
Bad Directions in Cryptographic Hash Functions

Daniel J. Bernstein1,2(B), Andreas Hülsing2(B), Tanja Lange2(B),
and Ruben Niederhagen2(B)

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science, Technische Universiteit

Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
andreas.huelsing@googlemail.com, tanja@hyperelliptic.org,

ruben@polycephaly.org

Abstract. A 25-gigabyte “point obfuscation” challenge “using security
parameter 60” was announced at the Crypto 2014 rump session; “point
obfuscation” is another name for password hashing. This paper shows
that the particular matrix-multiplication hash function used in the chal-
lenge is much less secure than previous password-hashing functions are
believed to be. This paper’s attack algorithm broke the challenge in just
19 minutes using a cluster of 21 PCs.

Keywords: Symmetric cryptography · Hash functions · Password hash-
ing · Point obfuscation · Matrix multiplication · Meet-in-the-middle
attacks · Meet-in-many-middles attacks

1 Introduction

Under normal circumstances, the system protected the passwords so that
they could be accessed only by privileged users and operating system
utilities. But through accident, programming error, or deliberate act,
the contents of the password file could occasionally become available to
unprivileged users. . . . For example, if the password file is saved on
backup tapes, then those backups must be kept in a physically secure
place. If a backup tape is stolen, then everybody’s password needs to be
changed. Unix avoids this problem by not keeping actual passwords any-
where on the system. —“Practical UNIX & Internet Security” [24,
p. 84], 2003

The full version of this paper is available on IACR eprint [13]. The numbering
between both versions is synchronized for easy reference. This work was supported by
the National Science Foundation under grant 1018836, by the Netherlands Organi-
sation for Scientific Research (NWO) under grant 639.073.005, and by the European
Commission through the ICT program under contract INFSO-ICT-284833 (PUF-
FIN). Permanent ID of this document: 7c4f480d7f090d69c58b96437b6011b1. Date:
2015.04.22.

c© Springer International Publishing Switzerland 2015
E. Foo and D. Stebila (Eds.): ACISP 2015, LNCS 9144, pp. 488–508, 2015.
DOI: 10.1007/978-3-319-19962-7 28

Bad Directions in Cryptographic Hash Functions 489

Consider a server that knows a secret password 11000101100100. The server
could check an input password against this secret password using the following
checkpassword algorithm (expressed in the Python language):

def checkpassword(input):
return int(input == "11000101100100")

But it is much better for the server to use the following checkpassword_hashed
algorithm (see the full version [13] for the definition of sha256hex):

def checkpassword_hashed(input):
return int(sha256hex(input) == (

"ba0ab099c882de48c4156fc19c55762e"
"83119f44b1d8401dba3745946a403a4f"

))

It is easy for the server to write down this checkpassword_hashed algorithm
in the first place: apply SHA-256 to the secret password to obtain the string
ba0...a4f, and then insert that string into a checkpassword_hashed template.
There is no reason to believe that these two algorithms compute identical func-
tions. Presumably SHA-256 has a second (and third and so on) preimage of SHA-
256(11000101100100), i.e., a string for which checkpassword_hashed returns
1 while checkpassword returns 0. However, finding any such string would be a
huge advance in SHA-256 cryptanalysis. The checkpassword_hashed algorithm
outputs 1 for input 11000101100100, just like checkpassword, and outputs 0
for all other inputs that have been tried, just like checkpassword.

The core advantage of checkpassword_hashed over checkpassword is that it
is obfuscated. If the checkpassword algorithm is leaked to an attacker then the
attacker immediately sees the secret password and seizes control of all resources
protected by that password. If checkpassword_hashed is leaked, the attacker
does not see the secret password without solving a SHA-256 preimage problem:
the loss of confidentiality does not immediately create a loss of integrity.

Obfuscation is a broad concept. There are many aspects of programs that one
might wish to obfuscate and that are not obfuscated in checkpassword_hashed:
for example, one can immediately see that the program is carrying out a SHA-
256 computation, and that (unless SHA-256 is weak) there are very few short
inputs for which the program prints 1. In the terminology of some recent papers
(see Section 2), what is obfuscated here is the key in a particular family of
“keyed functions”, but not the choice of family. Further comments on general
obfuscation appear below. We emphasize password obfuscation (also known as
“password hashing” or “point obfuscation”) because it is an important special
case: a widely deployed application using widely studied symmetric techniques.

1.1. State-of-the-art Password Hashing. See full version of this paper [13].

1.2. Matrix-Multiplication Password Hashing: the “Point Obfusca-
tion” Challenge. A “point obfuscation” challenge was announced by Apon,

490 D.J. Bernstein et al.

Huang, Katz, and Malozemoff [7] at the Crypto 2014 rump session. “Point obfus-
cation” is the same concept as password hashing: see, e.g., [34] (a hashed pass-
word is a “provably secure obfuscation of a ‘point function’ under the random
oracle model”).

The challenge consists of “an obfuscated 14-bit point function on Dropbox”: a
25-gigabyte program with the promise that the program returns 1 for one secret
14-bit input and 0 for all other 14-bit inputs. The goal of the challenge is to deter-
mine the secret 14-bit input: “learn the point and you win!” An accompanying
October 2014 paper [5] described the challenge as having “security parameter
60”, where “security parameter λ is designed to bound the probability of suc-
cessful attacks by 2−λ”.

We tried the 25-gigabyte program on a PC with the following relevant
resources: an 8-core 125-watt AMD FX-8350 “Piledriver” CPU (about $200),
32 gigabytes of RAM (about $400), and a 2-terabyte hard drive (about $100).
The program took slightly over 4 hours for a single input. A brute-force attack
using this program would obviously have been feasible but would have taken
over 65536 hours worst-case and over 32768 hours on average, i.e., an average of
nearly 4 years on the same PC, consuming 500 watt-years of electricity.

1.3. Attacking Matrix-Multiplication Password Hashing. In this paper
we explain how we solved the same challenge in just 19 minutes using a cluster
of 21 such PCs. The solution is 11000101100100; we reused this string above as
our example of a secret password. Of course, knowing this solution allowed us
to compress the original program to a much faster checkpassword algorithm.

The time for our attack algorithm against a worst-case input point would
have been just 34 minutes, about 5000 times faster than the original brute-force
attack, using under 0.2 watt-years of electricity. Our current software is slightly
faster: it uses just 29.5 minutes on 22 PCs, or 35.7 minutes on 16 PCs.

More generally, for an n-bit point function obfuscated in the same way, our
attack algorithm is asymptotically n4/2 times faster than a brute-force search
using the original program. This quartic speedup combines four linear speedups
explained in this paper, taking advantage of the matrix-multiplication structure
of the obfuscated program. Two of the four speedups (Section 3) are applicable
to individual inputs, and could have been integrated into the original program,
preserving the ratio between attack time and evaluation time; but the other two
speedups (Section 4) share work between separate inputs, making the attack
much faster than a simple brute-force attack.

See Section 1.6 for generalizations to more functions.

