
Human–Computer Interaction Series

Nadia Magnenat-Thalmann
Junsong Yuan
Daniel Thalmann
Bum-Jae You    Editors

Context Aware 
Human-Robot 
and
Human-Agent 
Interaction



Human–Computer Interaction Series

Editors-in-chief

Desney Tan
Microsoft Research, USA

Jean Vanderdonckt
Université catholique de Louvain, Belgium



HCI is a multidisciplinary field focused on human aspects of the development of
computer technology. As computer-based technology becomes increasingly
pervasive—not just in developed countries, but worldwide—the need to take a
human-centered approach in the design and development of this technology
becomes ever more important. For roughly 30 years now, researchers and
practitioners in computational and behavioral sciences have worked to identify
theory and practice that influences the direction of these technologies, and this
diverse work makes up the field of human-computer interaction. Broadly speaking
it includes the study of what technology might be able to do for people and how
people might interact with the technology. The HCI series publishes books that
advance the science and technology of developing systems which are both effective
and satisfying for people in a wide variety of contexts. Titles focus on theoretical
perspectives (such as formal approaches drawn from a variety of behavioral
sciences), practical approaches (such as the techniques for effectively integrating
user needs in system development), and social issues (such as the determinants of
utility, usability and acceptability).

Titles published within the Human–Computer Interaction Series are included in
Thomson Reuters’ Book Citation Index, The DBLP Computer Science Bibliography
and The HCI Bibliography.

More information about this series at http://www.springer.com/series/6033

http://www.springer.com/series/6033


Nadia Magnenat-Thalmann
Junsong Yuan • Daniel Thalmann
Bum-Jae You
Editors

Context Aware Human-
Robot and Human-Agent
Interaction

123



Editors
Nadia Magnenat-Thalmann
Institute for Media Innovation, SCE
Nanyang Technological University
Singapore
Singapore

Junsong Yuan
Institute for Media Innovation, EEE
Nanyang Technological University
Singapore
Singapore

Daniel Thalmann
Institute for Media Innovation, SCE
Nanyang Technological University
Singapore
Singapore

Bum-Jae You
Center of HCI for Coexistence
Korea Institute of Science and Technology
Seoul
South Korea

ISSN 1571-5035
Human–Computer Interaction Series
ISBN 978-3-319-19946-7 ISBN 978-3-319-19947-4 (eBook)
DOI 10.1007/978-3-319-19947-4

Library of Congress Control Number: 2015942809

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

This book is the first book to describe how Autonomous Virtual Humans and Social
Robots can interact with real people, be aware of these people and the environment
and react to various situations. The book explains the main techniques for the
tracking and the analysis of humans and their behaviour including facial expressions,
body and hand gestures and sound localization. It explains how the virtual human and
the social robot should react at the right time based on the perception they have from
the real participants. It describes how to create socially interactive behaviour gen-
eration for virtual characters and social robots using the same modalities as human
do: verbal, body gestures, facial expressions and gaze. The book also discusses how a
virtual human or a social robot can replace a real human in a remote location.

The contributors of this book are international experts in the field. Several
of them come from different institutes/schools in Nanyang Technological
University (NTU) in Singapore: Institute for Media Innovation, School of Electrical
and Electronic Engineering, and School of Art, Design and Media. Three chapters
have contributors from the well-known Korea Institute of Science and Technology
in Seoul. Other contributors are from France and China. In total, more than 100
researchers have contributed to this book.

This book is partly the result of two large ongoing projects developed in two main
centres: the Centre of Human-centred Interaction for Coexistence in Seoul at Korea
Institute of Science and Technology (KIST) and the BeingThere Center (BTC) in
NTU in Singapore. The research done by the authors in the BeingThere Centre in
NTU is supported by the Singapore National Research Foundation under its
International Research Centre Funding Initiative and administered by the IDM
Programme. The research done at the Korea Institute of Science and Technology
(KIST) is supported by the Ministry of Education, Science and Technology in Korea.

Singapore Nadia Magnenat-Thalmann
Singapore Junsong Yuan
Singapore Daniel Thalmann
South Korea Bum-Jae You
January 2015
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Introduction

Virtual humans have become very popular in the last 15 years, mainly through
three-dimensional (3D) movies and games. In movies, they now have very realistic
physical and emotional characteristics, including their facial expressions, hair,
clothes and motions. In parallel, robotics has made considerable progress and new
kinds of robots are available as social companions. Some of them have the
appearance of humans. They are physically present, and in case of social robots, we
can define them as artificial characters. These social robots share a lot of research in
common with Virtual Humans. The high level research on awareness of a situation
and the proper reaction to this situation can be addressed by both domains (Virtual
Humans and Social robotics).

It is now possible, for example, to replace a real participant in a meeting or an
event by its virtual or robotic counterpart. The virtual or robotic counterpart is
supposed to give the illusion that the real person is present. This implies that they
should look the same as the real human, speaks with the same intonation, and be
aware of the real situation, the real participants, and the task currently performed.
The virtual human and the robot should react at the right time based on the per-
ception they have from the real participants. It implies to evaluate what each real
participant is doing. Perception will be obtained by visual and audio input and
recognition. The virtual participant reacts according to the input and its current
knowledge. Its reactions encompass animation (body and facial gestures) and
speech synthesis.

To tackle the issues on global awareness and proper reactions to real world given
situation, the research is focused on three main areas:

• Tracking of Gestures and Analysis of Real Humans’ Behaviour: This is
important as it will give the virtual human and the social robot the capacity to
sense and understand what is happening in their environment.

• Facial and Body Modelling and Animation: The virtual human or the social
robot will need to react and respond appropriately considering the perception
of the current situation and the users’ state. They should use the same modalities
as human does: verbal, body and hand gestures, facial expressions and gaze.
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• Modelling Human Behaviours: It consists first in modelling personality,
mood, and emotion in order to generate the appropriate behaviour; more com-
plex situations correspond to multiple virtual humans interactions and
multi-modal and multi-party social interactions.

This book is structured according to these three main research areas and we
briefly now summarise the three parts and the corresponding chapters. Part I is
dedicated to the analysis and recognition of the situation in order to make the
Virtual Human or the Social Robot aware of this situation. First, Chap. 1 addresses
the problem of face recognition and facial expression analysis as they are essential
abilities of the human and provide the basic visual clues during human–computer
interaction. In Chap. 2, it is explained how a social robot or a Virtual Human can
understand the meaning of human upper body gestures and express itself by using a
combination of body movements, facial expressions and verbal language. It is
important to enable the virtual human/social robot such capabilities in order to
achieve autonomous behaviour. The human–robot interaction system is based on a
novel combination of sensors: the CyberGlove II is employed to capture the hand
posture and this feature is combined with the head and arm posture information
captured from the Microsoft Kinect. Based on the body posture data, an effective
and real-time human gesture recognition method is proposed. Chapter 3 describes
how sound source localization and tracking plays an important role in this global
analysis of a situation and can support awareness for the virtual human or the social
robot. Given the location of a sound, the social robot can be endowed with the
capability of sound event awareness, which results in enhanced interaction with
human beings.

Part II emphasises the methods for modelling and animating faces and bodies in
order to generate the right motion. Chapter 4 is dedicated to conversation, which is
clearly important in many applications. It describes the unsolved problem of how
the non-verbal component of a conversation might be visualised in a concise yet
effective manner that would be suitable for use in a communication skill training
scenario. Functionally, conversation serves to deliver and exchange information.
However, there is much of a conversation that lays outside of its verbal content yet
impacts directly on those involved and in a manner that might be to their detriment
or benefit. In Chap. 5, we show that combining 2D images and the range scanned
measurement can lead to successful reconstruction results. The quality shape and
collective knowledge from scanned dataset has been exploited to efficiently com-
plement the geometric shape recovery from image inputs. More specifically, a set of
3D body scans that are put in correspondence have been used to parameterise the
shape space, which we explore in order to find the optimising parameters that best
fit the given image data. The aim of Chap. 6 is to give a comprehensive overview of
current state-of-the-art parametric methods for realistic facial modelling and ani-
mation. Facial modelling is a fundamental technique in a variety of applications in
computer graphics, computer vision and pattern recognition areas. As the 3D
sensing technologies have been evolved, the quality of facial modelling has been
greatly improved. To enhance the modelling quality and controllability of the

xii Introduction

http://dx.doi.org/10.1007/978-3-319-19947-4_1
http://dx.doi.org/10.1007/978-3-319-19947-4_2
http://dx.doi.org/10.1007/978-3-319-19947-4_3
http://dx.doi.org/10.1007/978-3-319-19947-4_4
http://dx.doi.org/10.1007/978-3-319-19947-4_5
http://dx.doi.org/10.1007/978-3-319-19947-4_6


model further, parametric methods, which represent or manipulate facial attributes
(e.g., identity, expression, viseme) with a set of control parameters, have been
proposed in recent years. Chapter 7 introduces several learning approaches to
generate non-preprogrammed motions for a virtual human. To generate
non-preprogrammed motions, a Virtual Human should possess the abilities to:
(1) segment a whole movement into meaning segments; (2) learn motion primitives
for their adaptation in a changing environment; (3) represent a combination of a
motion primitive and its causalities by considering reusability; and finally,
(4) swiftly and reasonably select a dependable motion primitive in accordance with
current and goal situations. Chapter 8 presents how to generate natural behaviours
of Virtual Humans responsive to the physical interaction with the user such as push
and pull. These physical interactions play an important role for increasing the level
of immersion of the user and lay foundations for more advanced level of interac-
tions. One of the key components for physical interaction is the generation of
suitable balancing behaviours of humanoids against user inputs. In Chap. 9, we
introduce the concept of shared object manipulation between real and virtual
humans. These can be applied to 3D telepresence applications such as
computer-aided design and virtual simulation and training. It consists of three
different and complex research domains: (1) virtual object grasping methods for
intuitive behaviour (2) virtual object manipulation by virtual humans. (3) consistent
management of shared objects to avoid conflicts from multiple simultaneous inputs.

The goal of Part III is to present all behavioural aspects of virtual humans and
social robots, when they react to real people or to other virtual humans and social
robots. Chapter 10 considers affect dynamics which simulates the relation among
the emotions, mood and personality and updates emotional states for long-term
human-agent interactions. We first examine basic psychological concepts and
computational models for affect dynamics. Then we present a psychologically
plausible affect dynamics algorithm in which the personality influences the updating
of emotional states during the whole interactions. This makes affect dynamics
characterised by the personality, which is shown to be important for long-term
interactions. Chapter 11 is looking at motion control for the physically realistic
robot Nadine. Robot controllers for such robot need to produce behaviours that
match the physical realism of the robot. This chapter describes a robot controller
that allows such a robot to fully use the same modalities as humans during inter-
action including speech, facial and bodily expressions. Chapter 12 presents a review
about interactions between real and multiple virtual humans with a focus on virtual
assistants and social phobia examples. Interactions between virtual humans are then
addressed; particularly gaze attention of other characters and navigation interactions
between multiple virtual humans. Chapter 13 focused on interaction of virtual
characters and robots interacting with people in social contexts with emphasis on
multi-modal and multi-party interactions. The challenges in this area are the esti-
mation of high level user states fusing low level multi-modal sensory input, taking
socially appropriate decisions using this partial sensory information and rendering
synchronised and timely multi-modal behaviours based on taken decisions.
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Chapter 1
Face and Facial Expressions Recognition
and Analysis

Jianfeng Ren, Xudong Jiang and Junsong Yuan

Abstract Face recognition and facial expression analysis are essential abilities of
humans, which provide the basic visual clues during human-computer interaction.
It is important to enable the virtual human/social robot such capabilities in order to
achieve autonomous behavior. Local binary pattern (LBP) has been widely used in
face recognition and facial expression analysis. It is popular because of robustness
to illumination variation and alignment error. However, local binary pattern still has
some limitations, e.g. it is sensitive to image noise. Local ternary pattern (LTP),
fuzzy LBP and many other LBP variants partially solve this problem. However,
these approaches treat the corrupted image patterns as they are, and do not have an
mechanism to recover the underlying patterns. In view of this, we develop a noise-
resistant LBP to preserve the imagemicro-structures in presence of noise.We encode
the small pixel difference as an uncertain state first, and then determine its value based
on the other bits of the LBP code. Most image micro-structures are represented by
uniform codes and non-uniform codesmainly represent noise patterns. Therefore, we
assign the value of uncertain bit so as to form possible uniform codes. In such a way,
we develop an error-correction mechanism to recover the distorted image patterns. In
addition, we find that some image patterns such as lines are not captured in uniform
codes. They represent a set of important local primitives for pattern recognition.
We thus define an extended noise-resistant LBP (ENRLBP) to capture line patterns.
NRLBPandENRLBPare validated extensively on face recognition, facial expression
analysis and other recognition tasks. They are shown more resistant to image noise
compared with LBP, LTP and many other variants. These two approaches greatly
enhance the performance of face recognition and facial expression analysis.

J. Ren (B) · X. Jiang · J. Yuan
BeingThere Centre, Nanyang Technological University, Singapore, Singapore
e-mail: JFREN@ntu.edu.sg

X. Jiang
e-mail: EXDJiang@ntu.edu.sg

J. Yuan
e-mail: JSYUAN@ntu.edu.sg

© Springer International Publishing Switzerland 2016
N. Magnenat-Thalmann et al. (eds.), Context Aware Human-Robot
and Human-Agent Interaction, Human–Computer Interaction Series,
DOI 10.1007/978-3-319-19947-4_1
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4 J. Ren et al.

1.1 Introduction

Humans can easily recognize the identity of other people through face images. In fact,
face recognition provides an important visual clue for human–computer interaction.
It enables the virtual human/social robot to have essential optical capabilities, i.e.,
to recognize who it is talking to. Then the virtual human/social robot can associate
the identity with other information stored in its memory, and enable other high-level
interactions. Face recognition is built into the human system as a functional module
that provides the user’s identity.

In addition to recognizing faces, humans also easily recognize the facial expres-
sions of others. By analyzing facial expressions, we can understand the emotional
mood of people and act accordingly. Thus, it is desirable to enable the virtual
human/social robots to recognize the facial expressions of a user, determine the
emotional state, and act accordingly to achieve autonomous behavior. Facial expres-
sion recognition is thus built into our system as a functional module to analyze the
user’s emotion.

Traditionally, holistic features were used in visual recognition, which were
derived by vectorizing raw-image pixels. However, the performance of these appro-
aches is often limited by rigorous image alignment and high computational cost.
Recently, LBP has become one of the most popular feature representations in visual
recognition. The LBP operator transforms an image into an array or image of integer
labels describing a micropattern, i.e., a pattern formed by a pixel and its immediate
neighbors [32]. More specifically, LBP encodes the signs of the pixel differences
between a pixel and its neighboring pixels to a binary code. The histogram of such
codes in an image block is commonly used for further analysis. The popularity of this
method is due to the following advantages. First, the exact intensities are discarded,
and only the relative intensities with respect to the center are preserved; thus, LBP
is less sensitive to illumination variations. Second, by extracting the histogram of
micropatterns in a patch, the exact location information is discarded and only the
patchwise location information is preserved. Thus, LBP is robust to alignment error.
Lastly, LBP features can be extracted efficiently, which enables real-time image
analysis.

Despite its success, the sensitivity to image noise limits the performance of LBP
features [40]. Typically in a smooth image region, a small image variationmay change
an LBP bit from 0 to 1, or vice versa, and hence alter the LBP code significantly.
In [31], uniform LBP was proposed to reduce the noise in the LBP histogram. Most
LBPs in natural images are uniform patterns [1, 31]. Nonuniform patterns are sta-
tistically insignificant, and hence noise-prone. By grouping the nonuniform patterns
into one label, the noise in nonuniform patterns is suppressed. In [5, 25, 28, 43, 50],
information in nonuniform patterns is extracted and used for classification. “Soft
histogram” [2, 16, 39] is another approach to improve robustness to noise. Instead
of hard-coding the pixel difference, a probability measure is used to represent its
likelihood as 0 or 1. However, the probability is closely related to the magnitude of
the pixel difference, thus, it is still sensitive to noise. Local ternary pattern (LTP) was
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proposed in [40] to tackle the image noise in uniform regions. Instead of binary code,
the pixel difference is encoded as a 3-valued code according to a threshold t. Then,
the ternary code is split into a positive LBP and a negative LBP in order to reduce
the dimensionality. LTP showed to be less sensitive to noise, especially in uniform
regions [40]. Subsequently, many LTP variants [3, 10, 13, 21, 22, 27] were proposed
in the literature. LBP and its variants partially solve the noise-sensitive problem; how-
ever, they lack the mechanism to recover corrupted image patterns. In this chapter,
we propose a noise-resistant LBP (NRLBP) and an extended noise-resistant LBP
(ENRLBP) to address this issue.

The signs of pixel differences used to compute LBP and its variants are vulnerable
to noise when they are small. Thus, we propose to encode small pixel difference as
an uncertain bit first and then determine its value based on the other bits of the LBP
code. Uniform patterns are more likely to occur as against nonuniform patterns in
natural images [1, 31]. Most image structures are represented by uniform patterns,
while nonuniform patterns are most likely caused by noise. Thus, in NRLBP, the
values of uncertain bits are assigned to form uniform patterns. A nonuniform pattern
is generated only if no uniform pattern can be formed. As noise may change a
uniformpattern into an unstable nonuniformpattern, NRLBP correctsmany distorted
nonuniform patterns to uniform patterns.

For LBP andLTP, line patterns are treated as nonuniformpatterns and grouped into
the nonuniform bin. Uniform patterns mainly represent spot, flat region, edge, edge
end, and corner. A local image is a line pattern if it is a line against the background, as
shown in Fig. 1.6. Line patternsmay appear less frequently than uniform patterns, but
they represent an important group of local primitives for pattern recognition. Thus,
we propose an extended set of uniform patterns corresponding to line patterns. Then,
we propose extended noise-resistant LBP (ENRLBP). During the encoding process,
we assign the values of uncertain bits so as to form extended uniform patterns.

To evaluate NRLBP, we first inject Gaussian noise and uniform noise of different
levels on the AR database [24] for face recognition and facial expression recogni-
tion. NRLBP and ENRLBP demonstrate strong resistance to noise compared with
LBP/LTP and its variants. They are further compared with LBP/LTP variants for
face recognition on the extended Yale database [8, 18] and the O2FN database [33].
NRLBP and ENRLBP consistently achieve better performance.

1.2 Literature Review

LBP and its variants have been widely used in many recognition applications, e.g.,
facial analysis [1, 34, 37, 40], texture classification [9, 20, 25, 31], dynamic texture
recognition [35, 47, 49], human detection [26, 42], scene classification [36, 43, 44]
and others [14, 22, 38]. LBP encodes the relative pixel difference of the neighboring
pixels to the central pixels, e.g., LBPP,R denotes the LBP code of P neighbors at a
distance of R. Denote the gray level of the center pixel by ic, and the gray level of the
circular neighbors by ip, where p = 0, 1, . . . , P − 1. The LBP code for pixel (x, y)
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Fig. 1.1 Block diagram of LBP encoding process

is obtained as

LBPP,R(x, y) =
P−1∑

p=0

s(ip − ic)2
p, (1.1)

where s(z) is the threshold function

s(z) =
{
1 if z ≥ 0,

0 if z < 0.
(1.2)

The histogram of these codes is then used for further analysis. The block diagram
of LBP encoding process is shown in Fig. 1.1. The image is first encoded as an LBP
image that is divided into patches, and one LBP histogram is extracted from each
patch. Finally, the LBP histograms of all patches are concatenated to form the final
feature vector.

Despite its wide applications, the LBP feature still has some limitations, i.e., it
is sensitive to image noise. A small image variation will alter the LBP bit from 0 to
1 or vice versa, and hence alter the code significantly. Many approaches have been
proposed to address this issue, which are grouped into the following four categories.

1.2.1 Uniform LBP

It is shown in [1, 31] that most LBP codes in a natural image are uniform codes.
An LBP code is defined as a uniform pattern if it has at most two circularly bit-
wise transitions from 0 to 1 or vice versa, and nonuniform patterns if otherwise. For
example, “11000000” is a uniform code, while “11001100” is a nonuniform code.
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For LBP8,2, there are 58 uniform codes and 198 nonuniform codes. Uniform patterns
are statistically more significant and their occurrence probabilities can be more reli-
ably estimated. By contrast, nonuniform patterns are statistically less insignificant,
and hence noise-prone and unreliable. In uniform LBP mapping [31], one separate
histogram bin is used for each uniform pattern and all nonuniform patterns are accu-
mulated in a single bin. By grouping the nonuniform patterns into one label, the noise
in nonuniform patterns is suppressed, while at the same time the number of patterns
is reduced significantly.

In [5, 25, 28, 43, 50], information in nonuniform patterns is extracted and also
used for classification. Liao et al. proposed a dominant LBP (DLBP) that considers
the most frequently occurred patterns in a texture image [25]. This is based on the
observation that some nonuniform codes may have higher occurrence frequency
than uniform codes. Instead of being based on image microstructures [31], DLBP
chooses LBP codes based on occurrence frequency directly. Zhou et al. [50] and Fathi
et al. [5] proposed to extract information from nonuniform patterns based on pattern
uniformity measure and the number of 1 s in the LBP codes. Principal component
analysis [43] and random subspace approach [28] were used to extract information
from the whole LBP histogram, including both uniform and nonuniform patterns.
These approaches can extract discriminant information from the nonuniform codes.
However, as the nonuniform codes may contain noise, these approaches tend to be
sensitive to noise.

1.2.2 Fuzzy LBP

“Soft histogram” is another approach to improve the robustness to noise. Instead of
hard-coding the pixel difference as shown in Eq. (1.2), a probability measure is used
to represent its likelihood as 0 or 1. In [2, 16], a fuzzy LBP (FLBP) using piecewise
linear fuzzy membership function was proposed that replaces s(z) with two fuzzy
membership functions:

f 1(z, d) =

⎧
⎪⎨

⎪⎩

0 if z < −d,

0.5 + 0.5z/d if − d ≤ z ≤ d,

1 if z > d.

(1.3)

f 0(z, d) = 1 − f 1(z, d). (1.4)

The parameter d controls the amount of fuzzfication. f 1(z, d) and f 0(z, d) represent
the probability that the pixel difference z is encoded as 1 and 0, respectively. When
constructing the LBP histogram, we calculate the probabilities of all patterns as
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Pj =
P−1∏

i=0

cif
1
i (z, d) + (1 − ci)f

0
i (z, d), (1.5)

where j = ∑P−1
i=0 ci × 2i and ci is ith bit of the code. For example, the probability

of “11001100” is calculated as P11001100 = f 17 f 16 f 05 f 04 f 13 f 12 f 01 f 00 , where f b
i is the prob-

ability of bit i to be encoded as b ∈ {0, 1}. The complete histogram is derived by
summing the contributions of all pixels in an image patch.

Another fuzzy LBP uses Gaussian-like membership function [39], which is
defined as

f 1(x, σ ) =
{
1 − 0.5e−x2/σ 2

if x ≥ 0,

0.5e−x2/σ 2
if x < 0,

(1.6)

f 0(x, σ ) = 1 − f 1(x, σ ), (1.7)

where x = (ip − ic)/ic and σ controls the amount of fuzzfication. A comprehensive
comparison between LBP and fuzzy LBP in classifying and segmenting textures can
be found in [17].

When the original LBP operator is used, one pixel only contributes to one his-
togram bin. In fuzzy LBP, one pixel typically contributes to more than one bin.
The contributions of a pixel to all bins always sum to 1. Using fuzzy LBP, a small
change in the input image causes only a small change in the histogram. Thus, it is
robust to image noise to a certain extent. However, the probability measures defined
in Eqs. (1.3) and (1.6) are closely related to the magnitude of the pixel difference.
Thus, it is still sensitive to noise.

1.2.3 LTP and Its Variants

The LBP code is sensitive to noise, especially in a near-constant image region. In
LTP [40], the pixel difference z between a pixel and its neighbors is encoded by three
values (1, 0 or −1) according to a threshold t, i.e.,

sT (z) =

⎧
⎪⎨

⎪⎩

1 if z > t,

0 if − t ≤ z ≤ t,

−1 if z < −t.

(1.8)

State “0” is used to handle the small image variations, i.e., if the difference is within
the threshold t, it is encoded as state “0”. These small variations are treated sepa-
rately. Thus, LTP is less sensitive to noise. However, the LTP histogram is of high
dimensionality, e.g., LTP8,2 will exhibit a histogram of 38 = 6561 bins. To reduce
the dimensionality, the ternary pattern is split into a positive LBP code and a negative
LBP code in [40].
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Subsequently, many LTP variants were proposed in the literature. Nanni et al.
proposed a quinary code of five values according to two thresholds [27]:

sq(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2 if z ≥ t2,

1 if t1 ≤ z < t2,

0 if − t1 ≤ z < t1,

−1 if − t2 ≤ z < −t1,

−2 if z < −t2,

(1.9)

where t1, t2 are two thresholds and t1 < t2. Then the quinary code is split into four
binary codes, analogous to LTP. As LTP is not invariant under scaling of intensity
values, Liao et al. proposed scale-invariant local ternary pattern (SILTP) to deal with
the gray scale intensity changes in a complex background [22]. To reduce the high
dimensionality of LTP, center-symmetric LTP (CSLTP)was proposed in [10]. Instead
of using the pixel differences between the neighboring pixels and the central pixel,
the pixel differences between diagonal neighbors are calculated. In local adaptive
ternary patterns (LATP) [3] and extendedLTP (ELTP) [21], insteadof using a constant
threshold, the threshold is calculated for each window using local statistics, which
makes them less sensitive to illumination variations. In local triplet pattern [13], the
equality is modeled as a separate state, and a tri-state pattern is formulated. It can be
viewed as a special case of LTP [40].

To improve the robustness to noise, other thresholding and encoding techniques
have been proposed. Instead of comparing with the center pixel, Hafiane et al. pro-
posedmedian binary pattern (MBP) by thresholding the local pixel values against the
median value within the local neighborhood [11]. In improved LBP [6], the neigh-
boring pixels are thresholded against the mean intensity of the local neighborhood.
Trefny and Matas [41] proposed two new encoding schemes: binary value transition
coded LBP (tLBP) using the pixel differences of neighbors in clockwise direction
and direction coded LBP (dLBP) encoding the second-order pixel differences. In
centralized binary pattern (CBP) [7], the average intensity within the neighborhood
is compared to the center pixel and added as an LBP bit. To reduce the sensitivity to
noise, a Bayesian LBP (BLBP) was developed by He et al. [12]. It is formulated in
a filtering, labeling, and statistic (FLS) framework, in which the labeling procedure
is modeled as an optimization process.

1.2.4 Preprocessing

Image preprocessing techniques can also improve the robustness of LBP to image
noise. Gabor filtering is often used before extracting LBP feature, as LBP captures
image microstructures and Gabor filters encode image information on a large scale.
Zhang et al. [46] proposed to extract LBP features from 40 Gabor-filtered images,
known as local gabor binary patterns (LGBP). It has been used as a benchmark



10 J. Ren et al.

method in many recent face recognition studies, whose drawback however is its high
dimensionality. Tan and Triggs [40] proposed an image preprocessing framework
that consists of gamma correction, difference of Gaussian (DoG) filtering, masking
(optional), and equalizationof variations.UsedwithLTP, it has demonstrated superior
performance in face recognition.

To tackle the small image variations in a near-constant region, Yao and Chen [45]
proposed local edge patterns (LEP) for color texture retrieval, in which the Sobel
edge detection is used to suppress the small image variations in the near-constant
region, and LBP-like feature is extracted on the filtered image. Similar ideas have
been used in [15] for shape localization and in [48] for facial image representation.
Li et al. [19] proposed to extract LBP features from multiscale heat kernels, which
capture the intrinsic topological structural information of face appearance. In [23],
LBP features are extracted from curvelet-transformed images for medical image
analysis.

1.2.5 Discussion

Although previous approaches partially solve the noise-sensitivity problem, they
treat corrupted LBP patterns as they are, and lack the mechanism to recover the
underlying patterns. In the following section, we present our noise-resistant LBP
with an embedded error-correction mechanism that better handles image noise.

1.3 Noise-Resistant Local Binary Patterns

1.3.1 Problem Analysis of LBP and LTP

LBP encodes the pixel difference zp = ip − ic between the neighboring pixel ip

and the central pixel ic. Let CB
P,R = −−−−−−−−−−−−→

bB
P−1bB

P−2 · · · bB
1bB

0 denote the LBP code of P
neighbors at distance R to the center pixel. A code is also called a pattern. Let LBPP,R

denote such a coding scheme for CB
P,R. Each bit is obtained as in Eq. (1.2).

LBP is widely used in many applications because of its simplicity and robustness
to illumination variations; its drawback is it is sensitive to image noise. In [31],
uniform LBP was proposed to capture fundamental image structures and reduce the
noise in an LBP histogram. The uniformity U is defined as the number of circularly
bitwise transitions from 0 to 1 or vice versa. An LBP is u2-uniform or simply called
uniform if U ≤ 2. For example, “11110000” is a uniform pattern as U = 2, while
“01010111” shown in Fig. 1.2a is a nonuniform pattern as U = 6. LBPu2

P,R indicates
a coding and histogram mapping scheme in which u2-uniform LBP codes of P
neighbors at the distance of R to the center pixel are used. Uniform patterns occur
muchmore frequently than nonuniform patterns in natural images. It has been shown
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Fig. 1.2 a An example of
LBP encoding scheme for
the smooth region with small
image noise. LBP is sensitive
to image noise. b An
example of LTP encoding
process. LTP doubles the
number of patterns compared
with LBP

that LBPu2
8,1 accounts for almost 90% of all patterns for texture images [31] while

LBPu2
8,2 accounts for 90.6% for facial images [1]. The occurrence probabilities of

nonuniformpatterns are so small that they cannot be reliably estimated [31]. Inclusion
of such noisy estimates in the histogram would harm the classification performance.
In addition, nonuniform patterns may be caused by the image noise. Therefore, when
constructing the histogram, all nonuniformpatterns are grouped into one bin. This not
only reduces feature dimensionality, butmore importantly, the noise due to unreliable
estimates of nonuniform patterns is greatly suppressed. The number of patterns is
reduced significantly from 2P to P(P − 1) + 3. For example, LBP8,2 consists of 256
patterns, while LBPu2

8,2 has only 59 patterns.
Uniform LBP successfully reduces noise in the LBP histogram, though it is still

sensitive to image noise. As shown in Fig. 1.2a, a small noise will cause the pixel
difference to be encoded differently. Ideally such a smooth region should be encoded
as “11111111,” but owing to image noise it is encoded as “01010111” instead. LTP
partially solves this problem by encoding the small pixel difference into a third
state [40]. Instead of using binary code, each pixel difference is encoded as a 3-

valued code. Let CT
P,R = −−−−−−−−−−−−→

bT
P−1bT

P−2 · · · bT
1 bT

0 denote the LTP code of P neighbors

at distance R to the center pixel and LTPP,R denote such a coding scheme for CT
P,R.

Each bit is obtained as

bT
p =

⎧
⎪⎨

⎪⎩

1 if zp ≥ t,

0 if |zp| < t,

−1 if zp ≤ −t,

(1.10)

where t is a predefined threshold.
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LTP is more resistant to noise. However, the dimensionality of LTP histogram is
very large, e.g., LTP8,2 exhibits a histogram of 38 = 6561 bins. Thus, in [40], LTP
is split into a positive LBP and a negative LBP. Each bit of positive LBP is obtained
as

bp
p =

{
1 if zp ≥ t,

0 if zp < t.
(1.11)

Each bit of negative LBP is obtained as

bn
p =

{
0 if zp ≤ −t,

1 if zp > −t.
(1.12)

To show the similarities and differences among LBP, LTP, and NRLBP clearly,
the negative LBP defined here is the complement of the negative LBP defined in [40].
Effectively, they achieve the same result for histogram-based comparison. Eventually,
LTP is treated as two separate channels of LBP codes: one channel for positive LBP
and the other for negative LBP. In general, uniform LTP is used in which both
channels are uniform LBP. This coding scheme is denoted as LTPu2

P,R. An example
of LTP encoding process is shown in Fig. 1.2b. LTP doubles the number of patterns
compared to LBP.

The small pixel difference may be easily distorted by noise. Both LBP and LTP
lack the mechanism to correct the corrupted patterns. The corrupted image patterns
are treated without any attempt to recover the underlining local structures. To address
this issue, we propose a noise-resistant LBP and an extended noise-resistant LBP.

1.3.2 Noise-Resistant LBP

LBP is sensitive to noise. Even a small noise may change the LBP code significantly.
Thus, we propose to encode the small pixel difference as an uncertain bit X first and
then determine X based on other certain bits of the LBP code. As regards the pixel
difference zp between the neighboring pixel and the central pixel, we encode it into
one of the three states bN

p as

bN
p =

⎧
⎪⎨

⎪⎩

1 if zp ≥ t,

X if |zp| < t,

0 if zp ≤ −t.

(1.13)

States 1 and 0 represent two strong states where the pixel difference is almost
definitely positive and negative, respectively. Noise can unlikely change them from
0 to 1 or from 1 to 0. State X represents an uncertain state where the pixel difference



1 Face and Facial Expressions Recognition and Analysis 13

is small. A small pixel difference is vulnerable to noise if we only take its sign. More
specifically, noise can easily change its LBP bit from 0 to 1 or vice versa. Therefore,
we encode it as an uncertain state regardless of its sign.

Then, we constrain the value of the uncertain bit into either 0 or 1, represented
by a variable xi, xi ∈ {0, 1}. Let X = (x1, x2, . . . , xn) denote the vector formed by n
variables of a code. X ∈ {0, 1}n. The uncertain code can be represented by C(X) as

−−−−−−−−−−−−→
bN

P−1bN
P−2 · · · bN

1 bN
0 = C(X). (1.14)

Take the uncertain code “11X100X0” in Fig. 1.3a as illustration. The uncertain code−−−−−−−→
11x2100x10 can be viewed as a function of X = {x1, x2}.

After we derive the uncertain code, we determine the uncertain bits based on the
values of the other certain bits to form one or more codes of image local structures.
Uniform patterns represent local primitives, including spot, flat, edge, edge end, and
corner. They appear more often than nonuniform patterns in natural images. Since
uniform patterns occur more likely than nonuniform ones, we assign the values of
uncertain bits X so as to form possible uniform LBP codes. A nonuniform pattern
is generated only if no uniform pattern can be formed. Take Fig. 1.3b as an example.
We determine the uncertain bit of uncertain code “11X1X0X0” so as to form only
uniform patterns, e.g., “11110000” and “11111000.”

Mathematically, letΦu denote the collectionof all uniformLBPcodes. ForLBPu2
8,2,

Φu consists of 58 uniform codes. Based on the uncertain code C(X), a set of the
NRLBP codes are obtained as

SNRLBP = {C(X)|X ∈ {0, 1}n, C(X) ∈ Φu} (1.15)

Now let us construct the histogram of NRLBP for a local image patch. Let m
denote the number of elements in SNRLBP. If m > 0, the bin corresponding to each
element in SNRLBP will be added by 1/m. After all, all these patterns originate from
one uncertain code. If m = 0, the nonuniform bin will be added by 1. This process
is repeated for every pixel in the patch. Algorithm 1 summarizes the process.

Algorithm 1 Histogram construction for NRLBP
for Every pixel in a patch do
1. Derive the uncertain code C(X) as in Eqs. (1.13), (1.14).
3. Search uncertain bits X in the space {0, 1}n so that C(X) forms uniform LBP codes as in
Eq. (1.15).
4. Construct the histogram.
if m = 0 then
Accumulate the nonuniform bin with 1.

else
Accumulate the bin of each pattern in SNRLBP with 1/m.

end if
end for
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Fig. 1.3 Illustration of encoding process of NRLTP and comparison with LBP and LTP. a–c corre-
spond to m = 1, 2, 3 resulting in NRLBP codes, respectively. d shows an example that no uniform
code can be formed. NRLBP is significantly different from LBP and LTP. Threshold t is chosen as
2 for LTP and NRLBP in this figure. a m = 1, b m = 2, c m = 3, d m = 0

Now we compare NRLBP with LBP and LTP with examples. We consider the
cases that different number of LBP codes are derived in SNRLBP. Image patterns
in Fig. 1.3a–c generate m = 1, 2, 3 NRLBP codes, respectively. Figure1.3d shows
an example where no uniform code can be formed for NRLBP. The corresponding
LBP and LTP codes are also given. For LTP, the positive and negative LBPs are
accumulated in two different histograms, while for LBP and NRLBP, the codes are
accumulated in one histogram.

As noisemay change a uniform image pattern into an unstable nonuniformpattern,
NRLBP corrects such a code back to uniform code. As shown in Fig. 1.3a, the LBP
code is “11010010,” which may be distorted by noise. NRLBP first derives the
uncertain code “11X100X0,” and then determines its uncertain bits by forming the
uniform code “11110000.” This can be viewed as an error-correction mechanism.
Note thatweonly attempt such an error correctiononuncertainbits;wedonot attempt
to correct the nonuniform patterns that result from two strong states. Similarly, we
can observe such an error-correction process in Fig. 1.3b, c. In these two cases, more
than one NRLBP code is generated.

NRLBP corrects noisy nonuniform patterns back to uniform pattern. Figure1.4
shows the histograms of LBP, LTP, and NRLBP for the image shown in Fig. 1.8g.
The threshold t is chosen as 10 for LTP and NRLBP. The LTP histogram is the
concatenation of the positive and negative LBP histograms. The last bin of each his-
togram corresponds to nonuniform patterns, while other bins correspond to uniform
patterns. Clearly, compared with the LBP and LTP histograms, nonuniform patterns
in the NRLBP histogram are reduced significantly from about 35% to about 10%
only. NRLBP corrects a large amount of nonuniform patterns that are corrupted by
noise back to uniform patterns.

NRLBP is different from LBP and LTP in many other aspects, besides the capa-
bility of noise resistance and error-correction. The LBP code is that of the NRLBP
code set if it is uniform. The only exception is that the LBP code is nonuniform and
is corrected back to uniform code in NRLBP. Compared with LTP, the treatment of
uncertain state is totally different for NRLBP. For LTP, all uncertain bits are set to
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Fig. 1.4 The histograms of LBP, LTP, and NRLBP for the image shown in Fig. 1.8g. The LTP
histogram is a concatenation of the positive and negative LBP histograms. The last bin of each his-
togram corresponds to nonuniform patterns. Compared with the LBP and LTP histograms, NRLBP
significantly reduces nonuniform patterns from about 35% to about 10%. NRLBP corrects a large
amount of noisy nonuniform patterns back to uniform patterns. a LBP histogram. b LTP histogram.
c NRLBP histogram

0 for positive half and 1 for negative half as shown in Fig. 1.3, whereas for NRLBP,
we do not hurry for a decision on the uncertain bits. We treat them as if they could
be encoded as 1 and/or 0, and determine their values based on the other bits of code.
Mathematically, for LTP, X ∈ {0}n for positive half and X ∈ {1}n for negative half,
whereas X ∈ {0, 1}n for NRLBP. The number of histogram bins is also different.
The LTP histogram consists of 118 bins, while the NRLBP histogram has only 59
bins.

For implementation, a lookup table from the uncertain code to the feature vector
of NRLBP histogram can be precomputed. Then, the feature vector of local image
patch can be easily obtained by summing up the feature vector of each pixel in this
image patch.

1.3.3 Extended Noise-Resistant LBP

The local primitives represented by uniform LBPmainly consist of spots, flat region,
edges, edge ends, and corners [32], as shown in Fig. 1.5. However, a large group
of local primitives are totally discarded, e.g., lines patterns, as shown in Fig. 1.6.
Although these patterns may not appear as frequently as uniform patterns, they rep-
resent an important group of local primitives thatmay be crucial for recognition tasks.
Grouping them with other nonuniform patterns into one bin may result in informa-
tion loss. Therefore, we introduce an extended set of uniform patterns to preserve
line patterns. Of all possible line patterns, diagonal lines appear less frequently. In
order to keep the feature vector compact, we only choose nearly horizontal or vertical
lines.

Let α denote the angle of the line away from the horizontal line. If α ∈ [0, 30◦)
or α ∈ (150◦, 180◦], it is considered a horizontal line. If α ∈ [60◦, 120◦], it is
considered a vertical line. If α ∈ [30◦, 60◦) or α ∈ (120◦, 150◦], it is considered a
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Fig. 1.5 Local primitives detected by LBPu2
8,2

Fig. 1.6 Samples of line patterns. The three rows correspond to horizontal, diagonal, and vertical
lines. The diagonal lines are rare patterns for natural images and hence are discarded. The remaining
horizontal and vertical lines are the extended set of uniform patterns

diagonal line. Figure1.6 shows some samples of horizontal, diagonal, and vertical
lines.

The extended set of uniform patterns consist of 48 patterns. In addition to 58
uniform patterns, we derive the extended uniform patterns. Analogous to NRLBP,
we can derive the extended NRLBP (ENRLBP). Instead of forming uniform patterns
we form extended uniform patterns as our ENRLBP pattern. In such a way, line
patterns are preserved during the encoding process. The number of bins of ENRLBP
histogram is 107, which is smaller than the LTP histogram which has 118 bins.

1.3.4 Applications on Face and Facial Expression Recognition

NRLBP and ENRLBP can be used for many recognition tasks. Here, we focus on
the applications on face and facial expression recognition. The block diagram for the
face recognition system is shown in Fig. 1.7.
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Fig. 1.7 Block diagram for face recognition system

The system consists of two parts: feature extraction and classification. Before
feature extraction, we first geometrically normalize an image based on two eye loca-
tions so that the two eyes are in the same locations for all images. This typically
involves rotation, scaling, and translation of the image. Then we divide the image
into patches. One NRLBP histogram is extracted from each patch using Algorithm 1.
The histograms of all patches are concatenated to form the final feature vector.

For classification, we use the nearest-neighbor (NN) classifier with three dif-
ferent distance measures: Chi-square distance, histogram intersection distance, and
G-statistic as defined in Eqs. (1.16)–(1.18), respectively.

χ2(x, y) =
∑

i,j

(xi,j − yi,j)
2

xi,j + yi,j
, (1.16)

DHI(x, y) = −
∑

i,j

min(xi,j, yi,j), (1.17)

DG(x, y) = −
∑

i,j

xi,j log yi,j, (1.18)

where x, y are the concatenated LBP feature vectors of two image samples; xi,j and
yi,j are jth dimension of ith patch. The G-statistic is numerically unstable, as many
histogram bins may have zero elements, which easily causes DG → inf . Thus, we
modify it into a numerically stable form

DG(x, y) = −
∑

i,j

xi,j log(xi,j + yi,j), (1.19)
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Only when both xi,j and yi,j are zero, we set 0 log(0) = 0. We call this distance
measure as modified G-statistic (MG). MG is numerically more stable and hence
can better handle the problem of too few elements in the histogram than G-statistic.

For facial expression recognition, we use a similar approach, i.e., the NRLBP
features are extracted in exactly the same way as face recognition. For classification,
instead of user ID, we label each image with facial expressions. The objective of the
classification is to determine which facial expression it is.

1.4 Experimental Results

We conducted extensive experiments to validate the advantages of NRLBP and
ENRLBP. Table1.1 summarizes the approaches compared with the classifiers used
and the applications tested. NRLBP and ENRLBP are compared with uniform LBP
and uniform LTP, i.e., LBPu2

8,2 and LTPu2
8,2 are used. Let NRLBPP,R, ENRLBPP,R

denote the coding schemes for NRLBP and ENRLBP using P neighbors at dis-
tance R to the center pixel, respectively. The number of features for each patch is
59 for LBPu2

8,2, 118 for LTPu2
8,2, 59 for NRLBP8,2, and 107 for ENRLBP8,2. Domi-

nant LBP (DLBP) [25], novel extended LBP (NELBP) [50], and noise tolerant LBP
(NTLBP) [5] are compared as they extract information from nonuniform bins, anal-
ogous to our approaches. We choose the dominant patterns that account for 80%
of the total pattern occurrences, same as in [25]. Fuzzy LBP (FLBP) [2, 16, 17] is
also compared. We implement fuzzy LBP using piecewise linear fuzzy membership
function in [2].

We conducted comparitive experiments for various applications. First, we injected
Gaussian and uniform noise of various noise levels onto images of the AR data-
base [24] for face recognition and the Outex-13 dataset [30] for texture recognition.
NRLBP and ENRLBP are compared with various LBP/LTP variants in order to val-

Table 1.1 Summary of the approaches comparedwith the classifiers used and the application tested

The approaches The classifier The applications

LBP [29] Nearest-neighbor classifier +
Chi-square distance

Facial expression recognition
on the AR database [24]

LTP [40] Nearest-neighbor classifier +
histogram intersection distance

Face recognition on the AR
database [24]

Dominant LBP [25] Nearest-neighbor classifier +
modified G-statistic

Face recognition on the
extended Yale B database
[8, 18]

Fuzzy LBP [2, 16, 17] Face recognition on the O2FN
database [33]

Novel extended LBP [50]

Noise tolerant LBP [5]
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idate their noise-resistance property. Then we apply them to real images that are
noise-prone. Illumination variation is one of the challenges in face recognition. We
conducted experiments on two challenging face databases with large illumination
variations: the extended Yale B database [8, 18] and the O2FN database [33]. They
are compared with LBP/LTP variants for protein cellular classification on the 2D
Hela database [4] and image segmentation on the image of the Outex segmentation
database [30] and one image from theWeb. In order to reduce illumination variations,
the images of the Outex-13 dataset, the extended Yale B database, and the O2FN
database are preprocessed similarly as in [40]. We use the source codes provided by
the authors of [40] to perform this photometric normalization.

1.4.1 Facial Expression Recognition on the AR Database

On theARdatabase [24],NRLBPandENRLBPare comparedwithLBP/LTPvariants
on images injected with noise in order to demonstrate their noise-resistant property.
The AR database is of high resolution and high image quality, and is considered
as a face database with almost no image noise. We choose 75 subjects, where each
subject contains images from two sections. Each section contains images of four
different facial expressions: neutral, smile, anger, and scream, as shown in Fig. 1.8.
We use the images of the first section as the gallery set and the images of the second
section as the probe set. Gaussian noise is one of the most common types of noise.
We normalize the images in the range of (0, 1), and then apply additive Gaussian
noise with zero mean and standard derivation of σ . We conduct experiments for

Fig. 1.8 First row shows images with different facial expressions. Second row shows images
with additive Gaussian noise of σ = 0, 0.05, 0.1, 0.15, respectively. a Neutral. b Smile. c Anger.
d Scream. e ρ = 0. f ρ = 0.05. g ρ = 0.10. h ρ = 0.15
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σ = 0.05, 0.10, 0.15. The samples of noisy images are shown in Fig. 1.8. When
the noise level is high, the images are barely recognizable and the recognition task
becomes more challenging.

ForLTP,NRLBP, andENRLBP there is one free parameter: threshold t ∈ [0, 255].
Fuzzy LBP also has a free parameter: fuzzification d. We vary t for LTP, NRLBP,
and ENRLBP and d for fuzzy LBP. Only the recognition rates at the optimal setting
are reported. The experimental results are summarized in Table1.2. It can be seen
that for most settings, NRLBP and ENRLBP outperform other approaches.When the
noise level increases, the performance gain becomes more significant. This clearly
demonstrates that NRLBP and ENRLBP are more resistant to noise compared with
other LBP variants. We also observe that the experimental results for NRLBP and
ENRLBP are fairly consistent for three different distance measures.

To study the effect of threshold t (or fuzzification parameter d), we plot the
recognition rates versus t (or d) for LTP, FLBP, NRLBP, ENRLBP using Chi-square
distance, as shown in Fig. 1.9. LBP and DLBP are shown as dashed lines. For low
noise level, σ = 0.05, NRLBP, and ENRLBP are slightly better than DLBP and
visibly better than LBP, LTP, and FLBP. For themiddle and high noise levels, NRLBP
and ENRLBP slightly outperform FLBP and significantly outperform LBP, LTP, and
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Fig. 1.9 The recognition rates of LBP, LTP, DLBP, FLBP, NRLBP, and ENRLBP using Chi-square
distance versus threshold t on the AR database injected with Gaussian noise σ = 0.05 (a), σ = 0.10
(b), σ = 0.15 (c)
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BLBP. Figure1.9 shows that NRLBP, ENRLBP, and FLBP are the only ones that
work well for all tested noise levels.

1.4.2 Face Recognition on the AR Database

For face recognition, we adopt a challenging experimental setting. Only one image
per subject is used as the gallery (or training) set and all others are used as the
probe set. In many real applications, we are not able to obtain multiple images
per subject and we may have only one image per subject. 75 subjects are chosen
from the AR database, each with 14 images. Each subject contains images from
two sections. Each section contains 7 images: one neutral image, 3 images with
different facial expressions, and 3 images in different illumination conditions. We
repeat the experiments 6 times. For each trial, we use Image 1, 5, 6, 8, 12, 13 of each
subject as the gallery set, respectively. The other 13 images of each subject are used
as the probe set. It is a challenging experimental setting as face images with facial
expression variations need to be identified based on a single face image.

Table1.3 summarizes the average recognition rate and the standard derivation
of each approach at the optimal setting on the AR database injected with Gaussian
noise. Table1.3 shows that NRLBP and ENRLBP achieve comparable or slightly
better performance comparedwith FLBP,whereas they consistently outperformother
approaches for all settings using different distance measures. As the noise level
increases, the performance gain of NRLBP and ENRLBP over approaches other
than FLBP becomes more significant.

1.4.3 Face Recognition on the Extended Yale B Database

The extended Yale B database [8, 18] contains 38 subjects under 9 poses and 64
illumination conditions. We follow the same database partition as in [40]. Images
with the most neutral light source(“A+000E+00”) are used as gallery images and all
other frontal images are used as probe images (in total 2414 images of 38 subjects).
This dataset contains large illumination variations. The sample images are shown in
the first row of Fig. 1.10. Some images are taken under extreme lighting conditions.
Even after photometric normalization, as shown in the second rowof Fig. 1.10, a large
amount of image noise exists in the images. NRLBP and ENRLBP are compared
with 6 LBP/LTP variants using nearest-neighbor classifier with Chi-square distance,
histogram intersection, and modified G-statistic. Table1.4 summarizes the highest
recognition rates at the optimal threshold for various approaches using different
distance measures. NRLBP and ENRLBP achieve slightly better performance than
LBP, LTP, DLBP, and FLBP, andmuch better performance than NELBP andNTLBP.
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Fig. 1.10 The 1st row and 2nd row show the samples of geometrically normalized and photomet-
rically normalized images for the extended Yale B database, respectively. The leftmost image is the
gallery image, and the other 3 images taken under extreme lighting conditions are the probe images

Table 1.4 The face recognition rate and the optimal threshold on the extended Yale B database

Algorithm Chi-square distance
(%)

Histogram intersection
(%)

Modified G-statistics
(%)

LBP 96.07 93.32 96.12

LTP 98.25 (10) 97.99 (10) 98.29 (8)

DLBP 96.12 97.83 98.45

FLBP 98.45 (9) 98.16 (9) 98.54 (12)

NELBP 81.91 82.29 84.92

NTLBP 80.37 80.16 83.12

NRLBP 98.71 (9) 98.66 (8) 98.66 (11)

ENRLBP 98.75 (9) 98.66 (8) 98.62 (10)

1.4.4 Face Recognition on the O2FN Mobile Database

The O2FN mobile face database [33] is our in-house face database. It is designed
to evaluate the face recognition algorithms on mobile face images, which are of low
resolution and low image quality, and significantly corrupted by noise. It contains
2000 face images of size 144×176 pixels from 50 subjects. The images are self-taken
by the users. The users are instructed to take about 20 indoor images and 20 outdoor
images with minimum facial expression variations and out-plane rotations. Thus,
the O2FN database mainly contains in-plane rotations and illumination variations.
Figure1.11 shows some samples of geometrically normalized and photometrically
normalized images. The images are captured by an O2 XDA frontal camera with
native phone settings and without postprocessing. The images are severely distorted
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Fig. 1.11 The samples of geometrically normalized (Row 1) and photometrically normalized
(Row 2) face images of the O2FN databases

Table 1.5 Performance comparison of face recognition on the O2FN database

Algorithm Chi-square distance Histogram intersection Modified G-statistics

LBP 76.59% ± 1.60% 74.14% ± 1.44% 75.18% ± 1.15%

LTP 78.88% ± 1.65% 76.88% ± 1.91% 78.16% ± 1.39%

DLBP 78.07% ± 1.69% 79.88% ± 2.10% 79.01% ± 2.04%

FLBP 80.24% ± 1.58% 79.15% ± 1.49% 80.01% ± 1.46%

NELBP 56.74% ± 1.75% 58.25% ± 2.16% 59.12% ± 1.73%

NTLBP 56.96% ± 1.82% 58.40% ± 1.65% 58.63% ± 2.18%

NRLBP 80.76 % ± 1.56% 80.29 % ± 1.63% 80.68 % ± 1.57%

ENRLBP 81.66 % ± 1.83% 81.28 % ± 1.80% 81.44 % ± 1.91%

by noise, e.g., Gaussian noise, salt-and-pepper noise, and motion blur. To reduce the
noise and illumination variations, the images are photometric normalized as in [40].
Even after photometric normalization, as shown in Fig. 1.11, the images still contain
a large amount of noise.

NRLBP and ENRLBP are compared with 6 LBP/LTP variants using nearest-
neighbor classifier with three different distance measures. The experiments are
repeated five times. For each trial, we randomly choose one image of each subject as
the gallery set and the rest as the probe set. We test LTP, NRLBP, and ENRLBP for
different thresholds, and FLBP for different d. Only the performance at the optimal
setting is reported. The average recognition rates and the standard derivation at the
optimal setting on the O2FN database are summarized in Table1.5. NRLBP and
ENRLBP achieve a comparable or slightly better performance compared with LTP,
DLBP, and FLBP, and significantly outperform LBP, NELBP, and NTLBP using all
three distance measures.
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Table 1.6 The time
consumption for feature
extraction on the AR database

Algorithm Time (ms)

LBP 10.8

LTP 16.4

DLBP 21.5

FLBP 161.7

NELBP 21.2

NTLBP 21.2

NRLBP 17.0

ENRLBP 23.1

1.4.5 Comparison of Computational Complexity

NRLBP and ENRLBP can be implemented by a lookup table to compute the
NRLBP/ENRLBP histogram from uncertain code. It is very fast to compute the
contribution of an uncertain code to the histogram by the lookup table and hence
derive the feature vector of NRLBP/ENRLBP during recognition. The average time
per image of feature extraction on the AR database for various LBP/LTP variants is
shown in Table1.6. The image is of size 128 × 128 pixels. Features are extracted
under the setting of P = 8, R = 1. We use Matlab 2012b on Intel Duo CPU @3.0
GHz with 4 Gb RAM. Compared with LBP, NRLBP and ENRLBP introduce only
small overhead. By contrast, it takes much more time to compute FLBP features,
e.g., 161.7 ms, which is about 9.5 times that of NRLBP.

1.5 Conclusion

Facial expression and face recognition are two important functionalities of the virtual
human and the social robot in order to achieve autonomous behavior. LBP has been
widely used for face and facial expression analysis; however, it is sensitive to noise.
Even a small noise may change the LBP code significantly. Both LBP and its variants
lack themechanism to recover corrupted image local structures. InNRLBP,we assign
the values of uncertain bits so as to form all possible uniform LBP codes. In this
way we correct noisy nonuniform patterns back to uniform code. For LBP and LTP,
a large group of local primitives, i.e., line patterns, is completely ignored. Thus, we
proposed extended uniform patterns and formed them as our ENRLBP patterns when
determining uncertain bits. NRLBP and ENRLBP show stronger noise-resistance
than other approaches for face and facial expression recognition on various datasets.
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Chapter 2
Body Movement Analysis and Recognition

Yang Xiao, Hui Liang, Junsong Yuan and Daniel Thalmann

Abstract In this chapter, a nonverbal way of communication for human–robot inter-
action by understanding human upper body gestures will be addressed. The human–
robot interaction system based on a novel combination of sensors is proposed. It
allows one person to interact with a humanoid social robot with natural body lan-
guage. The robot can understand the meaning of human upper body gestures and
express itself by using a combination of body movements, facial expressions, and
verbal language. A set of 12 upper body gestures is involved for communication.
Human–object interactions are also included in these gestures. The gestures can
be characterized by the head, arm, and hand posture information. CyberGlove II is
employed to capture the hand posture. This feature is combinedwith the head and arm
posture information captured from Microsoft Kinect. This is a new sensor solution
for human-gesture capture. Based on the body posture data, an effective and real-
time human gesture recognition method is proposed. For experiments, a human body
gesture dataset was built. The experimental results demonstrate the effectiveness and
efficiency of the proposed approach.

2.1 Introduction

Recently, human–robot interaction (HRI) has drawn the attention of the academic
and industrial communities. Regarded as the sister community of human–computer
interaction (HCI), HRI is still a relatively young field that began to emerge in the
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Fig. 2.1 Human–robot social interaction, with human on the right and robot on the left

1990s [10, 14]. It is an interdisciplinary research field that requires contributions
from mathematics, psychology, mechanical engineering, biology, computer science,
etc. [14].

