Chapter 15

On Closeness Between Factor Analysis
and Principal Component Analysis Under
High-Dimensional Conditions

L. Liang, K. Hayashi, and Ke-Hai Yuan

Abstract This article studies the relationship between loadings from factor analysis
(FA) and principal component analysis (PCA) when the number of variables p is
large. Using the average squared canonical correlation between two matrices as a
measure of closeness, results indicate that the average squared canonical correlation
between the sample loading matrix from FA and that from PCA approaches 1
as p increases, while the ratio of p/N does not need to approach zero. Thus, the
two methods still yield similar results with high-dimensional data. The Fisher-z
transformed average canonical correlation between the two loading matrices and
the logarithm of p is almost perfectly linearly related.

Keywords Canonical correlation ¢ Factor indeterminacy * Fisher-z transforma-
tion ¢ Guttman condition ¢ Large p small N * Ridge factor analysis

15.1 Introduction

Factor analysis (FA) and principal component analysis (PCA) are frequently used
multivariate statistical methods for data reduction. In FA (Anderson 2003; Lawley
and Maxwell 1971), the p-dimensional mean-centered vector of the observed
variables y is linearly related to an m-dimensional vector of latent factors f as
y = Af + e, where A is the p x m matrix of factor loadings (with p>m), and
€ is a p-dimensional vector of errors. Typically for the orthogonal factor model,

L. Liang « K. Hayashi (P<)

Department of Psychology, University of Hawaii at Manoa, 2530 Dole Street,
Sakamaki C400, Honolulu, HI 96822, USA

e-mail: lianglu@hawaii.edu; hayashik @hawaii.edu

K.-H. Yuan

Department of Psychology, University of Notre Dame, 123A Haggar Hall,

Notre Dame, IN 46556, USA
e-mail: kyuan@nd.edu

© Springer International Publishing Switzerland 2015 209
L.A. van der Ark et al. (eds.), Quantitative Psychology Research, Springer
Proceedings in Mathematics & Statistics 140, DOI 10.1007/978-3-319-19977-1_15


mailto:lianglu@hawaii.edu
mailto:hayashik@hawaii.edu
mailto:kyuan@nd.edu

210 L. Liang et al.

the three assumptions are imposed: (1) f ~ N,, (0,1,,); (2) € ~ N, (0, ¥), where ¥
is a diagonal matrix; (3) Cov (f, &) = 0. Then, under these three assumptions, the
covariance matrix of y is givenby £ = AA’ + .

Let AT be the p x m matrix whose columns are the standardized eigenvectors
corresponding to the first m largest eigenvalues of X; £ be the m x m diagonal
matrix whose diagonal elements are the first m largest eigenvalues of X ; and '
be the m x m diagonal matrix whose diagonal elements are the square root of those
in £. Then principal components (PCs) (c.f., Anderson 2003) with m elements are
obtained as f* = A™'y. Clearly, the PCs are uncorrelated with a covariance matrix
AT X AT. When m is properly chosen, there exists X ~ ATQAT = A*A*,
where A* = AT Q"2 is the p x m matrix of PCA loadings.

It has been well known that FA and PCA often yield approximately the same
results, especially their loading matrices A and A *, respectively. See, e.g., Velicer
and Jackson (1990) and the literature cited therein. Conditions under which the two
matrices are close to each other are of substantial interest. At the population level,
one such condition identified by Guttman (1956) requires that p — oo while m/p —
0. For the one-factor model with A = A and A* = A*, under the conditions that
A’A — oo and there exists an upper bound for unique variances as p — oo, Bentler
and Kano (1990) proved that A* converges to A. Let ¥« be the largest element of
the diagonal matrix ¥ of unique variances, dn;, be the smallest eigenvalue of A'A,
and

P (A, A*) = (%) or{(A'A) 7 (A'A%) (A¥A%) T (A7)}
be the average squared canonical correlation between A and A”. Schneeweiss and
Mathes (1995) showed that p? (A, A*) = 1if Ymax/dmin — 0. Schneeweiss (1997)
further gave a weaker condition: §/dn;, — 0 where § = VY — Vmin 1S the
difference between the largest and the smallest diagonal element of W. Here, note
that Guttman’s condition is expressed by only p and m, and the role of FA loadings is
not mentioned. On the other hand, Schneeweiss-Mathes and Schneeweiss conditions
are expressed in terms of the eigenvalue(s) of FA loadings and unique variance(s),
and the roles of p and m are not mentioned. Yet, it is known that both are closely
related (Hayashi and Bentler 2000; Krijnen 2006).

