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Abstract. We investigate the asymptotic growth of the maximal num-
ber powersα(n) of different α-powers (strings w with a period |w|/α) in
an edge-labeled unrooted tree of size n. The number of different pow-
ers in trees behaves much unlike in strings. In a previous work (CPM,
2012) it was proved that the number of different squares in a tree is
powers2(n) = Θ(n4/3). We extend this result and analyze other powers.
We show that there are phase-transition thresholds:

1. powersα(n) = Θ(n2) for α < 2;
2. powersα(n) = Θ(n4/3) for 2 ≤ α < 3;
3. powersα(n) = O(n log n) for 3 ≤ α < 4;
4. powersα(n) = Θ(n) for 4 ≤ α.

The difficult case is the third point, which follows from the fact that the
number of different cubes in a rooted tree is linear (in this case, only
cubes passing through the root are counted).

1 Introduction

Repetitions are a fundamental notion in combinatorics on words. For the first
time they were studied more than a century ago by Thue [14] in the context of
square-free strings, that is, strings that do not contain substrings of the form
W 2 = WW . Since then, α-free strings, avoiding string powers of exponent α (of
the form Wα), have been studied in many different contexts; see [13]. Another
line of research is related to strings that are rich in string powers. It has been
shown that the number of different squares in a string of length n does not
exceed 2n − Θ(log n) (see [5,7,8]); stronger bounds are known for cubes [12].

Repetitions are also considered in labeled trees and graphs. In this model,
a repetition corresponds to a sequence of labels of edges (or nodes) on a sim-
ple path. The origin of this study comes from a generalization of square-free
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strings and α-free strings, called non-repetitive colorings of graphs. A survey by
Grytczuk [6] presents several results of this kind. In particular, non-repetitive
colorings of labeled trees were considered [2]. Strings related to paths in graphs
have also been studied in the context of hypertexts [1].

Enumeration of squares in labeled trees has already been considered from
both combinatorial [4] and algorithmic point of view [9]. Our study is a contin-
uation of the results of [4], where it has been proved that the maximum number
of different squares in a labeled tree with n nodes is of the order Θ(n4/3). As our
main result we show a phase transition property: for every exponent 2 < α < 3,
a tree of n nodes may contain Ω(n4/3) string α-powers, whereas it may only
have O(n log n) powers of exponent α ≥ 3.
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Fig. 1. There are 5 different cubic substrings in this tree: a3, (ab)3, (ba)3, (aab)3,
(baa)3. Hence, powers3(T ) = 5. Note that the cube (ab)3 occurs twice; also a3 has
multiple occurrences. The most repetitive substring, a 3.5-power (ab)3.5, is marked in
the figure.

Let T be a tree whose edges are labeled with symbols from an alphabet Σ. We
denote the size of the tree, that is, the number of nodes, by |T |. A substring of T
is the sequence of labels of edges on any simple path in T . We define powersα(T )
as the number of different substrings of T which are powers of (possibly frac-
tional) exponent α; see Fig. 1. We denote powersα(n) = max|T |=n powersα(T ).
The bound powers2(n) = Θ(n4/3) has been shown in [4]. Here, we prove the
following asymptotic bounds:

α ∈ (1, 2) powersα(n) = Θ(n2)

α ∈ [2, 3) powersα(n) = Θ(n4/3)

α ∈ [3, 4) powersα(n) = O(n log n)

α ≥ 4 powersα(n) = Θ(n)

2 Preliminaries

2.1 Combinatorics of Strings

Let V be a string over an alphabet Σ. We denote its letters by V1, . . . , Vm

and its length m by |V |. By V R we denote the reverse string Vm . . . V1. For
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1 ≤ i ≤ j ≤ m a string V [i..j] = Vi . . . Vj is a substring of V . We say that a
positive integer q is a period of V if Vi = Vi+q holds for 1 ≤ i ≤ m − q. In this
case we also say that the prefix of V of length q is a period of V .

For an integer i, 1 ≤ i ≤ m, a substring V [1..i] is called a prefix of V , and
V [i..m] is called a suffix of V . A string U is a border of V if it is both a prefix
and a suffix of V . It is well known that a string of length m has a border of
length b if and only if it has a period m − b.