HRI aims to understand and shape the interactions between humans and robots.
Unlike early interactions, more social dimensions must be considered in HRI, espe-
cially when interactive social robots are involved [10, 13]. In this case, robots should
be believable. Moreover, humans prefer to interact with robots as they do with other
people [10, 13]. Therefore, one way to increase believability would be to make
the robot interact with humans using the same modalities as human–human inter-
action. This includes verbal and body language as well as facial expressions; i.e.,
the robots should be able to use these modalities for both perception and expres-
sion. Some social robots have already been proposed toward this goal. For instance,
the Leonardo robot expresses itself using a combination of voice, facial, and body
expressions [25]. Another example is the Nao humanoid robot1 that can use vision
along with gestures and body expression of emotions [2]. Different from these two
robots, the Nadine robot is a highly realistic humanoid robot (Fig. 2.1). This robot
presents some different social challenges. In this chapter, a human–robot interaction
system that addresses some of these challenges is proposed. As shown in Fig. 2.1, it
supports a person to communicate and interact with a humanoid robot. In the pro-
posed system, the human can naturally communicate with the Nadine robot using
body language. The Nadine robot is able to express herself by using a combination
of speech, body language, and facial expressions. In this chapter, the main research
concern addressed is how to establish communication between human and robot
using body language.

Verbal and nonverbal language are two means of communication for human–
human interaction. Verbal language has been used in many HRI systems

1http://www.aldebaran-robotics.com/

http://www.aldebaran-robotics.com/
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Fig. 2.2 Human–human
interaction accompanied
with nonverbal language

[11, 21, 23, 26–28]; however, it still has some constraints. That is, speech recogni-
tion accuracy is likely to be affected by the background noise, human accents, and
device performance. Moreover, learning and interpreting the subtle rules of syntax
and grammar in speech is a difficult task. These factors limit the practical use of
verbal language to a certain degree. On the other hand, nonverbal clues can con-
vey rich communication messages [7, 19]. Evidently, they play an important role
in human–human interaction to reinforce the communication performance as shown
in Fig. 2.2. Thus, one of our research motivations is to apply nonverbal language to
human–robot social interaction. More specifically, upper body gesture language is
employed. Currently, 12 human upper body gestures are involved in the proposed
system,which are all natural gestureswith intuitive semantics. They are characterized
by head, arm, and hand posture information simultaneously. It is worth noting that
human–object interactions are involved in these gestures. Human–object interaction
events manifest frequently during human–human interaction in daily life. However,
to our knowledge, they were largely ignored by previous HRI systems.

The main challenge to apply upper body gesture language to human–robot inter-
action is how to enable the Nadine robot to understand and react to human gestures
accurately and in real-time. To achieve this goal, two crucial issues need to be solved:

• First, an appropriate human gesture-capture sensor solution is required. To recog-
nize the 12 upper body gestures, head, arm, and hand posture information is needed
simultaneously. As robustly obtaining hand posture based on vision-based sensors
(such as the RGB camera) is still a difficult task [18, 29], the wearable Cyber-
Glove II [15] (shown in Fig. 2.3) is used. Using this device, high-accuracy hand
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Fig. 2.3 CyberGlove II

Fig. 2.4 The microsoft
kinect RGB and depth sensor

posture data can be acquired stably. Meanwhile, Microsoft Kinect [24] (shown in
Fig. 2.4) is an effective and efficient low-cost depth sensor applied successfully to
human body tracking. The skeletal joints can be extracted from the Kinect depth
images [24] in real-time (30 fps). In our work, Kinect is applied to capture the
upper body (head and arm) posture information. Recently, Kinect 2 that supports
tracking multiple people with better depth imaging quality was released. Since our
work investigates the HRI scenario involving only one person, Kinect is sufficient
to handle the human body tracking task;

• Second, an effective and real-time gesture recognition method should be devel-
oped. Based on the CyberGlove II and Kinect posture data, descriptive upper body
gesture feature is proposed. To leverage the gesture understanding performance,
LMNN distance metric learning method [33] is applied. Then, the energy-based
LMNN classifier is used to recognize the gestures.

To evaluate the proposed gesture recognition method, a human upper body ges-
ture dataset is constructed. This dataset contains gesture samples from 25 people
of different genders, body sizes, and culture backgrounds. The experimental results
demonstrate the effectiveness and efficiency of our method.

Overall, the main contributions of this chapter include:

• A novel human gesture-capture sensor solution is proposed. That is, the Cyber-
Glove II and Kinect are integrated to capture head, arm, and hand posture infor-
mation simultaneously;

• An effective and real-time upper body gesture recognition approach is proposed;
• To support humans to communicate and interact with robots using body language,
a gesture understanding and human–robot interaction (GUHRI) system is built.

The remainder of this chapter is organized as follows. Problematic issues are
discussed in Sect. 2.2. Section 2.3 gives an overview of the related state-of-the-art
works. The recent approaches are described in Sect. 2.4. Section 2.5 introduces the
future avenues. The conclusions are drawn in Sect. 2.6.
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2.2 Problematic

To successfully apply nonverbal language to HRI by understanding human upper
body gestures, some critical problematic issues and challenges need to be addressed.
A brief discussion of this point has been made in Sect. 2.1. In this section, we extend
the discussion from the perspectives of the HRI system in detail.

• As our research aims to promote social interaction between humans and robot, the
semantics of natural humanbody languageneed to be analyzed.To fully understand
the human upper body gestures, head, arm, and hand posture information should
be captured simultaneously in an effective way. This proposition is effectively
demonstrated by Figs. 2.1 and 2.2. However, to our knowledge, very few previous
body gesture recognition works take hand and rough body posture information
into consideration together. Thus, appropriate human gesture-capture devices are
the essential components to construct a successful HRI system. For human gesture
capture, vision-based sensors are the trend as they exert no burden on the users and
lead to better user experience. Some successful examples have already emerged
recently, such as Microsoft Kinect, which is applied to human body parsing and
tracking. However, under unconstrained conditions, it is still difficult to capture
the hand posture robustly because of drastic hand rotation and serious occlusion as
shown in Fig. 2.5. Meanwhile, it is not feasible to restrict the user’s hand position
and orientation during the phase of natural HRI. As a consequence, according
to the current capacity of vision-based sensors, they are not the optimal choice
to capture the hand posture for the HRI system. Thus, a more applicable human
gesture-capture sensor solution should be proposed. In addition to effectiveness,

Fig. 2.5 The different hand
gestures with drastic rotation
and serious occlusion
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another important factor for human gesture capture is efficiency. As HRI is in high
real-time demand, the data acquisition stage must be finished as soon as possible.

• Based on the reliable hand and body posture feature, how to recognize the
upper body gestures effectively in real-time is the latest concern that needs to
be addressed. Since the hand and rough body posture information is captured
from different sensors, i.e., they are multimodular data, how to fuse them to form
a unified body gesture description is the first point we focus on. Second, for HRI
application an adequate classification scheme should be proposed to leverage the
performance, including the distance metric learning method and the choice of
classifier. Last but not least, enough training samples are required to drive the
supervised body gesture recognition approach. However, there is no existing body
gesture dataset that can be applied to our work directly. Thus, building a novel
upper body gesture dataset with sufficient available samples is another crucial
task.

• Whether robots can naturally react to human body language will largely affect
the user experience. Since the Nadine robot has the capacity to express herself
using a combination of speech, body language, and facial expressions, a suitable
interaction scenario is required for robot control to make her more humanlike and
vivid. Indeed, the interaction scenario should be designed according to the human
habits during human–human interaction.

2.3 State of the Art

HRI systems are constructed mainly based on verbal, nonverbal, or multimodal
communication modalities. As mentioned in Sect. 2.1, verbal language still faces
constraints in practical applications. Our work focuses on studying how to apply
nonverbal language to human–robot social interaction, especially using upper body
gesture language. Some HRI systems have already employed body gesture language
for human–robot communication. In [30], an arm gesture-based interface for HRI
was proposed. The user could control a mobile robot using static or dynamic arm
gestures. Hand gesture was used as the communication modality for HRI in [5].
The HRI systems addressed in [27, 28] could recognize the human pointing gesture
using the 3D head and hand position information, and head orientation was further
appended to leverage the performance. In [11], the social robot could understand the
human body language characterized by arm and head posture. Our proposition on
nonverbal human–robot communication is different from previous works mainly in
two aspects. First, head, arm, and hand posture are jointly captured to describe the 12
upper body gestures involved in the GUHRI system. Second, the gestures accompa-
nied with human–object interaction can be understood by the robot. These gestures
were always ignored by previous HRI systems, although they manifest frequently in
daily life as shown in Fig. 2.6.
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Fig. 2.6 Human–object interactions in daily life

Body gesture recognition plays an important role in the GUHRI system. Accord-
ing to the gesture-capture sensor type, gesture recognition systems can be categorized
as encumbered and unencumbered [4]. Encumbered systems require the user to wear
physical assistive devices such as infrared responders, hand markers, or data gloves.
These systems have high precision and fast response, and are robust to environ-
mental changes. Many encumbered systems have been proposed. For instance, two
education systems [1] were built for the deaf using data gloves and optical motion
capture devices; Lu et al. [18] proposed an immersive virtual object manipulation
system based on two data gloves and a hybrid ultrasonic tracking system. Although
most commercialized gesture-capture devices are currently encumbered, unencum-
bered systems are expected to be the future choice, especially vision-based systems.
With the emergence of low-cost 3D vision sensors, the application of such devices
becomes a hot topic in both the research and commercial fields. One of the most
famous examples is Microsoft Kinect, which has been successfully employed in
human body tracking [24], activity analysis [31], and gesture understanding [37,
38]. Even for other vision applications (such as scene categorization [36] and image
segmentation [34, 35]), Kinect holds the potential to boost the performance. How-
ever, accurate and robust hand posture capture is still a difficult task for vision-based
sensors.

As discussed above, both encumbered andunencumbered sensors possess intrinsic
advantages and drawbacks. For specific applications, they can be complementary. In
the GUHRI system a tradeoff between the two kinds of sensors is made, that is, the
fine hand posture is captured by the encumbered device (CyberGlove II), while the
rough upper body posture is handled by the unencumbered sensor (Kinect).
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Fig. 2.7 The GUHRI system architecture

2.4 Recent Approaches

In this section, we give an overview of the GURHI system. The human upper body
gesture understanding method is then illustrated. Next, the scenario for HRI is intro-
duced. Experiment and discussion are finally given.

2.4.1 System Overview

The proposed GUHRI system is able to capture and understand human upper body
gestures and trigger the robot’s reaction in real-time accordingly. The GUHRI sys-
tem is implemented using a framework called Integrated Integration Platform (I2P)
specifically developed for integration. I2P was developed by the Institute for Media
Innovation.2 This framework allows for the link and integration of perception, deci-
sion, and action modules within a unified and modular framework. The platform
uses client–server communications between the different components. Each com-
ponent has an I2P interface and communication between the client and servers is
implemented using thrift.3 It should be noted that the framework is highly modular
and components can be added to make the GUHRI system extendable. As shown
in Fig. 2.7, the current GUHRI system is mainly composed of two modules. One,
the human gesture understanding module that serves as the communication interface
between human and robot, and the other is the robot control module proposed to
control the robot’s behaviors for interaction. At this stage, our system supports the
interaction between one person and one robot.

One right-handed CyberGlove II and one Microsoft Kinect are employed to
capture the human hand and body posture information simultaneously for gesture

2http://imi.ntu.edu.sg/Pages/Home.aspx
3http://thrift.apache.org/

http://imi.ntu.edu.sg/Pages/Home.aspx
http://thrift.apache.org/
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understanding. This is a new gesture capturing sensor solution, different from all
the approaches introduced in Sect. 2.3. Specifically, CyberGlove is used to capture
the hand posture, and Kinect is applied to acquire the 3D position information of
the human skeletal joints (including head, shoulder, limb, and hand). At this stage,
the GUHRI system relies on the upper body gestures triggered by the human right
hand and right arm.

Apart from the CyberGlove, the user does not need to wear any other device.
Thus, the proposed sensor solution does not exert a heavy burden to make the user
uncomfortable. Meanwhile, as the CyberGlove II is involved in the system using
Bluetooth, the user can move freely. In addition, the GUHRI system is able to recog-
nize gestures with human–object interaction, such as “call”, “drink”, “read” and
“write” by fusing the hand and body posture information. These gestures were often
ignored by previous systems. However, they manifest frequently during the daily
interaction between humans. These affect the interaction state abruptly and should
be considered as essential elements of the natural HRI. In our system, the robot is
able to recognize and give meaningful responses to these gestures (Fig. 2.8).

The first step of the gesture understanding phase is to synchronize the original data
from CyberGlove and Kinect. The descriptive features are then extracted from them
respectively. The multimodal features are then fused to generate the unified input for
the gesture classifier. Lastly, the gesture recognition and understanding results are
sent to the robot control module via message server to trigger the robot’s reaction.

The robot controlmodule enables the robot to respond to the human’s body gesture
language. In our system, the robot’s behavior is composed of three parts: body move-
ment, facial expression, and verbal language. Combining these modalities makes the
robot more lifelike, and should enhance the users’ interest during interaction.

Fig. 2.8 The GUHRI
system deployment
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2.4.2 Human Upper Body Gesture Understanding

As an essential part of the GUHRI system, the human upper body gesture under-
standing module plays an important role during interaction. Its performance will
highly affect the interaction experience. In this section, our upper body gesture under-
standing method by fusing the gesture information from CyberGlove and Kinect is
illustrated in detail. First, the body gestures included in the GUHRI system are intro-
duced. The feature extraction pipelines for both CyberGlove and Kinect are then
presented. To generate an integral gesture description, the multimodal features from
different sensors are fused as the input for classifier. Aiming to enhance the gesture
recognition accuracy, LMNN distance metric learning approach [33] is applied for
mining the optimal distance measures, and the energy-based classifier [33] is applied
for decision making.

2.4.2.1 Gestures in the GUHRI System

At the current stage, 12 static upper body gestures are included in theGUHRI system.
As we only have one right-hand CyberGlove, to obtain accurate hand posture infor-
mation all the gestures are mainly triggered by the human right hand and right arm.
The involved gestures can be partitioned into two categories, according to whether
human–object interaction happens:

• Category 1: body gestures without human–object interaction;
• Category 2: body gestures with human–object interaction.

Category 1 contains 8 upper body gestures: “be confident”, “have question”,
“object”, “praise”, “stop”, “succeed”, “shake hand” and “weakly agree.” Some ges-
ture samples are shown in Fig. 2.9. These gestures are natural and have intuitive
meaning. They are related to the human’s emotional state and behavior intention and
are not ad hoc for specific applications. Therefore, gesture-to-meaning mapping is
not needed in our system. As human behavior habits are not all the same, recogniz-
ing natural gestures is more challenging than ad hoc ones. However, natural gestures
are more meaningful for HRI. As shown in Fig. 2.9, both hand and body posture
information are required for recognizing these gestures. For instance, the upper body
postures corresponding to “have question” and “object” are very similar.Without the
hand posture, they are difficult to distinguish. The same happens to “have question,”
“weakly agree,” and “stop.” That is, they correspond to similar hand gestures but
very different upper body postures.

Category 2 is composed of four other upper body gestures: “call,” “drink,” “read,”
and “write” (Fig. 2.10). Being different fromCategory 1 gestures, these four gestures
happen with human–object interactions. Existing systems do not consider such ges-
tures (see Sect. 2.3). One main reason is that objects often cause body occlusion,
especially to the hand. In this case, vision-based hand gesture recognition methods
are impaired. Hence, the CyberGlove is employed to capture the hand posture. In the
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Fig. 2.9 The Category 1 upper body gestures. These gestures can be characterized by the body and
hand posture information simultaneously

Fig. 2.10 The Category 2 upper body gestures. These gestures can be characterized by the body
and hand posture information simultaneously

GUHRI system, Category 2 gestures are recognized and affect the interaction in a
realistic way. These gestures are also recognized based on the hand and upper body
posture information.
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Fig. 2.11 CyberGlove II
data joints [15]

2.4.2.2 Feature Extraction and Fusion

In this section, we introduce the feature extraction methods for both human hand
and upper body posture description. The multimodal feature fusion approach is also
illustrated.

(a) Hand Posture Feature
As discussed above, the description of the human hand and upper body posture is
key to recognize and understand the 12 upper body gestures.

The immersion wireless CyberGlove II is used as the hand posture capture device
in the GUHRI system. As one of the most sophisticated and accurate data gloves,
CyberGlove II provides 22 high-accuracy joint-angle measurements in real-time.
These measurements reflect the bending degree of the fingers and wrist. The 22
data joints (marked as big white or black dots) are located on the CyberGlove as
shown in Fig. 2.11. However, not all the joints are used. For the hand gestures in
our application, we found that the wrist posture does not provide stable descriptive
information. The wrist bending degrees of different people vary to a large extent
even for the same gesture. This phenomenon is related to different behavior habits.
This is the reason that the two wrist data joints (marked as black) are discarded.
A 20-dimensional feature vector Fhand is extracted from the 20 white data joints to
describe the human hand posture as

Fhand = (h1, h2, h3 . . . h19, h20), (2.1)
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Fig. 2.12 The selected body
skeletal joints

where hi is the bending degree corresponding to the white data joint i.

(b) Upper Body Posture Feature
Using theKinect sensor,we shape thehumanupper bodyposture intermediately using
the 3D skeletal joint positions. For a full human subject, 20 body joint positions can
be detected and tracked by the real-time skeleton tracker [24] based on the Kinect
depth frame. This is invariant to posture, body shape, clothing, etc. Each joint Ji is
represented by three coordinates at the frame t as

Ji = (xi (t), yi (t), zi (t)). (2.2)

However, not all the 20 joints are necessary for upper body gesture recognition.
As aforementioned, head and right arm are highly correlated with the 12 upper body
gestures (Figs. 2.9 and 2.10). For efficiency, only four upper body joints are chosen as
the descriptive joints for gesture understanding. These are “head,” “right shoulder,”
“right elbow,” and “right hand” that are shown as gray dots in Fig. 2.12.

Directly using the original 3D joint information for body posture description
is not stable, because it is sensitive to the relative position between human and
Kinect. Solving this problem by restricting the human’s position is not appropriate
for interaction. In [31], human action is recognized by using the pairwise relative
positions between all joints, which is robust to the human–Kinect relative position.
Inspired by this work, a simplified solution is proposed. First, the “middle of the
two shoulders” joint (black dot in Fig. 2.12) is selected as the reference joint. The
pairwise relative positions between the four descriptive joints and the reference joint
are then computed for body posture description as

Jsr = Js − Jr , (2.3)
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where Js is the descriptive joint and Jr is the reference joint. With this processing,
Jsr is less sensitive to the human–Kinect relative position. It is mainly determined by
the body posture. The “middle of the two shoulders”was chosen as the reference joint
because it can be robustly detected and tracked in most cases. Moreover, it is rarely
occluded by the limbs or the objects when the gestures in GUHRI system happen.
Finally, an upper body posture feature vector Fbody of 12 dimensions is constructed
by combining the four pairwise relative positions as

Fbody = (J1r , J2r , J3r , J4r ), (2.4)

where J1r , J2r , J3r and J4r are the pairwise relative positions.

(c) Feature Fusion
From CyberGlove II and Kinect, two multimodal feature vectors: Fhand and Fbody
are extracted to describe the hand posture and upper body posture respectively. To
fully understand the upper body gestures, the joint information about the two feature
vectors is required. Both are essential for the recognition task. However, the two
feature vectors locate in different value ranges. Simply combining them as the input
for classifier will yield performance bias on the feature vector of low values. To
overcome this difficulty, we scale them into similar ranges before feature fusion.
Suppose Fi is one dimension of Fhand or Fbody, Fmax

i and Fmin
i are the corresponding

maximum and minimum value in the training set. Then Fi can be normalized as

F̂i = Fi − Fmin
i

Fmax
i − Fmin

i

, (2.5)

for both training and test.
After normalization, the effectiveness of the two feature vectors for gesture recog-

nition will be balanced. Finally, they are fused to generate an integral feature vector
by concatenation as

F = (F̂hand, F̂body). (2.6)

This process results in a 32-dimensional feature vector F used for upper body gesture
recognition.

2.4.2.3 Classification Method

Using F as the input feature, the upper body gestures will be recognized by tem-
plate matching based on the energy-based LMNN classifier proposed in [33].4 It is
derived from the energy-based model [8] and the LMNN distance metric learning
method [33]. The latter part is the key to constructing this classifier. LMNN dis-
tance metric learning approach is proposed to seek the best distance measure for the

4The source code is available at http://www.cse.wustl.edu/~kilian/code/lmnn/lmnn.html

http://www.cse.wustl.edu/~kilian/code/lmnn/lmnn.html
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k-nearest neighbor (KNN) classification rule [9]. As one of the oldest methods for
pattern recognition, KNN classifier is simple to implement and use. Nevertheless, it
can still yield comparative results in certain domains such as object recognition and
shape matching [3], it has also been applied to action recognition [20].

The KNN rule classifies each testing sample by the majority label voting among
its k-nearest training samples. Its performance crucially depends on how to compute
the distances between different samples for the k nearest neighbors search. Euclidean
distance is the most widely used distance measure, although it ignores any statistical
regularities that may be estimated from the training set. Ideally, the distance measure
should be adjusted according to the specific task being solved. To achieve better
classification performance, LMNN distance metric learning method is proposed to
mine the best distance measure for the KNN classification.

Let {(xi , yi )}n
i=n be a training set of n labeled samples with inputs xi ∈ R

d and
class labels yi . The main goal of LMNN distance metric learning is to learn a linear
transformation L : Rd → R

d that is used to compute the square sample distances as

D(xi , x j ) = ‖L(xi − x j )‖2. (2.7)

UsingD(xi , x j ) as the distance measure tends to optimize the KNN classification by
making each input xi have k nearest neighbors that share the same class label yi to
the greatest possibility. Figure2.13 gives an intuitive illustration on LMNN distance
metric learning. Compared with Euclidean distance, LMNN distance tries to pull the
nearest neighbors of class yi closer to xi , while pushing the neighbors from different
classes away. On the assumption that the training set and the test set keep the similar
feature distribution, LMNN distance metric learning can help to improve the KNN
classification result.

The energy-based LMNNclassifiermakes use of both theD(xi , x j ) distancemea-
sure and the loss function defined for LMNN distance metric learning. It constructs
an energy-based criterion function, and the testing sample is assigned to the class
that yields the minimum loss value. As the related theory is sophisticated, we do not
give a detailed definition of the energy-based LMNN classifier here; readers can turn
to [33] for reference.

Fig. 2.13 Illustration of the LMNN distance metric learning
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Fig. 2.14 Examples of body movements and facial expressions from the library of gestures

2.4.2.4 Human–Robot Interaction

As a case study for the GUHRI system, a scenario was defined in which a user
and the robot interact in a classroom. The robot is the lecturer, and the user is the
student. The robot is a female named “Nadine.” Nadine can understand the 12 upper
body gestures described in Sect. 2.4.2.1 and react to the users’ gestures accordingly.
In our system, Nadine is humanlike and capable of reacting by combining body
movement, facial expression, and verbal language. In this way, Nadine’s reactions
provide the user with vivid feedback. Figure2.14 shows some examples of Nadine’s
body movements along with corresponding facial expressions. Nonverbal behaviors
can help to structure the processing of verbal information as well as giving affective
feedback during the interaction [6, 17]. Thus, bodymovements and facial expressions
are expected to enhance the quality of the interaction with Nadine.

In this scenario, Nadine’s behaviors are triggered by the users’ body language. Her
reactions are consistent with the defined scenario (see Table2.1). Note that because
it is difficult to fully describe the robot’s body actions, the robot’s movements and
emotional display are described at a high level. All the 12 upper body gestures
are involved. The GHURI system can also handle unexpected situations during the
interaction. For example, Nadine can react appropriately even if the user suddenly
answers a coming phone call.

2.4.2.5 Experiment and Discussion

A human upper body gesture dataset was built to test the proposed gesture recog-
nition method. This dataset involves all the 12 upper body gestures mentioned in
Sect. 2.4.2.1. The samples are captured from 25 volunteers of different genders,
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Table 2.1 The scenario for human–robot interaction

Human gestures Nadine’s response

Nonverbal Verbal

“be confident” Happy It is great to see you so
confident

“have question” Moderate What is your question?

“object” Sad Why do you disagree?

“praise” Happy Thank you for your praise

“stop” Moderate Why do you stop me?

“succeed” Happy Well done. You are successful

“shake hand” Happy Nice to meet you

“weakly agree” Head nod OK, we finally reach an
agreement

“call” Head shake Please turn off your phone

“drink” Moderate You can have a drink. No
problem

“read” Moderate Please, take your time and read
it carefully

“write” Moderate If you need time for taking
notes, I can slow my
presentation

body sizes, and races. During the sample collection, no strict constraint was imposed
on the people. They carried out the gestures based on their own habits. The user–
Kinect relative position was also not strictly limited. For convenience, CyberGlove
II was precalibrated for all the people with a standard calibration. Due to the dataset
collection setup, large diversities may exist among the gesture samples from dif-
ferent people. This will yield challenges on body gesture recognition. Figure2.15
exhibits parts of the Category 1 and Category 2 gesture samples (“have question,”
“succeed,” “call,” and “drink”) captured from five people for comparison. For the
sake of brevity, not all the gestures are shown. The five descriptive and reference
skeletal joints proposed in Sect. 2.4.2.2 are marked as big dots in Fig. 2.15, and they
are connected by the straight segments to shape the upper body posture intuitively.
From the exhibited samples, we can observe that:

• For the different people, the listed body gestures can indeed be differentiated
from the hand and upper body posture information, and the people execute the
gestures differently to a certain degree. As aforementioned, this phenomenon leads
to challenges on upper body gesture recognition;

• For different people and gestures, the five skeletal joints employed for gesture
recognition can be tracked robustly, even when human–object interaction occurs.
Generally, their resulting positions are accurate for gesture recognition. Mean-
while, CyberGlove II is a human-touch device that can capture the hand posture
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Fig. 2.15 Some gesture samples captured from different volunteers. These people are of different
genders, body sizes, and races. They executed the gestures based on their own habits

robustly to yield high-accuracy data. Thus, the proposed human gesture-capture
sensor solution can stably acquire available data for gesture recognition.

For each gesture, one key snapshot is picked up to build the dataset among all the
25 people. As a consequence, the resulting dataset contains 25 × 12 = 300 gesture
samples in all.During experiment, the samples are randomly split into the training and
testing set five times, and the average classification accuracy and standard deviation
are reported.

The KNN classifier is used as the baseline to make comparison with the energy-
based LMNN classifier. They are compared both on the items of classification accu-
racy and on time consumption. The KNN classifier runs with different kinds of
distance measures. Following the experimental setup in [33],“k” is set as 3 in all
cases. As the training sample number is a crucial factor that affects the classifica-
tion accuracy, the results of two classifiers are compared corresponding to different
amounts of training samples. For each class, the training sample numberwill increase
from 4 to 14 with step size 2.
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Table 2.2 Classification result (%) of the constructed upper body gesture dataset

Classifiers Training sample number per class

4 6 8

KNN (Euclidean) 86.51(±2.89) 89.56(±2.43) 91.47(±2.21)

KNN (PCA) 73.81(±4.78) 84.04(±5.41) 79.31(±3.09)

KNN (LDA) 79.68(±5.33) 90.44(±2.56) 92.35(±2.44)

KNN (LMNN) 86.67(±2.18) 90.35(±2.56) 92.16(±1.80)

Energy (LMNN) 90.00(±3.40) 92.28(±0.85) 94.31(±2.04)

10 12 14

KNN (Euclidean) 93.00(±1.15) 93.33(±0.73) 92.27(±2.30)

KNN (PCA) 86.11(±2.75) 88.21(±4.17) 86.67(±3.70)

KNN (LDA) 92.44(±1.34) 94.74(±0.84) 93.48(±1.38)

KNN (LMNN) 93.67(±1.34) 93.85(±1.48) 93.48(±1.15)

Energy (LMNN) 95.22(±1.50) 95.64(±1.39) 96.52(±2.37)

The best performance is shown in boldface. Standard deviations are in parentheses

Other twowell-known distancemetric learningmethods, PCA [16] and LDA [12],
are used for comparisonwith theLMNNdistancemetric learning approach. For PCA,
the first 10 eigenvectors are used to capture roughly 90% of the sum of eigenvalues,
while the first 6 eigenvectors are used for LDA. The distance measures yielded by
PCA and LDA are applied to the KNN classifier.

Table2.2 lists the classification results yielded by the different classifier and dis-
tance measure combinations. It can be observed that:

• The 12 upper body gestures in the dataset can be well recognized by the proposed
gesture recognition method. More than 95.00% classification accuracy can be
achieved if enough training samples are used. With the increase in training sample
amount, the performance is generally enhanced consistently;

• Corresponding to all the training sample numbers, the energy-based LMNN clas-
sifier can yield the highest classification accuracy. Even with a small number (such
as 4) of training samples it can still achieve relative good performance (90.00%).
When the training sample number reaches 14, the classification accuracy (96.52%)
is nearly satisfied for practical use, and its standard deviations are relatively low
in most cases, which means that the energy-based LMNN classifier is robust to
the gesture diversities among people;

• KNN classifier can also yield good results on this dataset. However, it is inferior
to the energy-based LMNN classifier. Compared to Euclidean distance, LMNN
distance metric learning method can improve the performance of KNN classifier
consistently in most cases. However, it works much better on the energy-based
model;

• PCA does not work well on this dataset. Its performance is worse than the basic
Euclidean distance. The reason may be that PCA needs a large number of training
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Table 2.3 Average testing time consumption (ms) per sample

Classifiers Training sample number per class

4 6 8

KNN (LDA) 0.0317 0.0398 0.0414

KNN (LMNN) 0.0239 0.0282 0.0328

Energy (LMNN) 0.0959 0.1074 0.1273

10 12 14

KNN (LDA) 0.0469 0.0498 0.0649

KNN (LMNN) 0.0342 0.0418 0.0525

Energy (LMNN) 0.1359 0.1610 0.1943

The program is run on the computer with Intel (R) Core (TM) i5-2430M @ 2.4GHz (only using
one core)

samples to obtain the satisfied distance measures [22]. This is the limitation for
practical applications.

• LDA also achieves good performance for upper body gesture recognition. How-
ever, it is still consistently inferior to energy-based LMNN, especially when the
training sample number is small. For example, when the training sample number
is only 4, energy-based LMNN’s accuracy (90.00%) is significantly better than
that of LDA (79.68%) by a large margin (10.32%).

Besides the classification accuracy, the testing time consumption is also what we
are concerned about. The reason is that the GUHRI system should run in real-time
for good HRI experience. According to the classification results in Table2.2, the
energy-based LMNN classifier, LMNNKNN classifier, and LDAKNN classifier are
the three strongest ones for gesture recognition. Here, comparison on their testing
time is also made. Table2.3 lists the average running time per testing sample of the
three classifiers, corresponding to different amounts of training samples. We can see
that the three classifiers are extremely fast under our experimental conditions, and
the time consumption mainly depends on the number of training samples. Frankly,
the LDAKNN classifier and LMNNKNN classifier are much faster than the energy-
based LMNN classifier. If a huge number of training samples were used (such as tens
of thousands), the LDAKNN classifier and LMNNKNN classifier would be a better
choice to achieve the balance between classification accuracy and computational
efficiency.

2.5 Future Avenues

Our current research mainly pays attention to understanding the static upper body
gestures. However, the dynamic ones are also the essential components of body lan-
guage in daily life. For human–human interaction, they provide additional communi-
cation clues to boost the interaction performance. To make human–robot interaction
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more natural and lifelike, the robot should be capable of understanding both static
and dynamic gestures. Being different from static gestures, motion information is
required to recognize the dynamic gestures. From Microsoft Kinect SDK, human
body 3D joint information can be achieved in real-time (30 fps). Motion information
can be intuitively extracted from the position change in body joints along the tem-
poral axis. The body joint motion information has earlier been applied to activity
recognition [31, 32]. Nevertheless, these works still ignore hand gestures, whichmay
lead to ambiguity on gesture understanding. Thus, one of our future research avenues
is to recognize the dynamic human upper body gestures (such as “wave hand,” “say
no,” and “clap,” etc.) by combing both body motion and hand gesture information.

Another future research topic is to recognize human gestures from the egocen-
tric perspectives of the robot. In the proposed GUHRI system, Kinect is employed
as the vision sensor with fixed position. This system setup has some limits for real
applications under challenging conditions. That is, the robot cannot change her view-
point due to the fixed position of Kinect. In this case, the robot is not able to always
acquire the optimal viewpoint to capture human body gesture information. Actually,
due to this viewpoint reason, body occlusion may happen that will seriously confuse
the accurate body joint position extraction. One feasible solution for this problem
is to capture the human body gesture information from the robot’s egocentric per-
spectives. In this way, the robot can change her viewpoint accordingly. However, to
achieve good results, some new challenges need to be solved; one main problem is
how to distinguish camera motion and real body motion.

In addition, how to integrate the verbal clues in the GURHI system to further
enhance the human–robot interaction performance is also what we are concerned
about in the future work. Making the robot “see” and “listen” will let her become
more autonomous and humanlike.

2.6 Conclusion

The GUHRI system, a novel body gesture understanding and human–robot interac-
tion system, is proposed in this paper. A set of 12 human upper body gestures with
and without human–object interactions can be understood by the robot. Meanwhile,
the robot can express herself by using a combination of body movements, facial
expressions, and verbal language simultaneously, aiming to give the users a natural
and vivid experience.

A new combination of sensors is proposed. That is, CyberGlove II and Kinect are
combined to capture the head, arm, and hand posture simultaneously. An effective
and real-time gesture recognition method is also proposed. In the experiment, a
human upper body gesture dataset is built. The experimental results demonstrate the
effectiveness and efficiency of our gesture recognition method.
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So far, the gestures involved in GUHRI system have been static ones, e.g., “have
question,” “praise,” “call,” “drink,” etc. As the future work, we plan to enable the
robot to understand dynamic gestures such as “wave hand,” “say no,” “clap,” etc.
Speech recognition can be further added to make the interaction more natural.
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Chapter 3
Sound Source Localization and Tracking

Kai Wu and Andy W.H. Khong

Abstract Sound source localization and tracking plays an important role in a tele-
conferencing system and social robot applications. Given the location of a sound,
the social robot can be endowed with the capability of sound event awareness, which
results in enhanced interaction with human beings. This chapter presents the problem
of sound source localization and tracking, highlights their challenges, and reviews
several existing techniques. In addition, a speech source tracking algorithm is pro-
posed in order to achieve robust speaker tracking in the presence of sound interferers.
Simulation is conducted and shows the effectiveness of the proposed method in a
typical room environment.

3.1 Introduction

Sound source localization and tracking (SSLT) refers to the problem of estimating
the location from which a sound signal originates with respect to the microphone
array geometry. It plays an important role in a teleconferencing system and in social
robot applications. In a teleconference scenario, a camera that is capable of auto-
matic steering can be deployed to focus on the speaker given the estimated speaker
position [22, 29]. In addition, source localization is often required and regarded as
a preprocessing step before the enhancement of an acoustic signal from a particular
location [20]. In the domain of social robotics, the localization technique is applied
so that the robot can concentrate on a subject of interest or be made aware of where
other sound events are coming from.

Multiple microphones are, in general, required in order to achieve SSLT. Different
microphone array configurations have been used in the recent literature, e.g., binau-
ral microphones [5], linear array [39], circular array [9] and distributed microphone
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arrays [13, 25]. The source position is estimated by exploiting the range differences
from the source to the microphones. Although various algorithms have been devel-
oped in recent decades for SSLT applications, room reverberation, background noise,
and sound interference are some of the key challenges that need to be addressed in
a realistic environment. In the context of room acoustics, the microphones capture
not only the direct-path propagation component of the source signal but also the
multipath propagation component due to the reflections at the room boundaries. The
multipath component, together with the background noise, distorts the time delay
information contained in the microphone received signals and degrades the local-
ization performance. In addition, one is often interested in localizing and tracking a
desired source (e.g., human speech source) in the presence of certain sound interfer-
ers (e.g., fan noise, air-conditioner noise) which often exist in a room environment.
These interferers may distract the system which, as a result, localizes the interferers
rather than the desired source.

The organization of this chapter is as follows: in Sect. 3.2, mathematical formu-
lation of the SSLT problem is introduced. Conventional localization and tracking
methods are then reviewed. In Sect. 3.3, a proposed method that deals with the prob-
lem of speech source tracking in the presence of sound interference is discussed.
The proposed method exploits the speech harmonicity feature so as ensure that only
speech signals are used for tracking. The integration of SSLT for social robot appli-
cation is discussed in Sect. 3.4. Finally, the future possible research directions and
conclusions are presented in Sects. 3.5 and 3.6, respectively.

3.2 Overview of Sound Source Localization and Tracking
Algorithms

SSLT algorithms can be classified into two categories: localization approach and
tracking approach. The localization approach assumes independence between suc-
cessive audio frames and estimates the source location independently across each
data frame. The tracking approach exploits consistency between successive frames
by assuming that the source is stationary or moving at a slow rate. In this section,
the mathematical formulation for these two approaches is discussed.

3.2.1 Mathematical Formulation of Sound Source
Localization

The SSLT problem is illustrated in Fig. 3.1. The speech signal s(n) radiates away
from the source position and propagates to the microphones. The received signals
contains not only direct-path but alsomultipath components causedby reflection from
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Fig. 3.1 Signal propagation
model Speech 

Source 

Direct Path

Reverberation

the room boundaries. Within a short time frame, the channel from the source to the
i thmicrophone can be considered as a linear time-invariant system and is represented
by a channel impulse response hi (n). The i th microphone received signal can thus
be formulated as [3]

yi (n) = s(n) ∗ hi (n) + vi (n), i = 1, 2, . . . , M, (3.1)

where ∗ is the convolution operator, vi (n) is the additive noise, and M is the number
of microphones. In order to infer the signal delay information, the impulse response
hi (n) can be further decomposed into a direct-path component and a multipath com-
ponent. The microphone received signal can thus be rewritten as

yi (n) = ai s(n − τi ) + s(n) ∗ h′
i (n) + vi (n), i = 1, 2, . . . , M, (3.2)

where 0 ≤ ai ≤ 1 is the attenuation factor due to propagation, τi is the direct-path
time delay from the source to the i th microphone, and h′

i (n) denotes the remaining
impulse response which is defined as the difference between the original response
and the direct-path component. In (3.2), the time delay τi is dependent on the source
position with respect to the microphone array. However, direct estimation of τi is
not achievable since SSLT is a passive localization problem. Most of the algorithms
exploit the relative time delay information among microphones and one such algo-
rithm is introduced in the following section.
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3.2.2 Sound Source Localization Using Beamforming-Based
Approach

Given the microphone received signal yi (n), localization is usually performed using
each data frame defined as

yi (k) = [yi (k N ) yi (k N + 1) . . . yi (k N + N − 1)], (3.3)

where N is the frame length and k is the frame index. Beamforming is one of the
widely used approaches for sound source localization. In principle, the beamformer
computes the spatial power spectrum for the whole region of interest and searches
for the highest power corresponding to the source position estimate (see Fig. 3.2 for
example). The family of beamforming techniques includes steered response power
(SRP) [8, 10], minimum variance distortionless response [34], linearly constrained
minimum variance [11, 34], etc.

The SRP beamformer gained popularity due to its simplicity. Considering M
microphones, the SRP function defines the power

Pk(r′) =
∑

ωl∈Ω

∣∣∣∣∣

M∑

i=1

Wi (k, ωl)Yi (k, ωl)e
jωl‖r′−rmi ‖2/c

∣∣∣∣∣

2

(3.4)

corresponding to the current steered location r′ at time frame k, where r′ = [x ′ y′]T

is the steered location in the region of interest, Wi (k, ωl) is a weighting function,
Yi (k, ωl) is the short-time Fourier transform of the i th microphone received signal
defined as Yi (k, ωl) = F(yi (k)), ωl is the angular frequency of the lth bin index,
c is the speed of sound, rmi is the position of the i th microphone, ‖r′ − rmi ‖2 is
the distance from the steered location to the i th microphone position, and Ω is the
interested frequency range over which the computation is carried out. In (3.4), the

Fig. 3.2 The power
spectrum when
SNR = 20dB,
T60 = 150ms. The ground
truth of the source position is
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spectrum for clarity of
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SRP is performed by computing the time delay from the steered location r′ to each
microphone in the first step. The corresponding power is then calculated by time
aligning the signals in the frequency domain according to the signal delays and
summing over all the microphones. The weighting function Wi (k, ωl) is important
in power calculation.While different weighting functions can be used [24], the phase
transform (PHAT) given as

W PHAT
i (k, ωl) = 1

|Yi (k, ωl)| (3.5)

remains one of the most commonly used weighting schemes. The corresponding
beamformer is therefore named as SRP-PHAT. By substituting (3.5) into (3.4), it
can be seen that the PHAT weighting is independent of the source energy and the
computed SRP response is only dependent on the phase delay.

Furthermore, by steering the beamformer across the whole region of interest, one
can obtain the power spectrum as shown in Fig. 3.2. Estimating the source position
is therefore achieved by searching for the location that corresponds to the maximum
power, i.e.,

r̂k = argmax
r′∈D

Pk(r′), (3.6)

where D = {x, y|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax} is the considered searching
domain.

It has been shown in [7] that the beamforming method achieves higher spatial
resolution than other localization methods such as those based on time-difference-
of-arrival method [3]. However, one drawback is the high computation complexity
required for scanning the region of interest. Some researchers choose different reso-
lution grids to reduce the computation burden [12]. In addition, a recently proposed
work integrates the energy in each discrete grid to achieve better performance [4].

3.2.3 Sound Source Tracking Using Particle Filter-Based
Approach

The localization algorithmdiscussed in Sect. 3.2.2 estimates the source position using
each microphone data frame yi (k) independently. The performance reduces when
the background noise and reverberation increase since under these conditions, some
of the data frames suffer from signal distortion and are therefore unable to provide
reliable location estimates. However, if we assume that the source is stationary or
moving at a low rate with respect to the convergence of the tracking algorithm, one
possible approach to improve the performance is to exploit the temporal consistency
of location measurements across successive frames.

We now consider successive data frames {yi (k)| k = 1, 2, . . . , K } where k is the
frame index, and K is the total number of audio frames. The aim is to estimate the
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source positions over all the time frames, leading to a source tracking problem. We
first define the state variable as αk = [xk yk ẋk ẏk]T at frame index k, where xk and
yk correspond to the source position while ẋk and ẏk are the source velocities in x
and y direction, respectively. Similarly, the measurement variable zk = [̂xk ŷk]T is
defined. This measurement vector can be obtained from the SRP location estimate by
evaluating (3.4)–(3.6) for the kth time frame data. Therefore, the state-space model
can be written as

αk = G(αk−1, uk), (3.7a)

zk = H(αk, wk), (3.7b)

where G(·) is the process function defining the time evolution of the state, uk is the
process noise, H(·) is the measurement equation defining the mapping from αk to
zk , and wk is the measurement noise.

To formulate G(·) in (3.7a), the Langevin process model has been widely used as
it provides a realistic model to simulate human source motion [13, 25, 31, 35, 37].
This model can be described using

αk =

⎡

⎢⎢⎣

1 0 aT 0
0 1 0 aT
0 0 a 0
0 0 0 a

⎤

⎥⎥⎦αk−1 +

⎡

⎢⎢⎣

bT 0
0 bT
b 0
0 b

⎤

⎥⎥⎦ uk, (3.8)

where uk ∼ N (μ,�) is the noise vector following Gaussian distribution, T is
the time interval between consecutive frames, and μ = [0 0]T and � = I2×2
correspond to the mean vector and covariance matrix, respectively. In addition, the
model parameters are defined as a = exp(−βT ), b = v̄

√
1 − a2, where v̄ = 0.8m/s

is the steady-state velocity and β = 10Hz is the rate constant [25]. To formulate
H(·) in (3.7b), we note that zk is defined as the two-dimensional location estimate
obtained from SRP and hence, we can express

zk =
[
1 0 0 0
0 1 0 0

]
αk + wk, (3.9)

where wk represents the measurement error.
The process of sound source tracking is performed in a probabilistic manner.

Statistically, the posterior probability density function (pdf) Pr(αk |z1:k) is used to
denote the probability of state αk conditioned on the measurements up to time k
and the measurement likelihood Pr(zk |α(p)

k ) represents the probability of attaining
measurement zk conditioned on the state. Considering continuous data frames, the
sound source tracking problem can therefore be formulated as follows: for each frame
index k, given Pr(αk−1|z1:k−1) at the previous time frame, the objective is to estimate
Pr(αk |z1:k) using the source motion model G(·) and the new measurement zk .
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WhileKalmanfiltering has been proposed for source tracking [15, 18], the particle
filter (PF) framework [1, 17] is deemed to be a better approach for the SSLT problem
due to the absence of linearity and Gaussian distribution requirement in the state-
space formulation. The PF was first introduced in SSLT in [35] and has gained great
popularity [13, 14, 25, 27, 31, 37].

In the PF framework, the posterior density Pr(αk |z1:k) is approximated by a set

of particles of the state space with associated weights {(α(p)
k , w(p)

k )}Np
p=1, i.e.,

Pr(αk |z1:k) =
Np∑

p=1

w(p)
k δ(αk − α

(p)
k ), (3.10)

where p = 1, . . . , Np denotes the particle index,α
(p)
k is the pth particle of state space,

w(p)
k is its associated weight, and δ(·) is the Dirac delta function. The bootstrap PF-

based sound source tracking is performed as follows: suppose at time k − 1, the set

{(α(p)
k−1, w(p)

k−1)}
Np
p=1 is an approximation of the posterior density Pr(αk−1|z1:k−1), the

set {(α(p)
k , w(p)

k )}Np
p=1 at time index k corresponding to Pr(αk |z1:k) is then obtained

by a propagation step
α

(p)
k = G(α

(p)
k−1, uk), (3.11)

followed by an update step,

w(p)
k ∝ w(p)

k−1Pr(zk |α(p)
k ). (3.12)

Computation of Pr(zk |α(p)
k ) is required in (3.12) and a pseudo likelihood approach

has beenproposed [25, 37] to reduce the computational load involved in the process of
determining the SRP maximum corresponding to the source location measurement.
In this formulation, the SRP map itself is used as an approximation of Pr(zk |α(p)

k ).
To some extent the SRP can define the probability of the source being located in the
steered positions within the room as it corresponds to the energy originating from
those positions. The pseudo likelihood approach defines the likelihood as

Pr(zk |αk) =
{Pγ

k (�k), for voiced frame
UD(�k), for unvoiced frame

, (3.13)

where γ = 2 is a control parameter to regulate the SRP function for source track-
ing [25], UD(·) is the uniform pdf over the considered enclosure domain D, and �k

denotes the first two elements of αk .
In practice, due to the proportionality in (3.12), the normalization process is always

computed using

w(p)
k ⇐ w(p)

k∑Np
i=1 w(i)

k

, (3.14)
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Table 3.1 Summary of the bootstrap PF

At time k − 1, a set of particles {α(p)
k−1, w(p)

k−1}
Np
p=1 is a discrete representation of posterior

Pr(αk−1|zk−1).

For the kth frame:
1. Particles propagation: propagate each particle through the source dynamic model (3.7a),

α
(p)
k = G(α

(p)
k−1, uk).

2. Update: the weight corresponding to each particle is updated according to the likelihood,

w(p)
k = w(p)

k−1Pr(zk |α(p)
k ),

followed by a normalization step w(p)
k ⇐ w(p)

k (
∑Np

i=1 w(i)
k )−1.

3. Resampling: resample the particles if the effective sample size is below a threshold, Neff <

Nthr , where Neff = (
∑Np

p=1(w
(p)
k )2)−1.

4. Result: the particle set {α(p)
k , w(p)

k }Np
p=1 is obtained for approximation of Pr(αk |zk). The state

estimate at the kth frame is α̂k = ∑Np
p=1 w(p)

k α
(p)
k .

where ⇐ denotes the assignment of a new value to the variable. In addition, the PF
usually consists of a resampling stage which prevents the degeneration phenomenon
where, after a few iterations, a majority of the particles would possess small weights
incurring a waste of computation [1]. Finally the state estimate, at time frame index
k, is given as

α̂k =
Np∑

p=1

w(p)
k α

(p)
k , (3.15)

and the first two elements of α̂k represent the position estimate from the tracking
framework. A summary of the bootstrap PF-based sound source tracking algorithm
can be found in Table3.1.

3.3 Proposed Robust Speech Source Tracking

In Sect. 3.2, several approaches have been discussed for localizing and tracking a
stationary or moving source. Significant progress has been made in recent decades
for robust SSLT in different adverse environments. However, localizing or tracking
a speech source in the presence of sound interferences is still an open problem.
This is particularly important in robotic applications since the robots are expected to
continue interacting with a human user in a noisy environment. It is also important
to note that sound interferences may be nonstationary and unpredictable in nature.
Take an office room for instance, the fan noise, air-conditioner noise, or a telephone
ring may be located at different positions. Existing methods, in general, are unable
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to distinguish between the desired speech source and interferers. The performance
may be degraded when these interferers are present.

In this section, a speech source tracking method that is robust to interferers is
introduced [38]. The proposed method incorporates a well-known speech feature in
the frequency domain known as harmonicity. We first compare the speech spectro-
gram with some typical sound interference in Sect. 3.3.1 and illustrate the speech
harmonic feature. Details of the proposed method will be introduced in Sect. 3.3.2.
In Sect. 3.3.3, simulations are conducted to evaluate the performance of the proposed
method in the presence of interference, noise, and reverberation.

3.3.1 The Harmonic Structure in the Speech Spectrogram

Figure3.3 shows the spectrogram of a typical speech signal obtained from the TIMIT
database [16] and that corresponding to different sound interferers obtained from the
NOISEX-92 database [33]. The speech spectrogram, as shown in Fig. 3.3a, indicates
that several harmonics (dark curves) corresponding to multiple integers of a pitch
frequency are present. The pitch frequency represents the frequency of the vocal
cord vibration, which normally ranges from 100 to 300Hz , depending on whether

Fig. 3.3 Spectrograms of different signals. a Speech signal spectrogram. b Fan noise spectrogram.
c Power drill noise spectrogram. d Telephone ring noise spectrogram
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it is a male or a female voice [6]. This spectrogram indicates that speech energy is
dominant on these harmonics. Figure3.3b shows the spectrogram of a recorded fan
noise where the energy is concentrated below 2 kHz. The spectrogram of a recorded
power drill noise, shown in Fig. 3.3c, indicates a similar energy distribution in the
low frequency range although high energy spectral lines appear at approximately 1.5,
2, and 2.2kHz. These dominant frequencies may be caused by mechanical rotation
or vibration. It is useful to note that no regular harmonic structure is exhibited in
these two types of sound. In terms of the telephone ring sound, shown in Fig. 3.3d, a
regular harmonic structure is caused by the presence of a single tone. However, the
harmonics differ from that of the speech signal due to a difference in pitch frequency.

In the following, we therefore assume that the sound interference does not share
the same harmonic bands as speech due to different pitch frequency, or that the inter-
ference does not possess any harmonic structure. The key objective of the proposed
method is to estimate these harmonic bands corresponding to the speech components
and to emphasize on the harmonic bands as they provide high signal-to-interference
ratio (SIR). Other frequency regions are not used for tracking as these frequencies
are contaminated by the sound interferers.

3.3.2 Speech Source Tracking in the Presence of Sound
Interference

In the conventional sound source tracking framework, as introduced in Sect. 3.2.3,
particles are propagated according to the source dynamic model before being
weighted by themeasurement likelihood. It computes the particleweights by employ-
ing a pseudo-likelihood that has been derived from SRP-PHAT measurements
[13, 25, 37]. While this technique may achieve good tracking performance, the
performance may significantly reduce in the presence of interference. This is due
to the inability of SRP-PHAT to discriminate between the speech source and the
acoustic interference in general. It implies that any acoustic interference will result
in a dominant peak occurring at the interferer’s position, and the particles are likely
to propagate toward that location away from the speech source (see Fig. 3.7a). The
performance of these algorithms reduces significantly in low SIR, resulting in the
SSLT losing track of the speech source.

To mitigate the degradation in performance, we exploit speech harmonicity such
that the measurement likelihood is predominantly weighted by the speech signal
as opposed to the interferers. The overall framework of the proposed method is as
follows: (1) a prior source position is estimated using the assumed source dynamic
model, (2) a beamformer is then applied to enhance the source signal from the
prior estimated position in order to extract speech feature, (3) the reliable harmonic
bands are estimated using the enhanced signal in the following step, (4) the new
measurement likelihood is then derived by emphasizing these high SIR harmonic
bands while discarding the other frequency regions.
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3.3.2.1 Prior Prediction

In general, a clear source signal is often required in order to extract the correspond-
ing speech features. However, due to the presence of interference and background
noise, obtaining such a clear source signal is challenging. To improve the feature
extraction performance, we propose a speech signal enhancement stage consisting
of prior source position prediction and a beamformer. Considering the Langevin
source dynamic model introduced in Sect. 3.2.3, for time frame index k, the prior
source state can be estimated using (3.7a) and (3.8) as

α̂−
k = G (̂α+

k−1, uk), (3.16)

given the state estimate at the previous frame. Here, α̂+
k−1 is the posterior state

estimate at time frame index k − 1. The prior source location estimate

r̂−
k = [̂x−

k ŷ−
k ]T , (3.17)

corresponds to the first two elements in α̂−
k . Note that this prior estimate is based

only on the assumed source motion. Its objective is to allow the beamformer to
enhance the signal from this preliminary estimated source position. The feature-
directed measurements, as will be described in the subsequent sections, will further
refine the state estimate.

3.3.2.2 Feature Extraction

After obtaining a prior estimate of source position at each iteration, a beamformer can
be employed to enhance the signal from that particular position. Note that the beam-
former was used as a localization technique in Sect. 3.2.2. However, beamforming
was initially used for enhancing the signal from a known source position and sup-
pressing the interference and noise [34]. Various beamformers can be applied after a
prior source location has been estimated. We consider, for example, the delay-and-
sum beamformer [23] due to its simplicity although other forms of beamformers such
as presented in [21, 32]may be used to enhance the speech signal. The delay-and-sum
beamformer output for the prior estimated source location r̂−

k is given as

S(ωl , r̂−
k ) =

M∑

i=1

Φ
(
Di (̂r

−
k )

)
Yi (k, ωl)e

jωl Di (̂r
−
k )/c, (3.18)

where i is the microphone index, M is the number of microphones, and Yi (k, ωl)

is the frequency-domain received signal from the i th microphone at kth frame. The
variable ωl is the angular frequency of lth frequency bin, c is the speed of sound,
Di (̂r

−
k ) = ‖̂r−

k − rmi ‖2 is the distance from the prior estimated source position to the
i th microphone, and Φ(·) is a monotonic function that weighs the i th microphone
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signal according to the source-sensor distance. In our simulations, we found that
Φ

(
Di (̂r

−
k )

) = 1/Di (̂r
−
k ) performs well as it emphasizes the signal from the micro-

phone that is closer to the source.
Figure3.4 shows the signal enhancement result for a 6 s speech signal when a

power drill interference is present at SIR = 5dB and white Gaussian noise with
signal-to-noise (SNR) ratio of 15 dB. These results were generated using the method
of images [26] with T60 = 200ms and eight microphones are placed 0.5m away from
the room perimeter (see Fig. 3.7). Figure3.4a shows the spectrogram of the original
speech signal where a clear harmonic structure can be found. Figure3.4b shows
the power drill interference spectrogram where no harmonic structure is present. In
general, the source signal receivedby a single referencemicrophone is often distorted,
especially when the interferer is close to the microphone, as shown in Fig. 3.4c.
Extraction of speech harmonics from this received signal is therefore challenging.
The beamformer enhanced signal, as shown in Fig. 3.4d, is indeed clearer than the
microphone received signal. The speech harmonics are dominant across the whole
spectrogram although certain interference energy leakage is visible. The beamformer
enhanced signal will be used for feature extraction in the next step.

To extract the speech harmonics from a noisy spectrum, we use the multi-band
excitation (MBE) fit method [2, 19]. As indicated in Fig. 3.5, theMBEmodel defines
a voiced frame in the frequency domain as the product of spectrum envelop H(ω)

and excitation spectrum E(ω, ωp) given by [19]

Sspch(ω) = H(ω)E(ω, ωp), (3.19)

Fig. 3.4 Spectrogramand selected harmonic bands indicated in blue lines. aClean speech.bPower-
drill interference. c Referencemicrophone received signal and its selected harmonic bands (in blue).
d Beamformer enhanced signal and its selected harmonic bands (in blue)
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Fig. 3.5 MBEmodel for a speech signal. The voice frame can be modeled as a product of spectrum
envelop H(ω) and excitation spectrum E(ω, ωp) in the frequency domain

where ωp is the pitch frequency, such that

E(ω, ωp) =
Q∑

q=1

Ψ (ω − qωp), (3.20)

where q is the harmonic index, Q is the number of harmonics, ωp is the pitch
frequency, and Ψ (ω) is the Fourier transform of the Hamming window.

