
Chapter 17
A General SEM Framework for Integrating
Moderation and Mediation: The Constrained
Approach

Shu-Ping Chen

Abstract Modeling the combination of latent moderating and mediating effects
is a significant issue in the social and behavioral sciences. Chen and Cheng
(Structural Equation Modeling: A Multidisciplinary Journal 21: 94–101, 2014)
generalized Jöreskog and Yang’s (Advanced structural equation modeling: Issues
and techniques (pp. 57–88). Mahwah, NJ: Lawrence Erlbaum, 1996) constrained
approach to allow for the concurrent modeling of moderation and mediation within
the context of SEM. Unfortunately, due to restrictions related to Chen and Cheng’s
partitioning scheme, their framework cannot completely conceptualize and interpret
moderation of indirect effects in a mediated model. In the current study, the Chen
and Cheng (abbreviated below as C & C) framework is extended to accommodate
situations in which any two pathways that constitute a particular indirect effect in
a mediated model can be differentially or collectively moderated by the moderator
variable(s). By preserving the inherent advantage of the C & C framework, i.e.,
the matrix partitioning technique, while at the same time further generalizing
its applicability, it is expected that the current framework enhances the potential
usefulness of the constrained approach as well as the entire class of the product
indicator approaches.
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In recent years, the social and behavioral sciences have witnessed a trend toward
an increasing number of empirical studies related to mediated moderation (a
moderating effect is transmitted through a mediator variable, Baron and Kenny
1986) or moderated mediation (mediation relations are contingent on the level of
a moderator, James and Brett 1984). As one example of a study incorporating
mediated moderation, Pollack et al. (2012) examined the psychological experience
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of entrepreneurs in response to economic stress, finding that the indirect effect of
economic stress on entrepreneurial withdrawal intentions through depressed affect
is moderated by the level of business-related social ties. Exemplifying the use of
moderated mediation, Cole et al. (2008) investigated affective mechanisms linking
dysfunctional behavior to performance in work teams. The researchers specified
negative team affective tone as a mediator between dysfunctional team behavior
and team performance, whereas nonverbal negative expressivity was found to be
contingent on the relation of team affective tone on team performance. In general,
examples of empirical studies integrating mediation and moderation are quite
abundant in the literature of various disciplines, including business and management
(e.g., Cole et al. 2008; Pollack et al. 2012), psychology (e.g., Luszczynska et al.
2010), and marketing communications (e.g., Slater et al. 2007), among others. From
the above-cited empirical examples, one can surmise that the substantive variables
of interest utilized to establish causal connections in the corresponding theoretical
models are generally treated as latent variables, each of which is a theoretical
definition of a concept and measured by observed indicators.

Complementing the above empirical research examples are studies which pro-
pose various analytical procedures aimed at integrating moderation and mediation
in the context of moderated regression or path analysis (e.g., Edwards and Lambert
2007; Fairchild and MacKinnon 2009; Preacher et al. 2007). In particular, Hayes
(2013) systemically introduced the concepts of mediation analysis and moderation
analysis, as well as their combination (i.e., conditional process analysis) and further
demonstrated a computational tool (PROCESS macro) for estimation and inference.
However, under regression or path analytical frameworks, all variables are assumed
to be treated as manifest (non-latent) variables and measured without error. In
the presence of measurement error (i.e., unreliability of measures), the regression
coefficient of an interactive or moderating effect may produce a biased estimate and
reduce the power of statistical tests of significance. One possible reason for this
is that the reliability of the nonlinear term is heavily dependent on the reliability
of its individual measures (Busemeyer and Jones 1983; Jaccard and Wan 1995). If
the problem of measurement error is not corrected, these frameworks may be of
limited use in social and behavioral science research such as psychology. Given that
structural equation modeling (SEM) is equipped to deal with multivariate models
and multiple measures of latent variables while controlling for measurement errors
in observed variables (Bollen and Noble 2011), it should be appropriate to introduce
SEM as a preferred alternative to regression or path analysis.

