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Abstract. In recent times most of the face recognition algorithms are
based on subspace analysis. High dimensional image data are being
transformed into lower dimensional subspace thus leading towards recog-
nition by embedding a new image into the lower dimensional space.
Starting from Principle Component Analysis(PCA) many such dimen-
sionality reduction procedures have been utilized for face recognition.
Recent edition is Neighborhood Preserving Projection (NPP). All such
methods lead towards creating an orthogonal transformation based on
some criteria. Orthogonal NPP builds a linear relation within a small
neighborhood of the data and then assumes its validity in the lower dimen-
sion space. However, the assumption of linearity could be invalid in some
applications. With this aim in mind, current paper introduces an approx-
imate non-linearity. In particular piecewise linearity, within the small
neighborhood which gives rise to a more compact data representation that
could be utilized for recognition. The proposed scheme is implemented on
synthetic as well as real data. Suitability of the proposal is tested on a set
of face images and a significant improvement in recognition is observed.

Keywords: Dimensionality reduction · Data visualization · Face
recognition

1 Introduction

Subspace based methods are the recent trend for face recognition/identification
problem. Face recognition appears as one of the most challenging problems in
machine learning, and computer vision systems. Early recognition methods are
based on the geometric features. Mostly local facial features, such as shape, size,
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structure and location of eyes, nose, mouth, chin, ears in each person’s face hap-
pened to be popular identification features in face recognition. On the contrary,
subspace based methods use the intrinsic data manifold present in the face images.

Though, face image seems to be high dimensional data, it is observed that it
lies in comparatively very low linear or non-linear manifold [1,2]. This leads to
develop face recognition systems based on subspace arising from data dimension-
ality reduction. The basic idea is to find a linear or non-linear transformation to
map the image to a lower dimensional subspace which makes the same class of
data more compact for the convenience of classification. Such underlying manifold
learning based face recognition methods have attracted considerable interests in
recent years. Some of the examples are Principal Component Analysis (PCA) [1],
Linear Discriminant Analysis (LDA) [3], Locality Preserving Projection (LPP)
[4,5] and Neighborhood Preserving Embedding (NPE) [6]. Techniques such as
PCA and LDA tend to preserve mostly global geometry of data (image in the
present context). On the other hand, techniques such as LPP and NPE preserve
local geometry by a graph structure, based on nearest neighborhood information.

The linear dimensionality reduction method Orthogonal Neighborhood Pre-
serving Projection (ONPP) proposed in [2] preserves global geometry of data as
well as captures intrinsic dependency of local neighborhood. ONPP is linear exten-
sion of Locally Linear Embedding (LLE) [7] which uses a weighted nearest neigh-
borhood graph to preserve local geometry by representing each data point as linear
combination of its neighbors. It simply embeds sample points into lower dimen-
sional space without having any mechanism of reconstructing the data. ONPP
uses the same philosophy as that of LLE and projects the sample data onto linear
subspace but at the same time suggests a procedure to reconstruct data points.
A variant of ONPP, Discriminative ONPP (DONPP) proposed in [8] takes into
acount both, intraclass as well as interclass geometry. In this paper, a modi-
fied ONPP algorithm is proposed and its performance is compared with existing
ONPP and DONPP algorithms. In particular, a z-shaped function based criterion
is used to compute the coefficient of linear combination of neighbors of each data
point. Note that, when the algorithm is applied to face recognition, face images
are considered as data points. The modified algorithm is tested on synthetic as
well as real data. To show its efficiency, the algorithm is tested on well-known face
databases like AR [9], ORL [10], and UMIST [11]. Results of the proposed algo-
rithm are comparable to that of the existing one in some cases and are significantly
better in other cases.

The paper is organized in five sections. In the next section, ONPP and DONPP
algorithms are explained in detail, followed by the modification on ONPP sug-
gested in Sect. 3. Section 4 consists of experimental results and Sect. 5 concludes
the performance of suggested algorithm on various types of databases.

