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Abstract Genome structure in higher eukaryotes is highly dependent on the type
and abundance of transposable elements, particularly retrotransposons, in their
non-coding DNA. Retrotransposons are generally viewed as genomic parasites that
must be suppressed in order to ensure genome integrity. This perception is based on
the instances of retrotransposons having caused deleterious structural variation in
genomes. Recent data are beginning to provide a more positive view of the impact
of retrotransposons, particularly in mammals, where the evolution of the placenta
has depended on the exaptation of a type of retrotransposon, endogenous retrovi-
ruses. Finally, exosome trafficking of retrotransposons between cells has been
shown to induce the innate immune system gene expression, possibly indicative of
a role for retrotransposons in the regulation of the innate immune system. It may be
time for us to review the status of retrotransposons and reclassify them as symbionts
rather than parasites.

4.1 Evolutionary Origin and Structure of Retrotransposons

Genome structure and function are two sides of the same coin, and retrotransposons
(AKA retrotransposable elements, retroelements and retroposons), self-replicating
DNA sequences that are found in all eukaryotic taxa, have the capacity to make
larger changes to genome structure than other sources of variation—such as DNA
polymerase errors that lead to single nucleotide variation (SNV). Because retro-
transposons can account for the majority of the genome sequence in eukaryotes,
their accumulation and clade specificity have been implicated in speciation, regu-
lation of gene expression, exaptation and structural variation. Understanding the
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mechanisms that govern retrotransposon distribution and replication is thus of
fundamental importance.

The evolutionary origin of retrotransposons is a matter of debate, but sequence
similarity of their reverse transcriptases with the catalytic subunit of telomerase
(Eickbush 1997; Lingner et al. 1997) and phylogenetic studies of reverse trans-
criptase sequences can be interpreted to indicate that reverse transcriptase may have
evolved from telomerase, or telomerase is the result of co-opting reverse trans-
criptase. However, there are also good arguments for the ancient, prokaryotic origin
of reverse transcriptase as a descendant of group II introns, which are mobile,
self-splicing introns (Boeke 2003).

Retrotransposons can be divided into four major classes (Eickbush and
Jamburuthugoda 2008). This classification is based on the reverse transcriptase
enzyme required for replication and encoded by these elements. In vertebrates,
retrotransposons can account for half of the genome sequence, and in plants, up to
70 % of the genome. This chapter is focused on the mammalian/vertebrate retro-
transposons and these are commonly described as falling into two broad categories:
those containing long terminal repeats (LTR) and those not containing LTR
(non-LTR) (Jurka et al. 2007).

Non-LTR retrotransposons encode their own internal promoter and one or two
open reading frames (ORFs) with reverse transcriptase and endonuclease activities
that are used for replication (Fig. 4.1). LTR containing retrotransposons resemble
(endogenous) retroviruses (ERVs) in that they can contain additional ORFs similar
to those found in retroviruses, and these are referred to as endogenous retrovirus-
like elements (ERVL). ERVL LTR retrotransposons are believed to have evolved
from DNA transposons (Bao et al. 2010) and then acquired additional genes from
viruses such as env, allowing them to become retrovirus-like and to produce
infectious particles.

4.2 The Retrotransposon Life cycle

Retrotransposons replicate via an RNA intermediate that is reverse transcribed and
reinserted into the genome (Fig. 4.1) at short target motifs (Fig. 4.2) (Cost and
Boeke 1998). For non-LTR retrotransposons, also called long interspersed elements
(LINE), transcription is initiated by an internal Pol II promoter and the resulting
transcript is then translated to produce two proteins, one of which, ORF2p has both
reverse transcriptase and endonuclease activities (Feng et al. 1996; Moran et al.
1996). ORF2p has the ability to recognise short target sequences and initiate nicks
at those locations which subsequently serve to prime the reverse transcription of the
retrotransposon RNA directly into the genome (Eickbush and Jamburuthugoda
2008; Morrish et al. 2002).