Out of multiple recent lines of SEM-based research, a variety of approaches
have been developed for the estimation of latent nonlinear effects. Most approaches
can be divided into several major categories: product indicator approaches (e.g.,
Algina and Moulder 2001; Coenders et al. 2008; Jöreskog and Yang 1996; Kelava
and Brandt 2009; Kenny and Judd 1984; Marsh et al. 2004, 2006; Wall and
Amemiya 2001), maximum likelihood (ML) estimation methods (e.g., Klein and
Moosbrugger 2000; Klein and Muthén 2007; Lee and Zhu 2002), and Bayesian
estimation methods (e.g., Arminger and Muthén 1998; Lee et al. 2007), among
others. A cursory inspection seems to indicate that most of these approaches
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have been developed primarily to estimate interaction and/or quadratic effects of
exogenous latent variables, leaving nonlinear effects of endogenous latent variables
unaccounted for. Unfortunately, this means that there is a growing divide between
the capability of available nonlinear SEM approaches, on the one hand, and the
interests of social science empirical researchers on the other. In particular, current
scholars, while continuing to do interaction research involving exogenous latent
variables, have increasingly attempted to model endogenous latent variables as
moderators in their theoretical models.

While each of the previously mentioned nonlinear SEM approaches could
conceivably be developed to incorporate latent nonlinear relations involving endoge-
nous latent variables, the underlying mathematical theories derived by each of
these approaches may become overly complex which could lead to some potential
problems. For example, within the classes of ML and Bayesian estimation methods,
Wall (2009) mentioned that when latent nonlinear models increase in complexity
(e.g., larger number of latent variables), the computational algorithms are likely to
fail to reach convergence, and even if they do, may become less numerically precise.
As another example, within the class of product indicator approaches, the elaborate
and tedious nature of the model specification procedure may limit its potential
usefulness. Even so, considering the ever-increasing number of complicated latent
nonlinear relations (e.g., a combination of mediation and moderation) appearing in
empirical applications, it is still imperative that research efforts be made to develop
and generalize current nonlinear SEM approaches.

Pursuing this research aim, Chen and Cheng (2014) generalized Jöreskog and
Yang’s (1996) constrained approach, one of the product indicator methods, to
process interaction and/or quadratic effects involving endogenous latent variables.
The Chen and Cheng (abbreviated below as C & C) framework thus allows for
the concurrent modeling of moderation and mediation within the context of SEM.
Unfortunately, however, due to restrictions related to their partitioning scheme, the
C & C framework cannot completely conceptualize and interpret moderation of
indirect effects in a mediated model. For example, the two moderated mediation
models (i.e., the first and second stage moderation model and the total effect
moderation model) from Edwards and Lambert (2007) cannot be embedded into
the C & C framework.

In the current study, further progress is made on the C & C framework to
accommodate situations in which any two pathways that constitute a particular
indirect effect in a mediated model (e.g., simple mediator models, parallel multiple
mediator models, serial multiple mediator models) can be differentially or collec-
tively moderated by the moderator variable(s). To simplify the model specification
procedure without sacrificing generality, the latent variable versions of all the
models from Edwards and Lambert (2007) are utilized to demonstrate the proposed
partitioning scheme. The present research leverages key attributes of the two above-
mentioned studies to create a highly general latent nonlinear framework. First of
all, the models considered by Edwards and Lambert are relatively exhaustive and
include many forms that integrate moderation and mediation that may be of interest
to empirical researchers. Secondly, the proposed approach retains one of the major
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advantages of the C & C framework: in contrast to specifying constraints in equation
form as in Jöreskog and Yang’s (1996) constrained approach, we specify constraints
in matrix form to simplify the constraint specification procedure and the process of
model specification on the part of the researcher.

17.1 Model Partitioning Scheme

In this section, the partitioning scheme of the current nonlinear framework is
demonstrated through latent variable versions of the great majority of the models
in Edwards and Lambert (2007), with conceptual and statistical diagrams shown
in Fig. 17.1. The present partitioning scheme allows latent variables that are
themselves nonlinear functions of other latent variables to also influence other
endogenous variables in the model in a nonlinear fashion (e.g., in Models D and
H from Edwards and Lambert, the term M is influenced by the interaction term XZ,
and in turn, interacts with Z to affect Y).

