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Abstract Low pH (proton toxicity) and aluminium toxicity coexist in acid soils,

affecting plant growth worldwide. Decades of research concluded that proton and

aluminium toxicity mechanisms are complex and remain unclear. Among the Al

tolerance mechanisms, exudation of organic acid anions received considerable

attention, leading to the identification of novel genes involved in organic acid

anion metabolism and transport. As a downside, the major focus on exudation of

organic acid anions has overshadowed research on other potential Al tolerance

mechanisms (e.g. reduced cell wall binding, rhizosphere alkalisation, phosphate

exudation, enhanced uptake of essential nutrients) that may be operating. In this

work, the current knowledge on how proton and aluminium toxicity and tolerance

mechanisms are operating when plants are exposed to acid soils is reviewed.

Special emphasis has been given to the question of how uptake and homeostasis

of hydrogen, potassium, phosphorus, calcium, and magnesium ions in plants are

affected and regulated during low-pH and aluminium stresses. There is enough

evidence to suggest that low-pH and combined low-pH/aluminium stresses differ-

entially affect root tissues and, consequently, the rhizosphere. Less disturbed

phosphorus, calcium, and magnesium uptake and homeostasis maintenance help

plants to cope with low-pH and combined low-pH/aluminium stresses.
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1 Introduction

Acidic soils are formed mainly due to the weathering of acidic parent material and

the leaching of basic cations by soil water. As a result, soils in high rainfall areas

and older soils exhibit greater acidity. A number of other factors also contribute to

soil acidification, including imbalances in the nitrogen, carbon, and sulphur cycles

(Goulding et al. 1998; Mannion 1998); use of NH4
+-forming fertilisers (Rowell and

Wild 1985; Tang et al. 2000); atmospheric acidification (Vries and Breeuwsma

1987; Galloway 1989); nitrogen fixation by legumes (Bolan et al. 1991; Shen

et al. 2004); and excessive uptake of cations by plants (Shen et al. 2004). Thus,

soil acidification is a continuous process, which means the problem of acid soils is

exacerbated over time in severity and extent (Rengel 2004).

In acidic soils, plant growth may be limited by various toxicities (H, Al, Mn) and

deficiencies (NH4-N, P, Ca, Mg, and MoO4) (for references, see Kidd and Proctor

2001). Among these complex factors, aluminium (Al) toxicity received consider-

able attention because Al becomes increasingly soluble when the pH(water)

decreases below 5 (Kochian 1995). In particular, activity of trivalent cationic

Al(H2O)6
3+ (hereafter Al3+ for convenience) often peaks at around pH 4.2–4.3,

severely affecting root growth in acid soils (Kinraide 1990, 1991, 1993; Matsumoto

2000; Taylor et al. 2000; Poschenrieder et al. 2008). Interestingly, low pH (H+

toxicity) alone can affect growth in diverse plant species (Bose et al. 2010b). There

are some low-pH soils (e.g. organic soils) where Al3+ ions are present in low

concentration; thereby H+ ions dominate the composition of the soil solution

(Kidd and Proctor 2001). These H+-ion-dominated soils account for a high propor-

tion of acid soils around the globe. For instance, histosols occupy 200 million ha

worldwide (Brady and Weil 1990). Hence, low-pH and combined low-pH/Al3+

stresses need to be separated in order to understand stress-specific toxicity and

tolerance mechanisms in plants. In this chapter, the existing knowledge on how

Al3+ and H+ toxicity mechanisms are operating when plants are exposed to acid

soils is reviewed. Special emphasis is placed on how Al3+ and H+ toxicities

specifically affect ion uptake and homeostasis regulation in plants.

2 Al3+ Toxicity in Plants

2.1 Inhibition of Root Growth by Al3+ Toxicity

An early symptom of Al3+ toxicity to plants is inhibition of root growth that

becomes measurable within minutes of exposure to micromolar concentrations of

Al3+ (see Delhaize and Ryan 1995; Rengel 2004 for references). Thus, roots have

been the focus of research to decipher the mechanisms of Al3+ toxicity and

tolerance in plants.
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Root growth is a complex and dynamic phenomenon that involves a series of

biochemical and physiological processes differing in various root tissues (Street

1966; Wang et al. 2006). Detailed investigations of the spatial sensitivity to Al3+ in

different root zones revealed that the root apex (Ryan et al. 1993), particularly the

distal elongation zone within the root apex (Sivaguru and Horst 1998; Kollmeier

et al. 2000; Illes et al. 2006), is the primary site of Al3+ toxicity. The distal

elongation zone (due to its specific architecture) has extraordinary capability to

sense various environmental stimuli and act as a “plant command centre” to

integrate sensory inputs into adaptive responses (Baluška et al. 2004). Accordingly,

the distal elongation zone needs to be studied in detail for a greater understanding of

the primary mechanisms of Al3+ toxicity and tolerance. However, Al3+ toxicity and

tolerance studies on distal elongation zone are relatively rare. Some studies have

shown that Al3+ also affects physiological and biochemical processes in other root

zones, such as the root cap, meristem, elongation zone, and mature zone (Brady

et al. 1993; Olivetti et al. 1995; Rengel 1996; Bose et al. 2010a, b, 2013).