We now consider extracting the harmonic information from the beamformer
enhanced signal S(ω, r̂−

k ) via MBE model fitting. The harmonic information ωp

and H(ω) can be estimated via minimization of the fitting error between S(ω, r̂−
k )

and the MBE modeled signal

ε(ωp) =
∫ 2π

0
|S(ω, r̂−

k ) − Sspch(ω)|2dω

=
∫ 2π

0
|S(ω, r̂−

k ) − H(ω)E(ω, ωp)|2dω, (3.21)

where S(ω, r̂−
k ) has been defined in (3.18).

In practice, the above process is computed in discrete frequency domain where
ωl = 2πl/L denotes the angular frequency of lth frequency bins, L is the number
of frequency bins, and ωp is now computed from the discrete angular frequencies.
In order to solve the nonlinear minimization problem in (3.21), the whole spectrum
is further decomposed into several harmonic bands. The qth harmonic band ranges
in the interval [aq , bq ], where the lower and upper limits are defined as aq =
�(q − 0.5)ωp� and bq = �(q + 0.5)ωp�, respectively, and �·� denotes the selection
of the nearest frequency bin. The variable H(ω) is also decoupled into complex
amplitude Hq for each harmonic band q, so that the fitting error for each harmonic
band is

εq(ωp) =
bq∑

ωl=aq

|S(ωl , r̂−
k ) − Hq E(ωl , ωp)|, (3.22)
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and the total error in (3.21) becomes

ε(ωp) =
Q∑

q=1

εq(ωp). (3.23)

We note that there is a subtle difference between (3.23) and (3.21); in (3.23) we only
sum over the Q harmonic bands of interest, while in (3.21) the whole spectrum is
integrated.

The harmonic information is thus represented by two parameters, the pitch fre-
quency ωp and complex amplitude Hq for all harmonic bands. The variable Hq can
be obtained by considering the derivative of (3.22) to be zero giving

Hq =

bq∑

ωl=aq

S(ωl , r̂−
k )E∗(ωl , ωp)

bq∑

ωl=aq

|E(ωl , ωp)|2
, (3.24)

where ∗ denotes conjugate operation. The pitch frequencyωp can be estimated by the
following steps: each fitting error εq(ωp) is evaluated using the optimal value of Hq

obtained in (3.24). The error function in (3.23) is then computed with respect to all
pitch frequencies ωp of interest. Finally, the global minimum of ε(ωp) is determined
and the corresponding ωp is selected as the estimated ω̂p due to speech.

3.3.2.3 Feature-Directed Particle Weight Update

To obtain the feature-directed particle weight update, it is required to determine the
most reliable harmonic bands and select them for computation of the likelihood.
Two criteria are proposed to determine the reliability of the harmonic bands: (1) the
normalized fitting error and (2) the normalized harmonic energy.

First, the normalized fitting error [2] is defined, for each harmonic, as the effec-
tiveness of a given frequency band to be fitted with the speech harmonic model. It is
computed as

ε̄q = εq(ω̂p)

bq∑

ωl=aq

|S(ωl , r̂−
k )|2

, (3.25)

where the fitting error εq(ω̂p) is computed by substituting the estimated pitch fre-
quency ω̂p into (3.22). The fitting error is normalized by the energy of each corre-
sponding harmonic band.
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In the second step, the normalized harmonic energy, defined by the ratio of energy
distributed on that harmonic over the total energy, i.e.,

Pq =

bq∑

ωl=aq

Hq E(ωl , ω̂p)

Q∑

q=1

bq∑

ωl=aq

Hq E(ωl , ω̂p)

. (3.26)

is computed. As the energy of the speech signal is expected to be concentrated in a
harmonic structure, those harmonic bands with low ε̄q and high Pq are more likely
to retain most of the speech components, while other regions are expected to contain
the interference signal. We therefore set two harmonic-band thresholds ζ and η for
selecting the reliable (speech) harmonic bands such that

Gq(ωl) =
{

Ψ (ωl − qω̂p), if ε̄q ≤ ζ & Pq ≥ η, ωl ∈ [aq , bq ]
0, otherwise

, (3.27a)

G(ωl) =
Q∑

q=1

Gq(ωl). (3.27b)

Equation (3.27a) indicates that only harmonic bands that satisfy the thresholds are
selected; the other frequency bands are discarded. Equation (3.27b) indicates that
the selection process is carried out over all frequency bands of interest. The sum of
the selected harmonic bands are denoted as G(ωl).

Figure3.6 shows extraction results of the speech harmonics using a frameof 32ms.
Figure3.6a shows the MBE fitting result, computed using (3.22)–(3.24), for the case
of clean speech where no interferer is present. We note that the MBE approximation,
shown by the dotted line, is capable of estimating the harmonics of clean speech.
Figure3.6b shows the result for the case where a power-drill signal is added to the
speech signal at an SIR = 5dB. The beamformer output S(ωl , �̂

−
k ), shown by the

solid line, therefore consists of spectral components corresponding to the power drill
at 400 and 1500Hz and the speech signal. Comparing Fig. 3.6a, b, we note that the
MBE fit shown in Fig. 3.6b is able to estimate the speech harmonics with reasonable
accuracy, albeit with some distortion. The estimated reliable speech harmonic bands
are shown with G(ωl) and are denoted by the bold lines (which has been normalized
to 0dB for clarity).

The extraction discussed above considers a single data frame. By iterating the
procedure over all the frames, G(ωl) in (3.27b) can be extended to G(k, ωl) which
denotes the selected harmonic bands at the kth frame. The selected harmonics over
all the frames are shown in Fig. 3.4d where a 6 s speech in the presence of power-drill
interference is considered. We note that using the beamformer and MBE fit, speech
harmonic bands can be estimated as indicated by the dark lines in the spectrogram.



70 K. Wu and A.W.H. Khong

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−200

−150

−100

−50

0

A
m

pl
itu

de
 (

dB
)

Clean speech MBE fit

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−200

−150

−100

−50

0

A
m

pl
itu

de
 (

dB
)

Frequency (Hz)

Beamformer output MBE fit G(ω) (selected harmonics)

Interference Energy

(a)

(b)

Fig. 3.6 MBEfitting result. a Clean speech andMBE fit. bBeamformer output, MBE fit, and G(ω)

in the presence of a power drill signal

With G(k, ωl), the new SRP function Pk(�) with weight Wi (k, ωl) is given as

Pk(�) =
∑

ωl∈Ω

∣∣∣∣∣

M∑

i=1

Wi (k, ωl)Yi (k, ωl)e
jωDi (�)/c

∣∣∣∣∣

2

, (3.28a)

Wi (k, ωl) = G(k, ωl)

|Yi (k, ωl)| , (3.28b)

where Ω is the frequency over which the SRP function is evaluated. Similar to the
pseudo likelihood method [25, 37], the SRP function is used to define the measure-
ment likelihood in the PF framework,

Pr(zk |αk) =
{Pγ

k (�), for voiced frame
UD(�), for unvoiced frame

, (3.29)

where γ = 2 is a control parameter to regulate the SRP function for source
tracking [25], and UD(·) is the uniform pdf over the considered enclosure domain
D = {xk, yk |xmin ≤ xk ≤ xmax, ymin ≤ yk ≤ ymax}. The likelihood function is then
used to update the particle weights of the particles. The proposed SSLT framework
is summarized in Table3.2.



3 Sound Source Localization and Tracking 71

3.3.3 Simulation Results

Simulations were conducted using synthetic impulse responses generated by the
method of images [26]. The dimension of the room was 5m × 5m × 2.5m, and
the reverberation time T60 were 200–300ms. Eight microphones were distributed
0.5m away from the perimeter of the room (see Fig. 3.7). An 8 s male speech signal
sampled at 16kHz from the TIMIT database [16] was used as the source signal. A
power drill (PD) signal and a recorded telephone ring (TR) signal obtained from the
NOISEX-92 database [33] were used as interferers. White Gaussian noise of 15dB
SNR was added to the microphone signals. The speed of source was approximately
set at 0.6m/s. The positions of speech source were estimated using a frame size
of 512 samples with Np = 100 particles. We also used an effective sample size
threshold Nthr = 37.5, harmonic-band thresholds ζ = 0.6 and η = 0.03. A total of
12 harmonic bands (Q = 12) were considered. The proposed method is compared
with the conventional tracking method using SRP-PHAT as pseudo likelihood [25].
Both methods were evaluated using 0 ≤ Ω ≤ 2 kHz from which, for the proposed
algorithm, speech pitch frequency was estimated from 100 to 300Hz using (3.22)–
(3.24). In this chapter, we quantify the performance using the average tracking error
across all audio frames, i.e.,

Table 3.2 Summary of the proposed algorithm

At time k − 1, given that a set of particles {α(p)
k−1, w(p)

k−1}
Np
p=1 is a discrete representation

of posterior Pr(αk−1|zk−1), the posterior state estimate is α̂+
k−1 = ∑Np

p=1 w(p)
k−1α

(p)
k−1.

For the kth frame:
1. Prior prediction: Propagate the previous state estimate through (3.16) to obtain prior estimate
of the current state α̂−

k .

2. Feature extraction: Apply beamformer according to (3.17), (3.18) to enhance the signal from
the prior estimated position r̂−

k , and extract speech features using (3.22)–(3.24).

3. Particles propagation: Propagate each particle through the source dynamic model (3.7a),

α
(p)
k = G(α

(p)
k−1, uk).

4. Posterior weights update: Obtain the feature directed particle likelihood using (3.25)–(3.29)
and each particle is then assigned a weight according to its likelihood

w(p)
k = w(p)

k−1Pr(zk |α(p)
k ),

followed by normalization w(p)
k ⇐ w(p)

k (
∑Np

i=1 w(i)
k )−1. The posterior state estimate is

x̂+
k = ∑Np

p=1 w(p)
k α

(p)
k

5. Resampling: Resample the particles if the effective sample size is below a threshold, Neff <

Nthr , where Neff = (
∑Np

p=1(w
(p)
k )2)−1.
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Fig. 3.7 Comparison of tracking results when TR is present at SIR = −3dB, T60 = 250ms.
a Conventional SRP-PHAT tracking method. b Proposed tracking method

ē = 1

K

K∑

k=1

||̂r+
k − rk ||2, (3.30)

where r̂+
k is the posterior estimated position at kth frame, rk is the true source position,

|| · ||2 is the L-2 norm, and K is the number of frames.
Figure3.7 compares the tracking result for T60 = 250ms in the presence of

telephone ring at −3dB SIR. Figure3.7a shows that the tracking performance of the
conventional SRP-PHAT approach is adversely affected by the interferer. Due to the
highmeasurement likelihood of SRP-PHAT for the interferer region, the particles are
“trapped” once they are propagated there, in this case the region near the telephone
ring. The SRP-PHAT method has an average error of 0.58m indicating that it does
not converge to the speech source trajectory. On the other hand, Fig. 3.7b shows the
tracking performance of the proposed method. This result shows that the proposed
method is less significantly affected by the presence of the telephone ring achieving
an average error of 0.12m.

Figure3.8 shows the tracking result when both power drill and telephone ring
are present at 3 and 0dB SIRs, respectively, with T60 = 250ms. Again, Fig. 3.8a
shows the conventional SRP-PHAT approach losing track of the speech source. The
particles are “trapped” at the region near the power drill, leading to the average error
of 0.61m. On the other hand, the proposed method, shown in Fig. 3.8b, retains its
robustness with an average error of 0.13m.

Table3.3 shows the average tracking error for various test conditions. The source
trajectory and interference positions remain the same as the previous setup. These
results show that the proposed algorithm can achieve better accuracy than the SRP-
PHATmethod. For instance, in the presence of power drill at 3dBSIR, theSRP-PHAT
method exhibits a large tracking error of 0.56m when T60 = 0.2 s. The proposed
method achieves an error of 0.11m,which translates to an80%reduction of error over
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Fig. 3.8 Comparison of tracking results when both PD and TR are present at SIR = 3dB, 0dB,
respectively, T60 = 250ms. a Conventional SRP-PHAT tracking method. b Proposed tracking
method

the SRP-PHAT method. Furthermore, the proposed method maintains its robustness
in localization and tracking in the presence of two interferers, while the SRP-PHAT
approach suffers from large tracking error under low SIR condition. However, it is
also observed that the performance of the proposed algorithm degrades modestly
when reverberation time is increased. The proposed method may fail under adverse
environments as indicated when T60 = 0.3 s, PD and PR are present at SIR of 3 and
−6dB.

Different source trajectory and interference configurations were also examined in
Figs. 3.9 and 3.10. As before, these results show that the conventional SRP-PHAT
approach is likely to be affected by interferers, while the proposed approach retains
its robustness; the particles are propagated closely along the source trajectory.

Figure3.11 shows the performance of both algorithms under different reverber-
ation conditions. Figure3.11a shows the results when power drill is present at an
SIR= 0dB. The SRP-PHAT trackingmethod, indicated by the dashed line, results in
consistently high tracking errors of more than 1m. The SRP-MBE tracking method,
shown by the solid line, results in errors of less than 0.3m when T60 is below 0.35 s.

Table 3.3 Comparison of mean tracking error ē between the SRP-PHAT tracking method and the
proposed tracking method

SRP-PHAT tracking method Proposed tracking method

T60 = 0.2 s T60 = 0.3 s T60 = 0.2 s T60 = 0.3 s

PD (SIR = 3dB) 0.56m 0.59m 0.11m 0.15m

TR (SIR = 0dB) 0.51m 0.59m 0.09m 0.13m

TR (SIR = −3dB) 0.53m 0.64m 0.10m 0.15m

PD+TR (SIR = 3, 0dB) 0.57m 0.68m 0.12m 0.16m

PD+TR (SIR = 3,−3dB) 0.65m 0.69m 0.15m 0.18m

PD+TR (SIR = 3,−6dB) 1.08m 1.01m 0.20m 0.75m
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ē = 0.11 m

Ground
Truth

Mic

Fig. 3.9 Comparison of tracking results when PD is present at SIR = 3dB, T60 = 200ms. a Con-
ventional SRP-PHAT tracking method. b Proposed tracking method

0 1 2 3 4 5
0

1

2

3

4

5

X coordinate (m)

Y
 c

oo
rd

in
at

e 
(m

)

Particles

Mean Error
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However, the performance deteriorates rather significantly when T60 is beyond 0.4 s.
A similar conclusion can be drawn fromFig. 3.11bwhere the telephone ring is present
at SIR = −5dB. The SRP-PHAT tracking method consistently results in high track-
ing errors of more than 0.5m, while the SRP-MBE deteriorates when T60 is higher
than 0.3 s.

3.4 Integration with Social Robot

Sound source localization and tracking have been investigated in the previous sec-
tions. In this section, we describe a system where the SSLT module has been inte-
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Fig. 3.11 Comparison of mean tracking error versus different reverberation time T60. a Power drill
is present at SIR = 0dB. b Telephone ring is present at SIR = −5dB

grated to the social robot and to the virtual human. Figure3.12 shows the demo
setup of a social robot system in the BeingThere Center, Nanyang Technological
University. Microphones are employed linearly with known positions. The SSLT
module estimates the position of a speaker within the room and delivers the position
information through I2P connections to the server. The other modules (e.g., the head
controller module) would therefore have access to the sound position information.
Either the virtual human or the social robot is able to turn its head to a person who
is speaking in the room. By focusing on the speaker, the interaction between robot
and users is improved. The sound position information can also be combined with
the face detection module, which allows the robot to be aware of all the users while
focusing on the active speaking person.

Fig. 3.12 Integration setup with the social robot system
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3.5 Future Avenues

This research focuses on SSLT problems in the meeting room environment and will
continue to be the research focus in the near future. The following are some of the
possible suggestions for future research:

1. Improving the performance of SRP-MBE in the reverberant environment.
The performance of the proposed SRP-MBE tracking algorithm degrades when
reverberation time increases. This is due to the fact that the harmonic bands are
disturbed by a high amount of reverberation. The issue of how to recover or
extract the time delay information from the degraded harmonic bands certainly
requires future investigation.

2. Tracking time-varying number of sources. In recent years, tracking time-
varying number of sources has gained much interest in the research commu-
nity [14, 28, 30]. In a typical environment, there might be multiple speakers
speaking at the same time, which results in speech signals overlapping. In addi-
tion, some speakers may become quiet after talking for a while. This practical
situation requires an advanced probabilistic model such as random finite set [28,
36] to be incorporated in the particle filter framework to achieve multiple speaker
tracking. In addition, it requires a mechanism to detect and initialize a new-
born target and remove certain inactive targets from the state at a certain time
instant [14].

3.6 Conclusions

In this chapter, we first reviewed the SSLT problem in a meeting room environment
for teleconference purposes. The challenges include room reverberation, background
noise, and sound interference. After reviewing some of the existing methods, a pro-
posed SSLT framework was discussed for tracking a speech source in the presence of
sound interference. This method is capable of estimating the speech harmonic bands
for localizing and tracking. By only emphasizing the harmonic bands, better speech-
sensitive measurement likelihood can be achieved resulting in better weight update
for the particles. Simulation results show that the proposedmethod can achieve lower
tracking error than the conventional SRP-PHAT method in the presence of multiple
interferers.
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Chapter 4
Modelling Conversation

Martin Constable, Justin Dauwels, Shoko Dauwels, Rasheed Umer,
Mengyu Zhou and Yasir Tahir

Abstract Conversation is clearly important in our daily lives. Functionally, it serves
to deliver and exchange information. However, there is much of a conversation that
lays outside of its verbal content, yet impacts directly on those involved and in a
manner that might be to their detriment or benefit. For example, in an interview
(which is a special class of conversation) the interviewee might needlessly interrupt
the interviewer or be too silent, both of which are detrimental to the health of the
conversation. This is the non-verbal component of conversation, which is to say it
lays outside of the conversation’s spoken content. By and large it also lays outside the
sphere of what we are consciously aware of. The unsolved problem is how the non-
verbal component of a conversation might be visualised in a concise, yet effective
manner that would be suitable for use in a communication skill training scenario.

4.1 Learning Conversation Skills

Consciously or unconsciously, we adjust our voice and body movement while com-
municating with others. These are skills we acquire through everyday social engage-
ment. In other words we learn communication skills through experience.

Experience is a powerful source of learning, especially in the acquisition of soft
skills such as human-to-human communication. In such communication, especially
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in that which takes place face-to-face, we focus not only on what we say but also on
how we say it. The manner in which we speak could change the meaning of what
we are saying. For example, if someone smiles and say ‘OK’, it gives a positive
impression and most probably means ‘yes’. On the other hand, if they frown, roll
their eyes and say ‘Oooo-Kay’, they can come across as displeased. We gather such
subtle information about the mental state of others while they are speaking.

These skills are informed by one’s past experience and may not work as intended
in all situations. We learn these skills as children within a small group of culturally
homogeneous people, but as we develop and mature it is likely that we will be
required to communicate with a far wider variety of people. These people will be of
diverse language, culture and religion and will also be diverse in their personality.
We, therefore, need to maintain and upgrade our communication skill set as we grow,
to ensure that it is suitable for a wide range of needs.

Since communication skill is practice-oriented, we need real-world experience in
order to acquire such skills. However, just by engaging in an activity does not mean
that we are necessarily learning from it. How can we knowingly develop such skills?
What do we need for such learning/training? We discuss in this section some of the
problems associated with learning within this domain, and we propose that a fusion
of technology and new generation media provides an effective platform for serving
these needs.

Communication skills are quite personal and occur through an invisible cognitive
process. Although recent advances in brain science and neuroscience reveal some
of the mechanisms underpinning this practice, the brain is still effectively a ‘black
box’ and we cannot fully assess how we use non-verbal behaviours while speaking.
This type of highly embedded intelligence is known as ‘tacit knowledge’. As tacit
knowledge is difficult to articulate, we cannot learn by textbook-based learning.
Instead, we need direct experience.

The experiential learning model was proposed by Kolb et al. [11]. This was based
on earlier work by scholars engaged in professional learning [3, 15]. In the experi-
ential learning framework (Fig. 4.1), the student follows the four steps of continuing

Fig. 4.1 The experiential
learning framework
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process: 1 concrete experience, 2 observation and reflection, 3 abstract conceptuali-
sation and 4 active experiment.

Without the students knowing their current performance, it is difficult for them to
modify their communication behaviour within a conversation. Therein lies the need
for feedback in the training process. Such feedback would require that a visualisation
of a conversation be available.

4.2 The State of the Art

Every timewe look at a traditional Internet chat log or anSMSexchange (Fig. 4.2),we
are seeing a visualisation of a conversation from which we can derive a significant
amount of information. In the latter, the direction from which the speech bubbles
originate clearly indicates to whom a remark should be attributed, and the nested
response boxes of the former show us the nested sub-topics within a conversation.

Within an SMS exchange there might also be emojis that visualise the emotional
subtext of the conversation. Though an emoji is a visualisation of a participant’s
emotional condition, it is a self-elected one and therefore vulnerable to misrepresen-

Fig. 4.2 Traditional forms of text-based exchange. a An SMS chat exchange showing emojis
integrated into the chat. b A chat log showing nested conversation
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Fig. 4.3 Donath et al’s. ‘Chat Circle’ interface

tation and subjectivity. This has not affected their popularity and indeed there now
exists chat networks devoted exclusively to emoji [4, 5].

Work by Donath et al. [9] (Fig. 4.3) proposed a multiparticipant text-based chat
system (‘Chat Circles’) that added an extra dimension to that supported by traditional
systems. Each chat participant was represented as a coloured circle. The brightness
of each circle indicated the degree of activity of that participant. The proximity of one
circle to another was offered to the participant as a dimensional control representing
the degree of their engagementwith a particular co-participant. In addition to offering
this extra dimension to a chat conversation, it also visualised the social aspects of
that conversation.

This and preceding examples, as well as being visualisations of a conversation,
are also the conversation itself. There is little distance between the thing and its
representation, with the latter offering no summary of the former.

A tag cloud, sometimes known as a word cloud (Fig. 4.4), will visualise the fre-
quency ofwords in a collection of text, with those that have been usedmost frequently
being represented as larger. A degree of summative evaluation may be gathered ‘at
a glance’, with important words being signified by their large size.

Tat and Carpendale [23] propose a complex and evaluative approach: ‘Bubba
Talk’. This analysed a multiparticipant text-based conversation for such things as the
frequency of exclamation marks, the number of words and the number of characters.
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Fig. 4.4 An example of a tag cloud

Fig. 4.5 Tat and Carpendale’s visualisation of a text chat (‘Bubba Talk’)

It expressed the entirety of a conversation as a single complex circular-form abstract
from which the social dynamics of the conversation may be inferred.

A range of further approaches for visualising text-based chat are reviewed by
Uthus and Aha in ‘Multiparticipant chat analysis: A survey’ [26] (Fig. 4.5).

Visualising spoken dialogue presents a different challenge from that posed by
text, being more dimensionally complex.While communicating with others, humans
exchange messages verbally and non-verbally [16]. Non-verbal cues are from com-
munication channels that lie outside of speech (sometimes known as ‘paralanguage’).
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Examples include: eye movement, facial expression, gesture, posture, etc. It is the
non-verbal aspects of a conversation that signify its ‘health’. For example, what you
are saying may be perfectly reasonable and polite, but if you have interrupted some-
one as you are speaking (which is a non-verbal cue) then you may come across as
rude. It should also be noted that although we can easily manipulate what we say in
order to create a particular impression, it is far harder to do so using the non-verbal
aspects of how we speak. In this sense it is harder to ‘lie’ non-verbally. However,
non-verbal cues do not lend themselves to easy visualisation, and therein lies one of
the challenges of our research.

Campbell proposed an approachwhereby a spoken conversationwas synchronised
with a text-based transcription of its content. The length of each spoken utterancewas
represented by the length of a simple coloured bar on a timeline; the colour of the bar
indicated the identity of the speaker. Amouse-over on the bar revealed the transcribed
text. Non-verbal cues such as simultaneous speech, interruptions and interjections
could be inferred from the relative position of the bars to each other upon the timeline,
however, this information was not explicitly processed or visualised (Fig. 4.6).

Bergstrom et al. visualised conversations between small groups of people [1].
The output of their approach resembled that of Tat and Carpendale’s: a circular-
form abstract, this form having a degree of natural suitability to the expression of
group conversations. The parameters fromwhich this visualisation was derived were
speaking activity (active/not active) and speaking volume. The secondary (inferred)
parameters were turn-taking and simultaneous speaking. Different from Campbell’s
approach, theirs did not address the content of the conversation, being instead exclu-
sively concerned with non-verbal cues. Although fascinating, and even beautiful,

Fig. 4.6 Campbell’s transcription interface showing a two-party conversation with the transcribed
text (in Japanese) visible in the top row
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Fig. 4.7 Sarda’s et al’s. visualisation of non-verbal speech cues

their approach does not of its own offer any high-level evaluation of the health of a
conversation. This point will be elaborated upon later in this chapter in Sect. 4.4.3.

Research in the fields of psychology and cognitive science, inwhich human behav-
iourwithin social interaction is studied, has examined these cues. [17, 19] andGatica-
Perez [6] describe ways in which non-verbal cues may be automatically gathered.
Referencing such work, Sarda et al. [20] visualised a large number of non-verbal
speech cues as a plot along a timeline (Fig. 4.7). They did this using recent advances
in recording equipment and signal processing in order to automatically detect these
conversation dynamics.

Sarda’s approach was not primarily designed for use in a training scenario, being
limited for use by researchers wishing to review their data. Additionally, the data it
records is low level, being concerned only with statistics and would therefore have
to be interpreted by an expert to have any value in a training scenario.

In sum, a conversation is a dimensionally complex phenomenon involving at least
two streamsof time-varying data that interact inmeaningful and complexways. There
are manyways to visualise a conversation, depending on the form of the conversation
and what is required of the visualisation. For purposes of aiding in the training of
conversation skills, we exclusively focused on visualising its non-verbal cues.

4.3 Summary of Our Approach

We focused on cues derived from non-verbal speech. There are several reasons for
choosing speech cues as opposed to visual cues. First, speech data can be processed
quicker than visual data. In a learning situation, it would be of clear advantage to
have feedback that is available at short notice. Second, body gesture strongly reflects
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cultural difference, which adds a layer of complexity onto an already complex task.
In order to quantify body gesture, significant studywould be required of its automatic
classification and its culturally-specific significance. However, the meaning of non-
verbal speech cues is generally universal to all cultures and is therefore easier to
classify. One of the leading studies on communication reported that when judging
like/dislike, vocal cues were the second most influential channel (38%) following
visual cues (55%) [14]. For these reasons, speech cues were seen as the best options
to produce informative yet speedy feedback.

Our approach was to use technology to detect non-verbal cues and to design a
visualisation approach that serves to give feedback to individuals for the purpose of
their training. There were four steps to this task:

1. Capturing the non-verbal cues from a conversation (detailed in Sect. 4.4.1)
2. Processing the non-verbal cues as low-level measures (detailed in Sect. 4.4.2)
3. Interpreting the low-level measures as high-level metameasures (detailed in

Sect. 4.4.3)
4. Visualising the metameasures for the purposes of training feedback (detailed in

Sect. 4.5).

Additionally, the results of a user study are presented in Sect. 4.6.

4.4 The Capture, Processing and Interpreting
of Non-verbal Speech Cues

For our purposes the conversation size was restricted to the dyadic. This made our
visualisation approach easier to test bed and was also more suitable for a training
scenario, which would typically consist of a single trainer/trainee pair. The process
required that the raw conversation data was gathered in a manner that did not impact
upon its quality. From this data, non-verbal speech cues were automatically gathered
and then classified using a number of measures. These measures were the statistical
low-level features of the conversation. Using machine learning 3 metameasures were
extrapolated from these measures: dominance, interest and discord. These metamea-
sures quantify the high-level ‘health’ of a conversation.

4.4.1 Protocols for Capturing of Speech Data

The following section outlines the step-by-step procedure that constituted our pro-
tocol for capturing the speech data from face-to-face dyadic conversations. It was
designed to gather data in a controlledmanner andwithout distracting the participants
too much.
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1. In order to ensure effective communication the recording environment was set up
so as to be as non-invasive as possible. Therefore, minimal apparatus was used.
For audio recording, we used easy-to-use portable equipment for recording con-
versations. It simply consisted of lapel microphones for each of the two speakers
and an audio H4N recorder that allowed multiple microphones to be interfaced
with the computer. The speech from each speaker was saved simultaneously in a
2-channel audio .wav file.

2. In order to ensure smooth conversation throughout the recording we kept one of
the participants constant in the experiment. They acted as a control and facilitated
different social scenarios in conversation with their co-participant.

3. In order to obtain a high-quality recording themicrophones were attached directly
onto the participant’s collar. Directional microphones were used so that one
speaker’s voice did not impede the other speaker’s channel.

4. Both speakers were seated about 1.5m apart so that each microphone only
recorded the voice of the respective participant, and there was no interference
from the other participant.

5. The two participants remained in a noise-free environment without any interrup-
tions.

6. The participants were briefed about the experiment and were asked to act natu-
rally. They were also asked to agree on a topic of mutual interest. The topics of
discussion ranged from small talk to heated debates on sports, politics, etc. The
topics were selected carefully in order to evoke a variety of behaviours.

7. The recording was initiated via a laptop remotely connected to a server.
8. The conversation was monitored remotely via a wireless live feed. Each conver-

sation was about 2.5–3min in duration and was without any interruptions.

The final speech database consisted of about 100 two-person conversations, each
about 1–1.5min long: a combined total of 200 individual audio recordings. The topics
of conversation varied from discussion of assignments, student projects, social and
political views, etc. The dataset encompassed many distinct social scenarios such as
conflicts and disagreements, periods of boredom, aggressive behaviour, story-trading
between speakers, speaker-to-speaker exploration, lecturing, etc. This wide range of
sociometric samples provided an effective and flexible database.

4.4.2 Processing the Speech Data as Measures

We took from the literature [6] seven conversational measures (Table4.1) which
together broadly describe the social dynamic of a dyadic conversation and which
could also be automatically processed from the speech data.

In Fig. 4.8 the process of deriving a measure from the speech data is visually
summarised for the two measures: ‘interruption’ and ‘failed interruption’. The peaks
in the plots represent the duration of a participant’s speaking. It can be seen that in
the second example the speaking duration of speaker A lies inside of speaker B’s
speaking duration. This is classified as a failed interruption.
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Table 4.1 The conversation measures derived from the speech data

Measure Significance

Speaking percentage The amount of speaking that person A or B has done is expressed as a
percentage of the entire conversation

Natural turn taking The number of times person A speaks in the conversation without
interrupting person B

Turn duration The average speaker turn duration. The turns of speaker A and B are
both considered

Interjection The number of times person A speaks simultaneous to person B but
for a period of 1 s or less. This is to indicate short utterances like ‘no’,
‘ok’, ‘yeah’, etc.

Interruption The number of times person A, interrupts person B while speaking and
takes over the conversation, causing person B to stop speaking

Failed interruption The number of instances when person A interrupts person B while
speaking but stops speaking before person B does

Mutual silence A and B are both silent

Fig. 4.8 An interruption and
a failed interruption evident
in the speech data. See how
in the second example the
speaking duration of speaker
A lies inside of speaker B’s
speaking duration. This is
classified as a failed
interruption

4.4.3 Interpreting the Measures as Metameasures

The measures themselves are statistical low-level features of the conversation and
do not by themselves signify any high-level qualitative value. In order for these
measures to be of use in a training scenario we summarised them as three high-level
values: dominance, interest and discord [6]. These are described in Table4.2. For this
a training procedure was developed. This required that a ground truth be established,
for which a manual classification was required. Each audio recording in the dataset
was classified manually by at least five people. For each recording, they completed
a questionnaire relating to their qualitative impression of the speaking mannerisms
and behavioural aspects of each participant. The responses ranged from 1 (low) to 5
(high). For example, if a participant seemed bored, their interest level was classified
as ‘low’. In contrast, if they seemed excited, then the interest level was classified as
‘high’. From these five votes the majority view was taken as the final score.
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Table 4.2 The three metameasures described in terms of the speech data measures

Metameasure Significance

Dominance Dominance indicates the extent of a speaker’s influence on their partner as
measured by the difference in their speaking percentage and the
difference in natural turns

Interest Interest indicates the extent of a speaker’s engagement with the
conversation as measured by the speaking percentage, turn duration
and interjections. The more they are involved in the conversation, the
stronger the interest they have

Discord Discord indicates the speaker’s lack of agreement with their partner as
measured by interruptions, failed interruptions and mutual silence

With themanual classification established as a ground truth,machine learningwas
applied and we were then in a position to perform automatic classification. Using
this approach as our basis, a conversation can be automatically classified according
to the three metameasures. Each metameasure was expressed in the final output as
an intensity value between 0 and 3.

In addition to presenting the complex measures in a summarised and clear form,
our approach also normalised the data. For each of the metameasures a long con-
versation would be subject to the same n out of 3 score as a short conversation.
The advantage of this is that the length of a conversation is of no significance to
the quantification of its quality. This makes comparative evaluation of two or more
conversations easier to perform.

4.5 The Visualisation of the Data

The task of visualising the data required that its dimensional complexity be recog-
nised. A conversation varies across time and is composed of emotional attributes
which are abstract in nature. Visualising such data is therefore not an easy task.

Additionally, the intended applicationof our approach iswithin a training scenario.
The exactitude of the visualisation is not as important as its form: it should be clear
yet enticing. The metameasures should not only be presented as values but also as
experiences that the trainee can relate to.

4.5.1 Metaphor and Data Visualisation

The task required that an appropriate model of visualisation be found: one that
addresses the fundamentally abstract nature of non-verbal speech cues.

The heights of a group of people may be visualised as different points on the
Y-axis in a graph. Here, the dots would be operating in a graphical manner and their
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successful interpretation would depend on the assumption that the reader is familiar
with the convention of how such graphs function. This problem becomes more acute
in the case of specialised forms of visualisation such as box plots, histograms and so
on.

Some things are not suitable to being pictorially visualised in a straightforward
manner. For example, how might a volatile political situation be represented? In the
preceding examples, there was a clear indexical relationship between the heights of
the pictograms and the heights of the people. However, given the inherently abstract
nature of a political situation, this approach is not feasible. It might be that in such
a case a metaphor may be a more effective strategy to employ.

Metaphors rely on our ability to transfer an understanding from one subject to
another [12]. In the preceding example, a pictogram of a volcano might effectively
signify a volatile political situation. The volcano does not and cannot visually resem-
ble a volatile political situation, but it is nonetheless possible to read it as such. The
disadvantage of a metaphor is that it is inherently ambiguous and therefore its correct
interpretation depends upon the reader being privy to the correct way to read it. Thus
we find that a metaphoric device, such as the inversion of a sign, might variously
indicate the opposite of the signified (e.g. an upside-down cross signifying satanism),
the death of the signified (in The Book of Signs Rudolph Koch describes a pictogram
of an upside-down man as signifying a dead man [10]) or a ‘special condition’ of
the signified (e.g. The figure of the upside-down man in Tarot cards can variously
mean: acceptance, a new point of view or surrender). We may therefore conclude
that a metaphoric visualisation can be subject to multiple interpretations and that the
context is important in order that a specific reading may be pinned down.

4.5.2 Time and Data Visualisation

A conversation is time-varying in nature. For a human, time is a fundamentally
experience-based phenomenon [18] that again presents challenges in its visualisation.
Any data that is time-varying requires that time is accommodated as a navigational
dimension that is extra to the data. A single value that varies in intensity over time can
be presented as a graph on a timeline, as in Sarda et al’s. work [20]. However, this is
not suitable if the data is more complex such as in the case of several values varying
over time. Some existing solutions utilise 3D as this extra navigational space [8, 24];
an example of 3D in everyday use is the depth dimension employed in Apple’s Time
Machine (their propriety data backup service).

However, what is missed in such approaches is an experienced sense of the differ-
ence between the beginning and the end. To the user, such an experience may allow
them to effectively live the data and, by proxy, empathise more effectively with the
conversation from which the data was derived. We are reminded here that a key need
of information visualisation is not just to visualise data but also to communicate
effectively, and empathy is a key component of communication.
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A possible alternative to a timeline and 3D visualisation is to present the time-
varying data as a narrative. There is much previous research on storytelling as an
effective means of imparting information and much of it addresses storytelling as an
effective way in which to present complex information in a simple and summarised
manner [2, 7].

4.5.3 Game Engines and Data Visualisation

It was decided that the most suitable way of presenting the time-varying data was
in the form of an animation of two characters engaged in a social exchange in a
manner reminiscent of a narrative. Here, time was used to visualise itself, thereby
preserving the experience of time, and narrative was employed to signify change.
These characters were interacting with each other, similar to the way characters
interact in games. The formof these interactionswas chosen tometaphorically signify
the three metameasures by which the conversation has been classified.

Visualisations of data can be easily generated usingMicrosoft’s Excel or the open
source Web app Raw. Using an application like Adobe’s Flash or the open source
Pure Data it is possible to parse time-varying data into forms that might be animated.
However, these approaches are not equal to the task of producing a sophisticated
animation. Normally, animation, especially that of the human figure, is an arduous
task requiring expert input from experienced professionals. This would preclude
against their use in a training situation where on-demand feedback would be a key
requirement. A simple alternative is to use a game engine. A game engine is a layer of
software that supports a digital game. Its job is to manage the physics and appearance
of the game world and oversee the rules of the game. It also presents to the game
designer the means to author and edit the game.

Game engines have been used before in the visualisation of information [22, 27].
However, the assumption that these approaches make is that the function of a game
engine is tomake a game. However, game engines have also been used tomake stand-
alone animations that permit no player interaction. Such animations are commonly
known as Machinima, which are hybrids of gaming and film-making. More recently
the game engine extension Source Filmmaker [21] has been developed to capture
and edit game engine play into the form of an animation for post-capture editing.
The advantage of these approaches is the ease with which animations may be made.

Using the Game engine Unity [25] as our development platform we built a visu-
alisation application, whose purpose was to convert the metameasures into a simple
animation. Unity was chosen for its flexibility, relative ease of use and the portability
of its output.

The animation that a game engine produces is not the same as that an anima-
tor might produce using animation-specific software. It carries with it much of the
‘language’ of a game: apparent in its loop-form animations, low polygon count fig-
ures, sprite overlays (explosions, glows, etc.) and simplified camera moves. With
these familiar cues come a particular set of expectations from the user: they would
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be primed to expect from the animation a degree of social engagement that is also
likely to directly involve them (i.e. ‘gameplay’). This was suitable to the particular
demands of our task and provided the contextual underpinning by which the user
may make sense of the metameasure metaphor.

4.5.4 Our Approach

The space that the animation is rendered within is of high importance to how the
animation will psychologically impact upon the viewer. It was decided that the best
option would be to use isometric projection. Different from the traditional 3-point
perspectival rendering, objects in an isometric projection do not appear larger or
smaller according to their distance from the camera. This form of spatial represen-
tation is employed in strategy games such as Starcraft and Age of Empires. It is
suitable for eliciting in the viewer the ‘gods eye’ point of view, wherein all charac-
ters are of equal importance. This is unlike the 3-point perspective that is employed
in first-person shooters and in which figures that lie nearest the camera are given
psychological weightage over those that lie further away. We opted to use isometric
projection as we felt it was suitable for the purpose of equalising the emphasis given
to the two characters/participants.

In the course of the development of visualisation several dead ends were encoun-
tered. For example, before the development of the metameasures the collective
dynamic of the conversation was expressed using a range of metaphors driven by
the low-level measures. A floating platform was employed to reflect the global rate
of the ‘turn-taking’ measure (Fig. 4.9). Should that measure fall below a threshold
value (i.e. participants were not equal in the number of times they spoke) then, by
the end of the animation the platform would have developed a wobble and the jets
holding it up would be emitting black smoke. Here the notion of imbalance served
two readings: the literal (the unbalanced state of the platform) and the metaphoric
(the unbalanced state of the conversation).

Following the development of the metameasures as a means to summarise the
entirety of the conversation, this approach was seen to be extraneous to our needs.
Despite this, embodying a sense of collective health using a metaphorical environ-
ment remains an enticing idea that we feel is suitable for future exploitation.

We opted to use figures, environments, animations and effects that were similar
to those of established gaming traditions. By doing so, we sought to build upon
the association of this genre with social engagement and also with the notion of
merit acquired through practice (a useful value in training). We purchased these
figures, animations and visual effects from commercial resellers of gaming assets
and customised them to our needs.

The figures were chosen for their broad similarity to existing ‘steampunk’ type
game characters such as those found in the games Final Fantasy, Sudeki and Kirin.
This we felt was suitably outside of any specific worldly context. They were placed
within a natural environment which was not so noticeable as to be a distraction, and



4 Modelling Conversation 95

Fig. 4.9 The floating platform as an analogy

not so stark as to be disturbing. They were positioned so they were facing each other
and were initially animated with a simple loop of an ‘at rest’ motion.

The figures were rigged to respondwith predefined animations to each of the three
metameasures (Table4.4). ‘Feeding’ the timing of the animations was the metamea-
sure values derived from the conversation data. This was presented in the form of a
stream, wherein metameasure ‘events’ were delivered at random intervals. Table4.3
represents such a stream, the values of which are as follows. Speaker A: Dominance
= 3, Interest = 1, Discord 2. Speaker B: Dominance = 2, Interest = 2, Discord 1. Just
as there was no one-to-one relationship between the length of the conversation and
the length of the animation, as outlined in Sect. 4.4.3, so also there was no one-to-one
relationship between the order of these events within the animation and the ordering

Table 4.3 Graphical presentation of an example data stream (key:Dom=dominance,Dis = discord,
Int = interest)

Speaker A Dom 0 Dis Int Dom 0 Dis Dom 0

Speaker B Dom 0 0 Int Int 0 Dis 0 Dom
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Table 4.4 The metameasures as metaphors

Metameasure Give animation Receive sequence Sprite sequence

Dominance Figure makes a punching
gesture

Figure moves as if
electrocuted

Energy ray, emanates
from giver and hits the
receiver

Interest Figure makes a wide-arm
gesture

Figure twirls Bubbles and sparkles
envelop the receiver

Discord Figure makes a roaring
gesture

Figure places their head
in their hands

Rain envelopes the
receiver

of the conversation. This served to ensure that the animation did not ‘illustrate’ the
conversation, rather it ‘symbolised’ it.

The animations were augmented by use of animated sprites. These sprites were
similar in form to those employed in games such as StarCraft, World of Warcraft,
etc., where they are usually employed to signify such things as spells, explosions and
forcefields. The animations and sprites were chosen for their metaphoric similarity
to the metameasures. The animations are pictured in Figs. 4.10, 4.11 and 4.12.

The animation was available for viewing almost immediately after the conversa-
tion had finished. In a training scenario this is of clear advantage.

The startup screen of the application presented the two participants as two char-
acters: one male and the other female. This served to differentiate clearly the two
participants. As well as being the point at which the user data was loaded, the users
also have the option to swap the gender assignment of their characters. As the train-
ing scenario was likely to consist of one trainer and one trainee, it was assumed that
only the trainee would be concerned about the gender of their character.

Fig. 4.10 The dominance
metameasure animation
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Fig. 4.11 The interest
metameasure animation

Fig. 4.12 The discord
metameasure animation

The animation in play (Fig. 4.13) presented a running score of the metameasures
in the traditional health bar format, which needs no explanation to most people under
the age of 50.

As themetameasures did not relate directly to any particular event on the timeline,
the animation was effectively functioning as a means by which the metameasure
values could be slowly released to the trainee in as much time as the animation lasted
(this was set at 1min and 30s). This was long enough to serve the purpose of allowing
the trainer to discuss with the trainee the metameasures as they arose, yet also it was
not so long as to risk being tedious to view.

The animation ended with a screen (Fig. 4.14) that summarised the score and gave
a brief explanation of what each metameasure signified. The design and function of
this followed the format of the traditional statistics screen (a.k.a ‘stats’), which again
is a familiar gaming device.

It was found that a surprising amount of information was available not only from
the metameasures themselves, but also from how they combined. For example, high
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Fig. 4.13 The animation in play, showing the health bars and a ‘dominance’metameasure animation
being employed

‘interest’ and moderate ‘dominance’ from both participants would indicate that the
conversation was going smoothly. High ‘dominance’ and low ‘discord’ from one
participant would indicate that they might be acting aggressively.

4.6 User Study and Discussion

To test the validity of our approach, we conducted a user study comprising four tasks.
34 students from Nanyang Technological University (Singapore) participated. 17 of
these were from the school of Art, Design and Media (ADM), 17 were from the
Schools of Computer Engineering and the School of Business. These two groups
we term as the ADM and non-ADM (NADM) groups. 19 were male and 15 were
female.

Evaluation of the results of the user study was done by a comparison of two
modes of visualisation: our approach and a 2D graphic. The 2D graphic is shown in
Fig. 4.15. These were also evaluated with respect to the two user groups.
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Fig. 4.14 The ‘stats’ screen, showing the final metameasure score and brief explanations of their
significance

4.6.1 Task 1

The participants were shown the three animations depicting the three metameasures,
each 10s in length. They were then asked to match each animation with its respective
metameasure.

The results are summarised in the bar charts Figs. 4.16, 4.17 and 4.18. Given the
naturally non-indexical relationship of the metaphor device (i.e. animation) to the
signified metameasure, a 100% success rate in this task was not expected. However,
there was nonetheless a high rate of successful pairings for all the metameasures and
their respective animations.

Tellingly, the percentage of successful hits for the interest metameasure was
slightly higher than that of dominance and discord. This can perhaps be accounted
for by the fact that both dominance and discord are emotionally antagonist values
and were therefore being confused with each other.

A comparison of the bar chart in Fig. 4.16 with Fig. 4.17 shows that there was no
significant difference between the responses from the ADM and NADM groups.
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Fig. 4.15 The 2D graphic used in the user study
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Fig. 4.16 Results for user study: task 1. Bars represent the number of successful hits for ADM
group
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Fig. 4.17 Results for user study: task 1. Bars represent the number of successful hits for NADM
group
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Fig. 4.18 Results for user study: task 1. Bars represent the number of successful hits for the ADM
and NADM groups combined

4.6.2 Task 2

The participants were asked to listen to three audio recordings of dyadic conversa-
tions. Following this they were shown one animation that was generated from the
metameasure values of one of these conversations. They were then tasked to match
the animation with the correct audio recording.

The success rate for this task correlated strongly with that of task 1, with a correct
count of 28/34. This suggests that most of the participants had no trouble extending
the principle of the metaphor established in task 1.

Of the six incorrect responses, only two were from the ADM group. Narrative
responses from participants in task 4 (Sect. 4.6.4) provide some illumination about
the reasons for their response. One NADM participant declared that ‘as they didn’t
play video games, the animationswere not clear’ (response ID6, Table4.11).Another
from the same group believed that there was a direct one-to-one correlation between
the timing of the events in the conversation with the timing of the metameasure
animations (response ID 5). This was the only participant to have thought so. One
ADM participant talked about the ‘character’s motivations and intentions’ (response
ID 13), clearly mistaking the visualisation for a traditional narrative animation.

4.6.3 Task 3

The participants listened to an audio recording of a dyadic conversation. Following
this they were shown two visualisations of the metameasures: our animation and a
simple graphic in the form of a bar chart. They were then asked to fill in a ques-
tionnaire. All responses were tabulated in the Likert style [13]. The questions and
their response options are presented in Tables4.5 and 4.6. The responses themselves
are shown in the bar charts: Figs. 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26 and
in the Tables4.7 and 4.8. The results are also broken down into ADM and NADM
responses. The average and standard deviation (SD) values are shown for all sets of
results.
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Table 4.5 Questions and response options for task 3: animation-related

Response 1 Response 2 Response 3 Response 4 Response 5

Question A: Was the message clearly conveyed by the animation?

Not clear at all Mostly not clear Sometimes not
clear

Mostly clear Very clear

Question B: Did you enjoy the communication training feedback in the form of an animation?

Didn’t enjoy at all Mostly didn’t
enjoy

Neutral feelings Mostly enjoyed Very much
enjoyed

Question C: In a communication-training scenario, would you like the feedback to be in the

form of an animation?

Would not like at
all

Mostly would not
like

Neutral feelings Mostly would
like

Very much would
like

Question D: Was the length of the animation appropriate to a communication-training situation?

Far too short Too short Appropriate
length

Too long Far too long

Question E: Was it helpful that the animation looked similar to a game?

Not helpful at all Mostly not
helpful

Neutral feelings Mostly helpful Very helpful

Table 4.6 Questions and response options for task 3: graph-related

Response 1 Response 2 Response 3 Response 4 Response 5

Question F: Was the message clearly conveyed by the graph?

Not clear at all Mostly not clear Sometimes not
clear

Mostly clear Very clear

Question G: Did you enjoy the communication training feedback in graphical form?

Didn’t enjoy at all Mostly didn’t
enjoy

Neutral feelings Mostly enjoyed Very much
enjoyed

Question H: In a communication-training scenario, would you like the feedback to be in a

graphical form?

Didn’t enjoy at all Mostly didn’t
enjoy

Neutral feelings Mostly enjoyed Very much
enjoyed

Questions A, B and C addressed the participants’ response to the animation and
were comparable to questions F , G, and H , which addressed the graph. To evaluate
the differences between these question pairs, a paired t-test was performed. The
results are presented in Table4.9.

The low t-test result of the question pairs: A/F and B/G indicate that there was a
significant difference of opinion about the perceived clarity of the animation and the
degree to which it was enjoyed. However, this difference ran in different directions: a
majority of the participants thought the graphwas clearer than the animation (question
pair: A/F), yet a majority also enjoyed the animation more than the graph (question
pair: B/G). The B/G question pair elicited the lowest paired t-test result, indicating
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Fig. 4.19 Per-group response to question A: Was the message clearly conveyed by the animation?
a Response from ADM group. b Response from NADM group. c Response from all participants

Fig. 4.20 Per-group response to question B: Did you enjoy the communication training feedback
in the form of an animation? a Response from ADM group. b Response from NADM group. c
Response from all participants
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Fig. 4.21 Per-group response to question C: In a communication-training scenario, would you like
the feedback to be in the form of an animation? a Response from ADM group. b Response from
NADM group. c Response from all participants

Fig. 4.22 Per-group response to question D: Was the length of the animation appropriate to a
communication-training situation? a Response from ADM group. b Response from NADM group.
c Response from all participants
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Fig. 4.23 Per-group response to question E: Was it helpful that the animation looked similar to
a game? a Response from ADM group. b Response from NADM group. c Response from all
participants

Fig. 4.24 Per-group response to question F: Was the message clearly conveyed by the graph? a
Response from ADM group. b Response from NADM group. c Response from all participants
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Fig. 4.25 Per-group response to question G: Did you enjoy the communication training feedback
in graphical form? a Response from ADM group. b Response from NADM group. c Response
from all participants

Fig. 4.26 Per-group response to question H: In a communication-training scenario, would you like
the feedback to be in a graphical form? a Response from ADM group. b Response from NADM
group. c Response from all participants
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Table 4.7 Responses for task 3: animation-related

Response count Response percent

1 2 3 4 5 1 2 3 4 5

A 0 5 14 11 4 0 15 41 32 12

B 0 4 12 11 7 0 12 35 32 20

C 1 5 10 9 9 3 15 30 26 26

D 0 0 20 12 2 0 24 26 32 18

E 0 8 9 11 6 0 24 26 32 18

Table 4.8 Responses for task 3: graph-related

Response count Response percent

1 2 3 4 5 1 2 3 4 5

F 0 4 7 7 4 6 6 15 41 32

G 4 8 9 10 3 15 23 26 29 9

H 5 7 6 13 3 15 20 18 38 9

Table 4.9 Paired t-test results of question pairs (* significant at 0.05 level and below)

Question Average SD Paired t-test result

A 3.41 0.89 0.05*

F 3.88 1.12

B 3.62 0.95 0.03*

G 3.00 1.18

C 3.59 1.13 0.11

H 3.06 1.25

a strong difference with the majority favouring the animated feedback. The narrative
responses in Sect. 4.6.4 shed some light on this, with some referring to its ‘cuteness’
and how it ‘sparked their imagination’.

When asked which form of visualisation was clearer, the participants favoured the
graph, though the near-borderline t-test result indicated that the difference was not
extreme. This favouring was not a surprise, as the aim of our approach was never to
present information in as clear a manner as possible, but in a form that was agreeable
to the user and suitable for the needs of the training scenario.

There was no significant difference of opinion evident in the C /H question pair,
indicating that participants were equally divided about whether they favoured the
animation or the graph being used in a training scenario.

To test the difference in response between the ADM and NADM groups, a non-
paired t-test was performed on the per-group responses. The results are shown in
Table4.10. The low non-paired t-test results of per-group question responses for
F and G showed a significant per-group difference in the perceived clarity (F) and
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Table 4.10 Per-group non-paired t-test results (* significant at 0.05 level and below)

Question Average SD Non-paired t-test result

A ADM 3.29 0.99 0.45

A NADM 3.53 0.80

B ADM 3.47 0.94 0.37

B NADM 3.76 0.97

C ADM 3.53 1.22 0.23

C NADM 3.82 1.01

D ADM 3.29 0.47 0.09

D NADM 3.65 0.70

E ADM 3.47 1.12 0.87

E NADM 3.41 1.00

F ADM 3.53 1.37 0.06*

F NADM 4.24 0.66

G ADM 2.59 1.28 0.04*

G NADM 4.41 0.94

H ADM 2.71 1.49 0.10

H NADM 3.41 0.87

enjoyment (G) of the graph, with the ADMgroupmore likely to favour the animation
(although this difference was borderline in the case of its clarity). The low SD of
the NADM group in response to question F indicated broad agreement of opinion,
with most declaring the graph to be clear. However, amongst the ADM group the SD
value was quite high, indicating a general disagreement.

Generally, the SD value of the ADM group in answer to all questions was higher
than that of the NADM group, indicating less general agreement than the NADM
group. This perhaps can be accounted for by the fact that visual art attracts both very
technical students (as in the case of animation) and very visual ones (as in the case
of graphics). The nature of their diversity of interests is likely to influence the form
of visualisation that the participants favour.

Considering the natural interest and skill domains of these two groups of students,
the differences in their responses come as no surprise. However, the low non-paired
t-test value of the animation-related questions A to E indicates that both groups of
participants were in broad agreement about its value.

The discipline the participants majored in should not be assumed to be the only
factor at play in influencing their responses. How familiar they were with the gaming
oeuvre would certainly have impacted on their ability to successfully interpret the
results. This is borne out by the narrative responses presented in Sect. 4.6.4, partic-
ularly response IDs 1 and 6 (NADM and ADM participants respectfully). A few of
these responses have been correlated to those of task 2, Sect. 4.6.2.
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4.6.4 Task 4

The final task was of an open variety: inviting the participant to comment on any
aspect of the user study. Most of the responses were perfunctory: reiterating prefer-
ences already stated in task 3. However, some were more informative and gave us
unique information. Notable responses are given verbatim in Table4.11. Some of
these responses are discussed in the preceding sections.

Predictably, the ADM group was inclined to make suggestions about how the
creative aspects of the approach might be improved. Response IDs 1 and 6 indicate
correspondence between a participant’s familiarity with gaming and their ability to
interpret the animation successfully. Of the four from the NADM group that gave an
incorrect response to task 2, one thought that there was a one-to-one correspondence

Table 4.11 Verbatim responses to user study: task 4

ID Group Response

1 NADM Maybe you can define more choices like dominance, interest and
discord. One scenario can be described with multiple tags. (note: this
participant remarked verbally that he found the animation easy to read
as he was an avid game player)

2 NADM Characters should be the same gender

3 NADM The people in the animation are cute

4 NADM The animation was vivid and sparked my imagination

5 NADM Interesting survey. The first part was a bit confusing and some clips
could be categorised into two categories. In Task 3 I tried to match the
activity in animation with that in the conversation

6 ADM As I don’t play video games, animation does not work well for me.
Instead, I feel graph it is easier and direct to understand

7 ADM There should be music for each animation in Task 1 also that will make
it easier to match

8 ADM I think there should be a balance between animation and graphical
summary

9 ADM Message is harder to convey using animation perhaps game characters
are too distractive, simple and straightforward animated expression
might help. Message from graph is clearer but less interesting than
animation

10 ADM The animation could include facial expressions to better express the
character’s feelings. The poses are also a little too subtle, can be made
more dynamic for clarity

11 ADM The background sound during the animation does not really suit well

12 ADM Facial expressions on the animated characters will be even more helpful
in explaining the sociometrics

13 ADM While the content of the animation is clear on its own, they left me
confused when they were played back to back, leaving me scratching
my thoughts on the character’s motives and intentions
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between the animation and the conversation (ID 5). This was the only participant to
have done so. This shows that the timing strategy of the metameasure animations, as
outlined in Sect. 4.5.4, presented no problem for the majority of respondees.