More specifically, with regard to the structural part of the current partitioning
scheme (the conceptual diagram shown in Fig. 17.2), latent variables are partitioned
into three subvectors (denoted as ˜F, ˜S and ˜T, where the subscripts, respectively,
stand for “First layer,” “Second layer,” and “Third layer”) to support the integration
of the two vectors of latent nonlinear variables (denoted as ˜F� and ˜S� ). Here,
˜F� and ˜S� are, respectively, defined as W1vech(˜F˜T

F) and W2vec(˜S˜T
F), where

W1 and W2 serve as filter matrices (Chen and Cheng 2014) to select a set of latent
nonlinear terms that the researcher is interested in. Also note that the vech operator
vectorizes a square matrix by stacking the columns from its lower triangle part
while the vec operator vectorizes a matrix by stacking its columns (Seber 2007).
Examining the interrelations among these partitions, the effects among ˜F, ˜S and
˜T are presumed to be unidirectional in the sense that ˜F can influence ˜S and/or
˜T, but ˜S and ˜T cannot affect ˜F; likewise, ˜S can influence ˜T, but ˜T cannot
affect ˜S. Meanwhile, with regard to the two vectors of latent nonlinear variables, it
is assumed that ˜F� can influence ˜S and/or ˜T while ˜S� can only influence ˜T. On
the whole, as revealed in Fig. 17.2, the current partitioning scheme has the capability
to incorporate moderation Models B to H from Edwards and Lambert (2007).

With regard to the measurement part of the present partitioning scheme, observed
indicators are partitioned into three subvectors utilized as observed indicators of
˜F, ˜S and ˜T (denoted as yF, yS and yT, respectively) which in turn support
the integration of product indicators of ˜F� and ˜S� (denoted as yF� and yS� ,
respectively). Here, yF� and yS� are, respectively, defined as W3vech(yFyT

F) and
W4vec(ySyT

F), where W3 and W4 serve as filter matrices (Chen and Cheng 2014)
to provide the researcher a convenient way of selecting the product indicators
associated with ˜F� and ˜S� . In the current partitioning scheme, the effect relating
yi to ˜j (for i D F; S; T and j D F; S; T; F�; S�) is assumed to be null for i ¤ j.
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Fig. 17.1 Conceptual and statistical diagrams from Edwards and Lambert

Putting it all together, the current nonlinear framework can be established by inte-
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this framework and the specification of constraints in matrix form will be illustrated
in the next section.
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Fig. 17.2 Conceptual diagram and superimposition of the current framework on Models B and H
from Edwards and Lambert
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17.2 Model Specification

The current partitioned nonlinear framework adopts the notation of Muthén
(1984) Case A. The structural and measurement parts, respectively, composed
of .f C s C t C f � C s�/ � 1 and .p C q C r C p� C q�/ � 1 partitioned vectors
of latent variables ˜ D �
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, are shown in Eqs. (17.1) and (17.2).
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(17.1)

Here, ’i and —i are vectors of intercepts and disturbance terms associated with
˜i (for i D F; S; T). Bij represents the coefficient matrix relating ˜i to ˜j (for
i D F; S; T and j D F; S; T; F�; S�). More specifically, Bij (for i D j)
is specified as a non-null matrix with all diagonal elements restricted to zero;
Bij (for i ¤ j) is specified as a null or non-null matrix in accordance with
the inter-partition relations established for the current partitioning scheme (see
Fig. 17.2). The expanded forms of the nonlinear vectors ˜F� and ˜S� shown in
Eq. (17.1) were obtained by plugging the equations ˜F D ’F C BFF˜F C —F and
˜S D ’S C BSF˜F C BSS˜S C BSF�˜F� C —S from Eq. (17.1) into the equations
˜F� D W1vech

�
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F
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�
established in the previous

section. Note that the details of these expansions can be found in Appendix A.
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(17.2)

Here, �i and ©i are vectors of intercepts and measurement errors associated with yi

(for i D F; S; T). Meanwhile, ƒij, the factor loading matrix relating yi to ˜j (for
i D F; S; T and j D F; S; T; F�; S�), is presumed to be non-null for i D j and
null for i ¤ j. The expanded forms of the nonlinear vectors yF� and yS� shown in
Eq. (17.2) were obtained by plugging the equations yF D �F C ƒFF˜F C ©F and
yS D �SCƒSS˜SC©S from Eq. (17.2) into the equations yF� D W3vech