The mature root zone is the longest, accounts for more than 90 % of root

biomass, and is the principal area for nutrient absorption (Gahoonia and Nielsen

1998; Parker et al. 2000; Bibikova and Gilroy 2002). Taking K+ as an example,

10 out of 15 K+ transporters (KT/KUPs) are expressed in the mature zone (Ahn

et al. 2004). Further, H+, K+ Ca2+, and Mg2+ uptake at the mature zone is different

to that at the root apex (Ferguson and Clarkson 1975, 1976; Kiegle et al. 2000;

Newman 2001; Demidchik et al. 2002; Bose et al. 2010b; Guo et al. 2010; Bose

et al. 2013). Interestingly, Al3+ concentration in the internal tissues of the mature

zone is higher than in the cortex (Babourina and Rengel 2009) and cytosolic Ca

signals propagate from mature zone to root cap during Al3+ stress (Rincon-Zachary

et al. 2010). Because of this, the response of the mature zone to Al3+ might be

different from that of the root apex. Indeed, H+, K+, and Mg2+ fluxes in response to

Al3+ stress differ between mature root zone and elongation zone in Arabidopsis

(Bose et al. 2010a, b, 2013). However, how these ion fluxes modulate the root

growth during Al3+ stress remains to be elucidated.

2.2 Inhibition of Cell Division and Cell Elongation

Early work by Clarkson (1965) revealed that Al3+ toxicity strongly altered root

development and pointed at the hampering of cell division by Al3+ ions as a primary

cause of root growth inhibition. Indeed, (1) binding of Al to nucleic acids in root

tips along with inhibition of cell division (Matsumoto et al. 1976; Morimura

et al. 1978) and (2) reduction in the mitotic index along with different abnormalities

such as chromosome bridges, breaks, sticky metaphases, nuclear dissolution, cell

death, and in some cells chromosome duplication under Al3+ stress have been

observed in maize and onion roots (De Campos and Viccini 2003). In contrast,

Al3+-induced stimulation of cell division was also reported under low concentra-

tions of Al3+, mainly in cell culture experiments. For example, cell cycle activity
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was enhanced in the Al-tolerant cell culture line of Coffea arabica, whereas

inhibition was observed in the Al-sensitive cell line (Valadez-Gonzalez et al. 2007).

The Al3+-induced alterations of the cell cycle received considerable attention

because (1) it has been well established that Al can enter the symplasm quite rapidly

(Silva et al. 2000; Taylor et al. 2000; Babourina and Rengel 2009), and (2) Al3+

could alter the cell cycle through a signalling cascade without the need for Al to

reach nuclei of meristematic cells (Poschenrieder et al. 2009). Further, Al3+ toxicity

is not restricted to inhibition of root length. More detailed temporal and spatial

study on the maize root cell patterning under Al3+ stress revealed that 5-min Al3+

exposure was sufficient to inhibit cell division in the proximal meristem zone and

stimulate cell division in the distal elongation zone. Protrusion of an incipient

lateral root was observed in the distal elongation zone after 180 min. These

observations suggest a rapid change in the cell patterning events along the root

axis upon a short-time Al3+ exposure (Doncheva et al. 2005).

Stiffening of cell walls and a consequent inhibition of root growth have been

observed in response to Al3+ stress under different experimental conditions

(Tabuchi and Matsumoto 2001; Ma et al. 2004; Jones et al. 2006). Indeed, large

amounts of Al accumulate in the cell walls and intercellular spaces of root tips. For

example, 85–99.9 % of Al was found in the apoplasm of root cells (Taylor

et al. 2000; Ma 2007). Apart from precipitation of Al on the root surface and in

intercellular spaces, binding of exchangeable Al to the negative charges of the

pectin substances in the cell wall was also observed (Blamey 2001). In an in vitro

study, Al treatment did not cause cell wall stiffening in dead root tips of maize

(Ma et al. 2004), indicating that it is a biochemical process and not purely physical

cross-linking between pectin material and Al3+. This leads to the conclusion that Al

binds to the newly formed cell wall material, which is required for cell elongation

growth, thereby altering mechanical properties of cell wall and hampering cell

elongation (Ma et al. 2004; Ma 2007). The cross-linking of other polar cell wall

constituents, such as hydroxyproline-rich glycoproteins (HRGPs) by reactive oxy-

gen species in combination with callose deposition, has been shown to inhibit cell

elongation in Arabidopsis thaliana (De Cnodder et al. 2005).

2.3 Production of Reactive Oxygen Species

Reactive oxygen species (ROS) are natural by-products of aerobic respiration

formed when oxygen is partially reduced. ROS can be toxic to plant cells or can

act as signalling molecules depending on the circumstances (Scholz-Starke

et al. 2005). ROS are essential for (1) root elongation because quenching of root

ROS resulted in inhibition of root elongation in Arabidopsis thaliana (Demidchik

et al. 2003), (2) regulation of hyperpolarisation-activated cation channels (HACC)

present in the epidermis of the root elongation zone (Demidchik et al. 2003;

Foreman et al. 2003), and (3) activation of a potassium outward-rectifying channel

(KORC) and a non-selective cation channel (NSCC), which mediate, respectively,
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K+ efflux and Ca2+ influx in root hair tips of C3 and C4 plants (Demidchik

et al. 2003).

