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Abstract. We propose a new variant of the LZ78 factorization which we
call the LZ Double-factor factorization (LZD factorization). Each factor
of the LZD factorization of a string is the concatenation of the two longest
previous factors, while each factor of the LZ78 factorization is that of
the longest previous factor and the following character. Interestingly, this
simple modification drastically improves the compression ratio in prac-
tice. We propose two online algorithms to compute the LZD factorization
in O(m(M + min(m, M) log σ)) time and O(m) space, or in O(N log σ)
time and O(N) space, where m is the number of factors to output, M is
the length of the longest factor(s), N is the length of the input string, and
σ is the alphabet size. We also show two versions of our LZD factorization
with variable-to-fixed encoding, and present online algorithms to com-
pute these versions in O(N +min(m, 2L)(M +min(m, M, 2L) log σ)) time
and O(min(2L, m)) space, where L is the bit-length of each fixed-length
code word. The LZD factorization and its versions with variable-to-
fixed encoding are actually grammar-based compression, and our exper-
iments show that our algorithms outperform the state-of-the-art online
grammar-based compression algorithms on several data sets.

1 Introduction

Large-scale, highly repetitive texts such as collections of genomes of the same
or similar species or the edit history of version controlled documents, have been
increasing. Grammar compression algorithms, which are compression algorithms
that output a compressed representation of the input text in the form of a con-
text free grammar (CFG), have recently been gaining renewed interest since
they are effective for such text collections [3], and also since CFGs are a con-
venient compressed representation that allows for various efficient processing on
the strings without explicit decompression, e.g. pattern matching [13], q-gram
frequencies [4], and edit-distance [5] computation.

While many previous grammar compression algorithms such as RE-PAIR [6]
or SEQUITUR [10] give good compression ratios and run in linear time and
working space, smaller working space is essential in order to compress large-
scale data that does not fit in main memory. Maruyama et al. [7] proposed
a fast and space efficient algorithm OLCA, which uses a simple strategy to
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determine the priority in selecting pairs of consecutive characters to form a
production rule. Their algorithm runs online, and the working space depends
only on the output, i.e., the compressed size of the input string. The working
space was further reduced to the information theoretic lower bound of the output
size in [9]. Maruyama and Tabei [8] proposed a variant that uses only constant
working space, at the cost of some degradation in the compression ratio. Sekine
et al. [12] proposed a modified version of RE-PAIR, called ADS, that splits the
input string into blocks and compresses each block. In order to maintain a good
compression ratio, they devised a technique to reuse non-terminal variables that
are created and used frequently in each block, to the next block. Each non-
terminal variable is encoded as a fixed-length code word, and since the length of
the decompressed string that a code represents may vary, it is a variable-to-fixed
code. The algorithm runs in O(N) time and O(B +2L) working space, where N
is the length of the input string, B is the block size, and L is the bit-length of
each fixed-length code word.

In this paper, we propose a new grammar-based compression based on the
LZ78 factorization, which we call the LZ Double-factor factorization (LZD fac-
torization). While each factor of the LZ78 factorization of a string is the longest
previous factor and the following character, each factor of the LZD factorization
is the concatenation of the two longest previous factors. We propose two online
algorithms to compute the LZD factorization in O(m(M + min(m,M) log σ))
time and O(m) space, or in O(N log σ) time and O(N) space, where m is the
number of factors to output, M is the length of the longest factor(s), N is the
length of the input string, and σ is the alphabet size. We also show two versions
of our LZD factorization with variable-to-fixed encoding, and present online algo-
rithms to compute these versions in O(N+min(m, 2L)(M+min(m,M, 2L) log σ))
time and O(min(2L,m)) space, where L is the bit-length of each fixed-length
code word. When L can bee seen as a constant, these algorithms run in O(N)
time and O(1) space. Computational experiments show that, in practice, our
algorithms run fast and compress well while requiring small working space, out-
performing the state-of-the-art online grammar-based compression algorithms
on several data sets.

