human BL were identifi ed by Ohno et al. [ 16 ] in mouse plasma-
cytomas (MPC) by the end of the 1970s. 

 The following decade saw a similar explosion of data emerging from studies of 
solid tumours, initially in particular among mesenchymal tumours. Several of the 
aberrations identifi ed in the solid tumours were as specifi c as those previously found 
among haematologic malignancies, e.g., t(2;13)(q36;q14) in alveolar rhabdomyo-
sarcoma [ 17 ], t(11;22)(q24;q12) in Ewing sarcoma [ 18 ,  19 ], and t(12;16)(q13;p11) 
in myxoid liposarcoma [ 20 ]. At this time, it also became clear that many benign 
tumours carried characteristic aberrations, including reciprocal translocations, e.g., 
t(3;8)(p21;q12) in salivary gland adenoma [ 21 ], t(3;12)(q27–28;q13–15) in lipoma 
[ 22 ,  23 ], and t(12;14)(q14;q24) in uterine leiomyoma [ 24 – 26 ]. All published abnor-
mal karyotypes in neoplasia detected by banding analyses are presented in Mitelman 
et al. [ 27 ], and a comprehensive review of the presently known recurrent and spe-
cifi c chromosome aberrations may be found in Heim and Mitelman [ 28 ].  

1.3     Recombinant DNA Technology 

 Technical developments in the late 1970s enabling the identifi cation and character-
ization of genes in the breakpoints of chromosome rearrangements made it possible 
to elucidate the molecular consequences of the recurrent cancer-associated chromo-
some changes, and analyses in the early 1980s of the specifi c translocations in 
MPC, BL, and CML proved particularly pivotal for our understanding of how chro-
mosome aberrations contribute to neoplastic transformation. When the different 
pieces of the puzzle were assembled, it became apparent that balanced rearrange-
ments exert their effects by one of two mechanisms: Transcriptional up-regulation 
of an oncogene in one of the breakpoints through exchange of regulatory sequences 
in the other breakpoint, and the creation of a hybrid gene through fusion of parts of 
two genes, one in each breakpoint [ 29 ]. Deregulation of an oncogene by juxtaposi-
tion to a constitutively active gene region was predicted by Klein already in 1981 
[ 30 ] and the principle was soon demonstrated in MPC and human BL. The break-
points of the characteristic translocations in mice and humans were found to be 
located within or close to the  MYC  oncogene and one of the immunoglobulin heavy- 
or light-chain genes ( IGH ,  IGK  or  IGL ). As a consequence of the translocations, the 
entire coding part of  MYC  is juxtaposed to one of the immunoglobulin genes, result-
ing in deregulation of  MYC  because the gene is now driven by regulatory elements 
of the immunoglobulin genes. The alternative mechanism – the creation of a fusion 
gene – was documented at the same time in CML with the demonstration that the Ph 
chromosome, i.e., the der(22)t(9;22)(q34;q11), contains a fusion in which the 3′ 
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part of the  ABL1  oncogene from 9q34 has become juxtaposed with the 5′ part of a 
gene from 22q11 called the  BCR  gene, resulting in the creation of an in-frame 
 BCR / ABL1  fusion transcript. 

 The fi rst confi rmation of the BL scenario in another B-cell neoplasm was the 
demonstration in 1984 that the t(14;18)(q32;q21) in follicular lymphoma results in 
overexpression of  BCL2  [ 31 ] due to its juxtaposition to the  IGH  locus, and in 1986 
an analogous situation was established in T-cell acute lymphoblastic leukaemia in 
which regulatory elements of the T-cell receptor alpha ( TRA ) gene were found to 
deregulate the expression of  MYC  [ 32 – 34 ]; other 3′ partner genes, e.g.,  LYL1 ,  TAL1 , 
 LMO1 ,and  LMO2 , involved in translocations involving  TRB  and  TRD  loci were 
soon identifi ed in T-cell leukaemias/lymphomas carrying various translocations 
[ 35 – 39 ]. The CML scenario, i.e., the creation of a chimeric fusion gene, was fi rmly 
established in both haematologic malignancies and solid tumours in the early 1990s: 
 PML / RARA  in acute promyelocytic leukaemia with t(15;17)(q22;q21) [ 40 ,  41 ], 
 RET / CCDC6  in thyroid carcinomas with inv(10)(q11q21) [ 42 ],  DEK / NUP214  in 
AML with t(6;9)(p22;q34) [ 43 ],  RUNX1 / RUNX1T1  in AML with t(8;21)(q22;q22) 
[ 44 ], and  EWSR1 / FLI1  in Ewing sarcoma with t(11;22)(q24;q12) [ 45 ]. 