The formation of ROS in response to Al3+ has been observed in many studies

(Darko et al. 2004; Tamás et al. 2004; Babourina et al. 2006; Jones et al. 2006;

Tahara et al. 2008), even though Al3+ is not a transition metal and therefore cannot

catalyse redox reactions. However, Al3+ in combination with iron caused peroxi-

dation of lipids in the plasma membrane of soybean (Cakmak and Horst 1991)

and rice roots (Meriga et al. 2004) and cultured tobacco cells (Ono et al. 1995;

Yamamoto et al. 1997). Further, Al3+ induced the expression of several genes

encoding antioxidant enzymes such as glutathione S-transferase, peroxidase, and

superoxide dismutase (SOD) in Arabidopsis thaliana (Richards et al. 1998; Ezaki

et al. 2000), which established the significance of ROS production under Al3+

toxicity.

A number of hypotheses have been proposed for Al3+-induced rapid production

of ROS, including dysfunction of mitochondria (Yamamoto et al. 2002), formation

of aluminium superoxide semi-reduced radicals (Exley 2004), and activation of

oxidising enzymes (Šimonovicová et al. 2004a, b). However, time-dependent

studies demonstrated that cell death and protein oxidation occurred several hours

after the cessation of root growth (Boscolo et al. 2003; Šimonovicová et al. 2004b).

For example, ROS production and loss of growth were observed after 12 h of Al

exposure in tobacco (Yamamoto et al. 2002). Considering the time taken to produce

ROS, it appears ROS production may not be the primary mechanism of Al3+

toxicity. Yamamoto et al. (2002) suggested that ROS production is not important

for root growth inhibition, but rather important for callose biosynthesis. Indeed,

cross-linking of ROS with hydroxyproline-rich glycoproteins (HRGPs) was accom-

panied by callose deposition and was shown to be an important mechanism for

inhibition of cell elongation induced by the ethylene precursor

1-aminocyclopropane-1-carboxylic acid (ACC) in Arabidopsis thaliana
(De Cnodder et al. 2005).

2.4 Disturbance of Cytoskeleton

Cytoskeletal structures (microtubules and microfilaments) are pivotal for cell

divisions and the elongation of growing roots (cf. Sivaguru et al. 1999, 2000;

Kochian et al. 2005). Al-induced disturbance to organisation of microtubules and

microfilaments in the root cells was well documented (e.g. Sivaguru et al. 1999,

2003; Amenos et al. 2009). Such Al-induced structural changes in the root cells

might underlie morphological changes and structural malformations observed in

Al-stressed roots (Kochian et al. 2005).

Specificity of Ion Uptake and Homeostasis Maintenance During Acid and. . . 233



2.5 Changes in the Plasma Membrane Properties

As Al can enter the symplasm rather rapidly (Silva et al. 2000; Taylor et al. 2000;

Babourina and Rengel 2009), Al3+ stress is likely to occur at the plasma membrane

(Ahn and Matsumoto 2006). Al3+ has a strong affinity for the plasma membrane

surface (560-fold stronger than Ca2+) (Akeson et al. 1989). Yermiyahu et al. (1997)

demonstrated that the surface charge of the plasma membrane vesicles isolated

from the Al-sensitive wheat cv. Scout was 26 % lower than that of vesicles from the

Al-tolerant cv. Atlas, allowing more Al to bind to the Scout vesicles, thereby

causing greater Al toxicity compared with Atlas. Moreover, Ahn et al. (2001)

reported that 50 μM Al neutralised the surface charge of the plasma membrane

and caused a surface potential shift from �20 to +1 mV in squash roots. These

results indicated that membrane surface charge regulated the accessibility of Al

ions to cells. Indeed, strong correlation was observed between Al3+ toxicity and the

concentration of adsorbed Al on the membrane surface, as calculated by Gouy–

Chapman–Stern model (Kinraide et al. 1992; Kinraide 1994). Such binding of Al to

the plasma membrane (1) alters its fluidity and structure (Chen et al. 1991) in

addition to the surface potential (Kinraide 2001), (2) induces organic anion release

(Ryan et al. 1995; Osawa and Matsumoto 2002), (3) blocks Ca2+ transport (Ding

et al. 1993; Pineros and Tester 1993), and/or (4) inhibits H+-ATPase activity (Ahn

et al. 2002). These changes would alter the plasma membrane potential. However,

there are contrasting results reported in the literature about Al3+ stress effects on the

plasma membrane potential. For example, Al3+ stress induced depolarisation in

intact roots of Al-sensitive wheat genotype Scout but not in Al-resistant genotype

Atlas (Miyasaka et al. 1989). In some studies, Al3+ induced hyperpolarisation in

Al-sensitive but not in Al-tolerant genotypes (Kinraide 1993; Lindberg and Strid

1997; Johnson et al. 2005; Wherrett et al. 2005). The reason for contradicting

results may be plants either growing (for a few days) or just being conditioned

(for a few hours) in the low-pH (�4.5) medium before root cells were impaled with

a measuring electrode (longer time in the low-pH medium may allow plants to

recover from low-pH-induced depolarisation) (Kinraide 1993). Further research,

especially on low-pH stress studied separately from Al3+ stress, is thus needed to

understand Al3+-specific changes in the plasma membrane potential.