Some retrotransposons do not contain ORFs (non-autonomous) and are depen-
dent on retrotransposons that do (autonomous) (Jurka et al. 2007). Autonomous
retrotransposons are longer (LINEs), whereas the shorter, non-autonomous
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elements are called short interspersed elements (SINEs). While LINEs are usually
ubiquitously distributed across taxa, SINEs are usually clade specific, as they result
from the fusion of an internal promoter containing transcript with the 3’ end of a
LINE.

The mechanism of SINE creation is still an open question, but most likely is a
function of aspects of the LINE life cycle. SINEs have a composite structure: a 5’
end similar to 5’ tRNA, 7SL RNA or 5S rRNA promoters, a unique region and a 3’
end similar to the 3’ tail of LINEs (Piskurek and Jackson 2012). The most accepted
hypothesis on SINE origins is based on the proposed template-switching mecha-
nism of Buzdin et al. (Buzdin et al. 2002; Gilbert and Labuda 2000; Gogvadze and
Buzdin 2009, Kramerov and Vassetzky 2005; Ohshima and Okada 2005). This
template-switching mechanism is based on the study of pseudogenes, where the
LINE (L1) reverse transcriptase switches from its own L1 mRNA to other nearby

Fig. 4.1 Retrotransposon life cycle: A TEs are transcribed by RNA Pol II and exported to the
cytoplasm (Swergold 1990). B In the cytoplasm, ORF1 and ORF2 are both translated. The ORF1
protein (ORF1p) is an RNA-binding protein believed to aid the entry of LINE L1 RNA into the
nucleus (Martin 2006). The ORF2 protein (ORF2p) has both endonuclease and reverse
transcriptase activities (Feng et al. 1996; Moran et al. 1996). C To enter the nucleus, ORF1p
and ORF2p form a complex with the L1 RNA known as a ribonuclear protein (RNP) (Martin
2006). D The endonuclease activity of ORF2p creates double-stranded breaks without insertion of
TEs (Gasior et al. 2006). E The endonuclease activity is essential for the process of target-primed
reverse transcription (TPRT). TPRT requires that ORF2p creates a nick in each strand at the
integration site. The LINE L1 RNA is then used as a template for the reverse transcriptase activity
of ORF2p (Cost et al. 2002). F L1 RNA is able to insert into and aid in repairing double-stranded
breaks independent of the endonuclease activity of ORF2p (Morrish et al. 2002)
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mRNA sequences through an RNA–RNA recombination process, thus creating new
recombinant pseudogenes (and possibly SINEs) during L1 insertion (Buzdin et al.
2002; Gogvadze et al. 2007; Ichiyanagi et al. 2007; Piskurek and Jackson 2012).
However, other investigators have suggested direct transposon into transposon
(TnT) insertion as an alternative mechanism for the creation of novel transposable
elements (Giordano et al. 2007; Ichiyanagi et al. 2007; Kriegs et al. 2007). The TnT
mode of retrotransposon generation is what has led to the formation of SVA
(SINE/VNTR/Alu) elements in humans, which are chimeric elements that can be
mobilised by L1 elements and contain Alu-like sequence, Variable Number of
Tandem Repeats (VNTR) sequence and SINE-R sequence resulting from a series of
TnT events (Ostertag et al. 2003). The template-switching and TnT mechanisms are
not mutually exclusive, and it is clear that both operate to create new SINEs, but at
present we do not know which mechanism dominates.

Because retrotransposons can control their own expression through internal
promoters [Pol II for LINEs and Pol III for SINEs and ERVs (Belancio et al. 2010a;
Dieci et al. 2013)], expression is inextricably linked to the retrotransposon repli-
cation and to the evolution of new SINEs. As a result of this ability to autono-
mously insert new copies from expressed sequences into the genome, eukaryotes

Fig. 4.2 Target-primed
Reverse Transcription (TPRT)
is how retrotransposons are
inserted into the genome.
ORF2p endonuclease activity
creates a nick in the DNA at
the AA/TTTT target site (Cost
and Boeke, 1998). ORF2p
reverse transcriptase activity
then uses the cDNA copy as a
template for DNA synthesis.
Next ORF2p endonuclease
activity creates a second nick
in the DNA. The second DNA
strand is then synthesised via
double-strand break (DSB)
repair and results in the
formation of short target site
duplications (TSD)
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have evolved mechanisms to keep retrotransposon expression in check in order to
avoid large-scale deleterious structural variation.

