
Greedy Conjecture for Strings of Length 4

Alexander S. Kulikov1(B), Sergey Savinov2, and Evgeniy Sluzhaev1,2

1 St. Petersburg Department of Steklov Institute of Mathematics,
Saint Petersburg, Russia

kulikov@logic.pdmi.ras.ru
2 St. Petersburg Academic University, Saint Petersburg, Russia

Abstract. In this short note, we prove that the greedy conjecture for
the shortest common superstring problem is true for strings of length 4.

1 Introduction

In the shortest common superstring (SCS) problem one is given a set S =
{s1, . . . , sn} of n strings and the goal is to find a shortest string s such that
each si is a substring of s. This is a well-known problem having applications in
such areas as genome assembly and data compression.

The problem is known to be NP-hard [10] (even if the input strings have
length 3 or if the alphabet is binary [2]) and APX-hard [12]. The fastest known
exact solutions just reduce the problem to the Travelling salesman problem and
have running time (

∑n
i=1 |si|)O(1)2n [1,6–8]. The currently best known approx-

imation ratio is 211
23 [11]. Better upper bounds are known for special cases when

input strings have bounded length [4,5]. A recent survey of known results (both
practical and theoretical) is given in [3].

The well known greedy conjecture states that the following extremely simple
greedy algorithm has approximation ratio 2 [14]: find two strings with longest
mutual overlap and merge them into one string, repeat the process till only one
string is left. This intriguing conjecture is open for more than 25 years already.
There is a partial progress however: it is known that the conjecture is true for
some orders in which the input strings are merged by the greedy algorithm [9,15].

In this short note, we consider another special case. We prove that the
greedy conjecture is true if the input strings have length 4. (While for strings of
length 3 the conjecture follows from the fact that the greedy algorithm achieves
2-approximation of the compression measure [13].) We do this by a careful analy-
sis of possible overlaps produced by the greedy algorithm.

2 Preliminaries

An overlap ov(a, b) of two strings a and b is defined as the longest suffix of a
which is also a prefix of b.

Let S = {s1, . . . , sn} be a set of pairwise different 4-strings where by an
r-string we denote just a string of length exactly r. Denote by sopt and sgr an
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 307–315, 2015.
DOI: 10.1007/978-3-319-19929-0 26

308 A.S. Kulikov et al.

optimal solution and a greedy solution for S, respectively. Our goal is thus to
show that

|sgr| ≤ 2 · |sopt| . (1)

For technical reasons, we assume in this paper that in case of ties the greedy
algorithm prefers strings of the form aaaa for a ∈ Σ.

Let π = (π1, . . . , πn) be a permutation of {1, . . . , n}. By overlapping n input
strings in this particular order one gets a superstring of length

n∑

i=1

|si| −
n−1∑

i=1

| ov(sπi
, sπi+1)| . (2)

The second term in the expression above is called a compression of S with
respect to π. Thus, an equivalent reformulation of SCS is the following: find an
order of n input strings that maximizes the compression. By copt and cgr we
denote the compression of the optimal solution sopt and the greedy solution sgr,
respectively. By combining (1) with (2) we get an equivalent reformulation of
what we need to prove:

4n − cgr ≤ 2 · (4n − copt) . (3)

For a string t of length at most 3, let #opt(t) and #gr(t) be the number of
overlaps that are equal to t in sopt and sgr, respectively. Similarly, let #opt

i and
#gr

i be the number of overlaps of length exactly i. Then (3) is equivalent to

4n − #gr
1 − 2#gr

2 − 3#gr
3 ≤ 2 · (4n − #opt

1 − 2#opt
2 − 3#opt

3) (4)

or
2#opt

1 + 4#opt
2 + 6#opt

3 ≤ 4n + #gr
1 + 2#gr

2 + 3#gr
3 . (5)

Since #opt
1 + #opt

2 + #opt
3 ≤ n it suffices to prove that

2#opt
3 ≤ 3#gr

3 + 2#gr
2 + #gr

1 . (6)

Let Sgr
3 be the set of strings at the point of time when the greedy algorithm

already merged all pairs of strings whose overlap is 3 and there is no more
overlaps of length 3 left. In the following lemma we show that the number of
overlaps equal to a 3-string t in the greedy solution cannot be much smaller than
that of the optimal solution.

