
Composite Repetition-Aware Data Structures

Djamal Belazzougui1,2(B), Fabio Cunial1,2, Travis Gagie1,2,
Nicola Prezza3, and Mathieu Raffinot4

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
djamal.belazzougui@cs.helsinki.fi

2 Helsinki Institute for Information Technology, Helsinki, Finland
3 Department of Mathematics and Computer Science,

University of Udine, Udine, Italy
4 LIAFA, Paris Diderot University, Paris 7, France

Abstract. In highly repetitive strings, like collections of genomes from
the same species, distinct measures of repetition all grow sublinearly in
the length of the text, and indexes targeted to such strings typically
depend only on one of these measures. We describe two data struc-
tures whose size depends on multiple measures of repetition at once, and
that provide competitive tradeoffs between the time for counting and
reporting all the exact occurrences of a pattern, and the space taken by
the structure. The key component of our constructions is the run-length
encoded BWT (RLBWT), which takes space proportional to the number
of BWT runs: rather than augmenting RLBWT with suffix array sam-
ples, we combine it with data structures from LZ77 indexes, which take
space proportional to the number of LZ77 factors, and with the compact
directed acyclic word graph (CDAWG), which takes space proportional
to the number of extensions of maximal repeats. The combination of
CDAWG and RLBWT enables also a new representation of the suffix
tree, whose size depends again on the number of extensions of maximal
repeats, and that is powerful enough to support matching statistics and
constant-space traversal.

1 Introduction

The space taken by compressed data structures for highly-repetitive strings is
typically a function of a specific measure of repetition, for example the number z
of factors in a Lempel-Ziv parsing [1,11], or the number r of runs in a Burrows-
Wheeler transform [14]. For many such compressed data structures, computing
all the occurrences of a pattern in the indexed string is a bottleneck. In this
paper we explore the advantages of combining data structures that depend on
distinct measures of repetition. Specifically, we describe a data structure that
takes approximately O(z+r) words of space, and that reports all the occurrences

Travis Gagie—Supported by the Academy of Finland.
This work was partially supported by Academy of Finland under grant 284598 (Cen-
ter of Excellence in Cancer Genetics Research).

c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 26–39, 2015.
DOI: 10.1007/978-3-319-19929-0 3

Composite Repetition-Aware Data Structures 27

of a pattern of length m in O(m(log log n + log z) + pocc logε z + socc log log n)
time, where n is the length of the string and pocc and socc are the number of
primary and of secondary occurrences, respectively (see Sect. 2.2 for definitions).
This compares favorably to the O(m2h + (m + occ) log z) reporting time of
LZ77 indexes [11], where h is the height of the parse tree. It also compares
favorably in space to solutions based on run-length encoded BWT (RLBWT)
and suffix array samples [14], which take O(n/k + r) words of space to achieve
O(m log log n + k · occ log log n) reporting time, where k is a sampling rate.

We also introduce a new measure of the repetitiveness of a string, the number
e of right extensions of maximal repeats, which is related to the number of arcs
in the compact directed acyclic word-graph (CDAWG) and which is an upper
bound on r and z. We show a data structure whose size depends on e and that
reports all the occ occurrences of a pattern of length m in a string of length n
in O(m log log n + occ) time. The main component of our constructions is the
RLBWT, which we use to count the number of occurrences of a pattern, and
which we combine with the CDAWG and with data structures from LZ indexes,
rather than with suffix array samples, for reporting. Similar combinations have
already appeared in the literature, but their space has been related to statistical
compressibility rather than to the number of repetitions: for example, an FM-
index has already been combined with an LZ78 self-index to achieve faster search
or reporting [1,7], but the size of the resulting data structure depends on k-
th order empirical entropy. Bounds in terms of k-th order empirical entropy
have redundancy terms that depend exponentially on k, so they cannot capture
compressibility based on long repetitions.

Combining the RLBWT with the CDAWG enables also a new representation
of the suffix tree, which takes space proportional to e+e� (where e� is the number
of left extensions of maximal repeats) and which supports a number of operations
in O(log log n) time. Among other properties, this new representation allows
computing the matching statistics of a pattern of length m in O(m log log n) time.
Our constructions are targeted to highly-repetitive strings, like large databases
of similar genomes, in which all the measures of repetition on which our data
structures depend grow sublinearly in the size of the database (see Fig. 1 for an
example). In a future paper we will provide a full experimental comparison of our
results against other data structures for pattern matching in highly-repetitive
strings.

2 Preliminaries

Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let
T = [1..σ]n−1# be a string. We denote the reverse of T by T . Given a substring
W of T , let PT (W) be the set of all starting positions of W in the circular
version of T . A repeat W is a string that satisfies |PT (W)| > 1. We denote by
Σ�

T (W) the set of characters {a ∈ [0..σ] : |PT (aW)| > 0} and by Σr
T (W) the

set of characters {b ∈ [0..σ] : |PT (Wb)| > 0}. A repeat W is right-maximal
(respectively, left-maximal) iff |Σ�

T (W)| > 1 (respectively, iff |Σr
T (W)| > 1).