1.4. Matrix-Multiplication Password Hashing vs. State-of-the-art
Password Hashing. It is well known that a 2n-guess preimage attack against
a hash function, cipher, etc. does not cost exactly 2n times as much as a single
function evaluation: there are always ways to merge small amounts of initial work
across multiple inputs, and to skip small amounts of final work. See, for exam-
ple, [35] (“Reduce the DES encryption from 16 rounds to the equivalent of ≈9.5
rounds, by shortcircuit evaluation and early aborts”), [30] (“biclique” attacks
against various hash functions), and [14] (“biclique” attacks against AES).

Bad Directions in Cryptographic Hash Functions 491

However, one expects these speedups to become less and less noticeable
for functions that have more and more rounds. For any state-of-the-art cost-
C password-hashing function, the cost of a 2n-guess preimage attack is very
close to 2nC. The matrix-multiplication function is much weaker: the cost of our
attacks is far below 2n times the cost of the best method known to evaluate the
function.

Even worse, the matrix-multiplication approach has severe performance prob-
lems that end up limiting the number n of input bits. The “obfuscated point
function” includes 2n matrices, each matrix having n+2 rows and n+2 columns,
each entry having approximately 4((λ + 1)(n + 4) + 2)2 log2 λ bits; recall that
λ is the target “security parameter”. If λ is just 60 and n is above 36 then a
single obfuscated password does not fit on a 2-terabyte hard drive, never mind
the time and memory required to print and evaluate the function.

Earlier password-hashing functions handle a practically unlimited number
of input bits with negligible slowdowns; fit obfuscated passwords into far fewer
bits (a small constant times the target security level); allow the user far more
flexibility to select the amount of time and memory used to check a password;
and do not have the worrisome matrix structure exploited by our attacks.

1.5. Context: Obfuscating other Functions. Why, given the extensive hash-
ing literature, would anyone introduce a new password-obfuscation method with
unnecessary mathematical structure, obvious performance problems, and no
obvious advantages? To answer this question, we now explain the context of the
Apon–Huang–Katz–Malozemoff point-obfuscation challenge; we start by empha-
sizing that their goal was not to introduce a new point-obfuscation method.

Point functions are not the only functions that cryptographers obfuscate.
Consider, for example, the following fast algorithm to compute the pqth power
of an input mod pq, where p and q are particular prime numbers shown in the
algorithm:

def rsa_encrypt_unobfuscated(x):
p = 37975227936943673922808872755445627854565536638199
q = 40094690950920881030683735292761468389214899724061
pinv = 23636949109494599360568667562368545559934804514793
qinv = 15587761943858646484534622935500804086684608227153
return (qinv*q*pow(x,q,p) + pinv*p*pow(x,p,q)) % (p*q)

The following algorithm is not as fast but uses only the product pq:

def rsa_encrypt(x):
pq = int("15226050279225333605356183781326374297180681149613"

"80688657908494580122963258952897654000350692006139")
return pow(x,pq,pq)

These algorithms compute exactly the same function x �→ xpq mod pq, but the
primes p and q are exposed in rsa_encrypt_unobfuscated while they are obfus-
cated in rsa_encrypt. This obfuscation is exactly the reason that rsa_encrypt

492 D.J. Bernstein et al.

is safe to publish. In other words, RSA public-key encryption is an obfuscation
of a secret-key encryption scheme.

(Note that this size of pq is too small for serious security. The particular pq
shown here was introduced many years ago as the “RSA-100” challenge and was
factored in 1991. One should take larger primes p and q.)

In a FOCS 2013 paper [26], Garg, Gentry, Halevi, Raykova, Sahai, and Waters
proposed an obfuscation method that takes any fast algorithm A as input and
“efficiently” produces an obfuscated algorithm Obf(A). The security goal for
Obf is to be an “indistinguishability obfuscator”: this means that Obf(A) is
indistinguishable from Obf(A′) if A and A′ are fast algorithms computing the
same function.

For example, if Obf is an indistinguishability obfuscator, and if an
attacker can extract p and q from Obf(rsa_encrypt_unobfuscated), then
the attacker can also extract p and q from Obf(rsa_encrypt), since the two
obfuscations are indistinguishable; so the attacker can “efficiently” extract
p and q from pq, by first computing Obf(rsa_encrypt). Contrapositive:
if Obf is an indistinguishability obfuscator and the attacker cannot “effi-
ciently” extract p and q from pq, then the attacker cannot extract p and q
from Obf(rsa_encrypt_unobfuscated); i.e., Obf(rsa_encrypt_unobfuscated)
hides p and q at least as effectively as rsa_encrypt does.

Another example, returning to symmetric cryptography: It is reasonable to
assume that checkpassword and checkpassword_hashed compute the same
function if the input length is restricted to, e.g., 200 bits. This assumption,
together with the assumption that Obf is an indistinguishability obfuscator,
implies that Obf(checkpassword) hides a ≤200-bit secret password at least as
effectively as checkpassword_hashed does.

These examples illustrate the generality of indistinguishability obfuscation. In
the words of Goldwasser and Rothblum [28], efficient indistinguishability obfus-
cation is “best-possible obfuscation”, hiding everything that ad-hoc techniques
would be able to hide.

There are, however, two critical caveats. First, it is not at all clear that the
Obf proposal from [26] (or any newer proposal) will survive cryptanalysis. There
are actually two alternative proposals in [26]: the first relies on multilinear maps
[25] from Garg, Gentry, and Halevi, and the second relies on multilinear maps [23]
from Coron, Lepoint, and Tibouchi. In a paper [20] posted early November 2014
(a week after we announced our solution to the “point obfuscation” challenge),
Cheon, Han, Lee, Ryu, and Stehlé announced a complete break of the main
security assumption in [23], undermining a remarkable number of papers built
on top of [23]. The attack from [20] does not seem to break the application of [23]
to point obfuscation (since “encodings of zero” are not provided in this context),
but it illustrates the importance of leaving adequate time for cryptanalysis. A
followup work by Gentry, Halevi, Maji, and Sahai [27] extends the attack from
[20] to some settings where no “encodings of zero” below the “maximal level”
are available, although the authors of [27] state that “so far we do not have a
working attack on current obfuscation candidates”.

Bad Directions in Cryptographic Hash Functions 493

Second, the literature already contains much simpler, much faster, much
more thoroughly studied techniques for important examples of obfuscation, such
as password hashing and public-key encryption. Even if the new proposals in fact
provide indistinguishability obfuscation for more general functions, there is no
reason to believe that they can provide competitive security and performance for
functions where the previous techniques apply. We would expect the generality of
these proposals to damage the security-performance curve in a broad range of real
applications covered by the previous techniques, implying that these proposals
should be used only for applications outside that range.

The goal of Apon, Huang, Katz, and Malozemoff was to investigate “the prac-
ticality of cryptographic program obfuscation”. Their obfuscator is not limited
to point functions; it takes more general circuits as input. However, after per-
formance evaluation, they concluded that “program obfuscation is still far from
being deployable, with the most complex functionality we are able to obfuscate
being a 16-bit point function”; see [5, page 2]. They chose a 14-bit point function
as a challenge.