Recently, with the advancement of computing technology, high-dimensional data
with large p arise in many disciplines (see, e.g., Hastie et al. 2009). Consequently,
the needs for improving our statistical methodology for analyzing such data are
increasing. Large p is also common in the traditional research in social sciences.
For example, the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; Butcher
et al. 1989) contains 567 items, and the scale has been widely used to assess
individual mental health. (Note that MMPI-2 items are binary and we must apply
FA for ordered categorical data. In our study, we focus on FA for continuous data.)
Also, we often collect data from many questionnaires. As a result, whenever we
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consider item analysis with multiple questionnaires combined, we have to face the
issue of analyzing high-dimensional data. Recently, under high-dimensional setting
and when both p and N approach infinity, Bai and Li (2012) studied FA and PCA,
and showed that their loading estimates converge to the same asymptotic normal
distribution, where an additional assumption of ,/p /N — 0 is needed.

Although some authors called data with p>N as high-dimensional (see, e.g.,
Hastie et al. 2009, Chapter 18; Pourahmadi 2013), we do not require this assumption
to accommodate typical social science data. Also, we do not consider covariance
matrix that has many zero entries, called sparsity (see, e.g., Buehlmann & van de
Geer 2011).

15.2 Purpose of Study

We examine the closeness of the estimates of the two loading matrices from
FA and PCA under high-dimensional setting. Thus, the main goal of our work
is to investigate whether the closeness measured by the average squared sample

canonical correlation p? (X K*) approaches 1 under the conditions analytically

derived by Guttman (1956), Schneeweiss and Mathes (1995), and Schneeweiss
(1997); and also under high-dimensional setting with large p when N is relatively
small.

Notice that Schneeweiss and Mathes (1995) and Schneeweiss (1997) only
considered the population loading matrices without any sampling errors. In contrast,
we considered sampling errors by analyzing the sample correlation matrices with
ridge FA (Yuan and Chan 2008) and PCA in a simulation study. Our emphasis is on
high-dimensional settings where p is relatively close to N. As we describe in the next
section, we consider two scenarios: (1) ﬁ/N decreases while p/N stays constant;
(2) p/N increases while ,/p/N stays constant. The reason for us to choose the ratio
/PIN to specify our condition is because ,/p/N — 0 is needed for the equivalence
of asymptotic distributions of FA and PCA loadings (Bai and Li 2012). To the best
of our knowledge, there have not been any studies on systematically examining
the relationship between the various closeness conditions and the actual levels of

~ ~%
closeness measured by the average squared canonical correlation p? (A, A ) to

date.
We predicted that (1) p? (X A ) would approach 1 faster under the condition

that ./p/N decreases with p/N being a constant than under the condition when p/N
increases with ./p/N being a constant; (2) 0? (K, X*) would approach 1 faster
under equal unique variances than under unequal unique variances.
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15.3 Simulation Conditions

The population factor loading matrix in our study is of the following form with three
factors (m =3):

A Aar Az Agg 00 00 0 0 0 0
A= 00 0 0 As2 Aea A72 Aso o o o o |.
0 0 0 O 0 0 0 0 Ag3 )Ll(),3 111'3 A12'3
where two conditions of population loadings are employed: (1) equal loadings:
A; = 0.8 for every non-zero factor loading, and (2) unequal loadings: A1 =
A = Az = dea = Aoz = Az = 08, A1 = A = Anz = 075,
Ay = Agp = Apz = 0.7. The numbers of observed variables are multiples of
12: p=12q,q=1,2, ..., 7; and, when g is more than 1, we stack the structure of

A 1o vertically so that A = 1, ® A 15, where 1, is the column vector of g 1’s and ® is
the Kronecker product. The factors are orthogonal so that the population covariance
structures are of the form: ¥ = AA’ + W, where the diagonal elements of X are
all 1’s. As a result, (1) corresponds to equal unique variances and (2) corresponds
to unequal unique variances in the population.

Let S be the sample covariance matrix, and we perform FA on S, =S +al,,, and
call them ridge FA, where I, is a p-dimensional identity matrix and a is a tuning
parameter. In the analysis, we let a = p/N as was recommended in Yuan and Chan
(2008) and Yuan (2013), which led to more accurate estimates of the factor loadings
than performing FA on S. No attempt to identify an optimal tuning parameter is
made. Because sparsity is not our focus, we do not apply different regularization
methods such as the lasso (Tibshirani 1996). We perform PCA on S, not on S,.

Regarding conditions of N and p, we examine two different scenarios: (1) equal
p/N: N increases at the same rate as p; (2) increased p/N: p increases faster than N.
The increased p/N case corresponds to the scenario in which the ratios ,/p/N are
approximately constant, around .0173. See Table 15.1 and Fig. 15.1 for the two
different scenarios for the (N, p) pairs. Regarding the ratios m/p, because m is fixed
at 3, m/p decreases as p increases. So, our study also includes part of the Guttman
(1956) condition: m/p — 0.