28 D. Belazzougui et al.

Fig. 1. Growth of the number of maximal repeats |MT | (black circles), of |Er
T ∪ Fr

T |
(white circles, e in the introduction), of the number of runs in BWT |RT | (squares, r
in the introduction), and of |ZT | (triangles, z in the introduction) in a concatenation T
of 39 highly similar Saccharomyces cerevisiae genomes [8] (see Sect. 2 for definitions).
Left: growth inside the first genome of the database. Center: growth after the addition
of each genome (one sample per genome). Right: the same as the plot in the center,
but with each curve normalized by its first sample. |E�

T ∪ F�
T |, |RT | and |ZT | are not

shown since they behave approximately as their symmetrical counterparts.

It is well known that T can have at most n − 1 right-maximal substrings and at
most n − 1 left-maximal substrings. A maximal repeat of T is a repeat that is
both left- and right-maximal: we call MT the set of all maximal repeats of T .
A maximal repeat W can be seen as a set of right-maximal substrings of T , and
specifically as the set of all right-maximal strings W [i..|W |] for i ∈ [1..k] that
are not left-maximal, and such that W [k + 1..|W |] is left-maximal.

For reasons of space we assume the reader to be familiar with the notion
of suffix tree STT = (V,E) of T , which we do not define here. We denote by
�(γ), or equivalently by �(u, v), the label of edge γ = (u, v) ∈ E, and we denote
by �(v) the string label of node v ∈ V . It is well known that a substring W of
T is right-maximal (respectively, left-maximal) iff W = �(v) for some internal
node v of STT (respectively, iff W = �(v) for some internal node v of STT). We
assume the reader to be familiar with the notion of suffix link connecting a node
v with �(v) = aW for some a ∈ [0..σ] to a node w with �(w) = W : we say that
w = suffixLink(v) in this case. Here we just recall that inverting the direction
of all suffix links yields the so-called explicit Weiner links. Given an internal
node v and a symbol a ∈ [0..σ], it might happen that string a�(v) does occur in
T , but that it is not right-maximal, i.e. it is not the label of any internal node:
all such left extensions of internal nodes that end in the middle of an edge are
called implicit Weiner links. An internal node can have more than one outgoing
Weiner link, and all such Weiner links have distinct labels.

The compact directed acyclic word graph of a string T (denoted by CDAWGT

in what follows) is the minimal compact automaton representing the set of suf-
fixes of a given string [3,6]. It can be seen as the minimization of STT , in which
all leaves are merged to the same node (the sink) that represents T itself, and
in which all nodes except the sink are in one-to-one correspondence with the

Composite Repetition-Aware Data Structures 29

maximal repeats of T [16]. Since a maximal repeat corresponds to a set of right-
maximal substrings, CDAWGT can be built by putting in the same equivalence
class all nodes of STT that belong to the same maximal unary path of explicit
Weiner links.

For reasons of space we assume the reader to be familiar with the notion
and uses of the Burrows-Wheeler transform of T , including the C array and
backward searching. In this paper we use BWTT to denote the BWT of T , and
we use range(W) = [sp(W)..ep(W)] to denote the lexicographic interval of a
string W in a BWT that is implicit from the context. We say that BWTT [i..j]
is a run iff BWTT [k] = c ∈ [0..σ] for all k ∈ [i..j], and moreover if any substring
BWTT [i′..j′] such that i′ ≤ i, j′ ≥ j, and either i′ �= i or j′ �= j, contains at
least two distinct characters. It is well known that repetitions in T tend to be
converted into runs of BWTT . We denote by RT the set of all triplets (c, i, j)
such that BWTT [i..j] is a run of character c, and we use rT and rT as shorthands
for |RT | and |RT |, respectively.

The LZ77 factorization of T [20] is the greedy decomposition T1T2 · · · Tz of T
obtained as follows. Assume that T is virtually preceded by the σ distinct char-
acters in its alphabet, and assume that T1T2 · · · Ti has already been computed
for some prefix of length k of T : then, Ti+1 is the longest prefix of T [k + 1..n]
such that there is a j ≤ k that satisfies T [j..j + |Ti+1|− 1] = Ti+1. We denote by
ZT the set of pairs (Ti, pi) for all i ∈ [1..z], where pi is the starting position of Ti

in T , and we use zT as a shorthand for |ZT |. From now on, we drop subscripts
whenever the string T they specify is clear from the context.

