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Abstract. Breast cancer is the most commonly occurring form of cancer
in women, and can be diagnosed using various imaging modalities includ-
ing thermography. In this paper, we present an approach to analysing
breast thermograms based on statistical image features and an effective
ensemble method for imbalanced classification problems. We extract a
series of features from the images to arrive at indications of asymmetry
between left and right breast regions. These then form the input to a
classification stage for which we develop a dedicated multiple classifier
system that employs neural networks or support vector machines as base
classifiers, trains base classifiers on balanced subsets of the training data
to address the class imbalance that is typically inherent in medical deci-
sion making problems, and fuses the decisions using a neural network
combined with a fuzzy diversity measure to remove individual classifiers
from the ensemble and to enhance prediction performance. Experimental
results, on a large dataset of about 150 breast thermograms, confirm our
approach to provide excellent classification performance and to outper-
form other classifier ensembles designed for imbalanced datasets.
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1 Introduction

Thermography uses a camera with sensitivities in the thermal infrared to capture
the temperature distribution of the human body or parts thereof. In contrast to
other modalities such as mammography, it is a non-invasive, non-contact, passive
and radiation-free technique. It is well known that the radiance from human skin
is an exponential function of the surface temperature which in turn is influenced
by the level of blood perfusion in the skin. Thermal imaging is hence well suited
to pick up changes in blood perfusion which might occur due to inflammation,
angiogenesis or other causes [14]. Thermography has also been shown to be
well suited for the task of detecting breast cancer [3,13]. Here, thermography
has advantages in particular when the tumor is in its early stages or in dense
tissue. Early detection is crucial as it provides significantly higher chances of
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survival [12] and in this respect infrared imaging can outperform the standard
method of mammography. While mammography can detect tumors only once
they exceed a certain size, even small tumors can be identified using thermal
infrared imaging due to the high metabolic activity of cancer cells which leads
to an increase in local temperature that can be picked up in the infrared [16].

In our approach, which is a continuation of the work presented in [18],
we therefore derive a set of image features that describe possible asymmetries
between the bilateral breast regions to capture this effect. These features are
then used in a pattern classification stage for which we develop a multiple clas-
sifier system (MCS). In particular, we employ neural networks or support vec-
tor machines as base classifiers, and, importantly, address the problem of class
imbalance, that often occurs in medical data analysis, by training the individ-
ual classifiers on balanced data subsets, thus eliminating any unfavourable class
distribution. The base classifiers are then combined using an fuser implemented
as a one-layer perceptron neural network. Finally, we remove redundant classi-
fiers through an ensemble diversity measure based on fuzziness using an energy
approach. Experimental results, on a dataset of about 150 breast thermograms,
confirm that our proposed approach works well and gives excellent classifica-
tion performance. We furthermore show it to statistically outperform not only
canonical classifiers but also recent classifier ensembles that are also dedicated
to imbalanced classification.

2 Background

Several computer aided diagnostic (CAD) approaches to analysing breast ther-
mograms have been presented in the literature. In [23], an attempt based
on asymmetry analysis is presented where, following segmentation based on
edge detection and the Hough transform, Bezier histograms are generated
and compared to identify cancer cases. In [25], some basic statistical fea-
tures are extracted and passed to a complementary learning fuzzy neural net-
work (CLFNN) for diagnosis. Reference [26] proposes morphological analysis of
“localised temperature increase” amplitudes in thermograms to detect tumors.
A series of image features from the breast regions (the same features that we
employ in this paper) are extracted in [24] and subsequently analysed by a fuzzy
classification method, while [31] uses the same feature set in conjunction with
a neural network classifier. The approach in [6] is based on transforming the
thermogram into a representation derived from independent component analy-
sis, thresholding and correlating the obtained channels to locate tumor areas.
In [1], texture features and support vector machine classifiers are employed,
while in [22] wavelet and texture descriptors are used in combination with sev-
eral classification algorithms.

3 Image (A)symmetry Features

As has been shown, an effective approach to detect breast cancer based on ther-
mograms is to study the symmetry between the left and right breast regions [23].
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In the case of cancer presence, the tumor will recruit blood vessels resulting in
hot spots and a change in vascular pattern, and hence an asymmetry between
the temperature distributions of the two breasts. On the other hand, symmetry
typically identifies healthy subjects.

