
Chapter 18
Mastery Classification of Diagnostic
Classification Models

Yuehmei Chien, Ning Yan, and Chingwei D. Shin

Abstract The purpose of diagnostic classification models (DCMs) is to determine
mastery or non-mastery of a set of attributes or skills. There are two statistics
directly obtained from DCMs that can be used for mastery classification—the
posterior marginal probabilities for attributes and the posterior probability for
attribute profile.

When using the posterior marginal probabilities for mastery classification, a
threshold of a probability is required to determine the mastery or non-mastery
status for each attribute. It is not uncommon that a 0.5 threshold is adopted in real
assessment for binary classification. However, 0.5 might not be the best choice
in some cases. Therefore, a simulation-based threshold approach is proposed to
evaluate several possible thresholds and even determine the optimal threshold.
In addition to non-mastery and mastery, another category called the indifference
region, for those probabilities around 0.5, seems justifiable. However, use of the
indifference region category should be used with caution because there may not be
any response vector falling in the indifference region based on the item parameters
of the test.

Another statistic used for mastery classification is the posterior probability
for attribute profile, which is more straightforward than the posterior marginal
probability. However, it also has an issue—multiple-maximum—when a test is not
well designed. The practitioners and the stakeholders of testing programs should be
aware of the existence of the two potential issues when the DCMs are used for the
mastery classification purpose.

Y. Chien (�) • C.D. Shin
Pearson, 2510 N Dodge Street, Iowa City, IA 52245, USA
e-mail: yuehmei.chien@pearson.com; david.shin@pearson.com

N. Yan
59-3-406 Southwest Residential Village, Tianjin, China
e-mail: ning.now@gmail.com

© Springer International Publishing Switzerland 2015
L.A. van der Ark et al. (eds.), Quantitative Psychology Research, Springer
Proceedings in Mathematics & Statistics 140, DOI 10.1007/978-3-319-19977-1_18

251

mailto:yuehmei.chien@pearson.com
mailto:david.shin@pearson.com
mailto:ning.now@gmail.com


252 Y. Chien et al.

18.1 Introduction

The diagnostic classification models (DCM) are latent variable models for cognitive
diagnosis, which assumes the latent classes (i.e., mastery or non-mastery of
particular skills/attributes/knowledge components) can be represented by binary
latent variables. Recently, DCM has drawn much attention of the practitioners
because of its promising use in aligning teaching, learning, and assessment. DCMs
aim to determine mastery or non-mastery of a set of attributes or skills, or to provide
timely diagnostic feedback by knowing students’ weaknesses and strengths to guide
teaching and learning. In particular, the use of DCM in formative assessments in
classroom has been increasing quickly.

The use of DCM is twofold regarding what can be obtained from the model
and provided to individual students: the strength and weakness profiles based on
estimated attribute mastery probabilities for each attribute, and the classification
of mastery or non-mastery based on estimated profile probabilities. For example,
a set of estimated attribute mastery probabilities for three skills—0.92, 0.41, and
0.22—indicates the student is strong on Skill 1, but may require some additional
learning or practice on the other two skills, especially for Skill 3.

For the mastery classification, there are two statistics obtained from DCM that
can be used to determine the mastery or non-mastery status for each attribute.
The first statistic is the posterior probability for attribute profile. Using DCM,
the posterior probabilities for all possible attribute profiles are obtainable and the
attribute profile can be the profile with the maximum posterior probability. This
estimation method is the maximum likelihood estimation (MLE) or maximum a
posteriori (MAP) if a prior applied multiplies the likelihood function. For ease of
reference, the method to obtain the mastery classification is referred to as the MLE
profile estimation.

Another way to obtain the mastery classification is based on different statistics
obtained from DCM, that is the posterior marginal probabilities for attributes. To
obtain the classification results, a threshold or a cut-off of a probability must be
predefined and then used to determine the mastery or non-mastery status. It is
not uncommon that a 0.5 threshold is adopted in real assessment. Using 0.5 as
a threshold, the previous example has classification [1, 0, 0], where 1 indicates
mastery and 0 indicates non-mastery. Similarly, for ease of reference, this method
to obtain the mastery classification is referred to as the threshold approach.

In this paper, the focus is on estimation of mastery classification. For classi-
fication using the posterior marginal probabilities for attributes, two issues were
addressed. First, for binary classification, a simulation-based approach is suggested
to evaluate the different thresholds. Second, for the indifference region, in addition
to binary classification, evidence demonstrates that examining the values of poste-
rior marginal probabilities for different response patterns or total scores is rational
and necessary because there may not have any probability falling in the indifference
region. For classification using the posterior probability for attribute profile, the
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issue of the multiple maximums on the likelihood in the MLE profile estimation is
addressed. Prior to mentioning those focused aspects, DCMs are briefly introduced.
Some discussions are also provided at the end of this paper.