Fact 1 ([11]). Let B1, B2 be borders of a string V . If |B1| < |B2| ≤ 2|B1|, then
B1 and B2 have the same shortest period p, which is a divisor of |B2| − |B1|.
We say that a string V is an α-power (a power of exponent α) of a string U ,
denoted as V = Uα, if |V | = α|U | and U is a period of V . Here, α ≥ 1 may
otherwise be an arbitrary rational number. Powers of exponent α = 2 are called
squares, and powers of exponent α = 3 are called cubes. By U∗ we denote the
set of all integer powers of U . A string V is called non-primitive if V = Uk for
some string U and an integer k ≥ 2. Otherwise, V is called primitive. Primitive
strings enjoy several useful properties; see [3,13].

Fact 2 (Synchronization Property). If P is a primitive string, then it occurs
exactly twice as a substring of P 2.

Fact 3. Let p be a period of a string X and P be any substring of X of length p.
If p is the shortest period of X, then P is primitive. Conversely, if P is primitive
and p ≤ 1

2 |X|, then p is the shortest period of X.

Fact 4. Let X be a string. Suppose that an integer p is a period of a prefix Y
of X and of a suffix Z of X. If |X| ≤ |Y | + |Z| − p, then p is a period of X.

2.2 Labeled Trees

Let T be a labeled tree. If u and v are two nodes of T , then by val(u, v) we
denote the sequence of labels of edges on the path from u to v. We call val(u, v)
a substring of T and (u, v) an occurrence of the string val(u, v) in T . A rooted
tree is a tree T with one of its nodes r designated as a root. For any two nodes
u, v, by lca(u, v) we denote their lowest common ancestor in T . A substring of a
rooted tree is anchored at r if it corresponds to a path passing through r, i.e., if
it has an occurrence (u, v) such that lca(u, v) = r. A directed tree Tr is a rooted
tree with all its edges directed towards its root r. Every substring of a directed
tree corresponds to a directed path in the tree. The following fact is a simple
generalization of the upper bound of 2n on the number of squares in a string of
length n; see [5,7].

Lemma 5. A directed tree with n nodes contains at most 2n different square
substrings.

Proof. It suffices to note that there are at most two topmost occurrences of
different squares starting at each node of the tree; see [5,7,10]. ��
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3 Cubes in Rooted Trees

In this section, we show that a rooted tree T with n nodes contains O(n) different
cubes anchored at its root r.

3.1 Cube Decompositions

For a non-empty string X, (U, V ) is a cube decomposition of X3 if UV = X3

and there exist nodes u and v in T such that lca(u, v) = r, val(u, r) = U and
val(r, v) = V . A cube decomposition is called leftist if |U | ≥ |V | and rightist if
|U | ≤ |V |. Due to the following lemma, it suffices to consider cubes with a leftist
cube decomposition.

Lemma 6. In a rooted tree the numbers of different cubes with a leftist decom-
position and with a rightist decomposition are equal.

Proof. (U, V ) is a leftist cube decomposition of a cube X3 if and only if (V R, UR)
is a rightist cube decomposition of a cube Y 3 where Y = XR. ��
If |U |, |V | < 2|X|, then (U, V ) is called a balanced cube decomposition. Other-
wise, it is unbalanced. It turns out that the number of cubes with an unbalanced
decomposition is simpler to bound.

Lemma 7. A rooted tree with n nodes contains at most 2n different cubes with
a leftist unbalanced cube decomposition.

Proof. Let T be a tree rooted in r and let Tr be the corresponding directed tree.
If (U, V ) is an unbalanced leftist decomposition of a cube X3, then |U | ≥ 2|X|
and thus X2 occurs as a square substring in Tr. By Lemma 5 there are at most
2n such different squares. ��
A cube X3 is called a p-cube if X is primitive. Otherwise it is called an np-cube.
A bound on the number of np-cubes also follows from Lemma5.

Lemma 8. A rooted tree with n nodes contains at most 4n different np-cubes
with a leftist cube decomposition.

Proof. Let X3 be an np-cube with a leftist decomposition (U, V ) in a tree T
rooted at r. We have X = Y k for a primitive string Y and an integer k ≥ 2. Let
� =

⌊
3k
4

⌋
. Note that Y 2� is a proper prefix of U and thus a square in the directed

tree Tr. Consider an assignment Y 3k �→ Y 2�. Observe that a single square can be
assigned this way at most two cubes: Y 2� can be assigned to Y 4�, Y 4�+1, Y 4�+2,
or Y 4�+3, but no more than two of these exponents may be divisible by 3.

By Lemma 5 there are at most 2n different squares in the directed tree Tr.
Therefore the number of different np-cubes with a leftist cube decomposition is
bounded by 4n. ��
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3.2 Essential Cube Decompositions

Thanks to Lemmas 6–8, from now on we only consider p-cubes in T which have a
balanced leftist cube decomposition. We call such a decomposition an essential
cube decomposition. In this section, we classify such decompositions into two
types and provide a separate bound for either type.

