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Abstract. A visual surveillance system should have the ability to view
an object of interest at a certain size so that important information
related to that object can be collected and analyzed as the object moves
in the area observed by multiple cameras. In this paper, we propose
a novel framework for real-time, distributed, multi-object tracking in a
PTZ camera network with this capability. In our framework, the user
is provided a tool to mark an object of interest such that the object is
tracked at a certain size as it moves in the view of various cameras across
space and time. The pan, tilt and zoom capabilities of the PTZ cameras
are leveraged upon to ensure that the object of interest remains within
the predefined size range as it is seamlessly tracked in the PTZ camera
network. In our distributed system, each camera tracks the objects in its
view using particle filter tracking and multi-layered belief propagation is
used for seamlessly tracking objects across cameras.

Keywords: Distributed multi-camera tracking - Real-time tracking -
PTZ camera network - Collaborative multi-object tracking - Belief
propagation

1 Introduction

A real-time video surveillance system consisting of a PTZ (pan, tilt, zoom) cam-
era network requires seamless tracking of multiple objects in the scene. Moreover,
particular objects of interest, such as suspects, may be required to be tracked
at a certain dimension in each frame so that important information related to
that object is continuously retained. In general, it is possible that the object of
interest can become so small that a lot of information about the object is lost.
On the other hand, the object of interest can come so close to a camera that the
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object becomes too large and blocks the view of the camera, hiding important
information. In this paper, we propose a novel framework for real-time, dis-
tributed multi-object tracking in PTZ camera network that also addresses the
situation mentioned above. The pan/tilt capability of the cameras along with
camera handoff ensures seamless tracking of the objects in the scene. We leverage
on the zoom capability of the cameras to ensure that the objects of interest are
tracked at a certain size as the objects move across space and time in the camera
network. The main contributions of our framework are: (a) multiple objects are
seamlessly tracked across space and time in the camera network; (b) the user
is provided with a tool to mark an object of interest, such that, the object of
interest can be seamlessly tracked at a certain predefined size throughout the
area under observation; (¢) the user is notified when the object of interest leaves
the area under observation.

Distributed PTZ camera networks are well-suited for wide area surveil-
lance [2]. However, such a system is complex because network topology changes
as cameras pan, tilt or zoom to seamlessly track the objects. We assume a dis-
tributed system with an underlying communication network such that each cam-
era can communicate with every other camera either directly or indirectly. We
assume that the camera network is calibrated and each camera has the list of its
network neighbors. We define the network neighbors of a camera as those cam-
eras that have overlapping or contiguous views in some pan/tilt/zoom position
of the camera. When a camera receives a message from any of its network neigh-
bors, it takes the decision to pan/tilt/zoom so that the object can be seamlessly
tracked at the required size. Data fusion between cameras viewing a common
region and across cameras needs to be addressed to enable seamless tracking.
We apply belief propagation at multiple levels for data fusion.

In our framework, we assume that there are priority areas, that are pre-
specified. These priority areas also include the entry and exit locations in the
area under observation. Placement of cameras in this case plays an important
role. We apply the optimal placement algorithm [6] to place the cameras in such
a manner that the priority areas are observed at all times. Since the cameras that
view the entry/exit areas are static for a certain time period, these cameras apply
background subtraction [12] to detect objects that enter the area under obser-
vation. Based on the detected object, we initialize the particle filter tracker [16]
in these cameras. The camera then communicates the particle filter estimates
of the detected object to all its network neighbors. The system ensures that as
the object moves in the area under observation, it is continuously tracked at all
times by at least one camera. In the next section we discuss the related work.