�
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�
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established in the previous section. Also note that the details

of these expansions can be found in Appendix A.
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In the current partitioning nonlinear framework, the vectors of disturbance
terms and measurement errors from Eqs. (17.1) and (17.2) are assumed to have a
multivariate normal distribution as follows:
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Having developed the generalized nonlinear framework as shown in Eqs. (17.1)
and (17.2), it is now possible to proceed to examining the specification of constraints
in the context of these two equations. The six partitioned matrices (’, B, ‰ , �, ƒ

and ‚) along with their respective constraints are described in Eqs. (17.4) through
(17.7) and Appendix B. Constraints embedded into ’, �, ‰ and ‚ are derived based
on the assumption of Expression (17.3) as well as extensions of several properties
of the multivariate normal distribution (Magnus and Neudecker 1979; Tracy and
Sultan 1993; Ghazal and Neudecker 2000). The details of the derivations of these
partitioned matrices are available from the author upon request.

The partitioned vector ’ is a 5�1 array of the form
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’F� and ’S� , the vectors of intercepts of ˜F� and ˜S� , encompass the non-null
expected values of —F� and —S� to meet the assumption inherent to SEM that the
expected values of disturbance terms are set to null. The resultant form of ’ is
expressed as
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(here “�D” is the symbol for “defined as”).

The general form of the partitioned vector � is
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, where

�F� and �S� are the vectors of intercepts of yF� and yS� . �F� and �S� subsume the
non-null expected values of ©F� and ©S� to avoid a violation of the assumption
inherent to SEM that expected values of measurement errors are set to null. The
resultant form of � is expressed as



17 A General SEM Framework for Integrating Moderation: : : 241
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The partitioned coefficient matrices B and ƒ are taken directly from Eqs. (17.1)
and (17.2) to be expressed by Eqs. (17.6) and (17.7), respectively.
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Due to space considerations, details of the partitioning and constraint specifica-
tion of the disturbance covariance matrix ‰ and the measurement error covariance
matrix ‚ are presented in Appendix B.

On the whole, constraints embedded into the six resultant matrices are repre-
sented as either the null matrix or a constraint matrix which is a function of one
or more of the submatrices associated with ˜F and ˜S (i.e., ’F, ’S, BFF, BSF, BSS,
‰FF, ‰SS, ‰TF and ‰TS) and/or submatrices associated with yF and yS (i.e., �F, �S,
ƒFF, ƒSS, ‚FF, ‚SF, ‚SS, ‚TF and ‚TS).

In light of the above discussion, it can be seen that the process of constraint
specification is neatly incorporated into the nonlinear framework of the present
study. It should be noted that the forms of the derived constraint matrices are kept
the same regardless of the number and type of latent nonlinear effects and product
indicators selected. In the following section, an artificial model is illustrated to
demonstrate the usage and validity of the current approach. This model will be
implemented in OpenMx, taking advantage of the capability of this SEM package
to readily support model construction in matrix form.
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17.3 Artificial Interaction Model

The total effect moderation model (Model H) from Edwards and Lambert (2007)
was used to validate the extended partitioned scheme detailed earlier. It was assumed
that each latent variable was associated with two observed indicators. For a complete
graphical depiction of the illustrated model, refer to the path diagram in Fig. 17.3.

In this model, the disturbance terms (�1, : : : , �4) and measurement errors ("1,
: : : , "8) were assumed to have a multivariate normal distribution with mean zero
and have a covariance matrix composed of the elements in diag( 11, : : : ,  44,
�11, : : : , �88) and the covariance term  21. Simulated data were generated by
PRELIS 2 with sample size set at 500 observations, while the population parameter
values were shown in Table 17.1. The sample mean and covariance matrix for
each replication were calculated from noncentered observed variables. Estimates
and standard errors of parameters from maximum likelihood (ML) estimation were
taken for the first 500 replications in which the estimation procedure converged.