2.1 Relationships Among Maximal Repeats, Runs in BWT,
and LZ Factors

Clearly |R| can be as small as two, e.g. in string 0n−1#, and as large as Θ(n),
e.g. in the string of length n that contains exactly n distinct characters, or in a de
Bruijn string of order k > 1 on a binary alphabet: this string of length σk +k−1
contains all the distinct k-mers, thus the interval of every (k − 1)-mer in BWTT

contains exactly σ distinct characters, and the number of runs in BWTT is thus at
least σk−1(k−1). It is known that |Z| is O(n/ logσ n) [12], and it can be constant,
e.g. in 0n−1#. Conversely, |M| can be zero, e.g. in a string of length n that
contains exactly n distinct characters, and it can be Θ(n) in the worst case, e.g.
in string 0n−1#. When maximal repeats exist, the number of right extensions of
maximal repeats

∑
W∈M |Σr(W)| is Ω(log n), and this lower bound is matched

by Fibonacci strings and by Thue-Morse strings of length n, whose CDAWG
contains O(log n) nodes [15,17]. Both |M|/|R| and |M|/|Z| can be Θ(n), for
example in the already mentioned 0n−1#. |R|/|Z| can be Θ(log n), e.g. in the
already mentioned de Bruijn string T of order k, which has Θ(n/ logσ n) LZ
factors. However, |M|, |R| and |Z| can all grow at the same asymptotic rate in
the same family of strings. Consider e.g. string T = 011021 · · · 0x1# of length
x(x + 3)/2 + 1. Clearly |Z| = x + 3, and |M| = 3(x − 1) since the maximal
repeats of T are only the substrings 0i1 for i ∈ [1..x − 1], 0j for j ∈ [1..x − 1],

30 D. Belazzougui et al.

and 0k−110k for k ∈ [2..x − 1]. Replacing # with a new block 0x+11# in string
T creates two new runs for every x > 1 , thus |R| = 2x for x > 1.

Recall that a substring W of T is a maximal repeat iff W = �(v) for some
internal node v of STT = (V,E), and moreover if there are at least two Weiner
links from v. Since the set of all left-maximal substrings of T is closed under the
prefix operation, there is a bijection between M and the nodes that lie on the
paths of STT that start from the root and that end at nodes labeled by maximal
repeats defined as follows:

Definition 1. A maximal repeat W of a string T ∈ [1..σ]n−1# is rightmost if
no string WV with V ∈ [0..σ]+ is left-maximal in T .

We denote the set of rightmost maximal repeats of T by Mr
T . We also denote

by Er
T the set of edges of STT that connect pairs of nodes labeled by maximal

repeats, and we denote by Fr
T the set of edges (v, w) in STT such that �(v) ∈ MT

and �(w) /∈ MT . We use M�
T , E�

T and F�
T to denote symmetrical concepts in

STT , and we use eT and e�
T as shorthands for |Er

T | + |Fr
T | and for |E�

T | + |F�
T |,

respectively. Clearly Er and Fr are the image of explicit and implicit Weiner
links of STT :

Lemma 1. Let STT = (V,E). There is a bijection between Er
T and the set of all

explicit Weiner links from nodes of STT that correspond to maximal repeats of
T . There is a bijection between Fr

T and the set of all implicit Weiner links from
nodes of STT that correspond to maximal repeats of T .

The proof of Lemma 1 is provided in the appendix. It is clear that the set of
suffix tree edges Er

T ∪ Fr
T is in one-to-one correspondence with the set of all arcs

of CDAWGT . This set of edges is also related to runs in BWTT :

Theorem 1. |[0..σ]\∪W∈Mr
T
Σ�

T (W)|+∑
W∈Mr

T
|Σ�

T (W)|−|Mr
T |+1 ≤ |RT | ≤

|Fr
T |.

Proof. The root of STT is a maximal repeat, thus the destinations of all edges in
Fr partition all leaves of STT into disjoint subtrees, or equivalently they partition
the entire BWTT in disjoint blocks. Since every such block is the interval in
BWTT of some string that is not left-maximal, all characters of BWTT in the
same block are identical, thus the number of runs in BWTT cannot be bigger
than |Fr|.

The interval of a string W ∈ Mr in BWTT contains exactly |Σ�(W)| distinct
characters, and at most one of them is identical to the character that precedes
the largest suffix of T smaller than W in lexicographic order (note that such
suffix might not be prefixed by any string in Mr). Thus, the number of runs in
BWTT is at least

∑
W∈Mr |Σ�(W)|− |Mr|+1. Factor [0..σ]\∪W∈MrΣ�

T (W) in
the claim takes into account symbols of T that never occur to the left of strings
in Mr. ��
A symmetrical argument holds for RT . The set of arcs in CDAWGT is also related
to the LZ factorization of T :

Composite Repetition-Aware Data Structures 31

Theorem 2. |ZT | ≤ |Er
T ∪ Fr

T |
Proof. Let T = T1T2 . . . Tz be the LZ factorization of T , and let p1, p2, . . . , pz

be the sequence such that pi is the starting position of factor Ti in T . Every
factor is a right-maximal substring of T , but it is not necessarily left-maximal:
let Wi be a suffix of T [1..pi − 1] such that WiTi is both right-maximal and left-
maximal, and assume that we assign Ti to the edge (v, w) in Er

T ∪ Fr
T such that

�(v) = WiTi, v = parent(w), and the first character of Ti+1 equals the first
character of �(v, w). Assume that there is some j > i for which we assign Tj

to the same maximal repeat WiTi. Then, the first character of Tj+1 must be
different from the first character of Ti+1, otherwise factor Tj would have been
longer. It follows that every LZ factor can be assigned to a distinct element of
Er

T ∪ Fr
T . ��

The gap between r and e, and between z and e, is apparent from Fig. 1 (center).
However, all these measures seem to grow at the same relative rate in practice
(right panel).

