
Chapter 3
Sound Source Localization and Tracking

Kai Wu and Andy W.H. Khong

Abstract Sound source localization and tracking plays an important role in a tele-
conferencing system and social robot applications. Given the location of a sound,
the social robot can be endowed with the capability of sound event awareness, which
results in enhanced interaction with human beings. This chapter presents the problem
of sound source localization and tracking, highlights their challenges, and reviews
several existing techniques. In addition, a speech source tracking algorithm is pro-
posed in order to achieve robust speaker tracking in the presence of sound interferers.
Simulation is conducted and shows the effectiveness of the proposed method in a
typical room environment.

3.1 Introduction

Sound source localization and tracking (SSLT) refers to the problem of estimating
the location from which a sound signal originates with respect to the microphone
array geometry. It plays an important role in a teleconferencing system and in social
robot applications. In a teleconference scenario, a camera that is capable of auto-
matic steering can be deployed to focus on the speaker given the estimated speaker
position [22, 29]. In addition, source localization is often required and regarded as
a preprocessing step before the enhancement of an acoustic signal from a particular
location [20]. In the domain of social robotics, the localization technique is applied
so that the robot can concentrate on a subject of interest or be made aware of where
other sound events are coming from.

Multiple microphones are, in general, required in order to achieve SSLT. Different
microphone array configurations have been used in the recent literature, e.g., binau-
ral microphones [5], linear array [39], circular array [9] and distributed microphone

K. Wu (B) · A.W.H. Khong
BeingThere Centre, Nanyang Technological University, Singapore, Singapore
e-mail: WU0001AI@e.ntu.edu.sg

A.W.H. Khong
e-mail: AndyKhong@ntu.edu.sg

© Springer International Publishing Switzerland 2016
N. Magnenat-Thalmann et al. (eds.), Context Aware Human-Robot
and Human-Agent Interaction, Human–Computer Interaction Series,
DOI 10.1007/978-3-319-19947-4_3

55



56 K. Wu and A.W.H. Khong

arrays [13, 25]. The source position is estimated by exploiting the range differences
from the source to the microphones. Although various algorithms have been devel-
oped in recent decades for SSLT applications, room reverberation, background noise,
and sound interference are some of the key challenges that need to be addressed in
a realistic environment. In the context of room acoustics, the microphones capture
not only the direct-path propagation component of the source signal but also the
multipath propagation component due to the reflections at the room boundaries. The
multipath component, together with the background noise, distorts the time delay
information contained in the microphone received signals and degrades the local-
ization performance. In addition, one is often interested in localizing and tracking a
desired source (e.g., human speech source) in the presence of certain sound interfer-
ers (e.g., fan noise, air-conditioner noise) which often exist in a room environment.
These interferers may distract the system which, as a result, localizes the interferers
rather than the desired source.

The organization of this chapter is as follows: in Sect. 3.2, mathematical formu-
lation of the SSLT problem is introduced. Conventional localization and tracking
methods are then reviewed. In Sect. 3.3, a proposed method that deals with the prob-
lem of speech source tracking in the presence of sound interference is discussed.
The proposed method exploits the speech harmonicity feature so as ensure that only
speech signals are used for tracking. The integration of SSLT for social robot appli-
cation is discussed in Sect. 3.4. Finally, the future possible research directions and
conclusions are presented in Sects. 3.5 and 3.6, respectively.

3.2 Overview of Sound Source Localization and Tracking
Algorithms

SSLT algorithms can be classified into two categories: localization approach and
tracking approach. The localization approach assumes independence between suc-
cessive audio frames and estimates the source location independently across each
data frame. The tracking approach exploits consistency between successive frames
by assuming that the source is stationary or moving at a slow rate. In this section,
the mathematical formulation for these two approaches is discussed.

3.2.1 Mathematical Formulation of Sound Source
Localization

The SSLT problem is illustrated in Fig. 3.1. The speech signal s(n) radiates away
from the source position and propagates to the microphones. The received signals
contains not only direct-path but alsomultipath components causedby reflection from
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Fig. 3.1 Signal propagation
model Speech 
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Direct Path
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the room boundaries. Within a short time frame, the channel from the source to the
i thmicrophone can be considered as a linear time-invariant system and is represented
by a channel impulse response hi (n). The i th microphone received signal can thus
be formulated as [3]

yi (n) = s(n) ∗ hi (n) + vi (n), i = 1, 2, . . . , M, (3.1)

where ∗ is the convolution operator, vi (n) is the additive noise, and M is the number
of microphones. In order to infer the signal delay information, the impulse response
hi (n) can be further decomposed into a direct-path component and a multipath com-
ponent. The microphone received signal can thus be rewritten as

yi (n) = ai s(n − τi ) + s(n) ∗ h′
i (n) + vi (n), i = 1, 2, . . . , M, (3.2)

where 0 ≤ ai ≤ 1 is the attenuation factor due to propagation, τi is the direct-path
time delay from the source to the i th microphone, and h′

i (n) denotes the remaining
impulse response which is defined as the difference between the original response
and the direct-path component. In (3.2), the time delay τi is dependent on the source
position with respect to the microphone array. However, direct estimation of τi is
not achievable since SSLT is a passive localization problem. Most of the algorithms
exploit the relative time delay information among microphones and one such algo-
rithm is introduced in the following section.
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3.2.2 Sound Source Localization Using Beamforming-Based
Approach

Given the microphone received signal yi (n), localization is usually performed using
each data frame defined as

yi (k) = [yi (k N ) yi (k N + 1) . . . yi (k N + N − 1)], (3.3)

where N is the frame length and k is the frame index. Beamforming is one of the
widely used approaches for sound source localization. In principle, the beamformer
computes the spatial power spectrum for the whole region of interest and searches
for the highest power corresponding to the source position estimate (see Fig. 3.2 for
example). The family of beamforming techniques includes steered response power
(SRP) [8, 10], minimum variance distortionless response [34], linearly constrained
minimum variance [11, 34], etc.