Lemma 1. For any 3-string t, #gr(t) ≥ #opt(t) − 1. Moreover, if #gr(t) =
#opt(t) − 1 then Sgr

3 contains a string with prefix t and suffix t.

Proof. Assume, for the sake of contradiction, that #gr(t) ≤ #opt(t) − 2. The
optimal solution contains #opt(t) overlaps equal to t and hence among the input
n strings there are at least #opt(t) strings whose prefix is t and at least #opt(t)
strings whose suffix is t. Now consider the set Sgr

3 . Since #gr(t) ≤ #opt(t)−2, we
conclude that Sgr

3 contains at least two strings whose suffix is t and at least two
strings whose prefix is t. Hence there are two different strings in this set whose
overlap is t which contradicts to the fact that there are no more 3-overlaps. ��

Greedy Conjecture for Strings of Length 4 309

In the following the strings from Sgr
3 are called blocks. For a 3-string t, we say

that a block is t-bad if its suffix and its prefix are equal to t and moreover
#gr(t) = #opt(t) − 1. We call a block bad if it is t-bad for a 3-string t and
good otherwise. Let #bad and #good be the number of overlaps in all bad and
good blocks, respectively. Then clearly #bad + #good = #gr

3 (recall that all the
overlaps inside the blocks have length 3).

Note that if there are no bad blocks then already Lemma 1 is sufficient to
prove (6): in this case, #gr(t) ≥ #opt(t) and therefore #gr

3 ≥ #opt
3 .

Next, we consider bad blocks of fixed length: for a 3-string t, let

χ=i(t) = [Sgr
3 contains a t−bad block of length exactly i].

(throughout the paper, we use the standard Iverson brackets: [P] is equal to 1
if P is true and is equal to 0 otherwise). Further, let

χ=i =
∑

|t|=3

χ=i(t) .

Functions χ>i(t), χ≥i(t), χ>i, and χ≥i are defined in a similar fashion.
Note that χ=4 = 0. Indeed a bad block of length 4 must have a form aaaa.

Also, #opt(aaaa) > 0 and hence S contains another string starting or ending
with aaa. But then the greedy algorithm must merge these two strings (as it
prefers strings of the form aaaa). Hence for any 3-string t, χ≥5(t) is exactly the
number of t-bad blocks.

Lemma 2. For any 3-string t,

min{#gr(t),#opt(t)} + χ≥5(t) = #opt(t) .

Proof. Consider the following two cases:

1. #gr(t) ≥ #opt(t), then min{#gr(t),#opt(t)} = #opt(t) and χ≥5(t) = 0.
2. #gr(t) < #opt(t), then by Lemma 1, min{#gr(t),#opt(t)} = #opt(t) − 1.

There is at least one block starting with t and ending with t. Moreover there
cannot be two different such blocks as otherwise the greedy algorithm would
merge them. Therefore, there is exactly one t-bad block, i.e., χ≥5(t) = 1. ��

By summing up the equality from Lemma 2 over all strings t of length 3 we get
the following corollary.

Corollary 1. ∑

|t|=3

min{#gr(t),#opt(t)} + χ≥5 = #opt
3 .