Our recent study involving Arabidopsis wild type (Col-0) clearly separated

low-pH stress from combined low-pH/Al3+ stresses. The low-pH treatment induced

plasma membrane depolarisation, which was significantly diminished (P� 0.05)

when combined stresses (low-pH/Al3+) were imposed (Bose et al. 2010b). Further,

Al-tolerant alr104 and the wild type had depolarised plasma membranes for the

entire 30-min measurement period under combined low-pH/Al3+ treatment,

whereas in the Al-sensitive mutants (als3 and als5), initial depolarisation to around

�60 mV became hyperpolarisation at �110 mV after 20 min (Bose et al. 2010a).

Thus, the ability of plants to maintain plasma membrane depolarisation during Al

stress is critical for Al tolerance.
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2.6 Inhibition of Nutrient Uptake

Long-term exposure to Al3+ (from hours to days) results in a deficiency of one or

more nutrients, such as Ca, Mg, NH4-N, P, K, and B (cf. Mugwira et al. 1980;

Grimme 1983; Foy 1988; Keltjens 1988; Rengel and Robinson 1989; Rengel 1990;

Rengel and Elliott 1992; Keltjens and Tan 1993; Lenoble et al. 1996; Mariano and

Keltjens 2005). These deficiencies may be due to (1) direct inhibition of uptake

system and/or (2) Al3+-induced impairment of root growth and a consequent

decrease in the nutrient-absorbing surface area (Clarkson 1985). The latter cause

of deficiency is common after prolonged exposure to Al3+ (hours to days), whereby

root growth reduction is associated with decreased nutrient accumulation (see

Rengel 1992 for references). Therefore, long-term Al3+ exposure studies may not

provide information about specific Al3+ effects on nutrient uptake. Further compli-

cation with long-term studies is that Al3+ may inhibit root growth without reducing

nutrient uptake. For example, root growth inhibition under Al3+ was observed in

Norway spruce, small birch, and wheat without reduction in Ca2+ and/or Mg2+

uptake (G€oransson and Eldhuset 1995; Ryan et al. 1997; Godbold and Jentschke

1998). Hence, short-term Al3+ exposure studies involving direct measurements of

ion fluxes are essential for understanding immediate Al3+ effects on nutrient uptake.

2.6.1 Calcium Uptake

The interaction between Al3+ toxicity and Ca2+ uptake received considerable

attention because symptoms of severe Al3+ toxicity resemble Ca2+ deficiency in

plants (see Foy 1988; Rengel and Elliott 1992 for references), and exogenous

application of relatively high (millimolar) concentrations of Ca2+ alleviated Al3+

toxicity in many plant species (Brady et al. 1993; Keltjens and Tan 1993; Kinraide

et al. 2004). Thus, the capacity of genotypes to maintain Ca2+ influx from low-pH

environments may contribute to low-pH tolerance. Indeed, low-pH-tolerant

Arabidopsis mutants (alr104 and als5) (Bose et al. 2010a) recorded higher Ca2+

influx in the distal elongation zone than the wild type and als3 mutant in the low-pH

treatment (Bose et al., unpublished results). However, the combined low-pH/50 μM
Al stress caused Ca2+ efflux from both distal elongation and mature root zones

within a minute in all four genotypes (Col-0, als3, als5, and alr104). Such an initial

Al-induced Ca2+ efflux is likely to have been due to extensive displacement of

apoplastic Ca2+ by Al ions.

Al3+ might inhibit Ca2+ influx into intact root cells (Huang et al. 1992; Ryan and

Kochian 1993), protoplasts (Rengel and Elliott 1992; Rengel 1994), and the mem-

brane vesicles (Huang et al. 1996; White 1998) through binding of Al3+ on the

plasma membrane surface (Akeson et al. 1989). Such binding of Al3+ to the plasma

membrane surface may block Ca2+-permeable channels in the plasma membrane.

Indeed, both the hyperpolarisation-activated Ca2+-permeable channels (Ding

et al. 1993; Kiegle et al. 2000; Very and Davies 2000) and depolarisation-activated
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Ca2+ channels (Rengel et al. 1995; Pineros and Tester 1997) are sensitive to Al, but

Ca2+ influx inhibition was higher in the former (87� 7 %) (Kiegle et al. 2000) than

the latter (only 44 %) (Rengel and Zhang 2003). During Al stress, Ca2+ fluxes in the

distal root elongation of Al-tolerant genotypes (wild type and alr104) recovered to

show net influx after the initial Al-induced Ca2+ efflux, but Ca2+ influx in

Al-sensitive genotypes (als3 and als5) remained inhibited. Given that combined

low-pH/50 μM Al stress caused less depolarisation and eventual hyperpolarisation

of Em in the Al-sensitive mutants (als3 and als5), it may be suggested that Al3+

stress inhibited hyperpolarisation-activated Ca2+-permeable channels in

Al-sensitive mutants (Bose et al. unpublished results).

