Big Data Processing by Volunteer Computing Supported
by Intelligent Agents

Jerzy Balicki(x), Waldemar Kortub, and Jacek Paluszak

Faculty of Telecommunications, Electronics and Informatics, Gdarisk University of Technology,
Narutowicza St. 11/12, 80-233 Gdarisk, Poland
balicki@eti.pg.gda.pl, waldemar.korlub@pg.gda.pl,
jacekpaluszak@gmail.com

Abstract. In this paper, volunteer computing systems have been proposed for
big data processing. Moreover, intelligent agents have been developed to effi-
ciency improvement of a grid middleware layer. In consequence, an intelligent
volunteer grid has been equipped with agents that belong to five sets. The first
one consists of some user tasks. Furthermore, two kinds of semi-intelligent tasks
have been introduced to implement a middleware layer. Finally, two agents based
on genetic programming as well as harmony search have been applied to optimize
big data processing.

1 Introduction

Big data (an acronym BD) can be very useful to achieve high-value information related
to decision support, business intelligence or forecasting. Large volumes of data are
published by many companies to the web, and also they deploy e-commerce applications
that enable continuous self-service transactions via the web. We observe a migration of
database capacities from terabytes to petabytes. Furthermore, we can expect that modern
systems will require distributed databases with exabytes or even zetabytes. It is difficult
to define big data, e.g. 10 terabytes is a large capacity for a banking transaction system,
but small even to test a web search engine. However, we can treat this data as big if a
data capacity is large enough to be uncooperative to work with some relational database
management systems RDBMS like DB2, INGRES, MySQL, Oracle, Sybase or SQL
Server [28, 31].

Some crucial difficulties with big data are related to: capture, storage, search, sharing,
analytics, and visualizing. Few exabytes of data are captured per day from different
sources: sensors, GPS, smartphones, microphones, cameras, tablets, computer simula-
tions, satellites, radiotelescopes, and social networks via some wireless sensor networks.
In result, the data store capacity has approximately doubled every three years for thirty
years. Furthermore, The Internet of Things supports BD gathering. Currently, we can
expect to store more or less zetabytes. data storage, their visualization, analysis and
search are still considered as an open problem to solve, too [14, 24].

BD is not convenient to the most RDBMS because massively parallel software on
thousands of servers is required. In applications of statistics and visualization, sizes of
BD exceed the capability of commonly used tools. A BD size can increase to achieve
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many petabytes for one volume. Fortunately, progress in speed of data communication
can support BD processing. Another feature of BD is wide variety of them, what is
related to a huge range of data types and sources. So, the 4Vs model can be descripted
by: high volume, extraordinary velocity, great data variety, and veracity [30]. In BD,
some regressions can be used to find predictions. On the other hand, some descriptive
statistics can be developed for business intelligence.

Big data processing requires high performance architecture of distributed systems.
In this paper, volunteer computing systems are proposed for big data processing. In the
volunteer grids such as BOINC, Folding@home, and GIMPS, flat data sets are trans-
formed into several millions of subsets that are processed parallel by volunteer
computers. Performance of grid computing as Folding@home is estimated at 40
[PFLOPS]. For comparison, the fastest supercomputer performance Tianhe-2 reached
34 [PFLOPS] in 2014 [8]. Moreover, the BOINC system performance is 6 [PFLOPS]
and computing power achieved for the most important projects using this software are:
SETI@Home — 681 [TFLOPS] and Einstein@ Home — 492 [TFLOPS]. GIMPS with 173
[TFLOPS] discovered the 48th Mersenne prime in 2013. The number of active volun-
teers can be estimated as 238,000 for BOINC [8].

Moreover, intelligent agents can be developed to efficiency improvement of a grid
middleware layer. For example, an experimental volunteer and grid system called
Comcute that is developed at Gdarisk University of Technology can be equipped with
agents that belong to five sets [5, 11]. This grid was a virtual laboratory for experiments
with big data and intelligent agents. Especially, some user tasks like the Collatz hypoth-
esis verification or the 49" Mersenne’ prime finding can move autonomously with a big
amount of data from some source databases to some destination computers, and then
outcomes are returned. If we consider above tasks, a reduction of databases can be done
by dynamic memorizing the current period of Integers. However, a dilemma appears if
we study some simulations of fire spread that is another Comcute project. In that case,
some scenarios are analyzed, and several strategies are found [6].