The SRP beamformer gained popularity due to its simplicity. Considering M
microphones, the SRP function defines the power

Pk(r′) =
∑

ωl∈Ω

∣∣∣∣∣

M∑

i=1

Wi (k, ωl)Yi (k, ωl)e
jωl‖r′−rmi ‖2/c

∣∣∣∣∣

2

(3.4)

corresponding to the current steered location r′ at time frame k, where r′ = [x ′ y′]T

is the steered location in the region of interest, Wi (k, ωl) is a weighting function,
Yi (k, ωl) is the short-time Fourier transform of the i th microphone received signal
defined as Yi (k, ωl) = F(yi (k)), ωl is the angular frequency of the lth bin index,
c is the speed of sound, rmi is the position of the i th microphone, ‖r′ − rmi ‖2 is
the distance from the steered location to the i th microphone position, and Ω is the
interested frequency range over which the computation is carried out. In (3.4), the

Fig. 3.2 The power
spectrum when
SNR = 20dB,
T60 = 150ms. The ground
truth of the source position is
denoted by the circle dot
which is plotted on top of the
spectrum for clarity of
presentation
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SRP is performed by computing the time delay from the steered location r′ to each
microphone in the first step. The corresponding power is then calculated by time
aligning the signals in the frequency domain according to the signal delays and
summing over all the microphones. The weighting function Wi (k, ωl) is important
in power calculation.While different weighting functions can be used [24], the phase
transform (PHAT) given as

W PHAT
i (k, ωl) = 1

|Yi (k, ωl)| (3.5)

remains one of the most commonly used weighting schemes. The corresponding
beamformer is therefore named as SRP-PHAT. By substituting (3.5) into (3.4), it
can be seen that the PHAT weighting is independent of the source energy and the
computed SRP response is only dependent on the phase delay.

Furthermore, by steering the beamformer across the whole region of interest, one
can obtain the power spectrum as shown in Fig. 3.2. Estimating the source position
is therefore achieved by searching for the location that corresponds to the maximum
power, i.e.,

r̂k = argmax
r′∈D

Pk(r′), (3.6)

where D = {x, y|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax} is the considered searching
domain.

It has been shown in [7] that the beamforming method achieves higher spatial
resolution than other localization methods such as those based on time-difference-
of-arrival method [3]. However, one drawback is the high computation complexity
required for scanning the region of interest. Some researchers choose different reso-
lution grids to reduce the computation burden [12]. In addition, a recently proposed
work integrates the energy in each discrete grid to achieve better performance [4].

3.2.3 Sound Source Tracking Using Particle Filter-Based
Approach

The localization algorithmdiscussed in Sect. 3.2.2 estimates the source position using
each microphone data frame yi (k) independently. The performance reduces when
the background noise and reverberation increase since under these conditions, some
of the data frames suffer from signal distortion and are therefore unable to provide
reliable location estimates. However, if we assume that the source is stationary or
moving at a low rate with respect to the convergence of the tracking algorithm, one
possible approach to improve the performance is to exploit the temporal consistency
of location measurements across successive frames.

We now consider successive data frames {yi (k)| k = 1, 2, . . . , K } where k is the
frame index, and K is the total number of audio frames. The aim is to estimate the
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source positions over all the time frames, leading to a source tracking problem. We
first define the state variable as αk = [xk yk ẋk ẏk]T at frame index k, where xk and
yk correspond to the source position while ẋk and ẏk are the source velocities in x
and y direction, respectively. Similarly, the measurement variable zk = [̂xk ŷk]T is
defined. This measurement vector can be obtained from the SRP location estimate by
evaluating (3.4)–(3.6) for the kth time frame data. Therefore, the state-space model
can be written as

αk = G(αk−1, uk), (3.7a)

zk = H(αk, wk), (3.7b)

where G(·) is the process function defining the time evolution of the state, uk is the
process noise, H(·) is the measurement equation defining the mapping from αk to
zk , and wk is the measurement noise.

To formulate G(·) in (3.7a), the Langevin process model has been widely used as
it provides a realistic model to simulate human source motion [13, 25, 31, 35, 37].
This model can be described using

αk =

⎡

⎢⎢⎣

1 0 aT 0
0 1 0 aT
0 0 a 0
0 0 0 a

⎤

⎥⎥⎦αk−1 +

⎡

⎢⎢⎣

bT 0
0 bT
b 0
0 b

⎤

⎥⎥⎦ uk, (3.8)

where uk ∼ N (μ,�) is the noise vector following Gaussian distribution, T is
the time interval between consecutive frames, and μ = [0 0]T and � = I2×2
correspond to the mean vector and covariance matrix, respectively. In addition, the
model parameters are defined as a = exp(−βT ), b = v̄

√
1 − a2, where v̄ = 0.8m/s

is the steady-state velocity and β = 10Hz is the rate constant [25]. To formulate
H(·) in (3.7b), we note that zk is defined as the two-dimensional location estimate
obtained from SRP and hence, we can express

zk =
[
1 0 0 0
0 1 0 0

]
αk + wk, (3.9)

where wk represents the measurement error.
The process of sound source tracking is performed in a probabilistic manner.

Statistically, the posterior probability density function (pdf) Pr(αk |z1:k) is used to
denote the probability of state αk conditioned on the measurements up to time k
and the measurement likelihood Pr(zk |α(p)

k ) represents the probability of attaining
measurement zk conditioned on the state. Considering continuous data frames, the
sound source tracking problem can therefore be formulated as follows: for each frame
index k, given Pr(αk−1|z1:k−1) at the previous time frame, the objective is to estimate
Pr(αk |z1:k) using the source motion model G(·) and the new measurement zk .
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WhileKalmanfiltering has been proposed for source tracking [15, 18], the particle
filter (PF) framework [1, 17] is deemed to be a better approach for the SSLT problem
due to the absence of linearity and Gaussian distribution requirement in the state-
space formulation. The PF was first introduced in SSLT in [35] and has gained great
popularity [13, 14, 25, 27, 31, 37].