2.2 Repetition-Aware Data Structures

Given a string T ∈ [1..σ]n−1#, we call run-length encoded BWT any represen-
tation of BWTT that takes O(|RT |) words of space, and that supports rank and
select operations: see for example [13,14,18]. Let RT be a set of triplets (c, i, j)
such that BWTT [i..j] is a run of character c. It is easy to implement rank in
O(log log n) time, by encoding RT as σ + 1 predecessor data structures [19],
each of which stores the second component of all triplets with the same first
component. For every such second component i, we also store in an array the
sum of all occurrences of c up to i, exclusive. To implement select in O(log log n)
time, we can similarly encode RT as σ + 1 predecessor data structures, each of
which stores value rankc(BWTT , i−1) for all triplets (c, i, j) with the same value
of c. We also store the value of i for every such triplet. We denote the run-length
encoded BWT of T by RLBWTT .

For reasons of space we assume the reader to be familiar with LZ77-indexes:
see e.g. [9,10]. Here we just recall that a primary occurrence of a pattern P in a
string T ∈ [1..σ]n−1# is one that crosses a phrase boundary in the LZ77 factor-
ization T1T2 · · · Tz of T . All other occurrences are called secondary. Once we have
determined all primary occurrences, locating secondary occurrences reduces to
two-sided range reporting and takes O(occ log log n) time with a data structure
that takes O(z) words of space [10]. To locate primary occurrences, we can use
a data structure for four-sided range reporting on a z × z grid, with a marker
at (x, y) if the xth LZ factor in lexicographic order is preceded in the text by
the lexicographically yth reversed prefix ending at a phrase boundary. This data
structure takes O(z) words of space, and it returns all the phrase boundaries
immediately followed by a factor in the specified range, and immediately pre-
ceded by a reversed prefix in the specified range, in O((1+k) logε z) time, where
k is the number of phrase boundaries reported [4].

32 D. Belazzougui et al.

3 Combining Runs in BWT and LZ Factors

In this section we describe how to combine data structures whose size depends on
the number of LZ factors of a string T ∈ [1..σ]n−1#, and data structures whose
size depends on the number of runs in BWTT , to report all the occurrences of a
pattern in T . To do so, we first need to solve the following subproblem. Let STT =
(V,E) be the suffix tree of T , and let V ′ = {v1, v2, . . . , vk} ⊆ V be a subset of
the nodes of STT . Consider the list of node labels L = �(v1), �(v2), . . . , �(vk),
sorted in lexicographic order. Given a string W ∈ [0..σ]∗, we want to implement
function I(W,V ′) that returns the (possibly empty) interval of W in L. The
following lemma describes how to do this in O(k) words of space:

Lemma 2. Let T ∈ [1..σ]n−1# be a string, and let V ′ be a subset of k nodes
of its suffix tree, represented as intervals in BWTT . Given the interval [i..j] of a
string W ∈ [0..σ]∗ in BWTT , there is a data structure that takes O(k) words of
space and that computes I(W,V ′) in O(log k) time.

Proof. Let F [1..n] be a bitvector such that F [i] = 1 iff there is a node v′ ∈
V ′ such that range(v′) = [i..j]. Similarly, let L[1..n] be a bitvector such that
L[j] = 1 iff there is a node v′ ∈ V ′ such that range(v′) = [i..j]. Let α and β
be the number of ones in F and L, respectively. We store in array first[1..α]
(respectively, last[1..β]) the sorted positions of the ones in F (respectively, in
L), using O(k) words of space. Let F ′[1..α] be the array such that F ′[i] equals the
number of intervals [p..q] such that p is the ith one in F and [p..q] = range(v′)
for a node v′ ∈ V ′. Similarly, let L′[1..β] be the array such that L′[i] equals the
number of intervals [p..q] such that q is the ith one in L and [p..q] = range(v′)
for a node v′ ∈ V ′. We represent F ′ and L′ as prefix-sum arrays first′[1..α] and
last′[1..β] using O(k) words of space, i.e. first′[i] =

∑i
h=1 F ′[h] and last′[i] =

∑i
h=1 L′[h].
Let I(W,V ′) = [x..y]. Given the interval [i..j] of a string W in BWTT , we

find the corresponding interval [i′..j′] in array first in O(log α) time, using
binary search on first′. Specifically, i′ = min{h ∈ [1..α] : first′[h] ≥ i} and
j′ = max{h ∈ [1..α] : first′[h] ≤ j}. If j′ < i′ then W is not the prefix of a label
of a node in V ′. Otherwise, since all nodes v′ ∈ V ′ whose BWT interval starts
inside [i + 1..j] are right extensions of W , we set y =