4.2.1 Retrotransposon Suppression

There appear to be two main mechanisms for retrotransposon suppression: tran-
scriptional repression and post-transcriptional degradation (Fig. 4.3). Transcriptional
repression can be caused by methylation of retrotransposon promoters or alteration
of chromatin state to make retrotransposons transcriptionally inaccessible. Proof for
the importance of methylation is evident from the phenotype of dnmt3l (DNA
(cytosine-5)-methyltransferase 3-like) knockout mice (Bourc’his and Bestor 2004;
Webster et al. 2005), which undergo meiotic catastrophe associated with the rampant
expression of retrotransposons in male germ cells. The dnmt3l locus encodes a
protein that regulates methyl transferase activity required to methylate and suppress
the activity of CpG islands in retrotransposon promoters (Vlachogiannis et al. 2015).
In addition to CpG island methylation, transcription can be repressed by the alter-
ation of chromatin status (Fadloun et al. 2013), and this may be mediated by piRNA
transported to the nucleus (Kuramochi-Miyagawa et al. 2008).

Post-transcriptional degradation of retrotransposon RNA in the male germ line is
mediated by piRNAs derived from retrotransposon sequences and amplified by the
ping-pong reaction (Aravin et al. 2008). In the female germ line, the situation
appears to be different, with siRNAs shown to mediate retrotransposon transcript
destruction via the RNA-induced silencing complex (RISC) pathway (Ciaudo et al.
2013; Watanabe et al. 2008).

There may also be additional mechanisms that can suppress retrotransposons at
the translational level (Grivna et al. 2006; Tanaka et al. 2011) or even at the
post-translational level to interfere with ORF proteins binding to retrotransposon
transcripts (Fig. 4.3) (Goodier et al. 2012). In spite of all of these mechanisms to
suppress retrotransposons at various steps in their life cycle, they are still tran-
scribed at some developmental stages and in many somatic tissues (Belancio et al.
2010b). Perhaps suppression is a loaded term in this context and perhaps what we
are observing is actually the regulation of retrotransposon expression.