In the PF framework, the posterior density Pr(αk |z1:k) is approximated by a set

of particles of the state space with associated weights {(α(p)
k , w(p)

k )}Np
p=1, i.e.,

Pr(αk |z1:k) =
Np∑

p=1

w(p)
k δ(αk − α

(p)
k ), (3.10)

where p = 1, . . . , Np denotes the particle index,α
(p)
k is the pth particle of state space,

w(p)
k is its associated weight, and δ(·) is the Dirac delta function. The bootstrap PF-

based sound source tracking is performed as follows: suppose at time k − 1, the set

{(α(p)
k−1, w(p)

k−1)}
Np
p=1 is an approximation of the posterior density Pr(αk−1|z1:k−1), the

set {(α(p)
k , w(p)

k )}Np
p=1 at time index k corresponding to Pr(αk |z1:k) is then obtained

by a propagation step
α

(p)
k = G(α

(p)
k−1, uk), (3.11)

followed by an update step,

w(p)
k ∝ w(p)

k−1Pr(zk |α(p)
k ). (3.12)

Computation of Pr(zk |α(p)
k ) is required in (3.12) and a pseudo likelihood approach

has beenproposed [25, 37] to reduce the computational load involved in the process of
determining the SRP maximum corresponding to the source location measurement.
In this formulation, the SRP map itself is used as an approximation of Pr(zk |α(p)

k ).
To some extent the SRP can define the probability of the source being located in the
steered positions within the room as it corresponds to the energy originating from
those positions. The pseudo likelihood approach defines the likelihood as

Pr(zk |αk) =
{Pγ

k (�k), for voiced frame
UD(�k), for unvoiced frame

, (3.13)

where γ = 2 is a control parameter to regulate the SRP function for source track-
ing [25], UD(·) is the uniform pdf over the considered enclosure domain D, and �k

denotes the first two elements of αk .
In practice, due to the proportionality in (3.12), the normalization process is always

computed using

w(p)
k ⇐ w(p)

k∑Np
i=1 w(i)

k

, (3.14)
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Table 3.1 Summary of the bootstrap PF

At time k − 1, a set of particles {α(p)
k−1, w(p)

k−1}
Np
p=1 is a discrete representation of posterior

Pr(αk−1|zk−1).

For the kth frame:
1. Particles propagation: propagate each particle through the source dynamic model (3.7a),

α
(p)
k = G(α

(p)
k−1, uk).

2. Update: the weight corresponding to each particle is updated according to the likelihood,

w(p)
k = w(p)

k−1Pr(zk |α(p)
k ),

followed by a normalization step w(p)
k ⇐ w(p)

k (
∑Np

i=1 w(i)
k )−1.

3. Resampling: resample the particles if the effective sample size is below a threshold, Neff <

Nthr , where Neff = (
∑Np

p=1(w
(p)
k )2)−1.

4. Result: the particle set {α(p)
k , w(p)

k }Np
p=1 is obtained for approximation of Pr(αk |zk). The state

estimate at the kth frame is α̂k = ∑Np
p=1 w(p)

k α
(p)
k .

where ⇐ denotes the assignment of a new value to the variable. In addition, the PF
usually consists of a resampling stage which prevents the degeneration phenomenon
where, after a few iterations, a majority of the particles would possess small weights
incurring a waste of computation [1]. Finally the state estimate, at time frame index
k, is given as

α̂k =
Np∑

p=1

w(p)
k α

(p)
k , (3.15)

and the first two elements of α̂k represent the position estimate from the tracking
framework. A summary of the bootstrap PF-based sound source tracking algorithm
can be found in Table3.1.

3.3 Proposed Robust Speech Source Tracking

In Sect. 3.2, several approaches have been discussed for localizing and tracking a
stationary or moving source. Significant progress has been made in recent decades
for robust SSLT in different adverse environments. However, localizing or tracking
a speech source in the presence of sound interferences is still an open problem.
This is particularly important in robotic applications since the robots are expected to
continue interacting with a human user in a noisy environment. It is also important
to note that sound interferences may be nonstationary and unpredictable in nature.
Take an office room for instance, the fan noise, air-conditioner noise, or a telephone
ring may be located at different positions. Existing methods, in general, are unable
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to distinguish between the desired speech source and interferers. The performance
may be degraded when these interferers are present.

In this section, a speech source tracking method that is robust to interferers is
introduced [38]. The proposed method incorporates a well-known speech feature in
the frequency domain known as harmonicity. We first compare the speech spectro-
gram with some typical sound interference in Sect. 3.3.1 and illustrate the speech
harmonic feature. Details of the proposed method will be introduced in Sect. 3.3.2.
In Sect. 3.3.3, simulations are conducted to evaluate the performance of the proposed
method in the presence of interference, noise, and reverberation.

3.3.1 The Harmonic Structure in the Speech Spectrogram

Figure3.3 shows the spectrogram of a typical speech signal obtained from the TIMIT
database [16] and that corresponding to different sound interferers obtained from the
NOISEX-92 database [33]. The speech spectrogram, as shown in Fig. 3.3a, indicates
that several harmonics (dark curves) corresponding to multiple integers of a pitch
frequency are present. The pitch frequency represents the frequency of the vocal
cord vibration, which normally ranges from 100 to 300Hz , depending on whether

Fig. 3.3 Spectrograms of different signals. a Speech signal spectrogram. b Fan noise spectrogram.
c Power drill noise spectrogram. d Telephone ring noise spectrogram
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it is a male or a female voice [6]. This spectrogram indicates that speech energy is
dominant on these harmonics. Figure3.3b shows the spectrogram of a recorded fan
noise where the energy is concentrated below 2 kHz. The spectrogram of a recorded
power drill noise, shown in Fig. 3.3c, indicates a similar energy distribution in the
low frequency range although high energy spectral lines appear at approximately 1.5,
2, and 2.2kHz. These dominant frequencies may be caused by mechanical rotation
or vibration. It is useful to note that no regular harmonic structure is exhibited in
these two types of sound. In terms of the telephone ring sound, shown in Fig. 3.3d, a
regular harmonic structure is caused by the presence of a single tone. However, the
harmonics differ from that of the speech signal due to a difference in pitch frequency.

In the following, we therefore assume that the sound interference does not share
the same harmonic bands as speech due to different pitch frequency, or that the inter-
ference does not possess any harmonic structure. The key objective of the proposed
method is to estimate these harmonic bands corresponding to the speech components
and to emphasize on the harmonic bands as they provide high signal-to-interference
ratio (SIR). Other frequency regions are not used for tracking as these frequencies
are contaminated by the sound interferers.