∑j′

h=1 F ′[h] = first′[j′]
in constant time. If first[i′] �= i, i.e. if no interval of a node v′ ∈ V ′ starts at
position i in BWTT , then we can just set x = 1+

∑i′−1
h=1 F ′[h] = 1+first′[i′ −1]

in constant time and stop.
Otherwise, it could happen that just a (possibly empty) subset of all the

nodes in V ′ whose interval starts at position i in BWTT correspond to W or to
right extensions of W : the intervals of such nodes necessarily end inside [i..j]. All
the other intervals that start at position i could correspond instead to prefixes
of W , and they necessarily end after position j in BWTT . Thus, let [i′′..j′′] be
the interval in last that corresponds to [i..j]: specifically, let i′′ = min{h ∈
[1..β] : last[h] ≥ i} and j′′ = max{h ∈ [1..β] : last[h] ≤ j}. To determine
the number of intervals that start at position i in BWTT and that correspond

Composite Repetition-Aware Data Structures 33

to prefixes of W , it suffices to compute the difference δ between the number
of starting positions and the number of ending positions inside interval [i..j],
as follows: δ =

∑j′

h=1 F ′[h] − ∑i′−1
h=1 F ′[h] − ∑j′′

h=1 L′[h] +
∑i′′−1

h=1 L′[h]. Then,
x =

∑i′−1
h=1 F ′[h] + δ + 1. All such sums can be computed in constant time using

the prefix-sum representations of F ′ ad L′.
If the interval of some node in V ′ starts at i and ends after j in BWTT , then

no interval can end at j and start before i, so δ is nonnegative. ��
Consider now a factorization of T such that all factors are right-maximal sub-
strings of T , and let V ′ be the set of nodes of STT that correspond to the distinct
factors. To locate all the occurrences of a pattern that cross or end at a boundary
between two factors, we just need an implementation of function I(W,V ′) and a
pair of RLBWTs:

Lemma 3. Let T ∈ [1..σ]n−1# be a string, and let T = T1T2 · · · Tz be a factor-
ization of T in which all factors are right-maximal substrings. There is a data
structure that takes O(z + rT + rT) words of space and that reports all the occ
occurrences of a pattern P ∈ [0..σ]m that cross or end at a boundary between
two factors of T , in O(m(log log n + log z) + occ logε z) time.

Proof. Let p1, p2, . . . , pz be the sequence such that pi is the starting position of
factor Ti in T . The same occurrence of P in T can cover up to m boundaries
between two factors, thus we organize the computation as follows. We consider
every possible way to place the rightmost boundary between two factors in P , i.e.
every possible split of P into two parts P [1..k − 1] and P [k..m] for k ∈ [1..m],
such that P [k..m] is either a factor or a proper prefix of a factor. For every
such k, we use four-sided range reporting queries to list all the occurrences of P
in T that conform to this split, as described in Sect. 2.2. The four-sided range
reporting data structure represents the mapping between the lexicographic rank
of a factor W among all the distinct factors of T , and the lexicographic ranks of
all the reversed prefixes T [1..pi − 1] such that Ti = W , among all the reversed
prefixes of T that end at the last position of a factor. As described in Sect. 2.2,
this data structure takes O(z) words of space.

We encode sequence p1, p2, . . . , pz implicitly, as follows: we use a bitvector
last[1..n] such that last[i] = 1 iff SAT [i] = n − pj + 2 for some j ∈ [1..z],
i.e. iff SAT [i] is the last position of a factor. We represent such bitvector as a
predecessor data structure with partial ranks, using O(z) words of space [19].
Then, we build the data structure described in Lemma2, where V ′ is the set of
loci in STT of all factors of T . This data structure takes O(z) words of space, and
together with last, RLBWTT and RLBWTT , it is the output of our construction.

Given a pattern P ∈ [0..σ]m, we first perform a backward search in RLBWTT

to determine the number of occurrences of P in T : if this number is zero, we stop.
During this backward search, we store in a table the interval [ik..jk] of P [k..m]
in BWTT for every k ∈ [2..m]. Then, we compute the interval [i′k−1..j

′
k−1] of

P [1..k − 1] in BWTT for every k ∈ [2..m], using backward search in RLBWTT : if
rank1(last, j′

k−1)−rank1(last, i′k−1−1) = 0, then P [1..k−1] never ends at the

34 D. Belazzougui et al.

last position of a factor, and we can discard this value of k. Otherwise, we convert
[i′k−1..j

′
k−1] to the interval [rank1(last, i′k−1) + 1..rank1(last, j′

k−1)] of all the
reversed prefixes of T that end at the last position of a factor. Rank operations
on last can be implemented in O(log log n) time using predecessor queries. We
get the lexicographic interval of P [k..m] in the list of all the distinct factors of T
using operation I(P [k..m], V ′), in O(log z) time. We use such intervals to query
the four-sided range reporting data structure. ��
The algorithm described in Lemma 3 can be engineered in a number of ways
in practice. Here we just apply it to the LZ factorization of T to find all the
primary occurrences of P in T , and we use the strategy described in Sect. 2.2 to
compute secondary occurrences, obtaining the key result of this section:

Theorem 3. Let T ∈ [1..σ]n−1# be a string, and let T = T1T2 . . . Tz be its LZ
factorization. There is a data structure that takes O(z + rT + rT) words of space
and that reports all the pocc primary occurrences and all the socc secondary
occurrences of a pattern P ∈ [0..σ]m in O(m(log log n + log z) + pocc logε z +
socc log log n) time.

