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Abstract. It has been observed that the noise accumulated in medical
images due to various reasons during acquisition process is Rician in
nature. A Rician noise removal method of Brain Magnetic Resonance
(MR) Images using Kernel Principal Component Analysis (KPCA) is
proposed in this paper. The proposed approach is non-parametric in
nature. It explores the image space for non-local similar patch search
and clusters them accordingly. The basis vectors are then learned using
KPCA for each cluster which makes the proposed method data adaptive
in nature. The approach has been applied to 2D phantom Brain MR
images and experimental results are comparable to the other state-of-
the-art methods in terms of various quantitative measures.
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1 Introduction

Image Restoration is considered as one of the crucial ingredient of Medical Image
Analysis systems. The possible sources for addition of noise are various para-
meters of the acquisition process such as flip angle, scan time, coil resistance,
dielectric and inductive losses in sample, patient movement etc. [12]. MRI, being
a non-invasive technique, offers many advantages in clinical analysis but the dis-
turbances or noise induced in acquisition process degrade the quality of the sig-
nal. In Medical Image Denoising problem, the noise model is found to be Rician
in nature which is different from commonly used distributions such as Gaussian,
Poisson, etc. [8].

It has been shown that the intensities of MR images represent magnitude
of underlying complex data which follows Rice distribution [7]. The real and
imaginary parts are modeled as independently distributed Gaussian with means
a, and a; respectively, with same variance o2. The probability density function
(pdf) of Rician random variable y is defined as follows:
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where a = /a2 + a? is underlying noise free signal amplitude and I,,(z) is n‘"
order modified bessel function of first kind. When Signal to Noise Ratio (SNR,
here it is a/o) is high, the Rician distribution approaches a Gaussian; when SNR
approaches to zero (that is only noise is present, a — 0) the Rician distribution
becomes Rayleigh distribution and the pdf turns out to be

Fr(yla = 0,0) = Le(=57) 2

Hence, the conventional methods for Rician noise removal first try to find the
background portion in the medical images where no signal is assumed. Hence, one
can use Rayleigh distribution in background portion and Gaussian distribution
in the rest (where SNR is assumed to be high enough) [9,16]. However under
the noisy condition, it is difficult to find proper background in the image.

Recent methods use the principle of non-local self similarity for image restora-
tion task, where the first step involves finding out the similar patches (in terms
of some predefined criteria such as Euclidean distance) that are similar to a given
reference patch from the image [1]. Thereafter, an orthonormal basis is inferred
for each patch and shrinkage is performed on the coefficients when the patch is
projected on that basis, coefficients are sparse in nature as described in [4,6,14].

Out of recently proposed techniques, BM3D [4] is most popular. BM3D tech-
nique creates a 3D stack of similar patches, projects it onto a 3D basis (tensor
product of 2D-DCT and 1D-Haar), and performs hard thresholding of these
coefficients followed by basis inversion, thereby allowing a coupled update of the
coefficients [4]. Another class of methods such as [5,13], first to cluster similar
patches and then learn basis for each cluster instead of searching the similar
patches for each underlying reference patch. However, due to nature of noise,
straight forward implication of natural image denoising methods has not been
advocated for medical images. The NLM method has been extended for Medical
Image denoising problem in [11] where bias correction needs to be considered.
BM3D has been extended using a suitable invertible transformation of the med-
ical data into another domain where data behaves like Gaussian distributed in
resultant domain. The most commonly known such kind of transformation for
this purpose is Anacombe’s Transformation, also known as Variance Stabilization
Technique (VST). Recently, VST has been proposed in [7] for Rician distributed
data and BM3D method is referred as BM3D+VST method. The BM3D+VST
method can be summarized mathematically as follows:

§=VST Y (BM3D(VST(z,0),0vs7),0) (3)

where V.ST~! denotes the inverse VST, oy g1 is the stabilized standard deviation
induced by VST and z denotes the additive white Gaussian noise whose true
intensity is represented by y. However, BM3D+VST is extended to 3D medical
data as BM4D method in [10]. This manuscript focuses on 2D data denoising
methods only.