18.2 Models

In the literature, there are many cognitive diagnostic models including the rule space
model (Tatsuoka 1983), the Bayesian inference network (Mislevy et al. 1999), and
the fusion model (Hartz 2002; Hartz et al. 2002), the deterministic inputs, noisy
“and” gate (DINA) model (Doignon and Falmagne 1999; Haertel 1989; Junker and
Sijtsma 2001), the Deterministic Input, Noisy “Or” Gate (DINO) model (Templin
and Henson 2006), the generalized deterministic inputs, noisy “and” gate (G-DINA)
model (de la Torre 2011), the log-linear CDM (Henson et al. 2009), and the general
diagnostic model (GDM; von Davier 2005). (See more detailed information for
various DCMs from Rupp et al. 2010.)

Among those models, DINA and DINO are popular models for educational
assessment and for psychological tests, respectively, due to their simplicity. DINA
is a noncompensatory model, which assumes the deficiency on one attribute cannot
be compensated by the mastery of other attributes. DINA models the probability
of a correct response as a function of a slipping parameter for the mastery latent
class and as guessing for the non-mastery latent class. On the contrary, the DINO
model is a compensatory model, which assumes the deficiency in one attribute can
be compensated by the mastery of other attributes.

18.3 The Threshold Approach

To obtain the mastery classification from DCM, the most used approach is the
threshold approach (e.g., Hartz 2002; Jang 2005). In practice, the classification of
mastery or non-mastery of each attribute is determined by applying cut-offs on
the posterior marginal probabilities for attributes. When a binary classification is
desired, a convention/intuitive threshold 0.5 is commonly used as the threshold to
obtain the mastery (>D 0.5) and non-mastery states (<0.5) for each attributes (e.g.,
DeCarlo 2011). A threshold of 0.5 is statistically sound and a possible optimal
threshold in many cases when the classification is binary. However, depending
on the Q-matrix structure and the item quality (i.e., the discrimination power),
0.5 might not be the best choice in some cases. Therefore, using a simulation to
examine the distribution of the posterior marginal probabilities for attributes and
then evaluating several possible thresholds is important for the binary classification.

The simulation-based approach first applies a set of cut-offs, for example, from
0.5 to 0.6 by 0.01. Then the best cut-off for each attribute that results in the largest
attribute classification accuracy for each attribute can be obtained. It is possible that
different attributes have different cut-offs.
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Table 18.1 The classification accuracy using 0.5 vs. the optimal set
of cut-offs

Cut-offD 0.5 for all
attributes

Cut-offsD 0.5, 0.51,
0.56, 0.59, 0.6, 0.6

Profile 41.4 % 43.7 %
Attributes 79.4 %, 81.3 %, 84.8 %,

86.4 %, 83.5 %, 85 %
79.4 %, 81.4 %, 85.5 %,
87.1 %, 84.8 %, 87.6 %

Table 18.1 is an example showing the difference of using the convention
threshold and using the best cut-offs obtained from the simulation, which is 0.5,
0.51, 0.56, 0.59, 0.6, and 0.6, respectively. The overall profile classification accuracy
increased from 41.4 to 43.7 % and the attribute mastery classification accuracy also
slightly increased for the attributes 2 to 6.

Note that the largest classification accuracy obtained in the simulation, given a
specific cut-off for an attribute, is not population invariant, which means the optimal
cut-off obtained might be varied for different populations that are composed of
different proportions of student in each of the profiles. Therefore, it is important
that the population of simulees can be drawn from an empirical population that
represents the real population closely.

A common alternative method to classify students, instead of using binary
classification with large uncertainty around the cut-off, is to allow an indifference
region aside from the mastery and non-mastery. An indifference region found in the
literature is defined between 0.4 and 0.6 (e.g., Hartz 2002; Jang 2005). However,
we suggest that the indifference region is defined carefully. Figure 18.1 shows a
histogram of the posterior marginal probabilities for an attribute for 2700 students
under different test lengths, where n in figure indicates the test length. The original
data set contains 8 items measuring one attribute (as shown as nD 8 in the figure).
The slip parameters are between 0.06 and 0.12 and the guessing parameters are
between 0.20 and 0.25 for those 8 items. Because the test length is 8, the possible
total scores are 0, 1, 2, 3, 4, 5, 6, 7, or 8. Three hundred students’ responses are
generated for each of the nine different total scores. To evaluate with shorter test
lengths, the posterior marginal probabilities are re-estimated with only the first n
items, where nD 3 to 7. In total, six different test lengths were evaluated and the
results were represented in Fig. 18.1.