4 Combining Runs in BWT and Maximal Repeats

An alternative way to compute all the occurrences of a pattern in a string T
consists in combining RLBWTT with CDAWGT , using an amount of space pro-
portional to the number of right extensions of the maximal repeats of T :

Theorem 4. Let T ∈ [1..σ]n−1# be a string. There is a data structure that
takes O(eT) words of space (or alternatively, O(e�

T) words of space) and that
reports all the occ occurrences of a pattern P ∈ [0..σ]m in O(m log log n + occ)
time.

Proof. We build RLBWTT and CDAWGT . For every node v in the CDAWG, we
store |�(v)| in a variable v.length. Recall that an arc (v, w) of the CDAWG
means that maximal repeat �(w) can be obtained by extending maximal repeat
�(v) to the right and to the left. Thus, for every arc γ = (v, w) of CDAWGT , we
store the first character of �(γ) in a variable γ.char, and we store the length of
the right extension implied by γ in a variable γ.right. The length γ.left of the
left extension implied by γ can be computed by w.length−v.length−γ.right.
Clearly arcs of CDAWGT that correspond to edges of STT in set Er

T induce no left
extension. For every arc of CDAWGT that connects a maximal repeat W to the
sink, we store just γ.char and the starting position γ.pos of string W ·γ.char in
T . The total space used by the CDAWG is clearly O(e) words, and by Theorem1
the space used by RLBWTT is O(|Fr

T |) words. An alternative construction could
use CDAWGT and RLBWTT .

We use the RLBWT to count the number of occurrences of P in T in
O(m log log n) time: if this number is greater than zero, we use the CDAWG
to report all the occ occurrences of P in T in O(occ) time, using the technique

Composite Repetition-Aware Data Structures 35

sketched in [5]. Specifically, since we know that P occurs in T , we perform a
blind search for P in the CDAWG, as is typically done with Patricia trees. We
keep a variable i, initialized to zero, that stores the length of the prefix of P
that we have matched so far, and we keep a variable j, initialized to one, that
stores the starting position of P inside the last maximal repeat encountered dur-
ing the search. For every node v in the CDAWG, we choose the arc γ such that
γ.char = P [i+1] in constant time using hashing, we increment i by γ.right, and
we increment j by γ.left. If the search leads to the sink by an arc γ, we report
γ.pos+ j and we stop. If the search leads to a node v that is associated with the
maximal repeat W , we determine all the occurrences of W in T by performing a
depth-first traversal of all the nodes in the CDAWG that are reachable from v,
updating variables i and j as described above, and reporting γ.pos+ j for every
arc γ that leads to the sink. The total number of nodes and arcs reachable from
v is clearly O(occ). ��
The combination of CDAWGT and RLBWTT can also be used to implement a
repetition-aware representation of STT . We will apply the following property to
support operations on STT :

Property 1. A maximal repeat W = [1..σ]m of T is the equivalence class of all
the right-maximal strings {W [1..m], . . . ,W [k..m]} such that W [k +1..m] is left-
maximal, and W [i..m] is not left-maximal for all i ∈ [2..k]. Equivalently, the node
v′ of CDAWGT with �(v′) = W is the equivalence class of the nodes {v1, . . . , vk}
of STT such that �(vi) = W [i..m] for all i ∈ [1..k], and such that vk, vk−1, . . . , v1
is a maximal unary path of Weiner links.

Thus, the set of right-maximal strings that belong to the equivalence class of a
maximal repeat can be represented by a single integer k, and a right-maximal
string can be identified by the maximal repeat W it belongs to, and by the
length of the corresponding suffix of W . In BWTT , the right-maximal strings in
the same equivalence class enjoy the following additional properties:

Property 2. Let {W [1..m], . . . ,W [k..m]} be the right-maximal strings that
belong to the equivalence class of maximal repeat W ∈ [1..σ]m, and let
range(W [i..m]) = [pi..qi] for i ∈ [1..k]. Then:

1. |qi − pi + 1| = |qj − pj + 1| for all i and j in [1..k].
2. BWTT [pi..qi] = W [i − 1]qi−pi+1 for i ∈ [2..k]. Conversely, BWTT [p1..q1] con-

tains at least two distinct characters.
3. pi−1 = C[c] + rankc(BWTT , pi) and qi−1 = pi−1 + qi − pi for i ∈ [2..k], where

c = W [i − 1] = BWTT [pi].
4. pi+1 = selectc(BWTT , pi − C[c]) and qi+1 = pi+1 + qi − pi for i ∈ [1..k − 1],

where c = W [i] is the character that satisfies C[c] < pi ≤ C[c + 1]. This can
be computed in O(log log n) time using a predecessor data structure that uses
O(σ) words of space [19].