1.6. Attacking Matrix-Multiplication-Based Obfuscation of any Func-
tion. The real-world importance of password hashing justifies focusing on point
functions, but we have also adapted our attack algorithm to arbitrary n-bit-to-
1-bit functions. Specifically, we have considered the method explained in [5] to
obfuscate an arbitrary n-bit-to-1-bit function, and adapted our attack algorithm
to this level of generality. For the general case, with u pairs of w × w matrices
using n input bits, we save a factor of roughly uw/2 in evaluating each input,
and a further factor of approximately n/ log2 w in evaluating all inputs. The
n/ log2 w increases to n/2 for the standard input-bit order described in [5], but
for an arbitrary input-bit order our attack is still considerably faster than a
simple brute-force attack. See Section 8.

We comment that standard cryptographic hashing can be used to obfuscate
general functions. We suggest the following trivial obfuscation technique as a
baseline for future obfuscation challenges: precompute a table of hashes of the
inputs that produce 1; add fake random hashes to pad the table to size 2n (or a
smaller size T , if it is acceptable to reveal that at most T inputs produce 1); and
sort the table for fast lookups. This does not take polynomial time as n → ∞
(for T = 2n), but it nevertheless appears to be smaller, faster, and stronger than
all of the recently proposed matrix-multiplication-based obfuscation techniques
for every feasible value of n.

2 Review of the Obfuscation Scheme

Since the initial Obf proposal by Garg, Gentry, Halevi, Raykova, Sahai, and
Waters [26] a lot of research was spent on finding applications and improving the
proposed scheme. The challenge from [5] which we broke uses the relaxed-matrix-
branching-program method by Ananth, Gupta, Ishai, and Sahai [4] to generate
a size-reduced obfuscated program and combines it with the integer-based mul-
tilinear map (CLT) due to Coron, Lepoint, and Tibouchi [23]. As mentioned in

494 D.J. Bernstein et al.

Section 1, the recent CLT attack by Cheon, Han, Lee, Ryu, and Stehlé [20] relies
on “encodings of zero” and therefore does not apply to this point-obfuscation
scheme. Our attack will also work for other matrix-multiplication-type obfusca-
tion schemes with a similar structure, and in particular we see no obstacle to
applying the same attack strategy with the Garg–Gentry–Halevi [25] multilinear
map in place of CLT.

Most of the Obf literature does not state concrete parameters and does not
present computer-verified examples. The first implementations, first examples,
and first challenge were from Apon, Huang, Katz, and Malozemoff in [5], [6],
and [7], providing an important foundation for quantifying and verifying attack
performance.

The challenge given in [5] is an obfuscation of a point function, so we first give
a self-contained description of these obfuscated point-function programs from the
attacker’s perspective; we then comment briefly on more general functions. For
details on how the matrices below are constructed, we refer the reader to [4],
[23], and of course [5]; but these details are not relevant to our attack.

2.1. Obfuscated Point Functions. A point function is a function on {0, 1}n

that returns 1 for exactly one secret vector of length n and 0 otherwise. The
obfuscation scheme starts with this secret vector and an additional security
parameter λ related to the security of the multilinear map.

The obfuscated version of the point function is given by a list of 2n public
(n + 2) × (n + 2) matrices Bb,k for 1 ≤ b ≤ n and k ∈ {0, 1} with integer entries;
a row vector s of length n + 2 with integer entries; a column vector t of length
n+2 with integer entries; an integer pzt (a “zero test” value, not to be confused
with an “encoding of zero”); and a positive integer q. All of the entries and pzt
are between 0 and q − 1 and appear random. The number of bits of q has an
essentially linear impact upon our attack cost; [5] chooses the number of bits of
q to be approximately 4((λ + 1)(n + 4) + 2)2 log2 λ for multilinear-map security
reasons.

The obfuscated program works as follows:

• Take as input an n-bit vector x = (x[1], x[2], . . . , x[n]).
• Compute the integer matrix A = B1,x[1]B2,x[2] · · · Bn,x[n] by successive

matrix multiplications.
• Compute the integer y(x) = sAt by a vector-matrix multiplication and a dot

product.
• Compute y(x)pzt and reduce mod q to the range [−(q − 1)/2, (q − 1)/2].
• Multiply the remainder by 22λ+11, divide by q, and round to the nearest

integer. This result is by definition the matrix-multiplication hash of x.
• Output 0 if this hash is 0; output 1 otherwise.

We have confirmed these steps against the software in [6].
The matrix-multiplication hash here is reminiscent of “Fast VSH” from [21].

Fast VSH hashes a block of input as follows: use input bits to select precomputed
primes from a table, multiply those primes, and reduce mod something. The
matrix-multiplication hash hashes a block of input as follows: use input bits to

Bad Directions in Cryptographic Hash Functions 495

select precomputed matrices from a table, multiply those matrices, and reduce
mod something. The matrices are secretly chosen with additional structure, but
we do not use that structure in our attack.

2.2. Initial Security Analysis. A straightforward brute-force attack deter-
mines the secret vector by computing the matrix-multiplication hash of all 2n

vectors x. Of course, the computation stops once a correct hash is found.
Unfortunately [5] and [7] do not include timings for λ = 60 and n = 14, so

we timed the software from [6] on one of our PCs and saw that each evaluation
took 245 minutes, i.e., 245.74 cycles at 4GHz. As the code automatically used
all 8 cores of the CPU, this leads to a total of 248.74 cycles per evaluation.
A brute-force computation using this software would take 214 · 248.74 = 262.74

cycles worst-case, and would take more than 260 cycles for 85% of all inputs.
For comparison, recall that the CLT parameters were designed to just barely
provide 2λ = 260 security, although the time scale for the 260 here is not clear.
If the time scale of the security parameter is close to one cycle then the cost of
these two attacks is balanced.

In their Crypto 2014 rump-session announcement [8], the authors declared
this brute-force attack to be infeasible: “The great part is, it’s only 14 bits, so
you think you can try all 2 to the 14 points, but it takes so long to evaluate that
it’s not feasible.” The authors concluded in [5, Section 5] that they were “able
to obfuscate some ‘meaningful’ programs” and that “it is important to note that
the fact that we can produce any ‘useful’ obfuscations at all is surprising”.

We agree that a 500-watt-year computation is a nonnegligible investment of
computer time (although we would not characterize it as “infeasible”). However,
in Section 3 we show how to make evaluation two orders of magnitude faster,
bringing a brute-force attack within reach of a small computer cluster in a matter
of days. Furthermore, in Section 4 we present a meet-in-the-middle attack that
is another two orders of magnitude faster.

2.3. Obfuscation of General Functions and Keyed Functions. The obfus-
cation scheme in [4] transforms any function into a sequence of matrix multipli-
cations. At every multiplication the matrix is selected based on a bit of the input
x but usually the bits of x are used multiple times. For general circuits of length
� the paper constructs an oblivious relaxed matrix branching program of length
n� which cycles � times through the n entries of x in sequence to select from 2n�
matrices. In that case most of the matrices are obfuscated identity matrices but
the regular access pattern stops the attacker from learning anything about the
function.

Sometimes (as in the password-hashing example) the structure of the circuit
is already public, and all that one wants to obfuscate is a secret key. In other
words, the circuit computes fz(x) = φ(z, x) for some secret key z, where φ is
a publicly known branching program; the obfuscation needs to protect only the
secret key z, and does not need to hide the function φ. This is called “obfuscation
of keyed functions” in [4]. For this class of functions the length of the obfuscated
program equals the length of the circuit for φ; the bits of x are used (and reused
as often as necessary) in a public order determined by φ.

