
A Framework for Space-Efficient String Kernels

Djamal Belazzougui1,2 and Fabio Cunial1,2(B)

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
2 Helsinki Institute for Information Technology, Helsinki, Finland

fabio.cunial@cs.helsinki.fi

Abstract. String kernels are typically used to compare genome-scale
sequences whose length makes alignment impractical, yet their compu-
tation is based on data structures that are either space-inefficient, or
incur large slowdowns. We show that a number of exact string kernels,
like the k-mer kernel, the substrings kernels, a number of length-weighted
kernels, the minimal absent words kernel, and kernels with Markovian
corrections, can all be computed in O(nd) time and in o(n) bits of space
in addition to the input, using just a rangeDistinct data structure on
the Burrows-Wheeler transform of the input strings that takes O(d) time
per element in its output. The same bounds hold for a number of mea-
sures of compositional complexity based on multiple values of k, like the
k-mer profile and the k-th order empirical entropy, and for calibrating
the value of k using the data.

1 Introduction

Given two strings T 1 and T 2, a kernel is a function that simultaneously con-
verts T 1 and T 2 into vectors T1 and T2 in R

n for some n > 0, and computes
a similarity or a distance measure between T1 and T2, without building and
storing Ti explicitly [14]. Kernels are often the method of choice for compar-
ing extremely long strings, like genomes, read sets, and metagenomic samples,
whose size makes alignment infeasible, yet their computation is typically based
on space-inefficient data structures, like (truncated) suffix trees, or on space-
efficient data structures with O(logε n) slowdowns, like compressed suffix trees
(see e.g. [1,9] and references therein). The (possibly infinite) dimensions of Ti

are, for example, all strings of a specific family on the alphabet of T 1 and T 2, and
the value assigned to vector Ti along dimension W corresponds to the number
of occurrences of string W in T i, often rescaled and corrected in domain-specific
ways. Ti is often called composition vector, and a large number of its compo-
nents can be zero in practice. In this paper we focus on space- and time-efficient
algorithms for computing the cosine of the angle between two composition vec-
tors T1 and T2, i.e. on computing the kernel κ(T1,T2) = N/

√
D1D2 ∈ [−1..1],

where N =
∑

W T1[W]T2[W] and Di =
∑

W Ti[W]2. This measure of similarity
can be converted into a distance d(T1,T2) = (1−κ(T1,T2))/2 ∈ [0..1], and the

This work was partially supported by Academy of Finland under grant 284598 (Cen-
ter of Excellence in Cancer Genetics Research).

c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 13–25, 2015.
DOI: 10.1007/978-3-319-19929-0 2

14 D. Belazzougui and F. Cunial

algorithms we describe can be applied to compute norms of vector T1 −T2, like
the p-norm and the infinity norm. When T1 and T2 are bitvectors, we are more
interested in interpreting them as sets and in computing the Jaccard distance
J(T1,T2) = ||T1 ∧T2||/||T1 ∨T2|| = ||T1 ∧T2||/(||T1|| + ||T2|| − ||T1 ∧T2||),
where ∧ and ∨ are the bitwise AND and OR operators, and where || · || measures
the number of ones in a bitvector.

Given a data structure that supports rangeDistinct queries on the Burrows-
Wheeler transform of each string in input, we show that a number of popular
string kernels, like the k-mer kernel, the substrings kernels, a number of length-
weighted kernels, the minimal absent words kernel, and kernels with Markovian
corrections, can all be computed in O(nd) time and in o(n) bits of space in addi-
tion to the input, all in a single pass over the BWTs of the input strings, where
d is the time taken by the rangeDistinct query per element in its output. The
same bounds hold for computing a number of measures of compositional com-
plexity for multiple values of k at the same time, like the k-mer profile and the
k-th order empirical entropy, and for choosing the value of k used in k-mer kernels
from the data. All these algorithms become O(n) using the rangeDistinct data
structure described in [4], and concatenating this setup to the BWT construc-
tion algorithm described in [3], we can compute all such kernels and complexity
measures from the input strings in randomized O(n) time and in O(n log σ) bits
of space in addition to the input. Finally, we show that measures of expectation
based on Markov models are related to the left and right extensions of maximal
repeats.

2 Preliminaries

2.1 Strings

Let Σ = [1..σ] be an integer alphabet, let # = 0, #1 = −1 and #2 = −2 be
distinct separators not in Σ, and let T = [1..σ]n−1# be a string. We assume σ ∈
o(

√
n/ log n) throughout the paper. A k-mer is any string W ∈ [1..σ] of length

k > 0. We denote by fT (W) the number of (possibly overlapping) occurrences
of a string W in the circular version of T , and we use the shorthand pT (W) =
fT (W)/(n − |W |) to denote an approximation of the empirical probability of
observing W in T , assuming that all positions of T except the last |W | ones are
equally probable starting positions for W . A repeat W is a string that satisfies
fT (W) > 1. We denote by Σ�

T (W) the set of characters {a ∈ [0..σ] : fT (aW) > 0}
and by Σr

T (W) the set of characters {b ∈ [0..σ] : fT (Wb) > 0}. A repeat W
is right-maximal (respectively, left-maximal) iff |Σr

T (W)| > 1 (respectively, iff
|Σ�

T (W)| > 1). It is well known that T can have at most n − 1 right-maximal
substrings and at most n − 1 left-maximal substrings. A maximal repeat of T is
a repeat that is both left- and right-maximal.