∗F
y ∗F

η

Fy Sη Tη TyFη

∗S
η

Sy

∗S
y

Fig. 17.3 Artificial interactive model
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Table 17.1 Total effect moderation model

Parameter
(true value) Bias SE SD

Parameter
(true value) Bias SE SD

˛1(0.00) – – – ˇ31(0.40) 0.001 0.048 0.070
˛2(0.00) – – – ˇ32(0.40) �0.002 0.049 0.064
˛3(0.00) – – – ˇ41(0.40) 0.002 0.086 0.098
˛4(0.00) – – – ˇ42(0.40) �0.007 0.084 0.094

ˇ43(0.40) 0.015 0.128 0.143
¤1(1.00) 0.000 0.037 0.064 ˇ35(0.20) �0.004 0.041 0.056
¤2(1.00) 0.000 0.030 0.054 ˇ45(0.20) 0.002 0.096 0.109
¤3(1.00) 0.002 0.031 0.063 ˇ46(0.20) 0.003 0.084 0.093
¤4(1.00) 0.001 0.025 0.053
¤5(1.00) 0.001 0.040 0.062  11(1.00) 0.002 0.097 0.142
¤6(1.00) 0.001 0.032 0.055  21(0.30) 0.000 0.039 0.069
¤7(1.00) 0.004 0.059 0.073  22(1.00) �0.002 0.091 0.132
¤8(1.00) 0.000 0.047 0.056  33(0.36) �0.007 0.060 0.077

 44(0.36) �0.015 0.073 0.076
�11(1.00) – – –
�21(0.70) 0.006 0.053 0.072 �11(0.51) �0.003 0.074 0.093
�32(1.00) – – – �22(0.51) 0.000 0.044 0.059
�42(0.70) 0.003 0.051 0.069 �33(0.51) �0.010 0.076 0.091
�53(1.00) – – – �44(0.51) �0.004 0.043 0.052
�63(0.70) 0.010 0.047 0.070 �55(0.51) �0.001 0.059 0.075
�74(1.00) – – – �66(0.51) �0.006 0.037 0.046
�84(0.70) 0.002 0.040 0.042 �77(0.51) �0.003 0.070 0.071

�88(0.51) 0.001 0.044 0.041

Notes. SD D empirical standard error; SE D average estimated standard error.
Rate of fully proper solutions D 95.8 %. To fix scales, ˛1 to ˛4 are set to zero,
and �11, �32, �53 and �74 are set to one

Due to space considerations, the OpenMx syntax used in implementing the total
effect moderation model example is not provided here, but will be provided by the
author upon request.

In order to confirm the validity of the current approach, the bias (calculated as
the difference between the mean of the 500 parameter estimates and the population
parameter value), the empirical standard deviation (SD), and average estimated
standard error (SE) for each parameter from the simulation study are presented in
Table 17.1.

The simulation results indicated that the mean estimates of all parameters were
close to the population parameter values and the absolute biases were less than 0.02,
confirming the validity of the current approach. The average estimated standard
errors (SE) tended to be smaller than empirical standard deviations (SD), meaning
that the estimated standard errors underestimated empirical standard deviation and
thus wrongly inflated the level of significance of testing parameters (increasing
the Type I error rate). It is important to mention that various simulation studies



244 S.-P. Chen

(cf., Yang-Wallentin and Jöreskog 2001; Moosbrugger et al. 2009; Chen and
Cheng 2014) similarly showed that average estimated standard errors of parameters
were underestimated when estimating the interaction and/or quadratic effect(s) of
latent variables under the constrained approach. Thus, more research is needed to
determine whether or not this phenomenon is an inherent feature of the constrained
approach.

17.4 Conclusion

The current study established a more general latent nonlinear framework for
integrating moderation and mediation. The proposed matrix specification scheme
encapsulates many possible forms of moderation models that can accommodate
situations in which any two pathways that constitute a particular indirect effect in a
mediated model can be differentially or collectively moderated by the moderator
variable(s), thereby further broadening the potential usefulness of the class of
product indicator approaches, most notably the constrained approach.