We follow this approach and extract image features that describe bilateral
differences between the areas of the left and right breasts extracted from frontal
view thermograms. We employ the same image features that were used in [24]
(for a more extensive discussion of them, see there), namely:

– Basic statistical features: mean, standard deviation, median, 90-percentile;
– Moment features: centre of gravity, distance between moment centre and geo-

metrical centre;
– Histogram features: cross-correlation between histograms; maximum, number

of non-empty bins, number of zero-crossings, energy and difference of positive
and negative parts of difference histogram;

– Cross co-occurrence matrix [31] features: homogeneity, energy, contrast, sym-
metry and the first 4 moments of the matrix;

– Mutual information between the two temperature distributions;
– Fourier spectrum features: the difference maximum and distance of this max-

imum from the centre.

Each breast thermogram is thus described by 4 basic statistical features, 4
moment features, 8 histogram features, 8 cross co-occurrence features, mutual
information and 2 Fourier descriptors. We further apply a Laplacian filter to
enhance the contrast and calculate another subset of features (the 8 cross co-
occurrence features together with mutual information and the 2 Fourier descrip-
tors) from the resulting images, and consequently end up with a total of 38
features which describe the asymmetry between the two sides and which form
the basis for the following pattern classification stage.

4 Imbalanced Pattern Classification Ensemble

In our approach, we employ an ensemble classifier, i.e. perform classification not
based on a single algorithm but based on a joint decision of a committee of
classifiers [20]. This way, we are able to exploit the strengths of different base
classifiers while eliminating their weaknesses, thus leading to more robust and
typically better classification performance.

Given a pool of N classifiers Ψ (1), Ψ (2), . . . , Ψ (N), for a given feature vector x,
each of the individual classifiers makes a decision with respect to class i ∈ M =
{1, . . . , M}. The classifier ensemble Ψ̄ then makes a combined decision based on

Ψ̄(x) = i if F̂ (i, x) = max F̂ (k, x)
k∈M

, (1)

where

F̂ (i, x) =
N∑

l=1

w(l)F (l)(i, x) and
N∑

l=1

w(l) = 1, (2)
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and F (l)(i, x) is a discriminant function for the i-th class and object x used by
the l-th classifier. The weights w(l) here play a crucial role for the performance
of the ensemble and can be assigned either statically and through training.

In the following, we detail the components of our classifier ensemble.

4.1 Base Classifiers

While in principle any classification approach can serve as base classifier, in our
approach we build ensembles of neural network (NN) or support vector machine
(SVM) classifiers. For the NN classifier [4], we use the Quickprop algorithm for
training, and set the number of hidden neurons to half the sum of input and
output neurons. For the SVM classifier [27], we employ a Gaussian RBF kernel,
and perform classifier tuning [15] to obtain optimal parameters.

4.2 Imbalanced Classification

In medical diagnosis, there are typically far fewer malignant cases than there are
benign ones, and consequently conventional classification approaches often suffer
from low sensitivity due to the skewed class distribution. Class imbalance can be
addressed in several ways, including oversampling of the minority class [9] and
cost-sensitive classification [19].

In our approach, we revert to neither of these, but employ our earlier method
from [18] which is based on the principle of object space partitioning to train
individual classifiers on balanced subsets of the training data.

In particular, we create a number of subspaces using a random undersampling
method. Each of the subspaces contains a smaller number of objects, randomly
drawn from the dataset, so that the number of objects from each of the classes
are equal. Objects of the majority class are randomly sampled and removed from
the training set. Subspaces are then created as long as there are objects in the
majority set. Each subspace forms the basis of one of the classifiers; that is, each
base classifier is trained on a different (balanced) training subset, hence leading
to a heterogeneous ensemble that addresses class imbalance.

To boost recognition performance, a feature selection step is performed. For
this purpose, we utilise the fast correlation-based feature filter (FCBF) [30]. In
FCBF, the relations between features-classes and between pairs of features are
considered. The algorithm proceeds at two levels. First, a ranking algorithm
using the symmetric uncertainty coefficient index is employed to estimate class-
feature relevance, and a threshold established to select predominant features. In
the second part, features redundant to the predominant features are removed.
Since feature selection is applied separately for each subspace, and hence each
classifier, this step also enhances the heterogeneity of the ensemble.