4.2.2 Retrotransposon Expression

At certain phases of the mammalian life cycle, retrotransposons are negatively reg-
ulated to a lesser degree and are therefore transcribed and able to retrotranspose.
Because methylation of cytosine to 5-methyl-cytosine (5mC) is critical to retro-
transposon silencing, retrotransposons are potentially most active at times of low
genomic 5mC content, which occurs in mouse embryos at around 3.5 days of
embryonic development and also in primordial germ cells (Hackett and Surani 2013).
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Fig. 4.3 A schematic overview of retrotransposon suppression. Retrotransposons can be
suppressed by different mechanisms throughout their life cycle (Crichton et al. 2014).
Transcriptional suppression: In most cell types, retrotransposons are in a repressed state due to
high levels of DNA methylation or histone modifications (Fadloun et al. 2013; Meissner et al.
2008). In some specific developmental stages and cell types, some retrotransposon RNAs can be
transcribed bidirectionally and transported from the nucleus to the cytoplasm (Fadloun et al. 2013).
Post-transcriptional suppression: Retrotransposon RNAs can be silenced through the piRNA
pathway (mostly in the male germ line) or siRNA pathway (mostly in the female germ line). The
ping-pong cycle is a well-characterised model for piRNA synthesis. In the mouse, sense
retrotransposon RNAs are processed into primary piRNAs. MILI (or MIWI2) is recruited to cleave
antisense retrotransposon RNAs into secondary piRNAs with the guidance of primary piRNAs,
and mHEN1 is used to subsequently methylate their 3’ termini. Secondary piRNAs then bind with
MIWI2 (or MILI) to cleave sense retrotransposon RNAs into primary piRNAs and close the loop
of the ping-pong cycle (Aravin et al. 2008). piRNAs can also be transported to the nucleus to
repress the transcription of retrotransposon by directing DNA methylation (Kuramochi-Miyagawa
et al. 2008). For the siRNA pathway, sense and antisense retrotransposon transcripts can form
double-strand RNAs, which are cleaved into double-strand siRNAs by DICER. Then,
double-stranded siRNAs are unwound and loaded into the RISC to guide the degradation of
retrotransposons (Ciaudo et al. 2013; Watanabe et al. 2008). Translational suppression: The Tudor
domain-containing protein TDRD7 and MILI might be involved in the suppression of
retrotransposon activity during translation (Grivna et al. 2006; Tanaka et al. 2011). Other
repression mechanisms may also exist at later stages, such as the assembly stage of retrotransposon
RNA and retrotransposon-encoded proteins (Goodier et al. 2012)
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However, it is primarily in early embryos that L1 retrotransposons are transcribed
and retrotranspose (Kano et al. 2009). Presumably, other suppression mechanisms
keep retrotransposons in check in primary germ cells. In spite of significant levels of
global 5mC in the genome at other stages of development, retrotransposons are also
activated in specific somatic tissues, indicating that retrotransposon suppression is
more complex than just ensuring high levels of 5mC, and it may be less stringent in
some tissues/cell types. Faulkner et al. (2009) showed that up to 30 % of mouse or
human transcripts from all tissues are of retrotransposon origin and that retrotrans-
posons were transcribed in all tissues surveyed. Retrotransposon expression per se
does not always mean that retrotransposition is occurring, as some retrotransposons
have inserted into UTRs and are therefore transcribed as part of a mRNA. However,
it has been shown in both neural progenitor cells and in the human brain that
retrotransposition does occur at a detectable level, altering the genomic landscape of
that tissue (Baillie et al. 2011; Coufal et al. 2009).

Retrotransposon expression and subsequent retrotransposition have significant
impacts on the genomes of both germ line (via germ line insertions and early
embryonic insertions) and soma. Germ line insertions can then be transmitted
through vertical inheritance, while somatic insertions are not currently believed to
contribute to the vertical inheritance of novel insertions. However, there is another
mode of retrotransposon transmission: horizontal transfer, where retrotransposon
sequences jump to another cell or species, and this type of transfer may be the result
of a more general mechanism of intercellular retrotransposon transfer.

4.3 Horizontal Transfer

Horizontal transfer of transposons has been demonstrated in plants, insects and
vertebrates. In the context of retroviruses (including ERVs that have maintained
ORFs to support an infectious life cycle), horizontal transfer is a relatively com-
monplace event. For example, in plants, horizontal transfer of transposable ele-
ments is both widespread and frequent (El Baidouri et al. 2014). In animals,
horizontal transfer of DNA transposons is also widespread (Ivancevic et al. 2013).
A good example is in Drosophila melanogaster where P-elements swept through
the population starting in the 1950s via horizontal transfer (Daniels et al. 1990).
Mariner elements are also horizontally transmitted between species, including both
insects and mammals (Lampe et al. 2003; Lohe et al. 1995; Maruyama and Hartl
1991). Furthermore, Space Invader (SPIN) elements have been horizontally trans-
ferred in mammals and other tetrapods, as have OC1 elements (Gilbert et al. 2010;
Pace et al. 2008). It was not until the 1990s that the first evidence for horizontal
transfer of retrotransposons was published, when the patchy phylogenetic distri-
bution and likely horizontal transfer of BovB retrotransposons was first reported
(Kordis and Gubensek 1998, 1999a).
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4.3.1 BovB: An Example of Widespread Horizontal Transfer