Furthermore, two kinds of intelligent tasks have been considered to implement
a middleware layer. Agents for data management send data from source databases to
distribution agents. Then, distribution agents cooperate with web computers to calculate
results and return them to management agents. Both types of agents can autonomously
move from one host to another to improve quality of grid resource using.

Moreover, two group of agents based on genetic programming as well as harmony
search have been introduced to optimize big data processing. A set of agents designed
for local optimization are some harmony search schedulers. These schedulers can opti-
mize resource using. They cooperate with distributors and managers to give them infor-
mation about optimal workload in a grid. Finally, genetic programming has been applied
for finding the compromise configurations of grid. These agents cooperate with harmony
search schedulers to correct in local timetables.

In this paper, big data dilemmas are described in Sect. 2. Then, intelligent agents for
big data are studied in Sect. 3. A description of agents based on genetic programming
is included in Sect. 4. Moreover, some outcomes for numerical experiments are
submitted.
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2 Big Data System Architectures

Some current big data applications are based on tools such as Hadoop or NoSQL cluster.
Scalability is their ability to handle an increasing amount of transactions and stored data
at the same amount of time. MongoDB is the NoSQL database that supports the data
stored to different nodes and has support for a number of programming languages.

The current solutions to big data dilemmas are based on parallel data processing. We
can use a massively parallel cluster with lots of CPUs, GPUs, RAM and disks to obtain
a high performance by data-based parallelism. It is important to deal with OLTP online
transaction processing that is a class of information systems to manage transaction-
oriented applications. Moreover, low response time for decision-support queries can be
obtained for OLAP that is online analytical processing to answering multi-dimensional
analytical queries rapidly. High reliability can be obtained through data replication. As
a final point, we expect extensibility with the almost linear speed-up as well as linear
scale-up. Performance can increase linearly for a constant database size, load, and
proportional increase of the components (CPU, GPU, RAM, disk). On the other hand,
linear scale-up means that performance is constant for proportional increase of CPUs
and a linear growth of load and database size.

Figure 1 shows three cases of data-based parallelism. In the first case, the same
operation is carried out on different data (Fig. 1a). This case can be considered for large
query. For concurrent and different queries that operate on the same data, we can
consider the second case on Fig. 1b.
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Fig. 1. Three cases of data-based parallelism

The third case (Fig. 1c) is related to complex query that is divided on some parallel
operations acting on diverse data. Above three cases of data-based parallelism permit
us to prepare two alternative architectures that support big data parallelism.

The main architecture that is convenient for write-intensive tasks is based on shared-
memory computers like Bull Novascale, HP Proliant or IBM Numascale. Unfortunately,
this architecture is based on NUMA Non-Uniform Memory Access server technology
and it is not suited for big data. Several disks are shared by many processors via shared
RAM. The architecture can support effectively applications, and it can support load
balancing. On the other hand, the NUMA architecture is involved with interconnection
limits and there are some difficulties with extensibility.
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Architecture with shared-disk cluster is much more prepared for big data processing
than NUMA architecture. Storage Area Network SAN interconnects private memory
and disks that are shared by processors. Hosts like Exadata, Oracle RAC and IBM
PowerHA are convenient for applications and some extensions can be made easily.
However, a complex distributed lock manager is needed for cache coherence.

A crucial feature of BD is related to intensive reading from hard disks and then
processing, instead of processing and then intensive writing. If we consider no sharing
of memory or disks across nodes (Fig. 2), this system requires data partitioning of data-
base like in servers: DB2 DPF, MySQLcluster or Teradata.

Database partition 1 Database partition 2
log, conf.i-g.uration
engine
RAM RAM

Fig. 2. Shared-nothing cluster architecture for big data [24]

Big data is spread over some partitions that run on one or some separate servers with
own table spaces, logs, and configurations. A query is performed in parallel on all parti-
tions. Such architecture can support Google search engine, NoSQL key-value stores
(Bigtable). An advantage is the highest extensibility and low cost. In contrast, some
updates and distributed transactions are not efficient.

3 Intelligent Agents for Big Data

Intelligent agents can improve efficiency of a grid middleware layer for big data
processing. A volunteer grid can gather data from multiple sources, which may be
heterogeneous and spread geographically across the world. Moreover, the collected data
may be stored by a volunteer grid in multiple geographically spread facilities [9, 17].
Multiagent systems are well suited for BD acquisition because of mobility, which
means the ability to move between different facilities. By doing that agents can get closer
to the source of data or closer to the data they are about to process. It reduces bandwidth
requirements and communication delays [9]. The ability to react upon sudden changes
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of the environment and to act proactively is important to provide foundation for handling
changes in availability of data sources or collected data. An agent can make decision if
move to another set of data or initiate communication with other agents [2, 7].