2 Orthogonal Neighborhood Preserving Projection
(ONPP)

ONPP [2] is a linear extension of Locally Linear Embedding. LLE is a nonlinear
dimensionality reduction technique that embeds high dimension data samples on
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lower dimensional subspace. This mapping is not explicit in the sense that embed-
ding is data dependent. In LLE, intrinsic data manifold changes with the inclusion
or exclusion of data points. Hence, on inclusion of a new data point, embedding
of all existing data points changes. This prevented subspace based recognition of
unknown sample point, as this unknown sample point can not be embedded into
the existing lower dimensional subspace. Lack of explicit mapping thus makes LLE
not suitable for recognition. ONPP resolves this problem and finds the explicit
mapping of the data in lower dimensional subspace through a linear orthogonal
projection matrix. In presence of this orthogonal projection matrix, new data
point can be embedded into lower dimensional subspace.

Let x1,x2, ....,xn be given data points form m-dimensional space (xi ∈ Rm).
So the data matrix is X = [x1,x2, ....,xn] ∈ Rm×n. The basic task of subspace
based methods is to find an orthogonal/non-orthogonal projection matrix Vm×d

such that Y = VTX, where Y ∈ Rd×n is the embedding of X in lower dimension
as d is assumed to be less than m.

ONPP is a two step algorithm where in the first step each data point is
expressed as a linear combination of its neighbors. In the second step the data
compactness is achieved through a minimization problem.

For, each data point xi, nearest neighbors are selected in two ways. In one way,
k neighbors are selected by Nearest Neighbor (NN) technique where k is a suitably
chosen parameter. In another way, neighbors could be selected which are within ε
distance apart from the data point. Let Nxi

be the set of k neighbors. First, data
point xi is expressed as linear combination of its neighbors as

∑k
j=1 wijxj where,

xj ∈ Nxi
. The weight wij are calculated by minimizing the reconstruction errors

i.e. error between xi and linear combination of xj ∈ Nxi
.

arg min E(W) =
1
2

n∑

i=1

‖ xi −
k∑

j=1

wijxj ‖2 (1)

subject to
∑k

j=1 wij = 1.
Corresponding to point xi, letXNi

be a matrix having xj as its columns, where
xj ∈ Nxi

. Note that XNi
includes xi as its own neighbor. Hence, XNi

is a m×k+1
matrix. Now by solving the least square problem (XNi

− xieT)wi = 0 with a
constraint eTwi = 1, a closed form solution, as shown in Eq. (2) is evolved for
wi. Here, e is a vector of ones having dimension k × 1 same as wi.

wi =
G−1e

eTG−1e
(2)

where, G is Gramiam matrix of dimension k ×k. Each entry of G is calculated as
gpl = (xi − xp)T (xi − xl), for ∀xp,xl ∈ Nxi

Next step is dimensionality reduction or finding the projection matrix V as
stated earlier. The method basically seeks the lower dimensional projection yi ∈
Rd of data point xi ∈ Rm (d << m) with some criteria. The criteria imposed here
assumes that the linear combination of neighbors xjs which reconstruct the data
point xi in higher dimension would also reconstructyi in lower dimension with cor-
responding neighbors yjs along with same weight as in higher dimensional space.
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Such embedding is obtained by minimizing the sum of squares of reconstruction
errors in the lower dimensional space. Hence, the objective function is given by

arg min F(Y) =
n∑

i=1

‖ yi −
n∑

j=1

wijyj ‖2 (3)

subject to, VTV = I (orthogonality constraint).
This optimization problem results in computing eigen vectors corresponding to

the smallest d eigen values of matrix M̃ = X(I−W)(I−WT )XT . ONPP explicitly
maps X to Y, which is of the form Y = VTX, i.e. each new sample xl can now
be projected to lower dimension by just a matrix-vector product yl = VTxl.

ONPP can also be implemented in supervised mode where the class labels are
known. Face recognition, character recognition etc. are problems where supervised
mode is better suited. In supervised mode, data points xi and xj belonging to
the same class are considered neighbors to each other thus wij �= 0 and wij = 0
otherwise. In supervised technique, the parameter k (number of nearest neighbors)
need not to be specified manually, it is automatically set to number of data samples
in particular class.