5. Let c ∈ [0..σ], and let range(W [i..m]c) = [xi..yi] for i ∈ [1..k]. Then, xi =
pi + x1 − p1 and yi = pi + y1 − p1.

36 D. Belazzougui et al.

Table 1. Time complexities of two representations of STT : with intervals in BWTT

(row 1) and without intervals in BWTT (row 2).

stringDepth isAncestor parent child suffixLink weinerLink edgeChar nLeaves

locateLeaf nextSibling firstChild

1 O(1) O(1) O(log log n) O(1) O(log log n) O(log log n) O(log log n) O(1)

2 O(1) O(log log n) O(1) O(1)

The final property we will exploit relates the equivalence class of a maximal
repeat to the equivalence classes of its in-neighbors in the CDAWG:

Property 3. Let w be a node in CDAWGT with �(w) = W ∈ [1..σ]m, and let
Sw = {W [1..m], . . . , W [k..m]} be the right-maximal strings that belong to
the equivalence class of node w. Let {v1, . . . , vt} be the in-neighbors of w in
CDAWGT , and let {V 1, . . . , V t} be their labels. Then, Sw is partitioned into t
disjoint sets S1

w, . . . ,St
w such that Si

w = {W [xi +1..m],W [xi +2..m], . . . , W [xi +
|Svi |..m]}, and the right-maximal string V i[p..|V i|] labels the parent of the locus
of the right-maximal string W [xi + p..m] in STT .

Proof. It is clear that the parent in STT of every right-maximal string in the
equivalence class of node w belongs to the equivalence class of an in-neighbor of
w: we focus here just on showing that the in-neighbors of w induce a partition on
the equivalence class of w. Assume that the character that labels arc γ = (vi, w)
in the CDAWG is c. Since arc γ exists, we can factorize W as XiV iY i, where
Y i[1] = c, and we know that no prefix of V iY i longer than V i is right-maximal,
and that no suffix of W longer than |V iY i| is left-maximal. Consider any suf-
fix V i[p..|V i|] of V i that belongs to the equivalence class of V i: if p > 1, then
W [|Xi|+p..m] is not left-maximal, thus W [|Xi|+p..m] belongs to the equivalence
class of W . Its prefix V i[p..|V i|] is right-maximal, and no longer prefix is right-
maximal. Indeed, assume that string V i[p..|V i|]Zi is right-maximal for some
prefix Zi of Y i. Since V i[p..|V i|] is not left-maximal, then string V i[p..|V i|]Zi

is not left-maximal either, and this implies that V iZi is right-maximal, contra-
dicting the hypothesis. Thus, string V i[p..|V i|] labels the parent of the locus of
string W [|Xi| + p..m] in STT . If p = 1 and V iY i is not left-maximal, the same
argument applies. If V iY i is left-maximal, then W = V iY i, and since no right-
maximal prefix of W longer than V i exists, we have that V i labels the parent of
the locus of W in STT . ��
Combining Properties 1, 2 and 3, we obtain the following results:

Theorem 5. Let T ∈ [1..σ]n−1# be a string. There are two implementations of
STT that take O(eT + e�

T) words of space each, and that support the operations
in Table 1 with the specified time complexities.

Proof. We build RLBWTT and CDAWGT , and we annotate the latter as described
in Theorem 4, with the only difference that arcs that connect a maximal repeat
to the sink are annotated with character and length like all other arcs. We store

Composite Repetition-Aware Data Structures 37

in every node v of the CDAWG the number v.size of right-maximal strings that
belong to its equivalence class, the interval [v.first..v.last] of �(v) in BWTT ,
a linear-space predecessor data structure [19] on the boundaries induced on the
equivalence class of v by its in-neighbors (see Observation 3), and pointers to
the in-neighbor that corresponds to the interval associated with each boundary.
Finally, we add to the CDAWG all suffix links (v, w) from STT such that both
v and w are maximal repeats, and the corresponding explicit Weiner links.

We represent a node v of STT as a tuple id(v) = (v′, |�(v)|, i, j), where v′ is the
node in CDAWGT that corresponds to the equivalence class of v, and [i..j] is the
interval of �(v) in BWTT . Thus, operation stringDepth can be implemented in
constant time, and if v is a leaf, the second component of id(v) is its starting posi-
tion in T . Operation isAncestor can be implemented by testing the containment
of the corresponding intervals in BWTT . To implement operation suffixLink,
we first check whether |�(v)| = v′.length − v′.size + 1: if so, we take the suffix
link (v′, w′) from v′ and we return (w′, w′.length, w′.first, w′.last). Otherwise,
we return (v′, |�(v)| − 1, i′, j′), where [i′..j′] is computed as described in point 2 of
Property 2. To implement weinerLink for some character c, we first check whether
|�(v)| = v′.length: if so, we take the Weiner link (v′, w′) from v′ labeled by char-
acter c (if any), and we return (w′, w′.length − w′.size + 1, i′, j′), where [i′..j′]
is computed by taking a backward step with character c from [v′.first..v′.last].
Otherwise, we check whether BWTT [i] = c: if so, we return (v′, |�(v)| + 1, i′, j′),
where [i′..j′] is computed as described in point 2 of Property 2.