Assume now that χ=5 = 0. Then due to the fact that a bad block of length
exactly i contains i − 4 overlaps we have that 2χ>5 ≤ #gr

3 . By adding twice the∑

|t|=3

min{#gr(t),#opt(t)} to both sides of this inequality and applying

Corollary 1 we get

310 A.S. Kulikov et al.

2#opt
3 ≤ #gr

3 + 2
∑

|t|=3

min{#gr(t),#opt(t)} ≤ 3#gr
3 ,

which implies (6).
Hence the most tricky case is when there are bad blocks of length 5. The rest

of the paper is devoted to the analysis of this case. Note that such blocks have
the form ababa (for different letters a, b ∈ Σ) and therefore these are aba-bad
blocks. To analyze such blocks carefully we introduce the following definitions.
For a 3-string t and 1 ≤ i ≤ 5, Bi(t) = 0 if either t is not of the form aba, or t
is of the form aba and there is no block ababa. In the remaining case (i.e., t is
of the form aba and there is a block ababa) Bi’s are defined as follows:

B1(aba) = [#gr(bab) > #opt(bab)],
B2(aba) = [there exists a block with prefix ba or suffix ab],
B3(aba) = [there exists a block except ababa with prefix ab or suffix ba],
B4(aba) = [there exists a good block of length at least 5

containing aba or bab as a proper substring],
B5(aba) = [B2(aba) = 0 and B3(aba) = 0 and there exists a bad block of

length at least 7 containing aba or bab as substring].

Further, let for 1 ≤ i ≤ 5, Bi =
∑

|t|=3

Bi(t).

Now we show Bi’s provide an upper bound for the number of bad blocks of
length exactly 5.

Lemma 3. χ=5 ≤
5∑

i=1

Bi.

Proof. Note that if 3-string t is not of the form aba then χ=5(t) = 0 so the string
t contributes nothing to the left-hand side of the inequality. We now focus on
3-strings t of the form aba. It is sufficient to prove the following inequality:

χ=5(aba) ≤
5∑

i=1

Bi(aba) (7)

Assume that χ=5(aba) = 1 and B1(aba) = 0 as otherwise the inequality holds
for trivial reasons. From B1(aba) = 0 and Lemma 1 we have that #opt(bab)−1 ≤
#gr(bab) ≤ #opt(bab). Since #gr(bab) > 0 (because Sgr

3 contains the block
ababa by definition of χ=5(aba)) we have that #opt(bab) > 0, i.e. the optimal
solution has at least one overlap of the form bab. Depending of the location of
this overlap in the optimal string we consider the following cases:

1. The overlap bab in the optimal solution is contained as a substring of ababa.
Since #opt(aba) > 0, S contains at least one string except abab and baba
containing aba as substring.

2. The overlap bab in the optimal solution is not in ababa. Hence S contains at
least one string except abab and baba containing bab.

Greedy Conjecture for Strings of Length 4 311

So in both cases there exists a string in S except abab and baba that contains
t′ = aba or t′ = bab. This string is contained by some block r ∈ Sgr

3 and besides
r �= ababa and r �= babab. Consider the following cases:

1. r is a good block. Then B4(aba) > 0 if t′ is a proper substring of r and
B2(aba) + B3(aba) > 0 otherwise. Therefore (7) holds.

2. r is a bad block of length 5. Then this block has a form ababa or babab,
a contradiction.

3. r is a bad block of length 6. If t′ is a prefix or a suffix of r then B2(aba) +
B3(aba) > 0. Otherwise either r = r1t′

1t
′
2t

′
1r5r6 or r = r1r2t′

1t
′
2t

′
1r6 where

t′ = t′
1t

′
2t

′
3. Since r is a bad block either t′

1t
′
1t

′
2t

′
1t

′
1t

′
2 or t′

2t
′
1t

′
1t

′
2t

′
1t

′
1.

Finally, since either t′ = aba or t′ = bab in both these cases r has a prefix or
a suffix ab or ba. Then B2(aba) + B3(aba) > 0 and (7) holds.

4. r is a bad block of length at least 7. Then B5(aba) > 0 and (7) holds. ��

3 The Proof of the Main Theorem

In this section we prove the main result of this note: we first state auxiliary
lemmas providing upper bounds on Bi’s, then show how these lemmas imply the
main result of the paper, and then provide the proofs of all the lemmas.