As the above Ca2+ influx inhibition following Al3+ exposure precedes root

growth inhibition (Huang et al. 1992; Ryan and Kochian 1993), it could be one of

potential primary causes of Al3+ phytotoxicity (Rengel 1992; Rengel and Zhang

2003). However, further studies revealed that low concentration of Al3+ can inhibit

root growth without affecting Ca2+ influx, and addition of ameliorating cations

(Mg2+ and Na+) improved root growth, even though the net Ca2+ influx remained

inhibited (Ryan and Kochian 1993; Ryan et al. 1997). Similarly, Al3+ caused root

hair growth inhibition without affecting Ca2+ influx in Limnobium stoloniferum
(Jones et al. 1995). Poor correlation between Al-induced Ca2+ influx inhibition and

elongation growth of Chara (Reid et al. 1995) indicated that Al-induced inhibition

of Ca2+ influx alone cannot be a critical factor in triggering Al toxicity in plants.

However, prolonged inhibition of Ca2+ influx into Al-treated root cells disrupts Ca

nutrition, which in turn exacerbates Al toxicity in plants (Rengel and Zhang 2003).

2.6.2 Magnesium Uptake

Mg2+ is unique among the major biological cations due to the largest hydrated

radius (0.428 nm), the smallest ionic radius (0.072 nm), and the highest charge

density. Because it binds water molecules 3–4 orders of magnitude more tightly

than do other cations, Mg2+ often interacts with other molecules while maintaining

its hydration sphere (Maguire and Cowan 2002). As a result, Mg2+ binds quite

weakly to the negatively charged groups in the root cell wall, so the excess cations

like H+ and Al3+ present in acid soils can inhibit Mg2+ loading in the apoplasm and

uptake across the plasma membrane (Marschner 1991, 1995).

Al3+-induced inhibition of Mg2+ uptake has been observed in diverse plant

species (Grimme 1983; Keltjens 1988; Rengel and Robinson 1989; Rengel 1990).

Al3+ might cause Mg2+ uptake inhibition through competitive interactions between

Al3+ and plasma membrane transporters for Mg2+ (Rengel and Robinson 1989;

Rengel 1990) because (1) Al and Mg have similar hydrated ionic radii, and

(2) plants preferentially take up heavy isotope 26Mg (the daughter nuclei of 27Al)

from a mix of Mg2+ isotopes in nutrient solutions and store it in tissues (reviewed in

Bose et al. 2011a). This might be true because Arabidopsis thaliana magnesium

transporters (AtMGT1 and AtMGT10) are highly sensitive to Al3+, providing

potential molecular targets for Al3+ toxicity in plants (Li et al. 2001). On the
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contrary, overexpression of Mg2+ transporter genes in yeast (MacDiarmid and

Gardner 1998), Nicotiana benthamiana (Deng et al. 2006), and rice (Chen

et al. 2012) conferred Al tolerance by potentially alleviating Al-induced magne-

sium deficiency (Chen and Ma 2013), but these studies did not provide sufficient

evidence of enhanced magnesium uptake and an increase in intracellular Mg2+

concentration in the presence of Al3+ ions. This issue has been addressed by

measuring Mg2+ uptake using Mg2+-selective microelectrodes and fluorescent dye

in Arabidopsis roots during short-term (0–60 min) exposure to Al3+ stress (Bose

et al. 2013). The results showed that enhanced Mg2+ uptake and increased intra-

cellular free Mg2+ concentration correlated with an improved capacity of

Arabidopsis genotypes to cope with low-pH and combined low-pH/Al stresses

(Bose et al. 2013).

2.6.3 Potassium Uptake

K+ is essential for cell division through polymerisation of actin (Alberts et al. 1994)

and turgor-dependent cell elongation caused by accumulation of K+ in the vacuole

(Frensch 1997; Dolan and Davies 2004; Sano et al. 2007). However, there is no

causal relationship between Al3+ toxicity and K+ nutrition in plants because Al3+

induced either inhibition (Matsumoto and Yamaya 1986; Nichol et al. 1993) or an

increase in K+ uptake (Lee and Pritchard 1984; Lindberg 1990; Tanoi et al. 2005).

The reason for increased K+ uptake under Al3+ stress may be a decrease in net K+

efflux rather than an increase in uptake (Horst et al. 1992; Olivetti et al. 1995;

Sasaki et al. 1995). Several patch clamp studies demonstrated that Al ions decrease

the open probability of K+ inward-rectifying channels through internal blocking

(Gassmann and Schroeder 1994; Liu and Luan 2001). In contrast, Al induced or

maintained K+ efflux in Al-tolerant wheat genotypes together with enhanced malate

release (Ryan et al. 1995; Osawa and Matsumoto 2002; Wherrett et al. 2005),

probably to balance charges created by exudation of weak organic acid anions

(Ryan et al. 1995; Matsumoto 2000; Ma et al. 2001; Osawa and Matsumoto 2002;

Wherrett et al. 2005). This notion is also confirmed in Arabidopsis thaliana wherein

Al-tolerant genotypes (alr104 and Col-0) showed greater K+ efflux than

Al-sensitive genotypes (als3 and als5) during Al3+ stress (Bose et al. 2010a).