For test lengthD 8, only 21 students fall into the indifference region as defined
between 0.4 and 0.6. Note that, in the data set of test lengthD 8, there are 300
students with a total score 4 and another 300 students with a total score 5, which are
the tests with larger measurement error if classification decisions are made. Also,
note only test lengths 5 or 8 have some students falling in the indifference region,
while other four test lengths have none. Defining an indifference region on the
posterior marginal probabilities of attributes and using it to classify students might
not obtain the desired results. To further examine the posterior marginal probability
for the total scores of 4 and 5, a scatter plot is created, as shown in Fig. 18.2; the
total scoreD 4 all have very low probability values that are obviously classified
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Fig. 18.1 A histogram of the posterior marginal probabilities for an attribute for 2700 students
under different test lengths

Fig. 18.2 A scatter plot of the posterior marginal probability for the total scores of 4 and 5
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as non-mastery, while the total scoreD 5 have probability values around 0.57 to
0.73 that may be classified as indifference region. This example shows setting up
an indifference region might not be straightforward and examining the posterior
marginal probability given different responses patterns and different total scores are
critical. Indeed, more research is necessary in this area.

18.4 Multiple Maxima (Ties in Posterior Probability)

18.4.1 The Paradox in the Fraction Subtraction Data

The well-known fraction-subtraction (FS) data set was collected by Dr. Kikumi
Tatsuoka in 1984. Curtis Tatsuoka released the data in 2002 and made it pub-
licly available at http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/
homepage/fractionsdata.txt. The FS data set contains responses to twenty fraction
subtraction test items from 536 middle school students. This test measures eight
fine-grained attributes in the domain of fraction subtraction, which includes—(1)
convert a whole number to a fraction; (2) separate a whole number from a fraction;
(3) simplify before subtracting; (4) find a common denominator; (5) borrow from
whole number part; (6) column borrow to subtract the second numerator from
the first; (7) subtract numerators; (8) and reduce answers to simplest form. The
Q-matrix, which specifies which attributes are measured by each item, is listed
in Table 18.2. With eight attributes, the maximum number of latent classes is two
hundreds and fifty six, without considering whether some combinations are unlikely
such as mastery of “borrow from whole number part” without mastery of “subtract
numerators”.

Figure 18.3 shows the likelihood of those 256 latent classes for a student with
a total score of 4. It clearly shows there are four latent classes with exactly the
same posterior probability. Figure 18.4 demonstrates a more extreme example with
a total score of zero, where there are sixty-four latent classes having exactly the
same posterior probability. The first latent class and the last latent class among those
sixty four are “00000000” and “10111101”, respectively. As mentioned previously,
DINA is a conjunctive model that requires all skills measured are mastered to
be able to answer an item correctly besides guessing. Therefore, for an incorrect
response, depending on the number of attributes measured, DINA may not be able
to statistically provide useful information about the state of mastery or non-mastery.
In the FS data, items 6, 8, and 9 are simple items, which only measure one attribute,
Attribute 7, Attribute 7, and Attribute 2, respectively. The rest of items are complex
items measuring more than one attribute. For the all-zero responses in the FS data
set, only items 6, 8, and 9 can provide information about the high chance of being
non-mastery for attributes 2 and 7; therefore, the mastery status is non-mastery for
attributes 2 and 7 while half-half chance for the rest of six attributes.

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/homepage/fractionsdata.txt
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/homepage/fractionsdata.txt
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Table 18.2 The Q-matrix of
the FS data

Item\ Attribute 1 2 3 4 5 6 7 8

1 0 0 0 1 0 1 1 0
2 0 0 0 1 0 0 1 0
3 0 0 0 1 0 0 1 0
4 0 1 1 0 1 0 1 0
5 0 1 0 1 0 0 1 1
6 0 0 0 0 0 0 1 0
7 1 1 0 0 0 0 1 0
8 0 0 0 0 0 0 1 0
9 0 1 0 0 0 0 0 0
10 0 1 0 0 1 0 1 1
11 0 1 0 0 1 0 1 0
12 0 0 0 0 0 0 1 1
13 0 1 0 1 1 0 1 0
14 0 1 0 0 0 0 1 0
15 1 0 0 0 0 0 1 0
16 0 1 0 0 0 0 1 0
17 0 1 0 0 1 0 1 0
18 0 1 0 0 1 1 1 0
19 1 1 1 0 1 0 1 0
20 0 1 1 0 1 0 1 0

Fig. 18.3 A response vector with a total score of four
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Fig. 18.4 A response vector with a total score of zero

18.4.2 Q-score (The Ideal Response)

In item response theory, the possible local maximum on likelihood of a continuum
latent ability scale is a well-known issue of using the MLE. That means the
estimated parameter is not universally best but only in some cases. In other words,
the solution found on likelihood is not a real solution. Similarly in DCM, there is
a profile estimation issue called multiple-maximum caused by using MLE. That
is, given the observed responses on a test, there may be multiple latent classes
with exactly the same highest probability. This multiple maxima issue has not been
explicitly described in the literature, but is mentioned as a parameter-identification
problem (e.g., Zhang 2014). Because of the existence of multiple maximum, the
profile estimate using DCMs is not always identifiable for some diagnostic tests
when the Q-matrix or the test is not well designed.