2 Preliminaries

Let Σ be a finite alphabet, and let σ = |Σ|. An element of Σ∗ is called a string.
The length of a string T is denoted by |T |. The empty string ε is the string of
length 0, namely, |ε| = 0. For a string T = XY Z, X, Y and Z are called a prefix,
substring, and suffix of T , respectively. If a prefix X (resp. substring Y , suffix Z)
is of a string T is shorter than T , then it is called a proper prefix (resp. proper
substring, proper suffix ) of T . The set of suffixes of T is denoted by Suffix(T ).

The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |, and
the substring of T that begins at position i and ends at position j is denoted
by T [i..j] for 1 ≤ i ≤ j ≤ |T |. For convenience, let T [i..j] = ε if j < i. For
convenience, we assume that T [|T |] =$, where $ is a special delimiter character
that does not occur elsewhere in the string.
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The Patricia tree of a set S of k strings, denoted PTS , is a rooted tree
satisfying the following: (1) each edge is labeled with a non-empty substring of
a string in S, (2) the labels of any two distinct out-going edges of the same
node must begin with distinct characters; (3) for each string s ∈ S there exists
a node v such that str(v) = s, where str(v) represents the concatenation of the
edge labels from the root to v; (4) a string p is a non-empty prefix of a string
s ∈ S iff there are nodes u, v such that u is the parent of v, str(u) is a proper
prefix of p, and p is a prefix of str(v). Because of conditions (2)-(4), there are
at most k non-branching nodes (including leaves) and at most k − 1 branching
nodes in PTS . Also, if we represent each edge label � by a pair of the beginning
and ending positions of an occurrence of � in one of the strings in S, then PTS

can be stored in O(k) space (excluding the string S). For a node u of PTS , let
depth(u) = |str(u)|. If the string p of Condition (4) is str(v) itself, then we say
that p is represented by an explicit node of PTS . Otherwise (if p is a proper
prefix of str(v)), then we say that it is represented by an implicit node of PTS .

The suffix tree of a string T , denoted STT , is the Patricia tree of Suffix(T ),
namely STT = PTSuffix(T ). Since we have assumed T terminates with a special
character $, there is a one-to-one correspondence between the suffixes of T and
the leaves of STT . STT has at most 2N − 1 nodes, and can be stored in O(N)
space, where N = |T |. For a string T of length N over an alphabet of size σ, STT

can be constructed in O(N log σ) time and O(N) space in an online manner [14].

3 LZD Factorization

We propose a new greedy factorization of a string inspired by the LZ78 factoriza-
tion [16], which is able to achieve better compression ratios. We simply change
the definition of a factor fi, from the pair of the longest previously occurring
factor and the immediately following character, to the pair of the longest previ-
ously occurring factor fj1 and the longest previously occurring factor fj2 which
also appears at position |f1 · · · fi−1|+ |fj1 |+1. We call this new factorization the
LZ Double-factor factorization (LZD), and its formal definition is the following:

Definition 1 (LZD Factorization). The LZD factorization of a string T of
length N , denoted LZDT , is the factorization f1, . . . , fm of T such that f0 = ε,
and for 1 ≤ i ≤ m, fi = fi1fi2 where fi1 is the longest prefix of T [k..N ] with
fi1 ∈ {fj | 1 ≤ j < i} ∪ Σ, fi2 is the longest prefix of T [k + |fi1 |..N ] with
fi2 ∈ {fj | 0 ≤ j < i} ∪ Σ, and k = |f1 · · · fi−1| + 1.

Note that for any 1 ≤ i < m the length of fi is at least 2, while fm can be of
length 1. This happens only when |f1 · · · fm−1| = N − 1.

LZDT = f1, . . . , fm can be represented by a sequence of m integer pairs,
where each pair (i1, i2) represents the ith factor fi = fi1fi2 . For example, the
LZD factorization of string abaaabababaabbbbabab$ is f1 = ab, f2 = aa, f3 =
abab, f4 = abaa, f5 = bb, f6 = bbabab, f7 = $, and can be represented by
(a, b), (a, a), (1, 1), (1, 2), (b, b), (5, 3), and ($, 0).
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One can regard LZDT as a context-free grammar which only generates string
T , with m + 1 production rules S → f1 · · · fm, fi → fi1fi2 for 1 ≤ i ≤ m, where
the set of rules fi → fi1fi2 (1 ≤ i ≤ m) is called the dictionary.