2.6.4 Phosphorus Uptake

Apart from causing direct toxicity to roots, Al3+ ions also exacerbate P deficiency

by binding with P to form sparingly soluble Al–P complexes that are not plant

available (Haynes and Mokolobate 2001). Hence, even in acidic soils that have

relatively high total concentration of P, availability of P is limiting (Kochian

et al. 2004; Fukuda et al. 2007). Selection of genotypes for either P efficiency or

Al tolerance independently may be unsuccessful because these two soil constraints

occur jointly in acidic soils (Foy 1988; Yan et al. 1995). For example, Al-tolerant
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soybean genotype 416937 selected under controlled conditions was found to be

sensitive to acid soils in the field (Ritchey and Carter 1993; Ferrufino et al. 2000). In

contrast, an Al-sensitive soybean genotype was found to be relatively tolerant to

acid soils (e.g. Foy et al. 1992). These discrepancies might be due to failure in the

selection process to account for interactions between Al and P that normally occur

in acid soils. Thus, a thorough understanding of the Al–P interactions is essential for

improving the productivity of crops in acid soils.

Generally, plants may respond to both Al toxicity and P deficiency by exuding

organic acid anions (Lopez-Bucio et al. 2000; Haynes and Mokolobate 2001; Shen

et al. 2002). Exudation of low-molecular-weight organic acid anions (e.g. citrate,

malate) in the rooting media is advantageous because organic acid anions can

(1) protect plants from Al toxicity by forming non-phytotoxic Al-organic anion

complexes and (2) enhance P availability and thus improve plant P uptake by

chelating Al from the Al–P complexes, thus liberating P for plant uptake (Subbarao

et al. 1997; Ishikawa et al. 2002).

The signal perception of Al toxicity or P deficiency and translocation of this

signal into activation of organic acid synthesis and exudation are pivotal for P

nutrition and Al tolerance in acid soils. Proteomic (Fukuda et al. 2007) and

transcriptomic (Wasaki et al. 2003) analysis of rice roots grown in Al-toxic and

P-deficient low-pH solution revealed that (1) modifications of root protein expres-

sion were similar under Al toxicity and P deficiency, and (2) carbon supply to the

tri-carboxylic acid (TCA) cycle to produce organic acids was maintained by

enhancing glycolysis. Indeed, P-efficient genotypes were able to enhance Al toler-

ance in acid soils by stimulated exudation of different Al-chelating organic acid

anions in soybean (Liao et al. 2006), cowpea (Jemo et al. 2007), and barley

(Delhaize et al. 2009). Interestingly, Liao et al. (2006) found that Al toxicity

induced citrate exudation, P deficiency triggered oxalate exudation, and malate

release was induced by either Al toxicity or P deficiency in soybean. In contrast,

Ligaba et al. (2004) reported that citrate exudation was enhanced by P deficiency

but not by Al toxicity in purple lupin. These controversial results clearly suggest

that there are important differences in how Al toxicity and P deficiency may effect

organic anion exudation, which is of huge importance when these two environmen-

tal stresses occur together as they regularly do in acid soils.

3 Disturbance of Ion Homeostasis

The maintenance of optimal concentrations of inorganic ions such as H+, K+, Ca2+,

and Mg2+ (ionic homeostasis) inside plant cells and organelles is pivotal for the

functioning of biopolymers (Andreev 2001). Ion homeostasis in plants is regulated

by controlled flux of ions across the plasma membrane and the endomembranes in

addition to storage in organelles (Bose et al. 2011a). Entry of Al ions into the

cytoplasm (Silva et al. 2000; Babourina and Rengel 2009) may affect homeostasis

of various ions inside the cell.
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3.1 H+ Homeostasis

The change of pH (ΔpH) between the cytoplasm and the apoplasm is the major

driving force for the translocation of ions in plant cells. Under no stress, the pH is

7.3–7.6 in the cytoplasm, 4.5–5.9 in vacuoles, ~7 in mitochondria, 7.2–7.8 in

chloroplasts, and ~5.5 in the apoplast (Kurkdjian and Guern 1989; Bose

et al. 2011a, b). Thus, cytoplasm is less acidic when compared to vacuoles and

the apoplast. This pH difference is regulated by proton pumps (H+-ATPase and H+-

PPase) located at the plasma membrane and the tonoplast, driving H+ from the

cytoplasm to either the apoplast or the vacuole (Marty 1999). Hence, disturbance in

H+-ATPase activity by environmental stresses would affect cytoplasmic pH regu-

lation. Indeed, transient changes in cytoplasmic pH are pivotal for the signal

cascades to elicit defence mechanisms or developmental processes in response to

a variety of environmental stimuli (Roos et al. 2006). The low-pH treatment caused

net H+ influx into the root tissue and caused intracellular acidification (Gerendas

et al. 1990; Plieth et al. 1999; Babourina and Rengel 2009; Bose et al. 2010b).

Further, genes controlling cytoplasmic pH were downregulated in the low-pH-

hypersensitive Arabidopsis stop1 mutant (Iuchi et al. 2007; Sawaki et al. 2009).

Thus, cytoplasmic acidification may be responsible for poor root growth in the

treatments with low pH only. Interestingly, low-pH tolerance of als5 and alr104

mutants coincided with high H+ influx, suggesting that aforementioned mutants

may possess effective mechanisms to prevent cytoplasmic acidification despite

high H+ influx from the external environment; in contrast, such mechanisms

would be absent/ineffective in the low-pH-sensitive mutant (als3) (Bose

et al. 2010a).