Although the proposed framework provides a major step forward in the develop-
ment of the constrained approach, there are a few caveats to take into consideration.
First and foremost, the constraint specification procedure of the proposed framework
is based on the assumption that —F, —S, —T, ©F, ©S and ©T are multivariate normally
distributed. If this assumption is violated, applying the proposed approach might
result in unknown bias in the parameter estimates. Secondly, the current framework,
focusing on the specification of latent interaction and/or quadratic effects, has no
capability to deal with higher-order latent nonlinear effects. Finally, it is important
to keep in mind that the current framework estimates latent nonlinear effects through
a more generalized version of Jöreskog and Yang’s (1996) constrained approach,
which is but one of a multitude of approaches (e.g., the unconstrained approach,
Marsh et al. 2004, 2006; the latent moderated structural equations approach, Klein
and Moosbrugger 2000) that can potentially be used. Further research should be
conducted with the aim of possibly developing other approaches that can likewise
be used to estimate complex latent nonlinear effects.

Appendix A: Expansions of ˜F� , ˜S� , yF�; and yS�

Before ˜F� , ˜S� , yF� ; and yS� are discussed in the subsequent paragraph, it is
necessary to gain familiarity with the notation of four basic types of matrices. The
n � n identity matrix will be denoted as In and the mn � mn commutation matrix will
be indicated as Kmn for m ¤ n and Kn for m D n (see definition 3.1 of Magnus and
Neudecker 1979). The n .n C 1/ =2 � n2 elimination matrix and n2 � n .n C 1/ =2

duplication matrix will be denoted as Ln and Dn, respectively (see definitions 3.1a
and 3.2a of Magnus and Neudecker 1980).
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The expansions of ˜F� , ˜S� , yF� ; and yS� can be obtained with the aid of several
theorems and properties of the Kronecker product, vech and vec operators shown in
Magnus and Neudecker (1980, 1988). The resulting forms of these expansions are
expressed as below.

˜F� D W1Lf F1vec
�
’F’T

F

� C —F� ;

˜S� D W2S1vec
�
’S’T

F

� C W2S1S2˜F C W2S1S3˜�
F C —S� ;

yF� D W3Lpvec
�
�F�T

F

� C W3LpE1˜F C W3LpE2Df WT
1 ˜F� C ©F� ;

yS� D W4vec
�
�S�T

F

� C W4A1˜F C W4A2˜S C W4A3WT
2 ˜S� C ©S� ;

where —F� �D W1Lf F1 .F2—F C —F ˝ —F/,

—S� �D W2S1 ŒS4—F C S5—S C S6 .—F ˝ —F/C S7 .—F ˝ —F ˝ —F/C —F ˝ —S� ;

©F� �D W3Lp ŒE3©F C E4 .©F ˝ —F/C E5 .—F ˝ ©F/C ©F ˝ ©F� ;

©S� �D W4
�
A4©F C A5©S C A6 .©F ˝ —F/C A7 .—F ˝ ©S/C A8 .©F ˝ —S/

C A9 .©F ˝ —F ˝ —F/C ©F ˝ ©S
�

(here “�D” is the symbol for “defined as”) in which F1 D Œ.If � BFF/˝ .If � BFF/�
-1,

F2 D If ˝ ’F C ’F ˝ If , S1 D Œ.If � BFF/ ˝ .Is � BSS/�
-1, S2 D ’F ˝ BSF,

S3 D ’F ˝ BSF� , S4 D If ˝ Œ’S C BSF.If � BFF/
-1’F C BSF� W1Lf F1.’F ˝ ’F/�,

S5 D ’F ˝ Is, S6 D If ˝ ŒBSF.If � BFF/
-1 C BSF� W1Lf F1F2�, S7 D If ˝

.BSF� W1Lf F1/, E1 D ƒFF ˝ �F C �F ˝ ƒFF, E2 D ƒFF ˝ ƒFF, E3 D
Ip ˝ Œ�F C ƒFF.If � BFF/

-1’F� C Œ�F C ƒFF.If � BFF/
-1’F� ˝ Ip, E4 D Ip ˝

.ƒFF.If � BFF/
-1/, E5 D .ƒFF.If � BFF/

-1/˝Ip, A1 D ƒFF ˝�S, A2 D �F ˝ƒSS,
A3 D ƒFF ˝ ƒSS, A4 D Ip ˝ Œ�S C ƒSS.Is � BSS/