4.7 Conclusion

An approach was developed that could deliver an animated metaphoric visualisation
of the salient non-verbal speech cues of a dyadic conversion. We believe that it could
serve as a suitable framework for the deliveryof training feedback in a communication
skill training scenario. From the analysis of the user studies we may conclude that
the goals of our project were satisfactorily achieved.

Our approach was never intended to be better than a simple graphical approach
as a means of precisely presenting information; however, the results show that it
nonetheless presents information in a manner that is clear enough for the stated
purposes: to serve as a means by which a trainer may deliver salient feedback about
a trainee’s conversational skills. Where it excels is in presenting the information in
a manner that the trainee could enjoy and could experientially relate to.

Some user study participants gave suggestions on how our approach could be
improved. These might be incorporated in further work.

In the selection of the animations and sprites it was required that there be a
metaphoric correspondence between them and the metameasures. They were chosen
by the authors, who used their experience in animation and not by any exact empirical
method. Exactly onwhat terms this correspondence exists is a topic intowhichwe did
not delve in detail. It encompasses such diverse disciplines as cognitive linguistics,
perception and neurology. Should our approach be expanded it is suspected that a
more comprehensive involvement of such disciplines would be required.
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Chapter 5
Personalized Body Modeling

Hyewon Seo

Abstract In this chapter, we are concerned with the problem of modeling person-
alized body models from one or more 2D photos. One of the key tasks in this setting
is the 3D shape recovery from the image, a yet-to-be-done task in computer vision
which has traditionally been done using just geometric techniques. With our target
objects limited to the human body, we try and make the problem easier and the so-
lution more robust and efficient, by making use of high-quality shape data that has
previously been acquired from 3D scanners. Based on a compact shape space, which
has been built from a collection of range scans of real human body, we formulate
the problem as an optimization one and search for the shape parameters that best
matches the input silhouette. Texture coordinates are then generated by projecting
the resulting shape onto the front and back images. In the presence of noise or miss-
ing views, our technique has a bias toward representing, as much as possible, the
previously acquired collective knowledge on the body shape. As a result, efficiency
is gained due to the fact that a model is generated by interpolating quality shapes
from the body scans.

5.1 Introduction

Understanding and characterizing the shape and motion of a personalized body has
numerous applications ranging frombetter ergonomicdesignof products (e.g., chairs,
car compartments, and clothing) to easier modeling of realistic human characters for
computer animation films.

• CAD: Personalized 3D virtual mannequin is practiced nowadays in the manu-
facturing or purchasing stages of many industrial goods. For instance, a cloth
designer can be assisted to generate 3D mannequins of a specific individual on
which garments under design are automatically dressed, modified, and simulated
for test purposes. In addition, at the time of purchase, the customer can make de-
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cisions about the size selection in a touchless manner, based on the body–garment
relationship measured in a virtual simulation.

• Health: As it becomes more realizable to have human shape/motion simulators
that are capable of dealing with complex anatomy and offer physical accuracy at
the same time, recently the interest in adopting these simulators for preoperative
study or augmented surgery has increased. Other possible applications include
growth studies, aging, and the effects of nutrition and sports on body shape.

• Entertainment:Realistic human shape andmotionmodeling are oneof the key tasks
encountered by animators in the game and film industries. Data-driven modeling
techniques offer powerful tools to them, as high-level control is provided while
high realism exhibited in the captured data is retained.

Naturally, one of the oldest goals in virtual human modeling has been reconstruction
of the body shape and appearance in order to faithfully depict an individual or a
population in the digitalworld. Indeed, digitallymodelingpersonalizedhumanbodies
from simple and easy-to-input data is now actively and successfully addressed by
image-based and hybrid techniques. During its formative years, researchers focused
on developing methods for modeling the appearance and movements of real people
observed from 2D photographs or video sequences [14, 16, 20].Most of these efforts
use silhouette and color information frommultiview images for determining the shape
and, optionally, the texture of the model to be reconstructed. To simplify the problem
of general reconstruction, a template or generic model has often been adopted and
fitted to the observations of a particular subject.

Recently, whole body range scanners have become available and hence much of
the focus of graphics research has been shifted to the acquisition of human body
models from 3D range scans [1, 22]. The measurements acquired from such scan-
ning devices provide a rich set of shape information, which otherwise requires a
considerable amount of time and effort by experienced CG software users. Range
scanners however remain by far more expensive, difficult to use, and offer limited
accessibility compared to 2D imaging devices.Moreover, manywhole body scanners
today provide only geometric data without color or texture [12, 26, 27].

In this chapter, we show that combining 2D images and the range scanned mea-
surement can lead to successful reconstruction results. The quality shape and collec-
tive knowledge from scanned datasets have been exploited to efficiently complement
the geometric shape recovery from image inputs. More specifically, a set of 3D body
scans that are put in correspondence have been used to parameterize the shape space,
which we explore in order to find the optimizing parameters that best fit the given
image data. With the target application as an online clothing store [7], where users
can try on garment items on their 3D virtual human models, we limit our focus to
the reconstruction of lightly clothed subjects.
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5.2 State of the Art on Personalized Body Shape
Reconstruction

The problem of modeling personalized body shapes is certainly not new, and there
exist several ways to solve them. In Sect. 5.2.1, we review reconstructive approaches
based on the direct use of measurement data, such as images and 3D scans. More
recently, a trend of building and using the shape space has started, where multiple
sets of previously reconstructed models are used. Section5.2.2 provides a summary
of these recent methods.

5.2.1 Shape Reconstruction from Measurement Data

There are numerous methods for acquiring shape and other visual properties from
measurement data, such as range scans, photographs, and videos. For instance, in
computer vision, registration of landmarks inmultiple views is used to infer the object
shape. Here, we limit our review to techniques devoted to human body modeling.

One way of creating detailed human models is the 3D scanning technology. Scan-
ners based on photogrammetry (passive scanners) reconstruct the surface from single
or multiple (stereo) images or from a video recording of the subject in relative mo-
tions. The 3D information of a point on the surface can be obtained by computing
the binocular disparities between corresponding points from the images captured by
several pairs of cameras, whose orientation and intrinsic parameters such as focus
length and distortion parameters have been calibrated. More commonly used are
laser range scanners. They illuminate the subject with a laser beam, and measure the
distances using either triangulation, interference, or time-of-flight principles. An ex-
tensive survey of range imaging sensors can be found in [2]. Range scanning systems
typically produce range images—rectangular grids of distances from the sensor to
the object being scanned. If the positions of the sensor and the object are fixed, only
objects that are “point viewable” can be fully digitized. More sophisticated systems
such as those produced by Cyberware Laboratory, Inc. [8] are capable of digitizing
cylindrical objects by rotating either the sensor or the object. Laser range scanners are
promising because they can provide dense, accurate range data at high bandwidths.

However, to fully realize the potential of 3D scanning, it is essential to develop
general, automatic, efficient, and robust surface reconstruction algorithms for con-
verting the data points that 3D scanners produce into usefulmodels. Substantial effort
is needed to process the noisy and incomplete surface from a range scan into a model
suitable for further use. The problem of surface reconstruction can be made easier if
assumptions are made or additional knowledge can be exploited on the shape or the
structure of the object being represented.A common restriction of surface reconstruc-
tion methods is that they assume the topological type of the surface is known a priori.
Function reconstruction techniques that calculate the best approximating function to
fit the surface data fall into this category. The goal of function reconstruction can be
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stated as follows: Given a surface D, a set {xi ∈ D} and a set {yi ∈ R}, determine
a function { f : D → R}, such that { f (xi ) ≈ yi }. The radial basis function (RBF)
approach [18] introduces a set of basis functions where the function is taken as a
linear combination of the basis functions

f (x) =
∑

ω · Φ(‖x − xi‖) (5.1)

Carr et al. [5] demonstrated the use of RBF to solve the problem of interpolating
incomplete meshes (hole-filling) from dense point clouds acquired from 3D range
scanners. More recently, they have shown in [4] the use of implicit function with
RBF for representation of object surfaces as a unified framework for the problem of
interpolating incomplete meshes and smoothing/remeshing noisy surfaces (Fig. 5.1).
They also propose a basis function optimization method for fast fitting and efficient
evaluation to make it feasible to use RBF for large datasets and complicated objects.

As whole body scanners became available on the market [9], methods devoted
to modeling the personalized human body focused on the extraction of semantic
information from the scan data. In particular, the goal of many has been to convert
the scan data into complete, readily animatable models. Apart from solving classical
problems, such as hole filling and noise reduction, the internal skeleton hierarchy
should be appropriately estimated in order to make themmove. Accordingly, several
approaches have been under active development to endow a semantic structure to
the scan data. Dekker et al. [11] used a set of anatomical assumptions to optimize,
clean, and segment data from a Hamamatsu whole body range scanner; [12] used it
to generate quad mesh representations of human bodies and build applications for
the clothing industry, while Ju and others [15] introduced methods to automatically
segment the scan model to conform it to an animatable model.

Another approach in body shape reconstruction is to use image data. A number of
model-based approaches have been introduced with their aim limited to the construc-
tion of human body models. The work of Hilton et al. [13] involves the extraction
of body silhouettes from a number of 2D views (front, side, and back) and the sub-
sequent deformation of a 3D template to fit the silhouettes. The 3D views are then
mapped as texture onto the deformed model to enhance realism (Fig. 5.2). Similarly,
Lee et al. [16] proposed a feature-based approach where silhouette information from

Fig. 5.1 Surface fitting by function reconstruction [4]
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Fig. 5.2 de Aguiar et al. [10] started with a laser scan and found its deformation from eight video
recordings

three orthogonal images is used to deform a generic model to produce a personalized
animatable model (Fig. 5.3).

More recently, reconstruction techniques devoted to the modeling of both shape
and motion of personalized human body from videos have become active. To recover
the degrees of freedom associated with the shape and motion of a moving human
body, many of the existing approaches introduce simplifications by using a model-
based approach. Plankers et al. [17] used video cameras with a stereo pair for the
model acquisition of a body part. A person’s movements such as walking or raising
arms are recorded on several video sequences and the program automatically extracts
range information and tracks the outline of the body. The problem to be solved is
twofold: First, robustly extract silhouette information from the images; second, fit
the reference models to the extracted information. The data were used to instantiate
the models, and the models, augmented by our knowledge about the human body
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Fig. 5.3 A sequence of poses captured from eight videos by Starck and Hilton [25]

and its possible range of motions, are in turn used to constrain the feature extraction.
They focus, however, more on the tracking of movement and the extraction of a
subject’s model is considered as the initial part of a tracking process. de Aguiar
et al. [10] show impressive results of time-varying surface details they obtained from
eight video recordings (Fig. 5.2). They start with the detailed shape of the laser scan
of a body and combine it with the recorded performance by casting the problem of
performance capture as deformation capture. The use of the detailed shape of laser
scan allows to obtain results of higher quality, compared to other methods that extract
shape data from video recordings, such as that by Starck and Hilton [25] (Fig. 5.3).

Based on adding details or features to an existing generic model, these approaches
concern mainly the individualized shape and visual realism using high-quality tex-
tures. While they are effective and visually convincing in the cloning aspect, these
approaches hardly give any control to the user; i.e., it is difficult to modify these
meshes to a different shape as the user intends. These approaches have the drawback
that they must deal with special cases using ad hoc techniques.

5.2.2 Building and Searching in a Shape Space

More recently, a time-saving generation of realistic, controllable body model has
been made possible by building a shape space, which can be built from a collection
of individual models that are placed in correspondence. Such shape space allows not
only to systematically observe the diversity and individuality of shapes, but also to
generate a new, plausible individual shape in an easier and simpler manner.
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The facial shape space. Blanz and Vetter’s morphable face model [3] was to our
knowledge the first who introduced parameterization of a population model to the
computer graphics community. They use the term morphable model to present the
idea of manipulating a single surface representation that can be deformed to express
all other faces. Using a polygonmesh representation, each vertex’s position and color
varies between examples, but its semantic identity remains the same—if a vertex is
located at the tip of the nose in one face, it should be located at the tip of the nose
in all faces. Thus, the main challenge in constructing the morphable model is to
reparameterize the example surfaces so that they have a consistent representation.
Using the cylindrical parameterization of head scans, they find the correspondence
among vertices using a modified version of 2D optical flow.

After the parameterization, a face is represented with a shape vector

S = (x1, y1, z1, x2 . . . , yn, zn) ∈ R3n (5.2)

and a texture vector

T = (r1, g1, b1, r2, . . . , yn, zn) ∈ R3n, (5.3)

which contains coordinates and color values of its n vertices, respectively. From
the m exemplar faces that are put in correspondence, principal component analysis
(PCA) is applied to m shape vectors and m texture vectors. PCA performs a basis
transformation to an orthogonal coordinate system (often called eigenspace) formed
by the eigenvectors of the covariance matrices. A face shape is then described as a
weighted sum of the orthogonal basis of 3D shapes called principal components:

S(−→α ) = S̄ +
m−1∑

i=1

αi · si (5.4)

T(
−→
β ) = T̄ +

m−1∑

i=1

βi · ti, (5.5)

where si and ti are eigenvectors of the covariance matrices in descending order
according to their eigenvalues. Thus, the morphable model is parameterized by the
coefficients; i.e., arbitrary new faces can be generated by varying the parameters −→α
and

−→
β that control the shape and texture.

Mapping high-level facial attributes (femaleness, concave or hooked nose, thick-
ness of eyebrow, etc.) to the parameters of the morphable model is done by forming
shape and texture vectors which, when added to or subtracted from a face, will
change a specific attribute while keeping all other attributes as constant as possible.
Hand-labeled facial attributes of a set of examples have been used to define such
attribute-manipulating vectors.
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The body shape space. Sheldon et al. [24] characterizes the physique using three
parameters: endomorphy, the presence of soft roundness in the body; mesomorphy,
the predominance of hardness and muscularity; and ectomorphy, the presence of
linearity and skinniness. The field of anthropometry, the study of human measure-
ment, uses dozens to hundreds of one-dimensional measurements taken on the body
surface (body lengths and perimeters) to analyze body shape in a numerical way.
The shortcoming of Sheldon’s somatotype parameters and anthropometric measure-
ments, particularly for body modeling, is that they do not capture the detailed shape
variations that are exhibited in the population.

In Seo and Magnenat-Thalmann [22], one of the first methods for creating a
whole body morphable model based on 3D scanned examples is proposed. We begin
with a set of about 100 scans of different body types taken from European female
and male subjects, in the framework of the EU project E-Tailor. These scans, each
having different topology and posture, are not directly usable for the shape trans-
formation. By bringing these scans into full correspondence with each other, we are
able to morph between individuals, and begin to characterize and explore the space
of probable body shapes. To establish the geometric correspondence among these
data, an optimization-based fitting method is proposed, which finds the error and en-
ergy minimizing transformation of a template model onto each scan geometry in the
database. Similar to the morphable face model, we assume that any body geometry
can be obtained by deforming the template model. The deformation has two distinct
entities, namely the skeleton and displacement components of the deformation (see
Fig. 5.4). The skeleton component is the linear approximation of the physique, which
is determined by the joint transformations (scale and translation; rotation remains
constant throughout the manipulation as we assume that the pose is determined by

Fig. 5.4 The two phases of the deformation [21]. a Template model. b Skeleton adjustment. c Fine
refinement
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the front-end application afterwards) through the skinning. The displacement com-
ponent is essentially vertex displacements, which, when added to the skin surface
resulting from the skeletal deformation, depicts the detailed shape of the body.

We denote the skeleton component as

J = (t1x , t1y , t1z , s1x , s1y , s1z , t2t , . . . , tm
y , tm

z , sm
x , sm

y , sm
z ) ∈ R6m, (5.6)

where t j
x and s j

x are the translation and scale of joint j ( j = 1, 2, . . . , m) along the
x-axis, and the displacement component as

D = (d1
x , d1

y , d1
z , d2

x , . . . , dm
y , dm

z ) ∈ R3n, (5.7)

where dv
x is the displacement of vertex v (v = 1, 2, . . ., n) along x-axis on the skin

mesh. We therefore represent the geometry by combining the joint vector J and the
vertex displacement vector D, which respectively encode the skeleton-driven defor-
mation and vertex displacement of a template model that is necessary to reproduce
its shape.

Given a set of example body shapes represented as vectors, we apply PCA to
both joint and displacement vectors. The result is two linear models for the two
components:

J(−→γ ) = J̄ +
m−1∑

i=1

γi · ji (5.8)

D(
−→
δ ) = D̄ +

m−1∑

i=1

δi · di, (5.9)

where J̄ and D̄ are the mean vectors, ji and di are orthogonal modes of variation,
and γi and δi are the ith PC weights of the joint and displacement vectors. The
appearance of any body models can thus be represented by the coefficients set −→γ
and

−→
δ . Note that the PCA has the additional benefit that the dimension of the

vectors can be drastically reduced without losing the quality of shape. On finding
the orthogonal basis, the original data vector v of dimension n can be represented by
the projection of itself onto the first M (� n) eigenvectors that correspond to the M
largest eigenvalues. In our work, we have used 30 bases both for the J and D. Thus,
each body is represented as a set of parameter vectors consisting of 30 PCs for the
joints and 30 for displacement, giving a total of 60 parameters for the body shape
space.
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5.2.3 Dynamic data

In the late 1990s, commercial 3D whole body scanners started to appear but the
subjects of the scan had to remain motionless during each scanning pass, which takes
about several seconds, i.e., it was not feasible to scan objects under movement. With
the significant advances in the 3D scanning device, it becamemore andmore feasible
to scan small objects undergoing some motion or deformation, such as hands with
finger bending motion. Enabling techniques are under intense investigation, which
allow for the estimation of inter-frame kinematic properties and inter-frame spatial
correspondence. The increasing availability of such dynamic shape capture data will
lead to a new mainstream in parametrization and statistic methods on population
data. Recent investigations on the surface registration using dynamic data [6, 28, 30]
are examples of such efforts.

5.3 2D-3D Registration of a Morphable Model

While image-based model reconstruction has been at the center of digital human
modeling across several research groups, the majority of research progress in this
avenue falls into the category of facial modeling. This is perhaps primarily due to
the complex articulated structure and the high degree of self-occlusion exhibited in
our bodies.

One approach that has been extensively investigated is model-based techniques.
Hilton et al. [14] gathered silhouette observations from multiview images, so that
they can be used to transform a template humanoid model. Affine transformation has
been followed with geometric deformation of the prior surface model. They use fea-
ture point locations along the silhouette to find the correspondence among different
views and to generate consistent texture coordinates. Sand et al. [20] used multiview
recordings to derive the skeleton configuration of a moving subject, which subse-
quently derives the skin surface shape. These works show how a prior knowledge
can be used to avoid difficulties of general reconstruction. However, they do not
accumulate observations that can efficiently be used to handle uncertainties.

The strength of gathering information from collective observation has been illus-
trated in face model acquisition by Blanz and Vetter [3]. In their modeler, highly
detailed 3D face shape and texture spaces have been obtained by transforming about
two hundred laser-scanned faces into vector representation. Given a single photo-
graph of a face, its 3D shape, orientation in space, and the illumination conditions are
estimated. Starting from a rough initial estimate of shape, surface color, and lighting
parameters, an optimization algorithm iteratively finds the best matching parame-
ters to the input image. Shape and texture constraints derived from the statistics
of our example faces are used to guide automated matching. While these methods
are quite powerful, they have not been applied to image-based reconstruction of an
entire human body. These considerations led us to look for a more robust approach to
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image-based human body modeling. The key idea is to complement the image-based
reconstruction method by leveraging the quality shape and statistic information ac-
cumulated from multiple shapes of range-scanned people [23]. We use a sparse set
of feature points and silhouette data extracted both from the input images and the
deformable model to optimize the deformation parameters, such that the resulting
geometry model best matches the silhouette on the image. In the presence of ambi-
guity either from the noise or from missing views, our technique has a bias toward
representing as much as possible the previously acquired ‘knowledge’ on the shape
geometry. The proposed technique has been used to successfully reconstruct quality
human body models from a minimum number images, even from a single image
input. Additionally, it runs at an arguably interactive speed.

An overview of our approach is illustrated in Fig. 5.5. We first take a minimum
number of photographs of a subject (Fig. 5.5a), and extract silhouettes and feature
points on the images (Fig. 5.5b, c). We then use a deformable model for the shape
recovery. Using the silhouette data extracted from the input images, we explore
the body space (a range of coefficient parameters that have been spanned by the
database of the deformable model) and find the best fitting deformation parameters
on a template model (Fig. 5.5d–g). Finally, we generate texture coordinate data by
projecting the deformed template model onto the input images (Fig. 5.5h).

5.3.1 Dynamic data

Taking photographs. Our modeler in principle does not require any special camera
arrangements, nor does it require a specific number of views. In practice, however, at
least two views—one from the front and the other from the back—are preferred, as
we want to generate a complete texture on the entire body. As our deformable model
does not contain color data, we rely entirely on the input images for the texture. In
our experiments, we generally take three photographs using a single camera, each
from the front, the side, and the back of the subject, unless otherwise specified. Note
that all our subjects are lightly clothed. To simplify the combinatorial complexity of
the human shape and posture, we require the subject to stand in the specific posture;
the limbs are straight and away from the torso as shown in Fig. 5.6.

Virtual camera setup for the template model projection. We now set up the
virtual camera and projection matrix we use for projecting the deformable model
onto the image space. The virtual camera is arranged as closely as possible to the
physical setup, so that we can use input images directly for the silhouette comparison
without additional processes such as image size normalization. We adopted Tsai’s
Pinhole camera model [29], which basically is a pinhole model taking the first-order
radial lens distortion into account. It has five intrinsic parameters (focal length f,
first-order radial lens distortion value Kappa, center of lens distortion Cx , Cy , scale
factor Sx ), and six extrinsic parameters (Rx , Ry , Rz , Tx , Ty , Rz). To calculate these
intrinsic and extrinsic parameters, we have taken an image of a calibration frame,
similar to the approach presented by Zhang [31].
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Fig. 5.5 Overview of the proposed body modeler. a Photograph. b Silhouette extraction. c Feature
points. d Error calculation. e Generic model. f Final error. g Modified model. h Texture mapping

Silhouette extraction and feature point identification. Photographs have been
taken in front of a uniformly colored screen so that simplemethods such as using color
key can be used for automatic silhouette detection. The method we use is a standard
background subtraction to isolate silhouettes from images using a color key. We use
the hue-saturation-value (HSV) color model. We first map each pixel in the image to
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Fig. 5.6 Silhouette extraction from photographs. a Projection of images onto the HSV color space:
Empty background (left), front (middle), and side (right) views. b Silhouette extraction results
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the color space defined by the HSV hexagonal cone. Pixels in the background region
form a cluster in the HSV space, as illustrated in Fig. 5.6a. The cluster is defined
by the H value of 180–240◦, and S value larger than a threshold, say, ‘0.3’. As a
subject stands in front of the background, shadows appear and they contribute to the
background clouds elongated downwards along the V-axis of the hexagon. Thus, we
use color keys in H and S to determine the background pixel cluster. As illustrated
in Fig. 5.6b, shadows have been successfully labeled as background.

Feature point identification. Next, we label 12–15 feature points on the silhou-
ettes. In addition to the silhouette information, we make use of a number of feature
points when matching the template model to the target subject in the image. Using
features points allows to deform the template not only to match the silhouette but
also to ensure the correspondence. Unfortunately, only a limited set of feature points
can be found automatically, such as those on the top of the head, the bottom of the
feet, and the tip of he hands. For the rest of the feature points, the user manually
places them on the images. Feature points on the template model are identified in a
similar way on the 3D mesh (See Fig. 5.7).

Fig. 5.7 The feature points we use for matching error are shown both on the images (top) and on
the template model (bottom)
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5.3.2 Shape Recovery by Searching Deformation Space

The extracted silhouette information is used to reconstruct the geometry by search-
ing a body space and finding an optimum parameter set. Based on the previously
developed body modeler, the body space comprises a range of coefficient parame-
ters that are spanned by the database of the deformable model (Sect. 5.2.2). A set of
coefficient parameters comprises an optimum solution if, when collectively applied
to the template model, it produces silhouettes that best fit those of the given images.
The key point is that instances of the models are deformed in ways that are found in
the example set, guaranteeing a realistic, robust shape acquisition.

We find the solution in a coarse-to-fine manner. Since the deformation is para-
meterized with PCA space for each of the vector components, we first find the opti-
mizing joint parameter γ j , followed by the subsequent search for the displacement
parameter δ j . We use direction set method [19] for the optimization. The algorithm
repeats ‘search-deform-compare’ loop until we obtain a sufficient degree of match-
ing between the silhouette of the deformed model and that of the input image—it
generates a body shape from the current coefficients, projects the body model onto
2D space, and updates the coefficients according to the silhouette difference. The first
set of iterations is performed by optimizing only the first coefficients controlling the
first few PCs. In subsequence iterations, more PCs are added to further deform the
template. Figure5.8 shows the female template model undergoing the progressive
deformation.

Error metric. While searching for the error-minimizing deformation parameters,
we consider two error terms: (1) the sum of distances between corresponding feature
points (Ed) and (2) silhouette error Ea . By silhouette error we refer to the fraction
of pixels for which the projected and observed silhouettes do not match, as shown
in Fig. 5.9. The number of background pixels that lie inside the projected template
model is summed up with that of foreground pixels that lie outside of it:

Ea =
∑

(T (i, j) · D̄(i, j))∑
T (i, j)

+
∑

(T̄ (i, j) · D(i, j))∑
D(i, j)

(5.10)

T (i, j), and T̄ (i, j) are the Boolean values indicating if the pixel at location (i, j) is
inside and outside of the template model, respectively. D(i, j) and D̄(i, j) are 1 if
the pixel located at (i, j) is foreground and background, respectively. This notion of
nonoverlapping area is effectively equivalent to the silhouette error used by Sand
et al. [20]. Note that the information about arms is taken only from the front/back
view.

Weighted sum of the two error terms is used, as denoted by

E = αEd + (1 − α)Eα (5.11)

In the first iterations we need to quickly search for joint parameters, hence we set
α =1. Feature points from both the frontal and side images are measured. Next,
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Fig. 5.8 The female template model undergoing the progressive deformation process: prior to
fitting (top), joint parameter fitting using one PC (middle), and four PCs (bottom)

we further improve the fitting accuracy by setting α = 0.3. The deformable model
is first fit to the frontal image and then the side image error is added. Finally, the
displacement map is explored with the same setting. At each iteration we combine
the errors from the frontal and side images, so that the fitting of the template to frontal
and side images can be simultaneously handled.
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Fig. 5.9 Nonoverlapping area error calculated on the front, side, and back photographs of a male
subject

5.3.3 Mapping Textures

Photo images are used to generate texture on the shape. Although we require the
subject to keep consistent poses among different views, they may be slightly dif-
ferent from one view to another, as they are taken at distinct times. To handle such
inconsistency, we use only the front and the side images for the shape recovery, and
we handle the texture coordinate creation process for the front and the back parts
separately.

Two separate texture coordinates are obtained byprojecting the deformed template
model onto the front and the back images; if the angle between the vertex normal and
the view direction is between −π /2 and π /2, we project the vertex on the deformed
template surface onto the front image. The other vertices are projected onto the back
image. Prior to the second projection, we must adjust the posture of the model by
matching the template with the silhouette data on the back image. This is due to the
slight difference among postures seen from one view to another. Figure5.10 shows
the result of texture mapping on a reconstructed shape model.

5.3.4 Single Image Input

To demonstrate how our modeler can handle some uncertain situations robustly, we
have reconstructed a 3D geometry using only a single image input. In Fig. 5.10a,
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Fig. 5.10 Models obtained using a single image input. a Reconstructed model using only the front
view. b Reconstructed model using only the side view

we used only the front image of the subject to reconstruct the shape of the template
model. Analogously, only the side image of the subject was used to reconstruct the
shape shown in Fig. 5.10b. In both cases, a back view image was used to complete
the texture map.

5.4 Conclusion

We have presented a technique for reconstructing personalized human bodies from
a few 2D images. Using the 3D body space that has been generated from processing
range scans, we propose to reconstruct the 3D surface of a personalized body such
that both the knowledge about the body shape and the photogrammetric information
specific to the person of interest are exploited. For the shape recovery we start with
a deformable template model whose deformation is parameterized with PCA of
the scanned body shapes. Given a set of images, the optimizing shape is found
by searching the shape space such that it minimizes the matching error measured
between silhouettes. The idea is to start from a space consisting of a few PCs and
to increase its size by progressively adding new PCs. This provides us powerful
means of matching the template model to the image in a coarse-to-fine manner. In
addition, a high level of detail and accuracy is acquired, since our modeler essentially
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blends multiple shapes of the human body acquired from 3D laser scanners. This
constitutes a good complement to geometric methods, which cannot capture detailed
shape solely from the image input.
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Chapter 6
Parameterized Facial Modelling
and Animation

Junghyun Cho, Heeseung Choi, Sang Chul Ahn and Ig-Jae Kim

Abstract Facial modelling is a fundamental technique in a variety of applications
in computer graphics, computer vision and pattern recognition areas. As 3D tech-
nologies evolved over the years, the quality of facial modelling greatly improved. To
enhance the modelling quality and controllability of the model further, parametric
methods, which represent or manipulate facial attributes (e.g. identity, expression,
viseme) with a set of control parameters, have been proposed in recent years. The
aim of this chapter is to give a comprehensive overview of current state-of-the-art
parametric methods for realistic facial modelling and animation.

6.1 Introduction

The human face is the most important part of the human body, as the expressions
and proportions of the human face are essential to represent identity, emotional
status, health qualities and even some social characteristics. Wide availability of
powerful and low-cost computing system and imaging devices has created great
interest in automatic processing of digital facial images in a variety of applications,
including huma–computer interaction, face recognition, multimedia management,
virtual characters infilmand ingame industries. For example, in surveillance systems,
face recognition is possible with analysis based on the intrinsic factors of a given
face, such as appearance and shape, from a set of images or video. Moreover, in
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human–computer interaction, recognizing or understanding the emotional state of
the user by facial analysis is crucial as it improves the interactivity of the user with
the system. Thus, facial modelling and animation, core technologies of the facial
image processing field, have attracted wide attention in the past few decades by
researchers in computer graphics, computer vision and pattern recognition areas.

Conventionally, facial modelling and animation has required extensive human
intervention due to the complex nature of the human facial anatomy and due to
sensitivity to subtle changes in facial appearance. Beginning with Parke’s pioneering
work on animating faces [23], various computational methods for automatic face
modelling and synthesis have been developed to handle such issues. These facial
modelling techniques can be roughly divided into two categories depending on the
source of facial models: facial modelling with active sensors and facial modelling
from a set of images.

The active sensor-based approaches estimate 3D geometries of faces from sev-
eral types of active sensors, including laser scanners and structured light systems.
Recently, it has been advanced to capture the continuous motion of faces with var-
ious expressions so as to obtain ground-truth training data for face modelling and
animation.

Image-based approaches reconstruct the facial geometry by analysing the illumi-
nation information about the projected image of a face or by supplementing more
views of a face. They are based on computer vision algorithms, such as shape from
shading, stereo vision (camera calibrated case) and structure from motion (camera
uncalibrated case) techniques.

Various methods have been proposed to improve the quality of facial modelling
by applying suitable illumination priors on the human face structure and removing
outliers of the correspondences across different views.

Despite these improvements during the past decade, automatic facial modelling
and animation remains a challenging problem. For instance, it is still difficult to obtain
a high level of realism for various facial attributes (such as identity, expression) for
performance-driven animation. Consequently, it requires complex data acquisition
and tedious manual processing for high-quality animation.

To further enhance the realism and controllability of facial modelling and anima-
tion, parametric methods that represent or manipulate various face properties with
several control parameters have been proposed in recent years. Many of these meth-
ods rely on the observation that variation in facial attributes can be approximated by
a linear subspace on low dimension. These techniques estimate linear coefficients for
known basis shapes, or both the coefficients and basis shape, simultaneously from
images/videos or 3D point cloud data obtained from active sensors. One striking
example is a morphable facial model [4] which combines 3D facial geometry with
linear texture models. However, the morphable model is visually non-intuitive so it
is difficult to reproduce or control facial expressions for animation. Currently, many
alternatives including blendshape [21, 35], quasi-eigenface [17], multilinear mod-
els [7] and deformable models [31, 32] have been proposed to enhance the quality
of facial modelling and animation. In Fig. 6.1, we briefly classify current parametric
approaches for facial modelling and animation in terms of modelling and animation
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Fig. 6.1 Parametric methods for modelling and animation

sources, algorithms and enhancement techniques. This chapter provides detailed
descriptions of the parametric approaches, algorithms and examples available for
current facial modelling and animation technologies.

The remainder of this chapter is organized as follows. Section6.2 explains the
preliminaries and basic concept of parametric approaches. Section6.3 presents the
state-of-the-art techniques to model, animate and render faces. Section6.4 describes
the recent research done in our groups as an example of facial modelling and anima-
tion. Section6.5 discusss the future avenues and conclusions are drawn in Sect. 6.6.

6.2 Parametric Representation of Facial Model

This section describes various types of representation of facial models commonly
used in facial modelling and animation.

6.2.1 Linear/Multilinear Space of Facial Meshes

For representinggeometrical facial shapes, polygonalmeshhas beenused.Thepolyg-
onal mesh basically consists of a set of vertices, edges and polygons. Conventionally,
the triangular mesh has been the most common choice among polygonal meshes. In
recent years, the popularity of the quadrilateralmesh has grownmainly due to regular-
ity and simplicity for parameterization, among others. Also, to manipulate the facial
mesh, other properties such as texture coordinates and half-edge can be considered.
Generating a facial mesh model manually is a difficult task since the facial shape is
relatively complex and facial expressions can differ in each individual. Therefore,
the facial mesh is usually obtained by active sensors with dense geometric details.
For general facial shapemodelling, linear space representation is widely used as peo-
ple’s faces have a similar topology; moreover, this significantly reduces the degree
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Fig. 6.2 Mesh representation and example of facial basis meshes: a triangular mesh (left) and
quadrilateral mesh (right), b samples of eigenfaces and its appearances [18], c samples of blend-
shapes [6], d samples of bilinear models [7]: raw data (middle) and pre-processed data (bottom)

of freedom (i.e. dimensionality). In linear representation, the facial mesh can be rep-
resented as an element of the linear space spanned by a set of existing face meshes
in the database, called basis meshes. Equation6.1 denotes the linear representation
of the facial model.

f =
N∑

i=1

wi bi , (6.1)

where N is the total number of basis meshes, f is a facial model, wi is an i-th
weighting parameter and bi is an i-th basis mesh, respectively.

Facial modelling can be considered as a parameter fitting problem. Hence, the
modelling result depends on how well-defined basis meshes are. Figure6.2 shows
mesh representation and some examples of facial basis meshes. Basis meshes can be
represented by statistical analysis such as principal component analysis (PCA). In
this case, the basis meshes are called eigenshapes. The eigenshapes (or morphable
model), however, are hard to interpret physical properties (visually non-intuitive)
and have difficulties in reproducing or controlling facial expressions for facial ani-
mation. To solve the above issue, one of the most popular approaches used in facial
animation production is the blendshape technique, which synthesizes expressions
by taking a linear combination of a set of predefined expression bases. However,
they may cover only a fraction of the expression space, resulting in large repro-
duction/animation error. To handle the above-mentioned problems, the method to
combine the advantages of the eigenshape and blendshape approaches has been
also developed [17]. Currently, multilinear facial models have been proposed for
high-quality facial expression tracking and transferring, which decouple the facial
attributes into several modes (e.g. identity, expression, viseme) and encode them con-
sistently in mode spaces. One example of the facial mesh model in the multilinear
space can be expressed as Eq.6.2.

f = Cr ×2 wT
id ×3 wT

exp, (6.2)

whereCr is the core tensor,wid, wexp are identity and expression parameters, respec-
tively, and the symbol × is the tensor product in multilinear space.
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The linear or multilinear space representations of the facial model have the basic
assumption that the topology of the basis meshes is consistent. Hence, finding point-
to-point correspondences between different meshes from different people’s faces or
creating topologically consistent mesh is a critical issue in facial modelling.

6.2.2 Linear Space of Mesh Deformation

Alternatively, facial models can be obtained by deforming existing mesh directly. To
make deformation easier, sparse control points on a facial mesh are usually adapted.
Similar to linear space representation of the facial mesh model, mesh deformation
can be represented in the linear space as Eq.6.3.

f = f0 +
M∑

i=1

wi di , (6.3)

where f0 is the existing mesh, di is the deformation vector of an i-th control point
and wi is the corresponding weighting parameter, respectively.

In mesh deformation, the main concern is how to define deformation vectors,
kernel functions or interpolation function on each control point. These deformation
methods are especially important when we design non-rigid registration algorithms
to find global and local correspondences between two different sets of points. The
detailed description for this issue will be addressed in Sect. 6.3.

6.2.3 Optimization of Facial Parameters

The linear space representation reduces the number of unknowns substantially as
the parameters are much smaller than the number of vertex coordinates in a mesh
representation. If the basis meshes or the deformation vectors are predefined, a facial
mesh model can be fitted to a facial image, image sequence (or video), motion
capture data, or point cloud data obtained from 3D active sensors (i.e. Kinect system
of Microsoft). Without loss of generality, image-based facial modelling is to solve
the following optimization problem:

argmin
w,wI

(
‖I0 − IwI (f)‖2 + c1‖w‖2 + c2‖wI ‖2

)
, (6.4)

where I0 is a given facial image, f is a parameterized facial model, I is the projection
image of the 3D facial model to the 2D screen space, c1 and c2 are the regular-
ization factors, and w and wI are parameters for the shape and appearance model,
respectively.

In appearance modelling, we have to compute the colors of the facial model as
well as the lighting condition as shown in Eq.6.4. Therefore, the appearance of the



138 J. Cho et al.

facial model means not only its geometry but also the lighting environment and its
reflectance property. The most common assumption on the reflectance property is
the Lambertian reflectance [3], whose diffuse term only is considered.

i = iLρ max(0, l · n) (6.5)

where i is the color on a point of the facial model, and iLandl are the color intensity
and the position of the point light source, respectively. ρ is the albedo and n is the
surface normal. In Eq.6.5, the diffuse reflectance on a surface point is described and
the light position can be regarded as a parameter of the appearance model. However,
in practice, the point light source gives unnatural illumination results, hence, the
spherical harmonic basis is commonly used as Eq.6.6.

i = ρ

9∑

i

li hi (n), (6.6)

where li is the lighting parameter, hi are the first nine spherical harmonic basis
functions and n is the surface normal. The albedo ρ of the facial model can be
parameterized statistically in linear color space similar to Eq.6.1, and it is used in
the image-based modelling methods.

On the other hand, point cloud-based facial modelling is to solve the following
optimization problem:

argmin
w,wR

(
‖P0 − RwR (f)‖2 + d1‖w‖2 + d2‖wR‖2

)
, (6.7)

where P0 is given 3D points, f is the parametrized facial model, R is the transfor-
mation function of the facial model, d1 and d2 are the regularization factors, and
w and wR are the parameters for the facial model and the transformation function,
respectively.

After fitting the facial model, the details of the fitted model can be enhanced based
on high-resolution photometry methods. Furthermore, the control of the fitted model
is possible by using performance-driven approaches.

6.2.4 Possible Research Topics

In the parametric methods several issues should be considered to obtain high-quality
facial modelling and animation.

• High-quality basis meshes that are large enough to cover possible facial shapes are
required to use the parametric methods. The data acquisition and preprocessing
technologies are critical to obtain the best results.
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• The global shape of a face is captured from image-based facial modelling or
point cloud-based facial modelling, but the local details are often lost. The details
preserving fitting algorithms should be required.

• The optimization equation6.4 is well known to have local minima, so that it is hard
to solve and takes time for convergence; computation acceleration techniques are
required.

• The mesh deformation causes inverted elements (bad polygons) if naive interpo-
lation functions are applied. Fast and physically plausible interpolation methods
are required.

• The facial feature tracking method plays a key role from the perspective of process
automation and detail enhancement. Robust and highly efficient facial feature
tracking methods are required.

• Complex and expensive set-ups would be inapplicable for some computing envi-
ronments such as mobile devices. Methods towards more lightweight set-ups
should be developed.

6.3 State of the Art

In this section, we introduce the state-of-the art works related to the issues described
in the previous section.

6.3.1 Facial Data Acquisition

The parametric facial model requires a set of well-defined basis meshes which are
topologically consistent. For example, in eigenshapes, the set has to contain suffi-
ciently many facial shapes in order to span the entire range of possible shapes of
different races, genders and ages. Owing to such demand, in the past few decades,
3D sensing technologies in both software and hardware have been greatly improved.
Figure6.3 shows various examples of the 3D facial data acquisition method. The
data can be obtained from both active sensors and a set of images.

Fig. 6.3 Facial data acquisition methods: a data from a laser scanner [4]: raw data (left) and
pre-processed data (right), b data from KinectFusion [15]: initial data (left) and accumulated data
(right), c data from stereo images [14]: intrinsic images (left) and reconstructed model (right)
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Pighin et al. [24] proposed a pioneering method to generate a set of blendshapes.
They create blendshapes by fitting a generic facial mesh to multiview facial images
in a semi-automatic way. Since the generic mesh is used, the resulting fitted meshes
have the same mesh topology. On the other hand, Blanz and Vetter [4] use a laser
scanner, Cyberware, to obtain a fair number of facial mesh data and then suggest
a method to make them have the same mesh topology by optical flow techniques.
Recently, Fyffe et al. [12] proposed a method to obtain high-resolution facial geom-
etry using multiview stereo and gradient-based photometric stereo [14]. In order to
span nearly the entire range of possible shapes for each part of the face, the set is
created based on the Facial Action Coding System (FACS) [11]. Weise et al. [35],
Li et al. [20, 21] and Cao et al. [6, 7] use KinectFusion [15] to obtain facial mesh
data. Although the mesh quality is relatively low compared to the data from laser
scanner and the stereo scanner, it computes the mesh interactively and hence it is
widely used.

6.3.2 Mesh Correspondence and Deformation

In order to generate facial meshes with the same mesh topology, we first find the cor-
respondences between two different meshes or point clouds. If the correspondences
between meshes are found once, a large class of algorithms can be applied based on
the correspondences, which include template matching, statistical analysis such as
PCA and wavelet transforms, texture and deformation transfers between mesh mod-
els. The deformation transfer method suggested by Sumner et al. [31] is frequently
used to create a new set of facial expression meshes from the previously well-defined
mesh set based on FACS as shown in Fig. 6.4.

To establish correspondence, the consistent mesh parameterization method sug-
gested by Praun et al. [25] can be used as shown in figure [25]. Optical flow method
suggested by Blanz and Vetter [4] and non-rigid iterative closest point (ICP) method
suggested by Amberg et al. [1] can also be good choices to find correspondence. The
non-rigid point registration method suggested by Li et al. [19] can be a choice, as
it considers various types of registration priors such as global rigidity, local rigidity

Fig. 6.4 Consistent mesh parameterization and deformation methods: a examples of consistent
meshes [25], b example of deformation transfer [31], c example of the non-rigid registration [19]
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Fig. 6.5 Parametric facial model fitting methods: a example of the real-time bilinear model [6],
b example of the detail enhanced method [13], c example of the real-time customized blend-
shapes [21]

and the embedded deformation graph [32]; it shows robust performance even for
largely differing facial meshes or point clouds.

On the other hand, in order to enhance the parametric facial model with local
details and expressions, user controls or accurate 2D facial feature points are used
as constraints to global shape deformation [7, 13, 21].

In order to deform the mesh efficiently, the methods suggested by Sorkine et al.
[29, 30] canbeused.The constraineddeformationoften causes the facialmesh to have
inverted elements (triangles or quadilaterals) and to produce physically unplausible
results. In order to prevent such inverted elements and unnatural results, locally
injective mappings [28] and sparse localized deformation modes [22] can be applied
(Fig. 6.5).

6.3.3 Parametric Facial Model Fitting

Based on the predefined sets of facial basis meshes, we can parameterize an arbitrary
facial model in linear or multilinear spaces. As the parametric representation of the
facial mesh model reduces the dimensionality, we can formulate image-based facial
modelling and point cloud-based facial modelling.

6.3.3.1 Image-Based Methods

Pighin et al. [24] proposed the fitting method to obtain blendshapes. It finds the cam-
era pose and rotation, focal length according to the manually given facial landmarks.
By using blendshapes, animation of facial expression has been tractable. Blanz and
Vetter [4] proposed the method to reconstruct 3D facial shape and appearance from
an image. It solves the optimization problem as Eq.6.4. Since the optimization is
hard to solve and take times until convergence, the stochastic gradient descent algo-
rithms are applied [5]. Alternatively, Knothe [18] applied multi-level optimization
algorithms to the optimization problem in order to cope with the local convergence
problems.
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Fig. 6.6 The facial tracking methods: a the part-based facial tracker [26], b the real-time explicit
shape regressor [8], which infers most probable PCA components in each optimization stage, c the
real-time supervised descent method [36] in which the directions from the source feature (right) to
the target feature (left) are trained

Vlasic et al. [34] and Cao et al. [6, 7] introduced the multilinear facial model to
capture the facial expressions of a person as well as the facial shape of the person in
the unified framework (Fig. 6.6).

6.3.3.2 Point-Based and Hybrid Methods

On the other hand, facial modelling and animation techniques using point cloud data
obtained from active sensors such as Kinect have been introduced actively in recent
years.

KinectFusion [15] is used basically to obtain the aligned and noise-removed facial
mesh in interactive time.Weise et al. [35] proposed amethod generating blendshapes
and solving blendshape parameters based on the facial mesh obtained by Kinect in
real-time. Li et al. [21] proposed the advanced method to customize and enhance
blendshapes using the incremental PCA method. However, these methods gives a
coarse control of virtual humans in real-time and do not yield a highly detailed face
reconstruction.

Image-based approaches or multiview approaches help to overcome the limita-
tions in shape detail and tracking accuracy that are purely geometric. Hence, in order
to retain the facial details, hybrid methods have been introduced. Valgaerts et al. [33]
proposed the method adapting passive stereo and Garrido et al. [13] proposed the
method using sequence images and applying spatio-temporal enhancement tech-
niques to the previous image-based method. Intrinsic image techniques such as [2,
16] can also be applied to increase the local quality of the facial mesh.

6.3.3.3 2D Facial Feature Tracking Methods

The 2D facial feature tracking methods developed in computer vision and pattern
recognition areas play a key role from the perspective of process automation and
detail enhancement. For instance, Cao et al. [6] proposed a fully automatic method
tracking 3D facial shape based on a robust and efficient 2D facial feature tracking
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method. Garrido et al. [13] showed the high quality and detailed results of 3D facial
shape using a 2D facial feature tracking method.

Active shape model (ASM) [10] and active appearance model (AAM) [9] are the
most commonly used methods for facial feature tracking. ASM seeks to match a
set of model points to an image, constrained by a statistical model of shape, while
AAM seeks to match both the position of the model points and a representation of
the texture of the object to an image. Hence, ASM is faster while AAM gives a better
match to the texture. The constrained local model (CLM) [27] combines the power
of the above two methods, the flexibility of AAM and the constraints of a full shape
model (ASM). However, these methods have limitations to extract feature points
from a facial image with large pose variations.

In order to increase the accuracy, Ramanan and Zhu [26] proposed the part-
based facial feature detection method, but it is not efficient. Explicit shape regression
(ESR) [8] and supervised descent method (SDM) [36] were introduced to increase
both the accuracy and the efficiency. It is promising to adapt these methods to para-
metric facial modelling and animation as the acceleration techniques for solving the
optimization problem by learning are effective.

6.4 Expression-Driven Facial Animation

In this section, we describe the recent approaches in our groups as an application of
the parametric methods for facial modelling and animation.

6.4.1 Overview

We build an automatic image-based facial modelling system and a facial animation
control method based on expression recognition technique. Figure6.7 illustrates our
modelling system and animation control system.

The image-based facial modelling methods usually demand the user’s manual
inputs and preprocessing stages while the animation controlling methods demand
complex and expensive 3D motion capture devices for high-quality animation. For
modelling automation, we adapt the robust facial feature tracker and the mesh cor-
respondence solver. For the lightweight controlling system, we simply use a single
off-the-shelf webcam as a control interface, which can easily combine with blend-
shape technique for 3D animation. Wemeasure the user’s emotional state by a robust
facial feature tracker and facial expression classifier and then transfer the measured
probabilities of facial expressions to the domain of blendshape basis.We demonstrate
our method as one of the efficient interfaces for virtual human animation through
our experiments.
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Fig. 6.7 Overview of the expression-driven facial animation system

6.4.2 Automatic Facial Modelling

An automatic facial modelling system needs to solve the following problems: detect
faces in a cluttered scene of the given image, align an initial parametric facial mesh
to a face in the image, and fit the facial parameters. Furthermore, for animation
control, facial modelling should consider the blendshape generation. Hence, finding
correspondences between two meshes for deformation transfer method is critical.

As the face in the image is taken from a lateral view, we developed a robust facial
feature tracker and the perspective-n-points (PnP) solver for the initial alignment.
The facial feature tracker for modelling is different from the facial feature tracker
for the real-time animation control. Figure6.8 demonstrates the robust facial feature
tracker, the PnP solver and the mesh correspondence solver. Finally, we developed a
modified version of the morphable model.

Fig. 6.8 Modules for automatic facial modelling: a example of the facial feature tracker (center)
and the alignment solver (right). b Example of the mesh correspondence solver
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Fig. 6.9 Tree-based facial feature tracker

6.4.3 Facial Expression Recognition

An automatic facial expression recognition system needs to solve the following
problems: detect faces in a cluttered scene of the given image in real-time, recognizing
facial expressions.

Owing to the facial feature tracking methods described in Sect. 6.3.3.3, we
developed a robust and fast algorithm to locate facial features based on the tree-
regression concept, which is largely inspired from the explicit shape regression (ESR)
method [8]. Figure6.9 illustrates our tree-based facial feature tracker.

Based on the extracted facial features, we used a Gaussian mixture model (GMM)
for facial expression recognition. Given training data and a GMM configuration,
we estimate the parameters of the GMM using Maximum likelihood (ML) and
solve the (nonlinear) optimization problem using a special case of the expectation-
maximization (EM) algorithm.

6.4.4 Virtual Human Animation via Expression Transfer

Building appropriate key shape is an important part of shape decomposition. Each
key shape adds flexibility and expressiveness to the model, suggesting that many key
shapes should be used. However, the user must create a target model for each key
shape. In order to reduce the user burden the number of key shapes should be kept
small. An ideal method would balance these requirements to find the minimal set of
key shapes that maintains the desired animation expressiveness. Here, we propose a
simple but efficient way of building our expression basis.We select six representative
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Fig. 6.10 Facial animation with expression recognition

expressions which our classifier can tell more separately and build the same number
of expression bases with the shape of the corresponding expression of the subject.

Once each subject had trained his/her expressions, our classifier showed high
performance of recognition overall, sowe could get virtual humans natural expressive
animation along with the performance of each subject.

Figure6.10 shows two different characters that make the same expressions fol-
lowing the subjects’ performance. This example also shows that our method can
easily control any other different character without modifying interface. If there is a
falling off in recognition quality due to some noise, abrupt expression changes may
occur. As a consequence, we might have weird virtual human expressions. In such a
case, we applied Kalman filter which enabled to get smooth transition. We could get
realistic expressions of the virtual human even though we applied different virtual
characters to the subject by simply transferring the basis weights. Through our test
we could confirm that our proposed system can be an efficient and useful interface
for controlling a virtual human.

6.5 Future Avenues

As the need for face modelling and animation continues to grow in a variety of
applications, several issues for the future research may be placed either on full auto-
matic modelling and animation, visual realism with a high level of user control,
or computation acceleration. Some of these goals have been partially achieved, but
many important issues still remain, especially in the field of real-time realistic facial
modelling and animation.

Many conventional facial modelling techniques require the user to specify a set of
landmarks on facial images. Hence, automating this process is essential for full auto-
matic facial modelling. Various kinds of 2D face detection and facial feature tracking
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methods, including active shape model (ASM), active appearance model (AAM),
constrained local model (CLM) and supervised descent method (SDM) have been
proposed in the computer vision community. These techniques accurately localize
and track the rigid and non-rigid motion of the user’s face, and then enable to map
the tracking parameters for suitable animation control. However, these approaches
tend to fail when the face is under wide angular variation. Moreover, when obtaining
overall 3D facial geometry using 3D scanners, the location of facial landmarks is
often estimated incorrectly or imprecisely due to depth uncertainty. Therefore, devel-
oping reliable facial feature tracking and alignment methods in both 2D and 3D is
still needed.

One of the difficulties in facial modelling remains creating or manipulating local
details with a high level of usability in a short period of time. Typically, there is a
tradeoff between the level of usability and the amount of manual input time. There-
fore, one possible future direction in face modelling could be integrating different
shaping techniques in a manner that maintains a high degree of user control while
accelerating the user input time.

While early face animation methods, including shape interpolation and defor-
mation-basedmethods, still lack physically based knowledge of facial anatomy,many
advances have beenmade in terms of performance based on the use of training data of
facialmuscles and tongue.Especially for current approaches in parametricmodelling,
various facial attributes can be represented based on learned control parameters, but
this is not sufficient to generate realistic virtual animation, such as eye gaze and lip
motion. Therefore, the future research direction for realistic facial animation should
consolidate the relation between face muscle behaviour and the corresponding facial
motion.

6.6 Conclusion

Facial modelling and animation technologies have made impressive gains in a wide
spectrum of applications. Although it is feasible to capture high-quality facial struc-
ture using 3D active sensors or high-resolution imaging devices, it is still difficult to
obtain a high level of realism due to a lack of significant knowledge of facial anatomy
and attributes. Based on the consideration of both high level of usability and visual
realism, various kinds of parametric approaches have been proposed in recent years.
In this chapter, current state-of-the-art methods for realistic facial modelling and
animation, mainly focusing on parametric approaches that represent various facial
attributes with a set of control parameters, have been described. We hope that this
chapter will serve as a good reference and guidance for researchers, practitioners and
students who are interested in facial modelling and animation.



