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Abstract. The insufficient performance of statistical recognition of composite
objects (images, speech signals) is explored in case of medium-sized database
(thousands of classes). In contrast to heuristic approximate nearest-neighbor
methods we propose a statistically optimal greedy algorithm. The decision is
made based on the Kullback-Leibler minimum information discrimination
principle. The model object to be checked at the next step is selected from the
class with the maximal likelihood (joint density) of distances to previously
checked models. Experimental study results in face recognition task with FERET
dataset are presented. It is shown that the proposed method is much more
effective than the brute force and fast approximate nearest neighbor algorithms,
such as randomized kd-tree, perm-sort, directed enumeration method.
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1 Introduction

The problem of small sample size is crucial in pattern recognition of complex objects
(e.g., images) [1]. In fact, most of known algorithms in this case are equivalent to the
nearest neighbor (NN) method with appropriate similarity measure [2]. If the number of
classes is large (hundreds or even thousands of classes), the performance of NN’s
exhaustive search is not enough for real-time processing. It seems, conventional fast
approximate NN image retrieval methods [3] can be applied, e.g. AESA (Approxi-
mating and Eliminating Search Algorithm) [4], composite kd-tree [5], randomized
kd-tree [6], recent variations of Locality-Sensitive Hashing [7], etc. Unfortunately,
these techniques usually cannot be efficiently used in recognition tasks as the latter are
significantly different from retrieval in terms of

(1) quality indicators (accuracy in recognition and recall in retrieval): 3–5 % losses in
accuracy/recall of retrieval techniques are inappropriate for many recognition
tasks;

(2) similarity measures in recognition tasks are much more complex [8] in compar-
ison with conventional Minkowski or cosine distance in retrieval. Image retrieval
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methods are with similarity measures which satisfy metric properties (sometimes,
triangle inequality and, usually, symmetry) [4, 9]. They are known to show good
performance only if the first NN is quite different from other models;

(3) classification methods (1-NN in recognition and k-NN in retrieval);
(4) database size (medium in recognition and very-large in retrieval). Performance of

approximate NN algorithms is comparable with brute-force for medium-sized
training sets (thousands of classes). To decrease the recognition speed for such
training sets, other methods, e.g., ordering permutations (perm-sort) [10] and
directed enumeration method (DEM) [11] has recently been proposed.

Final issue is the heuristic nature of most approximate NN methods. It is usually
impossible to prove that particular algorithm is optimal and nothing can be done to
improve it. In this paper we propose an alternative solution on the basis of the statistical
approach - while looking for the NN for particular query object, conditional probability
of belonging of previously checked models to each class is estimated. The next model
from the database is selected from the class with the maximal probability.

The rest of the paper is organized as follows. In Sect. 2 we recall the Kullback-
Leibler minimum discrimination principle [12] in statistical pattern recognition. In
Subsect. 2.2 we briefly review the baseline method (DEM). In Sect. 3 the novel
Maximum-Likelihood DEM (ML-DEM) is proposed. In Sect. 4 experimental study
results are presented in face recognition with FERET dataset. Finally, concluding
comments are given in Sect. 5.

2 Materials and Methods

2.1 Statistical Pattern Recognition

In the pattern recognition task it is required to assign the query object X to one of R > 1
classes [2]. Each class is specified by the given model object Xr, r ∊ {1, …, R}. First
stage is feature extraction. In this paper we use the statistical approach and assume that
each class is characterized with its own probabilistic distribution of appropriate fea-
tures. Let’s focus on the most popular discrete case, in which the features can take
N > 1 different values. Hence, the distribution of rth class is defined as a histogram
Hr = [hr;1, hr;2, …, hr;N] estimated based on the Xr. The same procedure of histogram
evaluation H = [h1, h2, …, hN] is repeated for the query object X.

If the prior probabilities of each class are equal, the maximal likelihood criterion [2]
can be used to test statistical hypothesis Wr, r ∊ {1, …, R} about distribution H:

max
r2f1;...;Rg

frðXÞ; ð1Þ

where the likelihood of rth class fr(X) is estimated as follows

frðXÞ ¼
YN
i¼1

ðhr;iÞn�hi : ð2Þ
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Here it is assumed that the query object X contains n simple features to estimate the
histogram H. Thus, the decision (1) is equivalent to the Kullback-Leibler minimum
information discrimination principle [12]

min
r2f1;...;Rg

qðX;XrÞ; ð3Þ

where

qðX;XrÞ ¼ qKLðH;HrÞ ¼
XN
i¼1

hi � ln hi
hr;i

: ð4Þ

is the Kullback-Leibler divergence between densities H and Hr.