Considering the undersampled size problem where the number of samples n
is less than dimension m, m > n. In such scenario, the matrix M̃ ∈ Rm×m will
have maximum rank n − c, where c is number of classes. In order to ensure that
the resulting matrix M̃ will be non-singular, one may employ an initial PCA pro-
jection that reduces the dimensionality of the data vectors to n − c. If VPCA is
the dimensionality reduction matrix of PCA, then on performing the ONPP the
resulting dimensionality reduction matrix is given by V = VPCAVONPP.

ONPP considers only intraclass geometric information, a variant of ONPP
proposed in [8], takes into account interclass information as well to improve
classification performance, is known as Discriminative ONPP (DONPP). For a
given sample xi, its ni − 1 neighbors having same class labels are denoted by
xi,xi1 ,xi2 , ...,xini−1 and its k nearest neighbors having different class labels are
denoted by xi1 ,xi2 , ...,xik . Thus, neighbors of sample xi can be described as
Xi = [xi,xi1 ,xi2 , ...,xini−1 ,xi1 ,xi2 , ...,xik ] and its low-dimensional projection
can be denoted as Yi = [yi,yi1 ,yi2 , ...,yini−1 ,yi1 , ...,yik ].

In projected space, it is expected that the sample and its neighbors having
same label preserve local geometry, while neighbors having different labels are pro-
jected as far as possible from the sample to increase interclass distance. This can
be achieved by optimizing Eq. (3) in addition to Eq. (4).

arg max F(Yi) =
k∑

p=1

‖ yi − yip ‖2 (4)

Considering Eqs. (3) and (4) simultaneously, the optimization problem for
sample xi can be written as

arg min F(Yi) = (‖ yi −
ni−1∑

j=1

wijyj ‖2 −β

k∑

p=1

‖ yi − yip ‖2) (5)
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where, β is scaling factor between [0, 1]. This minimization problem simplifies into
an eigenvalue problem, and projection matrix VDONPP can be achieved by eigen-
vectors corresponding to smallest d eigenvalues.

3 Modified Orthogonal Neighbourhood Preserving
Projection (MONPP)

ONPP is based on two basic assumptions, first it assumes that a linear relation
exists in a local neighborhood and hence any data point can be represented as a lin-
ear combination of its neighbors. Secondly it assumes that this linear relationship
also exists in the projection space. The later assumption gives rise to a compact
representation of the data that can enhance the classification performance. The
data compactness would be more visible in the case when the first assumption is
strongly valid. While experimenting with synthetic data, as shown in Fig. 2, it has
been observed that data compactness is not clearly revealed. The main drawback
could be the strict local linearity assumption. Focusing on this, we are trying to
incorporate some kind of non-linear relationship of a data point with its neighbors.
The proposed algorithm is termed as Modified ONPP.

In this proposed modification, a z-shaped function is used to assign weights to
nearest neighbors in the first stage of ONPP. Note that in ONPP, the weight matrix
W is calculated by minimizing the cost function in Eq. (1), which is a least square
solution (2). In the least square solution, weights of neighbors are inversely propor-
tional to the distance of the neighbors from the point of interest. We are looking
for a situation where the neighbors closest to the point of interest would get max-
imum weight and there after the weights will be adjusted non-linearly (through
Z-shaped function) as the distance increases. After a certain distance the weights
will be very low. In particular, instead of assuming a linear relationship, a piecewise
linear relationship is incorporated through the z-shaped function. This piecewise
linear relationship is leading towards some kind of non-linear relationship.

Z(x; a, b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if x ≤ a

1 − 2
(

x−a
a−b

)2

if a ≤ x ≤ a+b
2

2
(

x−b
a−b

)2

if a+b
2 ≤ x ≤ b

0 Otherwise

(6)

Parameters a and b locate the extremes of the sloped portion of the curve and
can be set to 0 and maximum within class distance (i.e. maximum pair wise dis-
tance between data samples belonging to the same class) respectively, as shown
in Fig. 1. In case of unsupervised mode, a k-NN algorithm could be implemented
before assigning the weights and hence the parameters a and b of Eq. (6) can be
adjusted.