496 D.J. Bernstein et al.

The designer can drive up the cost of brute-force attacks by including addi-
tional matrices as in the general case, but this also increases the obfuscation
time, obfuscated-program size, and evaluation time.

3 Faster Algorithms for One Input

This section describes two speedups to the obfuscated programs described in
Section 2. These speedups are important for constructive as well as destructive
applications.

Combining these two ideas reduced our time to evaluate the obfuscated point
function for a single input from 245 minutes to under 5 minutes (4 minutes
51 seconds), both measured on the same 8-core CPU. The authors of [6] have
recently included these speedups in their software, with credit to us.

3.1. Cost Analysis for the Original Algorithm. Schoolbook multiplication
of the two (n+2)×(n+2) matrices B1,x[1] and B2,x[2] uses (n+2)3 multiplications
of matrix entries. Similar comments apply to all n − 1 matrix multiplications,
for a total of (n − 1)(n + 2)3 multiplications of matrix entries.

This quartic operation count understates the asymptotic complexity of the
algorithm for two reasons, even when the security parameter λ is treated as a
constant. The first reason is that the number of bits of q grows quadratically
with n. The second reason is that the entries in B1,x[1]B2,x[2] have about twice as
many bits as the entries in the original matrices, the entries in B1,x[1]B2,x[2]B3,x[3]

have about three times as many bits, etc. The paper [5] reports timings for point
functions with n ∈ {8, 12, 16} for security parameter 52, and in particular reports
microbenchmarks of the time taken for each of the matrix products, starting with
the first; these microbenchmarks clearly show the slowdown from one product
to the next, and the paper explains that “each multiplication increases the mul-
tilinearity level of the underlying graded encoding scheme and thus the size of
the resulting encoding”.

We now account for the size of the matrix entries. Recall that state-of-the-
art multiplication techniques (see, e.g., [11]) take time essentially linear in b,
i.e., b1+o(1), to multiply b-bit integers. The original entries have size quadratic
in n, and the products quickly grow to size cubic in n. More precisely, the final
product A = B1,x[1] · · · Bn,x[n] has entries bounded by (n + 2)n−1(q − 1)n and
typically larger than (q − 1)n; similar bounds apply to intermediate products.
More than n/2 of the products have typical entries above (q − 1)n/2, so the
multiplication time is dominated by integers having size cubic in n.

The total time to compute A is n7+o(1) for constant λ, equivalent to n5+o(1)

multiplications of integers on the scale of q. This time dominates the total time
for the algorithm.

3.2. Intermediate Reductions Mod q. We do better by limiting the growth
of the elements in the computation. The final result y(x)pzt is in Z/q, the ring of
integers mod q, and is obtained by a sequence of multiplications and additions,
so we are free to reduce mod q at any moment in the computation. Any of the

Bad Directions in Cryptographic Hash Functions 497

initial integer multiplications has inputs at most q − 1; we allow the temporary
values to grow to at most (n + 2)(q − 1)2 by computing the sum of the products
for one entry and then reduce mod q. Thus any future multiplication also has
its inputs at most q − 1.

State-of-the-art division techniques take time within a constant factor of
state-of-the-art multiplication techniques, so (n + 2)2 reductions mod q take
asymptotically negligible time compared to (n+2)3 multiplications. The number
of bits in each intermediate integer drops from cubic in n to quadratic in n.

More precisely, the asymptotic speedup factor is n/2, since the original mul-
tiplication inputs had on average about n/2 times as many bits as q. We observe
a smaller speedup factor for concrete values of n, mainly because of the overhead
for the extra divisions.

The total time to compute A mod q is n6+o(1) for constant λ, dominated by
(n − 1)(n + 2)3 = n4 + 5n3 + 6n2 − 4n − 8 multiplications of integers bounded
by q, inside (n − 1)(n + 2)2 = n3 + 3n2 − 4 dot products mod q.

3.3. Matrix-Vector Multiplications. We further improve the computation
by reordering the operations used to compute y(x): specifically, instead of com-
puting A, we compute y(x) =

(· · · ((sB1,x[1])B2,x[2]

) · · · Bn,x[n]

)
t. This sequence

of operations requires n vector-matrix products and a final vector-vector multi-
plication.

This combines straightforwardly with intermediate reductions mod q as
above. The total time to compute y(x) mod q is n5+o(1), dominated by n(n +
2) + 1 = (n + 1)2 dot products mod q.

4 Faster Algorithms for Many Inputs

A brute-force attack iterates through the whole input range and computes the
evaluation for each possible input until the result of the evaluation is 1 and
thus the correct input has been found. In terms of complexity our improvements
from Section 3 reduced the cost of brute-forcing an n-bit point function from
time n7+o(1)2n to time n5+o(1)2n for constant λ, dominated by (n + 1)22n dot
products mod q. This algorithm is displayed in Figure 4.1 of [13].

This section presents further reductions to the complexity of the attack.
These share computations between evaluations of many inputs and have no
matching speedups on the constructive side (which usually only evaluates at a
single point at once and in any case cannot be expected to have related inputs).

4.2. Reusing Intermediate Products. Recall that Section 3 computes y(x) =
sB1,x[1] · · · Bn,x[n]t mod q by multiplying from left to right: the last two steps
are to multiply the vector sB1,x[1] · · · Bn−1,x[n−1] by Bn,x[n] and then by t.

Notice that this vector does not depend on the choice of x[n]. By computing
this vector, multiplying the vector by Bn,0 and then by t, and multiplying the
same vector by Bn,1 and then by t, we obtain both y(x[1], . . . , x[n − 1], 0) and
y(x[1], . . . , x[n − 1], 1). This saves almost half of the cost of the computation.

Similarly, we need only two computations of sB1,x[1] for the two choices of
x[1]; four computations of sB1,x[1]B2,x[2] for the four choices of (x[1], x[2]); etc.

498 D.J. Bernstein et al.

Overall there are 2 + 4 + 8 + · · · + 2n = 2n+1 − 2 vector-matrix multiplications
here, plus 2n final multiplications by t, for a total of (n + 2)(2n+1 − 2) + 2n =
(2n + 5)2n − 2(n + 2) dot products mod q.

To minimize memory requirements, we enumerate x in lexicographic order,
maintaining a stack of intermediate products. We reuse products on the stack to
the extent allowed by the common prefix between x and the previous x. In most
cases this common prefix is almost the entire stack. On average slightly fewer
than two matrix-vector products need to be recomputed for each x. See Figure
4.3 of [13] for a recursive version of this algorithm.

4.4. A Meet-in-the-middle Attack. To do better we change the order of
matrix multiplication yet again, separating � “left” bits from n − � “right” bits:

y(x) = (sB1,x[1] · · · B�,x[�])(B�+1,x[�+1] · · · Bn,x[n]t).