The aim of this article is to explore a direct technique that can handle Rician
noise suitably giving rise to noise removal as good as BM3D+VST, if not better.
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Fig. 1. Transformation of two circular data sets into higher dimension space using
kernel method where separation between them is more prominent and can be classified
using linear hyper-surface.

We have extended PCA based method using Rough Set based clustering pro-
posed in [13] to Rician noise model and bias term correction is also made, referred
as ER-PCA in the paper. We have proposed a new Kernel based PCA (KPCA)
method for Rician noise. However, we have adopted the clustering strategy used
in [13], which is non-local approach in true-sense. As per our knowledge, KPCA
has not been applied for Rician noise removal in medical image yet. The kernel
based methods can find non-linearity of data in Feature Space. Recently, kernel
based methods have been used in Medical imaging in [2,15,19]. However, choice
of appropriate kernel for given data is undecidable. In the current proposal,
Gaussian kernel is used and the performance of noise removal technique is at
par with the state-of-the-art methods.

The paper has been arranged in following manner: Sect. 2 presents proposed
method using KPCA. Section 3 compares proposed method with other state-of-
the-art methods. The manuscript is concluded in Sect. 4.

2 Proposed Method Using KPCA

A non-parametric variant of PCA, known as Kernal Principal Component Analy-
sis (KPCA) has been explored for Rician noise removal. The KPCA tries to
explore structure in the data in Feature Space instead of Image Space itself and
tries to capture higher-order dependencies in the data. In Fig. 1, two class data
is shown in circular form and transformed to higher dimension for classification
purpose, where transformation is ¢(x) : (z1,22) — (21, 72,27 + 23). Hence, one
can find a discriminating plane (linear surface) in higher dimensions which is
not possible in two dimensions for given data points.

In KPCA, this nonlinearity is introduced by first mapping the data into
another space F using a nonlinear map ¢ : RY — F. before standard linear
PCA is carried out in F using the mapped samples ¢(xx). The map ¢ and the
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Fig. 2. Reconstruction using PCA and KPCA over synthetic data with Rician noise.
(a) Synthetic Data, (b) Rician Noisy Data, (c) Reconstruction using PCA and
(d) Reconstruction using KPCA.

space I’ are determined implicitly by the choice of a kernel function k, which
acts as a similarity measure. This mapping computes the dot product between
two input samples x and y mapped into F"

k(z;y) = o(x).0(y) (4)

One can show that if k is a positive definite kernel, then there exists a map
¢ into a dot product space F' such that Eq.4 holds. The space F' then has the
structure of a so-called Reproducing Kernel Hilbert Space (RKHS) [2].

The identity Eq. 4 is important for KPCA since PCA in F can be formulated
entirely in terms of inner products of the mapped samples. Thus, we can replace
all inner products by evaluations of the kernel function. This has two important
consequences: first, inner products in F' can be evaluated without computing ¢(x)
explicitly. This allows to work with a very high-dimensional, possibly infinite-
dimensional RKHS F'. Second, if a positive definite kernel function is specified,
we need to know neither ¢ nor F' explicitly to perform KPCA since only inner
products are used in the computations. Commonly used positive definite kernel
functions are polynomial kernel of degree d € N,k(x,y) = (x.y)? or k(x,y) =

(x.y + 1)? or Gaussian kernel of width o > 0, k(x,y) = exp (— |x — yl? /20’2>.
In all the experiments, Gaussian kernel has been used which is isotropic station-
ary in nature and also satisfies Mercer’s Theorem [19].

A synthetic experiment has been performed as shown in Fig. 2 where Rician
noise added in the synthetic data. However, KPCA (with Gaussian kernel) is
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able to preserve orientation of the data in a better way as compared to PCA
based reconstruction.
The outline of present work can be described as follows:

1. Get the clusters of patches from the given noisy image using Rough set based
method (as described in [13]).

2. For each cluster, get the basis vectors using KPCA method along pixel posi-
tions. For patches of size p x p, kernel matrix would be of size p? x p?. Hence,
the method is data adaptive in nature.