2.2 Baseline: Directed Enumeration Method

It is known that the performance of brute force implementation of criterion (3) can be
rather low. To speed-up recognition process, fast approximate NN algorithms can be
used. As a baseline approximate NN method we use the DEM [11] which was based on
the metric properties of the Kullback-Leibler divergence and regards the models’ sim-
ilarity ρi,j = ρ(Xi, Xj) as an average information from an observation to distinct class i
from an alternative class j. At the preliminarily step, the model distance matrix P = [ρi,j]
is calculated as it is done in the AESA [3]. This time-consuming procedure should be
repeated only once for a particular task and training set.

Original DEM used the following heuristic: if there exists a model Xν for which
ρ(X, Xν) < ρ0 ≪ 1, then condition holds |ρ(X, Xr) − ρν,r|≪ 1 with high probability for an
arbitrary r-th model. Hence, criterion (3) can be simplified

qðX;XmÞ\q0 ¼ const: ð5Þ

This equation defines the termination condition of the approximate NN method. If
false-accept rate (FAR) β is fixed, then ρ0 is evaluated as a β-quantile of the distances
between images from distinct classes {ρi,j|i ∊ {1,…, R}, j ∊ {1,…, i − 1, i + 1,…, R}} [11].

According to the DEM [11], at first, the distance q X;Xr1ð Þ to randomly chosen
model Xr1 is calculated. Next, it is put into the priority queue of models sorted by the
distance to X. The highest priority item Xi is pulled from the queue and the set of
models Xi

(M) is determined from

8Xj 62 XðMÞ
i

� �
8Xk 2 XðMÞ

i

� �
DqðXjÞ�DqðXkÞ ð6Þ

where Δρ(Xj) = |ρi,j − ρ(X, Xj)| is the deviation of ρi,j relative to the distance between
X and Xj. For all models from the set Xi

(M) the distance to the query object is calculated
and the condition (5) is verified. After that, every previously unchecked model from
this set is put into the priority queue. The method is terminated if for one model object
condition (5) holds or after checking for Emax = const models.
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As we stated earlier, this method is heuristic as most popular approximate NN
algorithms. However, the probability that the model is the NN of X can be directly
calculated for the Kullback-Leibler discrimination by using its asymptotic properties.
Let’s describe this idea in detail in the next section.

3 Maximum-Likelihood Directed Enumeration Method

In this section we primarily focus on greedy algorithms: it explores an each step the
model which is the NN of the query object X with the highest probability. It is known
[12] that if an object X has distribution Hν, then the distance 2n · ρ(X, Xν) is asymp-
totically distributed as a χ2 with (N - 1) degrees of freedom. Similarly, 2n · ρ(X, Xr),
r ≠ ν has asymptotic non-central χ2 distribution with (N - 1) degrees of freedom and
noncentrality parameter 2nK · ρν,r. If N is high, then, by using the central limit theorem,
we obtain the normal distribution of the distance ρ(X, Xr):

N qm;r þ ðN � 1Þ=ð2nÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n � qm;r þ 2ðN � 1Þ

q
=ð2nÞ

� �2
� �

: ð7Þ

At first, based on the asymptotic distribution (7) we replace the step (6) of the
original DEM to the procedure of choosing the maximum likelihood model. Let’s
assume that the models Xr1 ; . . .;Xrl have been examined before the l-th step. We choose
the next most probable model Xrlþ1 with the maximum likelihood method:

rlþ1 ¼ argmax
m2f1;...;Rg�fr1;...;rlg

Yl
i¼1

f qðX;XriÞjWmð Þ: ð8Þ

where f qðX;XriÞjWmð Þ is the conditional density (likelihood) of the distance qðX;XriÞ if
the hypothesis Wν is true. By using asymptotic distribution (7), the likelihood in (8) can
be written in the following form

f q X;Xrið ÞjWmð Þ ¼ 2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � ð8n � qm;ri þ 2ðN � 1ÞÞ

q

� exp � 2n � qðX;XriÞ � qm;ri
� �� ðN � 1Þ� �2

8n � qm;ri þ 2ðN � 1Þ

" #

¼ 2nffiffiffiffiffiffi
2p

p exp � 1
2
ln 8n � qm;ri þ 2ðN � 1Þ� �	 


� exp � 2n � ðqðX;XriÞ � qm;riÞ � ðN � 1Þ� �2
8n � qm;ri þ 2ðN � 1Þ

" #
ð9Þ

By several transformations of (9) and assuming that the number of simple features
is much higher the number of parameters n ≫ N, expression (8) is written as
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rlþ1 ¼ argmin
l2f1;...;Rg�fr1;...;rlg

Xl

i¼1

ulðriÞ: ð10Þ

where

ulðriÞ � qðX;XriÞ � ql;ri
� �2

=ð4ql;riÞ: ð11Þ

This equation is in good agreement with the heuristic from the original DEM [11] - the
closer are the distances qðX;XriÞ and ql;ri and the higher is the distance between
models Xμ and Xri , the lower is ulðriÞ.