2 Related Work

In recent times, research on multi-camera tracking in camera networks con-
sisting of static cameras as well as PTZ camera networks has been gaining
importance [1,3]. More recently, research on active camera systems using dis-
tributed processing is gaining importance since they are better suited for wide
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area surveillance [4]. Various distributed computer vision algorithms are dis-
cussed in [10,13-15]. A system consisting of static and PTZ cameras was pro-
posed in [8] for surveillance of a parking lot. It is a hierarchical framework and
uses the active camera for tracking a suspicious object at higher resolution.
Authors in [4] apply distributed optimization in the game theoretic framework
for controlling PTZ cameras in a wide area distributed camera network. The
aim is to optimize solutions for various dynamic scene analysis problems. More-
over, the cameras collaborate among themselves to ensure that all objects are
seamlessly tracked. The concept of multi-player learning in games have also been
used in [11], for distributed collaboration among neighboring cameras viewing
a common target for multi-object tracking in a PTZ camera network. In com-
parison to these systems, our framework consists of only PTZ cameras and each
camera zooms in or out as required to track the pre-specified target at a cer-
tain resolution. Our framework provides a user interaction layer, to enable the
user to mark objects of interest as they enter into the scene. The user can also
specify the size at which the objects of interest should be tracked. Moreover,
we use particle filter based tracking in each camera independently and use its
parameters in multi-layered belief propagation for collaborative tracking of mul-
tiple objects in the area under observation. Authors in [9], proposed a method
for controlling PTZ cameras to obtain high resolution face images of targets at
opportune points in time for each camera in a distributed PTZ camera network.
Our work is essentially different from this as it tracks the whole body of the tar-
gets of interest at a pre-specified size requiring the camera to zoom in or zoom
out while the object is in its view. Moreover, if the camera is tracking more than
one target of interest, it collaborates with the neighboring cameras to ensure
that at least one camera is tracking the object at the required size.

3 Particle Filter Based Tracking Framework

Particle filter is a Monte Carlo method that is simple, yet capable of approxi-

mating complex models. Let the total number of particles be NV and the total
AN

number of components be M. Then, X; = xiz) ,—1 be the particles and the par-

ticle weights are W, = w,g )Z 1- Then, the mixture filtering distribution is of the

form given in [16],

p(xe]2") Z Tkt Z wt x® () (1)

i€ly

where, d,(.) is the Dirac delta function with mass at b and Ij is the set of
indices of the particles belonging to k" mixture component. These particles are
updated sequentially, and the new weights are recalculated at each step. The
new particle set P has to be computed in such a manner that it is a sample set
from p(x¢|z') given that the particle set P'~! is a sample set from p(z;|zf~1).
Each component evolves independently in the tracking module and therefore, the
particle representation of each mixture component also evolves independently.
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3.1 Measurement Module

In our framework, all entry locations are priority areas and therefore, continu-
ously observed by at least one camera, that is static for a certain time period.
As an object enters the area under observation, it is detected using background
subtraction [12] and represented by its bounding box. The reference color model
of the object is created at the time it is first detected in the manner discussed
below.

Let B; = {xi,yi,w;, h;} denote the bounding box of the object of interest,
where, (z;,y;) is the center of the bounding box and (w;, h;) denote the width
and height of the bounding box respectively. Similar to [5], we consider the
Hue-Saturation-Value (HSV) color histogram of the bounding box to represent
the measurement model that is robust with respect to illumination changes.
The HSV histogram consists of N bins where b:(p) € {1,2,...,N} is the bin
index at the color value y;(p) at pixel location p in frame ¢. The HSV histogram
is formulated for the pixels inside the bounding box and the kernel density
estimate is H(z¢) 2 {h(n;z;)}, n=1,2,..., N of the color distribution at time
t is given by

h(n;z) = « Z 0[bs(p) — n) (2)

deB;

For tracking, in each frame the color model of the previous frame is treated as
the reference color model, H*, to overcome the variations in the background as
the objects moves in the scene. Similar to [5], the distance between the reference
color model and the color model of the current frame is calculated using the
Bhattacharya distance given by Eq. 3:

N 3
d(H* H(z,) = |1 - 3 v/Rx (it — 1)hins ) (3)

n=1

The likelihood distribution that is required for particle filter tracking is obtained
using the distance between the current and previous HSV color histograms given
by Eq. 4:

2 * .
Platfee) = e T ) (@

where, v and 3 are normalizing constants.

3.2 Single Camera Tracking

In our distributed framework, each camera tracks the objects in its view
based on its own image measurements. These measurements are measured
as described in Sect.3.1 and used to initialize the particle filter tracker. Let
Zot = {To,Z1,...,2¢} be the state vector and zp.; be the observation vectors
up to time ¢. Then, for a particular object O;, the posterior probability distrib-
ution is given by Eq.5
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p(2e|xe)p(we]20:6-1))
p(Zt ‘zO:tfl)

:p(2t|$t)/p(xt\iﬂt—l)p(xt—l|y0:t—1)d$t—1 (5)