Other useful traits of agents include abilities to communicate and negotiate. In agent-
based data mining system it is possible to distinguish different roles and groups of tasks
that constitute the whole mining process. Individual roles can be assigned to agents.
Through communication and negotiation working groups of agents can be established,
each of them built of agents with a unified goal. Agents can improve efficiency of data
mining compared to centralized approaches [37]. It was applied in different domains
showing promising results for further research, e.g. banking and finance domain [21] or
resource allocation in distributed environments [4, 9].

A common approach for big data processing is the use of MapReduce algorithm,
which is optimized for parallel and asynchronous execution on multiple computing
nodes [12]. Because of the proven usefulness of this approach in multiple areas, e.g.
bioinformatics [15, 26], fraud detection [22], social network analysis [16, 25] — there
are many software frameworks for performing this kind of computations. Among most
popular is the Apache Hadoop software [12], which can utilize computing power of
multiple machines in a distributed environment.

However, such tools often introduce certain limitations. Of them is the need to use
internal storage mechanisms (e.g. Hadoop distributed file system [29]), for effective
operation. It is an effect of an inability to integrate with external and typically hetero-
geneous data sources. Data administrators are forced to move or duplicate large volumes
of data from existing data stores to framework-specific ones. Another problem is the
lack of support for online data and analysis. Moreover, many scenarios require extraction
and merging of data to produce a meaningful result [32].

One more issue is that some frameworks may introduce architectural flaws like single
point of failure (e.g. Hadoop before version 2.0 [33]) that have an influence on the whole
system, in which they were deployed. Some of those issues can be addressed by using
agent-oriented approach. Agents are designed for heterogeneous environments and are
usually attributed with the ability to handle changes [36]. It translates to capability of
integrating with different data sources. Reactive nature of agents enables them to work
with online data streams with each new piece of information appearing in the stream
interpreted as an event that requires agent response.

Another trait of agents is pro-activeness, which means that an agent can not only
react to external events but also run actions on its own [34]. It is especially important in
case of analysis, as there are often no clues about expected results known in advance.
Because of that it is not possible to create the knowledge extraction algorithm a priori.
Proactive behavior of agents can expose information that was not expected.

The problem of data acquisition can be solved be making use of another trait of
agents — their mobility. It means that a software agent is not bound to any particular
machine or execution container [20]. Individual agents can migrate between different
nodes, to get closer to the sources of data. Instead of providing the data to the system,
with multiagent approach the system acquires the information on its own so there is no
need for data administrators to migrate or duplicate the data.
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For real-time data analysis that takes into account both offline data and online streams
Marz proposed the lambda architecture [23], which consists of three main components:
batch layer, serving layer and speed layer. The batch layer is responsible for offline data
processing and can be implemented using existing MapReduce frameworks like afore-
mentioned Hadoop. This layer produces batch views of the data, which can be exposed
to external applications. The serving layer serves prepared views to clients. The speed
layer is responsible for real-time processing of data streams. It analyses data that was
not yet processed by the batch layer. Speed layer produces real-time views that can be
coupled with batch views to create complete representation of the extracted knowledge.

Twardowski and Ryzko further show that the lambda architecture can be defined in
terms of a heterogeneous multiagent system [32]. There are several strong motivations
for this approach. First of all, the lambda architecture gives only general guidelines. The
actual realization requires integration of a few components: one for batch processing,
another one for serving views, a different solution for real-time stream analysis and a
component that merges real-time views with batch views. There are ready-made frame-
works and libraries for each step that can be used to create a complete solution.