-1.’S C BSF.If � BFF/
-1’F C

BSF� W1Lf F1.’F ˝ ’F//�, A5 D Œ�F C ƒFF.If � BFF/
-1’F� ˝ Iq, A6 D Ip ˝

ŒƒSS.Is � BSS/
-1.BSF.If � BFF/

-1 C BSF� W1Lf F1F2/�, A7 D .ƒFF
�
If � BFF

�-1
/˝

Iq, A8 D Ip ˝ .ƒSS.Is � BSS/
-1/ and A9 D Ip ˝ .ƒSS.Is � BSS/

-1BSF� W1Lf F1/.
Here, —F� and —S� are vectors of disturbance terms of ˜F� and ˜S� ; while ©F�

and ©S� are vectors of measurement errors of yF� and yS� . Meanwhile, F1, F2, S1 to
S7, E1 to E5, and A1 to A9 are all constant matrices.
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Appendix B: Partitioned Matrices ‰ and ‚

The disturbance covariance matrix ‰ is partitioned into a 5�5 array of submatrices
as expressed below:

‰ D

2

66
666
4

‰FF

‰SF ‰SS

‰TF ‰TS ‰TT

‰F�F ‰F�S ‰F�T ‰F�F�

‰S�F ‰S�S ‰S�T ‰S�F� ‰S�S�

3

77
777
5
;

where ‰F�F �D W1Lf F1F2‰FF, ‰F�S�D W1Lf F1F2.‰SF/
T, ‰F�T �D W1Lf F1F2.‰TF/

T,

‰F�F� �D W1Lf F1
�
F2‰FFFT

2 C �
If 2 C Kff

�
.‰FF ˝ ‰FF/

�
FT

1 LT
f WT

1 ,

‰S�F �D W2S1
�
S4‰FF C S5‰SF

C S7�f 3�f

�
Kff 3

�
vec

��
If 2 C Kff

�
.‰FF ˝ ‰FF/

�

C vec .‰FF/˝ vec .‰FF//
��
;

‰S�S �D W2S1
�
S4.‰SF/

T C S5‰SS

C S7�f 3�s

�
Ksf 3

�
vec

�
.‰FF ˝ ‰SF/C Kfs .‰SF ˝ ‰FF/

�

Cvec .‰FF/˝ vec .‰SF//
��
;

‰S�T �D W2S1
�
S4.‰TF/

T C S5.‰TS/
T

C S7�f 3�t

�
Ktf 3

�
vec

�
.‰FF ˝ ‰TF/C Kft .‰TF ˝ ‰FF/

�

Cvec .‰FF/˝ vec .‰TF//
��
;