Observation 9. Let (U, V ) be an essential cube decomposition of a p-cube X3.
Then U = XB for a non-empty string B which is a border of U (and a prefix of
X) and satisfies 1

3 |U | ≤ |B| < 1
2 |U |.

Motivated by the observation, for a string U we define

B(U) =
{
B : B is a border of U and 1

3 |U | ≤ |B| < 1
2 |U |}.

Moreover, by B′(U) we denote a set formed by the two longest strings in B(U)
(we assume B′(U) = B(U) if |B(U)| ≤ 2).

Definition 10. Let (U, V ) be an essential cube decomposition of X3 and let
U = XB. This decomposition is said to be of type 1 if B ∈ B′(U) and of type 2
otherwise.

Note that the string U and its border B uniquely determine the cube X3. Since
|B′(U)| ≤ 2, the following observation follows directly from the definition above.

Observation 11 (Type-1 Reconstruction). For every string U there are at
most two strings V such that (U, V ) is an essential decomposition of type 1 of
some cube X3 = UV .

Below we prove a similar property of type-2 decompositions. Before that, we need
to characterize them more carefully. The following lemma lists several properties
of type-2 decompositions; see also Fig. 2.

Lemma 12. Let (U, V ) be a type-2 essential decomposition of a p-cube X3. Then
there exists a primitive string P such that:

(a) |P | ≤ 1
6 |X|,

(b) X has a prefix of the form P ∗ of length at least 2|X| − |V | + |P |,
(c) X has P as a suffix, but does not have a suffix of the form P ∗ of length

|V | − |X| or more.

Proof. Let B(U) = {B0, . . . , B�} with |B0| < . . . < |B�|. Since (U, V ) is a type-2
decomposition of X, we have U = XBk for some k satisfying 0 ≤ k ≤ � − 2. In
particular, this implies � ≥ 2.

By Fact 1, all borders in B(U) share a common shortest period, whose length
in particular divides |Bi+1| − |Bi| for any i (0 ≤ i < �). We denote this period
by P . By Fact 3, P is primitive. Let p = |P | and let p′ = |B0| mod p. Moreover,
let P ′ be the prefix of P of length p′. Observe that B0 = P jP ′ for some integer
j, and in general Bi = P j+iP ′.
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X X X

P

VU

B B

2|X| − |V | + |P |

Fig. 2. Type 2 essential cube decomposition (U, V ) of a cube X. Here, B is a border
of U . Note that P is a period of B, but not a period of X or U .

(a) We have 1
3 |U | ≤ |B0| < |B�| < 1

2 |U | and |B�| − |B0| = � · p ≥ 2p. Thus,
p ≤ 1

2

(
1
2 − 1

3

) |U | = 1
12 |U |. Moreover, |U | ≤ 2|X|, and as a consequence we get

|P | = p ≤ 2
12 |X| = 1

6 |X|.
(b, c) Note that U = XBk has B� as a suffix, and B� = P �−kBk. Thus P �−k

and, in particular, P is a suffix of X. Moreover, B� is a prefix of U , so U has P j+�

as a prefix and, in particular, P is a prefix of X. Therefore, P is a border of X.
Observe that P is not a period of X. Otherwise, due to synchronization property
of primitive strings (Fact 2), X would be a power of P , which is a contradiction
with X3 being a p-cube.

Consequently, |P j+�| < |X|, so P j+� is a prefix X. Moreover, we have
|P j+�| ≥ |B�−1| ≥ |Bk| + |P | since k ≤ � − 2, and |Bk| = |U | − |X| =
3|X|−|V |−|X| = 2|X|−|V |. Thus, X indeed has a prefix Y of the form P ∗ whose
length is at least 2|X| − |V | + |P |. Now, suppose that X has a suffix Z of the
form P ∗ whose length is at least |V |− |X|. We would have |X| ≤ |Y |+ |Z|− |P |,
so Fact 4 would imply that P is a period of X, which we have already proved
impossible. ��
Lemma 13. (Type-2 Reconstruction). For every string V there is at most
one string U such that (U, V ) is an essential cube decomposition of type 2 of
some cube X3 = UV.

Proof. Suppose there is at least one string U which satisfies the assumption of
the lemma. We shall prove that U can be uniquely determined from V . Let
UV = X3 and let P be the primitive string obtained through Lemma12. Our
goal is to recover P and then X from V .