For reasons of space we assume the reader to be familiar with the notion of
suffix tree STT of a string T , and with the notion of generalized suffix tree of
two strings, which we do not define here. We denote by �(v) the string label of a
node v in a suffix tree. It is well known that a substring W of T is right-maximal

A Framework for Space-Efficient String Kernels 15

iff W = �(v) for some internal node v of STT . We assume the reader to be
familiar with the notion of suffix link connecting a node v with �(v) = aW for
some a ∈ [0..σ] to a node w with �(w) = W : we say that w = suffixLink(v) in
this case. Here we just recall that suffix links and internal nodes of STT form a
tree, called the suffix-link tree of T and denoted by SLTT , and that inverting the
direction of all suffix links yields the so-called explicit Weiner links. Given an
internal node v and a symbol a ∈ [0..σ], it might happen that string a�(v) does
occur in T , but that it is not right-maximal, i.e. it is not the label of any internal
node of STT : all such left extensions of internal nodes that end in the middle
of an edge are called implicit Weiner links. An internal node v of STT can have
more than one outgoing Weiner link, and all such Weiner links have distinct
labels: in this case, �(v) is a maximal repeat. It is known that the number of
suffix links (or, equivalently, of explicit Weiner links) is upper-bounded by 2n−2,
and that the number of implicit Weiner links can be upper-bounded by 2n − 2
as well.

2.2 Enumerating Right-Maximal Substrings and Maximal Repeats

For reasons of space we assume the reader to be familiar with the notion and uses
of the Burrows-Wheeler transform of T , including the C array, the rank function,
and backward searching. In this paper we use BWTT to denote the BWT of T ,
we use range(W) = [sp(W)..ep(W)] to denote the lexicographic interval of a
string W in a BWT that is implicit from the context, and we use Σi,j to denote
the set of distinct characters that occur inside interval [i..j] of a string that is
implicit from the context. We also denote by rangeDistinct(i, j) the function
that returns the set of tuples {(c, rank(c, pc), rank(c, qc)) : c ∈ Σi,j}, in any
order, where pc and qc are the first and the last occurrence of c inside interval
[i..j], respectively. Here we focus on a specific application of BWTT : enumerating
all the right-maximal substrings of T , or equivalently all the internal nodes of
STT . In particular, we use the algorithm described in [3] (Sect. 4.1), which we
sketch here for completeness.

Given a substring W of T , let b1 < b2 < · · · < bk be the sorted sequence of all
the distinct characters in Σr

T (W), and let a1, a2, . . . , ah be the list of all the char-
acters in Σ�

T (W), not necessarily sorted. Assume that we represent a substring
W of T as a pair repr(W) = (chars[1..k], first[1..k + 1]), where chars[i] = bi,
range(Wbi) = [first[i]..first[i + 1] − 1] for i ∈ [1..k], and range() refers to
BWTT . Note that range(W) = [first[1]..first[k+1]−1], since it coincides with
the concatenation of the intervals of the right extensions of W in lexicographic
order. If W is not right-maximal, array chars in repr(W) has length one. Given
a data structure that supports rangeDistinct queries on BWTT , and given the
C array of T , there is an algorithm that converts repr(W) into the sequence
a1, . . . , ah and into the corresponding sequence repr(a1W), . . . , repr(ahW), in
O(de) time and O(σ2 log n) bits of space in addition to the input and the output
[3], where d is the time taken by the rangeDistinct operation per element in its
output, and e is the number of distinct strings aiWbj that occur in the circular

16 D. Belazzougui and F. Cunial

version of T , where i ∈ [1..h] and j ∈ [1..k]. We encapsulate this algorithm into
a function that we call extendLeft.

If aiW is right-maximal, i.e. if array chars in repr(aiW) has length greater
than one, we push pair (repr(aiW), |W |+1) onto a stack S. In the next iteration
we pop the representation of a string from the stack and we repeat the process,
until the stack itself becomes empty. This process is equivalent to following all
the explicit Weiner links from the node v of STT with �(v) = W , not necessarily
in lexicographic order. Thus, running the algorithm from a stack initialized with
repr(ε) is equivalent to performing a preorder depth-first traversal of the suffix-
link tree of T (with children explored in arbitrary order), which guarantees to
enumerate all the right-maximal substrings of T . Every operation performed by
the algorithm can be charged to a distinct node or Weiner link of STT , thus the
algorithm runs in O(nd) time. The depth of the stack is O(log n) rather than
O(n), since at every iteration we push the pair (repr(aiW), |aiW |) with largest
range(aiW) first. Every suffix-link tree level in the stack contains at most σ
pairs, and each pair takes at most σ log n bits of space, thus the total space
used by the stack is O(σ2 log2 n) bits. The following theorem follows from our
assumption that σ ∈ o(

√
n/ log n):

Theorem 1 ([3]). Let T ∈ [1..σ]n−1# be a string. Given a data structure that
supports rangeDistinct queries on BWTT , we can enumerate all the right-
maximal substrings W of T , and for each of them we can return |W |, repr(W),
the sequence a1, a2, . . . , ah of all characters in Σ�

T (W) (not necessarily sorted),
and the sequence repr(a1W), . . . , repr(ahW), in O(nd) time and in o(n) bits of
space in addition to the input and the output, where d is the time taken by the
rangeDistinct operation per element in its output.