148 J. Cho et al.

References

1. Amberg B (2007) Optimal step nonrigid ICP algorithms for surface registration. In CVPR07
2. Barron JT, Malik J (2013) Shape, illumination, and reflectance from shading. Technical Report

UCB/EECS-2013-117, EECS, UC Berkeley, May 2013
3. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern

Anal Mach Intell 25(2):218–233
4. Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of

the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH ’99.
ACM Press/Addison-Wesley Publishing Company, New York, USA, pp 187–194

5. Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans
Pattern Anal Mach Intell 25(9):1063–1074

6. Cao C,Weng Y, Lin S, Zhou K (2013) 3d shape regression for real-time facial animation. ACM
Trans Graph 32(4):41:1–41:10

7. Cao C, Weng Y, Zhou S, Tong Y, Zhou Kun (2014) Facewarehouse: a 3D facial expression
database for visual computing. IEEE Trans Visual Comput Graphics 20(3):413–425

8. Cao X, Wei Y, Wen F, Sun J (2012) Face alignment by explicit shape regression. In: CVPR
2012

9. Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: Burkhardt H, Neu-
mannB (eds)Computer visionECCV98.Lecture notes in computer science, vol 1407. Springer,
Berlin, pp 484–498

10. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and
application. Comput Vision Image Underst 61(1):38–59

11. Ekman P, Friesen W (1978) Facial action coding system: a technique for the measurement of
facial movement. Consulting Psychologists Press, Palo Alto

12. Fyffe G, Jones A, Alexander O, Ichikari R, Graham P, Nagano K, Busch J, Debevec P (2013)
Driving high-resolution facial blendshapes with video performance capture. In: ACM SIG-
GRAPH 2013 Talks, SIGGRAPH ’13. ACM, New York, NY, New York, pp 33:1–33:1

13. Garrido P,Valgaert L,WuC,Theobalt C (2013)Reconstructing detailed dynamic face geometry
from monocular video. ACM Trans Graph 32(6):158:1–158:10

14. GhoshA, FyffeG, TunwattanapongB,Busch J, YuX,Debevec P (2011)Multiview face capture
using polarized spherical gradient illumination. In: Proceedings of the 2011 SIGGRAPH Asia
conference, SA ’11. ACM, New York, NY, USA, pp 129:1–129:10

15. Izadi S, KimD,HilligesO,MolyneauxD,NewcombeR,Kohli P, Shotton J, Hodges S, Freeman
D, Davison A, Fitzgibbon A (2011) Kinectfusion: Real-time 3D reconstruction and interaction
using a moving depth camera. In: Proceedings of the 24th annual ACM symposium on user
interface software and technology

16. Kemelmacher-Shlizerman L, Seitz SM (2011) Face reconstruction in the wild. In: IEEE com-
puter society proceedings of the 2011 international conference on computer vision, ICCV ’11,
Washington, DC, USA, pp 1746–1753

17. Kim IJ, Ko H-S (2007) Intuitive quasi-eigen faces. In: ACM international conference on com-
puter graphics and interactive techniques in Australasia and Southeast Asia, December 2007

18. Knothe R (2009) A Global-to-local model for the representation of human faces. PhD thesis,
University of Basel, June 2009

19. Li H, Sumner RW, Pauly M (2008) Global correspondence optimization for non-rigid regis-
tration of depth scans. In: proceedings of the symposium on geometry processing SGP ’08,
Aire-la-Ville, Switzerland, Eurographics Association, pp 1421–1430

20. Li H, Weise T, Pauly M (2010) Example-based facial rigging. In: ACM SIGGRAPH 2010
Papers, SIGGRAPH ’10. ACM, New York, NY, USA, pp 32:1–32:6

21. Li H, Yu J, Ye Y, Bregler C (2013) Realtime facial animation with on-the-fly correctives. ACM
Trans Graph 32(4):42:1–42:10

22. Neumann T, Varanasi K,Wenger K,WackerM,MagnorM, Theobalt C (2013) Sparse localized
deformation components. ACM Trans Graph 32(6):179:1–179:10



6 Parameterized Facial Modelling and Animation 149

23. Parke FI (1972) Computer generated animation of faces. In: Proceedings of the ACM annual
conference, vol 1, ACM ’72. ACM, New York, NY, USA, pp 451–457

24. Pighin F, Hecker J, Lischinski D, Szeliski R, Salesin DH (1998) Synthesizing realistic facial
expressions from photographs. In: Proceedings of SIGGRAPH, pp 75–84

25. Praun E, Sweldens W, Schröder P (2001) Consistent mesh parameterizations. In: Proceedings
of the 28th annual conference on computer graphics and interactive techniques, SIGGRAPH
’01. ACM, New York, NY, USA, pp 179–184

26. Ramanan D, Zhu X (2012) Face detection, pose estimation, and landmark localization in the
wild. In: 2013 IEEE conference on computer vision and pattern recognition, pp 0:2879–2886

27. Saragih JM, Lucey S, Cohn JF (2011) Deformable model fitting by regularized landmark
mean-shift. Int J Comput Vision 91(2):200–215

28. Schüller C, Kavan L, Panozzo D, Sorkine-Hornung O (2013) Locally injective mappings. In:
Computer Graphics forum proceedings of EUROGRAPHICS/ACM SIGGRAPH symposium
on geometry processing 32(5):125–135

29. Sorkine O, Alexa M (2007) As-rigid-as-possible surface modeling. In: Proceedings of EURO-
GRAPHICS/ACM SIGGRAPH symposium on geometry processing, pp 109–116

30. Sorkine O, Cohen-Or D, Lipman Y, Christian Rössl AM, Seidel HP (2004) Laplacian surface
editing. In: Proceedings of the EUROGRAPHICS/ACMSIGGRAPH symposium on geometry
processing. ACM Press, New York, pp 179–188
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Chapter 7
Motion-Based Learning

Il Hong Suh and Sang Hyoung Lee

Abstract In this Chapter, we introduce several learning approaches to generate non-
preprogrammed motions for a virtual human. Motion primitives and their causalities
should first be learned from a task, which consists of a cascade of sub-tasks. Using
programming by demonstration (PbD), it is now common for a virtual human to
learn motion primitives and their causalities from a human demonstration. Typically,
a virtual human can swiftly and effortlessly acquire a human demonstration from
a PbD. To generate non-preprogrammed motions, a virtual human should possess
the abilities to: (i) segment a whole movement into meaning segments; (ii) learn
motion primitives for their adaptation in a changing environment; (iii) represent a
combination of a motion primitive and its causalities (a motion tuple) by consider-
ing reusability; and finally, (iv) swiftly and reasonably select a dependable motion
primitive in accordance with current and goal situations. In this chapter, we review
the state of the art and several solution approaches including their limitations. We
then discuss future avenues to target motion tuples in terms of the generation of
non-preprogrammed motions for a virtual human.

7.1 Introduction

In the field of digital human study, it is a challenge for a virtual human to perform
a task for which it has no experience using the information learned from previously
performed tasks. Learning subtasks involved in an essential function is learning a
task and developing a new, original task. Typically, a task consists of a cascade of
subtasks [1]. To learn a subtask, it is important to identify a meaningful motion
primitive and its causalities (i.e., pre-and post-conditions of a motion primitive) in
the whole task. In this case, the set consisting of a motion primitive and its causalities
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“HEISABOY” 

HE A BOY 

“HE IS NOT A GIRL” 

“SHEISNOTAGIRL” 

reorganization 

IS SHE IS A NOT GIRL 

New sentence 

Human Avatar 

Fig. 7.1 Example of identifying meaningful words in a stream of linguistic sounds. In this example,
a new, original sentence is created by recombining the words

is defined as a motion tuple. To reuse these learned motion tuples, they should be
represented considering their reusability.

These can be determined in the process of learning a language [2]. In linguistics,
an infant learns his/her language through the following three stages: first, the infant
learns how to recognize and produce phonemes from a stream of sounds. Then, the
infant learns morphemes of his/her language. It is important to recognize where a
word begins and where it ends. These are called ‘word boundaries’. Finally, the infant
generates a sentence by combining meaningful words based on his/her experiences.
To generate a sentence, it is important for an infant to possess how to locate, learn,
and combine meaningful words from a stream of sounds. The infant can then create
new, original sentences without directly learning the actual sentences, as depicted in
Fig. 7.1.

A virtual human can learn motion tuples from a task similar to the process of
learning a human language. A stream of movements (i.e., motion trajectories) is first
divided by detecting the starting and ending points of the meaningful motion seg-
ments. Then, the motion segments of the virtual human are modeled as the motion
primitives. To identify the motion primitives, their causalities are learned using the
segments of task-relevant objects as a human learns the meaning of words for recom-
bining the words. Finally, a task is achieved by sequentially selecting and/or reason-
ably recombining the motion primitives in accordance with its goal and its current
situations. Therefore, it is possible for a virtual human to learn an extensive number
of new, original tasks in the same manner as a human creates new, original sentences
in linguistics.

To learn the motion tuples, programming by demonstration (PbD) is a useful
technique. It is a well-known process where a naïve student effectively copies an
expert [3]. Based on this technique, a virtual human can swiftly and effortlessly
acquire motion tuples by user-friendly interaction, rather than by programming this
knowledge. In computer science, the PbD technique appeared in the software devel-
opment research as early as the mid-1980s to define operators without learning a
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programming language. It is now used in the industry as it can reduce the cost
involved in the development and maintenance of programs. However, researchers
now focus on reusing motion tuples [4–6]. In this chapter, we review the state of the
technology and introduce several problems, solution approaches, and future avenues.

The remainder of this chapter is organized as follows: Sect. 7.2 presents several
problems to be resolved in the PbD process. Section 7.3 reviews the state of the art and
the limitations to learning and reusing the motion tuples. In Sect. 7.4, we introduce
several solution approaches proposed to resolve the issues. Section 7.5 presents the
future avenues to improve the generation of non-preprogrammed motion for a virtual
human. Finally, in Sect. 7.6, we present our conclusions.

7.2 Problematic

As mentioned previously, the PbD technique continues to be used in direct repetition
industries when conceiving an assembly line using exactly the same product compo-
nents. A virtual human should also be able to learn a task by considering adaptability
and reusability to generate non-preprogrammed motions using the PbD technique.

A virtual human should possess the ability to resolve the following problems. The
movements of a virtual human and task-relevant objects should be first acquired from
a human demonstration, as illustrated in Fig. 7.2a. Then, segmentation points should
be autonomously estimated without the intervention of a human expert, as shown in
Fig. 7.2b. All the movements are segmented using segmentation points, after which
the segments of the virtual human’s movements are represented as motion primitives,
as indicated in Fig. 7.2c. The causalities should be learned from the segments of
task-relevant objects, as shown in Fig. 7.2d. The causalities are used to activate their
motion primitives. A motion tuple is represented by combining the motion primitives

Human 
Demonstration 

Autonomous 
Segmentation 

Learning  
Motion Primitives 

Learning 
Causalities 

movements  
of an avatar 

movements  
of task-relevant objects 

segments of  
an avatar’s movements 

segments of  
an task-relevant objects 

Learning  
motion tuples 

causalities of motion primitives 

motion primitives 

Database 
(motion tuples) 

motion tuples (a) (b) 

(c) 

(d) 

(e) Selecting 
Motion Primitives 

Learning Phase Decision Phase 

current situation 

selected  
motion 

primitive 

(f) 

Fig. 7.2 Processes to learn and reuse motion primitives and their causalities. In the learning phase,
there is a a process for acquiring movements of a virtual human and task-relevant objects, b a
process for estimating segmentation points without the assistance of a human expert, c a process
for learning motion primitives, d a process for learning causalities of motion primitives, and e a
process for learning motion tuples. In the decision phase, there is f a process for achieving a task
for selecting reasonable motion primitives based on the motion tuples
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and their causalities, as illustrated in Fig. 7.2e. Finally, a task (i.e., the cascade of
motion primitives) is achieved by selecting reasonable motion primitives based on
the motion tuples, as shown in Fig. 7.2f.

During resolution of these problems, considerations are acquired as follows. In
autonomous segmentation, it must be possible to find meaningful segments from var-
ious types of movements. The segmentation process should also be applied without
requiring parameters to be manually predefined or pretuned according to the types
of variables and tasks. The fineness and grossness of movements should be consid-
ered during the process of learning the motion tuples. The gross and fine movements
are defined as follows; (i) gross movement: this movement involves simple patterns,
though it may be varied over a large space during a short time interval. It allows
flexible reproductions while repeating several trials and (ii) fine movement: this
movement involves complex patterns (i.e., combinations of simple patterns), though
it may be varied over smaller spaces during longer time intervals than gross move-
ments. It also allows precise reproduction while repeating multiple trials. A virtual
human should learn the motion primitives and their causalities to consider the gross-
ness and fineness of movements because a task can succeed or fail based on these
movement characteristics. Finally, the motion tuples should swiftly and reasonably
select to perform a task under changing environments including perturbations.

7.3 State of the Art

To address the issues introduced in Sect. 7.2, in this section we review the state
of the technology in two areas: (i) research on segment and model motion tuples
(i.e., motion primitives and their causalities) from a human demonstration from
the viewpoint of autonomous segmentation; (ii), approaches to select dependable
motion primitives that allow a virtual human to achieve the goal of a task using these
motion tuples. Section 7.3.1 describes the field of segmenting and learning motion
primitives. Section 7.3.2 presents the existing approaches for selection of motion
primitives, including approaches using affordances.

7.3.1 Autonomous Segmentation and Motion Primitive
Learning

The approaches employed to learn motion primitives can be broadly classified as
supervised (i.e., using known motion primitives) and unsupervised approaches. A
qualitative comparison of these two methods is presented in Table 7.1.
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Table 7.1 Qualitative comparison of related works from viewpoint segmenting and learning motion
primitives

Category Authors Approach Parameters that must be
predefined or pretuned

Supervised
methods

Billing et al. Method for learning
predictive sequence based
on motion primitives

Presegmented or Predefined
Primitives

Cohen et al. Method for heuristic
search-based manipulation
planner based on motion
primitives

Bentivegna et al. Method for increasing
performance of motion
primitives through repeated
practice

Nicolescu et al. Method for refining,
learning, and generalizing
primitives based on action
networks and instructive
demonstration

Nejati et al. Method for learning and
generalizing motion
primitives based on
hierarchical task networks

Unsupervised
methods

Drumwright et al. Method using the velocities
of the joint trajectories

Intervals, thresholds

Kulic et al. Method comparing density
distributions with known or
unknown models

Models, windows,
thresholds

Gribovskaya et al. Method using the sum of
the velocities with reference
to the relative position in
Cartesian coordinate

Smoothing factors,
thresholds

Mühlig et al. Method using the relative
distances and velocity
between human’s hand and
objects

Thresholds, smoothing
factors

Asfour et al. Method using the HMM
based on the changing
direction of trajectories and
stopping the trajectories

Windows, thresholds

Baby et al. Method using the
intersection of the
transitions in the unified
HMM which is merged by
KL divergence

Threshold of K

Kruger et al. Method using indicator
variable in Dirichlet process

Dirichlet prior
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Several researchers have proposed the application of known motion primitives to
achieve day-to-day tasks. Billing et al., Cohen et al., Bentivegna et al., Nicolescu
et al., and Nejati et al. have proposed methods for learning and combining preseg-
mented or predefined motion primitives. Billing et al. presented a predictive sequence
learning method for recognizing and controlling the training data using known motion
segments [7]. Cohen et al. proposed a heuristic search-based manipulation planner
based on a set of predefined motion segments [8]. Bentivegna et al. presented a
method for increasing the performance through repeated practices based on a set
of predefined motion segments [9]. Nicolescu et al. proposed a method for refin-
ing, learning, and generalizing motion segments using a predefined action network
and an instructive demonstration [10]. Nejati et al. proposed a method for learning
and generalizing known motion segments based on hierarchical task networks [11].
Each of these methods deals with predefined motion segments; they do not consider
unknown motion segments.

For unsupervised approaches, Drumwright et al., Kulic et al., Gribovskaya et al.,
Mühlig et al., Asfour et al., Baby et al., and Kruger et al. have all proposed methods
for obtaining unknown motion segments. Their methods focus on segmenting contin-
uous motion trajectories to learn the motion primitives embedded in a task. Although
most of these approaches are based on the learning of unknown motion primitives,
they contain constraints that are predefined or tuned to obtain motion segments.
These include manually predefined or pretuned parameters such as fixed intervals,
window size, fixed time, smoothing factors, threshold values, and predefined mod-
els according to the types of tasks or motion trajectories investigated (e.g., joints or
human body parts). It is difficult to pretune and predefine these parameters according
to the types of variables and tasks applied. Drumwright et al. proposed a method for
segmenting joint motion trajectories [12]. The segmentation points are determined
based on the points where the velocities of the joint trajectories maintain a fixed
interval and the sum of the velocities is smaller than the threshold within this inter-
val. The segmentation points are directly changed according to the threshold of the
joint velocities and the interval. Kulic et al. proposed a method for obtaining motion
segments using known or unknown models by comparing the probabilistic densities
according to a fixed moving window [13]. The size of a moving window must be
well defined to obtain reasonable motion segments. Gribovskaya et al. proposed a
method for obtaining motion segments using the sum of velocities across a threshold
with reference to the relative position in Cartesian coordinates [14]. In this method,
the segmentation points are adjustable by tuning the parameters for the threshold.
Mühlig et al. proposed a method for segmenting continuous motion trajectories using
correlative features between a human hand and different objects [15]. The correlative
features are acquired based on the relative distances between the hand and objects.
The near and far degrees should be predefined or pretuned for estimating the motion
segments. Asfour et al. proposed a method for obtaining motion segments by extract-
ing the common states from several hidden Markov models (HMMs) [16]. In this
method, an HMM is modeled using specific motion trajectory points. These points
are selected based on two criteria: the change in direction of the motion trajectories
and the termination of the motion trajectories within a sufficient period of time. These
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criteria (particularly, the sufficient time period) must be well defined to determine
the motion segments. Baby et al. presented a method that uses the intersections of
the transitions obtained from a unified HMM merged after the set of all training data
are individually modeled using a left–right HMM [17]. All HMMs are merged into
a unified HMM using Kullback-Leibler (KL) divergence. For the unified HMM, the
authors refer to the set of states in the transitions to be split as motion segments. This
method can be varied based on the threshold of the KL-divergence for constructing
the unified HMM. That is, the segmentation points depend on adjusting the threshold
value of the KL-divergence. Finally, Kruger et al. presented a method for determining
segmentation points using a nonparametric approach [18]. The segmentation points
are determined based on indicator variables included in the DP (Dirichlet process).
The DP does not need to use priors (or weak priors) for estimating the segmentation
points.

Although these approaches are based on the learning of unknown motion primi-
tives, they include constraints that must be predefined or tuned. These include parame-
ters such as the fixed intervals, window size, fixed time, smoothing factors, threshold
values, and predefined models according to the type of tasks or motion trajectories
(e.g., joint, human body parts). It is difficult to tune and predefine these parameters
based on the type of variables and tasks. For example, velocity-based segmenta-
tion criteria require the tuning of several types of parameters (such as preprocessing
smoothing factors and the velocity threshold). These may not be intuitive as the
parameters may require tuning with respect to the type of variable being used. More-
over, humans may sometimes require intermediate pauses between two consecutive
parts of a continuous motion trajectory that requires segmentation to exaggerate the
segmentation process.

7.3.2 Selection of Motion Primitives

The motion-primitive selection mechanism of a robot has been studied using vari-
ous approaches. Smith et al. [19] and Kunniawati et al. [20] proposed methods for
decision making in approximate partially observable Markov decision processes
(POMDPs). POMDPs constitute a powerful probabilistic method for modeling
dynamic and stochastic sequences of events in the limited perceptions of a vir-
tual human. However, the computation of exact optimal policies in the animation
is intractable as this process has extensive computational complexity. To improve
the computational efficiency, Smith et al. proposed a POMDP-based planning algo-
rithm referred to as heuristic search value iteration (HSVI). Similarly, Kuniawati et
al. proposed an algorithm referred to as successive approximations of the reachable
space under optimal policies (SARSOP) that can select dependable motion primitives
under various uncertainties. However, these algorithms cannot be used to generate
various motion-primitive sequences that have never been previously experienced,
or are ‘unexperienced’ because the dependable motion primitive is selected using a
probabilistic method.
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Lebeltel et al. [21] and Dearden et al. [22] presented methods for modeling a task
using probabilistic approaches. Lebeltel et al. proposed a method for programming
a robot based on Bayesian inference and learning with respect to incompleteness
and uncertainty. They used predefined transition probabilities to manage temporal
motion-primitive sequences. It is a challenge to predefine transition probabilities to
solve all motion-primitive sequences. Dearden et al. proposed a method for using a
Bayesian network as a learning technique to manage task execution in mobile robot-
ics. Their research indicated that Bayesian networks are valuable learning mecha-
nisms capable of dealing with uncertainty and variation.

Calinon et al. [4] and Lee et al. [23] presented methods for realizing a task by
encoding probabilistic models. Calinon et al. encoded and generalized probabilistic
models using Gaussian/Bernoulli mixture models and Gaussian mixture regression.
Lee et al. encoded the probabilistic models using HMMs and reproduced a trajec-
tory using a Viterbi algorithm. They focused on encoding probabilistic models of
entire tasks and reproducing trajectories using demonstrated trajectories, i.e., they
considered the reproduction of trajectories using encoded models and not the various
motion-primitive sequences that can occur in a real environment. These probabilistic
methods can be usefully applied under various uncertainties, especially limited per-
ception, because they compute probabilities of motion primitives using a Bayesian
inference algorithm. Although they can successfully achieve complete tasks based
on experienced motion-primitive sequences, they have difficulty of achieving tasks
in situations that require unexperienced motion-primitive sequences.

Pardowitz et al. [24] and Ekvall and Kragic [25] proposed hierarchical and incre-
mental approaches for modeling a task based on many demonstrations. Pardowitz
et al. hierarchically encoded motion primitives based on macro-operators and a task
precedence graph. Ekvall and Kragic extracted and updated symbolic rules using
demonstrations and achieved given tasks based on symbol-level methods. Although
they dealt with motion primitive sequences of complex tasks, they were required
to generate nodes of graphs or symbolic rules continually, whenever unexperienced
motion-primitive sequences were necessary.

Brooks [26], Hoshino et al. [27], Jaafar et al. [28], Scheutz et al. [29], and Lee
et al. [30] proposed behavior-based control methods to select a motion primitive
to achieve a given task. Brooks proposed a robust layered control system where
higher layers subsume the lower layers to control mobile robots. Hosino et al.
explored a tree architecture to select or activate multiple behavior modules. Jaafar
et al. proposed a motion-primitive selection mechanism using fuzzy logic, remov-
ing the need for a complex mathematical model. Scheutz et al. proposed an archi-
tecture for dynamic motion-primitive selection that can integrate existing motion-
primitive selection mechanisms in a unified manner. Lee et al. proposed an ethology-
based motion-primitive selection mechanism and a programming framework. These
behavior-based control methods can generate various motion-primitive sequences
based on rules/heuristics that are generated by prior knowledge or experiences with-
out generating new rules/heuristics. However, it is difficult to achieve the given tasks
under various uncertainties, especially limited perception. To resolve this, additional
rules are generated by humans.
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Stoffregen [31], Chemero [32], Steedman [3], and Sahin et al. [34] formalized an
affordance using their own definitions. Sahin et al. defined an affordance with respect
to equivalence classes that guarantee their own reusability. Their affordance acquired
a relationship between the motion primitive and an object in the environment such that
the application of the motion primitive on the object generated a certain effect [34].
However, they did not consider uncertainties regarding the objects, behaviors, and
environments. Furthermore, they did not address the motion-primitive sequences for
accomplishing a task. A qualitative comparison of the related works is presented in
Table 7.2.

To resolve the limitations of the state-of-the art methods discussed, the autonomous
segmentation framework for identifying the motion segments without tuning or pre-
defining parameters is described in the following section. Further, a well-known
method of modeling a motion primitive is introduced to represent the motion prim-
itives using the segments. Finally, a dependable motion-primitive selection mecha-
nism combining the advantages of the probabilistic method and the behavior-based
control method is also described. The motion-primitive selection mechanism can
select dependable motion primitives under various uncertainties, especially limited
perception, using Bayesian inference, and can generate experienced as well as unex-
perienced the motion-primitive sequences based on motivation values.

7.4 Recent Approaches

7.4.1 Autonomous Segmentation for Learning Motion
Primitives

To resolve the limitation of autonomous segmentation mentioned in Sect. 7.3, Lee
et al. proposed an autonomous segmentation framework without using predefined or
pretuned parameters [35]. The framework can estimate a set of segmentation points
for learning motion primitives as presented in Fig. 7.3. In this process, the segmen-
tation points are used to divide the continuous motion trajectories obtained from a
whole demonstration by a human. In this context, the portions between two consecu-
tive Gaussian components that are temporally adjacent in a Gaussian mixture model
(GMM) are used to estimate the set of segmentation points. As noted by Ghahramani
et al., a Gaussian component of the GMM competitively partitions the input space
and learns a linear regression surface in each portion [36]. In the GMM therefore,
each Gaussian distribution encodes a portion that indicates a quasi-linear segment
in hyperspace. Representing continuous motion trajectories as a GMM provides a
method for encoding the local directions and the local relations (i.e., covariances)
among the variables involved in the trajectories. In the motion trajectories, a change
of direction between two consecutive Gaussian components can be used to estimate
a segmentation point for dividing two motion primitives representing the different
subparts of the trajectories.
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Segmentation Point 
Detection Module

PCA Module

trajectories in a dimensional space
reduced by PCA

BIC Module

# of GaussiansLikelihood

GMM Selection 
Module

set of GMMs containing  different
number of Gaussians according

to the dimensionality of PCA

signals for changing
the dimensionality of PCA

Reorganization 
Module

GMR Module

GMM containing maximum 
number of Gaussians

sequence of reorganized 
motion primitives

set of motion primitives 
containing the time spent

continuous motion
trajectories continuous trajectories

reproducible on a robot(a)

(c)

(b)

(d) (e)

(f)

(g)

GMM Module

Fig. 7.3 Autonomous segmentation framework to estimate the segmentation points for obtaining
motion segments from a complete demonstration a Principal component analysis (PCA) module, b
Bayesian information criterion (BIC) module, c Gaussian mixture model (GMM) module, d GMM
selection module, and e Segmentation point detection module

Although the GMM is modeled using the Bayesian information criterion (BIC)
and expectation-maximization (EM) algorithms, it is important to obtain as many
Gaussian components as possible to better characterize the nonlinear motion trajec-
tories, which indicate quasi-linear segments. The number of Gaussian components
that are well fitted by BIC depends on the dimensionality of the motion trajectories.
In this context, therefore, the motion trajectories are projected into one of the PCA
(principal component analysis)-reduced subspaces. This autonomous segmentation
framework provides a clear physical interpretation for repartitioning the Gaussian
components in the GMM. To date, information regarding the mean and covariance
has been exploited to reconstruct motion trajectories [37, 38]. However, surprisingly
little attention has been directed to the intersection between two consecutive Gaussian
components in the GMM. The authors segment the continuous motion trajectories
using these intersections in the learning process. This technique detects changes in
the local trajectory shapes and in the local correlations among different variables.
Figure 7.4 illustrates the result obtained using the autonomous segmentation frame-
work in the task of cooking a rice dish. In this example, 26 motion segments were
acquired by the segmentation method. These segments were then authenticated by
evaluating the naturalness of a virtual human’s motions in their different combina-
tions.
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Fig. 7.4 In the task of creating a rice dish, the illustrations of a a human demonstration, b a motion
segment of a virtual human estimated by the autonomous segmentation method, and c a motion
segment recombined to validate the motion segments

7.4.2 Finding Grossness and Fineness to Learn Accurate
Motion Primitives Using Temporal and Spatial Entropies

Lee et al. presented a method to acquire accurate motion primitives using the spatial
and temporal entropies calculated from a GMM [39]. A virtual human should be able
to learn motion primitives using multiple demonstrations of a single task. In such a
set, portions of the trajectories can be divided into four categories according to the
spatial variations between the demonstrations and their duration. These portions are
relatively long/short duration and relatively large/small spatial variation. Figure 7.5
illustrates these four categories with examples. Of these, those where a long time
is required and the spatial variations are small (e.g., passing a thread through the
eye of a needle) are typically modeled using a smaller number of parameters despite
the fact that such portions represent a movement that is essential for achieving the
task. The reason for this is that this portion changes only slightly in the task space

Fig. 7.5 Four categories
according to spatial
variations in multiple
demonstrations and the time
required in the
demonstrations: a time
spent—short, spatial
variation—large; b time
spent—long, spatial
variation—large, c time
spent—short, spatial
variation—small; and d time
spent—long, spatial
variation—small. We focus
on (d)

time 
spent 

spatial 
variation 

spatial variation – large 
time spent – long 

spatial variation – large 
time spent – short 

spatial variation – small 
time spent – long 

spatial variation – small 
time spent – short 

approach-
ing 

lifting 

sensors’ 
noise 

humans’ 
noise 

painting 

inserting 

boundaries 
between (b) and (c) 

(a) (b) 

(c) (d) 



7 Motion-Based Learning 163

compared to the other portions. However, such portions should be densely modeled
using more parameters (i.e., overfitting) to improve the performance of the GMM
because the movements of these portions must be accurately executed to achieve
the task. It is difficult for a virtual human to learn a daily task because mixtures of
these properties are generally included in the task. Most PbD approaches focus not
on the combinations of fine and gross movements but on totally fine (or totally gross)
movements. Gross and fine movements are defined as follows; (i) gross movement:
this movement involves simple patterns, though the movement may be varied over a
large space during a short time interval. It allows flexible reproductions with several
repeated trials and (ii) fine movement: this movement involves complex patterns (i.e.,
combinations of simple patterns), though the movement may be varied over smaller
spaces during longer time intervals than gross movements. It also allows precise
reproductions with several repeated trials.

To learn such tasks effectively, a virtual human should therefore be able to repre-
sent all its movements in accordance with grossness and fineness because a daily-life
task usually includes gross and fine movements. However, it is challenging to rep-
resent gross and fine movements using a fixed criterion. It is possible to consider
grossness and fineness by individually modeling segmented movements using seg-
mentation approaches. Nevertheless, such segmentation approaches do not guarantee
modeling gross and fine movements because grossness and fineness are not explicitly
considered in these segmentation approaches. To resolve this problem, the authors
proposed a new method for learning a motion primitive based on grossness and
fineness acquired from the complexity and the repeatability of movements. To use
spatial and temporal relationships between a virtual human and a task-relevant object,
the grossness and fineness of movements are measured using following dataset; (i)
change rate of relative distance between a virtual human and a task-relevant object
and (ii) change rate of relative velocity between a virtual human and a task-relevant
object. These are important data to analyze the spatial and temporal relationships
between a virtual human and a task-relevant object.

The grossness and fineness depend on the degrees of complexity and repeatability
of the movements, simultaneously. The rationale is as follows; if a movement is com-
plex, it should be regarded as a fine movement even though variation is large between
multiple trials (i.e., the movement is allowed to be flexibly reproduced during mul-
tiple trials). Conversely, a movement should be considered as a gross movement if it
is simple (e.g., drawing a straight line) even if its variation is small between multiple
trials. The complexity can be measured from correlations of Canonical Correla-
tion Analysis (CCA) by determining linear combinations between basis vectors that
maximize their correlations with datasets. In CCA, correlation tends to be low when
there are complex patterns in the movements or otherwise [40]. Repeatability is
also measured by variations (i.e., z-scores of the sum of eigenvalues) obtained from
covariances between datasets acquired by multiple trials. The grossness and fineness
are acquired by combining the correlations and variations.

Grossness and fineness should be applied to a motor skill. The k-means algorithm
has been used to acquire initial parameters of a GMM [41]. The conventional k-means
algorithm focuses on gross movements by a cost function (e.g., Euclidean distance).
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Fig. 7.6 In the task of painting a small assembly part, the illustrations of a a human demonstration,
b a motion trajectory reproduced by a virtual human using standard GMM and GMR, and c a motion
trajectory reproduced by a virtual human using GMM and GMR based on grossness and fineness.
Although standard GMM cannot generate the painting trajectory, the GMM based on grossness and
fineness can successfully replicate the task

To consider the characteristics of dataset, some researchers have proposed other cost
functions for the k-means algorithm [42, 43]. However, grossness and fineness have
not been considered, although this information is essential to achieve a daily-life task.
Before learning a motor skill, the k-mean algorithm is first weighted by the grossness
and fineness. Based on EM, a motor skill is then modeled as a GMM using the initial
parameters acquired from the weighted k-means algorithm. Figure 7.6 presents the
result obtained from two types of motion primitives. In this example, the motion
primitive using standard GMM cannot reproduce the motion trajectories of painting
a tiny assembly, as indicated in Fig. 7.6a. Conversely, the GMM based on grossness
and fineness completes the painting task, as shown in Fig. 7.6b.

The proposed method was used for modeling GMMs. This learning method can
also be used for applying well-known skill learning methods such as hidden Markov
model (HMMs) and dynamic movement primitives (DMPs). In the learning process
of HMMs, the grossness and fineness can be used to initialize the parameters for
the Baum-Welch algorithm. For DMPs, the grossness and fineness can be used for
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adjusting the arrangements of the Gaussian basis functions because the forcing terms
of the DMPs are fitted by the basis functions.

7.4.3 Learning Dynamic Motion Primitives

To achieve a task, the motion primitives should guarantee a certain performance
including in a dynamic environment. However, it is not a trivial matter to guarantee
the performance of motion primitives because of the various types of perturbation
that exist in the real world, such as different initial and goal situations, human interfer-
ence, and the uncertainties of sensors and motion primitives. To resolve this problem,
a virtual human should pre-learn all possible motion primitives with respect to all
situations that could change. However, it is impossible to pre-learn all motion prim-
itives because there are an uncountable number of changing situations in the real
world.

DMPs (dynamic movement primitives) are used to resolve this issue. The DMP
method is a well-known formulation for representing motion primitives with non-
linear differential equations whose time evolution creates smooth motion trajecto-
ries [6]. It was proposed by Ijspeert et al. and has been actively implemented by many
researchers [44, 45]. DMPs are formulated in such a manner that convergence to a
goal position is guaranteed. They are invariant with respect to scaling time and trans-
lating position. The DMP method was motivated from a simple mass-spring-damper
system as

mẍ = −K (x − g)− Dẋ + FEx , (7.1)

where g, x , m, K , D, and FEx denote the goal position, current position, mass
constant, spring constant, damping constant, and an external force term, respectively.
Figure 7.7a illustrates a mass-spring-damper system regulated by an external force.
The objective of the DMP method is to retrieve complex motion trajectories by
learning the external force FEx , as illustrated in Fig. 7.7b.

DMPs are learned using a set of segmented motion trajectories. DMPs guarantee
convergence to their goals because the external force term, FEx , depends on the phase

x

t T

goal g(a) (b)

K

D

g x

m

FEx

Fig. 7.7 Concept of DMPs: a Mass-spring-damper system regulated by an external force and,
b nonlinear motion trajectory generated by the external force for achieving the goal position
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variable s(t) monotonically decreasing to zero. DMPs also generate goal-driven
trajectories under dynamic environments. Without relearning the parameters, DMPs
possess the following advantages: the motion trajectories achieve their goals despite
changes in goal positions, initial positions, or both, and the motion trajectories can
be temporally scaled by adjusting a variable. Consequently, the motion trajectories
generated by DMPs are robust against various perturbations.

In spite of these advantages, DMPs have two weaknesses. The external force
of a DMP is regulated by the number of Gaussian basis functions. Although the
number of Gaussian basis functions can be increased, it is difficult to learn an exter-
nal force when the motion trajectories that should be learned are excessively long.
DMPs can retrieve motion trajectories according to the number of Gaussian basis
functions. Although the number of Gaussian basis functions is increased sharply,
a whole motion trajectory needed to achieve the entire task cannot be retrieved
when learning the motion trajectories as a DMP. DMPs, therefore, should be learned
using the segmented motion trajectories. Furthermore, although DMPs guarantee
the achievement of their goals under dynamic environments, they do not consider
intermediate trajectories. Depending on the type of task, the intermediate trajectories
may be important. Indeed, all portions of trajectories should be guaranteed to enable
the meaning of gestures to be recognized. Nevertheless, DMPs are useful in various
tasks that require the motion primitives such as grasping, releasing, approaching,
and delivering. Figure 7.8 displays the result of a DMP in the task of grasping a cup.
The virtual human can complete the task in a changing environment using the DMP
method.

Fig. 7.8 In the task of grasping a cup, illustrations are captured in a the initial configuration and b
the changed configuration. The virtual human can grasp the cup in the changing environment



7 Motion-Based Learning 167

7.4.4 Motivation-Based Dependable Motion-Primitive
Selection Using Probabilistic Affordances

To select a motion primitive swiftly and reasonably, Lee et al. proposed a motivation-
based dependable motion-primitive selection mechanism for generating their
sequences [46]. This allows the achievement of given tasks by selecting depend-
able motion primitives under various uncertainties. The multiple training data are
clustered based on a criterion known as effect equivalence. The affordances express
the relationship between preconditions, motion primitives, and post-conditions. Fur-
thermore, the affordances are arranged based on a sequential structure acquired from
innate (i.e., nominal) sequences of the task.

As discussed previously, achieving a task requires several motion primitives to be
performed in sequence [47]. As uncertainties and perturbations exist in the real world,
a virtual human should perform motion primitives in various sequences to resolve
current situations and accomplish a task. To resolve this problem, the virtual human
should be able to learn and/or generate these motion-primitive sequences. However,
it is difficult to learn and/or generate all these sequences in advance because there are
an uncountable number of motion-primitive sequences in the real world. A virtual
human must therefore be able to select a dependable motion primitive from a set to
address the given task in the current situation.

To date, there has been a significant amount of research on the generation of
various motion-primitive sequences using predefined reactive plans for achieving a
given task [48–50]. Motivation has been used to recommend a motion primitive to
the virtual human based on its current internal state [51, 52]. Figure 7.9 illustrates
the causation between stimuli, internal states, motion primitives, and the transitions
of internal states based on motivation. Internal states cannot be directly observed;
however, they can be inferred by a selected motion primitive. Based on motivation,
existing approaches have implicitly generated fully connected transitions of internal
states by perceiving a current stimulus. Thus, these approaches can generate var-
ious motion-primitive sequences based on the transitions of internal states based

Fig. 7.9 Causation between
stimuli, internal states and
behaviors (i.e., motion
primitives), and transitions
between internal states to
select a motion primitive
based on motivation
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on given situations. However, in these motivation-based motion-primitive selec-
tion approaches, it is difficult to select the goal-oriented motion primitive using
the implicit transitions of internal states, as shown in Fig. 7.9. To select a dependable
action, the motivation should be generated with respect to the goal orientedness of
a given task. Furthermore, it is a challenge to select a dependable motion primitive
using motivation in the real world because the environment includes various sensor,
action noise, and limited perception. Motivation should therefore be designed such
that it can be executed effectively despite various uncertainties in the sensors and/or
motion primitives and human intentions.

To achieve this, the authors selected probabilistic affordance for considering
various uncertainties and perturbations. Probabilistic affordances are designed as
Bayesian networks to represent the relationships between preconditions, motion
primitives, and post-conditions. Before modeling the probabilistic affordances, the
segmented information about task-relevant entities is clustered based on the effects of
the motion primitives. Then, the virtual human selects a dependable motion primitive
based on the motivation values calculated from the probabilistic affordances after
being arranged based on the sequential structure of given tasks. Figure 7.10 displays
the result achieved by the motivation-based motion-primitive selection mechanism
in the task of grasping a cup. The virtual human can achieve the task in a changing
environment by swiftly and reasonably selecting the motion primitives according to
the given situations.

Fig. 7.10 Motion primitives selected by the motivation-based motion-primitive selection method
in the task of grasping a cup; the illustrations are a initial configuration, b a selected motion
primitive (i.e., approaching by walking) in a changed configuration, c a selected motion primitive
(i.e., approaching by walking) in a changed configuration, d a selected motion primitive (i.e.,
approaching by walking) in a changed configuration, e a selected motion primitive (i.e., grasping
by stretching the arm of the virtual human), and f a selected motion primitive (i.e., drinking). The
virtual human can achieve the goal of the task in a changing environment using the motivation-based
motion-primitive selection mechanism
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7.5 Future Avenues

In the field of PbD, it is common for a virtual human to learn a daily task from a
human. Despite using a human demonstration, however, it is still a challenge for a
virtual human to learn a task without assistance from a human expert. To achieve
autonomous learning, a virtual human should be able to determine both where and
toward what attention should be directed in a human demonstration.

Let us consider why these two problems must be resolved for autonomous learn-
ing. Assume that a virtual human’s task is to insert a (grasped) peg in a hole. This
complete task can be divided into subtasks of various types. For example, the task
can be divided into [Approaching]-[Inserting]-[Withdrawing] or [Approaching]-
[Aligning]-[Inserting]-[Withdrawing]. In accordance with determining where the
virtual human has to give attention in the demonstration, it focuses on different
points in the demonstration based on the segmentation. This problem indicates the
temporal segmentation of a demonstration.

To understand the problem of what a virtual human must focus in the demonstra-
tion, assume that the task is divided as follows; (1) approaching, (2) inserting, and
(3) withdrawing. In these subtasks, the human demonstrator attempts to carefully
consider both the peg and the hole to achieve the subtasks associated with (1) and
(2). However, the demonstrator may not consider anything while executing the sub-
task associated with (3). Although this is a simple task, a human constantly chooses
what he or she will focus on. The virtual human must choose what to give attention
to in the subtasks; otherwise, the performance and reusability can be decreased by
focusing on unnecessary information. This is because the virtual human attempts to
satisfactorily handle this unnecessary information while executing the subtasks.

The two problems are closely related. Therefore, the problems should be resolved
in a framework, simultaneously. Most researchers in this field have assumed that
the two problems must be resolved by the prior knowledge of a human expert.
Billing et al., Cohen et al., and Nejati et al. proposed approaches to learn tasks using
the prior knowledge of a human [7, 8, 11]. On the other hand, Lee et al., Mühlig
et al., and Kruger et al. presented several approaches to estimate segmentation points
to resolve the problem of where the virtual human should direct its attention in a
demonstration (i.e., autonomous segmentation) [15, 18, 35]. However, they did not
address the problem of what a virtual human should focus on in the demonstration.
Conversely, Montesano et al. and Abdo et al. proposed approaches to resolve the
problem of what a virtual human should focus on in a demonstration without the
consideration of where it should direct its attention in the demonstration [53, 54]. In
this section, we propose a framework to resolve the two problems simultaneously.

To resolve these two problems, a framework must possess three abilities: (i) deter-
mine where to direct attention in a demonstration. To acquire motion primitives and
their causalities (i.e., the pre- and post-conditions of motion primitives), it should
be possible to divide the entire task using autonomous segmentation; (ii) determine
on what attention should be directed in a demonstration. To achieve specific motion
primitives, the causalties on which the virtual human should focus should be chosen
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without prior knowledge of the task; and (iii) represent motion tuples. It should be
possible to represent the motion primitives and their causalities as motion tuples that
can be executed by the virtual human. To achieve this, PbD researchers must propose
a framework that possesses these three abilities.

7.6 Conclusion

To generate non-preprogrammed motions, abilities that a virtual human should pos-
sess were addressed:

• An autonomous segmentation method for learning motion primitives: In [35], the
continuous motion trajectories were first segmented based on GMMs. Two alterna-
tive approaches were used: (1) using a geometrical interpretation of the Gaussian
components contained in the GMMs and (2) using the weights estimated along
the time component of the GMMs. The autonomous segmentation method was
verified using experiments and public databases. In the verification, the perfor-
mance was guaranteed with a correspondence of about 90 % compared to the
results segmented by a human. Moreover, the motion primitives were modeled
by re-estimating the portions that should be remodeled using temporal and spa-
tial entropies obtained in the GMMs. Consequently, the motion primitives were
accurately modeled by adopting an explicitly different model-fitting strategy. The
segmented motion trajectories were formalized as DMPs. That is, each of the seg-
mented motion trajectories was represented as a set of differential equations. The
DMPs guaranteed the goal achievement in various dynamic environments such as
changes in the initial and/or goal conditions. In particular, DMPs were executed
for approaching, grasping, releasing, and avoiding the entities.

• Formalizing probabilistic affordance using a Bayesian network to learn the causal-
ities of the motion primitives: In [46], probabilistic affordances were formalized
to allow the selection of a dependable motion primitive under various uncertain-
ties. In this context, the probabilistic affordances were represented as Bayesian
networks after clustering the training data based on the effect equivalence.

• A dependable motion-primitive selection mechanism using probabilistic affor-
dances: In [46], the probabilistic affordances were arranged based on a sequential
task structure. The virtual human selected a dependable motion primitive based on
the arranged affordances and the motivation value propagation algorithm. The vir-
tual human was able to select a dependable motion primitive to achieve tasks under
situations with different initial and goal positions and various perturbations without
designing all motion-primitive sequences. Further, the virtual human was able to
estimate the probabilities of motion primitives using the Bayesian inference algo-
rithm, including with limited perception. Consequently, motion primitives were
activated to select a dependable motion primitive in a dynamic environment.

Using the methods described in this chapter, PbD researchers can obtain a uni-
fied framework for a virtual human to learn and select suitable motion primitives
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to achieve the given tasks reliably under a dynamic environment. Thus, they can
obtain a task-learning framework for increasing human trust. Considering the future
avenues introduced in Sect. 7.4.4, PbD researchers can extract formal rules from the
affordances to create motion-primitive sequences for achieving new, original tasks,
as humans create a number of new, original sentences using words and grammar
rules. Hence, we can obtain a method to generate non-preprogrammed motions by
the motion grammar.
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Chapter 8
Responsive Motion Generation

Sukwon Lee and Sung-Hee Lee

Abstract In this chapter, we discuss the generation of natural behaviors of huma-
noids (virtual human characters in particular) responsive to the physical interaction
with the user such as push and pull. These physical interactions play an important
role for increasing the level of immersion of the user and lay foundations for more
advanced level of interactions. One of the key components for physical interaction
is the generation of suitable balancing behaviors of humanoids against user inputs.
We review three major approaches for humanoid balancing, namely the ZMP-based
methods, data-driven methods, and momentum-based methods. For each method,
we discuss its basic ideas and principles, exemplar work, as well as important future
research directions.

8.1 Introduction

A humanoid takes the form of a virtual human character in computer animation,
and the form of a physical humanoid robot in robotics. In both fields of research
the generation of humanoid motion remains a central problem, and the techniques
developed in one field of research have been smoothly adopted in the other. In this
chapter we focus on the motion generation problem for virtual human characters for
computer animation, but many techniques discussed here originated from and can
be applied to humanoid robots as well.

Rapid advancement of computing technologies allows more and more complex
algorithms to be incorporated into real-time applications. In addition, natural user
inputs based on gestures, gaze, and physiological signals of the users have been
employed increasingly for human–computer interaction. These technical innova-
tions trigger and require the development of computational methods to generate
humanoid motions interacting with natural user inputs, which are characterized by
their large degrees of freedom as opposed to a predefined set of inputs available from
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conventional user input devices such as keyboards and joysticks. Increased level
of interaction between humanoids and users widens the scope for VR content and
enhances immersiveness of VR applications.

Among the broad possibilities of interaction between the user and the humanoids,
in this chapterwediscuss the generationof natural behaviors of humanoids responsive
to physical interaction with the user through (virtual) contacts such as push and pull.
These physical interactions play an important role in giving an impression to the
users that humanoids share the same physical space with users and thus laying the
foundations for more advanced level of interactions.

Specifically, in this chapter we present techniques regarding the balancing behav-
iors of the whole body. Among a number of behaviors that a human can employ
to maintain balance, the two most representative strategies are postural balancing
and reactive stepping as shown in Fig. 8.1. Postural balancing is usually chosen for
relatively short and mild perturbations against which a human can maintain balance
in place simply by rotating the ankles, hips, or the whole upper body. On long or
strong perturbations, a human should take a reactive stepping, i.e., take one or more
steps to prevent falling. Falling is a behavior taken when a human loses her balance.
However, this is not a completely passive motion because during the fall a human
takes action to protect her body or other valuable objects. Other interesting interac-
tive motions such as those made through the hands (e.g., handshaking) are out of the
scope of this chapter.

In this chapter, we review some important approaches for human balancing,
namely the ZMP-based methods, data-driven methods, and momentum-based meth-
ods. In the ZMP-based methods, which have been used extensively in controlling
humanoid robots, humanoids are controlled to move in such a way that the ZMP, an
important feature point related with balance, is located in the desired position during
standing and walking.

Fig. 8.1 Balance-related behaviors: left postural balancing, middle reactive stepping, and right
falling
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When only a physics-based controller (e.g., regular ZMP-based method) is used,
the resulting motions typically look rather robotic and not humanlike. This would
be fine for humanoid robots, but would be problematic for virtual humans that are
expected to mimic the real human behavior. To overcome this limitation, data-driven
approaches incorporate humanmotion capture data into the generation of humanoids
motion. Usually the motion capture data provides the naturalness prior, while the
motions are still generated by physics-based controllers to keep the responsiveness
against the unpredictable inputs from the users.

Finally, we introduce the momentum-based approaches that are characterized by
controlling both the linear and angularmomenta of thewhole body.By controlling not
only the linear momentum (as typical ZMP-based methods do) but also the angular
momentum, this approach enlarges the possible range of actions (i.e., the angular
motion as well as the linear motion) for tracking the ZMP.

8.2 ZMP-Based Approaches

Let us first discuss ZMP-based methods. The zero-moment point (ZMP) [7, 16] is
defined as a center of pressure (CoP) of the ground reaction force (GRF) and is a key
concept regarding balance in humanoids. While ZMP has been used extensively for
walking controllers, it has also been widely employed in postural balance controller
as well. In fact, walking controller and balance controller are in many cases tightly
bound and inseparable. We discuss the ZMP with respect to the postural balance, a
main topic of this chapter.

Let us see the definition and computation of the ZMP first. Later, we discuss
some methods using ZMP. The pressure on the foot in contact with the ground
shows complex distribution over the contact surface. To express the force relationship
between the foot and the ground compactly, the ground pressure is integrated into
GRF applied to a point around which the horizontal components of the total moment
vanish (Fig. 8.2). This point is referred to as ZMP. For simplicity, let us assume the
ground is flat and all contact points lie in the XY-plane of the reference frame located
on the ground. Suppose σz(x, y) is the Z-component of the ground pressure at a point
p = [x, y, 0]T as shown in Fig. 8.3. The sum of all vertical components of GRFs is
thus

fz =
∫

S
σz(x, y)d S, (8.1)

where S is the area of contact between the foot and the ground. The moment τn(p)

of GRF about a point p due to σz(x, y) can be calculated as

τn(p) = [τnx , τny, τnz]T (8.2)
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Fig. 8.2 Ground pressure on the base of the foot (left) can be equivalently expressed by the ground
reaction force (red arrow) applied at the zero-moment point (ZMP) and a torque around the vertical
axis

Fig. 8.3 Left The vertical
components of the ground
forces. Right The horizontal
components of the ground
forces

τnx =
∫

S
(y − py) × σz(x, y)d S (8.3)

τny = −
∫

S
(x − px ) × σz(x, y)d S (8.4)

τnz = 0 (8.5)

Since τnx = τny = 0 at ZMP, Eqs. 8.3 and 8.4 find the position of the ZMP:

px =
∫

S xσz(x, y)d S∫
S σz(x, y)d S

(8.6)

py =
∫

S yσz(x, y)d S∫
S σz(x, y)d S

(8.7)

The ZMP p = [px , py, 0]T is also called the Center of Pressure (CoP), and we use
both terms interchangeably in this chapter. Second, let us consider the effect of the
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horizontal component of the ground forces. Integrating them over the contact surface
gives the tangential components of the GRF:

fx =
∫

S
σx (x, y)d S (8.8)

fy =
∫

S
σy(x, y)d S (8.9)

The moment τt (p) = [τt x , τt y, τt z]T due to σx and σy is

τt x (p) = 0 (8.10)

τt y(p) = 0 (8.11)

τt z(p) =
∫

S

{
(x − px)σy(x, y) − (y − py)σx (x, y)

}
d S (8.12)

Note that τt x (p) and τt y(p) are zero because the horizontal components of the GRF
cannot produce themoment about the horizontal axes. Nonzero τt z(p)means that the
horizontal components of the GRF generate the normal component of the moment.
Summing all components leads to the GRF and the moment about ZMP as

f = [ fx , fy, fz]T (8.13)

τ(p) = τn(p) + τt (p) = [0, 0, τt z]T (8.14)

Note that the ZMP is not a point where all components of the moment become zero:
the vertical moment still exists.

ZMP is located inside the support polygon, a convex hull including all the contact
points, and cannot get out of it. To see this, suppose the GRF consists of a finite
number of forces fi := [ fi x , fiy, fi z]T (i = 1 . . . N ) on contact points pi ∈ S. Then
the following relations hold:

f =
N∑

i=1

fi (8.15)

τ(p) =
N∑

i=1

(pi − p) × fi . (8.16)

When p equals the ZMP, then τx (p) = τy(p) = 0, which leads to

p =
∑N

i=1 pi fi z∑N
i=1 fi z

(8.17)
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Rearranging this term, we get

p =
N∑

i=1

αi pi , where, αi = fi z

fz
(8.18)

Since the GRF is unilateral (the foot cannot pull the ground), fi z ≥ 0. Thus,
⎧
⎨

⎩

αi ≥ 0 (i = 1 . . . N )

∑N
i=1 αi = 1

(8.19)

Equation (8.19) shows that p must lie in the convex hull of the contact point of the
support polygon:

p =
{ N∑

i=1

αi pi | pi ∈ S (i = 1 . . . N )
}

(8.20)

Figure8.4 shows the ZMP for some cases of foot pressure distribution. When the
pressure is evenly distributed over the contact surface, ZMP is located at the center
of the foot indicating the posture is stably balanced and less likely to topple (Fig. 8.4,
left). The quality of balance decreases as the pressure distribution is skewed, and
a humanoid starts to topple when ZMP reaches an edge of the support polygon
(Fig. 8.4, right).

Therefore, ZMP is regarded an important indicator for the balance of a humanoid,
and researchers have put efforts in the development of efficient balance controllers
using the ZMP. Most ZMP-based controllers are designed to move a subset of body
parts (i.e., ankle or hip) or the whole body to make the ZMP located in the desired
position, which is usually set at the center of the support polygon.

The simplest kind of ZMP-based methods would be the ankle control strategy
[5, 17], which controls only the ankle torque to bring the ZMP toward the desired
position inside the foot base; dorsiflexion of the ankle moves the ZMP backwards
and plantar flexion moves it forward.

Fig. 8.4 Distributions of the pressure and the corresponding locations of ZMP
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Fig. 8.5 Various reduced models for the dynamics of humanoid balance [14]

More advanced ZMP-based controllers operate to move the humanoid to follow
the desired CoM position, which is appropriately set to achieve the desired ZMP
position. For this, the relation between the CoM and the ZMP needs to be defined,
and there are various models describing the core dynamics of the humanoid in terms
of CoM and ZMP. Figure8.5 shows some examples of such models. Note how-
ever that these reduced models only capture the important features of the humanoid
dynamics, and there are always errors from the true dynamics of a humanoid
caused by the simplification. For example, the 3D linear inverted pendulum model
(LIPM) [9] relates the motion of CoM on a horizontal plane with respect to ZMP as
follows:

ÿ = g

zc
y, ẍ = g

zc
x, (8.21)

where (x, y, zc) is the position of CoM, and g denotes the acceleration of gravity.
Therefore, the desired ZMP position is obtained by controlling the movement of the
CoM. Different models provide different relations between the CoM and the ZMP.

Some methods [2, 6] take the strategies where the ground projection of the CoM
moves to the support polygon. First, the desired acceleration of theCoMis determined
from the desired CoM position.

c̈d = ks(cd − c) − kd ċ, (8.22)

where cd is the desired CoM position. ks and kd are positional and damping gains,
respectively, which control the influences of the positional and derivative terms on
the desired acceleration. There are many choices on the desired CoM position for a
stable configuration, but most opt for the center of the support polygon because in
that case the humanoid can cope with perturbations from various directions.

Given the desired motion of the CoM, we need to determine the control input
to achieve the goal. One method for this is the virtual force method [4, 6, 15]. The
virtual force fv is calculated from the desired acceleration of the CoM c̈d

fv = mc̈d , (8.23)
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Fig. 8.6 Left Virtual forces applied to the CoM [4]. Right Reaching to the point while maintaining
balance [2]

where m is mass of the humanoid. The virtual force is the imaginary force that
would generate c̈d . Then the virtual force is substituted by the joint torques τ from
the relation:

τ = J (p)T fv, (8.24)

where J (p) is the Jacobianmatrix thatmaps the derivatives of the generalized coordi-
nates to the velocity of the point p, the point on the foot that coincides with the ZMP.
Equation (8.24) is a form of Jacobian transpose control that enables the operation
space control by computing the corresponding joint torques (Fig. 8.6).

8.3 Data-Driven Approaches

Until now we have discussed ZMP-based approaches for maintaining balance of
humanoids. They have shown good performance for maintaining balance, but the
resulting motions may look rather robotic and do not closely look like human move-
ments. This is a common downside of physics-based approaches that capture the
physical aspect of human motions well but cannot account for other various fac-
tors related to human motion, such as aesthetic qualities and personal styles. These
features are implicitly contained in motion capture data and thus the data-driven
approaches that use recorded human motion data have great potential to generate
natural looking motions. Thus, researchers have developed various methods that use
recorded human motion data as a human motion prior to create humanoids motions.

Many data-driven approaches concern modifying recorded motion data to match
different human figures and environments to increase reusability of the data through
interpolating, blending, and rearranging motion clips. Some methods are effective
for offline animation while others are good for interactive animation. Some pursue
physical plausibility while others ignore it. Here we discuss only those data-driven
approaches that generate physically plausible, interactive animation in real-time.
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Naturallymanymethods of this kind employ physical controllers to generatemotions
or at least use physical principles to create movement kinematically.

A common framework of data-driven approaches for physical interaction is to
generate reference motions using motion database and have a physical controller to
track the reference motion. A basic tool for tracking is a PD controller, which is
modeled as follows:

τ = kp(θm − θc) + kd(θ̇m − θ̇c), (8.25)

where θm and θ̇m denote the joint angles and velocities of the reference motion, and
θc and θ̇c are the current joint angles and velocities of the humanoid. kp and kd are
the proportional and derivative gains, respectively, which determine the magnitude
of control force τ given the position and velocity differences.

The tracking controller is effective enough to follow simple motions such as
upper body movement. Sometimes offline procedure for gain tuning achieves good
tracking quality [4]. For more complex motions, simple tracking control may fail to
achieve the goal. This is mainly because the human model (body dimensions and
physical properties) and the environment (shape and contact configurations) at hand
are different from those at the motion capture session. In this case motion data should
also bemodified. In order to createmulti-contactmotions such aswalking and rolling,
[11] developed a sampling-based optimization method, in which optimal reference
motion is created through sampling so as to maximize the similarity to the original
motion and the quality of balance. The latter is measured regardless of whether the
CoM-ground projection is located inside the support polygon.

Nam et al. [13] divided the human model into dynamic and kinematic parts.
Physical simulation is applied only to the dynamic parts, and the rest are moved
kinematically. This approach eases the burden of physical controller while still being
able to create responsivemotions to user inputs interactively. To determinewhich part
should be simulated, they compare each joint torque resisting the user disturbance
with the predefined threshold value. If a joint torque exceeds the threshold, a chain
of body parts from the joint to the terminal part that the user interacts with are
treated as dynamic and a PD controller is applied to follow the reference motion.
This approach provides rather simple means to creating responsive behaviors, but the
resulting motions are generally limited to those not deviating much from the original
motion.