Recall that |X| < |V | ≤ 3
2 |X| by the definition of essential cube decompo-

sition. We have X = V [i..|V |] for i = |V | − |X| + 1. Additionally, let j = |X|.
Note that j − i + 1 = 2|X| − |V |, so Lemma 12(b) implies that V [i..j′] = P k for
a position j′ ≥ j and an integer exponent k. Observe that

i = |V | − |X| + 1 ≤ 1
3 |V | + 1 and j = |X| ≥ 2

3 |V |,
so p = |P | is a period of V ′ = V [

⌊
1
3 |V |⌋ + 1..

⌈
2
3 |V |⌉]. By Lemma 12(a), |P | ≤

1
6 |X| ≤ 1

6 |V | ≤ 1
2 |V ′| and P is primitive. Thus, by Fact 3, p can be uniquely

determined as the shortest period of V ′.
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Once we know p, we can easily determine P : by Lemma 12(c), P is a suffix
of X and thus a suffix of V . Hence, P = V [|V | − p + 1..|V |].

Next, we determine the smallest position i′ > 1
3 |V | where P occurs in V . This

occurrence must lie within V [i..j], so i ≡ i′ (mod p) by the synchronization
property of primitive strings (Fact 2). Let � be the largest integer such that
P � is a suffix of X. Then � is simultaneously the largest integer such that P �

is a suffix of V and the largest integer such that P � is a suffix of V [1..i − 1]
(since �p < |V | − |X| by Lemma 12(c)). The former lets us uniquely determine
�. The latter implies that �′ := � + i′−i

p is the largest integer such that P �′
is

a suffix of V [1..i′ − 1]. Since �′ is uniquely determined by V , so is i, and thus
also X = V [i..|V |]. This concludes the proof that the string U can be uniquely
determined from V . In particular, at most one such string exists. ��

3.3 The Upper Bound

Theorem 14. A rooted tree with n nodes contains O(n) cubes anchored at its
root.

Proof. Let T be a tree with n nodes rooted in r. The whole proof reduces to
proofs of the following two claims.

Claim. There are O(n) different cubes in T having a non-essential cube decom-
position.

Proof. A non-essential decomposition of a cube is rightist, leftist unbalanced or
a leftist decomposition of an np-cube. In each case, by Lemmas 6–8, there are
O(n) different cubes with such a decomposition. ��
Claim. There are O(n) different p-cubes in T having an essential cube decom-
position.

Proof. For each p-cube X3 with an essential decomposition let us fix a single such
decomposition UV and a single pair of nodes (u, v) that gives this decomposition.

If UV is a type-1 decomposition, we charge one token to the node u, otherwise
we charge one token to v. By Observation 11 and Lemma 13, each node receives
at most 3 tokens. ��
This concludes the proof of the theorem. ��

4 Powers in Trees

In this section we prove the announced bounds for powersα for α > 1.
Let Sm be a string ambam. Note that Sm can be seen as a tree with a

linear structure. Though the following fact can be treated as a folklore result,
we provide its proof for completeness.

Theorem 15. For every rational α ∈ (1, 2), we have powersα(Sm) = Ω(|Sm|2).
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Proof. Let α = 1+ x
y where x, y are coprime positive integers. For every positive

integer c ≤ m
y , we construct c(y − x) different powers of exponent α and length

cyα that occur in Sm:

aibacy−1−iacx for cx ≤ i < cy.

Note that i < cy ≤ m and cy − 1 − i + cx < cy ≤ m, so they indeed occur as
substrings of Sm. In total we obtain

∑

1≤c≤m
y

c(y − x) = Θ
(m2(y−x)

y2

)
= Θ(m2)

different α-powers. Moreover, |Sm| = Θ(m), so this implies powersα(Sm) =
Ω(|Sm|2). ��

Fig. 3. Lower bound example Tm for powers of exponent α ∈ (2, 3).

Recall that for α = 2, it has been shown that powers2(n) = Θ(n4/3) [4]. It
turns out that the same bound applies for any α ∈ (2, 3). Moreover, the lower
bound on powersα(n) is realized by the same family of trees called combs; see
Fig. 3. A comb Tm consists of a path of length m2 called the spine, with at most
one branch attached to each node of the spine. Branches are located at positions
{0, 1, 2, . . . ,m − 1,m, 2m, 3m, . . . ,m2} of the spine. All edges of the spine are
labeled with letters a. Each branch is a path starting with a letter b, followed
by m2 edges labeled with letters a.

Theorem 16. For every rational α∈(2, 3), we have powersα(Tm) = Ω(|Tm|4/3).