The combinations of two patterns of population covariance matrices and two
different series of p/N ratios create four different scenarios in the simulation. For
each condition of N, p and X, we performed 100 replications of samples from
the multivariate normal distribution with mean vector 0 and covariance matrix X.
For each replication, we computed the p2 (X , A ); and, at the end of the 100

o~ o~k
replications, the average value of p? (A, A ) across the replications was obtained.
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Table 15.1 Combination of (p, N) pairs in the simulation study

Condition with p/N being a constant

p
N

p/N

p
N

p/N

VPIN

Sample sizes (N)
1500 2000 2500 3000

1000

500

213

12 24 48 96 192
200 400 800 1600 3200
0.06 0.06 0.06 0.06 0.06
/P/N 10.0173 |0.0122 | 0.00866 | 0.00612 |0.00433
Condition with p/N increasing
12 24 48 96 192 384 768
200 283 400 566 800 1131 1600
0.06 0.0848 |0.12 0.1696 | 0.24 0.3395 | 0.48
0.0173 |0.0173 | 0.0173 |0.0173 |0.0173 |0.0173 |0.0173
— equal  p/N
- increased p/N
.0
,’0/—
T T T T T
0 200 400 600 800

Number of observed variables (p)

Fig. 15.1 Combination of (N, p) pairs in the simulation study; Note: The “equal p/N” corresponds
to the scenario in which ,/p/N — 0, and the “increased p/N”" corresponds to the scenario in which
J/P/N is approximately constant

For FA, we employed the “factanal” function in the R language and modified it
to fit our simulation purpose. The “factanal” function employs the “optim” function,
a general purpose optimization function. We used the default convergence criterion
set by the “optim” function. For PCA, we simply used the “eigen” function to find
the eigenvalues and the corresponding standardized eigenvectors.
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15.4 Results

(1) In each of the four different combinations of unique variances and p/N ratios,
both @max /anin and g/ﬁmin decrease rather fast with p initially, and they tend
to stabilize as p increases (Figs. 15.2 and 15.3). As p increases, both @max /Emin
and E/Emin converge to zero slightly slower under the condition with unequal
unique variances and when p/N increases.

~%k

(2) The average squared canonical correlations p> <K A ) increase rapidly to
1 as p increases, especially under the conditions of equal unique variances
(Figs. 15.4 and 15.5). The relationship between p? (X,K*) and p is dis-
played in Fig. 15.5 after the Fisher-z transformation of the average canonical

correlation, where 2 = (1/2) log {(1 +p (X, X)) / (1 — 0 (7\, X))} still
keeps increasing as p increased from 12 to 768. The differences in the
speeds with which p (X X*> approaches 1 among the four different scenarios

become clearer after the Fisher-z transformation (Fig. 15.5). Quite interestingly,
the value of the Fisher-z transformed average canonical correlation and the
logarithm of p are almost perfectly linearly related. For the equal unique
variance case with the constant p/N condition, 7 = 1.002 + (1.554)log(p)
with coefficient of determination 7> = .9999; for the equal unique variance case
with the increased p/N condition, Z = 1.699 + (1.280)log(p) with r> = .9999;
for the unequal unique variance case with the constant p/N condition, 7 =
1.546+(1.059)log(p) with > = .9997; and for the unequal unique variance case
with the increased p/N condition, Z = 1.585 + (1.034)log(p) with > = 1.0000.

Fig. 15.2 Schneeweiss and
Mathes (1995) criterion
(&max /dmin) as a function of
the number of observed
variables (p) for four
simulation conditions

| ---- equal psi:  increased p/N|

- | ------ equal psi:  equal p/N |

| — unequal psi: increased p/N|

| ~~~~~~~~ unequal psi: equal p/N |

Schneeweiss & Mathes (1995) Criterion
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Il

0 200 400 600 800
Number of Variables (p)
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- - equal psi:  increased p/N|

- equal psi:  equal p/N |

— unequal psi: increased p/N |

.-+ unequal psi: equal p/N |

Schneeweiss (1997) Criterion

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Il

T T
0 200 400 600 800
Number of Variables (p)

Fig. 15.3 Schneeweiss (1997) criterion (3 / cAimm) as a function of the number of observed variables
(p) for four simulation conditions

3

“

The average squared canonical correlation p? (K, A *) increases rapidly to 1 as

the ratio p/N increases, especially faster under the condition with equal unique
variances (Figs. 15.6 and 15.7). Under the increased p/N condition, the value of
the Fisher-z transformed average canonical correlation and the logarithm of p/N
are also almost perfectly linearly related. For the equal unique variance case,
Z = 12.080 + (2.559)log (p/N) with r* =.9998, and for the unequal unique
variance case, Z = 9.974 + (2.068)log (p/N) with r* = .9999.