 The molecular insights into the pathogenetic mechanisms of cancer-specifi c 
chromosome aberrations sparked an enormous interest in cancer cytogenetics as a 
powerful tool to locate and identify genes important in tumourigenesis. Further 
technical improvements during the 1980s, in particular the development of fl uores-
cence in situ hybridization (FISH), multi-colour FISH, and the widespread adoption 
of the polymerase chain reaction (PCR), added a further sophistication to the analy-
sis, and radically increased the precision in identifying new gene fusions [ 28 ]. This 
course of action – the genomic characterization of the breakpoints in cytogeneti-
cally detected specifi c balanced aberrations – remained the unrivalled method to 
identify fusion genes in cancer for a quarter of a century and led to the detection of 
more than 700 fusion genes (Table  1.1 ) caused by acquired translocations, inver-
sions, and insertions characterizing various tumour entities [ 27 ].

     Table 1.1    Gene fusions in neoplasia reported 1980–2014, based on data contained in Mitelman 
et al. [ 27 ]   

 Year 

 Haematologic disorders, 
including malignant 
lymphomas 

 Solid tumours 

 Total a  
 Mesenchymal 
tumours 

 Epithelial 
tumours 

 1980–1989  19  0  0  19 
 1990–1994  55  8  6  69 
 1995–1999  101  20  18  140 
 2000–2004  162  43  20  220 
 2005–2009  247  41  109  394 
 2010–2014  379  245  975  1,598 
 Total a   674  299  1,080  2,038 

   a The total numbers do not add up because each gene fusion is only counted once but may be found 
in distinct tumour entities  
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   There was a major limitation of this remarkably successful approach, however. 
It was in principle restricted to haematological malignancies and mesenchymal 
tumours, which typically have simple abnormalities, often seen as a sole anomaly. 
Malignant epithelial tumours, representing the dominant cause of human cancer 
morbidity and mortality, which characteristically have complex karyotypes with 
numerous numerical and structural abnormalities, were consequently not amenable 
for analysis. As a consequence, very few fusion genes were detected in carcinomas. 
By 2005, only 29 fusion genes were known in carcinomas, all organs combined, as 
compared to 56 in mesenchymal neoplasms and 272 in haematological malignan-
cies. These quantitative differences led to the generally held view that fusion genes 
are not an important mechanism in carcinoma pathogenesis. Indirect evidence that 
fusion genes actually may play the same fundamental role in epithelial carcinogen-
esis as they do for the initiation of haematologic and mesenchymal neoplasms was 
presented by Mitelman et al. [ 46 ], and direct evidence clearly substantiating this 
view was soon produced with the help of new powerful technologies developed dur-
ing the last decade.  