Finally, Eq. (7) is used to assign weight to each neighbor xj corresponding to
xi. Note that this equation is same as Eq. (2), where G−1 is replaced by Z. The
new weights are
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Fig. 1. Z-shaped weight function for Range [0, Maximum within class distance], illus-
trated for max distance of 7000 unit

wi =
Ze

eTZe
(7)

where, elements of this Z matrix are defined as

Zpl = Z(dp; a, b) + Z(dl; a, b) for, ∀xp,xl ∈ Nxi
(8)

here, Z(dk; a, b) is calculated using Eq. (6) where, dk is the Euclidean distance
between xi and it’s neighbor xk. Parameters a and b are obtained as discussed
earlier.

Next step computes projection matrix V ∈ Rm×d whose column vectors are
smallest d eigen vectors of matrix M̃ = X(I−W)(I−WT )XT . Embedding of X
on lower dimension Y is achieved by Y = VTX.

4 Experiments and Results

The suggested Modified ONPP is used for two well-known synthetic datasets
along with a digit data [12], low dimensional projection of these data sets is com-
pared with ONPP. MONPP has also been implemented extensively for various
well-known face databases and the results are compared with that of the existing
ONPP algorithm and a variant of ONPP, DONPP.

4.1 Synthetic Data

The modified algorithm is implemented on two synthetic datasets viz Swissroll
(Fig. 2(a)) and S-curve (Fig. 2(e)) to visualize their two dimensional plot. These
two datasets reveal a linear relationship within the class as well as between the
classes when unfolded. Dimensionality reduction techniques such as PCA when
applied to the data fail to capture this intrinsic linearity. However, dimensional-
ity reduction techniques such as LPP [4], NPE [6] try to capture the local geome-
try and retain it into the projection space are expected to perform better. These
algorithms give rise to a compact representation of the data without much distort-
ing the shape of the data. To implement existing ONPP and proposed Modified
ONPP, 1000 data points are randomly sampled from three dimensional manifold
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(Fig. 2(b) and (f)) to build the orthogonal transformation matrix(V). Note that
similar experiment has been performed in [2] to show the suitability of ONPP over
LPP. As suitability of ONPP over LPP has already been shown, we are not show-
ing any results of LPP. From Fig. 2(c),(d) and (g),(h), it is clear that the 2D repre-
sentations of both Swissroll and S-curve seem to be much better for MONPP. To
explore how ONPP and MONPP work with varied values of k, experiments have
been conducted and results are shown in Fig. 3. Note that repeated experiments
with a fixed k may not guarantee to generate same results. It is observed that pro-
jection using ONPP algorithm depends on k, variation in k results in huge varia-
tion in its lower dimensional representation. However, projection using MONPP
is more stable with varying values of k. Larger values of k imply larger area of local
neighborhood. It is possible that larger local area does not posses linearity. The
linearity assumption of ONPP thus is invalid here. So the non-linearity present
in moderately large local area is well-captured in MONPP and is reflected in the
results.

Fig. 2. Swissroll: original 3D data(a), sampled data(b), 2D projection obtained by
ONPP(c) and MONPP(d). S-curve: original 3D data(e), sampled data(f), 2D projec-
tion obtained by ONPP(g) and MONPP(h). k(number of NN) is set to 6.

Fig. 3. 2D projection of S-curve(left) and Swissroll(right) with various k (number of
NN) values with ONPP(top) and MONPP(bottom)
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Fig. 4. 2D projection of digit data using ONPP and MONPP, top row shows perfor-
mance of ONPP algorithm, Bottom row shows performance of MONPP algorithm,
where, ‘+’ denotes 5, ‘o’ denotes 6, ‘∗’ denotes 7, ‘Δ’ denotes 8, ‘�’ denotes 9.