Pz‘(l’t|20:t) =

Given that there are M objects in a camera’s view, then the posterior distribution
p(x¢|20.¢) is modeled as an M-component non-parametric mixture model given

by Eq. 6

M
p(xe|z04) = Zﬂi,tpi(xt|20:t) (6)
i=1

where, the weights m;; are such that Z]Mﬂ mjr = 1Vt. As can be easily seen
from Eq.5,
Tit—1 f Di(ze|@e)pi(2e] 20:0—1 ) dae )

Ejlvil -1 [ P (2] we)pj (2] 20:0-1)dy

There are M different likelihood distributions pg(z¢|20.¢), k = 1,2,..., M, one
for each object in the cameras view. Usually, in multi-camera tracking, it is
assumed that all the M objects are being viewed by all the cameras, however, in
our framework, this does not hold true. Since the camera network is spread in the
area under observation, it is not necessary that even two cameras will be viewing
the same area. Therefore, each camera computes these likelihood distributions
for the objects that are in that camera’s view. The 3D position of the object
gives the identity of the object since that is a unique feature for each object.
Only one object can be in a 3D position at a time. Moreover, each camera will
have its own uncertainty in measurement, so the 3D position is taken to be same
if it is within a predefined threshold.

Tt =

)

4 Collaboration for Multi-camera Tracking

In this section, we assume that each camera is capable of tracking multiple
objects in its view. The same object may or may not be tracked by more than
one camera simultaneously. However, since the camera network is calibrated,
the 3D position of the object can always be calculated. Since each object is
represented by its bounding box and its center (z,y), each camera computes
whether an object will get out of its view or not. In general, a camera pans
and/or tilts to keep the object in its view, however, there are limitations on
the maximum pan/tilt that a camera can perform. Therefore, when an object
is about to get out of the view of the camera, that camera sends a message
to all its neighboring cameras about this object. The message contains all the
information, such as, current 3D position, size of the bounding box, the track
till the current point in time, the probability estimates till that time as well as
the predicted 3D position of that object.

A camera is a neighbor of another camera if an object can get out of one
camera’s view and get into the other camera’s view, or if both the cameras
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have overlapping views in some pan/tilt position of both the cameras. When a
camera receives a message from its neighbor, it checks whether it is tracking the
same object or not. If it is tracking the same object, it continues to do so. If the
message is about a new object, the camera checks whether the object has entered
its view or not. To check the identity of the object, we use the 3D location of
the center of the bounding box. The camera first checks whether it is already
tracking that object. It computes the distance between the 3D position received
in the message with the 3D position of the objects that it is currently tracking.
If this distance is within a threshold with one of the objects in the camera’s
view, it identifies that the message received is for an object that is currently
being tracked and continues to track that object. In case, the distance is not
within the threshold, it checks whether a new object has entered its view. To
do so, the camera that receives the message, computes the image coordinates of
the 3D position of the object, and considers a bounding box around that image
position. It then forms an HSV color histogram of the pixels in that bounding
box and compares the distance between the histogram received in the message
with the computed histogram. If the distance is within a predefined threshold,
it assumes that the object has been identified. It continues to track the object
using the information present in the message.

Belief propagation is used to compute the probabilities in the new view, based
on the probabilities received from the camera that was previously tracking it.
Let C be the camera that has received messages about an object from multiple
cameras, j = 1,2,...,r, where r could be 1 or more than 1. Then, each Cj; in its
message also sends the predicted value of the object, that is, z; ;, 7 = 1,2,...,r.
Let the target state in Cj be z,  and its state in each C; be z; 5, 7 =1,2,...,r.

Let 25,7 = 1,2,...,r denote the observation in C; at time ¢. Then, Z; =
{z¢1, ..., 2} be the multi-camera observation at time ¢. This implies that Zt =
{ZY, 7%, ..., Z"} are the multi-camera observations till time ¢. Then, the message
from camera Cj; to Cj, is

Mg (Te,k) < D (2,5 |,5)0% ; (Tek T,5)
X /p(xt,j|$t—17j)p($t—1,j|Zf’_1)dl‘t—17jdxt,j (8)
Then, the belief is computed by,

(x| Z2) o iy, o (24 1)

< / D@t )P 1l 2 e g )

where, p(z;x|ri—1%) is computed as discussed above and p(z:—1x|Z'71) is set
to 1, since the object was not in this camera during that time period.