3. Project the noisy image patches on the obtained basis vectors in the KPCA
domain.

4. Apply coefficient shrinkage method on these projected patches to get the
denoised patches. Transform them back to image space.

5. Remove the bias term from each pixel of the denoised image.

Tunbiased = \/maa:(f(z,])Q - 2h2; O) (5)
where h is the standard deviation of noise and I is the image obtained by
step (4).

3 Experimental Results

This Section encompasses the qualitative and quantitative evaluations of the pro-
posed method along with some of the state-of-the-art methods. The experiments
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Fig. 3. Difference comparison of KPCA with reference to BM3D+VST method (at zero
level vertically) for 50 slices for noise standard deviation equal to 15 (a) T1 images with
PSNR difference values, (b) T1 images with MSSIM difference values, (¢) T2 images
with PSNR difference values and (d) T2 images with MSSIM difference values.
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Fig.4. (a) Synthetic Noisy T1 Image with Rician noise standard deviation=15 and
PSNR =22.7220 dB, Denoised image using (b) UNLM method, PSNR = 34.4622 dB,
(¢) BM3D+VST method, PSNR = 34.2393 dB, (d) RS-NLM method, PSNR =
32.5856 dB, (e) ER-PCA method, PSNR = 33.8155 dB, (f) KPCA method, PSNR
= 34.0241 dB.

Table 1. Performance comparison of proposed denoising strategy with different
approaches on various quantitative measures under Rician Noise assumption in Brain
Web database (slice=70 & 100, Modality = T1, image size = 181 x 217 and patch
size = 5 x 5). Best figures are shown in Bold.

Noise SD|Methods Slice 70 Slice 100
PSNR |RMSE MSSIM|FSIM |PSNR |RMSE MSSIM | FSIM
5 Noisy 32.4293 | 37.1660 |0.6134 |0.9296 [32.2588 | 38.6549 |0.5564 |0.8922
UNLM [11] 39.0519 8.0889 |0.9832 10.9845 |40.1551 6.2744 10.9882 |0.9887
BM3D+VST [7]/40.9727 5.19370.9602 |0.9843 |41.4921 4.6118 |0.9602 |0.9857
RS-NLM [13] 39.8595 6.7163 |0.9851 0.9853|41.5829| 4.5164/0.9914/0.9913
ER-PCA 40.4514 5.8606 [0.9791 10.9764 [39.9719 6.5447 10.9689 10.9563
KPCA 40.2107 6.1946 [0.9197 0.9797 |41.2223 4.9073 10.9866 |0.9850
10 Noisy 26.4115 |148.5702 |0.4717 |0.8149 |26.2398 |154.5629 |0.4183 |0.7567
UNLM [11] 35.9894 | 16.3733 |0.9608 |0.9643 [36.9916 | 12.9993 |0.9707 |0.9724
BM3D+VST [7]/36.3738| 14.9866/0.9040 |0.9607 [36.8590 | 13.4025 |0.9132 |0.9653
RS-NLM [13] 35.8260 | 17.0011 |0.9631|0.9645|37.2231 12.3246/0.9762 |0.9770
ER-PCA 35.7387 | 17.3464 |0.9389 |0.9439 [36.3168 | 15.1846 [0.9597 |0.9484
KPCA 36.1061 | 15.9395 |0.9586 |0.9522 [36.6642 | 14.0172 |0.9682 |0.9628
15 Noisy 22.8950 [333.8752 10.3744 |0.7177 |22.7220 |347.4434 |0.3331 |0.6495
UNLM [11] 33.5147 | 28.9475 |0.9299 [0.9391|34.4622 23.2732/0.9453 |0.9498
BM3D+VST [7]/33.7666| 27.3162|0.8583 |0.9368 |34.2393 | 24.4992 |0.8684 |0.9447
RS-NLM [13] 32.1179 | 39.9292 10.9273 |0.9244 [32.5856 | 35.8523 |0.9472|0.9448
ER-PCA 33.2440 | 30.8093 |0.9133 |0.9178 |33.8155 | 27.0103 |0.9377 |0.9287
KPCA 33.4097 | 29.6557 |0.93230.9262 |34.0241 | 25.7438 |0.9469 |0.9404
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Table 2. Performance comparison of proposed denoising strategy with different
approaches on various quantitative measures under Rician Noise assumption in Brain
Web database (slice=70 & 100, Modality = T2, image size = 181 x 217 and patch
size = 5 x 5). Best figures are shown in Bold.