We exploit this separation to store and reuse some computations. Specifically,
we precompute a table of “left” products

L[x[1], . . . , x[�]] = sB1,x[1] · · · B�,x[�]

for all 2� choices of (x[1], . . . , x[�]). The main computation of all y(x) works as
follows: for each choice of (x[� + 1], . . . , x[n]), compute the “right” product

R[x[� + 1], . . . , x[n]] = B�+1,x[�+1] · · · Bn,x[n]t,

and then multiply each element of the L table by this vector.
Computing a single left product sB1,x[1] · · · B�,x[�] from left to right, as in

Section 3, takes � vector-matrix products, i.e., �(n + 2) dot products mod q.
Overall the precomputation uses �(n + 2)2� dot products mod q.

Computing a single right product B�+1,x[�+1] · · · Bn,x[n]t from right to left
(starting from t) takes n− � matrix-vector products, for a total of (n− �)(n+2)
dot products mod q. The outer loop in the main computation therefore uses
(n − �)(n + 2)2n−� dot products mod q in the worst case. The inner loop in the
main computation, computing all y(x), uses just 2n dot products mod q in total
in the worst case.

The total number of dot products mod q in this algorithm, including precom-
putation, is �(n+2)2�+(n−�)(n+2)2n−�+2n. In particular, for � = n/2 (assum-
ing n is even), the number of dot products mod q simplifies to n(n+2)2n/2 +2n.

For a traditional meet-in-the-middle attack, the outer loop of the main com-
putation simply looks up each result in a precomputed sorted table. Our notion
of “meet” is more complicated, and requires inspecting each element of the table,
but this is still a considerable speedup: each inspection is simply a dot product,
much faster than the vector-matrix multiplications used before.

We comment that taking � logarithmic in n produces almost the same
speedup with polynomial memory consumption. More precisely, taking � close
to 2 log2 n means that 2n−� is smaller than 2n by a factor roughly n2, so the
term (n − �)(n + 2)2n−� is on the same scale as 2n. The table then contains
roughly n2 vectors, similar size to the original 2n matrices. Taking slightly larger

Bad Directions in Cryptographic Hash Functions 499

� reduces the term (n − �)(n + 2)2n−� to a smaller scale. A similar choice of �
becomes important for speed in our attack on obfuscations of general functions
in Section 8.2.

4.5. Combining the Ideas. One can easily reuse intermediate products in
the meet-in-the-middle attack. See Figure 4.6 of [13]. This reduces the precom-
putation to 2�+1 − 2 vector-matrix multiplications, i.e., (n + 2)(2�+1 − 2) dot
products mod q. It similarly reduces the outer loop of the main computation to
(n + 2)(2n−�+1 − 2) dot products mod q.

The total number of dot products mod q in the entire algorithm is now
(n + 2)(2�+1 + 2n−�+1 − 4) + 2n. For example, for � = n/2, the number of dot
products mod q simplifies to 4(n + 2)(2n/2 − 1) + 2n.

This is not much smaller than the meet-in-the-middle attack without reuse:
the dominant term is the same 2n. However, as above one can take much smaller
� to reduce memory consumption. The reuse now allows � to be taken almost as
small as log2 n without significantly compromising speed, so the precomputed
table is now much smaller than the original 2n matrices.

If memory consumption is not a concern then one should compute both an L
table and an R table, interleaving the computations of the tables and obtaining
each LR product as soon as both L and R are known. For equal-size tables this
means computing L0, R0, L0R0, L1, L1R0, R1, L0R1, L1R1, etc. This order
of operations does not improve worst-case performance, but it does improve
average-case performance. The same improvement has been previously applied
to other meet-in-the-middle attacks: for example, Pollard applied this improve-
ment to Shanks’s “baby-step giant-step” discrete-logarithm method. Compare
[38, pages 419–420] to [36, page 439, top].

5 Parallelization

We implemented our attack for shared-memory systems using OpenMP and for
cluster systems using MPI. In general, brute-force attacks are embarrassingly
parallel, i.e., the search space can be distributed over the computing nodes with-
out any need for communication, resulting in a perfectly scalable parallelization.
However, for this attack, some computations are shared between consecutive iter-
ations. Therefore, some cooperation and communication are required between
computing nodes.

5.1. Precomputation. Recall that the precomputation step computes all 2�

possible cases for the “left” � bits of the whole input space. A non-parallel
implementation first computes � vector-matrix multiplications for sB1,0 · · · B�,0

and stores the first �−1 intermediate products on a stack. As many intermediate
products as possible are reused for each subsequent case.

For a shared-memory system, all data can be shared between the threads.
Furthermore, the vector-matrix multiplications expose a sufficient amount of
parallelism such that the threads can cooperate on the computation of each
multiplication. There is some loss in parallel efficiency due to the need for syn-
chronization and work-share imbalance.

500 D.J. Bernstein et al.

For a cluster system, communication and synchronization of such a workload
distribution would be too expensive. Therefore, we split the input range for the
precomputation between the cluster nodes, compute each section of the precom-
puted table independently, and finally broadcast the table entries to all cluster
nodes. For simplicity, we split the input range evenly which results in some work-
load imbalance. (On each node, the workload is distributed as described above
over several threads to use all CPU cores on each node.) This procedure has some
loss in parallel efficiency due to the fact that each cluster node separately per-
forms k vector-matrix multiplications for the first precomputation in its range,
due to some workload imbalance, and due to the final all-to-all communication.

5.2. Main Computation. For simplicity, we start the main computation once
the whole precomputed table L is available. Recall that a non-parallel imple-
mentation of the main computation first computes the vector R[0, . . . , 0] =
B�+1,0 · · · Bn,0t using n − � matrix-vector multiplications, and multiplies this
vector by all 2� table entries. It then moves to other possibilities for the “right”
n− � bits, reusing intermediate products in a similar way to the precomputation
and multiplying each resulting vector R[. . .] by all 2� table entries.

For a shared-memory system, the computations of R[. . .] are distributed
between the threads the same way as for the precomputation. However, vector-
vector multiplication does not expose as much parallelism as vector-matrix
multiplication. Therefore, we distribute over the threads the 2� independent
vector-vector multiplications of each of the 2� table entries with R[0, . . . , 0]. As
in the parallelization of precomputation, there is some loss of parallel efficiency
due to synchronization and work-share imbalance for the vector-matrix mul-
tiplications and some loss due to work-share imbalance for the vector-vector
multiplications.

For a cluster system we again cannot efficiently distribute the workload of one
vector-matrix multiplication over several cluster nodes. Therefore, we distribute
the search space evenly over the cluster nodes and let each cluster node compute
its share of the workload independently. This approach creates some redundant
work because each cluster node computes its own initial R[. . .] using n−� matrix-
vector multiplications.

6 Performance Measurements

We used 22 PCs in the Saber cluster [12] for the attack. Each PC is of the type
described earlier, including an 8-core CPU. The PCs are connected by a gigabit
Ethernet network. Each PC also has two GK110 GPUs but we did not use these
GPUs.

