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Abstract. Linear discriminant analysis (LDA) is an effective and effi-
cient linear dimensionality reduction and feature extraction method. It
has been used in a broad range of pattern recognition tasks including face
recognition, document recognition and image retrieval. When applied to
fewer-class classification tasks (such as binary classification), however,
LDA suffers from the over-reducing problem – insufficient number of fea-
tures are extracted for describing the class boundaries. This is due to
the fact that LDA results in a fixed number of reduced features, which
is one less the number of classes. As a result, the classification perfor-
mance will suffer, especially when the classification data space has high
dimensionality. To cope with the problem we propose a new LDA variant,
orLDA (i.e., LDA for over-reducing problem), which promotes the use of
individual data instances instead of summary data alone in generating
the transformation matrix. As a result orLDA will obtain a number of
features that is independent of the number of classes. Extensive experi-
ments show that orLDA has better performance than the original LDA
and two LDA variants – uncorrelated LDA and orthogonal LDA.

Keywords: Dimensionality reduction · Binary classification · Linear
discriminant analysis · LDA for over-reducing problem

1 Introduction

Linear discriminant analysis (LDA) is an effective and efficient method for dimen-
sionality reduction (feature extraction). It has been successfully used in many
pattern recognition problems such as face recognition [1,2], document recogni-
tion [3] and image retrieval [4,5]. It uses within-class scatter matrix Sw to eval-
uate the compactness within same class, and between-class scatter matrix Sb to
evaluate the separation between different classes. The objective of LDA is to find
an optimal transformation matrix W which minimizes the within-class scatter
matrix Sw and simultaneously maximizes the between-class scatter matrix Sb.
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In past two decades various improvements over the origianl LDA have been
proposed in order to enhance its performance in different ways, resulting in dif-
ferent LDA variants. These LDA variants can be put into two categories. In the
first category, the LDA variants attempt to tackle the singularity problem of
within-class scatter matrix (Sw). In LDA, we take the leading eigenvectors of
S-1
w Sb as the columns of optimal transformation matrix W . In order to guar-

antee Sw nonsingular, it requires at least N + C samples [6], where N is data
dimension and C is the number of classes. However, in realistic world it does not
always happen and it is almost impossible in high-dimensionality space. There-
fore, sigularity makes within-class scatter matrix irreversible and we can not use
S-1
w Sb to obtain transformation matrix W . In order to address the singularity

problem, Li-Fen Chen et al. [1] proposed NLDA, which is short for null space
linear discriminant analysis. It is based on a new Fisher’s criterion function and
calculates the transformation matrix in the null space of the within-class scatter
matrix, which avoids the singularity problem implicitly. In [7] regularized linear
discriminant analysis (RLDA) is proposed. It gets optimal constant α by heuris-
tic approach and adds α to the diagonal elements of the within-class scatter
matrix to overcome the singularity problem. Some new approaches are proposed
to solve the singularity problem recently. For example, Alok Sharma et al. [8]
proposed a new method to compute the transformation matrix W , which gave a
new perspective to NLDA and presented a fast implementation of NLDA using
random matrix multiplication with scatter matrices; Alok Sharma et al. [9] pro-
posed an improvement of RLDA, which presented a recursive method to compute
the optimal parameter; and Xin Shu et al. [10] proposed LDA with spectral reg-
ularization to tackle the singularity problem. Other LDA variants for solving the
singularity problem can be found in [11].

In the second category, the LDA variants apply the original LDA in local data
space instead of whole data space. For example, Zizhu Fan et al. [12] presented
two local linear discriminant analysis (LLDA) approaches: vector-based LLDA
(VLLDA) and matrix-based LLDA (MLLDA), which select a proper number of
nearest neighbors of a test sample from a training set to capture the local data
structure and use the selected nearest neighbors of the test sample to produce the
local linear discriminant vectors or matrix. Chao Yao et al. [13] proposed a subset
method for improving linear discriminant analysis, which divided the whole set
into several subsets and used the original LDA in each subset. There are other
LDA variants such as nonparametric discriminant analysis [14], sparse discrimi-
nant analysis [15], semi-supervised linear discriminant analysis [16], incremental
LDA [17], tensor-based LDA [18], and local tensor discriminant analysis [19].

The original LDA and most of its variants have elegant mathematical proper-
ties, one of which being that the dimensionality of the data space can be reduced
to at most one less the number of classes. One consequence is that if there are
few classes in a data set, e.g., two classes in a binary classification problem, there
will be one or only a few features left after the dimensionality reduction, proba-
bly insufficient for deciding the class boundaries. This leads to the over-reducing
problem, meaning that dimensionality reduction is over done.
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In this paper we propose changes to the original LDA to address the over-
reducing problem. Instead of using only the means of each class and the whole
data to evaluate the separation between different classes, our new LDA variant
uses a new method to compute the between-class scatter matrix. As a result
we get more between-class information and more features (than before) after
dimensionality reduction even for binary classification.