‰S�F� �D W2S1
�
S4‰FFFT

2 C S5‰SFFT
2

C S7�f 3�f

h
Kff 3

�
vec

��
If 2 C Kff

�
.‰FF ˝ ‰FF/

�
C vec .‰FF/˝ vec .‰FF/

�i
FT

2

C S6

�
If 2 C Kff

�
.‰FF ˝ ‰FF/C ‰FF ˝ ‰SF C Kfs .‰SF ˝ ‰FF/

�
FT

1 LT
f WT

1 ;
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‰S�S� �
D

W2S1
�
S4‰FFST

4 C S5‰SSST
5 C S6

�
If 2 C Kff

�
.‰FF ˝ ‰FF/ ST

6

C S7
� �

If 3 C Kff 2 C Kf 2 f C If ˝ Kff C Kff ˝ If C �
If ˝ Kff

�
Kff 2

�

� .‰FF ˝ ‰FF ˝ ‰FF/C �
If 3 C Kff 2 C Kf 2 f

� ��
vec .‰FF/ vec.‰FF/

T
�

˝ ‰FF

�

� �
If 3 C Kff 2 C Kf 2 f

� �
ST

7 C .‰FF ˝ ‰SS/C Kfs

�
‰SF ˝ .‰SF/

T
�

C S5‰SFST
4 C S4.‰SF/

TST
5

C S7�f 3�f

�
Kff 3

�
vec

��
If 2 C Kff

�
.‰FF ˝ ‰FF/

� C vec .‰FF/˝ vec .‰FF/
��

ST
4

C S4�f �f 3
�
Kf 3 f

�
vec

��
If 2 C Kff

�
.‰FF ˝ ‰FF/

� C vec .‰FF/˝ vec .‰FF/
��

ST
7

C S7�f 3�s

�
Ksf 3

�
vec

�
.‰FF ˝ ‰SF/C Kfs .‰SF ˝ ‰FF/

� C vec .‰FF/˝ vec .‰SF/
��

ST
5

C S5�s�f 3

h
Kf 3s

�
vec

h�
.‰SF/

T ˝ ‰FF

�
C Kff

�
.‰SF/

T ˝ ‰FF

�i

C vec
�
.‰SF/

T
�

˝ vec .‰FF/
��

ST
7

C �
.‰FF ˝ ‰SF/C Kfs .‰SF ˝ ‰FF/

�
ST

6

C S6

h�
‰FF ˝ .‰SF/

T
�

C Kff

�
‰FF ˝ .‰SF/

T
�i �

ST
1 WT

2

(here the symbol “�n�m” is used to transform a nm � 1 vector into an n � m matrix).
The measurement error covariance matrix ‚ is partitioned into a 5 � 5 array of

submatrices as expressed below:

‚ D

2

66666
4

‚FF

‚SF ‚SS

‚TF ‚TS ‚TT

‚F�F ‚F�S ‚F�T ‚F�F�

‚S�F ‚S�S ‚S�T ‚S�F� ‚S�S�

3

77777
5
;

where ‚F�F �D W3LpE3‚FF, ‚F�S �D W3LpE3.‚SF/
T, ‚F�T �D W3LpE3.‚TF/

T,

‚F�F� �D W3Lp
�
E3‚FFET

3 C E4 .‚FF ˝ ‰FF/ET
4 C E5 .‰FF ˝ ‚FF/ET

5

C �
Ip2 C Kpp

�
.‚FF ˝ ‚FF/C E5Kfp .‚FF ˝ ‰FF/ET

4

C E4Kpf .‰FF ˝ ‚FF/ET
5

�
LT

p WT
3 ;

‚S�F �D W4

h
A4‚FF C A5‚SF C A9�.pf 2/�p

h
Kp.pf 2/vec

�
Kfp .‚FF ˝ ‰FF/

�ii
;
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‚S�S �D W4

h
A4.‚SF/

T C A5‚SS C A9�.pf 2/�q

h
Kq.pf 2/vec

�
Kfq .‚SF ˝ ‰FF/

�ii
;

‚S�T �D W4

h
A4.‚TF/

T C A5.‚TS/
T C A9�.pf 2/�r

h
Kr.pf 2/vec

�
Kfr .‚TF ˝ ‰FF/

�ii
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‚S�F� �D W4
�
A4‚FFET

3 C A5‚SFET
3

C A9�.pf 2/�p

h
Kp.pf 2/vec

�
Kfp .‚FF ˝ ‰FF/

�i
ET

3

C A6 .‚FF ˝ ‰FF/ET
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4
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5 C A8Kps .‰SF ˝ ‚FF/ET
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C .‚FF ˝ ‚SF/C Kpq .‚SF ˝ ‚FF/
�
LT

p WT
3 ;

‚S�S� D W4
�
A4‚FFAT

4 C A5‚SSAT
5 C A6 .‚FF ˝ ‰FF/AT

6

C A7 .‰FF ˝ ‚SS/AT
7 C A8 .‚FF ˝ ‰SS/AT

8

C A9
� �

Ipf 2 C Ip ˝ Kff
�
.‚FF ˝ ‰FF ˝ ‰FF/

C Kp.f 2/

��
vec .‰FF/ vec.‰FF/

T
�

˝ ‚FF

�
K.f 2/p

�
AT

9

C .‚FF ˝ ‚SS/C Kpq

�
‚SF ˝ .‚SF/

T
�
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�
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�i
AT

4
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Kq.pf 2/vec

�
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6 C A8 .‚FF ˝ ‰SF/AT

6

C A6Kpf

�
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T
�

AT
7 C A8Kps

�
‰SF ˝ .‚SF/

T
�

AT
7

C A6

�
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T
�

AT
8 C A7Kfq

�
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T
�

AT
8

C A4�p�.pf 2/

h
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i
AT

9

C A5�q�.pf 2/
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T
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