3.3.2 Speech Source Tracking in the Presence of Sound
Interference

In the conventional sound source tracking framework, as introduced in Sect. 3.2.3,
particles are propagated according to the source dynamic model before being
weighted by themeasurement likelihood. It computes the particleweights by employ-
ing a pseudo-likelihood that has been derived from SRP-PHAT measurements
[13, 25, 37]. While this technique may achieve good tracking performance, the
performance may significantly reduce in the presence of interference. This is due
to the inability of SRP-PHAT to discriminate between the speech source and the
acoustic interference in general. It implies that any acoustic interference will result
in a dominant peak occurring at the interferer’s position, and the particles are likely
to propagate toward that location away from the speech source (see Fig. 3.7a). The
performance of these algorithms reduces significantly in low SIR, resulting in the
SSLT losing track of the speech source.

To mitigate the degradation in performance, we exploit speech harmonicity such
that the measurement likelihood is predominantly weighted by the speech signal
as opposed to the interferers. The overall framework of the proposed method is as
follows: (1) a prior source position is estimated using the assumed source dynamic
model, (2) a beamformer is then applied to enhance the source signal from the
prior estimated position in order to extract speech feature, (3) the reliable harmonic
bands are estimated using the enhanced signal in the following step, (4) the new
measurement likelihood is then derived by emphasizing these high SIR harmonic
bands while discarding the other frequency regions.
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3.3.2.1 Prior Prediction

In general, a clear source signal is often required in order to extract the correspond-
ing speech features. However, due to the presence of interference and background
noise, obtaining such a clear source signal is challenging. To improve the feature
extraction performance, we propose a speech signal enhancement stage consisting
of prior source position prediction and a beamformer. Considering the Langevin
source dynamic model introduced in Sect. 3.2.3, for time frame index k, the prior
source state can be estimated using (3.7a) and (3.8) as

α̂−
k = G (̂α+

k−1, uk), (3.16)

given the state estimate at the previous frame. Here, α̂+
k−1 is the posterior state

estimate at time frame index k − 1. The prior source location estimate

r̂−
k = [̂x−

k ŷ−
k ]T , (3.17)

corresponds to the first two elements in α̂−
k . Note that this prior estimate is based

only on the assumed source motion. Its objective is to allow the beamformer to
enhance the signal from this preliminary estimated source position. The feature-
directed measurements, as will be described in the subsequent sections, will further
refine the state estimate.

3.3.2.2 Feature Extraction

After obtaining a prior estimate of source position at each iteration, a beamformer can
be employed to enhance the signal from that particular position. Note that the beam-
former was used as a localization technique in Sect. 3.2.2. However, beamforming
was initially used for enhancing the signal from a known source position and sup-
pressing the interference and noise [34]. Various beamformers can be applied after a
prior source location has been estimated. We consider, for example, the delay-and-
sum beamformer [23] due to its simplicity although other forms of beamformers such
as presented in [21, 32]may be used to enhance the speech signal. The delay-and-sum
beamformer output for the prior estimated source location r̂−

k is given as

S(ωl , r̂−
k ) =

M∑

i=1

Φ
(
Di (̂r

−
k )

)
Yi (k, ωl)e

jωl Di (̂r
−
k )/c, (3.18)

where i is the microphone index, M is the number of microphones, and Yi (k, ωl)

is the frequency-domain received signal from the i th microphone at kth frame. The
variable ωl is the angular frequency of lth frequency bin, c is the speed of sound,
Di (̂r

−
k ) = ‖̂r−

k − rmi ‖2 is the distance from the prior estimated source position to the
i th microphone, and Φ(·) is a monotonic function that weighs the i th microphone
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signal according to the source-sensor distance. In our simulations, we found that
Φ

(
Di (̂r

−
k )

) = 1/Di (̂r
−
k ) performs well as it emphasizes the signal from the micro-

phone that is closer to the source.
Figure3.4 shows the signal enhancement result for a 6 s speech signal when a

power drill interference is present at SIR = 5dB and white Gaussian noise with
signal-to-noise (SNR) ratio of 15 dB. These results were generated using the method
of images [26] with T60 = 200ms and eight microphones are placed 0.5m away from
the room perimeter (see Fig. 3.7). Figure3.4a shows the spectrogram of the original
speech signal where a clear harmonic structure can be found. Figure3.4b shows
the power drill interference spectrogram where no harmonic structure is present. In
general, the source signal receivedby a single referencemicrophone is often distorted,
especially when the interferer is close to the microphone, as shown in Fig. 3.4c.
Extraction of speech harmonics from this received signal is therefore challenging.
The beamformer enhanced signal, as shown in Fig. 3.4d, is indeed clearer than the
microphone received signal. The speech harmonics are dominant across the whole
spectrogram although certain interference energy leakage is visible. The beamformer
enhanced signal will be used for feature extraction in the next step.

To extract the speech harmonics from a noisy spectrum, we use the multi-band
excitation (MBE) fit method [2, 19]. As indicated in Fig. 3.5, theMBEmodel defines
a voiced frame in the frequency domain as the product of spectrum envelop H(ω)

and excitation spectrum E(ω, ωp) given by [19]

Sspch(ω) = H(ω)E(ω, ωp), (3.19)

Fig. 3.4 Spectrogramand selected harmonic bands indicated in blue lines. aClean speech.bPower-
drill interference. c Referencemicrophone received signal and its selected harmonic bands (in blue).
d Beamformer enhanced signal and its selected harmonic bands (in blue)
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Fig. 3.5 MBEmodel for a speech signal. The voice frame can be modeled as a product of spectrum
envelop H(ω) and excitation spectrum E(ω, ωp) in the frequency domain

where ωp is the pitch frequency, such that

E(ω, ωp) =
Q∑

q=1

Ψ (ω − qωp), (3.20)

where q is the harmonic index, Q is the number of harmonics, ωp is the pitch
frequency, and Ψ (ω) is the Fourier transform of the Hamming window.