The BovB retrotransposon (also known as LINE-RTE) is a 3.2 kb LINE with at
least one large ORF encoding a reverse transcriptase and a possible small ORF1
overlapping with the large ORF (Malik and Eickbush 1998). In cattle and sheep,
over a thousand full length BovB, hundreds of thousands of 5’ truncated BovB
fragments and derived SINEs (Bov-tA and Bov-tA2 (Lenstra et al. 1993; Okada and
Hamada 1997) account for *25 % of the genome sequence (Adelson et al. 2009;
Jiang et al. 2014). The high degree of sequence conservation of BovB with
sequences detected from the venom gland of Vipera ammodytes gave the first
support to the idea of horizontal transfer of this retrotransposon (Kordis and
Gubensek 1998, 1999b). BovB is now known to have a widespread, but patchy
phylogenetic distribution, coupled to a high degree of sequence conservation, two
of the hallmarks of horizontally transferred DNA (Fig. 4.4).

Even though BovB has horizontally transferred across a wide range of species, it
has not always colonised the genome to the same extent in different species. Some

Fig. 4.4 BovB phylogeny Maximum likelihood tree of aligned BovB sequences based on Walsh
et al. (2013), showing the sporadic distribution, sequence similarity and abundance of BovB
elements across taxa. Local support values are only shown if <0.9. The labels at each branch tip
give the species common name and (in brackets) the percentage of genome sequence identified as
BovB elements for that species. Reptile Tick 1 is Bothriocroton hydrosauri, Reptile Tick 2 is
Amblyomma limbatum; and the BovB genome coverage for these ticks is unknown
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lineages such as ruminants and afrotheria have a high percentage of their genomes
derived from BovB, whereas in other species BovB has not retrotransposed as
prolifically (Fig. 4.4). This difference may be indicative of either variability in how
different species suppress retrotransposons or it may simply reflect stochasticity in
the population dynamics of retrotransposon expansion in different genomes.
Presumably, the initial horizontal transfer event that results in retrotransposition and
replication needs only a single germ line incorporation which can either replicate
exponentially or “fizzle out” within the “genomic ecosystem” (Brookfield 2005; Le
Rouzic et al. 2007). It is clear based on the currently available small and biased
(towards mammals) sample of available genome sequences that retrotransposons as
exemplified by BovB are capable of widespread and near ubiquitous horizontal
transfer, and that this transfer might be enabled by parasites, such as ticks, that feed
on blood. However, what is currently lacking is/are the molecular mechanism(s) for
these transfers.

4.3.2 Possible Mechanisms/Modes of Transfer

A number of vectors, including arthropods, viruses, snails and DNA transposons,
have been proposed for horizontal transfer, and the current state of knowledge was
recently summarised by Ivancevic et al. (2013). It is relatively easy to see how a
virus or transposon might act as a vector to package or transpose retrotransposons,
but at the molecular level, it is not as obvious how eukaryotic vectors might effect
the transfer of retrotransposon sequences between species, let alone into the germ
line of another species.

4.3.2.1 Viruses as Vectors

For retrotransposons, the only example at present of a molecular virus vector is the
taterapox virus (a dsDNA virus) which may have mediated transfer of Sauria SINE
between reptiles and West African rodents (Piskurek and Okada 2007). This can be
viewed as a highly unusual transfer, as a non-autonomous retrotransposon should
not be as likely to colonise a new genome after transfer as an autonomous retro-
transposon, such as a LINE. However, if cognate autonomous LINEs are present in
both source and recipient species, a non-autonomous SINE could replicate effec-
tively in the recipient species. RNA viruses have also been proposed as vectors of
horizontal transfer for retrotransposons as they might package non-LTR retro-
transposon transcripts inside infectious virus particles, but a tangible example for
this type of transfer has yet to be demonstrated. Interestingly, Mariner-like DNA
transposons are the plausible vectors for transfer of the CR1 retrotransposon in
butterflies and moths (Sormacheva et al. 2012).
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4.3.2.2 Endogenous Retroviruses/LTR Retrotransposons