Theorem 1 does not specify the order in which the right-maximal substrings
must be enumerated, nor the order in which the left extensions of a right-
maximal substring must be returned. The algorithm we just described can be
adapted to return all the maximal repeats of T , with the same bounds, by
outputting a right-maximal string W iff |rangeDistinct(sp(W), ep(W))| > 1.
A version of the same algorithm can also enumerate all the internal nodes
of the generalized suffix tree of two string T 1 and T 2, using BWTT 1 and
BWTT 2 : in this case, a string W is represented as a quadruple repr′(W) =
(chars1[1..k1], first1[1..k1+1], chars2[1..k2], first2[1..k2+1]), and we assume
that firsti[1] = 0 iff W does not occur in T i. We call extendLeft′ the function
that maps repr′(W) to the list of its left extensions repr′(aiW).

Theorem 2 ([3]). Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be two strings.
Given two data structures that support rangeDistinct queries on BWTT 1 and
on BWTT 2 , respectively, we can enumerate all the right-maximal substrings W
of T = T 1T 2, and for each of them we can return |W |, repr′(W), the sequence
a1, a2, . . . , ah of all characters in Σ�

T 1T 2(W) (not necessarily sorted), and
the sequence repr′(a1W), . . . , repr′(ahW), in O(nd) time and in o(n) bits of
space in addition to the input and the output, where n = n1 + n2 and d is the
time taken by the rangeDistinct operation per element in its output.

A Framework for Space-Efficient String Kernels 17

For reasons of space, we assume throughout the paper that d is the time per
element in the output of a rangeDistinct data structure that is implicit from the
context. We also replace T i by i in subscripts, or we waive subscripts completely
whenever they are clear from the context.

3 Kernels and Complexity Measures on k-mers

Given a string T ∈ [1..σ]n−1# and a length k > 0, let vector Tk[1..σk] be such
that Tk[W] = fT (W) for every W ∈ [1..σ]k. The k-mer complexity Ck(T) of
string T is the number of nonzero components of Tk. The k-mer kernel of two
strings T 1 and T 2 is κ(T1

k,T2
k). Recall that Theorems 1 and 2 enumerate all

nodes of a suffix tree in no specific order. In this section we describe algorithms
to compute Ck(T) and κ(T1

k,T2
k) in a way that does not depend on the order

in which the nodes of a suffix tree are enumerated: we can thus implement such
algorithms on top of Theorems 1 and 2. The main idea behind our approach is
a telescoping strategy that works by adding and subtracting terms in a sum, as
described below:

Theorem 3. Let T ∈ [1..σ]n−1# be a string. Given an integer k and a data
structure that supports rangeDistinct queries on BWTT , we can compute Ck(T)
in O(nd) time and in o(n) bits of space in addition to the input.

Proof. A k-mer of T can either be the label of a node of STT , or it could end in
the middle of an edge (u, v) of ST. In the latter case, we assume that the k-mer
is represented by its locus v, which might be a leaf. Let Ck(T) be initialized to
n − k, i.e. to the number of leaves that correspond to suffixes of T of length
at least k + 1. We enumerate the internal nodes of ST using Theorem 1, and
every time we enumerate a node v we proceed as follows: if |�(v)| < k we leave
Ck(T) unaltered, otherwise we increment Ck(T) by one and we decrement Ck(T)
by the number of children of v in ST, which is the length of array chars in
repr(�(v)). In this way, every internal node v of ST that is located at string
depth at least k and that is not the locus of a k-mer is both added to Ck(T)
(when the algorithm visits v) and subtracted from Ck(T) (when the algorithm
visits parent(v)). Leaves at depth at least k + 1 that are not the locus of a
k-mer are added by the initialization of Ck(T), and they are subtracted during
the enumeration. Conversely, every locus v of a k-mer of T (including leaves) is
just added to Ck(T), since |�(parent(v))| < k.

We can apply the same telescoping strategy to compute κ(T1
k,T2

k):

Theorem 4. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
an integer k and two data structures that support rangeDistinct queries on
BWTT 1 and on BWTT 2 , respectively, we can compute κ(T1

k,T2
k) in O(nd) time

and in o(n) bits of space in addition to the input, where n = n1 + n2.