Next, the termination condition (5) is tested for the model Xrlþ1 . If the distance
q X;Xrlþ1

� �
is lower than a threshold ρ0 or the number of calculated distances exceed

Emax, then the search procedure is stopped on the Lchecks = l + 1 step. Otherwise the
model Xrlþ1 is put into the set of previously checked models and the procedure (10) and
(11) is repeated.

Let us return to the initialization of our method. We would like to choose the first
model Xr1 to obtain the decision (5) in a shortest (in terms of number of calculations
Lchecks) way. An average probability to obtain the decision is maximized at the second
step:

r1 ¼ argmax
l2 1;...;Rf g

1
R

XR
m¼1

P umðlÞ� min
r2 1;...Rf g

urðlÞ
����Wm

� �
: ð12Þ

To estimate the conditional probability in (12) we use again the asymptotic dis-
tribution (7). The first model to check Xr1 is obtained from the following expression

r1 ¼ argmax
l2 1;...;Rf g

XR
m¼1

YR
r¼1

1
2
þ U

ffiffiffi
n

p
2

ffiffiffiffiffiffiffiffi
qr;l

p � ffiffiffiffiffiffiffiffi
qm;l

p��� ���� �� �
: ð13Þ

where Φ( · ) is the cumulative density function of the normal distribution.
Thus, the proposed ML-DEM (10), (11) and (13) is an optimal (maximal like-

lihood) greedy algorithm for an approximate NN search. The ML-DEM is different
from the baseline DEM in initialization (14) and in the rule of choosing the next
model (10) and (11). In the DEM M > 1 models are chosen (6) and in the proposed
ML-DEM only one model is selected (10). Only the termination condition (5) is the
same for both DEM and ML-DEM. In fact, the proposed method can be applied not
only with the Kullback-Leibler discrimination (4), but with an arbitrary similarity
measure. However, the property of statistical optimality is preserved only for sim-
ilarity measure (4).

240 A.V. Savchenko



4 Experimental Results

Our experimental study deals with face recognition problem [13] with color FERET
dataset. All 2720 frontal photos were converted to grayscale intensity images. Random
cross-validation repeated 100 times was applied. Each time R = 1420 randomly chosen
images of 994 persons populate the database (i.e. a training set), other 1300 photos of
the same persons formed a test set. Faces were detected with the OpenCV library. After
that the median filter with window size 3� 3ð Þ is applied to remove noise in detected
faces. The facial image is divided into a regular grid of K � K blocks, where K = 10.
Next the HOGs (histograms of oriented gradients) Hr(k1, k2) with N = 8 bins are
calculated for each block (k1, k2) [14]. We assume, that each HOG is normalized, so
that it may be treated as a probability distribution [14] in (4). The distance in the nearest
neighbor rule (3) is calculated as follows [9]

qðX;XrÞ ¼
XK
k1¼1

XK
k2¼1

min
D1j j �D; D2j j �D

q Hðk1; k2Þ;Hrðk1 þ D1; k2 þ D2Þð Þ ð14Þ

with the mutual alignment of the histograms in the Δ-neighborhood in order to take into
account the small spatial deviations due to misalignment after face detection. In (14) we
use the Kullback-Leibler divergence (4) between the HOGs and the homogeneity-
testing probabilistic neural network (HT-PNN) which showed high face recognition
rate and is equivalent to the statistical approach if the pattern recognition problem is
referred as a task of testing for homogeneity of segments [15].

The error rate obtained with the NN rule and similarity measure (1) with Kullback-
Leibler and the HT-PNN distances is shown in Table 1 in the format average error
rate ± its standard deviation. Here, first, alignment of HOGs (22) with Δ = 1 improves
the recognition accuracy. And, second, we experimentally support the claim [15] that
the error rate for the Kullback-Leibler distance (4) is higher when compared with the
HT-PNN.

In the next experiment we compare the performance of the proposed ML-DEM
with brute force (3), original DEM [11], and several approximate NN methods from
FLANN [5] and NonMetricSpaceLib [16] libraries showed the best speed, namely

1. Randomized kd-tree from FLANN with 4 trees [6]
2. Composite index from FLANN which combines the randomized kd-trees (with 4

trees) and the hierarchical k-means tree [5].
3. Ordering permutations (perm-sort) from NonMetricSpaceLib which is known to

decrease the recognition speed for medium-sized databases [10].