The rest of the paper is organized as follows. Section 2 reviews the original
LDA and two well known LDA variants – Uncorrelated LDA and Orthogonal
LDA. Section 3 presents our orLDA, Sect. 4 presents our experimental results
and Sect. 5 concludes the paper.

2 Linear Discriminnant Analysis

2.1 The Original LDA

LDA has been widely used for dimensionality reduction and feature extraction.
In the original LDA, the within-class scatter matrix and the between-class scatter
matrix are used to measure the class compactness and separability respectively.
They are defined as [20]:

Sw =
1
N

C∑

i=1

ni∑

j=1

(xij − μi)(xij − μi)T , (1)

Sb =
1
N

C∑

i=1

ni(μi − μ)(μi − μ)T , (2)

where N denotes the number of data samples, C denotes the number of the
classes, ni denotes the number of samples in class i, μi denotes the mean of
samples in class i, μ denotes the mean of whole samples, and xij is the jth
sample in class i. The original LDA aims to find a transformation matrix Wopt =
[w1, w2, ..., wf ] that maximizes the Fisher’s criterion

J(W ) =
WTSbW

WTSwW
(3)

Mathematically, the solution to this problem corresponds to an eigenvalue
decomposition of S-1

w Sb, taking its leading eigenvectors as the columns of Wopt.
From Eq. (2), we can see that LDA uses only the centers of classes and whole

data set to compute between-class scatter matrix. This may lose much class-
separating information. Because the rank of the between-class matrix is at most
C − 1, the number of extracted features by LDA is at most C − 1. However, it
is insufficient to separate the classes well with only C − 1 features, especially for
binary classification in high-dimensional spaces.
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2.2 Uncorrelated LDA and Orthogonal LDA

Uncorrelated LDA (ULDA) and Orthogonal LDA (OLDA) were presented in
[21]. In this paper, Jieping Ye proposed a new optimization criterion to obtain
the optimal transformation matrix Wopt. Wopt is defined as: Wopt = XqM , where
X is a matrix that simultaneously diagonalizes Sb, Sw, St

1, Xq is the matrix
consisting of the first q columns of X, and M is an arbitrary nonsingular matrix.
When M is the identity matrix, we can get Uncorrelated LDA algorithm and
make features in the reduced space uncorrelated; however, if we let Xq=QR be
the QR decomposition of Xq and choose M as the inverse of R, we get Orthogonal
LDA algorithm and make the discriminant vectores of OLDA orthogonal to each
other.

3 Linear Discriminnant Analysis that Avoids
Over-Reducing

In this section we present the proposed changes to the original LDA in order
to address the over-reducing problem, which are related to how to compute the
between-class matrix.

Suppose there are N samples Xi ∈ Rn for i = 1, 2, . . . , N from two classes,
Nk is the number of samples in class k (k = 1, 2) such that

∑2
k=1 Nk = N , μk

is the mean of the samples in class k, and xkj is the jth sample in class k. Two
scatter matrices, the within-class scatter matrix (S̃w) and between-class scatter
matrix (S̃b) are defined as follows:

S̃w =
1
N

2∑

k=1

Nk∑

j=1

(xkj − μk)(xkj − μk)T (4)

S̃b =
1
N

(N1

N1∑

j=1

(x1j − μ2)(x1j − μ2)T + N2

N2∑

j=1

(x2j − μ1)(x2j − μ1)T ) (5)

When the number of classes is two, Eq. (1), the computation of within-class
scatter matrix in the original LDA, is the same as Eq. (4). However, Eq. (5), the
computation of between-class scatter matrix, is quite different from the original
LDA. In Eq. (5), we use every sample in one class to subtract the mean of another
class.

It is clear that computing the between-class scatter matrix in this way will
capture more between-class information than the original LDA hence we can
expect better classification performance. Besides, by Eq. (5), we can get more
than 1 feature in binary classification. According to linear algebra and Eqs. (4)
and (5), we can obtain rank(Sb) = min(n,N−2) and rank(Sw) = min(n,N−2),
where n is the dimensionality of data space and N is the total number of samples.

1 St denotes total scatter matrix, which is defined as: St = 1
N

∑N
j=1(xj −µ)(xj −µ)T ,

where xj denotes the jth sample.
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Then we can find that the ranks of Sb and Sw depend only on n and N . Therefore,
rank(S-1

w Sb) = min(rank(S-1
w ), rank(Sb)) is not limited by 1 extracted feature.

Our optimal transformation matrix Wopt maximizes J(W ) = WT
˜SbW

WT ˜SwW
and we

get the eigenvectors corresponding to the top eigenvalues of the eigenequation
S̃w

-1
S̃b as columns of Wopt.