4.3 Ensemble Diversity

Different base classifiers will have different areas of competence and hence
may provide different contributions to the committee. Careful classifier selec-
tion should be hence conducted in order to choose the most valuable individual
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models. Therefore, in this paper and in contrast to [18], we employ a classifier
ensemble diversity measure for this purpose. For this purpose, we extend the
energy-based fuzzy diversity measure introduced in [17] for one-class classifica-
tion problems to multi-class classification.

The proposed energy approach provides an effective measure of fuzziness. It
uses a threshold λ ∈ [0, 1] whose role is to filter insignificant degrees of mem-
bership, that may otherwise lead to lowering the stability of the measure. Given
N base classifiers in the pool, out of which S correctly classify a given training
object xj , one can define a fuzzy membership function μxj

= S
N for the given

object, with 0 ≤ μxj
≤ 1.

Based on this, the employed energy measure is calculated as

DIV =
∫

X

N∑

i=1

fλ(x)dx, (3)

where

fλ(x) = f(x) ⇔
∑N

k=1 δ(ΨM
ik

(x), Ψ∗(x))
N

> λ, (4)

and Ψ∗(x) denotes a classifier correctly classifying object x, and f(x) : [0, 1] →
R+ is an increasing function in interval [0, 1] for f(0) = 0.

The derived measure gives an indication of the diversity of the entire classifier
committee in the range [0, 1], where 0 corresponds to an ensemble of identical
classifiers and 1 to the highest possible diversity respectively.

We perform diversity-based classifier selection through an exhaustive search
over all possible combinations of committee members, and selecting the ensemble
that yields maximal diversity.

4.4 Classifier Fusion

Classifier fusion is an important aspect of classifier ensembles, and the choice of
fusion method, which is responsible for the collective decision making process
by determining the weights in Eq. (2), is hence crucial. Instead of traditional
approaches such as majority voting or static weight assignment, in this paper
we utilise a dynamic approach to combine the outputs of base classifiers created
on different object subspaces. In particular, we employ a trained fuser which,
although taking longer to achieve its final performance, leads to an increase of
the overall classification accuracy [11].

In a training process, the fuser needs to identify W = {W1,W2, . . . , WN}
where Wl =

[
w(l)(1), w(l)(2), . . . , w(l)(M)

]T
comprises the weights assigned to

each classifier and each of the M classes.
The aim is to find a fuser which assures the lowest misclassification rate of Ψ̄

for which we employ a neural network with a canonical learning approach [29] as
illustrated in Fig. 1. One perceptron fuser is constructed for each of the classes
under consideration, and may be trained with any standard procedure used
in neural network learning. The input weights established during the learning
process are then the weights assigned to each of the base classifiers.
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Fig. 1. Classifier fuser implemented as a one-layer neural network

5 Experimental Results

In our experiments, we use a dataset of 146 thermograms of which 29 cases
have been confirmed as malignant whereas the other 117 cases were benign. The
employed dataset is the same that was used in earlier work [18,24,31]. For all
thermograms, the 38 features from Sect. 3 are extracted and serve as input for
classification.

For our proposed classification approach, each subspace is designed so as to
contain all objects from the minority class and an equal number of samples from
the majority class, leading to a pool of 7–9 base classifiers (depending on the
fold of CV). To observe the influence of the removal of redundant classifiers,
we run our experiments with and without employing the diversity-based classi-
fier selection. The pruned ensembles consist of 4–6 individual classifiers (again,
depending on the fold of CV).

In order to put the obtained results into context, we also perform clas-
sification using several state-of-the-art ensembles dedicated to imbalanced
classification, namely SMOTEBagging [28], SMOTEBoost [9], IIvotes [5] and
EasyEnsemble [21], all with support vector machines (with a Gaussian RBF
kernel and classifier tuning, as in our approach) as base classifiers. Further-
more, we run the experiments using several canonical classifiers, namely a single
SVM [27], bagged SVM [7], boosted SVM [10], and Random Forest [8].