6.1. First Break of the Challenge. We implemented the single-input opti-
mizations described in Section 3 and used 20 PCs to compute 214 point evalua-
tions for all possible inputs. This revealed the secret point 11000101100100 after
about 23 hours. The worst-case runtime for this approach on these 20 PCs is
about 52 hours for checking all 214 possible input points. On 18 October 2014

Bad Directions in Cryptographic Hash Functions 501

Table 6.4. Measurements of real time actually consumed by various components of
complete attack, starting from announcement of challenge

Attack component Real time

Initial procrastination a few days
First attempt to download challenge (failed) 82 minutes
Subsequent procrastination 40 days and 40 nights
Fourth attempt to download challenge (succeeded) about an hour
Original program [6] evaluating one input 245 minutes
Original program evaluating all inputs on one computer (extrapolated) 7.6 years
Copying challenge to cluster (without UDP broadcasts) about an hour
Reading challenge from disk into RAM 2.5 minutes
Our faster program evaluating one input 4.85 minutes
First successful break of challenge on 20 PCs 23 hours
Further procrastination (“this is fast enough”) about half a week
Our faster program evaluating all inputs on 21 PCs 34 minutes
Second successful break of challenge on 21 PCs 19 minutes
Our current program evaluating all inputs on 1 PC 444.2 minutes
Our current program evaluating all inputs on 22 PCs 29.5 minutes
Time for an average input point on 22 PCs 19.9 minutes
Successful break of challenge on 22 PCs 17.5 minutes

we sent the authors of [5] the solution to the challenge, and a few hours later
they confirmed that the solution was correct.

6.2. Second Break of the Challenge. We implemented the multiple-
input optimizations described in Section 4 and the parallelization described in
Section 5. Our optimized attack implementation found the input point in under
19 minutes on 21 PCs; this includes the time to precompute a table L of size 27.
The worst-case runtime of the attack for checking all 214 possible input points
is under 34 minutes on 21 PCs.

6.3. Additional Latency. Obviously “19 minutes” understates the real time
that elapsed between the announcement of the challenge (19 August 2014) and
our solution of the challenge with our second program (25 October 2014). See
Table 6.4 for a broader perspective.

The largest deterrent was the difficulty of downloading 25 gigabytes. When-
ever a connection broke, the server would insist on starting from the beginning
(“HTTP server doesn’t seem to support byte ranges”), presumably because the
server stores all files in a compressed format that does not support random
access. The same restriction also meant that we could not download different
portions of the file in parallel.

To truly minimize latency we would have had to overlap the download of the
challenge, the broadcast of the challenge to the cluster, and the computation,
and of course our optimizations and software would have had to be ready first.
In this context, the precompute-L-table algorithm in Section 4 has a latency

502 D.J. Bernstein et al.

advantage compared to a bit-reversed algorithm that precomputes an R table
instead of an L table: the portion of the input relevant to L is available sooner
than the portion of the input relevant to R.

6.5. Timings of Various Software Components. We have put the latest
version of our software online at http://obviouscation.cr.yp.to. We applied this
software to the same challenge on 22 PCs. We have applied the latest version of
our software to the same challenge on 22 PCs. The software took a total time of
1769 seconds (29.5 minutes) to check all 214 input points. An average input point
was checked within 1191 seconds (19.9 minutes). The secret challenge point was
found within 1048 seconds (17.5 minutes).

The rest of this section describes the time taken by various components of
this computation.

Each vector-matrix multiplication took 15.577 s on average (15.091 minimum,
16.421 maximum), using all eight cores jointly. For comparison, on a single core,
a vector-matrix multiplication requires about 115 s. Therefore, we achieve a par-
allel efficiency of 115s/8

15.577s ≈ 92% for parallel vector-matrix multiplication.
Each y computation took 8.986 s on average (7.975 minimum, 9.820 max-

imum), using a single core. Each y computation consists of one vector-vector
multiplication, one multiplication by pzt (which we could absorb into the pre-
computed table, producing a small speedup), and one reduction mod q.

On a single machine (no MPI parallelization), after a reboot to flush the
challenge from RAM, the timing breaks down as follows:

1. Loading the matrices for “left” bit positions: 83.999 s.
2. Total precomputation of 27 = 128 table entries: 4055.408 s.

(a) Computing the first � = 7 vector-matrix products: 107.623 s.
4. Loading the matrices for “right” bit positions: 78.490 s.
5. Total computation of all 214 evaluations: 22518.900 s.

(a) Computing the first n − � = 7 matrix-vector products: 109.731 s.

Overall total runtime: 26654 s (444.2 minutes). From these computations, steps
1, 2a, 4, and 5a are not parallelized for cluster computation. The total timing
breakdown on 22 PCs, after a reboot of all PCs, is as follows:

1. Loading the matrices for “left” bit positions: 89.449 s average (75.786 on
the fastest node, 104.696 on the slowest node). With more effort we could
have overlapped most of this loading (and the subsequent loading) with
computation, or skipped all disk copies by keeping the matrices in RAM.

2. Total precomputation of 27 = 128 table entries: 253.346 s average (217.893
minimum, 295.999 maximum).
(a) Computing the first � = 7 vector-matrix products: 107.951 s average

(107.173 minimum, 109.297 maximum).
3. All-to-all communication: 153.591 s average (100.848 minimum, 199.200

maximum); i.e., about 53 s average idle time for the busier nodes to catch
up, followed by about 101 s of communication. With more effort we could
have overlapped most of this communication with computation.

http://obviouscation.cr.yp.to

Bad Directions in Cryptographic Hash Functions 503

4. Loading the matrices for “right” bit positions: 85.412 s average (73.710 min-
imum, 97.526 maximum).

5. Total computation of all 214 evaluations: 1097.680 s average (942.981 mini-
mum, 1169.520 maximum).
(a) Computing the first n − � = 7 matrix-vector products: 108.878 s average

(107.713 minimum, 110.001 maximum).
6. Final idle time waiting for all other nodes to finish computation: 80.277 s

average (0.076 minimum, 80.277 maximum).

Overall total runtime, including MPI startup overhead: 1769 s (29.5 minutes).
The overall parallel efficiency of the cluster parallelization thus is 26654 s/22

1769 s ≈
68%. Steps 1, 2a, 3, 4, and 5a, totaling 545.281 s, are those parts of the
computation that contain parallelization overhead (in particular the commu-
nication time in step 3 is added compared to the single-machine case). Remov-
ing these steps from the efficiency calculation results in a parallel efficiency of
(26654 s−380 s)/22

1769 s−545 s ≈ 98%, which shows that those steps are responsible for almost
all of the loss in parallel efficiency.

7 Further Speedups — see [13]

8 Generalizing the Attack Beyond Point Functions

This section looks beyond point functions: it considers the general obfuscation
method explained in [5] for any program. Recall from Section 2 that for general
programs the number of pairs of matrices, say u, is no longer tied to the number
n of input bits: usually each input bit is used multiple times. Furthermore, each
matrix is w × w and each vector has length w for some w > n, where the choice
of w depends on the function and is no longer required to be n + 2.

The speedups from Section 3 rely only on the general matrix-multiplication
structure, not on the pattern of accessing input bits. Reducing intermediate
results mod q saves a factor approximately u/2. Using vector-matrix multiplica-
tion rather than matrix-matrix multiplication saves a factor w.

However, the attacks from Section 4 rely on having each input bit used exactly
once. We cannot simply reorder the matrices to bring together the uses of an
input bit: matrix multiplication is not commutative. Usually many of the matri-
ces are obfuscated identity matrices, but the way the matrices are randomized
prevents these matrices from being removed or reordered; see [5] for details.