Table 1. Face recognition error rate, criterion (3) and (14)

Δ = 0 Δ = 1

Kullback-Leibler divergence 8.9 ± 1.3 7.0 ± 1.3
HT-PNN 7.8 ± 1.2 6.6 ± 1.3

An Optimal Greedy Approximate Nearest Neighbor Method in Statistical Pattern 241



We evaluate the error rate (in %) and the average time (in ms) to recognize one test
image with a modern laptop (4 core i7, 6 Gb RAM) and Visual C++ 2013 Express
compiler (×64 environment) and optimization by speed. We explore an application of
parallel computing [17] by dividing the whole training set into T = const non-over-
lapped parts. Each part is processed in its own thread implemented by using the
Windows ThreadPool API. We analyze both nonparallel (T = 1) and parallel (T = 8)
cases. After several experiments the best (in terms of recognition speed) value of
parameter M of original DEM (6) was chosen M = 64 for nonparallel case and M = 16
for parallel one. To obtain threshold ρ0, the FAR is fixed to be β = 1 %. Parameter Emax

was chosen to achieve the recognition accuracy which is not 0.5 % less than the
accuracy of brute force (Table 1). If such accuracy can not be achieved, Emax was set to
be equal to the count of models R. The average recognition time per one test image (in
ms) is shown in Table 2.

Here randomized and composite kd-trees do not show superior performance even
over brute force as the number of models in the database is not very high. However, as
it was expected, perm-sort method is characterized with 2–3.5 times lower recognition
speed in comparison with an exhaustive search. Moreover, perm-sort seems to be better
than the original DEM for nonparallel case (T = 1), though the DEM’s parallel
implementation is a bit better. The most important conclusion here is that the proposed
ML-DEM shows the highest speed in all experiments. The results of the HT-PNN’s
usage are very similar, though the error rate here is 0.5–1 % lower (see Table 1). In this
case the original DEM is slightly faster than the perm-sort for conventional distance
(Δ = 0) but is not so effective for alignment (Δ = 1). FLANN’s kd-trees are 10–15 %
faster than the brute force. And again, the proposed ML-DEM is the best choice here
especially for most complex case (T = 8, Δ = 1) for which only 6 ms (in average) is
necessary to achieve 93 % accuracy.

To clarify the difference in performance of the original DEM and the proposed ML-
DEM, we show the dependence of the error rate and the number of checked models
Lchecks/R · 100 % on Emax in Fig. 1a, b respectively. Here the speed of convergence to
an optimal solution for the ML-DEM is much higher than the same indicator of the

Table 2. Average recognition time (ms.)

Distance/
features

Kullback-Leibler divergence HT-PNN

Δ = 0 Δ = 1 Δ = 0 Δ = 1
T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8

Brute force 12.9 2.8 99.1 26.6 19.4 5.5 146.1 38.7
Randomized
KD tree

11.9 2.6 91.2 21.4 16.4 4.3 129.4 30.4

Composite 12.0 2.6 91.5 22.5 16.7 4.3 129.9 35.2
Perm-sort 4.0 2.1 31.0 12.9 7.8 2.4 43.7 14.3
DEM 5.34 1.3 52.7 12.7 7.3 2.3 52 16.1
ML-DEM 2.8 0.8 24.2 10.0 5.3 1.4 24.9 5.8
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DEM (Fig. 1a). Even when Emax = 0.1 · R we can get an appropriate solution. Figure 1b
proves that, as expected, the proposed ML-DEM is better than the DEM in terms of the
number of calculated distances Lchecks. However, additional computations of the ML-
DEM which include the calculations for every non previously checked model, are quite
complex. Hence, the difference in performance with the DEM and other approximate
NN methods is high only for very complex similarity measures (e.g., in case of Δ = 1).

5 Conclusion

In this paper we demonstrated that using the asymptotic properties (7) of the Kullback-
Leibler divergence in the proposed ML-DEM gives very good results in image rec-
ognition with medium-sized database, reducing the recognition speed by more than
2.5–6.5 times in comparison with brute force and by 1.2–2.5 times in comparison with
other approximate NN methods from FLANN and NonMetricSpaceLib libraries. In
contrast to the most popular fast algorithms, our method is not heuristic (except the
termination condition (5)). Moreover, it does not build data structure based on an
algorithmic properties of applied similarity measure (e.g., triangle inequality of Min-
kowski metric in the AESA [4], Bregman ball for Bregman divergences [9]). The
proposed ML-DEM is an optimal (maximum likelihood) greedy method in terms of the
number of distance calculations for NN rule (3) with the sum (14) of Kullback-Leibler
discriminations (4). Moreover, the ML-DEM can be successfully applied with other
distances, e.g. the HT-PNN [15].

The main direction for further research of the proposed method is its modification in
case of simple similarity measures. For now, the complexity of extra computation at
each step of the ML-DEM (10) and (11) is rather high. Hence, the difference in per-
formance with original DEM and popular approximate NN methods is significant only
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Fig. 1. Dependence of: (a) error rate; and (b) count of models checks per database size Lchecks/
R · 100 % on Emax/R, Kullback-Leibler discrimination, Δ = 1
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for very complex similarity measure. One possible solution is a pivot-based indexing
[10] and ordering all models with respect to their log-likelihoods (10) and (11).
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