18 D. Belazzougui and F. Cunial

Proof. Recall that κ(T1
k,T2

k) = N/
√

D1D2, where N =
∑

W T1
k[W]T2

k[W],
Di =

∑
W Ti

k[W]2, and W ∈ [1..σ]k. We initially set N = 0 and Di = ni − k,
since these are the contributions of all the leaves at depth at least k + 1 in the
generalized suffix tree of T 1 and T 2. Then, we enumerate every internal node u
of the generalized suffix tree, using Theorem 2: if |�(u)| < k we keep all variables
unchanged, otherwise we set N to N + f1(�(u)) · f2(�(u))−∑

v f1(�(v)) · f2(�(v))
and we set Di to Di + fi(�(u))2 − ∑

v fi(�(v))2, where v ranges over all children
of u in the generalized suffix tree. Clearly fi(�(u)) = firsti[ki + 1] − firsti[1]
where ki is the size of array charsi in repr′(�(u)), and fi(�(v)) = fi(�(u)bj) =
firsti[j + 1] − firsti[j] for some j ∈ [1..ki]. In analogy to Theorem 3, the
contribution of the loci of the distinct k-mers of T 1, of T 2, or of both, is added
to the three temporary variables and never subtracted, while the contribution of
every other node u at depth at least k in the generalized suffix tree is both added
(when the algorithm visits u, or when N and Di are initialized) and subtracted
(when the algorithm visits parent(u)).

An even more specific notion of compositional complexity is Ck,f (T), the num-
ber of distinct k-mers that occur exactly f times in T . In the k-mer profil-
ing problem [6,7] we are given a string T , an interval [k1..k2] of lengths and
an interval [f1..f2] of frequencies, and we are asked to compute the matrix
profile[k1..k2, f1..f2] defined as follows: profile[i, j] = Ci,j(T) if j < f2, and
profile[i, j] =

∑
h≥j Ci,h(T) if j = f2. Note that the jth column of profile

can have nonzero cells only if fj is the frequency of some internal node of STT .
In practice profile is often computed by running a k-mer extraction algorithm
k2 − k1 + 1 times, and by scanning the output of all such runs (see e.g. [6] and
references therein). The following lemma shows that we can compute profile
in just one pass over the BWT of the input string, and in linear time in the size
of profile:

Theorem 5. Let T ∈ [1..σ]n−1# be a string. Given ranges [k1..k2] and [f1..f2],
and given a data structure that supports rangeDistinct queries on BWTT , we
can compute matrix profile[k1..k2, f1..f2] in O(nd + (k2 − k1)(f2 − f1)) time
and in o(n) bits of space in addition to the input and the output.

Proof. We use Theorem 1 again. Assume that, for every internal node u of
STT with string depth at least k1 and with frequency at least f1, and for
every k ∈ [k1..min{|�(u)|, k2}], we increment profile[k,min{f(u), f2}] by
one and we decrement profile[k,min{f(v), f2}] by one for every child v
of u in ST such that f(v) ≥ f1. This would take O(n2) total updates to
profile. However, we can perform all of these updates in batch, as follows:
for every node u of ST with f(u) ≥ f1 and with |�(u)| ≥ k1, we just incre-
ment profile[min{|�(u)|, k2}, min{f(u), f2}] by one, and we just decrement
profile[min{|�(u)|, k2}, min{f(v), f2}] by one for every child v of u in ST such
that f(v) ≥ f1. After having traversed all the internal nodes of ST, we scan
profile as follows: for every j ∈ [f1..f2], we traverse all values of i in the decreas-
ing order k2 − 1, . . . , k1, and we set profile[i, j] = profile[i, j] + profile[i +
1, j]. If f1 = 1, at the end of this process the first column of profile contains

A Framework for Space-Efficient String Kernels 19

negative numbers, since Theorem 1 does not enumerate the leaves of ST. Thus,
before returning, we add to profile[i, 1] the number of leaves with string depth
at least ki + 1, i.e. value n − ki, for all i ∈ [k1..k2].

A similar algorithm allows computing κ(T1
k,T2

k) for all k in a user-specified
range [k1..k2] in O(nd+k2 −k1) time. Matrix profile can be used to determine
a range of values of k to be used in k-mer kernels. The smallest number in this
range is typically the value of k that maximizes the number of distinct k-mers
that occur at least twice in T [15]. The largest number in the range is typically
determined using some measure of expectation: we cover this computation in
Sect. 5.

A related notion of compositional complexity is the k-th order empir-
ical entropy of T , defined as Hk(T) = (1/|T |) · ∑

W

∑
a∈Σr(W) fT (Wa) ·

log(fT (W)/fT (Wa)), where W ranges over all strings in [1..σ]k. Clearly only
the internal nodes of STT contribute to some Hk(T) [9], thus our methods allow
computing Hk(T) for a user-specified range of lengths [k1..k2] in O(nd+k2 −k1)
time, using just one pass over BWTT .

4 Kernels and Complexity Measures on All Substrings

Given a string T ∈ [1..σ]n−1#, consider the infinite-dimensional vector T∞
indexed by all distinct substrings W ∈ [1..σ]+, such that T∞[W] = fT (W). The
substring complexity C∞(T) of T is the number of nonzero components of T∞.
The substring kernel of two strings T 1 and T 2 is the cosine of composition vectors
T1

∞ and T2
∞. Computing substring complexity and substring kernel amounts to

applying the same telescoping strategy described in Theorems 3 and 4, but with
different contributions:

Corollary 1. Let T ∈ [1..σ]n−1# be a string. Given a data structure that sup-
ports rangeDistinct queries on BWTT , we can compute C∞(T) in O(nd) time
and in o(n) bits of space in addition to the input.