Therefore, even if the camera has not seen the object of interest before it will
get tracked using the history from its neighboring cameras.
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5 Zooming into an Object

In our framework, we give the user the capability to observe any person such that
the size of the object in any camera’s view is within a predefined range, as he/she
moves across the camera network. The user can mark the object of interest when
he/she enters the area under observation. Then, as the object moves across the
camera network, along with the message that each camera sends to its neighbors,
a tag is also sent and the range of the size of the tracked object.

This ensures that each camera can change its pan/tilt and zoom parameters
to continuously track the object such that the size of that object in that camera’s
view is within the predefined range. It is not necessary that the object remains
in the center of the image, therefore, the camera does not need to pan/tilt
continuously. Instead, the camera needs to change its pan/tilt and zoom to be
able to track the object at the required size. By size of the object, we imply the
size of the bounding box. In many cases, if the camera zooms without bringing
the object to its center, then it may lose the object from its zoomed view.
Therefore, before zooming, the camera pans and/or tilts to bring the object
to the center of its view and then zooms into be able to view the person at the
predefined size. The camera only pans and/or tilts next when the object is about
to get out of its view or if the size of the object goes out of the desired range.

Suppose that object O; is currently in view of camera C; and about to get in
the view of its neighbor, Cj. Then, C}, also receives the predicted 3D position of
O;. Once C}, checks that O; is within its view, it checks on the size of the object.
If the size is outside the required range, then first the camera Cj pans/tilts to
bring the object into its center and then zooms. This is to ensure that the object
is not lost from the camera’s view after zooming. Panning by angle « is rotation
about the Y-axis by a and tilting by angle § is rotation around the X-axis by
8. Let (X;,Y:, Z;) be the position of O; in Cf. Then, as discussed in [7],

X
= —arctan —* 1
e arctan 7 (10)

and,
Y;
= arct 11
f=arc amZ,-cosozinsinoz (11)

After the target object is centered, the camera zooms in by § = f — fi where,
f1. is the focal length of C}, after zoom in.
Then, the zoom f}, is computed as

fo=—2i (12)

where, a is the ratio of the current height h; to the desired height H;, % <a<l1
and H is taken to be the average human height. And, tracking is resumed after
adjusting the size of the target. Since this does not take too much time, the
tracking is smooth despite the transition.
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Fig. 1. Each row shows the state of the four cameras C1, C2, C3, C4, respectively at
different time stamps. Two objects of interest O1 (red) and O2 (blue) are in the scene.
In(a), O1 enters at C1 and the user marks it as an object of interest. (b) C1 zooms
to bring O1 to the predefined size. (c¢) O2 enters, since C1 is about to zoom, it will
lose O1. C1 communicates to its neighbor C2 and C2 pans to bring O1 in its view.
(d) O3 enters and O1 and O2 are tracked by C3 and C2 respectively. (e¢) O1 and O2
are in same cameras but moving in different directions. Therefore, in (f) C4 pans and
zooms to track O1, while C3 continues to track O2. (g) O1 has exited the scene, that
is informed to the user, O2 is also an object of interest and therefore, tracked at the
zoom level (Color figure online).
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6 Experimental Results

We perform various experiments using four PTZ SONY EVI D70 cameras, C1,
C2, C3 and C4. In the scene, camera C'1 views the entrance and camera C2
views the exit. These are the two priority areas. We show one of the scenarios
of our experimentation that covers the all aspects of our framework. In Fig. 1,
the user marks two objects of interest O1 (red) and O2 (blue) when they enter
the view of camera C1. In both cases, the camera zooms to track the objects
at the predefined size. In Fig. 1(e), both the objects of interest are in the view
of the same camera but moving in different directions. Since both O1 and O2
need to be tracked at all times, C'3 sends a message about O1 to camera C'4 and
then, C4 pans, tilts and zooms to continue tracking the O1 at the required size.

7 Conclusion

In this paper, we have proposed a novel framework for real-time, distributed,
multi-object tracking in a PTZ camera network. In our framework, the user
is given the ability to mark an object of interest to track it across cameras
such that the size of the object remains within a pre-specified range. If the
size of the object reduces or increases beyond this range, the camera zooms in
or out, as required, to bring the object’s size within the range. We have used
particle filter based tracking for tracking objects in each camera and multi-
layered belief propagation for seamlessly tracking objects across cameras. The
pan, tilt and zoom capabilities of each camera are used whenever required for
seamlessly tracking all the objects in the scene.
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