Lemma 4. B1 +
∑

|t|=3

min{#gr(t),#opt(t)} ≤ #gr
3 .

Lemma 5. B2 ≤ #gr
2 .

Lemma 6. B3 ≤ #gr
1 + #gr

2 .

Lemma 7. B4 ≤ #good.

Lemma 8. B5 + 2χ>5 + χ=5 ≤ #bad.

Theorem 1. The greedy algorithm for strings of length 4 that prefers strings of
the form aaaa in case of ties is 2-approximate.

Proof. By adding the inequalities from Lemmas 5–8 to twice the inequality from
Lemma 4 and applying equality #bad + #good = #gr

3 one gets

2B1 + B2 + B3 + B4 + B5 + 2χ>5 + χ=5 + 2
∑

|t|=3

min{#gr(t),#opt(t)} ≤

3#gr
3 + 2#gr

2 + #gr
1 .

By further adding the inequality from Lemma3 we get

2
∑

|t|=3

min{#gr(t),#opt(t)} + 2χ>5 + 2χ=5 + B1 ≤ 3#gr
3 + 2#gr

2 + #gr
1 .

Finally, applying Corollary 1 we get

2#opt
3 + B1 ≤ 3#gr

3 + 2#gr
2 + #gr

1

which implies (6). ��

312 A.S. Kulikov et al.

Proof (of Lemma 4). We have

B1 +
∑

|t|=3

min{#gr(t),#opt(t)} =
∑

|t|=3

(B1(t) + min{#gr(t),#opt(t)})

=
∑

t�=aba

(B1(t) + min{#gr(t),#opt(t)}) +
∑

a,b∈Σ

(B1(aba) + B1(bab)

+ min{#gr(aba),#opt(aba)} + min{#gr(bab),#opt(bab)})

To prove this lemma, we consider the following cases:

Case 1. If t �= aba then B1(t) = 0 and hence

B1(t) + min{#gr(t),#opt(t)} ≤ #gr(t) .

Case 2. If t = aba and B1(aba) + B1(bab) = 0 then

B1(aba) + B1(bab)+ min{#gr(aba),#opt(aba)}
+ min{#gr(bab),#opt(bab))} ≤ #gr(aba) + #gr(bab)

Case 3. If t = aba and B1(aba) = 1 then B1(bab) = 0 and, by definition of B1,
#gr(bab) > #opt(bab). Hence

B1(aba) + B1(bab) + min{#gr(aba),#opt(aba)} + min{#gr(bab),#opt(bab)}
= 1 + min{#gr(aba),#opt(aba)} + min{#gr(bab),#opt(bab)}

≤ 1 + #gr(aba) + #opt(bab)
≤ 1 + #gr(aba) + #gr(bab) − 1 = #gr(aba) + #gr(bab)

Case 4. If t = aba and B1(bab) = 1. This case is similar to Case 3. ��
Proof (of Lemma 5). We show that B2 ≤ #gr

2 . If B2(t) > 0 then t is of the form
aba and there exists a block with prefix ba or suffix ab. Since B2(t) > 0 there
exists a pair of blocks: ababa and a block with a 2-prefix ba or a 2-suffix ab. Note
that for different strings t these pairs of blocks do not intersect and cannot be
merged with 2-overlaps because the sets {a, b} are different. Note that at least
one block in this pair must be merged with 2-overlap with some block otherwise
this pair of blocks must be merged by the greedy algorithm. Thus

∑

t
B2(t) < #gr

2

��
For Lemma 6 we need the following auxiliary definitions. Let Pref(a, b) = ∅ if
there is no block ababa and the set of blocks with prefix ab otherwise. Similarly,
let Suff(a, b) = ∅ if there is no block ababa and the set of blocks with suffix ba
otherwise. Then it is easy to see that:

(a �= a′ ∨ b �= b′) ⇒ (Pref(a, b) ∩ Pref(a′, b′) = ∅ ∧ Suff(a, b) ∩ Suff(a′, b′) = ∅)

Let
Pref(a) =

⋃

b∈Σ

Pref(a, b) and Suff(a) =
⋃

b∈Σ

Suff(a, b) .