The use of multiagent environment will provide a common way for information
exchange between different component and a common execution model [32]. The
differences between individual components of the lambda architecture lead to inherently
heterogeneous realizations so the ability to handle diversity in agent systems in another
motivation for this approach. Figure 3 shows the lambda architecture employing multi-
agent model.
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Fig. 3. Multiagent real-time processing utilizing lambda architecture [32]

Limitations of intelligent agents systems are related to higher complexity of software
preparation that causes higher costs and higher probability of mistake appearing. What
is more, some algorithms based on artificial intelligence have to be considered. These
algorithms are probabilistic and it cause some unpredicted outcomes during some phases
of their running. However, advantages of intelligent agents seem to be more important
that their disadvantages. Among intelligent agents, agents based on genetic program-
ming are worth to consideration regarding their capability of resource managing in grids
applied for big data.
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4 Agents Based on Genetic Programming

Intelligent agents based on genetic programming AGPs can optimize a grid resource
management for big data queries [1, 18]. Especially, they have been dedicated to global
optimization of middleware software module allocation in Comcute grid. In that system,
they cooperate with intelligent agents based on harmony search AHSs that reconfigure
some local parts of grids. AGP starts from a goal of load balancing to be achieved and
then it creates a solver autonomously [19]. It is similar to deal with the dilemma from
machine learning “How can computers be made to do what needs to be done, without
being told exactly how to do it?” [27]. AGP uses the principle of selection, crossover
and mutation to obtain a population of programs applied as a scheduler for efficient using
big data by the Comcute. This scheduler optimizes some criteria related to load balancing
and send a compromise solution to AHSs [35].

In AGP, a program is represented as a tree that consists on branches and nodes:
a root node, a branch node, and a leaf node. A parent node is one which has at least
one other node linked by a branch under it. The size of the parse tree is limited by the
number of nodes or by the number of the tree levels. Nodes in the tree are divided on
functional nodes and terminal ones. Mutation and crossover operate on trees, and
chosen node from tree is a root of subtree that is modified regarding genetic operators.

Figure 4 shows architecture of the volunteer grid Comcute with one AGP agent that
cooperates with two AHS agents. We divide the whole grid on several subgrids with at

most 15 nodes.
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Fig. 4. Agent based on genetic programming in the Comcute for big data processing
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AHS can find configuration for at most 15 nodes, 50 tasks and 15 alternatives of
resource sets ARS on PC/Windows 7/Intel i7. Figure 5 shows an example of a compro-
mise configuration for a subgrid in the Comcute that was found by AHSI for its area
consisted of 15 nodes. Workload is characterized by two criteria [10, 13]. The first one
is the CPU workload of the bottleneck computer (denoted as Z,,, ), and the second one
is the communication workload of the bottleneck server (Z,,, )-
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Fig. 5. A compromise configuration found by AHS!

The compromise configuration found by AHS/ is specified in Table 1. The W-agent
with number 5 as well as two S-agents (No. 6 and 27) should be moved to the node
No. 1, where the third alternative of resource set ARS (BizServer E5-2660 v2) is
assigned. Agent AHS] publishes this specification in the common global repository of
grid and the other agents can read it to make decision related to moving to some
recommended nodes. However, reconfiguration of resource requires a bit of time. So,
a middleware agent reads the state of resources in the given grid node, and then it
makes decision whether to go to that node or not.

Table 1. A specification of a compromise configuration from AHS1

Nodei| 1 2 3| 4 5 6 718 9 |1o0]11]12] 13 |14
ARSj | 3 8 3 9 8 9 8 |3 9 303 (3] 3|3
No. W 5 1| 4 9 2.13| 10 18l6,15(3.7] 14 |12

No. § 6,27 (13,23,24,30({7,26(14,21,28|3,15,25(4,5,11,22| 19 | 2 |1,16,18,20] 9 | 10 |29 (12,17 8
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On the other hand, the AGP cooperates with several AHSs. It takes into account their
recommendation for resource using by middleware agents. Moreover, the AGP opti-
mizes the resource usage for the whole grid starting from the configuration obtained by
set of AHSs and trying to improve it by multi-criteria genetic programing.

5 Concluding Remarks and Future Work

Shared-nothing cluster architecture for big data can be extended by cooperation with
volunteer and grid computing. Moreover, intelligent agents in the middleware of grid
can significantly support efficiency of proposed approach. Multi-objective genetic
programming as relatively new paradigm of artificial intelligence can be used for finding
Pareto-optimal configuration of the grid. Agents based on genetic programing can coop-
erate with harmony search agents to solve NP-hard optimization problem of grid
resource using.

Our future works will focus on testing the other sets of procedures and terminals to
find the compromise configurations for different criteria. Initial numerical experiments
confirmed that sub-optimal in Pareto sense configurations can be found by AGPs and
AHSs. Moreover, quantum-inspired algorithm can support big data, too [3].
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