As mentioned in Sect. 4.1, LTR retrotransposons are believed to have arisen from
retrotransposons that acquired viral genes allowing them to become infectious,
possibly leading to the evolution of retroviruses (Shimotohno and Temin 1981). In
addition, waves of retroviral invasions into eukaryotic genomes have resulted in the
formation of ERVs. While some ERVs have remained endogenous, occasionally
they are able to become infectious and transfer to other genomes, where they can
cause disease and eventually become domesticated. This is currently the case for a
rodent ERV that has infected Koalas and is causing leukaemia in its new host while
colonising the germ line as a new ERV (Tarlinton et al. 2006). Over time,
domesticated retroviruses (ERVs) have contributed significantly to the genomic
landscape of eukaryotes and have been co-opted into various aspects of eukaryotic
biology (Feschotte and Gilbert 2012). In addition to this evolution of the capacity
for horizontal transfer via infection, it is possible that retroviruses could package
non-infectious non-LTR retrotransposons as a part of their viral payload. While
there is no solid evidence for such transfer, exosomes/microvesicles are able to
incorporate virus particles and transfer them to adjacent cells. This raises the
question of whether exosomes can also transfer retrotransposon sequences directly.

4.3.2.3 Exosomes/Vesicles as Vectors

Exosomes are a class of membrane vesicle that has recently been shown to contain
protein and RNA including miRNAs, piRNAs and retrotransposon sequences that
they can transport from cell to cell (Batagov and Kurochkin 2013, Li et al. 2013;
Skog et al. 2008; Valadi et al. 2007; Villarroya-Beltri et al. 2013; Yuan et al. 2009).
Furthermore, exosome transport of Pol III-produced retrotransposon sequences has
been specifically shown to regulate cancer therapy resistance pathways, including
interferon-stimulated genes by direct activation of retinoid acid-inducible gene 1
(RIG-I) (Boelens et al. 2014). One of the hallmarks of Pol III transcripts is their 5’
triphosphate group, which is recognised specifically by RIG-I as a trigger for acti-
vation. Pol III is responsible for the transcription of primarily housekeeping-type
genes such as tRNAs and rRNAs, but it also transcribes many other loci, including
SINEs that have originated from a fusion of Pol III promoter containing transcripts
with LINE 3’ sequences (Belancio et al. 2010b; Dieci et al. 2013). Because retro-
transposons are known to be somatically expressed (see Sect. 4.2.2) in many tissues
and cell types, they are likely to be present in exosomes exported by those cell types.

In the context of horizontal transfer, one can envision a number of potential
scenarios for intercellular transport of retrotransposon sequences by exosomes
(Fig. 4.5). Exosome-mediated transfer could allow transfer of retrotransposon
sequences from a mammal or reptile to somatic cells of a parasite such as a tick
through blood-borne exosomes. Within the tick, exosome-mediated transfer could
then allow transmission to the germ line from the soma and eventual transmission
back to other species used as food sources by that species of tick.
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While one might envision that the existing piRNA-based suppression system
might degrade these retrotransposon sequences rapidly, it also appears that retro-
transposon sequences (as exosome cargo) have been co-opted into a signalling role
for the innate immune system in vertebrates and used to activate interferon-
stimulated genes in the absence of interferon (Dreux et al. 2012; Li et al. 2013).
This would not be the first time that retrotransposon sequences have been co-opted
for gene regulation (Feschotte 2008; Feschotte and Gilbert 2012), but it introduces a

Fig. 4.5 Possible scenarios of intercellular transfer of transposable elements via exosomes. TEs
packaged in exosomes can be transferred between both somatic and germline cells. Within an
organism, a TE can travel from a somatic, exosome-generating cell directly (e.g. through the
blood) into a somatic, exosome-target cell by fusing with the plasma membrane and undergoing
endocytosis. Similarly, TEs can be horizontally transferred between the somatic cells of different
organisms or species, via some kind of vector (e.g. a parasite). Exosomes can also carry TEs from
the soma to the germ line, making them a permanent change in the genome that is eventually
passed down to the offspring. Note that for simplicity only entry to the male germ line is shown
above. In addition to the transfer of TEs, once inside the target cell, this “foreign RNA” from the
TE can trigger an interferon pathway response by inducing the interferon signal transduction
pathway via RIG-I. For example, in ruminants, exosomes loaded with ERV/TE RNAs trigger
pattern recognition receptors, stimulating the innate immune system and production of interferon-
tau, which plays a role in pregnancy recognition and placentation (see Sect. 4.4.4)
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new dimension of intercellular regulation of gene expression in the context of the
evolutionary impact of retrotransposons.