This section explains two attacks that apply in more generality. The first
attack allows cycling through the input bits any number of times, and saves
a factor approximately n/2 compared to brute force. The second attack allows
using and reusing input bits any number of times in any pattern, and saves a
factor approximately n/(2 log2 w) compared to brute force. The first attack is
what one might call a “meet-in-many-middles” attack; the second attack does not
involve precomputations. Both attacks exploit the idea of reusing intermediate
products, sharing computations between adjacent inputs; both attacks can be
parallelized by ideas similar to Section 5.

504 D.J. Bernstein et al.

8.1. Speedup n/2 for Cycling Through Input Bits. Our first attack applies
to any circuit obfuscated as explained in [5, Section 2.2.1]. The obfuscated circuit
is constructed to “cycle through each of the input bits x1, x2, . . . , xn in order, m
times”, using u = mn pairs of matrices. In other words, y(x) is defined as

s(B1,x[1] · · · Bn,x[n])(Bn+1,x[1] · · · B2n,x[n]) · · · (B(m−1)n+1,x[1] · · · Bmn,x[n])t.

Evaluating y(x) for one x from left to right takes mn vector-matrix multipli-
cations and 1 vector-vector multiplication, i.e., uw + 1 dot products mod q. A
straightforward brute-force attack thus takes (uw + 1)2n dot products mod q.

One can split the sequence of mn matrices at some position �, and carry out
a meet-in-the-middle attack as in Section 4. However, this produces at most a
constant-factor speedup once m ≥ 2: either the precomputation has to compute
products at most of the positions for all 2n inputs, or the main computation
has to compute products at most of the positions for all 2n inputs, or both,
depending on �.

We do better by splitting the sequence of input bits at some position �. This
means grouping the matrix positions into two disjoint “left” and “right” sets as
follows, splitting each input cycle:

y(x) =
(
sB1,x[1] · · · B�,x[�]

)(
B�+1,x[�+1] · · · Bn,x[n]

)

(
Bn+1,x[1] · · · Bn+�,x[�]

)(
Bn+�+1,x[�+1] · · · B2n,x[n]

)

...
(
B(m−1)n+1,x[1] · · · B(m−1)n+�,x[�]

)(
B(m−1)n+�+1,x[�+1] · · · Bmn,x[n]t

)

= L1[x[1], . . . , x[�]]R1[x[� + 1], . . . , x[n]]
L2[x[1], . . . , x[�]]R2[x[� + 1], . . . , x[n]]

...
Lm[x[1], . . . , x[�]]Rm[x[� + 1], . . . , x[n]],

where

L1[x[1], . . . , x[�]] = sB1,x[1] · · · B�,x[�],

Li[x[1], . . . , x[�]] = B(i−1)n+1,x[1] · · · B(i−1)n+�,x[�] for 2 ≤ i ≤ m,

Ri[x[� + 1], . . . , x[n]] = B(i−1)n+�+1,x[�+1] · · · Bin,x[n] for 1 ≤ i ≤ m − 1,

Rm[x[� + 1], . . . , x[n]] = B(m−1)n+�+1,x[�+1] · · · Bmn,x[n]t.

We exploit this grouping as follows. We use 2�+1 − 2 vector-matrix multiplica-
tions to precompute a table of the vectors L1[x[1], . . . , x[�]] for all 2� choices
of x[1], . . . , x[�], as in Section 4. Similarly, for each i ∈ {2, . . . ,m}, we use
2�+1 − 4 matrix-matrix multiplications to precompute a table of the matri-
ces Li[x[1], . . . , x[�]] for all 2� choices of x[1], . . . , x[�]. The tables use space for
(w + (m − 1)w2)2� integers mod q.

After this precomputation, the outer loop of the main computation runs
through each choice of x[� + 1], . . . , x[n], computing the corresponding matrices

Bad Directions in Cryptographic Hash Functions 505

R1[. . .], . . . , Rm−1[. . .] and vector Rm[. . .]. The inner loop runs through each
choice of x[1], . . . , x[�], computing each y(x) by multiplying L1, R1, . . . , Lm, Rm;
each x here takes 2m− 2 vector-matrix multiplications and 1 vector-vector mul-
tiplication.

Overall the precomputation costs ((m − 1)w2 + w)(2�+1 − 2) − 2(m − 1)w2

dot products mod q; the outer loop of the main computation costs ((m−1)w2 +
w)(2n−�+1 − 2) − 2(m − 1)w2 dot products mod q; and the inner loop costs
((2m − 2)w + 1)2n dot products mod q.

In particular, taking � = n/2 (assuming as before that n is even) simplifies
the total cost to 4w(2n/2 − 1) + 2n for m = 1, exactly as in Section 4, and
4w((m − 1)w + 1)(2n/2 − 1) + ((2m − 2)w + 1)2n − 4(m − 1)w2 for general m.
Recall that brute force costs (uw+1)2n = (mnw+1)2n. For large n, large w, and
m ≥ 2, the asymptotically dominant term has dropped from mnw2n to 2mw2n,
saving a factor of n/2.

The same asymptotic savings appears with much smaller �, almost as small
as log2 w. Beware that this does not make the tables asymptotically smaller than
the original 2mn matrices for m ≥ 2: most of the table space here is consumed
by matrices rather than vectors.

8.2. Speedup n/ log2 w for any Order of Input Bits. One can try to spoil
the above attack by changing the order of input bits. A slightly different order
of input bits, rotating positions in each round, is already stated in [4, Section 3,
Claim 2, final formula], but it is easy to adapt the attack to this order. It is
more difficult to adapt the attack to an order chosen randomly, or an order that
combinatorially avoids keeping bits together. Varying the input order is not a
new idea: see, e.g., the compression functions inside MD5 [37] and BLAKE [10].
Many other orders of input bits also arise naturally in “keyed” functions; see
Section 2.

The general picture is that y(x) is defined by the formula

y(x) = sB1,x[inp(1)]B2,x[inp(2)] · · · Bu,x[inp(u)]t

for some constants inp(1), inp(2), . . . , inp(u) ∈ {1, 2, . . . , n}. As a first unification
we multiply s into B1,0 and into B1,1, and then multiply t into Bu,0 and into Bu,1.
Now B1,0, B1,1, Bu,0, Bu,1 are vectors, except that they are integers if u = 1; and
y(x) is defined by

y(x) = B1,x[inp(1)]B2,x[inp(2)] · · · Bu,x[inp(u)].

We now explain a general recursive strategy to evaluate this formula for all
inputs without exploiting any particular pattern in inp(1), inp(2), . . . , inp(u).
The strategy is reducing the number of variable bits in x by one in each iteration.

Assume that not all of inp(1), inp(2), . . . , inp(u) are equal to n. Substitute
x[n] = 0 into the formula for y(x). This means, for each i with inp(i) = n in
turn, eliminating the expression “Bi,x[n]” as follows:

• multiply Bi,0 into Bi+1,0 and into Bi+1,1 if i < u;
• multiply Bi,0 into Bi−1,0 and into Bi−1,1 if i = u;

506 D.J. Bernstein et al.

• set Bi ← Bi+1, then Bi+1 ← Bi+2, . . . , then Bu−1 ← Bu;
• reduce u to u − 1.