Proof. Let α = 2+ x
y where x, y are coprime positive integers. For every positive

integer c ≤ m2

y , we construct c(y−x) different α-powers of length cyα that occur
in Tm:

(aibacy−1−i)2acx for cx ≤ i < cy.



292 T. Kociumaka et al.

Let us prove that these powers indeed occur in Tm. In [4] it was shown that for
every 0 < j < m2 there are two branches whose starting nodes (on the spine)
satisfy distance(u, v) = j. We apply this fact for j = cy − 1 and align letters b
at the edges incident to u and v. Each branch contains m2 edges labeled with a.
Since i < cy ≤ m2 and cy − 1 − i + cx < cy ≤ m2, this is enough to extend an
occurrence of bacy−1b to an occurrence of (aibacy−1−i)2acx. Altogether this gives
Θ(m4) different α-powers. Since |Tm| = Θ(m3), the number of the considered
powers in Tm is Ω(|Tm|4/3). ��
The upper bound for cubes and, consequently, for powers of rational exponent
α ∈ (3, 4), is a consequence of the main result of the previous section.

Theorem 17. For every rational α ≥ 3, we have powersα(n) = O(n log n).

Proof. Recall that a centroid of a tree T is a node r such that each connected
component of T \{r} is a tree with at most n

2 nodes. It is a well-known fact that
every tree has a centroid.

We have already shown (Theorem 14) that the number of cubes in the tree
T passing through a fixed node r is O(n). Now we need to count the remaining
cubes in T . After removing the node r, the tree is partitioned into components
T1, . . . , Tk. Hence, the number of cubes in T can be written as:

powers3(T ) ≤ O(|T |) +
∑

i

powers3(Ti).

The components satisfy
∑

i |Ti| = n − 1 and |Ti| ≤ n
2 , so a solution to this

recurrence yields powers3(n) = O(n log n). For every α ≥ 3, each power Uα of
exponent α induces a cube U3, so powersα(n) = O(n log n). ��
The final result related to the powers function may be interpreted as a general-
ization of the 2n upper bound on the number of different squares in a string.

Theorem 18. For every α ≥ 4, powersα(n) = Θ(n).

Proof. For a string an, we have Θ(n/α) = Θ(n) distinct α-powers. For the proof
of a linear upper bound, let T be a tree with n nodes and let r be any of its
nodes. Let Tr be a directed tree obtained from T by selecting r as its root. Then
any power Uα in T of exponent α ≥ 4 corresponds to square U2 or (UR)2 in Tr.
Thus, the conclusion follows from Lemma 5. ��

5 Final Remarks

We have presented an almost complete asymptotic characterization of the func-
tion powersα specifying the maximum number of different powers of exponent α
in a tree of given size. What remains is an exact asymptotic bound for powersα,
α ∈ [3, 4), for which we have shown an O(n log n) upper bound.

It can be shown (see Fact 19) that a tree with n nodes contains O(n) different
cubes of the form (aibaj)3. In comparison, the lower bound constructions for
α < 3 rely on counting powers of the form (aibaj)α.
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Fact 19. A tree with n nodes with edges labeled with {a, b} contains O(n) cubes
of the form (aibaj)3.

Proof. Let T be a tree with n nodes. Suppose that T is rooted at an arbitrary
node r. Nevertheless, we bound the number of all cubes of the form (aibaj)3 in
T , including those which are not anchored at r. We shall assign each such cube
to a single node of T so that each node of T is assigned at most two cubes. For a
particular occurrence of a cube X3 = (aibaj)3 which starts in node u and ends
in node v with q = lca(u, v), we define the assignment as follows:

(A) if the string val(u, q) contains at least two characters b, then the cube is
assigned to node u,

(B) otherwise (in that case val(q, v) contains at least two characters b) the cube
is assigned to node v.

Let us prove that such procedure assigns at most one cube of type (A) and
at most one cube of type (B) to a single node. If we fix the node and type
of the assignment, we shall be able to uniquely recover the cube X3 by going
towards the root until we encounter the second edge labeled with b. Indeed,
suppose u is a fixed node and consider the assignment of type (A). Let X1 be
the shortest prefix of val(u, r) that contains exactly one character b and let X2

be the shortest prefix of val(u, r) that contains exactly two characters b. Then
X = a|X1|−1ba|X2|−|X1|−1. For the assignment of type (B), we use a symmetric
procedure. ��
We conclude with the following conjectures.

Conjecture 20 (Weak conjecture). powersα(n) = Θ(n) for every α > 3.

Conjecture 21 (Strong conjecture). powers3(n) = Θ(n).
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