1.4     Next-Generation Sequencing 

 The breakthrough in the search for fusion genes by alternative methods to chromo-
some banding analysis followed by reverse transcriptase-PCR and Sanger sequenc-
ing was made by Chinnaiyan and coworkers in 2005 [ 47 ]. They took a bioinformatics 
approach to look for genes in prostate cancer that showed a very high expression in 
RNA microarray experiments, and demonstrated that two of the outlier genes – 
 ERG  and  ETV1  – were frequently fused to the 5′ part of the prostate-specifi c 
androgen- regulated gene  TMPRSS2 . Subsequently other  ETS  family genes were 
found to be fused with  TMPRSS2 , and several other 5′ partner genes that activate 
 ETS  genes were also discovered [ 48 ]. The frequencies of the various fusions vary 
slightly in different patient series depending on the populations studied but alto-
gether about 80 % of prostate cancers harbour one of the presently known fusion 
genes, the most common being  TMPRSS2 / ERG . Very soon afterwards, an 
 EML4 / ALK  gene fusion was found in a subset of non-small cell lung cancer by 
screening a retroviral cDNA expression library from cancer samples [ 49 ]. The 
importance of these results in prostate and lung cancer cannot be overestimated. 
They showed, for the fi rst time, that cytogenetically undetectable gene fusions may 
be a causative factor in a substantial fraction of common human cancers, and the 
fi ndings underscored the need for high-resolution methods to be used in parallel 
with chromosome banding to characterize cancer genomes. The advancement of 
next-generation sequencing (NGS) at this time revolutionized the search for new 
fusion genes, enabling unprecedented opportunities to process thousands of tumours 
for systematic mutation and fusion gene discovery without any knowledge of the 
genetic constitution. The fi rst report using the new sequencing technology to fi nd 
fusion genes in cancer was presented by Stratton and co-workers in 2008 [ 50 ]. 
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Numerous studies of common cancer types, such as carcinomas of the breast, lung, 
prostate, and uterus, quickly followed (e.g., [ 51 – 57 ]), and the results have dramati-
cally changed the gene fusion landscape. A myriad of new gene fusions – more than 
1,300 – the great majority involving previously unsuspected genes, have been iden-
tifi ed with the help of NGS-based analysis [ 27 ]. Table  1.1  shows the dramatic 
increase of gene fusions detected since 2010, in particular among malignant epithe-
lial tumours, and Table  1.2  presents the distribution of all presently reported fusions 
among major neoplasia subtypes.

   As can be seen from Table  1.1 , the total number of gene fusions now exceeds 
2,000 and at least 65 % of these were identifi ed by various sequencing technologies 
during the last 5 years. Clearly, the presently known gene fusions represent only the 
tip of an iceberg. Given the extraordinary rate at which The Cancer Genome Atlas 
(TCGA) project is generating cancer genomic data [ 58 ,  59 ], a huge number of new 

   Table 1.2    Number of gene fusions and genes involved in fusions in major neoplasia subtypes, 
based on Mitelman et al. [ 27 ]   

 Diagnosis 
 Number of gene 
fusions 

 Number of genes 
involved in fusions 

  Haematologic disorders  
 Undifferentiated and biphenotypic leukaemia  24  32 
 Acute myeloid leukaemia  267  339 
 Myelodysplastic syndromes  50  59 
 Chronic myeloproliferative disorders, including 
CML 

 68  84 

 Acute lymphoblastic leukaemia  192  188 
 Plasma cell neoplasms  20  23 
 Mature B-cell neoplasms  179  195 
 Mature T- and NK-cell neoplasms  28  37 
 Hodgkin lymphoma  13  19 
  Solid tumours  
  Benign solid tumours  
 Benign epithelial tumours  14  20 
 Benign mesenchymal tumours  37  58 
  Malignant solid tumours  
 Respiratory system  373  596 
 Digestive system  62  109 
 Breast  343  578 
 Female genital organs  95  185 
 Male genital organs  142  209 
 Urinary tract  55  98 
 Endocrine system  22  28 
 Nervous system  131  227 
 Skin  12  24 
 Bone  24  30 
 Soft tissues  81  105 
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genomic rearrangements can be expected to be discovered within the next few 
years. It is important in this context to mention two notable differences between the 
fusion genes detected on the basis of cytogenetically identifi ed aberrations and 
those so far identifi ed by NGS. First, multiple NGS-detected fusion genes are gener-
ally found within the same tumour, e.g., more than 25 different fusions in one pros-
tate cancer, and secondly, very few of the NGS-detected fusion genes have been 
found to be recurrent. A major challenge will be to verify by functional studies 
which of the alleged gene fusions are primary, pathogenetically important, and 
which are either secondary progressional changes or non-consequential “noise” 
abnormalities.     
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