Depending on the structure of the Q-matrix, two different mastery profiles over a
set of latent classes could be equivalent; these two mastery profiles generate exactly
the same probability distribution of item response patterns, so that they cannot
be distinguished on the basis of item response data. To identify this equivalence
relationship from the Q-matrix, a simple method is proposed. First, a Q-score is
defined as the most likely observed score on the item for a respondent with the given
latent class; i.e., Q-score, is the true score for the items given the latent classes. Then,
by examining whether there are any two latent classes with the same Q-score, the
possible existence of a multiple-maximum can be known.
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Table 18.3 A Q-matrix of
three attributes for four items

Item\ Attribute 1 2 3

1 1 1 0
2 1 0 1
3 0 1 1
4 1 1 1

Table 18.4 A Q-score using
the condensation rule of the
DINA model

1 2 3 4

000 0 0 0 0
100 0 0 0 0
010 0 0 0 0
001 0 0 0 0
110 1 0 0 0
101 0 1 0 0
011 0 0 1 0
111 1 1 1 1

Table 18.5 A Q-score using
the condensation rule of the
DINO model

1 2 3 4

000 0 0 0 0
100 1 1 0 1
010 1 0 1 1
001 0 1 1 1
110 1 1 1 1
101 1 1 1 1
011 1 1 1 1
111 1 1 1 1

The following is a simple example with four items and three attributes (see
Table 18.3) to demonstrate the use of the Q-score for finding the possible existence
of the multiple-maxima in the mastery profile estimates. Table 18.4 lists the Q-score
under the conjunctive assumption of the DINA model. The first four latent classes,
or the mastery profiles, all generate exactly the same Q-scores. In other words, a
respondent who has an observed total score of zero is equally likely to belong to
any of the first four latent classes.

The Q-score rule can be applied to any DCM that has one Q-matrix with a clearly
defined condensation rule to specify the relationship between the correct response
of each item and the attributes measured by the item. Table 18.5 lists the Q-score of
the same four-item test, but using the condensation rule of the DINO model. The last
four latent classes, or the mastery profiles, all generate exactly the same Q-scores
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under the condensation rule of the DINO model. Therefore, a respondent who has
answered the four items correctly is equally likely to belong to any of the last four
latent classes.

18.5 Discussion and Future Research

It is statistically sound that the attribute is classified into “mastery” if p > 0.5, and
“non-mastery” otherwise, where p is the posterior marginal probability of mastery
for the attribute. However, because of the complexity of the model used and the
structure of Q-matrix, it is suggested that the different threshold values should be
used to examine the possible effect on classification. If a sample of population
can be obtained and represents the population well, a simulation approach can be
used to find a set of optimal thresholds for attributes. To emphasize the importance
of this issue, Fig. 18.5 shows the posterior marginal probabilities for those eight
attributes, where many posterior marginal probabilities are surround 0.5, and the
convention threshold .5 definitely is not a good choice. One might argue that
the FS data is not perfect; and yes, the test design regarding whether a complex
Q-matrix was employed by the FS test is flawed and therefore, it seriously suffered
from uncertainty of the classification and from the multiple-maximum. Therefore,
it is even more important to examine the distribution of the posterior marginal
probability before a cut-off (for non-mastery and mastery) or two cut-offs (for non-
mastery, indifference, and mastery) are applied for classification.

Another importance of this paper is to explicitly call the practitioners’ attention to
the multiple-maximum issue. The multiple latent classes might cause a misleading
mastery classification for either using the posterior probability for attribute profile
or using the posterior marginal probability for attributes. As shown by DeCarlo
(2011), the attribute probability for a zero score could be as high as 0.985 for a
zero score of the FS data using the DINA model. To avoid this multiple-maximum,
simple structure items (solely measuring one attribute) should be added to the test
(as suggested by DeCarlo 2011) to make a complete Q-matrix (Chiu et al. 2009)
during test construction.

However, DCMs might be used to fit existing items by tagging them with
associated attributes (e.g., von Davier 2005). Thus, adding simple structure items
into the existing test become cumbersome. Furthermore, with the emergence of
cognitive diagnostic computerized adaptive testing (CD-CAT; e.g., Cheng 2009),
the interim profile estimates must be calculated based on the items administered so
far, and the effect of the multiple-maximum on the CD-CAT is worthy of further
research.
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Fig. 18.5 The posterior marginal probabilities for those eight attributes of the FS data
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