Some methods create motions kinematically, but employ dynamic analysis or
simulation as a tool to select suitable motion data to generate responsive motions
against external perturbations. In general, motion data expresses humanmotionswith
high realism yet the range of expressible motion is limited by the size and content
of the motion database. Therefore, motion data are usually interpolated and blended
to make new motions. Yin et al. [19] (Fig. 8.7, left) used a set of motion data that
captures responsive behaviors of humans under external push to create humanoid
motions. By analyzing offline the momentum rate change of the motion data after
push, the magnitude and direction of the external push are estimated and stored per
each sample motion clip. Online, when a new external force is applied, the closest



184 S. Lee and S.-H. Lee

Fig. 8.7 Left Parameterization of push response. Color represents the type of balancing strategy
and the vector represents the direction and the magnitude of the push [19]. Right An example of
making falling motion due to kicking. Before being hit, the character moves by motion data. Falling
motion (red) is created by a PD controller that creates smooth transition to a suitable lying motion
(green) [21]

sample to the given external force is found and the corresponding sample motion is
scaled to account for the difference (magnitude and direction) in the input force and
the force in the closest sample. The final motion is generated kinematically rather
than created by a physics-based controller.

Data-driven approaches have the advantages that they provide rather straightfor-
ward methods to create complex motions, albeit of limited scope, which are often
difficult to obtain through physics-based approaches. Zordan et al. [21] proposed a
method to create natural falling motion using motion data (Fig. 8.7, right). In this
method, when a humanoid starts to fall given a high impact, a falling motion is simu-
lated first to approximate plausible falling motion. Then a motion clip that is mostly
like to occur after falling is searched from a database. Specifically, a motion clip
that has the least difference from the simulated motion for a certain time window
is selected. After finding this target motion clip that should occur after falling, the
humanoid is re-simulated with a PD-controller activated to make a smooth transition
to the target motion.

Wehave reviewed several data-driven approaches for creating responsivemotions.
Thanks to the motion capture data, the resulting motions of these approaches are
highly natural. By employing physics-based techniques, data-driven approaches can
achieve responsiveness to the external inputs. However, the output motions are gen-
erally limited to the scope of the recorded motion data.

8.4 Momentum Control Approaches

In Sect. 8.2, we have seen that the GRF and CoP (or ZMP) are important features
regarding balance. In fact, GRF and CoP are closely related with the linear and
angular momenta of a human. Newton–Euler equations of motion state that the total
external force and torque equal the rate of change of the linear and angular momenta,
respectively. Consider a standing human with total mass of m, who gets external
forces only from the ground f and the gravitational force mg. If we compute a
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torque generated by the external forces about the CoM rg of the human, the rate of
change of linear momentum l̇ and angular momentum k̇ is as follows:

l̇ = mg + f (8.26)

k̇ = (p − rg) × f + τn, (8.27)

where p denotes the location of CoP and τn is the torque about the vertical axis
generated by the tangential forces from the ground. The position of the CoP can be
calculated by substituting (8.26) into (8.27) and using the conditions pz = 0 and
τnx = τny = 0.

px = rgx − 1

l̇z − mg
( fxrgz − k̇y) (8.28)

py = rgy − 1

l̇z − mg
( fyrgz − k̇x ) (8.29)

From the equations, one can easily verify that GRF and CoP are uniquely determined
by the linear and angular momentum rate change. In particular, GRF has a one-to-one
relation with the linear momentum rate change, and CoP is determined by both linear
and angular momentum rate changes.

Since a human body can be modeled as an articulated system that consists of a
set of rigid bodies connected by joints, the momentum of a human is calculated as
the total sum of momentum of individual rigid bodies, i.e.,

hg(q, q̇) =
n∑

i

X T
i hi , (8.30)

where h = (kT , lT )T is the spatial momentum, a combination of angular and linear
momentum, and X T

i transforms hi (spatial momentum of part i, expressed in its
local frame) to the CoM frame (a reference frame located at CoMwith its orientation
aligned to the world frame). Note that the momentum is uniquely defined by the
generalized coordinates q and their time derivatives q̇ , which means the GRF and
CoP are completely controlled by the joint motions of the humanoid.

The idea of momentum control approaches is that by controlling both the angular
and linear momentum of a human, one can control the GRF and CoP. Comparing
with the ZMP-based control that usually controls only the CoM motion (hence the
linear momentum), the momentum control approaches take angular momentum into
account for designing the controller; hence they have higher potential to control the
position of the CoP more precisely.

For postural balance control problem, [8] introduced angular momentum control
for the whole body control problem. Abdallah and Goswami [1] developed a postural
balance controller that controls the rate of change of linear and angular momenta of
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Fig. 8.8 Left The character responds to a disturbance [12]. Right A planar rimless wheel model
(GFPE) [20]

a humanoid robot. More recently, [12] proposed a whole body postural balance
controller that identifies the desired CoP as the high level input. (Figure8.8, left)
while [10] extended their method to present a balance controller for a nonlevel and
nonstationary ground.

Recently, researchers have applied momentum control approaches to reactive
stepping. Wu and Zordan [18] introduced a momentum-based stepping controller
that generates parameterized curves for the swing foot and center of mass (CoM)
trajectories according to the step position and duration. Themethod subsequently cre-
ates whole body motions to realize the trajectories via joint accelerations optimally
calculated from the multiobjective function and joint torques computed by inverse
dynamics. Yun and Goswami [20] presented a novel reactive stepping method based
on a rimless wheel model. Specifically, they developed the generalized foot place-
ment estimator (GFPE) to define the target stepping point. The proposed method is
applicable to nonlevel ground (Fig. 8.8, right).

Here, we review a case of momentum control approach proposed in [10] for
postural balance. In thework, the behavior of themomentum controller is determined
by the set of inputs, the desired linear and angular momentum rate change (l̇d and
k̇d ), as well as additional inputs such as the desired joint accelerations for the upper
body (θu

d ), and the desired position and velocity of the swing foot (Td , vd ). Output
is the appropriate joint torques for postural balance. Figure8.9 shows the overall
framework.

Fig. 8.9 Momentum control module [10]
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The desired rate of change of the momenta is determined as

l̇d = Γ lp m(rGd − rG) + Γ ld m(ld − l) (8.31)

k̇d = Γ kd(kd − k), (8.32)

where Γ lp and Γ ld are proportional and derivative gains, respectively. Subscript d

denotes the desired value of each property. Postural balance can be maintained if we
set ld = 0 and kd = 0 to stabilize the momentum generated by the perturbation.
rGd can be set such that the ground projection of CoM is located at the center of the
support polygon.

Given the desired linear and angular momentum rate changes (which are not nec-
essarily physically realizable by a humanoid), the admissible (physically realizable)
GRF and CoP are determined such that they can create admissible momentum rate
change that is as close as possible to its desired value. If both the desired linear and
angular momentum rate changes are not admissible, one should choose either linear
or angular momentum to satisfy and sacrifice the other. Here wewill consider an easy
case where both the desired momenta are admissible. This means that the admissible
GRF and CoP can be calculated from (8.26) and (8.28)–(8.29) by substituting l̇ and
k̇ with the desired values computed in (8.31) and (8.32).

After determining the admissibleGRF,CoP, andmomentum rate changes, the joint
accelerations are determined to satisfy the desired values. As there are infinitelymany
solutions for the joint accelerations given the admissible momentum rate change,
we can impose the preferred motion for the upper body and the swing foot as the
secondary objective, so that the resulting joint accelerations will satisfy the given
momentum rate change while generating the desired motion as close as possible.
This is achieved by solving the following optimization problem:

θ̈a = argminθ̈ wb‖ḣa − Aq̈ − Ȧq̇‖ + (1 − wb)‖θ̈u
d − θ̈u‖

s.t. J q̈ + J̇ q̇ = ad and θ̈l ≤ θ̈ ≤ θ̈u,

(8.33)

where the first term on the RHS concerns satisfying the admissible momentum rate
change ḣa , which is related to the second derivative of the generalized coordinates
from the differentiation of the momentum–velocity relation:

h(q, q̇) = A(q)q̇, (8.34)

where A(q) maps the derivative of the generalized coordinates to the momentum.
Refer to [14] for calculation of the matrix. Note that the generalized coordinates
include joint angles, i.e., θ ⊂ q. θ̈u

d denotes the desired joint accelerations for the
upper body. The first constraint term enforces the support foot to be stationary. The
Jacobian matrix J maps the derivative of generalized coordinates to the velocity of
the foot. The inequality constraints bound the joint accelerations to a feasible region.
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Fig. 8.10 Postural balancing using a momentum-control approach [10]

Given the admissible joint angles, one can use a PD-controller (8.22) to compute
the necessary joint torques. Amore advanced method is the inverse dynamics [3] that
considers the physical properties of the humanoid model to compute the necessary
joint torques. Figure8.10 shows the balancing behavior of a standing humanoidwhen
it is affected by external perturbation from the side and the back.

8.5 Conclusion

In this chapter, we discussed state-of-the-art technologies for generating responsive
motions of humanoids in three categories: ZMP-based, data-driven, and momentum-
based techniques.

The ZMP-based approach targets to control the position of ZMP by moving a
subset of body parts or thewhole body. To confront the complex humanoid dynamics,
simplified reduced models that capture only the core dynamics of humanoids are
used to determine suitable control inputs. Hence, ZMP-based methods are relatively
simple and good for real-time applications that have a limited computational budget.

By referring to the motion capture data of real humans, the data-driven approach
has great potential to create natural looking motions, which is particularly important
for the visual quality of the virtual human characters. By combining with physics-
based approaches, one can develop interactive humanoid animation. However, many
factors related to the styles of human motions, such as gender, body dimensions,
environment conditions, and personal styles, are all implicitly melted into the motion
data, so it is challenging to extract such factors and control them at user’s will. In
general, the resultingmotion is heavily dependent on themotion database.Generating
diverse motions from a limited size of motion database remains an important future
work.

Finally, the momentum-based approach attempts to control both the linear and
angular momentum of the humanoids, thus it can control the movement of CoM and
CoPmore precisely. Postural controller and stepping controllers have been developed
in this approach where it is rather straightforward to determine the desired linear
and angular momenta. However, it remains an unsolved question as to how the
desired momenta should be set for a wider range of human motions, e.g., running;
an important topic for future work.
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Chapter 9
Shared Object Manipulation

Jun Lee, Nadia Magnenat-Thalmann and Daniel Thalmann

Abstract In this chapter, we introduce a concept of shared object manipulation
between real and virtual humans. The shared object manipulation allows both real
and virtual humans to collaborate in real-time. These can be applied to 3D telepres-
ence applications such as computer-aided design and virtual simulation and training.
However, it is still far from achieving the expected results from this area because it
consists of three different and complex research domains. Firstly, we need to consider
a virtual object grasping method for intuitive and convenient virtual object manip-
ulation. Secondly, human-like animation is required for virtual object manipulation
by virtual humans. Thirdly, consistency management of shared object manipulation
is required to avoid conflicts frommultiple simultaneous inputs. After review of state
of the art, solution approaches and their limitations are introduced.We conclude with
a discussion of future directions for the shared object manipulation between real and
virtual humans.

9.1 Introduction

Virtual humans are increasingly being used for various virtual reality applications
and virtual humans should react with natural reactions as similar to real humans.
For example, we can consider virtual object manipulation between real and virtual
humans. It can be applied to the collaborative designing, training, and simulation
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process via the 3D telepresence environment. In the 3D telepresence environment,
the virtual human can collaborate with real humans for supporting specific tasks. For
example, a virtual trainer teaches real humans to improve behaviors of object manip-
ulations in the best way. Virtual humans also replace the task of real participants who
will be absent during collaboration. However, this area has received little attention
because it consists of three different and complex research domains.

First, virtual objectmanipulation by a real human is important to decide the usabil-
ity of the application. Grasping andmanipulationwith hands should be very intuitive.
When a real human can grasp a virtual object with her hands and if she can feel real-
istic haptic feedback on her hands, the user can manipulate the object without the
knowledge to manipulate it. Hence, conventional research generally focused on how
to provide natural grasping with realistic haptic feedback [28]. Exoskeleton-based
interfaces are attached to provide real human forces of the hand and fingers. However,
it is still difficult to generalize direct handmanipulation for the end-user because con-
ventional researches use expensive and cumbersome devices for manipulation and
haptic feedback. Since the haptic interface uses wires to control devices, it also
restricts the user’s body movements. Computer vision-based direct hand manipula-
tion method was proposed for less cumbersome grasping [13]. However, the working
space is still limited and accuracy of grasping is lower than the glove-based approach.

Second, we need to consider virtual object manipulation by virtual humans. To
do this, methods of creating grasping and manipulation motions of virtual human
has been studied in the computer animation domain. In order to create real-time and
natural-looking motion, motion synthesizing techniques with rule-based approach
based on inverse kinematics are used [32]. Although IK-based synthesis creates
grasping motion for various objects of different sizes and shapes, grasping posture
of hand requires more realistic motions and it also should be combined with other
motion of virtual humans such as reaching and locomotion to support a wide range
of movement and manipulation tasks in real-time.

Third, consistencymanagement of shared object manipulation is required to avoid
conflicts frommultiple simultaneous inputs. In order to avoid these conflicts, we need
to keep the attributes of the shared data consistent. A concurrency control mechanism
in a 3D telepresence system uses a basic rule that gives ownership or a lock on an
object to eligible users. Other users that do not own the object have to wait until
the lock is released [36]. In the shared object manipulation, the non-owners can
only monitor the behavior of the owner. It restricts non-owners’ behaviors even if the
non-owners want tomanipulate object. Thismechanism does not fit realistic grasping
andmanipulation of virtual object. Dividing attributes of shared objects and handling
ownership of each attribute can be an alternative to release restrictions on behavior
[12]. However, another problem, called surprise, is a special behavior contrary to the
expectations of participants. Especially, divided attributes have indirect relationships
with each other.

In order to address these various requirements for virtual object manipulation and
to apply shared object manipulation between real and virtual humans, we have been
developing direct hand manipulation method using combinations of multiple devices
and task-based concurrency control mechanism. In Sect. 9.2, we review and discuss
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in detail the virtual object manipulation by real human, virtual object manipulation
by virtual human, and consistency management for shared object manipulation.
Section 9.3 proposes current lines of work to allow real human grasping and manip-
ulation of a virtual object and to provide concurrent control mechanism for shared
object manipulation between real and virtual humans. Section 9.4 concludes the
chapter.

9.2 State of the Art

9.2.1 Virtual Object Manipulation by the User

Virtual objectmanipulation is a key component of virtual reality applications because
it determines natural and convenient interactions between real human and virtual
environment. Thus, many studies have been done on 3D object manipulations using
3D devices. Early research proposed to use a pointing device with hands to manip-
ulate 3D object [4, 8, 39]. With such 3D devices, 3D interaction methods proposed
to increase usability of 3D object manipulation in immersive virtual environment,
for example, Silk cursor [40], go–go interaction [31], ray-casting interaction [3],
scaled manipulation [7]. Since the system only allows simple inputs from a user, the
proposed interactions were simplified using specific metaphors different from real
object manipulation. Another consideration is that a user generally holds a handheld
device to manipulate a virtual object. Therefore, the user should learn how to operate
the device and it is difficult to use hand gestures when the hand is holding a device.

Direct handmanipulation holds promise as a familiar, simple, and efficientmethod
for novices because they may need less specialized knowledge and fewer technical
skills than what may be necessary for more advanced types of interactions [26]. The
important issues are how to recognize robust hands input with proper feedback and
how to support simple and convenient manipulation using hands. Research gener-
ally falls into two categories: object manipulation with haptic feedback and object
manipulation without haptic feedback.

When the user touches and grasps a virtual object, haptic feedback is created by
the intended actions. If the feedback is consistent with contextual expectations, it can
increase believability of virtual object manipulation by the user. During virtual object
manipulation, the user may feel different kinds of haptic feedback on different areas
of the hands. First, the sense of touch should be delivered to the palm and fingers.
Second, force can control the angles of all fingers based on the shape and elasticity of
the virtual object. Third, different forces may be triggered to the wrist when a user’s
hand collides with other objects. Thus, exoskeleton-based interfaces are required
to support these kinds of haptic feedback. Thanks to CyberGloveSystems, three
different haptic interfaces are provided: CyberTouch, CyberGrasp, and CyberForce.

Borst et al., proposed physical-based haptic feedback using CyberGrasp. They
combined tracked hand information with calculated articulated hand model through
linear and torsional spring-dampers [2]. Although the proposed springmodel showed
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Fig. 9.1 Three hands with mass-spring model [29]

good simulation result to control fingers, more different kinds of haptic feedback
are required for more natural feelings of grasping object. Ott et al., proposed a
unified haptic feedback system that integrates the three different haptic feedback
into one synchronised system [29]. It also optimized collision detection and collision
response of hands. Thus, this system visualizes three different hands: tracked hands,
mass-spring hands, and visual hands in Fig. 9.1. When the data glove recognizes
tracked information from real hand, tracked hand is matched with the same posture.
The tracked hand is converted into spring hand to detect collision and to calculate
directions and forces from the collision. Finally, visual hand is shown to the real
human. Furthermore, they concerned two handed manipulations for object grasping
and manipulation [28] as shown in Fig. 9.2.

Although haptic feedback is important in virtual object manipulation, the devices
are generally expensive and cumbersome to wear. Another concern is that working
spaces are limited due to characteristics of devices which provide wired connec-
tions. In order to solve this issue, various virtual object manipulation methods were
proposed without haptic interfaces.

First, data glove-based manipulation was widely used to manipulate object as
highly accurate hand information could be achieved in real-time. Since data glove
generally does not support tracking 3D position and rotation angles, conventional
research used a combination involving other tracking devices. Park et al., showed
that a combination of data gloves with magnetic-based trackers could successfully
recognize twisting gestures by two hands for manipulation of 3D molecule models
[30]. Gallo et al., combined a data glove with a WiiRemote to get accurate and fast
hand input [9]. Their method was applied to manipulate 3D medical model from
MRI images. Lu et al., used ultrasonic sensor-based data gloves and head trackers to
manipulate 3D object using hand gestures [10]. Otsuki et al., proposed ungrouping
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Fig. 9.2 Haptic workstation for two-handed manipulation [28]

interactions for complicated 3D object using a combination of a data glove and
infrared-based tracking systems. The interaction visualizes elastic effects when a
user grasps a small part and pulls it out of the object [27].

Second, computer vision-based hand manipulation uses a camera to capture hand
information. Thus, the approach could offer convenient manipulation without wear-
ing devices. As depth images can be easily captured by depth cameras, an interesting
direct manipulation approach is proposed by Microsoft. HoloDesk [13] provides
direct hand manipulation in a mixed reality environment using Kinect and optical
see-through display. In HoloDesk, 3D virtual objects are shown through a half-
silvered mirror, and user grasps and manipulates the object with a spatially aligned
3D virtual world. Although the possible working space is strictly limited, HoloDesk
showed a new direction of virtual object manipulation.

9.2.2 Virtual Object Manipulation by Virtual Human

Generating realistic motion of a virtual human for a dynamic object manipulation
is an interesting issue in interactive virtual reality applications. Many simulations
and games require virtual humans to interact directly with dynamic objects such
as reaching, grasping, touching, and moving. In order to manipulate 3D object, a
virtual human may walk toward the object and reach out with his/her arm to grasp
the object. However, it is difficult to get realistic enough result because research
on character animation has generally focused on realistic motion generation using
motion capture data. In order to address this issue, two classified research areas will
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be reviewed: animation on grasping a virtual object and synthesizing grasping and
other animations such as reaching and locomotion.

Synthesis of hand motion for grasping a virtual object is a challenging area in
computer animation. The early work by Rijpkema et al., proposed rule-based motion
generation [32]. Sanso et al., proposed rule-based automatic hand synthesis approach
to decide between one-handed grasping and two-handed grasping, based on the size
of a virtual object [35]. Although this approach is available to grasp all or part of a
virtual object, there is no guarantee that synthesized grasps motions are natural and
consistent in comparison to a real grasping situation.

A feasible alternative approach is to use prerecorded grasps data for grasp synthe-
sis [1, 5, 17, 22]. Elkoura et al., utilized a database of human grasps to process kine-
matically synthesized hand poses with persevered natural coupling between joints
[5]. They applied this to playingmusical instruments. Li et al., explored a data-driven
approach to grasp synthesis by searching closet examples in a prerecorded grasp data-
base to match the object shape [22]. Amor et al., proposed a probabilistic model to
constrain the solution space of human grasp synthesis from prerecorded data [1].
Kyota et al., combined prerecorded grasp poses and grasp taxonomy for interactive
grasp synthesis [17]. Zhao et al., proposed prerecorded grasp poses with physics-
motion control to model interactive human grasping synthesis [41]. The physical
model considered a wide variety of objects of different shapes, sizes, masses, fric-
tions, and external perturbations. Finally, the synthesis model linked the real-time
interaction module with Kinect.

We need to consider synthesis of other motions besides hand to create realistic
motion of grasping and manipulation of virtual objects. Thus, the virtual human
requires locomotion and reaching animations for a virtual object. In order to create
dynamic animations, inverse kinematics approaches may be used. However, gener-
ated gestures of object grasping and manipulation are not the same as humanlike
motion. Kallmann et al., proposed motion planning method to synthesize collision-
free motions for both arms, with automatic column control and leg flexion [16]. They
used a probabilistic inverse kinematics solver for matching predesigned grasps.

Recently, Huang et al., applied motor controllers with biomechanical rules to
coordinate arm, spine, and leg movements to generate a full-body reaching motion
including stepping [14]. Lv et al., proposed utilizing various reaching strategies based
on biomechanics to optimize and reduce dimension [24]. Although biomechanical
rules for synthesis enhance the result of animations, additional costs are involved in
order to add the biomechanical rules to the synthesis model. Huang et al., proposed
example-based motion synthesis method which combines prerecorded motions and
IK-based upper body planner [14]. The method showed that a virtual human can
grasp distinct objects using computation of whole planned motion to achieve real-
time performance. Feng et al., showed the optimized synthesis approach to reduce
computation costs using separation of the motion blending from path planning [6].
They also integrated synthesis of approximated grasp into the other motions. Thus,
a virtual human can grasp and manipulate virtual object with synthesis of hand, arm,
reaching, and gazing in real-time.
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9.2.3 Consistency Management of Shared Object
Manipulation

This section describes the recent state of the art on consistent management of shared
object manipulation. When multiple humans are collaborating with each other on
a shared object, the collaborative tasks are classified into two categories: one that
always require concurrency control and one that does not [29]. Table9.1 merges and
summarizes these two classification aspects.

The example of moving a heavy object as in Table9.1 generally does not need
to use ownership management mechanism if the real humans are moving the object
to their destination in the same direction. However, this example may also require
some special adjustment of movement when multiple humans are manipulating the
object in different ways. In their proposed scenario, two humans move a heavy piano
together [34]. In this case, the movement of the object is adjusted according to the
positions and directions.

Hence, the conventional research on collaborative systems allows only one human
to manipulate a virtual object at a time. However, an inconsistent result, which is
called a conflict, can occur if multiple humans try to access and manipulate the same
object without proper concurrency control. Concurrency control is a well-studied
problem in the field of distributed systems [15]. The concept of concurrency control
has emerged in the 3D telepresence area to adjudicate simultaneous accesses and
behaviors on a shared object among multiple real humans.

Conventional research on concurrency control in 3D telepresence is generally
classified into two categories: optimistic approach and pessimistic approach. The
optimistic approach allows every human to access and manipulate a shared object
first until its real owner is determined. The system selects the first contacted human as
the real owner of the shared object. After the determination, the approach updates the
real owner’s result. The intermediates of others are removed and then the inputs are
ignored until the real owner releases the shared object. CIAO [37] used the optimistic
method with a ghost image, which visualizes translucent images of humans’ concur-
rent tasks. However, this mechanism can surprise non-owners, because their tasks
are suddenly ignored. Ionescu et al., proposed an arbitrary phase mechanism that
judges conflicting tasks among participants using a special event on a totally ordered
channel in a distributed virtual environment [15]. Although ordering conflicts is a
good approach to reduce restrictions of non-owner behaviors, when the arbitrary
phase mechanism judges incorrect orders, the participants should solve the conflicts

Table 9.1 Requirement of concurrency control for task types

Needs concurrency control Does not need concurrency control

Result of the tasks on the attributes in the
shared object affects the other attributes (Eg:
Transition, Rotation, Deletion of a shared
object)

Participants can perform the same cooperative
task on the attribute of the shared object together
(Eg: They hold a single heavy object together)
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manually. In addition, this approach also needs to solve the human-surprise problem.
TheCollFeature system described a similar optimistic approach performed on amod-
eling server by transposing and sorting conflicting operation sequences according to
a predefined rule [38]. However, if humans try to access and use undefined tasks
or break the rule, conflicts can still occur. Although the optimistic approaches are
open to access the shared object at first glance, most participants may feel surprise
because their works will disappear soon.

The pessimistic approach only allows human to manipulate a shared object with
a proper ownership. When the owner releases the ownership of object, then others
can access the ownership in order to manipulate the shared object [11]. Since this
approach is easy to manage conflicts, the approach has been widely used in various
applications such as online game and collaborative computer-aided designs. Li et
al., suggested a token-based pessimistic approach in collaborative CAD. An owner
must have a token to access a shared object. Non-owners can only watch the owner’s
tasks or chat with other humans. Although the pessimistic approach provides conve-
nient ownership management, the others are restricted until the owner releases the
ownership. To this end, fine-grained approaches are proposed in the collaborative
CAD area. Tang et al., proposed a feature concept that can be divided into an atom
of a shared object with a hierarchical structure [38]. The fine-grained concurrency
control approach of shared features showed a high degree of parallelism among con-
current tasks and multiple participants [16, 22]. However, if an owner has exclusive
authority of all features or parent features in the hierarchical structure, the behavior
of non-owners is still restricted by the owner.

Another consideration of pessimistic approach is to use different attributes of a
shared object usingHighLevelArchitecture(HLA).HLA is a standard framework for
simulation and it supports interoperability in distributed virtual environments [12].
Since the attributes are linked with different tasks individually, the HLA approach
provides more opportunities for the participants. Roberts et al., showed that concur-
rent manipulations of different attributes of a shared object are possible and the best
performance is achieved when a human in immersive environment handles a difficult
part of the shared object [33].

Well-known problems of the ownership management of HLA are delay times
or synchronizations. Problems occur when the ownership of different attributes is
transferred among participants. In order to solve these problems, various approaches
have been considered. Implementation of advanced ownership transfer was proposed
to minimize the transferring time of ownership [33]. A logical time approach was
proposed for synchronization of transferring ownerships for multiple participants in
the distributed environment [25]. Although the approaches provide more opportu-
nities, “surprise” may occur when the results of tasks on the attributes affect the
other attributes in this approach [23]. If participants want to manipulate a shared
object concurrently with different tasks such as translation, rotation, and scaling, the
result of manipulation leaves the object in a different state than what was expected
even though each participant has the right permission of the attribute. The task of a
participant can be interrupted by the task of another participant on the same object,
which causes inefficient interaction and surprise among participants.
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9.3 Recent Approaches

9.3.1 Manipulation of Virtual Objects Through Multiple
Device Interfaces

Direct hand manipulation provides users with intuitive and convenient methods to
manipulate virtual objects in the immersive virtual environment. However, it is still
difficult to generalize direct handmanipulation for the end-user because conventional
research used expensive and cumbersome devices for manipulation and its corre-
sponding haptic feedback. Since the haptic interface uses wires to control devices,
it also restricts the user’s body movements. In this research, we present an interface
framework that synchronizes different capabilities of multiple devices for fast and
accurate direct hand manipulation. In our implementation, CyberGlove II and Data-
Glove 16 are used to capture hand gestures. Wireless devices are used to recognize
rotation angles and to provide tactile feedback. Microsoft Kinect takes charge of
tracking hands’ 3D position.

Figure9.3 shows the overall system architecture of the proposed system. The
proposed system recognizes input data from three different interfaces. The Sensor
Manager integrates the given inputs into unified 3Dcoordinates. Then the coordinates
are synchronized to the same update speed in order to avoid temporalmismatch issues
among the three different interfaces. As the different interfaces have update rates,
missing data can occur at a low speed device when the devices are stored according
to temporal order as shown in Fig. 9.4, so that the proposed system fills the mission
data using simplified linear extrapolation method.

Fig. 9.3 Overall system architecture
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Fig. 9.4 Synchronization different data from different update rates

The unified and synchronized data is delivered to the direct hand manipulation
module. As the proposed approach cannot provide haptic feedback to user, we com-
bined modeling states of grasping with physics-based calculation.

The proposed system checks the states of grasping after tracking 3D position and
angles as shown in Fig. 9.5. In case of non-grasping, the proposed system performs
collision detection between hand and object. If collision occurs, the force of the

Fig. 9.5 Object grasping process
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current hand is calculated to determine the grasping of an object. Determining the
release of an object is slightly more difficult because the proposed system does
not provide proper haptic feedback for grasping. Thus, we use a simplified method
that detects release motions of hand and fingers. The original postures of hand and
fingers are stored after grasping object. Release state is triggered if motions of hand
and fingers are opening. During the grasping process, the proposed system provides
the user proper visual, auditory, and tactile feedback.

9.3.2 Task-Based Concurrency Control for Shared Object
Manipulation

As discussed in the previous section, one of the important issues in concurrency
controlmechanisms is to provide humanswithmore chances to access andmanipulate
shared objects with fewer conflicts in a 3D telepresence environment [18, 19]. The
approach is to classify possible tasks of shared object and the model task types can
be allowed to non-owners. Table9.2 describes modeled collaborative tasks with their
definitions.

A task can be regarded as one of the following five categories:

TransformationAttributeSet ={T, R, S}
ExistenceAttributeSet ={ N*, D, C**}
GroupAttributeSet ={F, M}
SemanticDataAttributeSet ={DC**}
PresentationAttributeSet ={AP*, AN* }
*: belongs to Accepted Task

Table 9.2 Collaborative tasks with relationship

Classifications Definitions Symbols

Transition Transition of a shared object T

Rotation Rotation of a shared object R

Scaling Changed size of a shared object S

Fission One shared object is divided into two or more
shared objects

F

Merge Two or more shared objects are combined
into one shared object

M

New Add a shared object N

Delete Remove a shared object D

Copy Copy an instance of a shared object C

Data calculation Calculate specific conditions of a shared
object (Ex: CAD simulation)

DC

Appearance Change visual properties of a shared object AP
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**: belongs to Conditionally Accepted Task
TransformationAttributeSet is the 3D information of a shared object, and it con-

sists of transition (T), rotation (R), and scaling (S). If a non-owner tries to execute a
task in this set while an owner is also performing a task in the same set, these tasks
interfere with each other because one task can be interrupted by the others.

In ExistenceAttributeSet, the proposed system provides several tasks relating to
the existence of objects. An object can be deleted (D), added (N), or copied (C) in
a public workspace. If a non-owner performs one of these tasks while an owner is
manipulating a shared object with tasks in ExistenceAttributeSet, task D may break
consistency between the owner and other users. However, the non-ownermay execute
a task C or N because these tasks can be done regardless of the owner’s task.

In GroupAttributeSet, the proposed system provides tasks related to the grouping
tasks. One object can be divided into two or more shared objects (F), or multiple
objects can be merged into one object (M). These grouping tasks may break consis-
tency between the owner and other users.

Tasks in SemanticDataAttributeSet change application-specific semantics. Task
DC performs simulation and calculation of a shared object such as scientific calcu-
lation based on chemical equations for a molecular modeling system [20]. A task to
handle the visual appearances of a shared object belongs toPresentationAttributeSet.
TaskAP presents several visual appearances of a shared object, such as color, texture.
Task AN presents animations of a shared object.

The proposed approach can allow non-owners to access and exercise tasks of the
SemanticDataAttributeSet andPresentationAttributeSet if their task does not conflict
with the task of an owner of a shared object.

Based on the analysis of task classification, we created a task allowance strategy
as described in Table9.2. Tasks T, R, S, F, M, and D belong to the Conflicting Task
type and only an owner is allowed to perform them. Tasks C, DC, AP, and AN
are the Conditionally Accepted Task type, which means that they are allowed to be
conducted by non-owners only if an owner is not working with the same task. Task
N is the Accepted Task type because a new object can always be created regardless
of its ownership.

Figure9.6 illustrates an overall procedure of the proposed fine-grained concur-
rency control mechanism with personal workspace. When a user requests ownership
of a shared object, the proposed system determines whether to allow this or not.
If there is no owner of the shared object, the requested user will be an owner, and
he/she will run any tasks of the shared object. Finally he/she can release the own-
ership. When the proposed system denies the request of ownership of the shared
object, the user can request one of the tasks of the shared object. The requested task
is analyzed and classified into one of the following four task types: Conflicting Task,
Conditionally Accepted Task, Accepted Task, and Personal Workspace Task. If the
requested task conflicts with the task of the owner, it determines the requested task
as a Conflicting Task and denies the request. If the requested task is not identical to
the owner’s task and does not conflict with it, the system regards the requested task
as a Conditionally Accepted Task. However, the requester’s task can be canceled if
the owner finishes the current task and starts a new task that happens to be the same
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Fig. 9.6 Task-based concurrency control

as the requester’s task. In this case, the requester’s task is moved to his personal
workspace and can be continued independently. If the requested task never affects
the owner’s task, it should be an Accepted Task. This task type is always allowed
to be performed by non-owners. Finally, if the requester user wants to do a task
privately, the requested task is defined as a Personal Workspace Task. Receiving a
Personal Workspace Task, the system creates a personal workspace for the requester
and duplicates the current state of the target object into the new workspace. Tasks in
the personal workspace are isolated from the public workspace and are not shared by
other users. The overall process of the proposed system is described in pseudo codes
in Table9.3. With the proposed concurrency control mechanism, we can release the
behavior restrictions of non-owners by partially allowing the requested tasks.

The proposed concurrency control mechanism was applied to a collaborative
game level design system [21]. Game level design is a collaborative work to create
a virtual game world including maps, agents, monsters, objects, players, and events
based on predefined game scenarios. General game design is executed by various
participants including a gameplanner, an artist, a level designer, an asset designer, and
so on. As different participants can create, modify, assemble, and simulate various
versions of maps, buildings, monsters, and other objects it is difficult to maintain
their consistencies among multiple participants.

9.4 Future Avenues

The proposed combination method for grasping a virtual object can be widely used
in the near future. If robust computer vision-based hand tracking device and algo-
rithms replace data gloves, usability of grasping may be increased. The proposed
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Table 9.3 Pseudo code of proposed concurrency control

Requester

1. Try to take ownership of the shared object; if successful

1.1. Manipulate all tasks of the shared object

1.2. Release the ownership

2. Else

2.1. Try to take ownership of desirable task; if successful

2.1.1. Operate the allowed task

2.1.2. Release the ownership

2.1.3. If the owner wants to run the same task:

2.1.3.1. Copy current status into the personal workspace

2.1.3.2. Yield the ownership of the allowed task to the owner

2.2. Else

2.2.1. Manipulate a copy of the shared object in the personal workspace

Server

3. Receive a request of ownership

3.1. Try to give an ownership of the shared object to the requester

3.2. Reject if unsuccessful

4. Release an ownership

4.1. Try to give an ownership of the shared object to the requester

4.2. Reject if unsuccessful

5. Receive a request of a specific task

5.1. If the owner requests, allow any tasks

5.2. Else

5.3.1. If the task belongs to the conflicting task, reject

5.3.2. If the task belongs to the accepted task, accept

5.3.3. If the task belongs to the conditionally accepted task

5.3.3.1. If no one use the task, allow

5.3.3.2. Reject if the owner is using the requested task

approach will be adapted to support a combination of the new state of the art. The
introduced synthesizing motions of a virtual human can be easily applied to various
immersive virtual reality applications such as medical simulator and training system.
The proposed concurrency control mechanism can be applied to shared manipula-
tion between real and virtual humans. We may model specific sharing tasks between
real and virtual humans on the task classification as described in Table9.3. After
discovering indirect relationships with the classified tasks, new concurrency control
mechanisms can be modeled. With our approach, non-owners can be determined
as a real human or virtual human from the given scenarios. While main owner is
performing his own manipulation work, the non-owners can access a shared object
and perform some tasks to support the owner’s main task without conflicts or task
surprises.
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9.5 Conclusion

In order to perform virtual object manipulation between real and virtual humans, it is
necessary take into account three different research domains: virtual object manipu-
lation by real human, virtual object manipulation by virtual human, and consistency
management mechanism of shared object manipulation. Although this requires a
complicated process to achieve the goal, it will result in meaningful applications
in the 3D telepresence environment. Below, we describe the possible approaches to
undertake in order to perform virtual object manipulations in the 3D telepresence
environment.

1. Combination of multiple devices for direct hand manipulation by real human.
2. Example-based motion synthesis for object manipulation by virtual human.
3. Task-based concurrency control for shared object manipulation.

The proposed combination of multiple devices for grasping virtual object can be
generalized for general userswithout haptic feedback.Research on realistic or pseudo
haptic feedback with such simple combination can be undertaken in the future work.
The introduced example-based motion synthesis for object manipulation of virtual
human can be applied to interactive applications. Finally, we proposed concurrency
control mechanism for shared object manipulation between real and virtual humans.
Since dynamic changes can occur during the shared object manipulation, we need to
model collaborative tasks with proper concurrency control strategies. Although the
proposed and introduced research ideas are not integrated together yet, research is
and will integrate these research areas into one unified platform in the coming years.
The proposed ideas also can be applied to various virtual reality applications in the
interactive 3D telepresence environment.
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Chapter 10
Modeling Personality, Mood, and Emotions

Juzheng Zhang, Jianmin Zheng and Nadia Magnenat-Thalmann

Abstract This chapter considers affect dynamics which simulates the relation
among the emotions, mood, and personality and updates emotional states for long-
term human-agent interactions. Affect dynamics is an important component of the
affective system which also contains affect detection, affect appraisal, and affect
response and makes indispensable contributions to the personification, believabil-
ity, and autonomy of autonomous virtual humans (AVH). We first examine basic
psychological concepts and computational models for affect dynamics. Then, we
present a psychologically plausible affect dynamics algorithm in which the person-
ality influences the updating of emotional states during the whole interactions, rather
than just at the beginning as in many previous works. This makes affect dynam-
ics characterized by the personality, which is shown to be important for long-term
interactions.

10.1 Introduction

Autonomous virtual humans (AVH) are intelligent virtual characters that make
humanlike decisions automatically based on their perceptions of current environ-
mental information, their current emotional states as a result of affective stimuli, and
their memory of past experience. The affective system, which appraises, updates,
and selects emotional states enables the virtual characters to think, express, and
communicate with the user emotionally. The emotional states of the virtual char-
acters are usually modeled in three hierarchies: emotions, mood, and personality,
from the superficial surface to the deep nature. The affective system contains four
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general components: affect detection, affect appraisal, affect dynamics, and affect
response [9, 15, 26]. Both affect appraisal and affect detection deal with the input
of affects; affect dynamics is responsible for the changes of affects in a long period
of time, and affect response accounts for the output of affect. In particular, affect
detection transfers physical, machine-detectable information from video [10, 47] or
audio [13, 32] sensors to the abstract concepts in cognition. For multimodal systems,
well-designed fusion techniques are needed to optimize the validity, reasonability,
and robustness of the affect detection [44]. Then detected information is appraised
to generate appropriate emotions with intensities [17, 30, 40, 45]. The appraised
emotions update the affective states under the influence of current emotional context
iteratively [5, 18, 53]. Finally, the artificial emotional intelligence rules enable the
system to make appropriate responses to the user [15, 36, 43].

There are generally two kinds of behaviors of AVH: instant behaviors and longer
term behaviors. Instant behaviors such as facial expressions or gestures are usually
driven by emotions that are short-lived affects ofAVH.Longer term behaviors such as
dialogue are usually influenced by the mood and personality, which are longer lived
affects of AVH [12]. Consequently, there is a fundamental difference between the
affective characters focusing onproblem solving and the affective characters focusing
on human–agent interactions. The former characters aim at improving the behaviors
by learning from emotional events as well as generating instant emotional behaviors
such as facial expressions or emotional words. Hence, in this case emotions are
important as they can drive instant behaviors and serve as a form of utility to improve
agents’ behaviors. As a result, a lot of attention has been paid to affect appraisal [15,
46]. The latter characters aim at interacting with the user in an autonomous and
believable way. The behaviors of the virtual companion should change with the
dynamics of affects in a long period of time. Hence, mood and personality play an
important role because they influence the longer term behaviors, and affect dynamics
is the main focus of these applications [18, 53].

In this chapter, we consider affect dynamics, which simulates the changes of emo-
tional states in long-term interactions. It takes the result of emotion appraisal as input
and sends the updated dominant emotion and mood as output to affect the response
component. The relation among emotions, mood, and personality is the main focus
of affect dynamics. In order to make the behaviors of AVH more believable in long-
term interactions, there is a need to have psychologically plausible computational
models and tractable algorithms for affect dynamics. We first review some basic
psychological concepts and popular computational models of affect dynamics. Then
we present a psychologically plausible affect dynamics algorithm in which the per-
sonality influences the updating of emotional states during the whole interactions,
rather than just at the beginning. The development of the algorithm is motivated by
the observations and facts that an individual usually has his own characteristics of
behaviors and personality determines the frequently happened mood that reflects the
affective tendency [8]. Thus, the algorithm can generate affect the dynamics that
better reflects the personality of AVH.
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10.2 State of the Art

The study of characteristics and rules of human affects has a long history in psychol-
ogy. Many computational affect models are inspired by psychology. In this section
we first introduce the psychological foundation of affect dynamics, including the def-
initions and principles of human emotions, moods, and personalities and the dimen-
sional model that integrates these human affects. Then we review computational
models for affect dynamics, which include deterministic models and nondetermin-
istic models. We also show some evaluation methods for affect dynamics.

10.2.1 Psychological Foundation

Human affects are classified into emotions, mood, and personality. The emotions
and mood are described by emotional states that change from time to time, and the
personality is described by an emotional trait that represents the innate characteristics
of the affect.

10.2.1.1 Emotion

Emotions can be defined as the subjective response of people to the confronted
events during their interactions with the environment. Based on the work of [31] in
neuropsychology, the thalamus, the limbic system, and the cortex are three important
regions related to emotions. The thalamus collects and processes all the perception
information from the external environment. The information is sent to the cortex and
the limbic system for further processing. The limbic system generates corresponding
emotions by analyzing the relationship of the needs and goals. The generated emotion
both prepares the body for physiological response andbiases cognitive processes such
as attention in the cortex.

The event appraisal is a process to appraise the stimuli entering into the system and
produce the resulting emotions with intensities. The advent of the OCC model [40],
which defines emotions simply as classes of emotion eliciting conditions, throws
light on establishing a cognitive event appraisal system in computer agents. The
OCC model specifies 22 emotion types according to the positive or negative reac-
tions to the three emotional aspects: events, actions, and objects based on the goals
(desired states of the world), standards (ideas about how people should act) and
preferences (likes and dislikes) of the agents. Later, Ortony simplifies the 22 distinct
emotion types to 6 positive emotions and 6 negative emotions [39]. EMA [26] is a
canonical example of affect appraisal using the OCC model that provides a general
computational framework for emotional appraisal and coping for intelligent agents.

One of the most fundamental effects of emotion is to capture attention. Emotions
that are generated by the appraisal of an event, based on the needs and goals of peo-
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ple, drive people to focus on the event. The degree of attention and the magnitude of
arousal of the emotions are determined by the importance of the event [11]. Attention
can further be influenced through a secondary process of emotion regulation. Once a
triggered emotion is appraised as undesirable by higher cognitive processes, humans
tend to shift the attention away from the appraised event [21]. Besides the effects on
attention, emotions also influence the humanmemory. Thorson and Friestad [50] pro-
pose that stimuli with higher emotional intensity should be encoded in the episodic
memory better. Moreover, the undesirable events are more intensively remembered
than the desirable events [37]. What is more, emotions enhance the effect of remem-
bering control content while reducing the performance of remembering background
details [24].

There are three fundamental characteristics of emotions. First, emotions are
object-directed. They are usually related to particular objects or situations [16]. Sec-
ond, emotions are relatively short-lived. Third, emotions prepare people for instant
actions, such as facial expressions [12].

10.2.1.2 Mood

Mood reflects a general, diffuse, and global emotional state over a period of time.
Different from emotions, mood has no direct relation to objects or events, but is
indirectly influenced by them. For example, “A person can be sad about something
(an emotion) or generally depressed (a mood)” [8]. On the other hand, mood is
a longer-lived emotional state and influences people on their cognitive strategies
and processing [12]. Mood filters emotions in the affect appraisal. People tend to
pay attention to mood-congruent information [8]. The relation between mood and
emotions is bidirectional. Mood tends to strengthen those emotions that align well
with mood; emotions, on the other hand, often cause or contribute to mood [8].

In the previous research on virtual humans, emotions seemed to getmore attention.
This may be because emotions are directly connected to some visual effects. Mood
is in a supporting role for emotions by influencing the event appraisal process. By
carefully studying the literature on psychology and neuroscience, we argue that the
role of the mood should be at least no less important than that of emotions to build
the virtual human. As mentioned above, emotions are short-lived affects that bias
instant behaviors such as facial expressions, the rate and pitch of speech, etc., while
mood is a longer-lived and stable affect that biases the strategy of behaviors. Below,
we list some impacts of moods on attention, cognition, behavior, and memory, which
are useful for the future development of the autonomous virtual human.

Rule 1 Mood-congruent information is one of the important factors that determine
people’s attention.
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Rule 2 Mood influences people’s cognitive and behavior strategies.

Ahuman in a positivemood tends to be altruistic to an appropriate degree. Accord-
ing to [25], a positivemood decreases the possibility of making unreasonable choices
with high risk, which helps to preserve the positive mood. Cognitive strategies
such as style information processing are also influenced by mood. Positive affect
biases broader/top-down processing, while negative affect biases narrower/bottom-
up processing [4].

Rule 3 Mood decreases the inconsistency of emotion-related behaviors.

Mood, as emotional background, can modulate short-lived behaviors related to emo-
tions. This kind of modulation largely reduces behavior discrepancy elicited by the
rapid change of emotions.

Rule 4 Memory encoding is influenced by mood-congruency effect.

Mood congruence is a phenomenon that emotional material is remembered more
reliably in the mood that matches the emotional contents of the memories [14]. The
strength of the activities associatedwith the emotional contexts at encoding correlates
with the probability of correct recall [48]. Information consistent with mood is more
likely to be noticed and connected to other facts about the mood [22].

Rule 5 Memory retrieval is influenced by mood-dependence effect.

Mood dependence [14] is the phenomenon that memories are more reliably recalled
given that the current mood is similar to the mood when the memories are encoded.
An analogy is that our feelings are like a magnet that selects iron filings from a heap
of dust [7].

10.2.1.3 Personality

Personality is defined as the predisposition of affects that determines the tendency
of the moods [8]. Currently, one popular personality model is the “Big Five” the-
ory or “Five Factor Model” (FFM) [20]. Based on the factor analytic studies using
rating scales, self-reports, or peer-reports, five universal dimensions of personality
are proposed: Extroversion, Agreeableness, Neuroticism, Openness, and Conscien-
tiousness. The five traits of personality are shown in Table10.1.

Temperament is “the characteristic phenomena of an individual’s emotional
nature” [2]. Temperament and personality are related and similar concepts. Sig-
nificant similarities have been found between temperamental dispositions and the
Big Five trait factors [1, 34]. Personality is believed to be developed on the basis
of temperament. In the affective system for the virtual human, temperament and
personality are regarded as the same.
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Table 10.1 The dimensions of FFM model

Personality dimension Descriptive words

Openness (O) Imaginative, intelligent, and creative

Conscientiousness (C) Responsible, reliable, and tidy

Extroversion (E) Outgoing, sociable, and assertive

Agreeableness (A) Trustworthy, kind, and cooperative

Neuroticism (N) Anxious, nervous, and depressive

10.2.1.4 Dimensional Model

The PA (pleasure-arousal) space [29] and PAD (pleasure-arousal-dominance) space
[34] are two-dimensional models to represent emotional states and traits. The
PA space differentiates emotions by pleasure (valence) and arousal. The plea-
sure\unpleasure dimension represents the valence of affects and the arousal\calm
dimension represents the physical excitedness of affects. Besides these two dimen-
sions, the PAD space also considers an additional dominance\submission dimension
that represents the initiative of affects. For example, “anger” and “fear” are both
negative and intensive emotions. The difference between these two emotions is that
“anger” is a dominant emotion that leads to initiative actions such as fighting, while
“fear” is a submissive emotion that leads to passive actions such as fleeing.

The PAD space integrates emotions, mood, and personality in the same space
(Fig. 10.1). Geometrically, the PAD space can be modeled as a 3D box, where each

Fig. 10.1 The relationship
of the affects and the PAD
space
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dimension is independent of each other and is between−1 and1.The three orthogonal
axes separate the whole space into eight octants, each of which corresponds to a
general mood type [34] (see Table10.2). An emotion can be represented as a moving
point in the PAD space starting from the origin. Because a point can be viewed as
a vector from the origin to the point itself, the length of the vector represents the
intensity of the emotion and the direction of the vector represents the quality (type)
of the emotion [42]. The mappings from the emotions to the PAD space are provided
by [34] and complemented by [18] (see Table10.3). The mood is also represented as
a moving point in the PAD space. The big five personality traits are mapped into the
PAD space by the mapping matrix given in Table10.4 [34].

Table 10.2 Mehrabian mood types

PAD Mood types PAD Mood types

P+, A+, D+ Exuberant P+, A−, D+ Relaxed

P−, A−, D− Bored P−, A+, D− Anxious

P+, A+, D− Dependent P+, A−, D− Docile

P−, A−, D+ Disdainful P−, A+, D+ Hostile

Table 10.3 Mappings from the 24 emotions to the PAD space

Emotion P A D Emotion P A D

Admiration 0.5 0.3 −0.2 Hate −0.6 0.6 0.3

Anger −0.51 0.59 0.25 Hope 0.2 0.2 −0.1

Disliking −0.4 0.2 0.1 Joy 0.4 0.2 0.1

Disappointment −0.3 0.1 −0.4 Liking 0.40 0.16 −0.24

Distress −0.4 −0.2 0.5 Love 0.3 0.1 0.2

Fear −0.64 0.60 −0.43 Pity −0.4 −0.2 −0.5

Fears-confirmed −0.5 −0.3 −0.7 Pride 0.4 0.3 0.3

Gloating 0.3 −0.3 −0.1 Relief 0.2 −0.3 0.4

Gratification 0.6 0.5 0.4 Remorse −0.3 0.1 −0.6

Gratitude 0.4 0.2 −0.3 Reproach −0.3 −0.1 0.4

Happy for 0.4 0.2 0.2 Resentment −0.2 −0.3 −0.2

Satisfaction 0.3 −0.2 0.4 Shame −0.3 0.1 −0.6

Table 10.4 Mapping from the FFM to the PAD pace

Dimension O C E A N

Pleasure 0 0 0.21 0.59 0.19

Arousal 0.15 0 0 0.30 −0.57

Dominance 0.25 0.17 0.60 −0.32 0
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10.2.2 Computational Models

Inspired by psychological theories, researchers in human–agent interaction have
developed many computational models for affect dynamics. Based on the character-
istics of themodels, we categorize themodels into deterministic and nondeterministic
models.Deterministicmodels simulate the general principles of human affect dynam-
ics and give deterministic computational formula for the changes in emotional states.
Nondeterministic models consider fuzzy states and rules to simulate unpredictable
or random emotional changes. In general, while nondeterministic models simulate
better the randomness of human affects, deterministic models are more concise and
controllable to show the intention of the designers.

10.2.2.1 Deterministic Models

In event appraisal, the OCC model considers three aspects of events: consequence,
action, and object from the viewpoint of both the agent itself and other agents or
users. Moreover, the events are appraised in the past, current, or future development
stages. Given one event as input, the OCC model outputs emotions.

Arjan et al. [5] present a basic framework for the simulation of emotions, mood,
and personality. The Big Five Model of personality and the OCC emotion structure
are used to implement the interaction and updating process of human affects.

Becker et al. [6] build a 3D space with the valence of emotion, the valence of
mood, and boredom as three dimensions. Two springs are simulated for the first two
dimensions to generate a reset force when the reference point is away from the origin.
The coefficients of the two springs are set to be the personality. The changing rate of
the mood valence is influenced by the emotion valence. Boredom serves as the result
of absence of stimuli. In each time step, the reference point is mapped to the PAD
space using a certain formula to determine the category of emotions, which depends
on the emotion valence, mood valence, and personality. However, this method has
no support from psychology theories. The mass-spring model is not very suitable to
model the emotional state since with the model the reference point often oscillates
and the motion cannot stop. Thus, the “damp” of the mass-spring model needs to be
defined.

A well-known affect dynamics model is “A Layered Model of Affect” (ALMA)
that combines the emotions, mood, and personality in the PAD space [18]. A pull
and push method is proposed to simulate smooth and steady changes in mood. A
virtual emotion center (VEC) is defined as the average of all active emotions. The
strength of the emotion is determined by the length of VEC. If the mood position is
between the origin of the PAD space and VEC, VEC attracts the mood; if the mood
position is beyond VEC, the mood is pushed away from VEC. The mood starts from
and finally decays to the personality position.

Zerrin et al. [53] design a long-term interaction by taking into account the human–
agent relation including friendliness and dominance dimensions. Similar to the
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ALMA model, the personality point in the PAD space is taken as the default mood
position. The mood and emotions are then iteratively updated. The combination of
the emotion engine with episodic memory enables emotions to be generated with
consideration of the past interaction history.

10.2.2.2 Nondeterministic Models

Many nondeterministic approaches use fuzzy models. Some examples are given
below.

Orozco et al. [38] propose a fuzzymodel to update the affective states of emotions,
mood, and personality. The personality is modeled as a ten-dimensional fuzzy vector,
where each dimension represents a scale of the Minnesota Multiphasic Personality
Inventory [49]. The emotion or mood is modeled as a fuzzy vector with each possible
state as a dimension. The updating process involves several steps. First, the emotion
is updated by personality, mood history, and the input event using predefined fuzzy
rules. Then the mood is updated by personality, emotion history, and the input event.
Finally, the emotion and mood are regulated by personality and the input event.

Van der Heide and Trivino [51] design a fuzzy finite state machine (FFSM) to
simulate the temporal changes in emotional states. The Plutchik circumflex model
[41] is used to specify emotions by labels that are differentiated by the activation
(or arousal) and evaluation (or pleasure) values. By fuzzifying the two variables
with linguistic labels (negative, zero, positive), the emotions are divided into nine
fuzzy states. The inputs to the system are two environmental factors: temperature and
luminosity. The temperature influences the evaluation and the luminosity influences
the activation. By the Plutchik model, the inputs can be transferred into one of the
fuzzy stateswith certain intensity. FFSMfunctionsmemorize the current fuzzy states.
By designing sets of Takagi-Sugeno-Kang (TSK) fuzzy rules, the current fuzzy states
are updated by the input fuzzy state and transferred into the other fuzzy states. The
resulting evaluation and activation value is obtained by defuzzing the states in FFSM.
Finally, the labels of the resulting emotions are obtained by the Plutchik model.
The emotional states change with time as the above process iterates. The model is
evaluated by designing three sets of fuzzy rules that represent the “reactive,” “stable,”
and “active” personalities, respectively. Given a two-day record of temperature and
luminosity, the trace of emotional state dynamics under the three personalities are
compared. There are two flaws in this model: (1) The design of the set of fuzzy rules
to simulate certain personality seems nonintuitive and time-consuming; (2) although
we suppose each fuzzy rule to be reasonable, it is difficult to guarantee that the
combination of these fuzzy rules leads to reasonable affect dynamics.

Karimi and Kangavari [27] design a fuzzy model to simulate the influence of
anxiety on the action selection of social agents. Anxiety, as an aspect of the neuroti-
cism dimension of the FFM personality, is modulated by the goal-setting mechanism
and environmental stress. Anxiety and the ACT-R cognitive model [3] are combined
to select an appropriate action for the current goal and environment. The model is
validated by comparing with the “Inverted U” relationship between the stress and
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the performance proposed by psychology [52], and by analyzing the performance of
a soccer simulation with or without the personality model.

Besides fuzzy models, Bayesian belief networks (BBN) are also used to simulate
the uncertainty of human behaviors. Kshirsagar [28] proposes a layered personality
model that adopts the “Big Five” model for personality simulation and considers
the mood layer in addition. The personality and mood are modeled in a discrete
form. The personality, current mood, changing threshold, interaction history, and
the probabilities of response emotions produced by the OCCmodel determine mood
transition. The changes in emotions are determined by the response emotions, current
mood, and personality. A drawback of this approach is the inconvenience of setting
the transition probabilities.