Modulation of cytosolic pH by combined low-pH/Al3+ stress can act as a

secondary messenger to activate/inactivate transporters and enzymes and, in turn,

regulate synthesis of organic acid anions and their subsequent release. An increase

in intracellular pH (from �5.7 under control pH 5.5[water]) towards pH� 6.5

following a combined low-pH/100 μM Al stress was observed in Arabidopsis

wild type (Bose et al. 2010b). This rise in intracellular pH would favour

deprotonation of organic acids inside the cytoplasm (Davies 1986) and potentially

their anion exudation into the rhizosphere. Though Al3+ decreased the H+-ATPase

activity in the plasma membrane vesicles prepared from Al-treated seedlings of

barley (Matsumoto 1988; Matsumoto et al. 1992), wheat (Sasaki et al. 1995), and

squash (Ahn et al. 2001, 2002), inhibition of H+-ATPase activity appears to be

dependent on Al3+ concentration. For example, Al3+ concentrations lower than the

threshold Al3+ phytotoxicity caused upregulation of H+-ATPase, whereas phytoxic

Al3+ concentrations resulted in H+-ATPase inhibition in maize (Facanha and

Okorokova-Facanha 2002) and soybean roots (Shen et al. 2005). In addition,

cytoplasmic pH may also vary depending on the Al3+ concentrations used. Thus,

more work is needed to understand Al3+ concentration’s influence on the cytoplas-

mic pH homeostasis.
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3.2 Ca2+ Homeostasis

Being the secondary messenger, free cytosolic Ca2+ activities are pivotal for

transduction of hormonal and environmental signals to the responsive elements of

cellular metabolism (see Rengel and Zhang 2003; Bose et al. 2011b for references).

Free cytosolic Ca2+ activities in plant cells are usually maintained in the 100–

200 nM concentration range (Bush 1995; Webb et al. 1996). However, Ca2+

activities in the cell wall (apoplasm) and other internal organelles (e.g. vacuoles

and endoplasmic reticulum) are higher than the cytosolic Ca2+ by 3–4 orders of

magnitude (Clarkson 1984; DuPont et al. 1990; Evans et al. 1991; Bose

et al. 2011b). Low concentrations of cytosolic Ca2+ are maintained by

ATP-dependent Ca2+ pumps and Ca2+ exchangers (CaX) in the plasma membrane

and the endomembranes via (1) sequestration into different organelles and

(2) pumping Ca2+ into the apoplasm (Evans et al. 1991; Hirschi 2001; Miedema

et al. 2001; Bose et al. 2011b).

Al3+ affects the Ca2+ homeostasis maintenance in three ways. Firstly, Ca2+ is

essential for cross-linking the pectic materials in the cell wall. Aluminium displaces

pectin-bound Ca2+ because Al has a higher affinity for pectic material than Ca2+

(Blamey 2001), and overexpression of pectin methylesterase enzyme in Solanum
tuberosum resulted in severe Al toxicity (Schmohl et al. 2000). In fact, between

90 % (Reid et al. 1995) and 99.99 % (Taylor et al. 2000) of cell-wall-bound Ca2+ is

displaced by Al3+ in Chara internodal cells. In Arabidopsis thaliana roots, initial

Al-induced Ca2+ efflux was higher in the Al-sensitive genotypes (als3 and als5)
than in the wild type and Al-tolerant alr104 mutant, suggesting extensive displace-

ment of apoplastic Ca2+ by Al ions in the Al-sensitive mutants (Bose

et al. unpublished results). Hence, displacement of Ca2+ by Al3+ would severely

alter the physical properties of the cell wall, including extensibility, rigidity, and

permeability (Reid et al. 1995; Tabuchi and Matsumoto 2001; Jones et al. 2006;

Horst et al. 2007), thereby detrimentally affecting cell division and elongation.

However, contradicting results were observed in onion root tips where the particle-

induced X-ray emission technique indicated that Ca2+ in the root tips was not

displaced by Al (Schofield et al. 1998). These discrepancies might be due to

different experimental systems and environmental conditions. Secondly, Al3+

inhibits the Ca2+ influx (reviewed in Sect. 6.1). Thirdly, Al disturbs cytosolic

Ca2+ activity, thereby affecting the signal transduction pathways involved in root

growth. However, a disagreement exists in the literature about Al effects on

cytosolic Ca2+ homeostasis and its involvement in Al toxicity.

In many plant species, Al3+ toxicity caused elevation of cytoplasmic Ca2+

activity, with such elevation being higher in Al-sensitive than Al-tolerant genotypes

of the same species (Jones et al. 1998a; Zhang and Rengel 1999; Ma et al. 2002;

Rengel and Zhang 2003). This cytosolic Ca2+ rise would play a major role in the

expression of Al3+ toxicity because the cell-responsive elements may stop

responding to transient rises in cytosolic Ca2+ caused by a variety of signals (Rengel

and Zhang 2003). For example, an increase in cytosolic Ca2+ caused closure of
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plasmodesmata (Holdaway-Clarke et al. 2000) and inhibited plasmodesmata-

mediated cell-to-cell transport in Al-sensitive wheat roots (Sivaguru et al. 2000).