The average squared canonical correlation p? X,X*) approaches 1 as

@max /gmm approaches 0 (Figs. 15.8 and 15.9), and also as E/ﬁmm approaches 0
(Figs. 15.10 and 15.11). The speeds for p? (X, X*) to approach 1 are slightly

slower for the conditions with unequal unique variances than those with equal
unique variances, as reflected in Figs. 15.8 and 15.10 as well as in Figs. 15.9 and

15.11. However, the speed for p? (X, A *) to approach 1 under the condition

with increased p/N was slower than under the condition with constant p/N case,
as reflected in Figs. 15.8 and 15.9.
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Fig. 15.4 Average squared canonical correlation as a function of the number of observed variables

(p) for four simulation conditions
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Fig. 15.5 Fisher-z transformed average canonical correlation as a function of the number of

observed variables (p) for four simulation conditions
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Fig. 15.6 Average squared canonical correlation as a function of the ratio of number of observed
variables to sample size (p/N) for the conditions with equal and unequal unique variances
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Fig. 15.7 Fisher-z transformed average canonical correlation as a function of the ratio of number
of observed variables to sample size (p/N) for the conditions with equal and unequal unique
variances
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Fig. 15.8 Average squared canonical correlation as a function of Schneeweiss and Mathes (1995)
criterion (Ymax /dmin) for the four simulation conditions
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Fig. 15.9 Fisher-z transformed average canonical correlation as a function of Schneeweiss and
Mathes (1995) criterion (Ymax/dmin) for the four simulation conditions
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Fig. 15.10 Average squared canonical correlation as a function of Schneeweiss (1997) criterion
&/ Zimin) for the four simulation conditions
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Fig. 15.11 Fisher-z transformed average canonical correlation as a function of Schneeweiss
(1997) criterion (8/ dumin) for the four simulation conditions
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15.5 Discussion

Conditions for equivalence between FA and PCA loadings were derived analytically
at the population level (Guttman 1956; Schneeweiss and Mathes 1995; Schneeweiss
1997). In contrast, we considered the effect of sampling errors by analyzing the
sample correlation matrices with ridge FA and PCA using a simulation, with a
focus on high-dimensional situations. More specifically, we investigated whether

~ o~k

and how the average squared canonical correlation p? (A,A ) approaches 1

with large p by including the conditions obtained by Guttman, Schneeweiss and
Mathes, and Schneeweiss. Results indicate that the estimates of loadings by FA
and PCA are rather close for all the conditions considered. For the condition with
increased p/N, we tried to create a situation where p increases faster than N. In
our simulation, the results under the condition with increased p/N are still similar
to those under the condition with p/N being a constant. Also, the speed for the
average squared canonical correlation converging to 1 under the conditions with
unequal unique variances was slightly slower than that under the condition with
equal unique variances. Our results indicate that the average squared correlation
between the sample loading matrix from FA and that from PCA approaches 1 as p
increases, while the ratio of p/N (let alone ,/p/N) does not need to approach zero.
Apparently, the results seem to contradict the result theoretically derived by Bai and
Li (2012). Further study is needed to explain the discrepancy.

The single most interesting finding by far was that the Fisher-z transformed
average canonical correlation and the logarithm of the p are almost perfectly linearly
related for every condition examined in the simulation. This implies the functional

SN ~ -1
relationship p (A, A*> = {1 +2/ [ezﬁOpzﬁ I — 1]} approximately holds, where

B, and B, are, respectively, the intercept and slope of the simple regression line
of the Fisher-z transformed average canonical correlation on the logarithm of p.
Furthermore, under the increased p/N condition, the Fisher-z transformed average
canonical correlation and the logarithm of ratio p/N are also almost perfectly linear
related. This can be explained from the nature of our simulation design. We chose
the two series of pairs (p, N) in such a way that either p/N are a constant or ,/p/N are
a constant. For the latter case, let ﬁ/N = C. Then (1/2)log(p) = log(N) + log(C).
Thus, using log(p) as a predictor is equivalent to using log(N) as a predictor, and
the equation: log(p/N) = (1/2)log(p) + log(ﬁ/N) = (1/2)log(p) + log(C) explains
why both log(p) and log(p/N) had a linear relationship with the Fisher-z transformed
average canonical correlation.

Obviously, our simulation design is far from being extensive in a sense that
the ratios p/N do not include values greater than 1. More extensive simulation
studies might also need to include different covariance structures, with different
combinations of p and N, as well as conditions with p/N being greater than 1.
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