Proof. The substring complexity of T coincides with the number of characters
in [1..σ] that occur on all edges of STT . We can thus proceed as in Theorem 3,
initializing C∞(T) to (n − 1)n/2, or equivalently to the sum of the lengths of all
suffixes of T [1..n − 1]. Whenever we visit a node v of ST, we add to C∞(T) the
quantity |�(v)|, and we subtract from C∞(T) the quantity |�(v)| · |children(v)|.
The net effect of all such operations coincides with summing the lengths of all
edges of ST, discarding all occurrences of character #. Note that |�(u)| is pro-
vided by Theorem 1, and |children(v)| is the size of array chars in repr(�(v)).

Corollary 2. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
data structures that support rangeDistinct queries on BWTT 1 and on BWTT 2 ,
respectively, we can compute κ(T1

∞,T2
∞) in O(nd) time and in o(n) bits of space

in addition to the input, where n = n1 + n2.

20 D. Belazzougui and F. Cunial

Proof. We proceed as in Theorem 4, setting again N = 0 and Di = (ni − 1)ni/2
at the beginning of the algorithm. When we visit a node u of the generalized suffix
tree of T 1 and T 2, we set N to N+|�(u)|·(f1(�(u))f2(�(u))−∑

v f1(�(v))f2(�(v)))
and we set Di to Di + |�(u)| · (fi(�(u))2 − ∑

v fi(�(v))2), where v ranges over all
children of u in the generalized suffix tree.

In a substring kernel it is common to weight a substring W by a user-specified
function of its length: typical choices are ε|W | for a given constant ε, or indicators
that select only substrings within a specific range of lengths [16]. We denote
by Ti

∞,g a weighted version of the infinite-dimensional vector Ti
∞ such that

Ti
∞,g[W] = g(|W |) · Ti

∞[W], where g is any user-specified function. We assume
that the number of bits required to represent the output of g with sufficient
precision is O(log n). It is easy to adapt Corollary 2 to support this type of
composition vector:

Corollary 3. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given a
function g(k) that can be evaluated in constant time, and given data structures
that support rangeDistinct queries on BWTT 1 and on BWTT 2 , respectively, we
can compute κ(T1

∞,g,T
2
∞,g) in O(nd) time and in o(n) bits of space in addition

to the input, where n = n1 + n2.

Proof. We modify Corollary 2 as follows. Assume that we are processing an inter-
nal node v of the generalized suffix tree, let �(v) = W , and assume that we have
computed repr′(aW) for all the left extensions aW of W . In addition to pushing
repr′(aW) onto the stack, we also push value prefixSum(aW) =

∑|W |+1
i=1 g(i)2

with it, where prefixSum(aW) = prefixSum(W) + g(|W | + 1)2. When we pop
repr′(aW), we compute its contributions to N and Di as described in Corollary 2,
but replacing |aW | by prefixSum(aW). We initialize Di to

∑ni−1
j=1 g(j)2.

Corollary 3 can clearly support distinct weight functions for T 1 and T 2. For
some functions, like ε|W |, prefix sums can be computed in closed form [16],
thus there is no need to push prefixSum values on the stack. Another frequent
weighting scheme for a string W associates a score q(c) to every character c of
W , and it weights W by e.g. q(W) =

∏|W |
i=1 q(W [i]). In this case we could just

push prefixSum(V) =
∑|V |

i=1

∏i
j=1 q(V [j])2 onto the stack, where V = aW and

prefixSum(V) = q(a)2 · (1 + prefixSum(W)). A similar weighting scheme can
be used for k-mers as well. Let Tk,q be a version of Tk such that Tk,q[W] =
fT (W) − (|T | − |W |)q(W) for every W ∈ [1..σ]k, and consider the following
distances defined in [13]:

Ds
2(T

1
k,q,T

2
k,q) =

∑

W

T1
k,q[W]T2

k,q[W]/
√

(T1
k,q[W])2 + (T2

k,q[W])2

D∗
2(T

1
k,q,T

2
k,q) =

∑

W

T1
k,q[W]T2

k,q[W]/
(√

(n1 − k)(n2 − k) · q(W)
)

where W ranges over all strings in [1..σ]k. We can compute such distances using
just a minor modification to Theorem4:

A Framework for Space-Efficient String Kernels 21

Corollary 4. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
an integer k and data structures that support rangeDistinct queries on BWTT 1

and on BWTT 2 , respectively, we can compute Ds
2(T

1
k,p,T

2
k,p) and D∗

2(T
1
k,p,T

2
k,p)

in O(nd) time and in λ log σ + o(n) bits of space in addition to the input, where
n = n1 + n2 and λ is the length of the longest repeat in T 1T 2.

Proof. We proceed as in Theorem 4, pushing on the stack value q(W,k) =
∏k

j=1 q(W [j]) in addition to repr′(W), and maintaining a separate stack of
characters to represent the string we are processing during the depth-first tra-
versal of the generalized suffix-link tree. We set q(aW, k) = q(a) · q(W,k)/q(b),
where b is the kth character from the top of the character stack when we are
processing W .