Classification results, based on 5× 2 cross validation, are presented in Table 1
where, for each classifier and classifier ensemble, we report sensitivity (i.e. prob-
ability that a case identified as malignant is indeed malignant), specificity (i.e.
probability that a case identified as benign is indeed benign) and overall classifi-
cation accuracy (i.e. percentage of correctly classified patterns). We also perform
a combined 5× 2 CV F test of statistical significance (on sensitivity) [2], and
report its results in Table 2.
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Table 1. Classification results for all classifiers

Classifier Sensitivity Specificity Accuracy

Single SVM [27] 8.34 86.32 71.23

Bagged SVM [7] 12.68 94.01 79.45

Boosted SVM [10] 19.58 98.00 85.61

Random Forest [8] 22.58 98.29 84.24

SMOTEBagging [28] 77.35 90.50 87.89

SMOTEBoost [9] 79.03 91.00 88.62

IIvotes [5] 79.56 91.89 89.44

EasyEnsemble [21] 80.02 91.00 88.22

Hybrid Ensemble (NN) 78.85 90.82 88.43

Hybrid Ensemble (SVM) 79.85 91.08 88.78

Hybrid Ensemble (NN)+ DIV 80.74 90.52 88.56

Hybrid Ensemble (SVM) + DIV 81.96 90.80 89.03

From Table 1, we can see that canonical classification approaches are not
able to cope well with the dataset due to the inherent class imbalance, and
consequently provide rather poor sensitivity.

The implemented ensembles SMOTEBagging, SMOTEBoost, IIvotes and
EasyEnsemble are all specifically designed to address class imbalance in the
context of a multiple classifier system. SMOTEBagging and SMOTEBoost do
this through oversampling approaches, while IIvotes is also based on the bag-
ging combination idea, but integrates the SPIDER data preprocessing technique
with the Ivotes approach. EasyEnsemble carries out a double ensemble learning
procedure, combining bagging and boosting. From the results in Table 1, it is
apparent that these methods lead to a significant boost in terms of sensitivity.
Table 2 shows that all ensembles statistically outperform all single classifiers,
while EasyEnsemble gives the best sensitivity.

Now looking at the results of our proposed hybrid ensemble approach, we
can notice that it leads to a clear further improvement still. Using the employed
subspacing method means that we do not need to create artificial objects or
define cost matrices. In the former new artificial objects may be introduced
on the basis of already created artificial samples, while for the latter a cost
matrix needs to be defined which is often difficult and requires detailed domain
knowledge.

Inspecting the differences for employing different base classifiers, it is clear
that the SVM-based ensemble, which closely resembles our earlier approach
introduced in [18], leads to (statistically) better classification performance. This
may be caused by the fact that SVMs tend to work well on small datasets. Each
subspace consists of a relatively small number of objects (all minority samples
available in the fold and an equal number of majority ones), and consequently
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Table 2. Results of statistical significance. A + signifies that the algorithm listed in this
row statistically outperforms the algorithm listed in this column (based on sensitivity),
a − indicates a statistically inferior performance.

NNs tend to be prone to overfitting in these subspaces, while SVMs are able to
handle the dichotomisation process more effectively.

The proposed hybridisation with the fuzzy diversity measure introduced in
this paper is shown to give our method a further edge. Comparing the ensembles
with and without the classifier selection stage, it is obvious that the former
achieve higher classification and sensitivity performance. The overall best results
are achieved by an ensemble of support vector machines that gives the maximum
diversity using our energy-based measure. This approach yields a sensitivity of
81.96 % which is shown to be statistically better than those of all other methods,
while resulting in only a slight drop in terms of specificity, and confirms that our
hybrid ensemble algorithm provides an excellent classification method.

The presented approach also clearly outperforms earlier approaches in the
literature of breast thermogram analysis. In [24], the same features and dataset
were employed together with a cost-sensitive fuzzy if-then rule based classifier
optimised by a genetic algorithm and giving a sensitivity of 79.86 % with a
specificity of 79.49 %. [31] also used the same data and features and reported a
sensitivity and specificity of 79 %.
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6 Conclusions

In this paper, we have presented an effective approach to analysing breast ther-
mograms for cancer diagnosis. We extract a set of image features describing
bilateral (a)symmetry between the two breast regions from the images, and use
these as input to a pattern classification stage. Based on our earlier work, we cre-
ate a classifier ensemble for classification and address class imbalance by training
its base classifiers on balanced data subsets. Using support vector machines and
neural networks as individual classifiers and a trained perceptron as classifier
fuser, this is shown to provide a powerful decision making system as experi-
mental results on a dataset of about 150 thermograms demonstrate. Crucially
though, we additionally perform a classifier selection stage based on a fuzzy
diversity measure to eliminate redundant classifiers and identify the best mod-
els, and confirm this to lead to even (statistically significant) better classifica-
tion performance and to yield an ensemble that outperforms not only various
canonical classifiers but also several ensemble classifiers designed to address class
imbalance.
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