Recursively evaluate the resulting formula for all choices of x[1], . . . , x[n − 1].
Then do all the same steps again with x[n] = 1 instead of x[n] = 0.

More generally, one can recurse on the two choices of x[b] for any b. It is
most efficient to recurse on the most frequently used index b (or one of the most
frequent indices b if there are several), since this minimizes the length of the
formula to handle recursively. This is equivalent to first relabeling the indices so
that they are in nondecreasing order of frequency, and then always recursing on
the last bit.

Once n is sufficiently small (see below), stop the recursion. This means sep-
arately enumerating all possibilities for (x[1], . . . , x[n]) and, for each possibility,
evaluating the given formula

y(x) = B1,x[inp(1)]B2,x[inp(2)] · · · Bu,x[inp(u)]

by multiplication from left to right. Recall that B1,x[inp(1)] is actually a vector
(or an integer if u = 1). Each computation takes u − 1 vector-matrix multiplica-
tions, i.e., (u − 1)w dot products mod q. (Here we ignore the extra speed of the
final vector-vector multiplication.) The total across all inputs is (u − 1)w2n dot
products mod q.

To see that the recursion reduces this complexity, consider the impact of
using exactly one level of recursion, from n down to n − 1. If index n is used
un times then eliminating each Bi,x[n] costs 2un matrix multiplications, and
produces a formula of length u − un instead of u, so each recursive call uses
(u − un − 1)w2n−1 dot products mod q. The bound on the total number of dot
products mod q drops from (u − 1)w2n to 4unw2 + (u − un − 1)w2n, saving
unw2n − 4unw2. This analysis suggests stopping the recursion when 2n drops
below 4w, i.e., at n =
log2 w� + 1.

More generally, the algorithm costs a total of 4unw2+8un−1w
2+16un−2w

2+
· · ·+2n−�+1u�+1w

2 +2n(u� + · · ·+u1 − 1)w dot products mod q if the recursion
stops at level �. We relabel as explained above so that un ≥ un−1 ≥ · · · ≥
u1, and assume n > �. The sum u� + · · · + u1 is at most �u/n, and the sum
un + 2un−1 + 4un−2 + · · · + 2n−�−1u�+1 is at most 2n−�u/(n − �), for a total of
less than (4w2−�/(n − �) + �/n)uw2n. Taking � =
log2 w� + 1 reduces this total
to at most (4/(n −
log2 w� − 1) + (
log2 w� + 1)/n)uw2n.

For comparison, a brute-force attack against the original problem (separately
evaluating y(x) for each x) costs (u − 1)w2n. We have thus saved a factor of
approximately n/ log2 w.

References

[4] Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: ACM-CCS 2014 (2014). https://eprint.iacr.org/2014/
222

https://eprint.iacr.org/2014/222
https://eprint.iacr.org/2014/222

Bad Directions in Cryptographic Hash Functions 507

[5] Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation, version 20141005 (2014). https://eprint.iacr.org/2014/779

[6] Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation (software) (2014). https://github.com/amaloz/obfuscation

[7] Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation (slides). In: Crypto 2014 Rump Session (2014). http://crypto.
2014.rump.cr.yp.to/bca480a4e7fcdaf5bfa9dec75ff890c8.pdf

[8] Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing crypto-
graphic program obfuscation (video). In: Crypto 2014 Rump Session, start-
ing at 3:56:25 (2014). https://gauchocast.ucsb.edu/Panopto/Pages/Viewer.aspx?
id=d34af80d-bdb5-464b-a8ac-2c3adefc5194

[10] Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE
(version 1.3) (2010). https://www.131002.net/blake/blake.pdf

[11] Bernstein, D.J.: Fast multiplication and its applications, in Surveys in algorithmic
number theory, pp. 325–384. Cambridge University Press (2008)

[12] Bernstein, D.J.: The Saber cluster (2014). http://blog.cr.yp.to/20140602-saber.
html

[13] Bernstein, D.J., Hülsing, A., Lange, T., Niederhagen, R.: Bad directions in cryp-
tographic hash functions (2015). https://eprint.iacr.org/2015/151

[14] Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the
full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

[20] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the mul-
tilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015).
https://eprint.iacr.org/2014/906

[21] Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-
resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 165–182. Springer, Heidelberg (2006)

[23] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

[24] Garfinkel, S., Spafford, G., Schwartz, A.: Practical UNIX & Internet security, 3rd
edn. O’Reilly (2003)

[25] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

[26] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits.
In: FOCS 2013, pp. 40–49 (2013)

[27] Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: Cryptana-
lyzing multilinear maps without encodings of zero (2014). https://eprint.iacr.org/
2014/929

[28] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. Journal of Cryp-
tology 27, 480–505 (2014)

[30] Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

[34] Lynn, B.Y.S., Prabhakaran, M., Sahai, A.: Positive Results and Techniques for
Obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

https://eprint.iacr.org/2014/779
https://github.com/amaloz/obfuscation
http://crypto.2014.rump.cr.yp.to/bca480a4e7fcdaf5bfa9dec75ff890c8.pdf
http://crypto.2014.rump.cr.yp.to/bca480a4e7fcdaf5bfa9dec75ff890c8.pdf
https://gauchocast.ucsb.edu/Panopto/Pages/Viewer.aspx?id=d34af80d-bdb5-464b-a8ac-2c3adefc5194
https://gauchocast.ucsb.edu/Panopto/Pages/Viewer.aspx?id=d34af80d-bdb5-464b-a8ac-2c3adefc5194
https://www.131002.net/blake/blake.pdf
http://blog.cr.yp.to/20140602-saber.html
http://blog.cr.yp.to/20140602-saber.html
https://eprint.iacr.org/2015/151
https://eprint.iacr.org/2014/906
https://eprint.iacr.org/2014/929
https://eprint.iacr.org/2014/929

508 D.J. Bernstein et al.

[35] Osvik, D.A., Tromer, E.: Cryptologic applications of the PlayStation 3:
Cell SPEED, SPEED (2007). https://hyperelliptic.org/SPEED/slides/Osvik
cell-speed.pdf

[36] Pollard, J.M.: Kangaroos, Monopoly and discrete logarithms. Journal of Cryptol-
ogy 13, 437–447 (2000)

[37] Rivest, R.L.: The MD5 message-digest algorithm. RFC 1321 (1992). https://tools.
ietf.org/html/rfc1321

[38] Shanks, D.: Class number, a theory of factorization, and genera. In: Proceedings
of Symposia in Pure Mathematics, vol. 20, pp. 415–440. AMS (1971)

https://hyperelliptic.org/SPEED/slides/Osvik_cell-speed.pdf
https://hyperelliptic.org/SPEED/slides/Osvik_cell-speed.pdf
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321

	Bad Directions in Cryptographic Hash Functions
	1 Introduction
	2 Review of the Obfuscation Scheme
	3 Faster Algorithms for One Input
	4 Faster Algorithms for Many Inputs
	5 Parallelization
	6 Performance Measurements
	7 Further Speedups --- see [13]
	8 Generalizing the Attack Beyond Point Functions
	References