We now consider extracting the harmonic information from the beamformer
enhanced signal S(ω, r̂−

k ) via MBE model fitting. The harmonic information ωp

and H(ω) can be estimated via minimization of the fitting error between S(ω, r̂−
k )

and the MBE modeled signal

ε(ωp) =
∫ 2π

0
|S(ω, r̂−

k ) − Sspch(ω)|2dω

=
∫ 2π

0
|S(ω, r̂−

k ) − H(ω)E(ω, ωp)|2dω, (3.21)

where S(ω, r̂−
k ) has been defined in (3.18).

In practice, the above process is computed in discrete frequency domain where
ωl = 2πl/L denotes the angular frequency of lth frequency bins, L is the number
of frequency bins, and ωp is now computed from the discrete angular frequencies.
In order to solve the nonlinear minimization problem in (3.21), the whole spectrum
is further decomposed into several harmonic bands. The qth harmonic band ranges
in the interval [aq , bq ], where the lower and upper limits are defined as aq =
�(q − 0.5)ωp� and bq = �(q + 0.5)ωp�, respectively, and �·� denotes the selection
of the nearest frequency bin. The variable H(ω) is also decoupled into complex
amplitude Hq for each harmonic band q, so that the fitting error for each harmonic
band is

εq(ωp) =
bq∑

ωl=aq

|S(ωl , r̂−
k ) − Hq E(ωl , ωp)|, (3.22)
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and the total error in (3.21) becomes

ε(ωp) =
Q∑

q=1

εq(ωp). (3.23)

We note that there is a subtle difference between (3.23) and (3.21); in (3.23) we only
sum over the Q harmonic bands of interest, while in (3.21) the whole spectrum is
integrated.

The harmonic information is thus represented by two parameters, the pitch fre-
quency ωp and complex amplitude Hq for all harmonic bands. The variable Hq can
be obtained by considering the derivative of (3.22) to be zero giving

Hq =

bq∑

ωl=aq

S(ωl , r̂−
k )E∗(ωl , ωp)

bq∑

ωl=aq

|E(ωl , ωp)|2
, (3.24)

where ∗ denotes conjugate operation. The pitch frequencyωp can be estimated by the
following steps: each fitting error εq(ωp) is evaluated using the optimal value of Hq

obtained in (3.24). The error function in (3.23) is then computed with respect to all
pitch frequencies ωp of interest. Finally, the global minimum of ε(ωp) is determined
and the corresponding ωp is selected as the estimated ω̂p due to speech.

3.3.2.3 Feature-Directed Particle Weight Update

To obtain the feature-directed particle weight update, it is required to determine the
most reliable harmonic bands and select them for computation of the likelihood.
Two criteria are proposed to determine the reliability of the harmonic bands: (1) the
normalized fitting error and (2) the normalized harmonic energy.

First, the normalized fitting error [2] is defined, for each harmonic, as the effec-
tiveness of a given frequency band to be fitted with the speech harmonic model. It is
computed as

ε̄q = εq(ω̂p)

bq∑

ωl=aq

|S(ωl , r̂−
k )|2

, (3.25)

where the fitting error εq(ω̂p) is computed by substituting the estimated pitch fre-
quency ω̂p into (3.22). The fitting error is normalized by the energy of each corre-
sponding harmonic band.
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In the second step, the normalized harmonic energy, defined by the ratio of energy
distributed on that harmonic over the total energy, i.e.,

Pq =

bq∑

ωl=aq

Hq E(ωl , ω̂p)

Q∑

q=1

bq∑

ωl=aq

Hq E(ωl , ω̂p)

. (3.26)

is computed. As the energy of the speech signal is expected to be concentrated in a
harmonic structure, those harmonic bands with low ε̄q and high Pq are more likely
to retain most of the speech components, while other regions are expected to contain
the interference signal. We therefore set two harmonic-band thresholds ζ and η for
selecting the reliable (speech) harmonic bands such that

Gq(ωl) =
{

Ψ (ωl − qω̂p), if ε̄q ≤ ζ & Pq ≥ η, ωl ∈ [aq , bq ]
0, otherwise

, (3.27a)

G(ωl) =
Q∑

q=1

Gq(ωl). (3.27b)

Equation (3.27a) indicates that only harmonic bands that satisfy the thresholds are
selected; the other frequency bands are discarded. Equation (3.27b) indicates that
the selection process is carried out over all frequency bands of interest. The sum of
the selected harmonic bands are denoted as G(ωl).

Figure3.6 shows extraction results of the speech harmonics using a frameof 32ms.
Figure3.6a shows the MBE fitting result, computed using (3.22)–(3.24), for the case
of clean speech where no interferer is present. We note that the MBE approximation,
shown by the dotted line, is capable of estimating the harmonics of clean speech.
Figure3.6b shows the result for the case where a power-drill signal is added to the
speech signal at an SIR = 5dB. The beamformer output S(ωl , �̂

−
k ), shown by the

solid line, therefore consists of spectral components corresponding to the power drill
at 400 and 1500Hz and the speech signal. Comparing Fig. 3.6a, b, we note that the
MBE fit shown in Fig. 3.6b is able to estimate the speech harmonics with reasonable
accuracy, albeit with some distortion. The estimated reliable speech harmonic bands
are shown with G(ωl) and are denoted by the bold lines (which has been normalized
to 0dB for clarity).