4.4 Evolutionary Impacts

Retrotransposons are known to affect genome structure and hence function. The
specific types of structural changes they introduce upon retrotransposition can have
a wide-ranging set of subsequent effects in terms of genome structure, gene
expression and gene function. More recently, it has become clear that retrotrans-
posons have had a profound impact on the evolution of placentation in mammals.

4.4.1 Genome Structure

Retrotransposon insertion can directly perturb gene structure, but it can also have
significant effects on a larger scale (Fig. 4.6). In particular, if retrotransposons form
an array of elements with the same orientation on a chromosome, they can serve as

(a)

(b)

(c)

Fig. 4.6 Retrotransposons
can lead to changes in
genome structure. a Changes
in CNVs result from
non-allelic homologous
recombination (NAHR)
caused by the insertion of
many TEs from the same
family (Stankiewicz and
Lupski 2002; Startek et al.
2015). b Chromosomal
inversion is also the result of
NAHR (Stankiewicz and
Lupski 2002). c SINE
elements have potential to
drive change through gene
conversion (Roy et al. 2000)
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a substrate for non-allelic homologous recombination (NAHR) leading to segmental
duplication (Fig. 4.6a) (Stankiewicz and Lupski 2002; Startek et al. 2015).
However, statistical analysis of repeats in flanking regions of segmental duplica-
tions found that only *10 % of segmental duplications could be attributed to
flanking repetitive elements (Zhou and Mishra 2005). Other types of rearrange-
ments have been shown to result from arrays of repeats such as inversions
(Fig. 4.6b) and gene conversion (Fig. 4.6c).

While it is clear that retrotransposons can have indirect effects on genome
structure as mentioned above, given the limitations inherent in identifying small
segmental duplications and copy number variants the precise magnitude of these
effects is unknown.

4.4.2 Gene Expression

As shown in Fig. 4.7, transposable elements can insert into and next to genes,
affecting gene expression through multiple mechanisms, including epigenetic
silencing of transcription, shortening a transcript via premature poly-Adenylation,

(a)

(c)

(b)

Fig. 4.7 Retrotransposons can alter gene expression. a 5’ insertion of a retrotransposon with respect
to a gene. a TEs are able to act as alternative promoters to adjacent genes (Faulkner et al. 2009;
Speek 2001). b TEs are able to act as transcription factor binding sites (TFBS) and are thereby able
to modulate gene expression (Bourque et al. 2008). c In plants, epigenetic silencing of TEs silences
nearby genes; this is also likely to occur in animals (Buckley and Adelson 2014; Hollister and Gaut
2009). b 3’ insertion of a retrotransposon a polyA signal/tail of the retrotransposon can result in
shortened transcripts (Lee et al. 2008; Perepelitsa-Belancio and Deininger 2003). b Retrotransposon
insertion in the 3’ UTR of a gene can provide a target site for piRNAs which down-regulate gene
expression (Watanabe et al. 2014). c Intergenic insertion of TEs. a Insertion of TEs into a piRNA
cluster results in piRNAs that can target genes carrying TE-derived sequences (Yamamoto et al.
2013). b TEs involved in the origin and evolution of lncRNA (Kapusta et al. 2013)
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driving piRNA expression or altering 3’ UTR structure to affect mRNA stability.
Analysis of retrotransposon insertions into or near genes has shown that many
genes have been altered in ways that are likely to alter expression (Jjingo et al.
2011; Jordan et al. 2003) and analysis of enhancers has shown that retrotransposons
drive the evolution of eukaryotic enhancers (McDonald et al. 1997). All of these
effects on gene expression are subject to selection and are therefore part of the
evolutionary process. Not all insertions into genes will affect regulation of gene
expression, some can directly affect the coding sequence or coding potential of
genes through exaptation.