To implement child for some character c, we follow the arc γ = (v′, w′) in
the CDAWG labeled by c (see Observation 3), and we return tuple (w′, |�(v)| +
γ.right, i′, j′), where [i′..j′] is computed as described in point 2 of Property 2.
To implement parent we exploit Property 2, i.e. we determine the partition of
the equivalence class of v′ that contains v by searching the predecessor of value
|�(v)| in the set of boundaries of v′: this can be done in O(log log n) time [19].
Let γ = (u′, v′) be the arc that connects to v′ the in-neighbor u′ associated with
the partition that contains v: we return tuple (u′, |�(v)| − γ.right, i′, j′), where
i′ = i − v′.first+ u′.first and j′ = j + u′.last− v′.last as described in point
2 of Property 2. Operation nextSibling can be implemented in the same way.

We read the label of an edge γ of STT in O(log log n) time per character (oper-
ation edgeChar), by storing RLBWTT and the interval in BWTT of the reverse of
the maximal repeat that corresponds to every node of the CDAWG. By removing
from id(v) the interval of �(v) in BWTT , we can implement stringDepth, child,
firstChild and suffixLink in constant time, and parent and nextSibling in
O(log log n) time. ��
Corollary 1. Let T ∈ [1..σ]n−1# be a string. There is an implementation of
STT that takes O(eT + e�

T) words of space, that computes the matching statistics
of a pattern S ∈ [1..σ]m with respect to T in O(m log log n) time, and that can
be traversed in O(n log log n) time and in a constant number of words of space.

Proof. We combine the implementation in the first row of Table 1 with the folklore
algorithm for matching statistics, that issues suffixLink and child operations

38 D. Belazzougui et al.

on STT , and that reads the label of some edges of STT . For traversal, we combine
the implementation in the second row of Table 1 with the folklore algorithm that
issues just firstChild, parent and nextSibling operations. ��
By storing RLBWTT in addition to RLBWTT , and by adding to id(v) the interval
of �(v) in BWTT , we can also implement a bidirectional index on T like those
described in [2], that supports the left and right extension of a string with any
character in O(log log n) time and that takes O(e + e�) words of space.

References

1. Arroyuelo, D., Navarro, G., Sadakane, K.: Stronger Lempel-Ziv based compressed
text indexing. Algorithmica 62(1–2), 54–101 (2012)

2. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct rep-
resentations of the bidirectional burrows-wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013)

3. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

4. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proceedings of SoCG, pp. 1–10 (2011)

5. Crochemore, M., Hancart, C.: Automata for matching patterns. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 399–462. Springer,
Heidelberg (1997)

6. Crochemore, M., Vérin, R.: Direct construction of compact directed acyclic word
graphs. In: Apostolico, A., Hein, J. (eds.) Proceedings of CPM. LNCS, vol. 1264,
pp. 116–129. Springer, Heidelberg (1997)

7. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

8. P. Ferragina and G. Navarro. Pizza&Chili repetitive corpus. http://pizzachili.dcc.
uchile.cl/repcorpus.html. Accessed on 25 January 2015

9. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014)

10. Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In: Proceedings of WSP, pp. 141–155 (1996)

11. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013)

12. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Info. Theory
22(1), 75–81 (1976)

13. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding. In:
Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp.
45–56. Springer, Heidelberg (2005)

14. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

15. Radoszewski, J., Rytter, W.: On the structure of compacted subword graphs of
ThueMorse words and their applications. J. Discret. Algorithms 11, 15–24 (2012)

16. Raffinot, M.: On maximal repeats in strings. Inform. Process. Lett. 80(3), 165–169
(2001)

http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html

Composite Repetition-Aware Data Structures 39

17. Rytter, W.: The structure of subword graphs and suffix trees of Fibonacci words.
Theoret. Comput. Sci. 363(2), 211–223 (2006)

18. Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-length compressed indexes
are superior for highly repetitive sequence collections. In: Amir, A., Turpin, A.,
Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 164–175. Springer, Heidelberg
(2008)

19. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(N).
Inform. Process. Lett. 17(2), 81–84 (1983)

20. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Info. Theory 23(3), 337–343 (1977)

	Composite Repetition-Aware Data Structures
	1 Introduction
	2 Preliminaries
	2.1 Relationships Among Maximal Repeats, Runs in BWT, and LZ Factors
	2.2 Repetition-Aware Data Structures

	3 Combining Runs in BWT and LZ Factors
	4 Combining Runs in BWT and Maximal Repeats
	References