The extraction discussed above considers a single data frame. By iterating the
procedure over all the frames, G(ωl) in (3.27b) can be extended to G(k, ωl) which
denotes the selected harmonic bands at the kth frame. The selected harmonics over
all the frames are shown in Fig. 3.4d where a 6 s speech in the presence of power-drill
interference is considered. We note that using the beamformer and MBE fit, speech
harmonic bands can be estimated as indicated by the dark lines in the spectrogram.
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Fig. 3.6 MBEfitting result. a Clean speech andMBE fit. bBeamformer output, MBE fit, and G(ω)

in the presence of a power drill signal

With G(k, ωl), the new SRP function Pk(�) with weight Wi (k, ωl) is given as

Pk(�) =
∑

ωl∈Ω

∣∣∣∣∣

M∑

i=1

Wi (k, ωl)Yi (k, ωl)e
jωDi (�)/c

∣∣∣∣∣

2

, (3.28a)

Wi (k, ωl) = G(k, ωl)

|Yi (k, ωl)| , (3.28b)

where Ω is the frequency over which the SRP function is evaluated. Similar to the
pseudo likelihood method [25, 37], the SRP function is used to define the measure-
ment likelihood in the PF framework,

Pr(zk |αk) =
{Pγ

k (�), for voiced frame
UD(�), for unvoiced frame

, (3.29)

where γ = 2 is a control parameter to regulate the SRP function for source
tracking [25], and UD(·) is the uniform pdf over the considered enclosure domain
D = {xk, yk |xmin ≤ xk ≤ xmax, ymin ≤ yk ≤ ymax}. The likelihood function is then
used to update the particle weights of the particles. The proposed SSLT framework
is summarized in Table3.2.
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3.3.3 Simulation Results

Simulations were conducted using synthetic impulse responses generated by the
method of images [26]. The dimension of the room was 5m × 5m × 2.5m, and
the reverberation time T60 were 200–300ms. Eight microphones were distributed
0.5m away from the perimeter of the room (see Fig. 3.7). An 8 s male speech signal
sampled at 16kHz from the TIMIT database [16] was used as the source signal. A
power drill (PD) signal and a recorded telephone ring (TR) signal obtained from the
NOISEX-92 database [33] were used as interferers. White Gaussian noise of 15dB
SNR was added to the microphone signals. The speed of source was approximately
set at 0.6m/s. The positions of speech source were estimated using a frame size
of 512 samples with Np = 100 particles. We also used an effective sample size
threshold Nthr = 37.5, harmonic-band thresholds ζ = 0.6 and η = 0.03. A total of
12 harmonic bands (Q = 12) were considered. The proposed method is compared
with the conventional tracking method using SRP-PHAT as pseudo likelihood [25].
Both methods were evaluated using 0 ≤ Ω ≤ 2 kHz from which, for the proposed
algorithm, speech pitch frequency was estimated from 100 to 300Hz using (3.22)–
(3.24). In this chapter, we quantify the performance using the average tracking error
across all audio frames, i.e.,

Table 3.2 Summary of the proposed algorithm

At time k − 1, given that a set of particles {α(p)
k−1, w(p)

k−1}
Np
p=1 is a discrete representation

of posterior Pr(αk−1|zk−1), the posterior state estimate is α̂+
k−1 = ∑Np

p=1 w(p)
k−1α

(p)
k−1.

For the kth frame:
1. Prior prediction: Propagate the previous state estimate through (3.16) to obtain prior estimate
of the current state α̂−

k .

2. Feature extraction: Apply beamformer according to (3.17), (3.18) to enhance the signal from
the prior estimated position r̂−

k , and extract speech features using (3.22)–(3.24).

3. Particles propagation: Propagate each particle through the source dynamic model (3.7a),

α
(p)
k = G(α

(p)
k−1, uk).

4. Posterior weights update: Obtain the feature directed particle likelihood using (3.25)–(3.29)
and each particle is then assigned a weight according to its likelihood

w(p)
k = w(p)

k−1Pr(zk |α(p)
k ),

followed by normalization w(p)
k ⇐ w(p)

k (
∑Np

i=1 w(i)
k )−1. The posterior state estimate is

x̂+
k = ∑Np

p=1 w(p)
k α

(p)
k

5. Resampling: Resample the particles if the effective sample size is below a threshold, Neff <

Nthr , where Neff = (
∑Np

p=1(w
(p)
k )2)−1.
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Fig. 3.7 Comparison of tracking results when TR is present at SIR = −3dB, T60 = 250ms.
a Conventional SRP-PHAT tracking method. b Proposed tracking method

ē = 1

K

K∑

k=1

||̂r+
k − rk ||2, (3.30)

where r̂+
k is the posterior estimated position at kth frame, rk is the true source position,

|| · ||2 is the L-2 norm, and K is the number of frames.
Figure3.7 compares the tracking result for T60 = 250ms in the presence of

telephone ring at −3dB SIR. Figure3.7a shows that the tracking performance of the
conventional SRP-PHAT approach is adversely affected by the interferer. Due to the
highmeasurement likelihood of SRP-PHAT for the interferer region, the particles are
“trapped” once they are propagated there, in this case the region near the telephone
ring. The SRP-PHAT method has an average error of 0.58m indicating that it does
not converge to the speech source trajectory. On the other hand, Fig. 3.7b shows the
tracking performance of the proposed method. This result shows that the proposed
method is less significantly affected by the presence of the telephone ring achieving
an average error of 0.12m.

Figure3.8 shows the tracking result when both power drill and telephone ring
are present at 3 and 0dB SIRs, respectively, with T60 = 250ms. Again, Fig. 3.8a
shows the conventional SRP-PHAT approach losing track of the speech source. The
particles are “trapped” at the region near the power drill, leading to the average error
of 0.61m. On the other hand, the proposed method, shown in Fig. 3.8b, retains its
robustness with an average error of 0.13m.

Table3.3 shows the average tracking error for various test conditions. The source
trajectory and interference positions remain the same as the previous setup. These
results show that the proposed algorithm can achieve better accuracy than the SRP-
PHATmethod. For instance, in the presence of power drill at 3dBSIR, theSRP-PHAT
method exhibits a large tracking error of 0.56m when T60 = 0.2 s. The proposed
method achieves an error of 0.11m,which translates to an80%reduction of error over
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Fig. 3.8 Comparison of tracking results when both PD and TR are present at SIR = 3dB, 0dB,
respectively, T60 = 250ms. a Conventional SRP-PHAT tracking method. b Proposed tracking
method

the SRP-PHAT method. Furthermore, the proposed method maintains its robustness
in localization and tracking in the presence of two interferers, while the SRP-PHAT
approach suffers from large tracking error under low SIR condition. However, it is
also observed that the performance of the proposed algorithm degrades modestly
when reverberation time is increased. The proposed method may fail under adverse
environments as indicated when T60 = 0.3 s, PD and PR are present at SIR of 3 and
−6dB.