Greedy Conjecture for Strings of Length 4 313

Lemma 9. If a �= c then the set of 1- and 2-suffixes of strings from Suff(a) does
not intersect the set of 1- and 2-prefixes of strings from Pref(c).

Proof. All 1-suffixes of strings from Suff(a) are equal to a while all 1-prefixes of
strings from Pref(c) are equal to c, hence they do not intersect.

Assume that 2-suffix of b1 ∈ Suff(a) equals to 2-prefix of block b2 ∈ Pref(c).
2-suffix of block b1 has the form xa and 2-prefix of b2 has the form cy so x =
c, y = a. Hence b1 has form acaca and b2 has form cacac, a contradiction. ��
Proof (of Lemma 6). B3(t) > 0 only for t = aba: B3 =

∑

t
B3(t) =

∑

a

∑

b

B3(aba).

By Lemma 9 one can form sets Xa
1 of 1-overlaps of strings from Suff(a) and

Pref(a) counted in #gr
1 . The lemma guarantees that these sets are disjoint. Sim-

ilarly we can form sets Xa
2 from 2-overlaps of strings from Suff(a) and Pref(a).

Hence ∑

a

|Xa
1 | ≤ #gr

1 and
∑

a

|Xa
2 | ≤ #gr

2 . (8)

Since for each nonzero χ=5(aba) there exists a block ababa we have, for each a,
∑

b

B3(aba) ≤ min{|Pref(a)|, |Suff(a)|} . (9)

Since for each block ababa with B3(aba) > 0 there exists by definition a string
with prefix ab or suffix ba, we have:

∑

b

B3(aba) < max{|Pref(a)|, |Suff(a)|} . (10)

Assume that |Pref(a)| ≤ |Suff(a)| (the opposite case is symmetric). Let us
show that

|Xa
1 | + |Xa

2 | ≥
∑

b

B3(aba) . (11)

For this, assume the contrary. It follows from (9) and (10) that

|Xa
1 | + |Xa

2 | ≤ |Pref(a)| − 1 and |Xa
1 | + |Xa

2 | ≤ |Suff(a)| − 2 .

Hence there exists at least one block from Pref(a) whose prefix is not used
in overlaps and there exist at least two blocks from Suff(a) whose suffixes are
not used in overlaps. But this prefix can be merged with one of these suffixes,
a contradiction establishing (11).

Finally, by summing (11) for all a and applying (8) we get the required
inequality:

∑

a∈Σ

∑

b∈Σ

B3(aba) ≤
∑

a

(|Xa
1 | + |Xa

2 |) ≤ #gr
1 + #gr

2 . ��

314 A.S. Kulikov et al.

Proof (of Lemma 7). If for some a, b ∈ Σ, B4(aba) + B4(bab) = 1, then either
aba or bab is contained by a good block as a proper substring, so there exists at
least one overlap by t in a good block. Hence

B4 =
∑

|t|=3

B4(t) ≤ #good . ��
Proof (of Lemma 8). Let #i

bad be the number of overlaps in bad blocks of
length i.

Let Bi
5(t) = [i ≥ 7 ∧ t = aba ∧ B2(t) = B3(t) = 0 ∧ there exists a block ababa

and a bad-block of length i which contains aba or bab as a proper substring]
By definition,

B5(t) ≤
∑

i≥7

Bi
5(t)

Since there are two 3-overlaps in bad blocks of length 6, 2χ=6 = #6
bad.

Consider bad blocks of length i ≥ 7. Each such block contains i − 4
3-overlaps. Note that overlaps aba or bab that are counted in Bi

5(aba) cannot
be neighbouring as otherwise Bi

5 would contain blocks ababa and babab (while
this is only possible if the initial set S contains equal strings).