10.2.3 Evaluation

The evaluation of affect dynamics models is an important but nontrivial task. While
there is lack of comprehensive evaluation mechanisms or benchmark for affect
dynamics, some practices have been used to evaluate new models or algorithms.
Roughly, they can be classified into three categories:

• Component testing: Experiments are designed to test emotions, mood, or person-
ality in some responses, which are compared with psychology theories or com-
monsense of human affects.

• Overall testing: Virtual humans or agents are equipped with the proposed mod-
els. Dialogue scenarios between the virtual human/agents and users are designed.
The overall responses of the virtual characters/agents are judged to evaluate the
effectiveness of the affect dynamics model.

• User study: User study is more formal than the first two methods. Experiments
are designed and people are invited to observe the experiments. Then participants
are required to answer a carefully designed questionnaire. The answers of the
participants are analyzed using statistical methods to evaluate the performance of
the proposed models or algorithms.

10.2.3.1 Component Testing

Guoliang et al. [23] validate their affect dynamics model by observing the changes
in emotions and mood under external stimuli in several examples. The changes are
visualized using graph, based on which the performance against the psychological
rules for human affects is analyzed. For example, given an input emotion “anger,”
an introvert has longer emotion duration, lower emotion intensity peak, and lower
mood decay rate than an extrovert.
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Liu [33] designs an example in which a hungry virtual character finds bread on a
table. He tests the personality of the virtual character based on his facial expression
as the response.

Orozco et al. [38] evaluate their fuzzy model by an example that compares the
affect dynamics of a hysteric virtual human for a very negative event and that of a
depressive virtual human for a negative event.

10.2.3.2 Overall Testing

Becker et al. [6] design human–agent interaction scenarios for evaluation. A virtual
human is offended by the user using insulting words again and again. The emotion of
the virtual human changes from “anger” to “annoyance” and the bad mood becomes
increasingly intensive, which results in bad words and an angry face. If the user stops
talking, the mood of the virtual human will return to calmness. The restoring time
can be shortened or extended when the user compliments or insults him.

Kshirsagar [28] conducts interactions with the Alice chatbot that is equipped with
the proposed multilayer personality model. The conversation is simulated between a
manager and a virtual assistant whose personality is either agreeable or neurotic. The
responsive words are selected by the personality and the mood-processing modules.
The results show that the agreeable virtual assistant tends to be more pleasant and
easier to keep pleasant than the neurotic one.

10.2.3.3 User Study

Gebhard and Kipp [19] employ user study to evaluate the plausibility of the emotions
and mood generated by the ALMA model. Given the descriptions of conversational
situations, participants are required to evaluate the affect plausibility for 24 types
of emotions and 8 types of mood using a discrete ranking scale. Results show that
the type of emotions is significantly more plausible than the type of mood. Most
emotions and moods are significantly plausible above the neutral level, except for
the emotion “fear” and “hate” as well as the mood “dependent” and “anxious.”

10.3 A Psychologically Plausible Affect Dynamics Algorithm

This section presents a psychologically plausible affect dynamics algorithm for
human–agent interactions [54]. The algorithm considers the relation among emo-
tions, mood, and personality. The basic idea is to let personality influence the ten-
dency of the mood, which is achieved by biasing the effects of personality-consistent
emotions on the mood. As a result, the user can identify the personality of virtual
humans from the changes in their affective behaviors during the interactions. This
makes virtual humans more believable.
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10.3.1 Definitions and Assumptions

Here we introduce some concepts and assumptions which have grounds in psychol-
ogy. These concepts and assumptions guide the development of the psychologically
plausible affect dynamics algorithm.

Definition 1 An emotion or mood is called active if its intensity is above the thresh-
old.

Definition 2 An emotion is called mood-consistent if it has positive correlation
with the mood. In contrast, an emotion is called mood-inconsistent if it has negative
correlation with the mood.

Definition 3 An emotion is called personality-consistent if it has positive correla-
tion with the personality. In contrast, an emotion is called personality-inconsistent
if it has negative correlation with personality.

Definition 4 The effect that mood (or personality) biases mood-consistent (or
personality-consistent) emotions in the appraisal process is called mood-biasing
(or personality-biasing) effect.

While the concepts “active emotion” and “mood-biasing” or “personality-
biasing” in Definitions 1 and 4 have already been considered in previous work [18,
35, 53], the concepts “personality-consistent” and “mood-consistent” in Defini-
tions 3 and 2 are relatively new.

Assumption 1 (Biasing effect to emotion) The mood and personality bias the inten-
sities of emotions in the appraisal process by enhancing the effect of mood-consistent
or personality-consistent emotions while decreasing the effect of mood-inconsistent
or personality-inconsistent emotions.

As mood and personality are background affective filters in the process of appraisal
and bias emotions [8], we add themood-biasing effect and personality-biasing effects
to the process of emotion appraisal, similar to previous models [18, 35, 53].

Assumption 2 (Personality consistency effect to emotions) Personality-consistent
emotions havemore contributions tomood dynamics than to personality-inconsistent
ones.

This hypothesis is supported by the psychological fact that personality determines
the frequency of the mood, and emotions cause or contribute to the mood [8]. It
is also suggested in [5] that the strength of emotions should be influenced by the
personality of the virtual human.

Assumption 3 (Mood-based emotion filtering) If there are two or more active emo-
tions, the dominant emotion is determined by their correlations with the current
mood.
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If there are two or more active emotions, a dominant emotion needs to be selected.
The emotion that has the closest correlation with the current mood is chosen because
a human tends to focus on mood-consistent emotions and neglect mood-inconsistent
emotions [7].

10.3.2 Overview of the Algorithm

The affective dynamic algorithm simulates the change in emotional states during
human–agent interaction. The process of affect dynamics is as follows. At the begin-
ning, the variables and parameters in the system are initialized. Then in each iteration,
the algorithm checks whether any new event is appraised. If yes, the intensities of
the generated emotions are updated, followed by the updating of the velocity and the
position of the mood. Active emotions, if any, decay with time. The mood decays if
there is no active emotion. If there are multiple active emotions, a dominant emotion
is selected. Finally, the system sends the dominant emotion and the current mood to
the working memory. Figure10.2 shows the workflow of the algorithm. The details
are described in the following four subsections.

Fig. 10.2 The workflow of the affect dynamics algorithm
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10.3.3 Initialization

To facilitate the description, we introduce some notation. The boldfaced letters repre-
sent columnvectors ormatrix and the other letters represent numbers. Someoperators
are given in Table10.5.

The user can select a subset of emotions from the 22 emotions categorized
by the OCC model. The specified emotions constitute an emotion-type list E
whose index set is denoted by Π . For i ∈ Π , the intensity of emotion Ei is
Ii , the direction of Ei is Di , and the coordinates of Ei in the PAD space are
represented by Ei = (Eip, Eia, Eid)T . The coordinates of the mood are repre-
sented by M = (Mp, Ma, Md)T , and the velocity of the mood is represented by

VM = (Vp, Va, Vd)T . The personality traits in the five-factor form are represented
by T, the coordinates of personality in the PAD space are represented by P, and Q3×5
denotes the matrix of the transformation that transforms the five-factor form into the
PAD dimensions, as shown in Table10.4. The coefficient that represents the “pull” or
“push” effect from active emotions to the mood is denoted by α. The coefficients of
the biasing effects from the mood and personality to emotions in event appraisal are
denoted by γM and γP . The decay parameters of emotions and mood are represented
by δe and δm , respectively.μa andμb represent the lower-bound and the upper-bound
of the personality-consistency effect, and τa and τb represent the lower-bound and
the upper-bound for the mood-consistency effect. The time step of the system is Δt .

At the beginning of an interaction, the initial intensities of emotions of all types
are set to zero, namely for i ∈ Π , Iei = 0. The initial position and the velocity
of the mood are set to the zero vector, namely M = VM = 0. The personality
traits T and the constant variables α, γM , γP , δe, δm, μa, μb, τa, τb,Δt need to be
predefined. The personality position P in the PAD space is calculated by the formula
P = Q3×5 × T. The intensities of emotions and mood are between 0 and 1. Each
coordinate of vectors in the PAD space and each personality trait are between −1
and 1.

Table 10.5 Operators Operator Meaning

〈x, y〉 Dot product of two vectors
x, y

[x]ba Truncate each dimension of
vector x to fall in [a, b]

[x]◦ The normalized vector of
vector x

xT The transpose of vector x

‖x‖∞ The infinity norm of the
vector x
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10.3.4 Mood Dynamics

For a new emotion generated by the event appraisal, its intensity will be influenced
by the current mood and personality. In particular, assume the new emotion has index
i , intensity Ii0, and direction Di (see Table10.3). Based on the biasing effect of mood
and personality as described inAssumption 1, the following formula is used to update
the intensity Ii :

Ii = (Ii0 + γM 〈M, Di 〉 + γP 〈P, Di 〉)10 , (10.1)

where dot product 〈M, Di 〉 measures the consistency between the mood and the
new emotion, dot product 〈P, Di 〉 measures the consistency between the personality
and the new emotion, and (·)b

a defines the truncation by a and b. The emotion then
becomes

Ei = (Eip, Eia, Eid) = Ii Di , i ∈ Π. (10.2)

After the event appraisal, all active emotions contribute to the dynamics of the
mood.However, the contribution of each emotion should be biased by the personality,
which is different from the ALMA model. For this purpose, we introduce parameter
μi for each i ∈ Π to scale the contribution of emotionEi to themood based on certain
consistency between the personality and emotion Ei (see Fig. 10.3). We call μi the
personality-consistency effect parameter. The determination of μi is discussed in
the following subsection. The velocity of the mood is computed as a weighted sum
of the effects of all active emotions:

VM =
∑

i∈Π

αμi Ei , (10.3)

where α is the parameter reflecting the “pull” or “push” effect from active emotions
to the mood.

The new mood position is then updated from the previous position by the mood
change in this time step as

Fig. 10.3 Personality
influences the
emotion–mood interaction
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M(t + Δt ) = [M(t) + VMΔt ]
1−1 . (10.4)

In each time step, active emotions decay at an exponential rate:

Ii = Ii e
−δeΔt , i ∈ Π. (10.5)

If there is no active emotion, the mood also decays at an exponential rate:

M(t + Δt ) = M(t)e−δmΔt . (10.6)

10.3.5 Personality-Consistency Effect

While personality is used to initialize the mood position as in the ALMAmodel, here
it is also used to determine the tendency of themood. To achieve this, the personality-
consistency effect parameter μi should be appropriately chosen. In particular, it
should depend on the emotion direction and the personality, or it is a function of the
emotion direction and the personality, i.e., μi = μi (Di , P). Moreover, it should be
positive and should change consistently with the emotion direction. Thus μi can be
heuristically computed by

μi =‖ P ‖∞ ·1
2
(1 + 〈[P]◦, Di 〉), i ∈ Π. (10.7)

This formula implies two points:

• The more the direction of an emotion aligns with the personality, the more the
emotion contributes.

• The more the intensity of the personality is, the more the personality-consistent
emotions contribute (refer to Assumption 2).

If an emotion direction is just opposite to the personality, then the heuristic formula
gives zero for the personality-consistency effect parameter, which implies that the
emotion has no effect on the mood. To overcome this problem, we map further μi to
an interval [μa, μb], which gives

μi =‖ P ‖∞ ·(μb − μa

2
(1 + 〈[P]◦, Di 〉) + μa), i ∈ Π, (10.8)

whereμa andμb are the predefined lower-bound andupper-boundofμi , respectively.
If the emotion Ei is totally personality-consistent, μi reaches its upper bound μb,
while if the emotion Ei is totally personality-inconsistent,μi reaches its lower bound
μa .
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10.3.6 Dominant Emotions

When there exist multiple active emotions, the ALMA model chooses the dominant
emotion based only on their intensities. According to psychology theories, people
in different moods tend to focus on different events or emotions [7]. Therefore, the
emotion–mood relationship should be taken into consideration while selecting the
dominant emotion (refer to Assumption 3). Similar to computing the personality-
consistency effect parameters, we can compute the mood-consistency effect values
heuristically as

τi = Ii (
τb − τa

2
(1 + 〈M, Di 〉) + τa), i ∈ Π,

where τa, τb are the lower-bound and upper-bound of τi , respectively. For all the
active emotions, the dominant emotion is the one that has the largest the mood-
consistency effect value τi . If there is no active emotion, the dominant emotion is set
to neutral. This strategy improves the consistency of emotion-related behaviors and
makes virtual humans concentrate on mood-consistent information. For example, in
Fig. 10.2, the virtual human in a very bad mood pays more attentions to the “distress”
emotion, even though the intensity of the “distress” emotion is lower than that of the
“joy” emotion. However, if the “joy” emotion is far more intensive than the “distress”
emotion, the virtual human will concentrate on the positive event.

10.4 Experiments

This section presents four examples to evaluate the psychologically plausible affect
dynamics algorithm (shortened to “PPAD-algorithm” for conciseness). Comparison
with the ALMA model is also given. In each example, the dynamics of pleasure,
arousal, and dominance of themood are visualized by curves. In each subfigure, there
are three curves representing the changes of the mood position under three types of
personality: Optimistic, Neutral, and Pessimistic (see Table10.6). The corresponding
coordinates of the personality are shown in Table10.7.While the mood in the ALMA
model starts at the personality position, the mood in the PPAD-algorithm purposely
starts at the origin of the PAD space to show that the initial position of the mood is
not very important in the new model for long-time interaction.

Table 10.6 Three types of personalities

Personalities O C E A N

Optimistic 0.4 −0.4 0.1 0.7 0.1

Neutral 0 0 0 0 0

Pessimistic −0.2 0.4 −0.1 −0.5 −0.7
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Table 10.7 The PAD coordinates of the personality

Personalities P A D

Optimistic 0.45 0.21 −0.13

Neutral 0 0 0

Pessimistic −0.45 0.22 0.12

The parameters used in the PPAD-algorithm are set as follows: λ = 1/3, α =
2, δ = 1, γM = γP = 0. The parameters used in the ALMA model are set as
follows: Mooddecaytime = “1000000”, Mooddecayperiod = “100”, Personalityde-
caytime = “50000”, Personalitydecayperiod = “100” Personalitydecayfunction =
“exponential”, RealtimeOutputperiod = “100”.

10.4.1 Example 1

A negative event generating an emotion “anger” with intensity 0.5 happens at the
beginning. The dynamics of the mood position is shown in Fig. 10.4. In the PPAD-
algorithm, the pessimistic virtual human has the biggest changes to the negative
emotion “anger,” while the optimistic virtual human has the smallest changes. In the
ALMA model, the change rate of the mood position has no difference for different
personalities.

10.4.2 Example 2

A positive event happens at the beginning, which generates an emotion “gratitude”
with intensity 0.5. Figure10.5 shows the dynamics of the mood position. In the
PPAD-algorithm, the optimistic virtual human has the biggest changes to the positive
emotion “gratitude,” while the pessimistic virtual human has the smallest changes.
In the ALMA model, the mood positions are different while the change rate of the
mood position is the same for different personalities.

10.4.3 Example 3

A negative event generating an emotion “anger” with intensity 0.5 happens at the
beginning, followed by a positive event generating an emotion “gratitude” with
intensity 0.5. The dynamics of the mood position is shown in Fig. 10.6. In the
PPAD-algorithm, the optimistic virtual human has the biggest changes to the positive
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Fig. 10.4 Example 1: anger. a PPAD-algorithm. b ALMA model

emotion “gratitude” and the final mood position shares the same octant with the emo-
tion “gratitude” in the PAD space, while the pessimistic virtual human has the biggest
changes to the negative emotion “anger” and the final mood position shares the same
octant with the emotion “anger.” In the ALMA model, the tendency of the mood
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Fig. 10.5 Example 2: gratitude. a PPAD-algorithm. b ALMA model
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Fig. 10.6 Example: anger and gratitude. a PPAD-algorithm. b ALMA model
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Fig. 10.7 Example: gratitude and anger. a PPAD-algorithm. b ALMA model

position is similar for different personalities. The mood of the pessimistic virtual
human is always negative even though the positive event happens at the beginning.
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10.4.4 Example 4

A positive event generating an emotion “gratitude” with intensity 0.5 happens at
the beginning, followed by a negative event that generates an emotion “anger” with
intensity 0.5. The dynamics of the mood position is shown in Fig. 10.7. In the PPAD-
algorithm, the optimistic virtual human has the biggest changes to the positive emo-
tion “gratitude” and the final mood position shares the same octant with the emotion
“gratitude” in the PAD space. The pessimistic virtual human has the biggest changes
to the negative emotion “anger” and the final mood position shares the same octant
with the emotion “anger.” In the ALMA model, the tendency of the mood positions
is similar for different personalities. The mood of the optimistic virtual human is
always positive though the negative event happens at the beginning.

10.4.5 Discussion

In the above four examples, themood dynamics of optimistic, neutral, and pessimistic
personalities are represented in blue, red, and green. The inflection point appears
when a new emotion is processed. In the PPAD-algorithm, the initial mood starts at
the neutral point because nothing has happened before. The optimistic virtual human
is more sensitive to positive information while the pessimistic virtual human is more
sensitive to negative information. The difference in personalities can be indicated by
the change rate of the mood to different emotional stimuli during the interactions. In
the ALMAmodel, the tendency of themood position for different personalities keeps
the same, although the initial mood positions are different. Hence, the difference in
the personalities in theALMAmodel is reflected by themoodposition only at the very
beginning, rather than by the tendency of the mood dynamics during the interactions.
However, in long-term interaction, because the mood position can be arbitrary at any
timeduring interaction, the tendencyof themooddynamics ismore important to show
the different influences of the personalities. Hence the incorporation of personality
in affect dynamics is important for long-term interaction.

10.5 Conclusion

This chapter reviews somebasic psychology concepts that are related to affect dynam-
ics and a few computational models for affect dynamics. The chapter also presents a
psychologically plausible affect dynamics algorithm, which incorporates personality
into the process of updating the emotional states during the human–agent interaction.
This is motivated by several psychological principles and observations. Experiments
are conducted to demonstrate that the affect dynamics with the personality consis-
tency effect is useful in long-time interaction.
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In the research on AVH, most affect dynamics modules currently contain only
emotions, mood, and personality. However, it is a trend to add other emotional factors
such as stress and attitude into themodules. In particular, some efforts have been taken
to combine the affective system with episodic memory due to the close relationship
between affects andmemory. Such a combination makes the emotional history play a
role in human–agent interactions,whichwill enhance the believability of autonomous
virtual humans.
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Chapter 11
Motion Control for Social Behaviors

Aryel Beck, Zhang Zhijun and Nadia Magnenat-Thalmann

Abstract Creating social robots that can interact with humans autonomously is a
growing and promising field of research. Indeed, there has been a significant increase
in the number of platforms and applications for social robots. However, robots are
not yet able to interact with humans in a natural and believable way. This is especially
true for physically realistic robot that can be affected by the Uncanny Valley. This
chapter is looking at motion control for a physically realistic robot named Nadine.
Robot controllers for such robot need to produce behaviours that match the physical
realism of the robot. This chapter describes a robot controller that allows such a robot
to fully use the same modalities as humans during interaction. These include speech,
facial and bodily expressions.

11.1 Introduction

Creating social robots that can interact with humans autonomously is a growing
and promising field of research. Humans prefer interacting with robots in the way
they do with other people [19, 22]. Therefore, one way to increase the believability
of such robots is to endow them with the capability to use the same modalities as
in human–human interaction. These include verbal and body language as well as
facial expressions. This chapter presents techniques to make the robot able to fully
use these modalities during interaction. It should be noted that social robots that
partially achieve this goal have already been proposed. For instance, the Leonardo
robot expresses itself using a combination of voice, facial, and body expressions
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[48]. Another example is the Nao humanoid robot1 that can use vision along with
gestures and body expression of emotions [5]. In contrast with these two robots, the
Nadine robot is a highly realistic humanoid robot. This robot presents some different
challenges as it may be subject to the well-known Uncanny Valley [39]. In this paper,
a robot controller that addresses some of these difficulties is proposed. Using this
controller, the Nadine robot is able to express itself by using combinations of speech,
body language, and facial expressions. The main research question addressed is how
to control a humanlike robot so that it can sustain believable interaction with humans.

11.2 State of the Art

11.2.1 Overview of Social Robots

In the past decade, there has been a significant increase in the number of platforms
and applications for social robots. The range of applications for which social robots
have been deployed vary from supporting children in hospitals [10, 40] or affected
by autism [54] to supporting the elderly living on their own [52].

• Kismet: Kismet is among the first social robots created [13]. Kismet expresses
itself using vocal and facial expressions. The face of Kismet conveys emotions
based on nine prototypical facial expressions that ‘blend‘ together along three
axes: Arousal, Valence, and Stance. Arousal defines the level of energy. Valence
specifies how positive or negative the stimulus is. Stance defines how approach-
able the stimulus is. This method defines an Affect Space in which expressive
behaviors span continuously across these three dimensions, creating a rich variety
of expressions. The problem is that this method is difficult to extend to most other
social robots which have very few or no degree of freedom for the face.

• Nao2: Nao is a humanoid robot with 25 degrees of freedom. It is nowadays a
widely used research platform. In terms of expressive behaviors, Nao can use
body movements and voice to express itself. Moreover, it has been shown that the
Nao robot can successfully display emotion using its body [5, 6] highlighting the
importance of body language for social robots. Interestingly, theNao robot can also
successfully use the LEDs in its eyes [9] aswell as sounds [43] to express emotions.
The Nao robot has been used for elderly support [52] as well as for investigating
the building of long-term relationships with robotic companions [10].

• iCat3: In contrast with Nao, the iCat is not a humanoid robot and looks like a
toy version of a cat [53]. The iCat has 13 degrees of freedom located in the face.
This allows for the display of facial expressions. The iCat is not mobile and is
solely designed as a research platform for human–robot interaction. The iCat can

1http://www.aldebaran-robotics.com/.
2http://www.aldebaran-robotics.com/.
3www.research.philips.com/technologies/projects/robotics.

http://www.aldebaran-robotics.com/
http://www.aldebaran-robotics.com/
www.research.philips.com/technologies/projects/robotics
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Fig. 11.1 Examples of robots designed for social interaction. From left to right Kismet [13], Nao,
Icat, Kaspar [20], ICub [37], Nadine [62]

also speak. Its vocal and facial expressions have been successfully used to convey
empathy in child–robot interactions [31].

• Kaspar: The robot Kaspar, a child-sized humanoid robot [20], is anecdotally
described as uncanny or scary (Fig. 11.1), suggesting that it falls in the Uncanny
Valley. However, this does not stop users from interacting and engaging with it.
The robot has been found to be socially engaging and has proven successful in
evaluation studies [44], hence overcoming the issue raised by the Uncanny Val-
ley. However, this success could be due to the population sampled as the robot
was evaluated with children. This is supported by findings from Ho et al. [25]
who reported that women were found more sensitive than men to the phenomenon
[25]. Taken together, it suggests that individual differences, such as gender, age,
etc., might affect the Uncanny Valley. Kaspar’s success could also indicate that
the Uncanny effect fades over time as users get used to the appearance of a char-
acter. Thus, existing studies do not seem to fully explore the full complexity of
the problem, which may involve a complex combination of individual, contextual,
cultural, and social factors among others [32].

• iCub: The iCub [37] is a humanoid robot developed at IIT 4 as part of the EUproject
RobotCub5 and subsequently adopted by more than 20 laboratories worldwide. It
has 53 motors that move the head, arms and hands, waist, and legs. It can see and
hear and it has the sense of proprioception (body configuration) and movement
(using accelerometers and gyroscopes).

• Realistic humanoids: These robots simulate the physical appearance of real
humans. For instance, the geminoids6 are highly realistic humanoid robots.
Another example is the Nadine robot (Fig. 11.1) which is modeled after a Cau-
casian woman. Due to their highly realistic appearances these types of robots pose
specific research problems. Indeed, they seem to be particularly affected by the
Uncanny Valley theory and as such have been used to investigate it [46]. Robot
controllers for such robots need to produce movements that match the physical

4http://www.iit.it/en/research/departments/icub-facility.html.
5http://www.robotcub.org/.
6http://www.geminoid.jp/en/index.html.

http://www.iit.it/en/research/departments/icub-facility.html
http://www.robotcub.org/
http://www.geminoid.jp/en/index.html
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realism of the robot. To date, most of the robot controllers for these robots are
designed for telepresence. In other words, they are controlled by remote opera-
tors. In contrast, this chapter introduces a motion controller for an autonomous
robot.

11.2.2 Motion Generation

There are three approaches for motion generated: “hand animation”, motion cap-
ture, and inverse kinematics. These three methods have different advantages and
drawbacks.

• The first method, hand animation, is typically realized by professional artists. In
this method, the joint values at each key frame are set manually. The blending
between key frames is carefully generated using a mix of automatic tools and
manual modifications. Typically, this method results in the most believable ani-
mations. However, it is a time-consuming method; more importantly, it is not
adaptive. Indeed, solely using this approach, robots would be limited only to the
set of available predefined animations. This would make it impossible to adapt to
new situations or to display gestures like pointing toward an object or a person.

• The second approach, motion capture, includes two steps, i.e., recording human
movements and mapping these data to a humanoid robot. In comparison to hand
animation, this usually results in more realistic animations (not necessarily more
believable). However, it presents the same drawbacks as hand animation in the
sense that it is not adaptive.

• The third approach, inverse kinematics, is a precise mathematical modeling
method. However, analytic solutions work for a few kinds of robots [41]. For
redundant robots, the traditional solutions are pseudoinverse-based approaches
[57]. These approaches need to compute matrix inverse, which may cost much
time in real-time computation. In addition, pseudoinverse-based approaches have
an inner limitation, i.e., they cannot solve inequality problems. In recent years,
optimization methods are preferred and studied widely. Kim proposes an opti-
mization method of a whole-body robot which performs a throwing task [27].
Zhang et al. propose quadratic program (QP) -based motion planning algorithms
that can effectively solve redundancy resolution problems for industrial robots [60,
64, 66]. More importantly, the above QP-based optimization schemes can be used
in the dual-arms situation [65]. This is useful for humanoid robots as it endows
them with the capability to display gestures that are not realizable with the other
two methods. Moreover, it is more adaptive to new situations as the gestures are
generated on-the-fly according to the specificity of a situation.
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11.2.3 Emotional Expression for Robots

This section focuses on the existing work on emotional body expressions that has
been conducted in psychology, computer science, and robotics. Researchers have
categorized the different types of human body language, depending on how it occurs.
The following categorization separates body language into three different areas that
should be considered for robots to express emotion during social interactions.

11.2.3.1 Postures

Postures are specific positions that the body takes during a time frame. Following
the seminal work byWallbott [55], a body of research endeavors to define distinctive
features of postures that correspond to certain emotions [33]. An important source
of information regarding the expression of emotion from static postures comes from
automatic recognition of emotion. For instance, existing studies in this field show
that collar joint angle and shoulder joint angles are elements that can be used to auto-
matically recognize emotions [21, 29]. Moreover, Kleinsmith et al. [28] investigated
cross-cultural recognition of four emotions (anger, fear, happiness, sadness) through
interpretations of body postures [28]. They built a set using actors to perform emo-
tional postures and showed that it was possible for participants to correctly identify
the different emotions [28]. Specific features of body posture have been isolated, in
particular collar and shoulder joint angles which have been found to be expressive
for adults [8, 29] as well as for children [2, 5]. Roether and colleagues investigated
the portraying of emotions through gait. They found that head inclination as well as
the amplitude of the elbow joint angles is particularly salient to the expression of fear
and anger [45]. Thus, a robot displaying emotions has to take up postures appropri-
ate to the emotion. Previous results have shown that this is an effective medium to
convey emotions as it was found that people correctly identify emotions displayed
through postures displayed by a humanoid robot [5, 8].Moreover, work on emotional
behavior generation has shown that by blending key poses, it is possible to generate
a continuous space of emotional expressions [7].

11.2.3.2 Movement

Research in psychology has shown that emotions affect the way movements are exe-
cuted. For instance, Coombes et al. [18] show that exposure to unpleasant stimuli
magnifies the force production of a sustained voluntary movement. Moreover, the
quality of movements seem to be specific to emotion [30, 55]. Movements are effec-
tive clues for judging the emotional state of other people in conjunction with or in
the absence of facial and vocal clues [3, 8]. Thus, a robot displaying emotions should
also do so during, and via, motion. Body movements include the motion as well as
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the manner in which it is performed. Researchers in automatic recognition of emo-
tions have focused on different aspect of movements that can be used to discriminate
between emotions. These aspects are often based on Laban seminal work [30]. For
instance, Camurri et al. [15] used, among others, Quantity of Motion (a measure of
the amount of body motion), Contraction Index (a measure of contraction/expansion
of the body) and Fluidity (a measure of the uniformity of movements’ accelera-
tion). Bernhardt [11] show that movement dynamics, including speed (velocity at
which the limbs are moving), acceleration (change of speed), and jerk (rate change
of acceleration) can be used to capture the emotion expressed through movements.
Interestingly, some of these aspects have been captured by the traditional animation
principles [51]. For instance , one of the principles used in animation is referred
to as “timing” and emphasizes the importance of the speed at which movements
occur [51]. The quality of movements has also been successfully used for virtual
agents such as Greta, to express emotions [24]. Greta uses a set of five attributes to
describe expressivity: Overall Activation (amount of activity, e.g., static versus ani-
mated), Spatial Extent (amplitude of movements, e.g., contracted versus expanded),
Fluidity (smoothness and continuity of movements), Repetition (rhythmic repeti-
tion of the same movement) and Power (dynamics property of the movements, e.g.,
weak versus strong). In this system, these parameters act as filters on the character
animation affecting the strength, fluidity, and tempo of the movements. Roether et
al. [45] systematically investigated features of gait performed in different emotional
states. Their findings highlight the importance of amplitude and speed ofmovements.
These parameters were also successfully reused to modulate gait in order to make
them expressive [45]. Changing the dynamics of movements to express emotions
has also been used in robotics. For instance, Barakova [4] used Laban’s movement
theory to model a small set of emotions using an E-puck robot. They found reliable
recognition of most of the behaviors. However, it is still necessary to build a library
of expressive gestures that will be modified by this set of parameters. Saerbeck and
Bartneck [47] investigated the effect of acceleration (change in speed) and curvature
(change in direction) on the perception of emotions. They found that arousal was
related to acceleration and that valence could be partly encoded in the interaction
between these two parameters. They concluded that more research is still needed in
this field [34]. It should also be noted that body movements can occur in conjunction
with speech and facial expressions, which would also be affected by the emotional
state of the character.

11.2.3.3 Proxemics

Proxemics is the distance between individuals during social interaction. Walters and
colleagues [56] propose a framework for human–robot proxemics that takes into
account a wide range of factors including the physical appearance of the robot and
some of its functionalities. Although this framework did not take it into account,
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Fig. 11.2 Main components of the robot controller

proxemics is also indicative of emotional state. For example, angry individuals have
a tendency to reduce distance during social interaction. This same reduction can also
be observed between intimate individuals. Proxemics cannot therefore be considered
as an emotional expression in itself but is required to complete a representation of
realistic emotional behavior. The reader can refer to [1] for a psychological overview
of proxemics and to [12] for examples of use in robotics. It should be noted that
the Nadine robot used in this chapter does not have the possibility to directly act on
proxemics as it is not mobile. However, proxemics, can still be used to assess the
interaction and how comfortable users are while interacting.

11.2.4 System Overview

The Nadine robot is a realistic human-sized robot developed by Kokoro Company,
Ltd.7 It has 27 degrees of freedom and uses pneumatic motors to display natural
looking movements. Motion planning and control are always an important issue for
robots [38] and are becoming a necessary and promising research area [42, 50]. They
allow the synchronization of animations (predefined and online animations), speech,
and gaze. The following sections describe the core elements of the Nadine robot
controller. These include lip synchronization, blending mechanisms, idle behaviors,
signaling attention, and online motion generation (Fig. 11.2).

7http://www.kokoro-dreams.co.jp/english/.

http://www.kokoro-dreams.co.jp/english/
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Fig. 11.3 Lip-synch for part of the sentence “I am Nadine”. Picture taken from [59]

11.2.4.1 Lip Synchronization

Lip synchronization is part of the core function of the Nadine robot controller. It
ensures that the Nadine robot looks natural when talking. However, implementing
this on a robot such as the Nadine is a challenging task. On one hand, the Nadine
robot is physically realistic raising users’ expectations, on the other hand, it has
strong limitations in terms of the range and speed of movements that it can achieve.
The Cerevoice text-to-speech library8 is used to extract the phonemes as well as to
synthesize the speech. Figure11.3 illustrates the process for the beginning of the sen-
tence “I am Nadine.” First, the following phonemes are extracted: “sil”, “ay”, “ax”,
“m”, “n”, “ey”, “d”, “iy”, “n” along with their durations. Due to the Nadine robot’s
velocity limits, it is not possible to generate lips movements for all the phonemes.
This is why, to maintain the synchronization any phonemes that last less than 0.1
second is ignored and the duration of the next one is extended by the same amount. In
Fig. 11.3 example “ax” is removed and “m” is extended, “n” is removed and “ey” is
extended, and “d” is removed and “iy” is extended. The phonemes are thenmapped to
visemes that were designed by a professional animator. Figure11.3 shows examples
of two visemes (Frames 3 and 10). The transitions between phonemes is done using
cosine interpolation (see Fig. 11.3 frames 4–9). More precisely, the frame at point X
between point A and point B is given as

F(X) = (1 − cos(X ∗ Π)) ∗ 0.5 (11.1)

X = A ∗ (1 − F(X) + B ∗ (F(X)) (11.2)

Moreover, the robot cannot display a “O” mouth movement along with a “Smile.”
Therefore, if a forbidden transition is needed, a closingmouthmovement is generated
prior to display of the next viseme. Synchronization is done so that the predefined
viseme position is reached at the end of each phoneme.

8http://www.cereproc.com/en/products/sdk.

http://www.cereproc.com/en/products/sdk
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Fig. 11.4 Examples of body movements and facial expressions from the library of gestures

11.2.4.2 Predefined Gestures Database

In addition to the lip-synch animation generator, a professional animator designed
predefined animations for the Nadine robot. This is used to display iconic gestures
such aswavinghand.Thepredefinedgestures also include facial andbodily emotional
expressions (Fig. 11.4).Other examples of iconic gestures in the library are headnods,
head shake, etc.

11.2.4.3 Blending Mechanisms

Animations consist of joint trajectories. Each joint is treated independently. Providing
they do not require the same joints, animations are dynamically combined to create
richer display. In case concurrent joints are requested, the currently played animation
is interrupted. This allows the Nadine robot to react promptly and adaptively to
unpredicted situations during interactions.
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11.2.4.4 Idle Behaviors

A professional animator designed a library of animations for idling behaviors. The
animations are played repeatedly and include breathing patterns as well as small arm
movements that are varied depending on the internal state of the robot. The library
also includes different body poses that are used in the background for shifting in
between body postures. The idle behaviors are played simultaneously with other
animations. For instance, if a waving hand gesture is being displayed, the breathing
behaviors are not interrupted. It should also be noted that the idle behaviors continue
to be played on the joints that are not requested (Fig. 11.5).

11.2.4.5 Signaling Attention

To signal attention, the robot is able to move its head so that its face targets. To realize
these behaviors, a geometrical solution based on tangent projection is employed. This
method generates movements that turn the head toward specified points. Moreover,
this geometrical solution takes the physical limits of the robot into consideration.
The reader can refer to [62] for a more complete description. The head movements
are blended and synchronized with all the behaviors of the robot.

11.2.5 Online Motion Generation

Humanoid social robots need to display coordinated and independent arm move-
ments dependingon the actual situation.To achieve this, inverse kinematics/dynamics
approach are typically used that rely on precise mathematical modeling methods.
However, analytic solutions work only for a few robots [41]. For redundant robots
(i.e., robots with more degrees of freedom than needed for an end-effector task
[60]), the traditional solutions are pseudoinverse-based approaches [57]. This typ-
ically implies computing matrix inverse, which is computationally expensive and
may impair real-time systems. In addition, pseudoinverse-based approaches have an
inner limitation that it cannot solve the inequality problems. In recent years, opti-
mization methods are preferred and studied widely. For instance, Kim [27] proposed
an optimization method for a whole-body robot which performs a throwing task.
Zhang et al. propose quadratic program (QP)-based motion planning algorithms that
can effectively solve the redundancy resolution problems for industrial robots [60,
64, 66]. More importantly, the above QP-based optimization schemes can be used in
the dual-arms situation [65]. Hence, it was selected for the Nadine robot controller.

A kinematicsmodel is necessary to generatemotions dynamically. The kinematics
model of the Nadine robot includes two parts, i.e., forward kinematics model and
inverse kinematic model. The forward kinematics model outputs the end-effector
(hand) trajectories of the robot if the joint vector of dual-arms is given, while the
inverse kinematic model outputs joint vector of dual-arms if the end-effector (hand)
path is known. Mathematically, given joint-space vector θ(t) ∈ Rn , the end-effector
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Fig. 11.5 Examples of emotional expressions from the library of postures
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position/orientation vector r(t) ∈ Rm can be formulated as the following forward
kinematic equation:

r(t) = f (θ(t)), (11.3)

where f (·) is a smooth nonlinear function, which can be obtained if the structure and
parameters of a robot are known; n is the dimension of joint space;m is the dimension
of end-effector Cartesian space. Conversely, given end-effector position/orientation
vector r(t) ∈ Rm , joint-space vector θ(t) ∈ Rn can be denoted as

θ(t) = f −1(r(t)), (11.4)

where f −1(·) is the inverse function of f (·) in Eq. (11.3). For a redundant arm
system, i.e., n > m, the difficulty is that inverse kinematics equation (11.4) is usually
nonlinear and under-determined, and difficult (impossible to date) to solve. The key
of online motion generation is how to solve the inverse kinematics problem.

11.2.5.1 State of Art

The dual-arms of a humanoid robot is a redundant system. It is therefore difficult to
obtain analytic solutions. Classical approaches for solving the redundancy-resolution
problem are the pseudoinverse based methods, i.e., one minimum-norm particular
solution plus a homogeneous solution [58]. Based on such a pseudoinverse-type
solution, many optimization performance criteria have been exploited in terms of
manipulator configurations and interaction with the environment, such as joint-limits
avoidance [16, 36], singularity avoidance [49], andmanipulability enhancement [35].
Recent research shows that the solutions to redundancy resolution problems can be
enhanced using optimization techniques based on quadratic program (QP) methods
[14, 17, 23, 26, 64]. Compared with conventional pseudoinverse-based solutions,
such QP-based methods do not need to compute the inverse of the Jacobian matrix,
and can deal with the inequality and/or bound constraints. Thus, QP-based methods
have been employed. In [17], considering the physical limits, Cheng et al. proposed
a compact QP method to resolve the constrained kinematic redundancy problem. In
[66] Zhang and Zhang, implement a QP-based two-norm scheme on a planar six-
DOF manipulator. However, the above methods only consider a single arm and are
therefore not directly applicable for two-arms of the humanoid robot. Hence, a QP-
based dual-arms kinematic motion generation scheme is proposed, and a simplified
recurrent neural network is employed to solve the QP problem.

11.2.5.2 QP-Based Redundancy Resolution Scheme for Nadine Robot

In our setting, the robot is expected to generate social gestures and motions dynam-
ically according to the situation. For instance, the handshake is commonly used as
a greeting at the beginning and end of an interaction. Moreover, in the future, this
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will allow the robot to communicate through touch, which is common in human–
human interaction. Such gestures cannot be included in the predefined library as
they need to be adapted to the current user’s position on-the-fly. In order to generate
motion dynamically, the forward kinematic equations of dual-arms are first built.
Then they are integrated into a quadratic programming formulation. A simplified
recurrent neural network is used to solve the quadratic programming. Thanks to this
method, the robot is able to stretch out its arm and touch the user’s handwhen needed.

The forward kinematics model considers the robot’s arms. Each arm has 7 degrees
of freedom. Given the left arm end-effector position vector pendL ∈ Rm , the right
arm end-effector position vector pendR ∈ Rm and their corresponding homogeneous
representation rL = rR ∈ Rm+1 with superscript T denoting the transpose of a
vector or a matrix, we can obtain the homogeneous representations rL and rR from
the following chain formulas, respectively.

rL(t) = fL(θL) = 0
1T · 12T · 23T · 34T · 45T · 56T · 67T · pendL, (11.5)

rR(t) = fR(θR) = 0
8T · 89T · 910T · 1011T · 1112T · 1213T · 1314T · pendR, (11.6)

where i
i+1T with i = 0, 1, . . . , 14 denote the homogeneous transform matrixes. In

this paper, n = 7 and m = 3.
Inspired by the work on one-arm redundant system [66], we try to build a model

based on quadratic programming as shown below.

minimize ϑ̇T(t)Mϑ̇(t)/2 (11.7)

subject to j (ϑ)ϑ̇(t) = Υ̇ (t), (11.8)

ϑ−(t) ≤ ϑ(t) ≤ ϑ+(t), (11.9)

ϑ̇−(t) ≤ ϑ̇(t) ≤ ϑ̇+(t), (11.10)

where ϑ(t) = [θTL , θTR ]T ∈ R2n ; ϑ−(t) = [θ−T
L , θ−T

R ]T ∈ R2n ; ϑ+(t) =
[θ+T

L , θ+T
R ]T ∈ R2n ; ϑ̇(t) = dϑ/dt = [θ̇TL , θ̇TR ]T ∈ R2n ; ϑ̇−(t) = [θ̇−T

L , θ̇−T
R ]T ∈

R2n ; ϑ̇+(t) = [θ̇+T
L , θ̇+T

R ]T ∈ R2n . Υ̇ (t) = [ṙTL ; ṙTR]T ∈ R2n . Matrix j is com-
posed by Jacobian matrixes JL and JR; M is a n × n identity matrix. Specifically,
M ∈ R2n×2n is an identity matrix, and

j =
[

JL 0m×n

0m×n JR

]
∈ R2m×2n .

For the sake of calculations, the QP-based coordinated dual-arm scheme can be
formulated as the following expression constrained by an equality and an inequality:

minimize ‖ϑ̇(t)‖2/2 (11.11)

subject to J (ϑ)ϑ̇(t) = Υ̇ (t), (11.12)

ξ−(t) � ϑ̇(t) � ξ+(t), (11.13)
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where ‖ · ‖ denotes the two norms of a vector or a matrix. Equation (11.11) is
the simplification of Eq. (11.7). Equation (11.13) is transformed by Eqs. (11.9)
and (11.10). In Eq. (11.13), the i th components of ξ−(t) and ξ+(t) are ξ−

i (t) =
max{ϑ̇−

i , ν(ϑ−
i (t) − ϑi )} and ξ+

i (t) = min{ϑ̇+
i , ν(ϑ+

i (t) − ϑi )} with ν = 2
being used to scale the feasible region of ϑ̇ . ϑ− = [ϑ−T

L , ϑ−T
R ]T ∈ R2n ; ϑ+ =

[ϑ+T
L , ϑ+T

R ]T ∈ R2n . ϑ̇− = [ϑ̇−T
L , ϑ̇−T

R ]T ∈ R2n ; ϑ̇+ = [ϑ̇+T
L , ϑ̇+T

R ]T ∈ R2n .
In the subsequent experiments, the physical limits ϑ+

L = [π/20, π/10, π/8, π/2,
0, 2π/3, π/2]T, ϑ−

L = [0,−3π/10,−7π/120, 0,−131π/180, 0, π/9]T, ϑ+
R =

[0, 3π/10, 7π/120, π, 0, 2π/3,−π/2]T, and ϑ−
R = [−π/20,−π/10,−π/8, π/2,

−131π/180, 0,−8π/9]T.

11.2.5.3 QP Conversion into PLE

According to [66], Eqs. (11.11)–(11.13) can be converted into a linear variational
inequality. That is, to find a solution vector u∗ ∈ Ω w.r.t.

(u − u∗)T(Γ u∗ + q) ≥ 0, ∀u ∈ Ω. (11.14)

Equation (11.14) is equivalent to the following system of piecewise-linear equations
(PLE) [66]:

ΦΩ(u − (Γ u + q)) − u = 0, (11.15)

where ΦΩ(·) : R2n+2m → Ω is a projection operator, i.e.,

⎧
⎪⎨

⎪⎩

u−
i , if ui < u−

i ,

ui , if u−
i � ui � u+

i

u+
i , if ui > u+

i ,

, ∀i ∈ {1, 2, . . . , n + m}.

In addition, Ω = {u ∈ R2n+2m |u− ≤ u ≤ u+} ⊂ R2n+2m ; u ∈ Rm is the primal-
dual decision vector; u− ∈ Rm and u+ ∈ Rm are the lower and upper bounds of u,
respectively; ω is usually set a sufficiently large value (e.g., in the simulations and
experiments afterward, � := 1010). Specifically,

u =
[
ϑ(t)

ι

]
∈ R2n+2m, u+ =

[
ζ+(t)
ω1ι

]
∈ R2n+2m, u− =

[
ζ−(t)
−ω1ι

]
∈ R2n+2m,

Γ =
[

M −jT

j 0

]
∈ R(2n+2m)×(2n+2m), q =

[
0

−Υ̇

]
∈ Rn+m, 1v := [1, . . . , 1]T.
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11.2.6 QP Solver

Being guided by dynamic-system-solver design experience [61, 63], we can adopt
the following neural dynamics (the simplified recurrent neural network [63]) to solve
Eq. (11.15).

u̇ = γ PΩ(u − (Mu + q)) − u, (11.16)

where γ is a positive design parameter used to scale the convergence rate of the
neural network. The lemma proposed in [63] guarantees the convergence of neural
network formulated by Eq. (11.16) (with proof omitted due to space limitation).

Lemma: Assume that the optimal solution ϑ� to the strictly convex QP problem
formulated by Eqs. (11.11)–(11.13) exists. Being the first 2n elements of state u(t),
output ϑ(t) of the simplified recurrent neural network in Eq. (11.16) is globally
exponentially convergent to ϑ�. In addition, the exponential-convergence rate is
proportional to the product of γ and the minimum eigenvalue of M [63].

11.3 Example of Research Applications

11.3.1 Signaling Awareness of Sound

An important aspect of research is to make robots aware of sounds within their envi-
ronments. For instance, Chap.3 presents methods for acoustic source localization.
This allows the Nadine robot to know fromwhich direction the voice is coming from
and to classify different types of sounds such as impulsive (e.g., clapping hands)
and nonimpulsive sound (e.g., phone ringing). In this case, the robot controller pre-
sented in this chapter is responsible for sending social signals and reacting to what
is happening. For instance, if an object drops on the floor, the Nadine robot is able
to speak, look at the object, and point toward the object in a highly synchronized
way. Socially, she is able to signal to a user that she drops something and point in the
direction of the fallen object. These highly synchronized social behaviors all result
from the robot controller presented in Sect. 11.2.4.

11.3.2 Human–Robot Interaction with Upper Body Language
Understanding

Chapter3 introducesmethods to understand gesturesmade by the user. Thanks to this
work, the Nadine robot is able to understand gestures such as waving hands, shaking
hands, head nods, and object manipulations. The new robot controller described
in this chapter allows for Nadine to react socially and appropriately. For instance,

http://dx.doi.org/10.1007/978-3-319-19947-4_3
http://dx.doi.org/10.1007/978-3-319-19947-4_3
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if a user wishes to shake hands with it, the robot understands the intention and
shakes hand with the user while synchronously verbally greeting her and looking
at her. On the robot controller side, this is done using the methods described in
Sect. 11.2.4. While the gesture recognition (Chap.3) provides understanding of the
users’ communication intent, the robot controller provides the means to react to it.
An envisioned scenario based on this research is to use a social robot for teaching
where they need to understand the user’s state and intention and react appropriately
while delivering the lecture content.

11.3.3 Signaling Attention

An important aspect of social interaction is gaze. Indeed, gaze signal attention and
should be displayed synchronously with ongoing actions. The robot controller allows
for the synchronization of these movements. This can be used to signal attention,
but also as described in the section above, to look at addressees when the robot is
speaking. Eye movements are not yet part of the robot controller, however, they will
be integrated in the near future. Indeed, eye movements within the robot controller
should improve its capability to signal attention but also be carefully synchronized
with speech to improve the realism and believability of the generated behaviors.

11.4 System Implementation

The robot controller is implemented using a framework called Integrated Integration
Platform (I2P) that is specifically developed for integration. I2Pwas developed by the
Institute forMedia Innovation.9 This framework allows for the link and integration of
perception, decision, and action modules within an unified and modular framework.
The platform uses client–server communications between the different components.
Each component has an I2P interface and the communication between the client and
servers is implemented using Thrift.10 It should be noted that the framework is highly
modular and components are extendable.

11.5 Conclusions

Throughout this chapter, the main areas of research for nonverbal behaviors gen-
eration are highlighted. There are still a number of research avenues that need to
be addressed, the first being adaptivity. The nonverbal behaviour we display while

9http://imi.ntu.edu.sg/Pages/Home.aspx.
10http://thrift.apache.org/.

http://dx.doi.org/10.1007/978-3-319-19947-4_3
http://imi.ntu.edu.sg/Pages/Home.aspx
http://thrift.apache.org/
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interacting is highly volatile. Indeed, the way we interact depends on the topic of
the conversation, the surrounding context, the person with whomwe interact, etc.We
also vary our nonverbal behaviors while interacting with the same person in different
contexts. Social robots are not yet able to display this kind of flexibility. The work
presented in this chapter allows the Nadine robot to express herself using a combi-
nation of body movements, facial expressions, and verbal language simultaneously,
aiming to give the users a vivid experience. The future work will aim at making these
behaviors adaptive and peronalized to provide users with natural interactions.
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Chapter 12
Multiple Virtual Human Interactions

Samuel Lemercier and Daniel Thalmann

Abstract Autonomous virtual humans need to be able to interact between each oth-
ers in virtual environments. These interactions are essentials for the generation of
realistic behaviours from virtual humans. This chapter presents a review about inter-
actions between real and multiple virtual humans, as well as between themselves.
After presenting the problematics and approaches raised by virtual humans interac-
tions, different methods for simulating such interactions are discussed. Interactions
between real and multiple virtual humans are presented first with a focus on virtual
assistants and social phobia examples. Interactions between virtual humans are then
adressed, particularly gaze attention of other characters and navigation interactions
between multiple virtual humans.

12.1 Introduction

Autonomous virtual humans need to be able to interact between each other in virtual
environments. These interactions are essential for generation of realistic behaviors
from virtual humans.

Several properties are required to make good interaction between multiple virtual
humans.

Performance is a key requirement as interactions have to be done in real time.
Virtual humans have to immediately react to the user’s actions. However, the more
complicated the interaction is, the more time-consuming it is going to be. Moreover,
themore the virtual humans, themore the interactions, and themore the time required.

Another important criteria is autonomy. Virtual humans are expected to be able
to take decisions about any event that may happen during a simulation. While con-
trolled virtual humans scrupulously follow the procedure provided by the scenario,
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autonomous virtual humans are supposed to adapt their behaviors according to the
situation in which they are.

Finally, virtual humans’ realism is the main criteria as long as the interaction is
performed in real time. Realism can be visual through the virtual human appearance.
From a behavioral point of view, the aim is to get a virtual human that behaves in a
natural way, such as a real human would. High realism has to be obtained for each
individual; however, on another scale the behavior of the group or the population
itself also has to be realistic. An important question that is still raised is how to
evaluate the realism of virtual humans’ behavior both at the individual and at the
group or population scale.

Two approaches can be considered to generate such interactions:

• Acentralized approach inwhich the virtual humans are driven by a central process-
ing unit that is omniscient and drives all the virtual humans;

• An agent-based approach in which each virtual human has its own behavior and
reacts to a situation according to its perception of the virtual environment.

This second approach is generally preferred as it provides more autonomy to
virtual humans and allows more realism in their behavior, even if computation costs
may increase.

This chapter presents a review of multiple virtual human interaction and focuses
on how these interactions are modeled for navigation purposes.

12.2 Interactions Between Real and Virtual Humans

Interactions between real and multiple virtual humans have been addressed in some
particular scenarios. Wang et al. [66] present an interactive multi-agent system that
allows the user to interact in real time with a crowd of virtual humans in immersive
environments. Through a natural interface using Kinect sensor device and gesture
recognition, the agents can react to the virtual human’s command by changing their
moving behavior. Interaction with virtual humans has been studied in different con-
texts such as virtual storytelling [5], virtual assistants, or social phobia scenarios, for
example.

12.2.1 Social Channel and Virtual Assistants

An Interactive Narrative Space [17] denotes a narrative environment allowing for
interactive interventions from the participants side that affects the evolution of the
story. The Interactive Narration Space should provide proper semantics allowing for
expression and execution of simple interactive stories oriented toward pedagogical
content. Although similar to storytelling engines, the Interactive Narrative Space
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concept is rather a pedagogical/therapeutic engine and relies on the synergy of sto-
rytelling and training/therapy.

In the context of virtual reality simulation, the social channel denotes an interaction
paradigm relying on a direct and humanlike communication between the participant
and virtual humans. In otherwords, interaction between the participant and the virtual
reality environment is mediated through virtual humans, who execute orders, ask
questions, speak about simulation states, etc. Their presence is seamlessly combined
into the fabric of the pedagogical/therapeutic story, hence they are not perceived
explicitly as an interaction method. These special virtual humans are called virtual
assistants and they are semi-autonomous.

The social channel defines negotiation-based interactions, where virtual humans
have the following roles:

• Virtual assistants can refuse to execute orders that would push the story into
undesired directions (from the pedagogical/therapeutic viewpoint). However, such
behaviors are not frustrating for the participant, as they take place in a social-
interaction context (as opposed to human–machine interaction, which assumes
absolute superiority of human over machine).

• Virtual assistants encourage, suggest, and prompt the user to perform certain
actions. This allows the trainer/therapist to guide the participant through the inter-
active scenario.

• The Virtual assistant is perceived by the trainee/patient as an inherent element
of the evolving scenario. At the same time, the virtual assistant’s main role is
to mediate the interactions between the Interactive Narrative Space and the sub-
ject. During the simulation, virtual assistants (decision executors) accompany the
trainee/patient (the decision-maker). The latter navigates, assesses the situation,
and makes decisions by issuing natural voice commands. Virtual assistants wait
for commands and execute actions showing the expected skills.

• Finally, in case of lack of cooperation or too slow interaction from the participants’
side, virtual assistants maymake decisions by themselves. This again is acceptable
from the social-behavior point of view, and may even have stimulating effects on
the participant; encouraging him to take an active role can be used as a positive
stress-generating factor. Negotiation and mediation are natural interaction modes
for the trainee/patient, while the trainer/therapist can control the narration into
pedagogically/therapeutically meaningful directions: the social channel forms the
bridge that allows for compromising and masking of the inherent contradiction
between interaction and narration.

12.2.1.1 Example: A Virtual Assistant for Basic Life Support

The goal of this scenario is to train for the Basic Life Support (BLS) medical proce-
dure [36]. The trainee is immersed in a virtual space (in an office or in the street, as
shown in Fig. 12.1) and discovers a man lying on the ground. He has to give BLS to
the victim by giving orders to a young girl (the virtual assistant). She possesses all
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Fig. 12.1 Basic life support at the office and in the street

the skills required (e.g., mouth-to-mouth, chest compression), but she is unsure and
hesitates about the order in which to proceed; guiding her is the job of the trainee.
The latter will interact with the virtual assistant and apply his theoretical knowledge
about the BLS procedure, confronting it with tight time constraints in a semi-real
experience. The user navigates the scene, assesses the situation, and makes decisions
by issuing natural voice commands. The virtual assistant waits for commands and
executes the actions. If the users commands are correct, the victim recovers. In cases
where the user provides incorrect commands, the virtual assistant may refuse to do
harm to the victim; in such situations, the virtual assistant may prompt the user for
retrial, or may suggest an alternative possibility.

12.2.2 Virtual Humans in Social Phobia

There are also many applications where we need to simulate people and how to
interact with them. For example, we can use virtual humans to train people who have
social phobia [12, 25, 47] (see Fig. 12.2). A review of the first works proposed in
this topic is presented by Krijn et al. [26].

The real patient will be able to discuss with them. The advantage is that we may
easily change the type of people, their age, their sex, their attitude, which is not easy
with real people.

A therapist is helping a patient overcome a fear of public speaking. To overcome
this fear, the patient has to perform while immersed in a virtual environment con-
sisting of a seminar room and a virtual audience, which can react to the user in an
autonomous way. The therapist can choose the type of virtual audience (for instance,
one that is aggressive or sexist) that will result in a more effective treatment for
the patient. This framework [12] allows the real-time animation of a small group of
characters. They are endowed with gaze control and facial animation. Scripts allow
for interactive control of the characters in order to make them talk , for example; this
consists in playing a prerecorded sound and animating the characters’ face and eyes.