Noise SD|Methods Slice 70 Slice 100
PSNR |RMSE MSSIM|FSIM |PSNR |RMSE MSSIM | FSIM
5 Noisy 32.4349 | 37.1185 |0.6257 |0.9365 [32.2639 | 38.6095 |0.5691 0.9052
UNLM [11] 34.4831 | 23.1617 |0.9822 |0.9813 |35.2666 | 19.3385 |0.9869 0.9858

BM3D+VST [7]/40.4738| 5.83050.9648 |0.9861(41.0752| 5.0764 |0.9663 |0.9885
RS-NLM [13] 36.9814 | 13.0300 |0.9856|0.9835 |37.6322 | 11.2166 |0.9915 0.9900

ER-PCA 39.8618 6.7127 |0.9783 |0.9727 |39.1934 7.8297 10.9610 |0.9473
KPCA 37.8578 | 10.6487 |0.8002 |0.9782 |38.1996 9.8429 |0.7610 |0.9797
10 Noisy 26.4322 |147.8642 |0.4956 |0.8356 |26.2550 154.0201 |0.4408 |0.7757
UNLM [11] 32.9818 | 32.7262 |0.9618 |0.9623 |33.8132 | 27.0246 |0.9710 |0.9687

BM3D+VST [7]/35.7377| 17.3504|0.9181 |0.9681|35.8044 | 17.0860 |0.9683 |0.9637
RS-NLM [13] 34.5041 | 23.0502 |0.9691 |0.9676 [35.2411 | 19.4522 |0.9799 0.9766

ER-PCA 34.8288 | 21.3894 |0.9432 |0.9323 |34.5457 | 22.8303 |0.9262 |0.9008
KPCA 35.0519 | 20.3182 |0.8527 |0.9567 |36.1329 15.8413/0.9184 0.9727
15 Noisy 22.9275 |331.3825 |0.4131 |0.7519 |22.7460 |345.5293 |0.3676 0.6776
UNLM [11] 31.4832 | 46.2121 |0.9346 |0.9408 [32.1181 | 39.9271 |0.9472 |0.9456

BM3D+VST [7]/32.8504| 33.7321|0.8769 |0.9496|33.1694| 31.3427|0.8855 |0.9567
RS-NLM [13] 31.9206 | 41.7849 10.9446|0.9452 |32.6973 | 34.9423 |0.9601 0.9543

ER-PCA 31.7529 | 43.4297 |0.9034 |0.8973 [31.7770 | 43.1894 |0.8989 |0.8718
KPCA 32.3606 | 37.7592 |0.9363 |0.9346 |32.8539 | 33.7049 |0.9516 0.9439
20 Noisy 20.4499 |518.2594 |0.3540 |0.6871 |20.2642 |611.8738 |0.3162 |0.6059
UNLM [11] 30.0502 | 64.2771 |0.9063 |0.9205 |30.5757 | 56.9519 |0.9199 10.9216

BM3D+VST [7]/30.7168| 55.1319|0.8426 |0.9303/30.9691| 52.0201 |0.8508 |0.9398
RS-NLM [13] 29.4113 | 74.4654 |0.9109 |0.9104 |30.1086 | 63.4192 |0.9293 10.9137