An orthogonal way to measure the similarity between T 1 and T 2 consists in
comparing the repertoire of all strings that do not appear in T 1 and in T 2.
Given a string T and two frequency thresholds τ1 < τ2, a string W is a minimal
rare word of T if τ1 ≤ fT (W) < τ2 and if fT (V) ≥ τ2 for every proper substring
V of W . Setting τ1 = 0 and τ2 = 1 gives the well-known minimal absent words
(see e.g. [5,10] and references therein), whose total number can be Θ(σn) [8].
Setting τ1 = 1 and τ2 = 2 gives the so-called minimal unique substrings (see
e.g. [11] and references therein), whose total number is O(n), like the number
of strings obtained by any other setting of τ1 ≥ 1. In what follows we focus on
minimal absent words, but our algorithms can be generalized to other settings
of the thresholds.

To decide whether aWb is a minimal absent word of T , where a and b are
characters, it clearly suffices to check whether fT (aWb) = 0 and whether both
fT (aW) ≥ 1 and fT (Wb) ≥ 1. It is well known that only a maximal repeat of
T can be the infix W of a minimal absent word aWb, and this applies to any
setting of τ1 and τ2. To enumerate all the minimal absent words, for example
to count their total number C−(T), we can thus iterate over all nodes of STT

associated with maximal repeats, as described below:

Theorem 6. Let T ∈ [1..σ]n−1# be a string. Given a data structure that sup-
ports rangeDistinct queries on BWTT , we can compute C−(T) in O(nd) time
and in o(n) bits of space in addition to the input.

Proof. For clarity, we first describe how to enumerate all the distinct minimal
absent words of T : we specialize this algorithm to counting at the end of the
proof. We use Theorem 1 to enumerate all nodes v of STT associated with
maximal repeats, as described in Sect. 2.2. Let {a1, . . . , ah} be the set of distinct
left extensions of string �(v) in T returned by operation extendLeft(repr(�(v))),
let extensions[1..σ +1, 0..σ] be a boolean matrix initialized to all zeros, and let
leftExtensions[1..σ +1] be an array initialized to all zeros. Let h′ be a pointer
initialized to one. Operation extendLeft allows following all the Weiner links
from v, not necessarily in lexicographic order: for every string ai�(v) obtained
in this way, we set leftExtensions[h′] = ai, we enumerate its right extensions
{c1, . . . , ck′} using array chars of repr(ai�(v)), we set extensions[h′, cj] = 1

22 D. Belazzougui and F. Cunial

for all j ∈ [1..k′], and we finally increment h′ by one. Note that only the columns
of extensions that correspond to the right extensions of �(v) are updated by
this procedure. Then, we enumerate all the right extensions {b1, . . . , bk} of �(v)
using array chars of repr(�(v)), and for every such extension bj we report all
pairs (ai, bj) such that ai = chars[x], x ∈ [1..h′], and extensions[x, bj] = 0.
This process takes time proportional to the number of Weiner links from v, plus
the number of children of v, plus the number of Weiner links from v multiplied
by σ. When applied to all nodes of ST, this takes in total O(nσ) time, which is
optimal in the size of the output. The matrices and vectors used by this process
can be reset to all zeros after processing each node: the total time spent in such
reinitializations in O(n).

If we just need C−(T), rather than storing the temporary matrices
extensions and leftExtensions, we store just a number area which we ini-
tialize to hk before processing node v. Whenever we observe a right extension
cj of a string ai�(v), we decrease area by one. Before moving to the next node,
we increment C−(T) by area.

Let T− be the infinite-dimensional vector indexed by all distinct substrings
W ∈ [1..σ]+, such that T−[W] = 1 iff W is a minimal absent word of T .
Theorem 6 can be adapted to compute the Jaccard distance between the com-
position vectors of two strings:

Corollary 5. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
data structures that support rangeDistinct queries on BWTT 1 and on BWTT 2 ,
respectively, we can compute J(T1

−,T2
−) in O(nd) time and in o(n) bits of space

in addition to the input, where n = n1 + n2.

Proof. We apply the strategy of Theorem 6 to the internal nodes of the gener-
alized suffix tree of T 1 and T 2 whose label is a maximal repeat of T 1 and a
maximal repeat of T 2: such strings are clearly maximal repeats of T 1T 2 as well.
We enumerate such nodes as described in Sect. 2.2. We keep a global variable
intersection and a bitvector sharedRight[1..σ]. For every node v that corre-
sponds to a maximal repeat of T 1 and of T 2, we merge the sorted arrays chars1
and chars2 of repr′(�(v)), we set sharedRight[c] = 1 for every character c that
belongs to the intersection of the two arrays, and we cumulate in a variable k′

the number of ones in sharedRight. Then, we scan every left extension ai pro-
vided by extendLeft′, we determine in constant time whether it occurs in both
T 1 and T 2, and if so we increment a variable h′ by one. Finally, we initialize a
variable area to h′k′, and we process again every left extension ai provided by
extendLeft′: if ai�(v) occurs in both T 1 and T 2, we compute the union of arrays
chars1 and chars2 of repr′(ai�(v)), and for every character c in the union such
that sharedRight[c] = 1, we decrement area by one. At the end of this process,
we add area to the global variable intersection. To compute ||T1

− ∨ T2
−|| we

apply Theorem 6 to T 1 and T 2 separately.