Let aba be the first overlap in a block. Then this block has prefix cab for
c ∈ Σ. Its suffix also equals cab since this is a bad block. But in this case
B2(aba) > 0 and then B5(aba) = 0, a contradiction. A similar contradiction
arises if aba is the last overlap in a block. Thus, for i ≥ 7 we have:

Bi
5 =

∑

s

Bi
5(s) ≤ χ>5 ·

⌈
i − 6

2

⌉

≤ χ>5 · (i − 6) .

Then
2χi

>5 + Bi
5 ≤ 2χ>5 + χ>5 · (i − 6) = χ>5 · (i − 4) ≤ #i

bad .

Finally, we have:

2χ>5 + χ=5 + B5 ≤ χ=5 + 2χ=6 +
∑

i≥7

(2χ=i + Bi
5)

≤ #5
bad + #6

bad +
∑

i≥7

#i
bad = #bad .

��

4 Conclusion

We have proved that the greedy conjecture for the shortest common super-
string problem is true for strings of length 4. Extending the proof to the case of
5-strings seems to be even more tedious. At the same time resolving such special
cases does not seem to help to resolve the general case.

Acknowledgments. Research is partially supported by theGovernment of the Russian
Federation (grant 14.Z50.31.0030) and Grant of the President of the Russian Federation
(MK-6550.2015.1).

Greedy Conjecture for Strings of Length 4 315

References

1. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM (J.ACM) 9(1), 61–63 (1962)

2. Gallant, J., Maier, D., Storer, J.: On finding minimal length superstrings. J. Com-
put. Syst. Sci. 20(1), 50–58 (1980)

3. Gevezes, T., Pitsoulis, L.: The shortest superstring problem. In: Rassias, T.M.,
Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering–
In Honor of the 60th Birthday of Panos M. Pardalos, pp. 189–227. Springer,
New York (2014)

4. Golovnev, A., Kulikov, A.S., Mihajlin, I.: Approximating shortest superstring prob-
lem using de bruijn graphs. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS,
vol. 7922, pp. 120–129. Springer, Heidelberg (2013)

5. Golovnev, A., Kulikov, A.S., Mihajlin, I.: Solving SCS for bounded length strings
in fewer than 2n steps. Inf. Process. Lett. 114(8), 421–425 (2014)

6. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

7. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Oper. Res. Lett. 1(2), 49–51 (1982)

8. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling
salesman problem. In: Proceedings of the 1977 annual conference. pp. 294–300.
ACM (1977)

9. Laube, U., Weinard, M.: Conditional inequalities and the shortest common super-
string problem. Int. J. Found. Comput. Sci. 17(1), 247–247 (2006)

10. Maier, D., Storer, J.A.: A note on the complexity of the superstring problem.
Princeton University Technical report 233 (1977)

11. Mucha, M.: Lyndon words and short superstrings. In: Proceedings of the
TwentyFourth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA
2013, Society for Industrial and Applied Mathematics (2013)

12. Ott, S.: Lower bounds for approximating shortest superstrings over an alphabet
of size 2. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol.
1665, pp. 55–64. Springer, Heidelberg (1999)

13. Tarhio, J., Ukkonen, E.: A greedy algorithm for constructing shortest common
superstrings. In: Gruska, J., Rovan, B., Wiedermann, J. (eds.) MFCS 1986. LNCS,
pp. 602–610. Springer, Heidelberg (1986)

14. Turner, J.: Approximation algorithms for the shortest common superstring prob-
lem. Inf. Comput. 83(1), 1–20 (1989)

15. Weinard, M., Schnitger, G.: On the greedy superstring conjecture. In: Pandya,
P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 387–398.
Springer, Heidelberg (2003)

	Greedy Conjecture for Strings of Length 4
	1 Introduction
	2 Preliminaries
	3 The Proof of the Main Theorem
	4 Conclusion
	References