4 Experiments

In this section we take K-Nearest Neighbor (KNN, K=1) as the classifier and use
ten-fold cross-validation to evaluate our method on three face datasets – ORL
face database2, Labeled Faces in the Wild (LFW) [22], and Extended Cohn-
Kanade [23]; and one DNA microarray gene expression datasets from Kent Ridge
Bio-medical Dataset (KRBD)3.

The ORL face database consists of a total of 400 images of 40 distinct peo-
ple. Each people has ten different images and the size of each image is 92*112
pixels, with 256 grey levels per pixel. All the images were taken against a dark
homogeneous background with the subjects in an upright, frontal position.

LFW face dataset consists of 13,233 images of 5,749 people, which are orga-
nized into 2 views – a development set of 3,200 pairs for building models and
choosing features; and a ten-fold cross-validation set of 6,000 pairs for evalua-
tion. The size of each image is 250*250 pixels. All the images are collected from
the Internet with large intra-personal variations. There are three versions of
the LFW: original, funneled and aligned. In our experiment, we use the aligned
version [24].

For the above two face datasets, we do face verification experiment, which is
a binary classification problem. The goal of face verification is to decide if two
given face images match or not. We use subset of view2 of LFW. We randomly
choose 200 matched face pairs and 200 mismatched face pairs from view2 and
crop each image to an image of 80 * 150 pixels as in [25]. However, for ORL face
dataset, through randomly matching face images, we obtain 80 matched face
pairs and 391 mismatched face pairs for face verification. Therefore, we have 400
samples of LFW and 471 samples of ORL. The dimensionality of each sample in
LFW and ORL are 24,000 and 20,608, respectively.

Extended Cohn-Kanade dataset (CK+) is a complete dataset for action unit
and emotion-specified expression. In this paper, we focus on emotion-specified
expressions. There are 593 sequences from 123 subjects which are FACS coded
at the peak frame, but only 327 of the 593 sequences have emotion sequences
and use the last frame of each sequence to do expression classification. There are
seven kinds of emotion expression, including: neutral, anger, contempt, disgust,
fear, happy, sadness and surprise. Here, we do positive and negative expression
classification experiment and take happy as positive expression and the rest
of emotion as negative expression. Therefore, we have 69 positive expression
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
3 http://datam.i2r.a-star.edu.sg/datasets/krbd/.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://datam.i2r.a-star.edu.sg/datasets/krbd/
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samples and 258 negative expression samples and the dimensionality of each
sample is 10,000.

Acute Leukemia dataset [26] consists of DNA microarray gene expression
data of human acute leukemia data for cancer classification. There are two types
of acute leukemia: 47 acute lymphoblastic leukemia (ALL) and 25 acute myeloid
leukemia (AML), over 7129 probes from 6817 human genes.

We compare our orLDA with three discriminant dimension reduction meth-
ods, which are the original LDA, Uncorrelated LDA (ULDA) and Orthogonal
LDA (OLDA) [21]. To guarantee that Sw does not become singular, we use two-
stage PCA+LDA [27] – we reduce the data dimensionality by PCA, retaining
principal components which explain 95% of variance, before original LDA and
orLDA methods are used.

Experimental results on the four datasets are shown in Table 1. It is clear that
our orLDA has better classification performance than the original LDA, ULDA
and OLDA on all datasets except Extended Cohn-Kanade. We credit the better
performance to the facts that (1) orLDA obtains more between-class information
than the other three LDA variants; (2) more than 1 extracted features can better
separate two classes.

Table 1. Mean accuracy and standard error of the mean on four datasets

Datasets ORL LFW Extended Cohn-Kanade Acute Leukemia

Original
LDA

0.8536 ±
0.0103

0.5675 ±
0.0190

0.9695 ± 0.0101 0.9857 ± 0.0143

orLDA 0.8832 ±
0.0102

0.625 ±
0.0194

0.9695 ± 0.0101 0.9857 ± 0.0143

ULDA 0.7684 ±
0.0179

0.58 ±
0.0244

0.9757 ± 0.0099 0.9589 ± 0.0299

OLDA 0.7684 ±
0.0179

0.58 ±
0.0244

0.9757 ± 0.0099 0.9589 ± 0.0299

5 Conclusion

In this paper, we propose a new LDA, orLDA, to address the over-reducing
problem associated with LDA. orLDA uses a new method to compute between-
class scatter matrix, which contains more between-class information and allows
extracting more features. Experiments have shown that orLDA outperformed the
original LDA, ULDA and OLDA significantly on two face datasets, outperformed
ULDA and OLDA on the gene expression dataset. orLDA achieved the same
performance as the original LDA on the emotion expression dataset and the
gene expression dataset, and underperformed ULDA and OLDA slightly on the
emotion expression dataset. It is then reasonable to conclude that the new LDA
variant is an improvement over the state of the art.
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