4.4.3 Exaptation

When retrotransposons contribute to non-coding or protein coding exon sequences,
they are referred to as exaptations. These exaptations may or may not be subject to
immediate purifying selection, depending on the type of change they cause. Some
exaptations that prove beneficial are selected for, but these are rare. Many examples
of exaptation come from non-coding transcripts, where retrotransposon insertions
have led to novel piRNA and miRNA transcripts (Jurka et al. 2007; Yamamoto
et al. 2013). In fact, only *50 instances of coding sequences derived from LTR
retrotransposons syntenic between human and mouse have been identified (Jurka
et al. 2007). One of these encodes the PEG10 (paternally expressed gene 10) locus,
which is required for placentation. Occasionally, insertion of a retrotransposon
sequence into an intron can lead to exonisation of part of the retrotransposon
sequence as an alternative transcript through the presence of splice donor/acceptor
sites in the sequence (Fig. 4.8). When this happens, sometimes the alternative
transcripts are deleterious because of impaired function, and the regulation of
alternative splicing may then become an additional regulatory mechanism for the
affected gene (Lorenz et al. 2007).

4.4.4 Innate Immunity/Pregnancy Recognition

Some exaptations of retrotransposon sequences have been well-characterised,
particularly in terms of the evolution of placentation. There is strong evidence for
exaptation of ERV genes in both mouse and hominoid primates required for pla-
cental function (Chuong 2013; Haig 2012; Mallet et al. 2004). One of the most
striking such exaptations is the role of endogenous jaagsiekte retrovirus (enJSRV)
in ruminant pregnancy recognition and placentation. The domestic ruminant con-
ceptus expresses interferon-tau (IFNT) from days 10 to 12, which dramatically
alters gene expression in the uterine epithelium and stroma (Bazer et al. 2008;
Dunlap et al. 2006; Gray et al. 2006; Spencer and Bazer 1995). At the same time,
enJSRVs are released into the ruminant reproductive tract and they are known to
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regulate key peri-implantation development in the embryo and placenta (Dunlap
et al. 2005, 2006). enJSRVs therefore have been exapted to regulate key aspects of
development associated with implantation and placentation by virtue of their ability
to trigger expression of IFNT expression in the conceptus. Recently, exosomes have
been shown to be part of the specific mechanism used to trigger IFNT expression in
this system, but without specifically testing for retrotransposon RNA content
(Ruiz-Gonz ez et al. 2014, 2015). We speculate that exosomes loaded with retro-
transposon sequences may also be involved in pregnancy recognition more gen-
erally in order to activate the STAT1 pathway in an interferon-free fashion.

SINE/ERV transcripts packaged into exosomes can trigger RIG-I in target cells
leading to IFN independent activation of the IFN pathway, leading us to speculate
that the role of retrotransposons is broader than previously thought, and that they
may be involved in global regulation of the innate immune system.

4.5 Conclusion

Retrotransposons are abundant, found in a broad phylogenetic distribution and yet
in spite of clade specific non-autonomous variants, exhibit a significant degree of
commonality. Furthermore, their transcription is highly regulated, rather than

Fig. 4.8 Retrotransposon exaptation influences mRNA processing and can cause multiple splice
variants. At the top, the UCSC browser (Kent et al. 2002) track for the human NOS3 gene is
shown, including repeat element annotation. Below, a schematic of the 3’ end of the human NOS3
gene illustrating an Alu element (black bar) inserted into intron 13. This retrotransposon provides
exon 14 alternative splicing version 1. An adjacent L1 insertion can result in exon 14 alternative
splicing version 2 (Lorenz et al. 2007). Dashed lines indicate a splicing event
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suppressed at all times. These facts, along with the evidence of pervasive and
widespread horizontal transfer and an exosome-based mechanism for transfer that
has likely co-evolved with the innate immune system and placentation, suggest to
us that retrotransposons are not genomic parasites but rather genomic symbionts.
We hypothesise that mammals and other vertebrates depend on these symbionts for
cell-to-cell signalling in innate immunity and reproduction.
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