It is easy to extend Corollary 5 to compute κ(T1
−,T2

−), as well as to support
weighting schemes based on the length and on the characters of minimal absent
words.

A Framework for Space-Efficient String Kernels 23

5 Markovian Corrections

In some applications it is desirable to assign to component W ∈ [1..σ]k of
composition vector T∞ an estimate of the statistical significance of observing
fT (W) occurrences of W in T : intuitively, strings whose frequency departs from
its expected value are more likely to carry “information”, and they should be
weighted more [12]. Assume that T is generated by a Markov random process
of order k − 2 or smaller, that produces strings on alphabet [1..σ] accord-
ing to a probability distribution P. It is well known that the probability of
observing W in a string generated by such a random process is P(W) =
P(W [1..k − 1]) · P(W [2..k])/P(W [2..k − 1]). We can estimate P(W) using the
empirical probability pT (W), obtaining the following approximation for P(W):
p̃T (W) = pT (W [1..k − 1]) · pT (W [2..k])/pT (W [2..k − 1]) if pT (W [2..k − 1]) �= 0,
and p̃T (W) = 0 otherwise. We can thus estimate the significance of the event
that substring W has empirical probability pT (W) in string T using the follow-
ing score: zT (W) = (pT (W) − p̃T (W))/p̃T (W) if p̃T (W) �= 0, and zT (W) = 0 if
p̃T (W) = 0 [12]. After elementary manipulations [2], zT (W) becomes:

zT (W) = g(n, k) · fT (W) · fT (W [2..k − 1])
fT (W [1..k − 1]) · fT (W [2..k])

− 1

g(x, y) = (x − y + 2)2/(x − y + 1)(x − y + 3)

Since g(x, y) ∈ [1..1.125], we temporarily assume g(x, y) = 1 in what follows,
removing this assumption later.

Let Tz be a version of the infinite-dimensional vector T∞ in which Tz[W] =
zT (W). Among all strings that occur in T , only strings aWb such that a and
b are characters in [0..σ] and such that W is a maximal repeat of T can
have Tz[aWb] �= 0. Similarly, among all strings that do not occur in T , only
the minimal absent words of T have a nonzero component in Tz: specifically,
Tz[aWb] = −1 for all minimal absent words aWb of T , where a and b are char-
acters in [0..σ] [2]. Given two strings T 1 and T 2, we can thus compute κ(T1

z,T
2
z)

using the same strategy as in Corollary 5:

Theorem 7. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
data structures that support rangeDistinct queries on BWTT 1 and on BWTT 2 ,
respectively, and assuming g(x, y) = 1 for all settings of x and y, we can compute
κ(T1

z,T
2
z) in O(nd) time and in o(n) bits of space in addition to the input, where

n = n1 + n2.

Proof. We focus here on computing component N of κ(T1
z,T

2
z): comput-

ing Di follows a similar algorithm on BWTT i . We keep again a bitvector
sharedRight[1..σ], and we enumerate all the internal nodes of the generalized
suffix tree of T 1 and T 2 whose label is a maximal repeat of T 1 and a maximal
repeat of T 2, as described in Corollary 5. For every such node v, we merge the
sorted arrays chars1 and chars2 of repr′(�(v)), we set sharedRight[c] = 1 for
every character c that belongs to the intersection of the two arrays, and we cumu-
late in a variable k′ the number of ones in sharedRight. Then, we scan every left

24 D. Belazzougui and F. Cunial

extension ai provided by extendLeft′, we determine in constant time whether
it occurs in both T 1 and T 2, and if so we increment a variable h′ by one. Finally,
we initialize a variable area to h′k′, and we process again every left extension ai

provided by extendLeft′. If ai�(v) occurs in both T 1 and T 2, we merge arrays
chars1 and chars2 of repr′(ai�(v)): for every character b in the intersection
of chars1 and chars2, we add to N value z1(ai�(v)b) · z2(ai�(v)b), retrieving
the corresponding frequencies from repr′(ai�(v)) and from repr′(�(v)), and we
decrement area by one. For every character b that occurs only in chars1, we
test whether sharedRight[b] = 1: if so, aiWb is a minimal absent word of T 2

that occurs in T 1, thus we decrement area by one and we add to N value
−z1(ai�(v)b). We proceed symmetrically if b occurs only in chars2. At the end
of this process, area counts the number of minimal absent words with infix �(v)
that are shared by T 1 and T 2: thus, we add area to N .