These scenarios can either be viewed on a monitor, in an HMD, or on a large
back-projection screen. While using the HMD, the users’ head can be tracked in
order to modify the images with regard to head rotation for enhanced immersion.
While using the back-projection screen, the user can be equipped with a coupled eye-
and head-tracking device in order to determine where the user is looking on screen.
The combination of the two allows freedom of movement in front of the screen.
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Moreover, as in [16], an eye-tracking data visualization tool can be used. It is
based on a gaze-map chromatic gradient coding. This allows representing the eye-
tracked points on the virtual character even if it is dynamic. It therefore serves as
assessment tool to analyze recorded eye-tracking data and illustrate possible eye
contact avoidance behaviors. More details on this method can be found in [16].

12.2.2.1 Several Environments

The main scenes used in [12, 16] are depicted in Fig. 12.2. They were all designed
to exercise public speaking.

The first scene is an office environment, depicted on the top left and top right of
Fig. 12.2. Two different scenarios have been created with this environment; the first
is an interview with the boss of a company. This was further diversified by letting
the boss be either a man or a woman. The second scenario takes place in another
room in the same environment and consists in sitting in front of five people from the
company and having to give a speech.

The second environment, depicted in the middle left of Fig. 12.2 is a bar. The
scenario consists of being seated facing a person in a bar. The user would have
to imagine that this person is a new friend or a new colleague. Here as well, this
character can be either a man or a woman. Other characters are seated at different
tables in the bar. The third environment is a cafeteria, depicted in the middle right of
Fig. 12.2. This scenario is actually very similar to that in the bar. Here as well, the
user is seated facing a person, a man or a woman. Some social phobic people are
unable to eat in front of others. Food was thus added on a plate in front of the user.

The last environment used in this context is an auditorium, illustrated at the bottom
left and bottom right of Fig. 12.2. Various scenarios have also been created with this
setup. In the first, the user is standing in the scene and has to give a speech or a
presentation in front of a jury of five characters. In the second scenario, the user
is also standing in the scene, but has to give a speech or a presentation in front
of approximately 20 characters. Finally, in the last scenario, the user is seated at
the back of the auditorium and has to ask questions to the character in the scene,
presenting something. Here as well, approximately 20 other characters are seated in
the auditorium.

12.3 Interactions Between Virtual Humans

12.3.1 Virtual Human Behavior

Thevirtual human’s behavior is a result of the different interactions it haswith its envi-
ronment. Several cognitive models have been proposed to represent human decision-
making such as SOAR [28], ACT-R [1], PECS [63], CLARION [61] or PMFs [58].
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Fig. 12.2 Various VEs used for public speaking exercises. Top left Job interview simulation. Top
right In an office, facingfive people.Middle left Meeting in a bar.Middle right Meeting in a cafeteria.
Bottom left Speech in front of an auditorium. Bottom right Sitting at the back of an auditorium

Cognitive models define how virtual humans perceive and interact with their
environment, which includes other virtual humans. Paris and Donikian [44] pro-
pose a decision process based on Newell’s [40] architecture in which virtual human
interactions are separated into different abstraction layers, from physical to social
interactions.

Virtual humans often interact with environments through events. The action of
a virtual human can generate an event that will make another virtual human react
and this will generate an interaction between virtual humans. The event can be
directly sent to a particular virtual human through amessage. Yu and Terzopulos [70]
introduce a decision network framework for advanced behavioral modeling in virtual
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humans. Each virtual human is given a probability for a reactive decision to an event
based on several features concerning the event and the agent. They use tables to store
each possibility that can happen and give it a probability. Action selection is thus
manually coded. Stocker et al. [60] introduced the notion of smart events. Smart
events inform virtual humans about plausible actions to undertake. Different traits
are given to the agents. Then a virtual human reacts to an event depending on both
the nature of the event and the virtual human features. A similar work was realized
with smart objects by [20]. Smart objects provide the expected behaviors to virtual
humans about how they could be used.

In [33], virtual humans are guided by purposes. They differentiate three types
of actions: scheduled, reactive, and need-based. They use the OCEAN psycholog-
ical model [67] based on five factors (openness, conscientiousness, extroversion,
agreeableness, and neuroticism) to manage need-based actions. Reactive actions
are given high priority as they have to be done immediately after an event. Guy
et al. [13] also use character traits, here to modify the locomotion behaviors of their
virtual humans.

Virtual humans activity schedules can be represented in different ways: through
finite state machines (FSM) [29, 60] or behavior trees [5, 57] for example.

12.3.2 Gaze Animation and Attention

Attentional behaviors should be added to the virtual humanmotion to increase realism
and enhance considerably the interaction between virtual humans [11]. It can be
achieved in two steps. The first step is to define the interest points, i.e., the points
in the space that are considered as interesting and that therefore should attract the
characters’ attention. Several different methods can be used to do this depending on
the result we want to obtain:

• The interest points can be defined as regions in space that have been described as
interesting. In this case, they will be static.

• They can be defined as characters evolving in space. All characters may then
potentially attract the attention of other characters as long as they are in their field
of view. In this case, we have dynamic constraints, as the characters move around.

• They can be defined as a user if this user is tracked while interacting with the
system. In this last case, a coupled head- and eye-tracking setup allows to define
the position of the user in 3D space. Characters may then look at the user.

When considering characters attracting the attention of other characters, one
method is to automatically detect the interest points for each character from the
trajectories of the other characters. To do this, score functions may be used with the
following components:
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• Proximity: closer objects or people seem larger and attract attention more easily
than those far away. Moreover, those that are closer occlude those that are further
away.

• Relative speed: a person will be more prone to set his/her attention on something
moving fast than on something moving slowly relative to his/her own velocity.

• Relative orientation: we are more attentive to objects coming toward us than those
moving away from us. Moreover, something coming toward us seems to become
larger.

• Periphery: we are sensitive to movements occurring in the peripheral vision. More
specifically, to objects or people entering the field of view (see Fig. 12.3 left).

The second step to obtain the desired attentional behaviors consists in computing
the displacement map that allows for the current character posture to achieve the gaze
posture, i.e., to satisfy the gaze constraints (interest points) defined by the scoring
function. Once the displacement map has been computed, it is dispatched to the
various joints composing the eyes, head, and spine in order for each to contribute to
the final posture. Finally, this displacement is propagated in time for looking at or
looking away motions to be smooth, natural, and humanlike.

12.3.3 Interactions Through Navigation

The navigation task of virtual humans have also addressed themultiple virtual human
interaction problem. Many kinds of models have been proposed to simulate the
navigation of virtual humans in their environment. Agent-based models identify the
interactions between each individual and its neighborhood to influence its behavior.
Such models are thus related to our problematic, and different kinds of interactions
have been modeled. Most of the models propose to directly control the velocity of
the virtual humans, except force-based models.

Fig. 12.3 Example of attention and gaze animation
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12.3.3.1 Collision Avoidance Behavior

Collision avoidance interaction is a research topic that has receivedmuch attention in
the past years. Indeed, collision avoidance is a key factor for the behavioral realism
perceived by the user. Moreover, increasing the number of simulated virtual humans
brings problems of performance. Several approaches have been proposed to address
these challenges.

Cellular automatamodels are based on a space discretization in cells. The principle
is that each virtual human is on a cell and can only go to an empty cell. In general, the
environment is represented by a bidimensional grid of cells. At each time step, each
virtual human can reach an adjacent cell according to its preferred direction and a
probabilistic approach [4, 54]. Kirchner et al. [24] looked after discretization effects
and gave the possibility to virtual humans to fill more than one cell and to reach
speeds higher than one cell per time step. Such an approach simplifies the expression
of the interactions between virtual humans but the discrete aspect of the trajectories
generates limitations in terms of realism and believability (Fig. 12.4).

Introduced by Helbing andMolnár [15], force-based models are inspired by New-
tonian physics and consider that a virtual human is subject to attractive and repulsive
forces that define its acceleration according to Newton’s second law:

∑
F = m × a, (12.1)

where
∑

F is the sum of the forces that are applied to a body of mass m, and a.
Attractive forces make the virtual human go toward a goal while repulsive forces
solve collision avoidance issues between virtual humans. These models are efficient
in terms of computation time but suffer from a lack of realism and the presence of
many artifacts. Improvements have been proposed [19, 46] but there are still non-
realistic behaviors, in particular, at the microscopic scale and with low densities of
virtual humans.

While force-based models only take into account the position of the different
obstacles, geometric models also take into account the obstacles’ relative velocities

Fig. 12.4 Resolution of a collision conflict through the probabilistic approach presented in [4]
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[22, 45, 49, 65]. These models are thus considered predictive as they are able to
predict a future collision as long as the virtual human trajectory remains the same.
Indeed, they determinewhich velocitieswill allow a virtual human to avoid a collision
with the surrounding obstacles. Geometric models thus bring a high level of realism
at the microscopic scale and are able to reproduce several macroscopic phenomena.
There are still open questions about the combination of different interactions and on
how to incorporate different sociocultural factors. The prediction proposed by these
models is mainly linear and does not consider other virtual human intentions, which
are however taken into account in real cases (Fig. 12.5).

Vision-based models introduce the perception-action loop into the virtual human
behavior for its navigation task by simulating sensory perception [6, 9, 41–43, 51,
62]. They generally offer a high level of realism but suffer from efficiency issues, as
ray-casting is a costly tool in terms of computation time. These models still need to
be validated from real observations (Fig. 12.6).

In rule-basedmodels, each virtual humanbehavior is subjected to rules that depend
on the situation the virtual human is in. Very different rules can be defined and
these models are quite heterogeneous [21, 30, 39, 53]. Rule-based models explicitly
express the behavior of a rule. These rules generally come from observation and
bring about realistic behaviors. However, challenges exist about how to combine
these rules as well as about the effects of such combinations, and there are still
open questions about the validity domain and the completeness of these models.
Most of the models presented here only address the navigation task as a collision
avoidance problem. Other kinds of interactions still exist in human behavior when
navigating within a crowd. Rule-based models define in general more than only the
collision avoidance interaction. They can also model following or group behaviors
for example, and define in which conditions such interaction has to be applied to the
virtual human (Fig. 12.7).

Fig. 12.5 Velocity adaptation according to a moving obstacle in geometric models. a RVO2
model [65]. b Pettré’s model [49]
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Fig. 12.6 Vision-based models. a Destination update according to the environment explo-
ration [62]. b Velocity adaptation according to the mobile object perception [43]

Fig. 12.7 Somebehavior rules proposed byReynolds [53].aFlow following.bSeparation. cLeader
following

12.3.3.2 Group Behavior

Humans often move in groups rather than alone during their everyday life. Several
works have been carried out on groups’ behaviors during navigation. The first work
was probably done by Reynolds [52], who simulated flocks, herds, and schools
behaviors for animation purposes. Several models have been proposed to model
group cohesion. Thesemodels are often integrated in collision avoidance simulations
and are suited for a type of collision avoidance model such as cellular automata [35],
force-based [3, 37], rule-based [39, 53], or velocity-based [23, 71] models.

Musse andThalmann [39] present a systembased on amultilevel hierarchy formed
by crowd, groups, and agents on which they can manage the agents’ degree of auton-
omy. They define rules to model flocking formation in groups. In [3, 37, 59], groups
exist through an attractive force between the agents of the same group. Schuerman
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et al. [55] introduce a higher level of agents to create groups and facilitate navigation
between groups of people. Qiu and Hu [50] store intragroup and intergroup rela-
tionships in matrices and produce different group shapes in their simulations. Peters
et al. [48] also use matrices to represent groups. They contain the level of cohesion
between themembers of a group, i.e., their tendency tomaintain a spatial relationship
with each other. Karamouzas and Overmars [23] consider each group as an entity
itself with its own position, velocity, and goal. At each time step, they first determine
the formation and the velocity of the group and then solve the local interactions
between agents with a velocity-based approach using a cost function. They strive to
keep coherent groups and avoid making them split. In [71], each member is given a
communication value and the formation of the group depends on the communication
between its members. A group member is given a desired velocity which results
from its goal and its willingness to stay in the group. They also construct a virtual
character representing the whole group to manage collisions with other agents and
propose a heterogeneous interaction between walkers by playing on their reaction
flexibility. Their algorithm allows groups to split if necessary. Some studies only
focus on simulating small groups of 2, 3, or 4 pedestrians [23, 37, 71].

Some recent works have also been realized on how a virtual human considers
a group during its navigation task. These works do not focus on social groups by
trying to bring virtual humans together. Rather, they try to simulate how a virtual
human considers and avoids a group of virtual humans. Golas et al. [10] propose a
probabilistic approach to take into account the uncertainty of long-range collision
prediction. He and van den Berg [14] introduce a mesoscopic layer to cluster agents
into groups and adapt their preferred velocity to avoid them.

12.3.3.3 Following Behavior

About following behavior, few models have been proposed so far. It has mainly been
included in group behavior as several group behavior models propose a follow-the-
leader approach [3, 34, 39]. In follow-the-leader approaches, each following virtual
human tries to follow one leader while avoiding the other virtual humans, including
the ones from the group.

Pelechano et al. [46] use influence areas to model following behavior; if a virtual
human’s influence area is free, then it can move on. Aw et al. [2] propose a road
traffic model that could also be applied to walking virtual humans (Fig. 12.8).

Psychologists have also studied such behavior by studying humans breaking
behavior through visual control [8, 31, 69].

In [53] a following behavior is also proposed by combining several rules. It con-
sists of targeting a point located just behind the leader:

v(t + 1) = vmax ∗ d(t) − doffset
dslow

, (12.2)
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Fig. 12.8 Simulating groups of people in [66]

where v(t + 1) is the agent velocity at time t + 1, vmax the comfort velocity, d(t)
the distance to leader at time t , doffset the offset distance, and dslow the distance from
which the follower starts to slow down.

Lemercier et al. [32] aim at modeling and simulating the following interactions
between individualsmoving in crowds. They built up a kinematic database to observe
following behaviors during pedestrian groupsmovement froman original experimen-
tal process using motion capture. From this database they present a detailed analysis
of these data by highlighting both the nature of the local interactions between partici-
pants and the global patterns that emerge from the combination of these interactions,
in particular, the formation of propagating speed waves. Based on this analysis, they
propose a realistic model of following behavior between pedestrians calibrated on
the experimental data that controls the acceleration of the virtual human instead of
directly controlling its velocity:

a(t) = C · Δv(t − τ) · ργ (t), (12.3)

where a(t) is the tangential acceleration at time t , Δv(t) the relative speed between
follower and leader at time t , τ a delay parameter, andρ the local density (ρ = 1/Δp),
which is the multiplicative inverse of the distance, C , and γ parameters.

Simulation results are evaluated on their capacity to reproduce the observed
macroscopic patterns (Fig. 12.9).
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Fig. 12.9 Waiting queue simulated in [32]

12.3.3.4 Evaluating Models

One of the main upcoming challenges is to be able to evaluate the quality of virtual
human behaviors. Such evaluation would enable to compare the behavioral realism
of different models.

A first way to evaluate the quality of virtual humans behaviors is through user
studies, where real humans observe and rate the believability of virtual human behav-
iors [27].

In the navigation problematic, another approach is also used. Observations of real
humans’ behaviors have been carried out to evaluate navigation behaviors. Some
studies have been realized about the formation of pedestrian lanes. Yamori [68]
observed lane formation at a crosswalk while [38] studied their conditions of appari-
tion in an experimental setup. Daamen and Hoogendoorn [7] carried out experiments
to study unidirectional and bidirectional traffic, crossing situations and bottlenecks
(Fig. 12.10).

Several studies have also been carried out on groups dynamics about their size,
their shape, and their evolution according to the environment conditions [37, 48].
There have also been studies of following behaviors.

Several observations have been carried out in the context of unidirectional traffic
to study the fundamental diagram that expresses the relation between human speed
and their density [18, 56, 64] (Fig. 12.11). The dynamics of speed waves have also
been addressed [18].

It is however still challenging to evaluate such behaviors due to the chaotic aspect
of multiple humans’ decisions, particularly when considering both microscopic and
macroscopic scales.
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Fig. 12.10 Experimental studies on crowd dynamics. a Bottleneck and crossing observations by
Daamen andHoogendoorn [7]. bObservation of lane formation byMoussaïd et al. [38]. c Following
behaviors observed by Jelić et al. [18]

Fig. 12.11 Fundamental
diagram data acquired in [18,
56, 64] and simulation
results obtained in [32]

12.4 Conclusion

This chapter proposes a review of the interactions between real and multiple virtual
humans. After a presentation of the problematics and approaches raised by virtual
human interactions, different methods for simulating such interactions have been
discussed. First, interactions between real and multiple virtual humans have been
presented, with a focus on virtual assistants and social phobia examples. Then inter-
actions between virtual humans have been adressed, particularly, gaze attention of
other characters and navigation interactions between multiple virtual humans.
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Chapter 13
Multimodal and Multi-party Social
Interactions

Zerrin Yumak and Nadia Magnenat-Thalmann

Abstract Virtual characters and robots interacting with people in social contexts
should understand the users’ behaviours and respond back with gestures, facial
expressions and gaze. The challenges in this area are the estimation of high level
user states fusing low level multi-modal sensory input, taking socially appropriate
decisions using this partial sensory information and rendering synchronized and
timely multi-modal behaviours based on taken decisions. Moreover, these characters
should be able to communicate with multiple users and also among each other in
multi-party group interactions. In this chapter, we provide an overview of the meth-
ods for multi-modal and multi-party interactions and discuss the challenges in this
area. We also mention our current work and point out the future research directions.

13.1 Introduction

Personal assistants such as iPhone Siri and Microsoft Cortana have started to take
part in our lives recently. However, these personal assistants are limited in social
intelligence and are not yet capable of understanding the context, users’ intentions,
and emotions. We believe that, in the future, we will have more of these characters
integrated in our daily lives as companions and assistants, and also in physical forms
as virtual humans and social robots. In order for us to interact with them in a natural
way, they are expected to behave according to social rules and norms and adapt to
our human life.

Recognition of goals, intentions, and emotions of other people is a major aspect
of communication between people. To give humanlike capabilities to artificial char-
acters, they should be equipped with the ability to predict these user states. They
should understand users’ behaviors through various sensors and respond back using
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multimodal output. Besides natural multimodal interaction, they should also be able
to communicate with multiple users and among each other in multi-party group
interactions. The challenges in this area include (1) estimating high-level user states
based on low-level multimodal sensory input, (2) taking socially appropriate deci-
sions using this partial sensory information, and (3) rendering synchronized and
timely multimodal behaviors. In this chapter, we provide an overview of the previ-
ous work for multimodal and multi-party interactions and discuss the challenges in
this area. First, in Sect. 13.2, we provide a general overview of methods in multi-
modal sensing, decision making, and multimodal behavior generation. Section 13.3
mentions in particular the challenges in multi-party interaction; finally, in Sect. 13.4,
we present our proposed work, provide a discussion on the current results, and point
out the future research directions.

13.2 Overview of Steps in Multimodal Interaction

Multimodality in human–computer interaction refers to natural interaction with a
computer using speech, vision, facial expressions, and gestures. Two or more modal-
ities are combined to infer the user’s state with regard to the application. For example,
in a multimodal speaker identification task, face recognition, and speaker identifica-
tion techniques can be combined by processing audiovisual input. High-level emo-
tional and cognitive states can be inferred using multiple modalities as a combination
of facial expressions, voice, gestures, and posture. Multimodality can also be on the
output side to generate the synchronized gestures, facial expressions, and gaze.

A standard pipeline for a multimodal interaction system consists of the follow-
ing steps: (1) Individual low-level sensing modules (e.g., face recognition, skeleton
tracking, sound localization, speech recognition), (2) multimodal tracking and fusion
to combine information from individual trackers for making high-level inferences
about the situation and the user state, (3) decision making and dialogue management
to decide what to say and what to do given the partial sensory information, history of
actions and the artificial character’s internal state, (4) planning and synchronization
of the output behavior to render the output decisions, and (5) actual realization of the
planned behaviors at the level of motor controls for the robots and using computer
animation techniques for virtual humans.

In this chapter, we are mainly interested in steps 2, 3, and 4, which stays between
low-level sensing and behavior generation and deals with high-level user states,
decisions, and behaviors. While the methods on the individual trackers and motion
generation/animation side are pretty much established, the methods in the middle
layers vary a lot according to the requirements of the applications. Thus, research
in this area is still at its early stages due to the complexity of human behaviors in
social contexts, the lack of human–computer interaction studies and data collection
in real-world settings. In the following sections, we give an overview of the methods
in steps 2, 3, and 4.
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13.2.1 Multimodal Tracking and Fusion

The advantage of multimodal tracking is twofold. First, multiple modalities provide
complementary information, i.e., information from sound localization and user track-
ing can be combined to decide which user is speaking. Second, multiple modalities
can be useful in case one modality cannot be used efficiently due to environmental
conditions, i.e. in case of poor lighting conditions, speaker identification from voice
might be a better solution when face recognition results are not very accurate.

Multimodal fusion can be at the feature-level combining features at the low-level
signal processing layer or can be at later stages at the semantic level. Atrey et al. [1]
classify fusion techniques as below:

• Early fusion is suitable when input modalities are temporally synchronized, e.g.,
audiovisual speech recognition combining speech and lip movements. The features
from multimodalities are combined into a single feature vector and classified.

• Intermediate fusion methods are used for inferring high-level states such as user
intent, emotions, and activities, which are based on related but not always tem-
porally aligned features. Methods such as probabilistic graphical models are used
for fusing different sources of input.

• Late fusion works at the semantic level by fusing partial outputs from unimodal
classifiers. It uses data structures such as frames to represent objects/relations and
natural language processing tools such as typed feature structures for unification.
Late fusion is appropriate for less temporally coupled modalities such as speech
and pen input.

Various methods can be used for fusion depending on the synchronization between
modalities [1]. Rule-based fusion methods include linear weighted fusion of indi-
vidual decisions and are rather appropriate for early and intermediate fusion, e.g.
MAX, MIN, AND, OR operations, and majority voting. At the semantic level,
custom-defined application-dependent rules can be applied [36]. Classification-
based methods classify multimodal observations into predefined classes. Support
vector machines (SVMs), Dempster–Shafer theory, dynamic Bayesian networks
(DBNs), neural networks (NNs) and maximum entropy model belong to this cat-
egory. Estimation-based methods are used to estimate the state of a moving object
or to combine input from multiple sensors. Kalman and Particle filters (also called
sequential Monte Carlo method) are examples in this category. For an extensive
analysis of these methods we refer to [1].

13.2.2 Decision Making for Social Interaction

The next step in the multimodal interaction pipeline is decision making and dialogue
management. This step is related to the planning of the communicative intents and
dialogue moves. It deals with high-level concepts such as who is communicating
with whom, in which socio-cultural and situational context, the overall interaction
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history of the communication partners, the intention and content of the communica-
tion as well as personality and emotion of the communication partners [22]. However,
these concepts are application dependent. Functional Mark-up Language (FML) is an
attempt by the community for standardization. It provides an inventory of high-level
concepts in social interaction. The basic building blocks of a communicative event
according to FML description are the communication partners and communication
acts. The tags for each are mentioned below [22]:

• Communication partners: person, name, gender, type of the character, appear-
ance, voice, personality, mood, role in the given application, emotion felt, emotion
expressed, and interpersonal stance (relation to the communicative partner).

• Communication acts: turn-taking, communicative acts (related to communicative
function or goal such as provide–get information, improve relationship, maintain–
gain power, cheat, lie), dialogue acts (verbal communication acts such as question,
answer, assertion), information structure (what is being communicated (theme)
and what is new (rheme)), nonverbal acts such as backchannels, producer of the
communicative act, addressee and hearer of the communicative act, receiver of the
communicative act (the one who feels addressed by the producer, the receiver and
addressee might be different), perceiver of the communicative act (the overhearer
of the communicative act).

Bickmore [3] introduced contextual tags to define the purpose of the interaction,
e.g. task (information exchange), social (social chat, small talk), empathy (comfort-
ing interactions), and encouragement (coaching, motivating). Gaze is also subject to
discussion as it is often defined at the behavior level in the previous work. However,
Lee et al. [23] argue that gaze is a complex phenomenon reflecting the cognitive
states such as task planning, dialogue, and emotions and should be defined at the
communicative intent level. It has several roles such as conversation regulation, mon-
itoring of expected/unexpected changes, or attention to a physical stimulant in the
environment. Thus, they define gaze behavior tags which are indicators of the reason
for the gaze behavior. Lee et al. [23] propose two different types of emotion tags: felt
emotions that occur as a result of the appraisal process of events and intended emo-
tions that are used as coping strategies. Developing computational models of these
concepts has been an active research area recently. For instance, personality, mood,
and emotions were modeled as three-layer models [12, 14]. Bickmore and Cassell
[4] modeled relationships based on the trust concept. Gockley et al. [15] described
an affective system based on emotion, mood, and attitudes toward users where atti-
tudes were represented with dimensions like familiarity and affect. Kasap et al. [17]
developed an emotion model that updates social relationship dimensions friendliness
and dominance, using past interactions derived from an episodic memory.

Decision-making methods are typically goal based or utility based. Goal-based
characters have a description of what is desirable and combine this with their per-
ception in order to choose actions that achieve the goals. They provide an intelli-
gent way of decision making using AI planning techniques. Belief-Desire-Intention
(BDI) architecture is a widely used goal-based architecture, where belief stands for
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the characters knowledge about the world, desires are the objectives to be accom-
plished and intentions are what the characters have chosen to do [27]. In our previous
work [16], we have combined finite-state-machines and hierarchical task networks to
model interactions with an emotion and memory enabled virtual character and social
robot. Utility-based approaches are useful when there are multiple ways to reach a
goal or when there are conflicting goals. Decision-theoretic methods combine prob-
ability and utility theory and update current state by choosing the action with the
highest expected utility, e.g., [34]. Strategies for decisions can be either based on
handcrafted rules or they can be learned from data. The latter requires huge data
collection effort, however, action or dialogue strategies are learned automatically
and relieve the application developer from the burden of writing handcrafted rules.
Thus, there is an increasing interest in the community to learn decision policies from
data of human–human and human–machine interactions.

In contrast to the above systems that keep an internal variable state to model
the decisions of an artificial character, behavior-based architectures model behaviors
via sensory-motor links without having an explicit internal representation of the
environment and the user. In other words, raw input obtained from the sensors is
used to generate reactive behaviors and the character gradually learns to correct its
actions by making mistakes. Subsumption architecture [10] is an early example of
this method and is based on hierarchies of sub-behaviors which are triggered based
on their priority. Behavior-based models can be used to model reactive behaviors
such as obstacle avoidance and attention modeling based on a bottom-up approach.
In contrast, state-based approaches work top-down and make high-level inferences
about the world and user state.

13.2.3 Behavior Generation for Virtual Characters
and Social Robots

Virtual characters and social robots use gaze, posture and hand-arm gestures while
interacting with people. The synchronization among various body expressions, ges-
tures, facial expressions, gaze, and head movements is a challenging task [21].

For generation of nonverbal behaviors, Lee et al. [24] mention two main approaches:
literature-based and machine learning. The literature-based approach relies on the
findings on human behavior understanding which are obtained through manual analy-
sis of observations and recordings. The disadvantage of this method is its inadequacy
to explain the full complexity of the mappings between behaviors and the commu-
nicative functions. For example, nonverbal behaviors might be affected by several
factors such as emotion, personality, gender and social context, and the relations
between them may not be understood very well through observation. On the other
hand, machine learning approaches automatize this process and find regularities and
dependencies between these factors using statistics, e.g., head movements generation
[24] and gesture generation [20]. However, obtaining good annotated data remains
a disadvantage. Behavior Expression Animation Toolkit (BEAT) [11] allows the
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animators to input typed text that they wish to be spoken by an animated character,
similar to the way a text-to-speech system produces speech output from text. The text
input is analyzed according to its linguistic and contextual features and a rule base
is created to convert these features into appropriate behaviors. Clauses are divided
into two parts called theme (the part of the clause that creates a coherent link with a
preceding clause) and rheme (the part that contributes some new information). The
novelty and contrast of the words and their semantic meaning are also taken into
consideration. For example, if a rheme contains a new node, the system generates a
beat gesture that coincides with the object phrase. Another work in the same direc-
tion is the Nonverbal Behavior Generator (NVBG) [25]. NVBG takes as input FML
and produces in turn Behavior Mark-up Language (BML). BML is an XML-based
language to coordinate speech, gesture, gaze, and body movements.

At the motion generation level, two main approaches are used to animate the com-
puter generated characters and to program the movements of the robots: data-based
methods that represent the animations as a trajectory of joints over time (keyframe-
based animation, blend shapes, morph targets, motion capture, and variances of
motion capture methods such as motion graphs) and parameter-based methods which
set parameters to generate the animations (procedural animation, e.g. walking, inverse
forward kinematics, physically-based animation). Individual animation controllers
are often developed for each of these animations. However, the animations often
happen at the same time and can effect the same body parts. This raises challenges
in the synchronization and blending of animations. Existing game engines cannot
handle complex character animations although they provide solutions for other real-
time simulation problems [33]. Thus, this is an open research area which requires
further attention.

13.3 Multi-party Interaction: Current State and Challenges

Multi-party interactions involve several participants organized in a certain way to
interact with each other. Participants position and orient themselves in a way that
allows them to address other participants. The analysis of group interaction and
dynamics in human–human interaction has been subject to attention in the area
of social pyschology and nonverbal communication. Kendon [19] mentions that
people often group themselves into clusters, lines or circles or various other kinds
of patterns. These patterns are called “formations.” An F-formation is a special type
of formation that happens when group members come together in a way that the
space between them is shared allowing their equal contribution. It is the type of
group interaction that happens everyday when people form a conversational group
for casual talk. Participants stand so that they face inwards to a shared space in which
they cooperate together. Figure 13.1a shows an F-formation with three participants.
The region between the participants is called an o-space, while the region they occupy
is called a p-space and the region behind them is called an r-space. In case of multi-
party interactions with artificial characters, the area that people can interact in is
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Fig. 13.1 F-formation for
agents. a F-formation.
b F-formation for humans

constrained by the field of view angle (FOV) of the camera used for detecting people.
While human beings have a 180◦ horizontal FOV and 135◦ vertical FOV, cameras
used for tracking often have limitations. In Fig. 13.1b, we see how o-space, r-space,
and p-space change according to the field of view of the camera.

Previous work on interactive virtual humans and social robots mainly focusing
on one-to-one interactions and multi-party interactions involving multiple users and
multiple artificial characters has not been investigated enough. Although there has
been research on modeling group and multi-party interactions in virtual reality appli-
cations [37], modeling of multi-party interactions in open and dynamic environments
with multiple people requires further investigation. In this section, we will discuss the
challenges and current approaches to multi-party interaction in three steps: tracking
and fusion, decision making, and behavior generation.

13.3.1 Tracking and Fusion for Multi-party Interaction

For multi-party interaction a tracking system should be able to make continuous
inferences about the current state of the scene. Below, we mention the challenges in
tracking and fusion for multi-party interaction.
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13.3.1.1 Identifying Intentions and Roles in Multi-party Interaction

For modeling multi-party interaction, the state of each participant needs to be tracked
to identify who is willing to interact with whom. This includes the identification of
the speaker, addressee, and detecting engagement intentions. The participants may
have different roles such as speaker, addressee, side participants or overhearers. For
example, Bohus and Horvitz [7] capture these roles by defining a signal source and
addressees. In their representation, participants of the conversation are determined
based on an engagement detection component. The people other than the engaged
ones are considered overhearers. If there is a speech contribution in a detected conver-
sation, a subset of the participants is defined as the addressees of the signal based on
the head orientation and attention components. The ones that are not the addressees in
the conversation are identified as side participants. Location features from the vision
system and sound angle from the sound localization system are combined to decide
which user is speaking. For addressee estimation, head pose and posture direction
are used.

Engagement is defined as the process by which individuals in an interaction start,
maintain, and end their perceived connection to one another [35]. There are two
lines of research in engagement detection: rule-based methods that infer engagement
heuristically using proximity and attention features and machine learning approaches
that learn engagement from data collected through interactions. Peters et al. [31]
developed an engagement model based on interest level. Michalowski et al. [28]
developed a receptionist robot and defined people who were attending based on
their proximity using four states: present, attending, engaged, and interacting. Their
model was also based on heuristic rules but designed for the purpose of multi-
user interaction. Foster et al. [13] described a data-driven engagement estimation
method where the robot serves drinks to customers. They compared the machine
learning approach with a rule-based hand-coded method derived from observations
in a real bar. According to their findings the data-driven method outperforms the
rule-based method. Engagement intentions of the user were determined based on the
proximity of the user to the bar and eye contact with the bartender. The data collected
were hand-labelled with three classes: notSeekingEngagement, seekingEngagement
and engaged, and face and head coordinates were used as features. Bohus et al.
[6] developed a dynamic engagement model where the dialogue system learned
to predict engagement intentions in situ through interaction. They first applied a
heuristic engagement estimation method assuming a person is engaged if there is a
frontal face in front of the camera. Then the moments before engagement are labelled
automatically as engagement intention to train the system without hand labelling.
They applied a maximum entropy model to detect engagement intentions fusing
several features such as location of the face, width and height, confidence score of
the face, trajectory of location features, and manually labelled attention features.

One of the open research areas regarding engagement is the detection of group
engagements. This happens when participants want to engage with a group of embod-
ied characters rather than with only one character. In Sect. 13.4, we further discuss
the challenges in engagement with multiple users and multiple embodied characters.
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13.3.1.2 Interruptions and Overlaps During Speech

Most of the dialogue systems follow a “you-speak-then-I-speak” approach, which
leads to an unnatural interaction experience [7]. In a multi-party interaction set-up,
users can interrupt each other or they can also interrupt the system. In both cases
it is necessary for the system to understand who is speaking at any moment, as the
spoken signals may overlap. Audiovisual speaker diarization methods can be used to
identify who is speaking. Speaker diarization helps to identify the speaker turn points
and answer the question, “Who spoke when?” in an audio or video recording that
contains an unknown amount of speakers. It is a method often applied for multimodal
meeting analysis [38].

From the dialogue systems literature, allowing input during system speech is
known as “barge-in.” Speaker diarization systems can distinguish between speech
and nonspeech sound segments and find out which user is speaking. However, sys-
tem’s own speech output (synthesized speech) can also be considered as an envi-
ronmental noise during human–machine interaction. Echo cancellation and noise
removal techniques are used for this by subtracting the system’s own voice from
the acoustic signal coming to the microphone array. In this way, the speaker can
still be recognized while the speech synthesis keeps running [2]. Otherwise, speech
recognition software may misinterpret the system output as user input and this may
result in unnecessary dialogue exchanges.

Another point is the discrimination between barge-ins and backchanneling. The
user might speak during system speech for two reasons. One of them is interrupting
the system speech (barge-in) as we explained above. The second is backchanneling
(e.g. uh-huh, hmmm, yeah, really? Wow!) to signal clarifications or interest on what
is spoken but does not imply a request for the turn. These two can be distinguished
as the overlapping speech will be shorter in case of backchanneling [2].

Finally, speech recognition based on complete recognition of a sentence may
not be appropriate for multi-party interaction. Conventional speech recognition
approaches usually wait until the user has finished talking before returning a recog-
nition hypothesis. This results in spoken dialogue systems that are unable to react
when the users are interrupted by the system. Incremental speech recognition (ISR),
where partial recognized phrase results are returned during user speech, can be used
to create more responsive systems [32].

13.3.2 Decision Making for Multi-party Interaction

Decision making for multi-party interaction involves decisions about when to engage
with which user and when to take the turn. We discuss below the state-of-the-art
models for engagement and turn-taking decisions.
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13.3.2.1 Modeling Engagement Decisions

In Sect. 13.3.1, we discussed the engagement detection methods mainly related
to tracking and fusion. Another issue is modeling of engagement decisions. This
involves mappings from internal states to engagement decisions. Bohus and Horvitz
[6] describe an engagement model that combines engagement detection with high-
level engagement control decisions to decide whom to engage. The engagement
actions (engage, no-action, maintain, disengage) are estimated based on a condi-
tional probabilistic model based on the current engagement state of the user, previous
character, and system actions and other additional sensory inputs (such as greeting
and salutations or calling by name). They also define an engagement control pol-
icy and a behavior control policy. Engagement control policy includes high-level
application-dependent goals of the users and other global contexts (history of the
interactions, relationships between users). For example, the system might decide to
refuse engagement for a while because it is already engaged in a high-priority inter-
action or it might try to engage with a person even though the user has no intention
to engage. These policies can be authored manually to capture the desired system
behavior or can be learned from data. Behavior control policy is to coordinate the out-
put behaviors based on the engagement state, actions, and intentions of the users. For
example, an engage action can trigger a sequence of behaviors: establishAttention,
greet, and monitor. The action completes successfully if the character switches to the
engaged state. Otherwise, engage system action completes with failure and this is
signalled to the engagement control layer. Similar to the engagement sensing module,
it is decoupled from the task at hand and reusable among application domains. The
advantage of this method is that it separates the application-independent engagement
control decisions and application-dependent high-level decisions.

Keizer et al. [18] learn dialogue strategies automatically based on multi-user
human–robot social interactions using a bartender robot. Their system is composed
of two parts: a Social State Recognizer (SSR) that fuses the sensory data and make
high-level inferences and a Social State Executor (SSE) that takes the changes from
the SSR and generates the output behavior. SSE is modeled using two Markov deci-
sion processes (MDPs) and the system is trained with a multi-user simulation envi-
ronment. The first one is used for multi-user coordination, to manage the system’s
engagement decisions with the users: to decide whether to respond to the user’s
attention requests or to proceed with the current user. The second one is used for
single-user interaction to decide what to say or do once engaged with a user and it is
application dependent. The state features considered are whether the user is present,
engaged, close to the bar and dialogue history such as whether they were served
drinks before or asked to wait. The actions consist of asking a user to wait, accepting
bid for attention from a particular user or proceeding with the currently engaged
user. In comparison to the work of [6], their model learns decision strategies based
on data and provides a systematic framework to do this. However, the disadvantage
is that the engagement model is application dependent and needs extra work to be
adapted to other domains.
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13.3.2.2 Modeling Turn-Taking Behavior

Modeling turn-taking implies deciding “when it is my time to speak”. Turn can be
assigned to another person by the last speaker or a person in the group can voluntarily
take the turn. In [7], a heuristic turn-taking model is described taking into account
the turn-taking context: floor states, actions, and intentions of each participant. Floor
state is a binary variable indicating whether or not the participant has the floor. Floor
management actions include the floor action type (take, release, hold, null) and the
set of participants to release the floor. Floor intention is also a binary variable and is
tied to floor actions. They are modeled separately keeping in mind that they might
be useful for predicting actions. The floor states are updated based on the joint floor
actions of all participants. The system takes the turn when the floor is released to it or
when the floor is released to someone else but is not taken by anyone for more than a
threshold amount of time. Floor management actions are summarized as below [7]:

• If a participant has the floor already, it means she is performing a hold action if
she is speaking.

• If a participant has the floor already and if she is not speaking, the floor is assigned
to the set of addressees for the last spoken utterance.

• If a participant does not have the floor, she will perform a take action if speaking
and a null action otherwise.

• If a participant performs a hold or take action, she has the intention of holding the
floor.

While this method is based on heuristic rules, in [9] a decision-theoretic approach
is proposed. It models turn-taking considering the uncertainties arising from state
recognition and based on the system’s own computational delays in perception and
production of behavior. This improves the naturalness of spoken dialog taking into
account the fine structure of timing of turns. For example, the system might be able
to handle situations such as long silences after an utterance of the user, barge-ins
by a system before a user has completed speaking and floor conflicts resulting from
confusions about turns. The approach allows the system to continuously deliberate
about uncertainties and delays and resolve trade-offs between waiting and taking the
floor.

13.3.3 Behavior Generation for Multi-party Interaction

Besides tracking user states and modeling multi-party decision making, it is impor-
tant how these decisions are rendered in terms of synchronized multimodal output as
speech, gaze, and gestures. Bohus et al. [8] developed a heuristics-based gaze model
based on the existing literature on gaze behavior. For example, during a hold behav-
ior, the virtual human directed its gaze away from the addressee during the thematic
part of the current output and toward the addressee during the rhematic part. In case
of multiple participants, it first established eye contact with one addressee and then
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in turn with each of the other addressees. Then it turned back to the first addressee
again and this time had a longer duration eye contact. Wang et al. [39] proposed a
rule-based method to model the listening behavior of different roles (addressee, side
participant, overhearer, and eavesdropper). The model is based on participation and
comprehension goals. For example, addressees and side participants are considered
to have positive participation goals, while bystanders have negative participation
goals. Eavesdroppers have stronger intentions to understand the conversation, while
overhearers do not intend to understand the conversation. Based on how each par-
ticipant wants to proceed with their role, they take certain actions. Side participants
do not care about understanding the speaker’s utterance but the goal is to maintain
the participation status, so they use glances toward the speaker. Mimicking and mir-
roring the speaker’s behavior are also considered as acts to keep the current state. To
change roles, the new set of behaviors for the appropriate role is performed to signal
the role change. This model is in particular developed for multiple conversational
characters in virtual worlds.

Regarding the machine learning approach, there are methods analyzing and mod-
eling human–human interactions in meetings. These models can be applied to behav-
ior generation of virtual characters and humanoid robots. For example, Otsuka et al.
[30] propose a probabilistic model for cross-modal nonverbal interactions in multi-
party face-to-face conversations. The model infers the casual relationships among
participants’ behaviors using interaction structures. These are defined to be the basic
primitives in conversations that can reveal how messages are exchanged among
people. On the other hand, research on multimodal behavior generation for human–
machine interaction relies on wizard-of-oz studies. For instance, Mutlu et al. [29]
studied conversational gaze mechanisms with a humanoid robot based on data col-
lected in a wizard-of-oz setup and developed models of role-signalling, turn-taking,
and topic signalling during multi-party interactions. They found that in a two-party
conversation with one bystander, the speaker gazed toward the addressee 76 % of the
time, looked at the bystander 8 % of the time and looked at the environment 16 % of
the time. In the three-party conversations, the speaker looked at the addressees 71 %
of the time and looked at the environment 29 % of the time. However, we could not
find any existing work on full-fledged interactive systems working on using machine-
learning based multi-party gaze behaviors. Thus, it still remains an interesting open
research area.

13.4 Proposed Work: Multimodal and Multi-party
Interactions Among Multiple Users and Multiple
Agents

Previous work on multi-party interactions deal with systems either with multiple
virtual humans in a virtual environment and a single user or multiple users, and a
humanoid robot situated in the real world. Similar to the latter, we are interested in
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situated interaction in the real world but with two artificial characters and at least two
users. The differences between these two cases is explained in the following section.
We refer to [41] for further technical details.

13.4.1 Comparison to Previous Work

Figure 13.2 illustrates the possible configurations of interaction with a single artificial
character and multiple users. Namely, the system can dynamically handle situations
of one-to-one interaction, one character two-user interaction and the cases where the
users just pass by without interacting. The system can also handle situations when
there are bystanders waiting behind the interacting users or can interpret when two
users are talking to each other.

The previous work decides on the engagement based on a single character’s point-
of-view, as the center of the F-formation remains on the same line as the torso
orientation of the artificial character. However, in the case of two characters, the
center of the F-formation shifts in between these two. Thus, the engagement model
for one character is not applicable for the two character-based interaction. Figure 13.3
shows how the model of engagement with a single character does not apply to the two-
characters case. While the blue circles show the F-formation for the two-characters
case, the red circles with dashes illustrate the F-formation for the character on the
left side (in bluish color). According to the single character interaction model, the
user on the right is marked as not engaged. However, in reality the user is engaged in
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engaged engaged

engaged
engaged

not-engaged
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not-engaged

Fig. 13.2 Possible group interaction configurations in previous work
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Fig. 13.3 Comparison of
F-formation with
multi-characters to previous
work

a group interaction with the virtual human, the robot, and the other user on the left
in a four-party interaction. Thus, for a situated character in real worlds to become
fully adaptive to multi-party interactions, it should have a dynamic understanding of
F-formations, by calculating in a dynamic way how other characters and other users
position themselves in the real world. To do this it needs good tracking capabilities,
mobility, and flexibility of head movements to make a model of the world from its
partial knowledge, as humans do.

To study the challenges regarding the multi-character, multi-user interaction sys-
tem, we developed a prototype system with a virtual human, a humanlike robot, and
two users (Fig. 13.4). Both the virtual human and the robot can interact with the users
and engage in multi-party conversations. This requires that each character keep track
of the actions of other participants. In order to interpret the users’ actions, they need
to understand the scene as a whole by fusing information from different channels
of information. In our case, one of the artificial characters is a virtual human. Its
gaze is modified to give the impression that it is looking at a point in the real world.
The virtual human is at the same scale with real people and we render it on a big
horizontal screen. Similarly, the robot is human-sized. It has limited head movement
capability and a camera in both the eyes. However, due to low resolution and the
eyelashes in the eye region, we prefer not to use the camera in the eye. Alternatively,
we use Kinect cameras due to their capabilities and low cost.

Ideally, two Kinect cameras could be used, one for each character placed on
top of their head as it also provides a wider horizontal field of view. However,
since Kinect 360 depth maps suffer from major quality degradation in overlapping
areas, we use a single Kinect as the eyes of two characters positioned between
them. Figure 13.5 illustrates the interaction environment. The virtual human and the
robot are positioned in a glass room so that visitors other than the ones interacting
can observe the interactions. The door is in the left opposite corner of the room.
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Fig. 13.4 System setup with the virtual human and the robot

Fig. 13.5 Our setup with
two artificial characters and
one Kinect

Interacting users engage and disengage with the characters by entering and leaving
from the door.

There could also be cases where the users go outside the FOV of Kinect, by going
too much to the left and right sides of the room. People might either just pass by or
go somewhere at the back of the room. Another similar case is when a user passes by
between the two characters. This was observed as a problem in our experiments when
researchers wanted to get something from the room without an intention to interact
with the virtual human or the robot [40]. Finally, there could be cases where people
do not engage with the characters together in a group interaction but they might
engage only with the virtual character or only with the robot. Figure 13.6 shows a set
of these combinations.
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Fig. 13.6 Possible interaction configuration with multiple artificial characters and multiple users

13.4.2 System Overview

Figure 13.7 shows the overall architecture of the system. There are three main com-
ponents in the system: (1) Multi-user tracking and fusion module, (2) multi-party
dialogue manager, and (3) virtual human and robot controllers. Multi-user tracking
and fusion module combines input from audiovisual components and make infer-
ences about the state of the users which are then sent to the multi-party dialogue
manager. Multi-party dialogue manager is the core of action selection process for
the coordination of behaviors of the virtual character and the robot. Finally, virtual
human and robot controllers generate speech and nonverbal behavior for the virtual
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Fig. 13.7 Multi-party interaction architecture
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character and the robot. They can give feedback to the fusion and dialogue modules
to inform whether an action is completed successfully. They can also query the state
of the world by sending messages to the multi-user tracking module (e.g., to retrieve
the position of the users).

13.4.2.1 Multi-user Tracking and Fusion

Multi-party interaction requires the identification of the speaker and the addressee.
In our current system, in order to make the virtual character and the robot understand
the current scene, input from individual vision and audio processing components are
fused. The fusion module allows to keep track of several information in real-time
such as the number of users in the scene, when they entered or left the scene, their
positions, whether they are speaking, their names, to whom they are speaking and
what they are saying.

Situated-interaction taking into account the dynamics in the physical environment
surrounding the artificial characters requires both being aware of the configuration
of the characters and objects in the environment and keeping track of the movement
trajectories of users. In order to make both the artificial characters and the human users
interact in a common reference frame, we defined a model of the real world where
each object in the interaction area is defined in terms of the real-world coordinates,
the origin being the left top corner of the demo area. For the tracking of users, we use
two Microsoft Kinect cameras as shown in Fig. 13.4. The Kinect at the bottom allows
tracking of the full skeleton of two users. Kinect can detect position of six users and
full skeleton of two users normally. Since we are interested in full tracking of the
users, currently we are limiting the system to two users interaction. Kinect on the top
is used for head pose estimation. For detecting the speech events in the environment,
a microphone array with eight microphones is used to identify the speaker. It is placed
half a meter below the Kinects. A close-talk microphone with a flexible cable is also
available for speech recognition.

Figure 13.8 shows the architecture of the multi-user tracking and fusion module.
It has three parts: (1) Multi-user tracking and visualization of the user states in real-
time, (2) world model (e.g., position, orientation, name) of the objects in the world
(static objects such as the screen, robot, and sensors or dynamic objects such as the
users), and (3) fusion of the information coming from individual trackers, e.g., sound
localization, speech recognition, and head pose estimation in order to identify the
speaker and the addressee.

After combining the information from the individual trackers, fusion module pro-
duces three types of events: participantEntered, participantLeft, and speech as shown
in (2.6). The first two events consist of three parameters: event ID, person name, and
location. Speech event contains four parameters: event ID, speaking person, speech
content, and listening person. These three events are sent to the multi-party dialogue
manager module in order to decide what to do and what to say at each point in time.

http://dx.doi.org/10.1007/978-3-319-19947-4_2
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Fig. 13.8 Multi-user
tracking and fusion module

World and 
User 

Model

Kinect 
user 

tracking

Fusion: 
speaker identification
addressee detection

Multi-user tracking and fusion

Speech 
recognition

Sound 
localization

Head pose 
tracking

speech content
confidence

sound type
angle

userID
userlocation
headpose

Participant 
entered event

event ID
person name
location

Participant 
left event

event ID
person name
location

speech event

event ID
speaking person
content
listening person

feedback from 
vh/robot control

world query
(e.g. get location)

13.4.2.2 Multi-party Dialogue Manager

For natural interaction, dialogue manager should interpret the multimodal input,
develop strategies for handling misinterpretations for a more robust interaction, and
produce appropriate response taking into account the social context. Thus the role of
the dialogue system is critical in two ways: Finding ways to handle error-prone
multimodal input and modeling the social aspects of multi-user, multi-character
interactions.

Figure 13.9 shows the architecture of the multi-party dialogue system. Events
received from the fusion module are handled by the event listening thread of the
multi-party dialogue manager as soon as they arrive. Participant model is created
based on the participantEntered and participantLeft events and keep the list of current
participants in the scene and their states. In addition to processing speech events and
responding to them in a reactive manner, dialogue manager thread also checks the
goals and action history of the virtual character and the robot and selects actions
based on the goals for a mixed-initiative interaction.

Fig. 13.9 Multi-party
dialogue manager
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The system supports users engaging and leaving a conversation in a dynamic way
considering four different cases: (1) One user interacting with the system, (2) one
user interacting with the system and a newcomer joins, (3) one user leaves while two
users are interacting with the system and the remaining user continues interaction,
and (4) two users can enter and leave the scene at the same time. Sophie and Nadine
take random turns to interact with the users unless they ask a question to a specific
user and wait for an answer. For example, if they want to greet the user, they do
a greet action in a random order at each interaction session. Some actions have a
specific addressee due to their contextual meaning. For example, the question,“What
is your name?” requires Sophie or Nadine to address a specific user by looking at
this person. If there is only one user in the scene, both characters keep track of the
user with their gaze as the user moves around regardless of the question. In the case
of two users, Sophie and Nadine switch their gaze between these two users based on
the dialogue context and speech event received. In case there is no specific user to
look at, they look somewhere in between the two users.

13.4.3 Case Study and Results

We designed an experiment in order to get the users’ feedback to the system and
obtained promising results for the first prototype. The details regarding the experi-
ment and the system can be found in [40]. We measured whether the users felt they
were addressed by Sophie or Nadine and whether Sophie and Nadine could identify
them correctly. We also asked in general how natural and comfortable was the inter-
action. The experiment was conducted with the research staff from the Computer
Science and Biotechnology departments of Nanyang Technological University. 21
participants interacted with the system in 14 sessions. In half the sessions, both users
were study participants. In the remaining 7 sessions, one user was the study partic-
ipant while the other user was a researcher. Before the experiment, written consent
of the participants were taken. They were instructed about the speech recognition
vocabulary and the general flow of the interaction. They were not told when exactly
a new user would join or when they had to leave the conversation keeping this aspect
of the interaction rather dynamic. The experiment was conducted on 4 consecutive
days. The total interaction time was 105 min being around 7.5 min on average. We
video recorded all interactions for further analysis after the experiment. After the
interaction, users were taken into separate rooms and filled in a questionnaire about
their experience. The questionnaire was composed of two parts. The first part was
based on the social presence questionnaire of Lombard et al. [26]. We added one
more question to this section about how comfortable and natural was the interaction.
The second part of the questionnaire was prepared by the researchers of this study
and was inspired by [5]. The questions can be seen in Fig. 13.10. They were based
on a seven-point Likert scale. We also had some open-ended questions to get further
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0 1 2 3 4 5 6 7

I could understand when (Sophie/Nadine) was addressing me.

I could understand when (Sophie/Nadine) was addressing the other person.

(Sophie/Nadine) was aware of my existence.

(Sophie/Nadine) was aware of the other user’s existence.

(Sophie/Nadine) was aware of (Nadine/Sophie)'s existence.

(Sophie/Nadine)  knew when I was speaking to her.

(Sophie/Nadine) knew when I was speaking to (Nadine/Sophie).

(Sophie/Nadine) knew when it was her time to speak.

(Sophie/Nadine) could answer with appropriate timing.

(Sophie/Nadine) could understand what I am saying.

Sophie
Nadine

Fig. 13.10 Average value for the multi-party interaction questions

comments from the participants regarding their experience. We analyzed the video
recordings in order to find out the percentage of speaker identification and addressee
detection errors. Due to reverberations in the glass room and sound interference,
the accuracy of the speaker identification was found as 82.3 %. Addressee detection
accuracy was 81.4 %. The main problem of addressee detection was the loss of face
tracking as soon as the users turned their head too much toward left or right. For
addressee detection, the numbers were obtained by counting the number of times the
system found the correct addressee, each time a user addressed Sophie or Nadine. The
number of times the system identified the speaking user correctly was also counted
from the video material. However, response generation was not only based on the
accuracy of speaker identification and addressee detection but also depending on
the accuracy of the speech recognition system. This decreased the overall accuracy
of the system to around 60 % when the errors from three modules were considered
together. We also asked users questions regarding the multi-party interaction expe-
rience. Figure 13.10 shows the results. The first impressions from the users indicate
that the system is able to correctly identify speakers and addressees and can handle
basic turn-taking functionality.

13.4.4 Future Research Directions

As we mentioned in Sect. 13.4.1, previous work focused on systems with one artificial
character and multiple users. However, there could also be cases where there are
multiple characters and multiple users interacting together and this is quite different
from the first one. It is more complex in a sense that it requires coordination among
not only multiple users but also multiple artificial characters. Based on the analysis
of the previous work and methods in multi-party interaction research, we summarize
below the three important future directions.
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13.4.4.1 Engagement and Turn-Taking for Multi-character
and Multi-user Interaction

Engagement detection and modeling in the open world with multiple users moving
around freely is an active area of research. However, engagement detection methods
with single artificial characters might not be directly applied to two characters case
as the F-formation changes dynamically based on the size of the group. For studying
these challenges, we developed a prototype system with two artificial characters
and two users interacting together and will study the possible solutions for a more
generic engagement intention detection method and engagement decision-making
model. Regarding the turn-taking aspect, the flow of turns between two characters
needs to be coordinated. Problems in sensing such as which user is interacting with
which character must be resolved in a robust way using the perception components.
Moreover, not only are there challenges on the sensing side but also the personality
modeling aspect of the characters can effect the nature of the interactions and floor
management. For example, while the virtual human chooses to respond immediately
to an engagement request, the robot might prefer to first finish interaction with the
active user. That might depend on their personality type and emotional state.

13.4.4.2 Interruption Enabled Multi-party Interaction

One aspect that is not addressed yet is the interruption handling during interaction.
We would like to address a highly natural and dynamic situation where any of the
real or artificial participants can interrupt each other or share overlapping speech
segments. This requires discriminating between artificial and real voices as well as
understanding which user is speaking at any point in time. Speech recognition with
incremental understanding is also important as it is not very natural to wait until
the users finish a whole phrase. These are the challenges mainly related to speech
and sound processing. Another point is the decision-making based on overlapping
partial input. Decisions-theoretic methods using probability of input states and utility
of planned actions can be explored to develop more sophisticated decision-making
capabilities.

13.4.4.3 Behavior Generation for Multi-party Interaction

Finally, on the behavior generation side, there is a lack of studies of how artificial
characters behave in multi-party interactions to signal turn-taking or to convey their
intentions. We are interested in a data-driven behavior generation method that can
learn links between high-level intentions and output behaviors. Methods such as
dynamic Bayesian networks (DBNs) can be appropriate for modeling multi-party
behaviors. There are also issues at the lower motion control level to create smooth
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synchronized realistic behaviors. For example, in the case of interruptions an ongo-
ing animation needs to be stopped and smoothly blended with the next animation
sequence.

13.5 Conclusion

In this chapter, we gave an overview of previous work in multimodal and multi-party
interactions and introduced the current challenges. We have also mentioned about
our current efforts to handle multi-character and multi-user group interactions with
a prototype system and results from a case study with real participants. Finally, we
summarized the three important future directions of research based on our detailed
analysis. We hope that the information provided in this chapter will be useful for
other researchers in this field and encourage them to further investigate on the open
research areas mentioned above.
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