Different source trajectory and interference configurations were also examined in
Figs. 3.9 and 3.10. As before, these results show that the conventional SRP-PHAT
approach is likely to be affected by interferers, while the proposed approach retains
its robustness; the particles are propagated closely along the source trajectory.

Figure3.11 shows the performance of both algorithms under different reverber-
ation conditions. Figure3.11a shows the results when power drill is present at an
SIR= 0dB. The SRP-PHAT trackingmethod, indicated by the dashed line, results in
consistently high tracking errors of more than 1m. The SRP-MBE tracking method,
shown by the solid line, results in errors of less than 0.3m when T60 is below 0.35 s.

Table 3.3 Comparison of mean tracking error ē between the SRP-PHAT tracking method and the
proposed tracking method

SRP-PHAT tracking method Proposed tracking method

T60 = 0.2 s T60 = 0.3 s T60 = 0.2 s T60 = 0.3 s

PD (SIR = 3dB) 0.56m 0.59m 0.11m 0.15m

TR (SIR = 0dB) 0.51m 0.59m 0.09m 0.13m

TR (SIR = −3dB) 0.53m 0.64m 0.10m 0.15m

PD+TR (SIR = 3, 0dB) 0.57m 0.68m 0.12m 0.16m

PD+TR (SIR = 3,−3dB) 0.65m 0.69m 0.15m 0.18m

PD+TR (SIR = 3,−6dB) 1.08m 1.01m 0.20m 0.75m
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However, the performance deteriorates rather significantly when T60 is beyond 0.4 s.
A similar conclusion can be drawn fromFig. 3.11bwhere the telephone ring is present
at SIR = −5dB. The SRP-PHAT tracking method consistently results in high track-
ing errors of more than 0.5m, while the SRP-MBE deteriorates when T60 is higher
than 0.3 s.

3.4 Integration with Social Robot

Sound source localization and tracking have been investigated in the previous sec-
tions. In this section, we describe a system where the SSLT module has been inte-
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Fig. 3.11 Comparison of mean tracking error versus different reverberation time T60. a Power drill
is present at SIR = 0dB. b Telephone ring is present at SIR = −5dB

grated to the social robot and to the virtual human. Figure3.12 shows the demo
setup of a social robot system in the BeingThere Center, Nanyang Technological
University. Microphones are employed linearly with known positions. The SSLT
module estimates the position of a speaker within the room and delivers the position
information through I2P connections to the server. The other modules (e.g., the head
controller module) would therefore have access to the sound position information.
Either the virtual human or the social robot is able to turn its head to a person who
is speaking in the room. By focusing on the speaker, the interaction between robot
and users is improved. The sound position information can also be combined with
the face detection module, which allows the robot to be aware of all the users while
focusing on the active speaking person.

Fig. 3.12 Integration setup with the social robot system
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3.5 Future Avenues

This research focuses on SSLT problems in the meeting room environment and will
continue to be the research focus in the near future. The following are some of the
possible suggestions for future research:

1. Improving the performance of SRP-MBE in the reverberant environment.
The performance of the proposed SRP-MBE tracking algorithm degrades when
reverberation time increases. This is due to the fact that the harmonic bands are
disturbed by a high amount of reverberation. The issue of how to recover or
extract the time delay information from the degraded harmonic bands certainly
requires future investigation.

2. Tracking time-varying number of sources. In recent years, tracking time-
varying number of sources has gained much interest in the research commu-
nity [14, 28, 30]. In a typical environment, there might be multiple speakers
speaking at the same time, which results in speech signals overlapping. In addi-
tion, some speakers may become quiet after talking for a while. This practical
situation requires an advanced probabilistic model such as random finite set [28,
36] to be incorporated in the particle filter framework to achieve multiple speaker
tracking. In addition, it requires a mechanism to detect and initialize a new-
born target and remove certain inactive targets from the state at a certain time
instant [14].

3.6 Conclusions

In this chapter, we first reviewed the SSLT problem in a meeting room environment
for teleconference purposes. The challenges include room reverberation, background
noise, and sound interference. After reviewing some of the existing methods, a pro-
posed SSLT framework was discussed for tracking a speech source in the presence of
sound interference. This method is capable of estimating the speech harmonic bands
for localizing and tracking. By only emphasizing the harmonic bands, better speech-
sensitive measurement likelihood can be achieved resulting in better weight update
for the particles. Simulation results show that the proposedmethod can achieve lower
tracking error than the conventional SRP-PHAT method in the presence of multiple
interferers.

References

1. ArulampalamMS,Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

2. BrandsteinMS (1999)Time-delay estimation of reverberated speech exploiting harmonic struc-
ture. J Acoust Soc Am 105:2914–2919



3 Sound Source Localization and Tracking 77

3. Chen J, Benesty J, Huang YA (2006) Time delay estimation in room acoustic environments:
an overview. EURASIP J Adv Signal Process 2006:1–1

4. Cobos M, Marti A, Lopez JJ (2011) A modified SRP-PHAT functional for robust real-time
sound source localizationwith scalable spatial sampling. IEEESignal Process Lett 18(1):71–74

5. Deleforge A, Horaud, R (2012) The cocktail party robot: sound source separation and locali-
sation with an active binaural head. In: Proceedings 7th ACM/IEEE international conference
human-Robot interaction (HRI), pp 431–438

6. Deller JR, Proakis JG, Hansen JHL (2000) Discrete-time processing of speech signals. Wiley-
IEEE Press, New York

7. DiBiase JH (2000) A high accuracy, low-latency technique for talker localization in reverberant
environments using microphone arrays. PhD thesis, Brown University

8. DiBiase JH, Silverman HF, Brandstein MS (2001) Robust localization in reverberant rooms.
Microphone arrays: signal processing techniques and applications, pp 157–180

9. Dmochowski J, Benesty J, Affes S (2007) Direction of arrival estimation using the parameter-
ized spatial correlation matrix. IEEE Trans Audio, Speech, Lang Process 15(4):1327–1339

10. Dmochowski J, Benesty J, Affes S (2007) A generalized steered response power method
for computationally viable source localization. IEEE Trans Audio, Speech, Lang Process
15(8):2510–2526