A good correlation was observed between Al-induced cytosolic Ca2+ rise (within

30 min) and root growth inhibition in wheat genotypes (Zhang and Rengel 1999),

leading to the hypothesis that disruption of Ca2+ homeostasis may be the primary

cause of Al3+ toxicity (Rengel and Zhang 2003). However, in a recent study on

Arabidopsis, an Al-induced cytoplasmic Ca2+ rise started in the mature (least

Al-sensitive) root zone (in 48 s) and proceeded towards the root cap (in 100 s).

Moreover, a Ca2+ rise did not differ among Al-resistant, Al-sensitive, and the wild-

type Arabidopsis roots (Rincon-Zachary et al. 2010). Similarly, a lack of correlation

between Al-induced growth inhibition and alteration in cytosolic Ca2+ in the root

hairs of Arabidopsis thaliana wild-type, sensitive, and tolerant genotypes (Jones

et al. 1998a) indicated that alteration in cytosolic Ca2+ may not be responsible for

growth inhibition. In some studies, such as in tobacco cell cultures, Al decreased the

cytosolic Ca2+ concentration along with growth inhibition (Jones et al. 1998b).

More detailed comparison (Plieth et al. 1999) of low-pH and combined low-pH/Al3+

effects on cytosolic Ca2+ dynamics using Arabidopsis thaliana indicated that intact
roots responded to low pH by a sustained elevation of cytosolic Ca2+. However, this

low-pH-mediated elevation in cytosolic Ca2+ activity was abolished in the presence

of Al, suggesting that Ca2+-mediated protection mechanism against low pH is

irreversibly inhibited by Al (Plieth et al. 1999). More information, especially during

the first few seconds of low-pH and Al3+ stress, is clearly needed to resolve many

discrepancies in the literature.

3.3 Mg2+ Homeostasis

Al3+ and Mg2+ ions have similar hydrated radii; hence, Al3+ ions compete with

Mg2+ ions for apoplastic binding, uptake via Mg2+-permeable cation channels and

transporters, and binding with enzymes, ATP, and anions (reviewed in Bose

et al. 2011a). As a result, Mg2+ transport and metabolism under Al3+ stress might

be impaired in all the compartments of the cell (Bose et al. 2011a). However, little

information is available on how Al3+ stress modulates the cytosolic free Mg2+

concentration. To shed light on this issue, intracellular free Mg2+ concentrations

were measured in the epidermal root cells of Arabidopsis genotypes using an

Mg2+-selective fluorescence dye (Magnesium GreenTM). Under control conditions

(pH 5.45), free cytosolic Mg2+ concentrations were in the range of 0.8–1.4 mM. The

Al-resistant mutant alr104 recorded the highest intracellular Mg2+ concentration

followed by als5 ~wild type> als3. The low-pH (4.2) stress did not alter the free

cytosolic Mg2+ concentration, whereas combined low-pH/50 mM Al stress raised

the intracellular Mg2+ concentration in all genotypes tested but to a different extent.

The Al-tolerant genotypes (wild-type Col-0 and alr104 mutant) recorded a higher

intracellular Mg2+ concentration than the Al-sensitive mutants (als3 and als5)
(Bose et al. 2013). The ability of Al-tolerant genotypes (Col-0 and alr104) to
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maintain the influx of Mg2+ ions into the root tissue from the external medium is the

primary reason for enhanced intracellular Mg2+ concentration in these genotypes.

Elevated intracellular Mg2+ might play a pivotal role in the maintenance of H+-

ATPase activity, acid phosphatase activity, organic acid synthesis and metabolism,

cytosolic Ca2+ dynamics, and reactive oxygen species homeostasis during Al3+

stress (Bose et al. 2011a; Chen and Ma 2013). Interestingly, exposure of

Arabidopsis wild-type (Col-0) roots to Al concentrations higher than 50 μM
(i.e. 100 and 500 μM AlCl3 treatments, pH 4.2) decreased the intracellular Mg2+

concentration in a dose-dependent manner. This decline is explained by the

decreased Mg2+ influx, or increased efflux, at 500 μMAl3+, caused by Al inhibition

of the plasma membrane cation channels (Bose et al. 2013). Above observations

suggest that the efficacy of phytotoxic Al to block Mg2+ transport through cation

channels is concentration and genotype dependent. More work is needed to identify

threshold Al3+ concentration for different crop species.

4 Conclusions

Low-pH and combined low-pH/Al3+ stresses differentially affect uptake and

homeostasis of hydrogen, phosphorus, potassium, calcium, and magnesium. Plants

with a superior capacity to take up hydrogen at the same time preventing cytoplas-

mic acidification along with enhanced uptake of phosphorus, calcium, and magne-

sium ions perform well under low-pH and combined low-pH/Al3+ stresses. In the

case of potassium, enhanced uptake may help plants resist low-pH stress, whereas

an enhanced potassium loss to balance charges with the organic acid anion exuda-

tion is the preferred strategy to combat the combined low-pH/Al3+ stress. Breeding

for enhanced nutrition of phosphorus, calcium, and magnesium under Al3+ stress

may be both possible and desirable approach to improve crop growth in acid soils.
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