4.2 Digit Data

The MNIST database [12] of handwritten digits is used to compare data visual-
ization of both the algorithms. Randomly 40 data samples from each class (digit)
are taken and projected on 2-D plane using ONPP and proposed Modified ONPP.
The results are shown in Fig. 4, it can be clearly observed that the data is compact
and well separated when MONPP is applied. It seems that there is a wide range of
variations in digit ‘1’ and that is reflected in Fig. 4(top-left). But the same digit ‘1’
is more compact in the 2-D representation of MONPP (Fig. 4(bottom-left)). Sim-
ilar argument is true for digits ‘7’ and ‘9’. Overall, better compactness is evident
for all digits in case of MONPP.

4.3 Face Data

The algorithm is also tested on three different face databases viz AR [9], ORL
[10], and UMIST [11]. To maintain the uniformity, face images of all databases
are resized to 38 × 31 pixels, thus each image is considered as a point in 1178
dimensional space. For each database, randomly 50% of face images are selected
as training samples and remaining are used for testing. The training samples are
used to find the lower dimensional projection matrix V. The test samples are then
projected on this subspace and are recognized using a NN-classifier. The main
intention of these experiments is to check the suitability of MONPP based image
representation for face recognition and hence a simple classifier such as NN is used.
To ensure that the results achieved are not biased to the randomized selection of
training-testing data, the experiments are repeated twenty times with different
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Fig. 5. Comparison of average performance of ONPP, DONPP and MONPP on AR
database UMIST database ORL database

Table 1. Comparison of performance in the light of recognition score (in %) of ONPP,
DONPP and MONPP

ONPP DONPP MONPP

Database Average Best (at dim d) Average Best (at dim d) Average Best (at dim d)

AR 93.50 96.25 (100) 93.80 96.83(140) 94.13 97.50 (110)

UMIST 98.95 99.05 (30) 99.50 99.23(60) 98.00 99.50 (20)

ORL 93.06 98.00 (120) 94.95 98.42(120) 95.90 99.00 (60)

randomization. Experiments are also conducted for different values of d (dimen-
sion of reduced space) ranging from 10 to 160 (at an interval of 10). The best as
well as average recognition rates are reported here for all databases.

Average recognition results for AR, UMIST and ORL databases using ONPP,
DONPP and MONPP are shown in Fig. 5. It can be observed that MONPP per-
forms better than ONPP and DONPP across almost all values of d. Average
recognition accuracies and best recognition accuracies along with the correspond-
ing dimensions using ONPP, DONPP and MONPP for all three databases are
reported in Table 1.

5 Conclusion

Subspace based methods for face recognition have been a major area of research
and already proven to be more efficient. In this regard, Orthogonal Neighborhood



234 P. Koringa et al.

Preserving Projection (ONPP) is assumed to handle the intrinsic non-linearity of
the datamanifold. The first step ofONPPdeals with a linear model buildingwithin
local neighborhoods. This linearity assumption may not be valid for a moderately
large neighborhood. In the present work, this linear model is thus replaced by a
notion of non-linearity where a piecewise linear model (z-shaped) is used instead.
The suitability of the proposal is tested on non-linear synthetic data as well as
a few benchmark face databases. Significant and consistent improvement in data
compactness is observed for synthetic datawheremanifold is surely nonlinear. This
signifies the suitability of the present proposal to handle non-linear manifold of the
data. On the other hand, noticeable improvement is obtained for the face recogni-
tion problem. The modification suggested over existing ONPP though very simple
but overall improvement in face recognition results is very encouraging.

Another way to handle non-linear manifold is to use kernel method of manifold
learning.Kernel versions of subspacemethods such asPCA [13],OLPP [14],ONPP
[2] have already been proposed. A kernel version of the current Modified ONPP
could be the possible future direction of work. Either the current form of the pro-
posal associating with discriminating method [8] or its kernel version is expected
to exploit the non-linear data manifold that is present in the face database in the
sense of variations in facial expression. Recognizing facial expression along with
faces would be a challenging task for future.
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