11. Dmochowski J, Benesty J, Affes S (2008) Linearly constrained minimum variance source
localization and spectral estimation. IEEE Trans Audio, Speech, Lang Process 16(8):1490–
1502

12. Do H, Silverman HF, Yu Y (2007) A real-time SRP-PHAT source location implementation
using stochastic region contraction (SRC)on a large-aperturemicrophone array. In: Proceedings
IEEE international conference on acoustics, speech and signal processing (ICASSP’07), vol 1,
pp I–121–I–124

13. FallonMF,Godsill S (2010)Acoustic source localization and tracking using track before detect.
IEEE Trans Audio, Speech, Lang Process 18(6):1228–1242

14. FallonMF,Godsill S (2012)Acoustic source localization and tracking of a time-varying number
of speakers. IEEE Trans Audio, Speech, Lang Process 20(4):1409–1415

15. Gannot S, Dvorkind TG (2006) Microphone array speaker localizers using spatial-temporal
information. EURASIP J Appl Signal Process (special issue on microphone arrays) 2006:1–17

16. Garofolo J, Lamel L, Fisher W, Fiscus J, Pallett D, Dahlgren N, Zue V (1993) TIMIT acoustic-
phonetic continuous speech corpus. Philadelphia

17. Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. In: Proceedings of IEE -F, radar and signal processing, vol 140,
pp 107–113. IET

18. Grewal MS, Andrews AP (2011) Kalman filtering: theory and practice usingMATLAB.Wiley,
New York

19. Griffin DW, Lim JS (1988) Multiband excitation vocoder. IEEE Trans Acoust Speech Signal
Process 36(8):1223–1235

20. Habets EAP, Benesty J (2012) A perspective on frequency-domain beamformers in room
acoustics. IEEE Trans Audio, Speech, Lang Process 20(3):947–960

21. Habets EAP, Benesty J, Naylor PA (2012) A speech distortion and interference rejection con-
straint beamformer. IEEE Trans Audio, Speech, Lang Process 20(3):854–867

22. Huang Y, Benesty J, Elko GW, Mersereau RM (2001) Real-time passive source localiza-
tion: a practical linear-correction least-squares approach. IEEE Trans Speech, Audio Process
9(8):943–956

23. Johnson DH, Dudgeon DE (1992) Array signal processing: concepts and techniques. Simon &
Schuster

24. Knapp CH, Carter GC (1976) The generalized correlation method for estimation of time delay.
IEEE Trans Acoust Speech Signal Process 24(4):320–327

25. Lehmann EA, Johansson AM (2007) Particle filter with integrated voice activity detection for
acoustic source tracking. EURASIP J Adv Signal Process 2007



78 K. Wu and A.W.H. Khong

26. Lehmann EA, Johansson AM (2008) Prediction of energy decay in room impulse responses
simulated with an image-source model. J Acoust Soc Am 124(1):269–277

27. Levy A, Gannot S, Habets EAP (2011)Multiple-hypothesis extended particle filter for acoustic
source localization in reverberant environments. IEEE Trans Audio, Speech, Lang Process
19(6):1540–1555

28. MaW-K, Vo B-N, Singh SS, Baddeley A (2006) Tracking an unknown time-varying number of
speakers using TDOAmeasurements: a random finite set approach. IEEE Trans Signal Process
54(9):3291–3304

29. Marti A, Cobos M, Lopez JJ (2011) Real time speaker localization and detection system for
camera steering in multiparticipant videoconferencing environments. In: Proceedings of IEEE
international conference on acoustics, speech, signal processing (ICASSP’11), pp 2592–2595

30. Morelande MR, Kreucher CM, Kastella K (2007) A bayesian approach to multiple target
detection and tracking. IEEE Trans Signal Process 55(5):1589–1604

31. Talantzis F (2010) An acoustic source localization and tracking framework using particle
filtering and information theory. IEEE Trans Audio, Speech, Lang Process 18(7):1806–1817

32. Timofeev S, Bahai ARS, Varaiya P (2008) Adaptive acoustic beamformer with source tracking
capabilities. IEEE Trans Signal Process 56(7):2812–2820

33. Varga A, Steeneken HJM (1993) Assessment for automatic speech recognition: II. NOISEX-
92: a database and an experiment to study the effect of additive noise on speech recognition
systems. Speech Commun 12(3):247–251

34. VanVeenBD, BuckleyKM (1988) Beamforming: a versatile approach to spatial filtering. IEEE
ASSP Magazine 5(2):4–24

35. Vermaak J, Blake A (2001) Nonlinear filtering for speaker tracking in noisy and reverberant
environments. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal
Processing (ICASSP’01), pp 3021–3024

36. VoB-T, VoB-N, Antonio C (2008) Bayesian filtering with random finite set observations. IEEE
Trans Signal Process 56(4):1313–1326

37. Ward DB, Lehmann EA, Williamson RC (2003) Particle filtering algorithms for tracking an
acoustic source in a reverberant environment. IEEETrans SpeechAudioProcess 11(6):826–836

38. Wu K, Goh ST, Khong AWH (2013) Speaker localization and tracking in the presence of
sound interference by exploiting speech harmonicity. In: Proceedings of IEEE international
conference on acoustics, speech, signal processing (ICASSP’13), pp 365–369

39. Zeng W-J, Li X-L (2010) High-resolution multiple wideband and nonstationary source local-
ization with unknown number of sources. IEEE Trans Signal Process 58(6):3125–3136


	3 Sound Source Localization and Tracking
	3.1 Introduction
	3.2 Overview of Sound Source Localization and Tracking Algorithms
	3.2.1 Mathematical Formulation of Sound Source Localization
	3.2.2 Sound Source Localization Using Beamforming-Based Approach
	3.2.3 Sound Source Tracking Using Particle Filter-Based Approach

	3.3 Proposed Robust Speech Source Tracking
	3.3.1 The Harmonic Structure in the Speech Spectrogram
	3.3.2 Speech Source Tracking in the Presence of Sound Interference
	3.3.3 Simulation Results

	3.4 Integration with Social Robot
	3.5 Future Avenues
	3.6 Conclusions
	References