ER-PCA 29.6008 | 71.2860 |0.8723 |0.8785 |29.6002 | 71.2947 |0.8647 |0.8527
KPCA 30.1448 | 62.8934 |0.9129|0.9144 |30.6031 | 56.5941 |0.9316|0.9245
25 Noisy 18.5384 |910.4194 |0.3095 |0.6362 |18.3487 |951.0736 |0.2774 |0.5520
UNLM [11] 28.6394 | 88.9483 |0.8777 |0.9012 |29.1108 | 79.7989 |0.8914 0.8987

BM3D+VST [7]/29.0589| 80.7598|0.8109 |0.9114(29.2912| 76.5527|0.8269 |0.9227
RS-NLM [13] 26.4734 |146.4670 |0.8599 |0.8492 |26.6486 |140.6762 |0.8696 |0.8372
ER-PCA 28.0567 |101.7219 |0.8576 |0.8824 |28.1251 |100.1314 |0.8529 |0.8685
KPCA 28.1995 | 98.4298 |0.8792|0.8814 |28.3402 | 95.2919 |0.8932|0.8785

have been carried out on 2D monochrome phantom human brain MRI images
obtained from Brain Web Database [3]. The parameters are as follows: RF =
20, protocol = ICBM, slice thickness = 1 mm, volume size = 181 x 217 x 181.
The experimental set up considers Rician noise model at different noise levels
along with two modalities, namely T1 and T2. The simulated database pro-
vides the ground truth image for evaluating denoising performance which most
of the time is unavailable with real database. The Rician noise addition and
bias correction are done as suggested in [10] and [11] respectively. The evalua-
tion measures used are Peak-Signal-to-Noise Ratio (PSNR), Root Mean Square
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Error (RMSE), Mean Structural Similarity Index (MSSIM) [17] and Feature
Similarity Index (FSIM) [18].

For comparison purpose, several state-of-the-art methods are considered:
Unbiased Non Local Means (UNLM method) presented in [11], BM3D+VST
method proposed in [4], Rough Set based Non Local Means (RS-NLM) method
proposed in [13] and PCA based method proposed in the [13] has been extended
in this work for Rician noise, referred as Extended Rough set based PCA method
(ER-PCA). The parameters of all methods are kept default as suggested by
respective authors. In all the experiments, patch size is kept as 5 x 5. The pro-
posed KPCA method does not use VST method. Tables 1 and 2 represent quanti-
tative results for two slices 70 and 100 of T1 MR and T2 MR images respectively.
The ER-PCA performance is comparable to UNLM and BM3D+VST methods.
The proposed KPCA method outperforms ER-PCA and preserves structure bet-
ter than other state-of-the-art method. Figure 3 shows difference of PSNR and
MSSIM measure for KPCA method with reference to BM3D+PCA (zero level
on vertical axis) of 50 slices (from 61°! to 110" slice of database mentioned
above) with noise standard deviation equal to 15 for both T1 and T2 modalities.
Negative value indicates BM3D+VST performs better and, in reverse, positive
value is indicator of better performance of KPCA method. From Fig. 3, PSNR
of KPCA fall below BM3D+VST method whereas it better preserves structure
of the image in terms of MSSIM measure. This is also visually evident in Fig. 4
for the slice 100 of T1 modality at noise level 15.

4 Conclusion

In this paper, an approach for removal of Rician noise from brain MR images
using Kernel PCA has been proposed. Being a manifold learning method, KPCA
explores a suitable transformation for image representation through sparse bases.
This method learns basis vectors from data itself unlike BM3D+VST method
where basis vectors are kept fixed. The limitation of KPCA method is the selec-
tion of suitable kernel which is yet unanswered. If the nature of data is not
known a-prior than one can try various kernels to find a suitable one. However,
commonly used Gaussian kernel in KPCA, found to perform comparable with
other state-of-the-art methods. The PCA based method proposed in [13] has also
been implemented to remove Rician noise, but it fails to attain superior perfor-
mance over KPCA. The proposed method is implemented on synthetic data for
quantitative evaluation since ground truth data is available for the same.
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