It is easy to remove the assumption that g(x, y) is always equal to one. There
are only two differences from the previous case. First, the score of the substrings
W of T i that have a maximal repeat of T i as an infix changes, but g(ni, |W |)
can be immediately computed from |W |, which is provided by the enumeration
algorithm. Second, the score of all substrings W of T i that do not have a maximal
repeat as an infix changes from zero to g(ni, |W |) − 1: we can take all such
contributions into account by pushing prefix-sums to the stack, as in Corollary 3.
For example, to compute component N of κ(T1

z,T
2
z), we can first assume that

all substring W that occur both in T 1 and in T 2 have score g(ni, |W |) − 1, by
pushing on the stack the prefix-sums described in [2] and by enumerating only
nodes v of the generalized suffix tree of T 1 and T 2 such that �(v) occurs both in
T 1 and in T 2. Then, we can run a similar algorithm as in Theorem 7, subtracting
quantity (g(n1, |W | + 2) − 1) · (g(n2, |W | + 2) − 1) from the contribution to N of
every string aiWb that occurs both in T 1 and in T 2.

Finally, recall that in Sect. 3 we mentioned the problem of determining an
upper bound on the values of k to be used in k-mer kernels. Let Tk be the
composition vector indexed by all strings in [1..σ]k such that Tk[W] = pT (W),
and let T̃k be a similar composition vector with T̃k[W] = p̃T (W), where p̃T (W)
is defined as in the beginning of this section. It makes sense to disregard values
of k for which Tk and T̃k are very similar, and more formally whose Kullback-
Leibler divergence KL(Tk, T̃k) =

∑
W Tk[W] · (log(Tk[W]) − log(T̃k[W])) is

small, where W ranges over all strings in [1..σ]k. Thus, we could use as an
upper bound on k the minimum value k∗ such that

∑∞
k′=k∗ KL(Tk′ , T̃k′) <

τ for some user-specified threshold τ [15]. Note again that only strings aWb
such that a and b are characters in [0..σ] and W is a maximal repeat of T
contribute to KL(T|W |+2, T̃|W |+2). We can thus adapt Theorem 7 to compute
the KL divergence for a user-specified range of lengths [k1..k2], using just one
pass over BWTT , in O(nd) time and in o(n) bits of space in addition to the
input and the output. The same approach can be used to compute the KL-
divergence kernel κ(T1

KL,T2
KL), where Ti

KL[W] = KLT i(W) and KLT i(W) =∑
a,b∈Σ pT i(aWb) · (log(pT i(aWb)) − log(p̃T i(aWb))).

A Framework for Space-Efficient String Kernels 25

References

1. Apostolico, A.: Maximal words in sequence comparisons based on subword compo-
sition. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010.
LNCS, vol. 6060, pp. 34–44. Springer, Heidelberg (2010)

2. Apostolico, A., Denas, O.: Fast algorithms for computing sequence distances by
exhaustive substring composition. Algorithms Mol. Biol. 3(1), 13 (2008)

3. Belazzougui, D.: Linear time construction of compressed text indices in compact
space. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
31 May–03 June, pp. 148–193 (2014)

4. Belazzougui, D., Navarro, G., Valenzuela, D.: Improved compressed indexes for
full-text document retrieval. J. Discret. Algorithms 18, 3–13 (2013)

5. Chairungsee, S., Crochemore, M.: Using minimal absent words to build phylogeny.
Theoret. Comput. Sci. 450, 109–116 (2012)

6. Chikhi, R., Medvedev, P.: Informed and automated k-mer size selection for genome
assembly. Bioinformatics 30(1), 31–37 (2014)

7. Chor, B., Horn, D., Goldman, N., Levy, Y., Massingham, T., et al.: Genomic DNA
k-mer spectra: models and modalities. Genome Biol. 10(10), R108 (2009)

8. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Inf.
Process. Lett. 67(3), 111–117 (1998)

9. Gog, S.: Compressed suffix trees: design, construction, and applications. Ph.D.
thesis, University of Ulm, Germany (2011)

10. Herold, J., Kurtz, S., Giegerich, R.: Efficient computation of absent words in
genomic sequences. BMC Bioinform. 9(1), 167 (2008)

11. İleri, A.M., Külekci, M.O., Xu, B.: Shortest unique substring query revisited. In:
Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486,
pp. 172–181. Springer, Heidelberg (2014)

12. Qi, J., Wang, B., Hao, B.-I.: Whole proteome prokaryote phylogeny without
sequence alignment: a k-string composition approach. J. Mol. Evol. 58(1), 1–11
(2004)

13. Reinert, G., Chew, D., Sun, F., Waterman, M.S.: Alignment-free sequence com-
parison (I): statistics and power. J. Comput. Biol. 16(12), 1615–1634 (2009)

14. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

15. Sims, G.E., Jun, S.-R., Wu, G.A., Kim, S.-H.: Alignment-free genome comparison
with feature frequency profiles (FFP) and optimal resolutions. Proc. Natl. Acad.
Sci. 106(8), 2677–2682 (2009)

16. Smola, A.J., Vishwanathan, S.V.N.: Fast kernels for string and tree matching.
In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information
Processing Systems 15, pp. 585–592. MIT Press, Cambridge (2003)

	A Framework for Space-Efficient String Kernels
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 Enumerating Right-Maximal Substrings and Maximal Repeats

	3 Kernels and Complexity Measures on k-mers
	4 Kernels and Complexity Measures on All Substrings
	5 Markovian Corrections
	References