Lemma 1. For any string T , all factors of LZDT are different.

Proof. Let LZDT = f1, . . . , fm. Since fm[|fm|] =$, fm is different from any other
factors. Assume on the contrary that fh = fi for some 1 ≤ h < i < m. Since
both fi1 and fi2 are of length at least 1, |fi1 | < |fi|. However, we have assumed
fh = fi, and this contradicts that fi1 is the longest prefix of T [|f1 · · · fi−1|+1..N ]
which belongs to {fj | 1 ≤ j < i} ∪ Σ. Hence each factor fi is distinct. ��
Using the idea of [16] and Lemma 1, we get the following lemma:

Lemma 2. For any string T of length N , the number of factors in LZDT is
O(N/ logσ N).

Fig. 1. The LZD tree for string
abaaabababaabbbbabab$. Each
node numbered i represents the
ith factor fi of the LZD factor-
ization of the string

Let F = {f0, . . . , fm} be the set of factors
of LZDT . In a similar way to the case of
LZ78 factorization, computing LZDT reduces
to computing PTF , the Patricia tree of F .
We call PTF the LZD tree of T . Figure 1
illustrates the LZD tree of the example string
abaaabababaabbbbabab$.

In what follows, we will propose two algo-
rithms to compute LZDT for a given string T
of length N in an online manner. The first one
is space-efficient, namely, its extra space usage
is linear in the number of factors in LZDT . The
second one is fast, namely, it runs in O(N log σ)
time.

3.1 Space-Efficient Online Algorithm for LZD Factorization

We present an online algorithm to compute LZDT for a string T of length N
in O(m(M +min{M,m} log σ)) time using O(m) working space, where m is the
number of factors in LZDT and M is the length of the longest factor in LZDT .

The LZD tree of a given string T can be computed incrementally, in quite
a similar way to the LZ78 trie [16], as follows: We first construct a tree only
with the root. To compute a factor fi = fi1fi2 starting at a position k =
|f1 · · · fi−1| + 1, we assume that the LZD tree contains nodes which represent
all previous factors f1 to fi−1, and these nodes are marked. We also assume
that the LZD tree contains nodes which represent all characters occurring in
T [1..|f1 · · · fi−1|], and these nodes are marked. Let T [k..q] be the longest prefix
of T [k..N ] that is represented by the LZD tree, where k ≤ q ≤ N . This string
T [k..q] can be computed by traversing the tree from the root. If k is the first
occurrence of character c = T [k] (namely q = 0), then we create a new child of
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the root representing c, and mark this node. The first element fi1 is c in this
case. Otherwise, since there are at most min(m − 1,M − 1) branching nodes in
any path of the LZD tree, and since depth(v) ≤ M for any leaf v, the number
of character comparisons to compute T [k..q] is O(M + min(m,M) log σ). Then,
the lowest marked node in the path which spells out T [k..q] is exactly the first
element fi1 of fi. The second element fi2 of fi can be computed analogously,
traversing the LZD tree with T [k + |fi1 |..N ] in O(M + min(m,M) log σ) time.
After computing fi, we update the LZD tree so that fi is represented by an
explicit marked node in the tree. Recall that in the LZD tree there always exists
a path spelling out fi1 from the root. We traverse fi2 from the end of this path,
to compute the longest prefix y of fi that is represented by the current LZD
tree. There are four cases to consider:

1. If y = fi and fi is represented by an explicit node u (i.e., str(u) = fi), then
we simply mark u. Note that, by Lemma 1, u was always unmarked before
computing fi.

2. If y = fi and fi is represented by an implicit node, then we create a new
internal non-branching node v such that str(v) = fi by splitting the edge on
which the path spelling out fi ends. We then mark v.

3. If |y| < |fi| and fi is represented by an explicit node u, then we create a new
leaf node v such that str(v) = fi, with a new edge from u to v. We then
mark v.

4. If |y| < |fi| and fi is represented by an implicit node, then we first create
a new internal node u such that str(u) = y, by splitting the edge on which
the path spelling out y ends. Next, we create a new leaf node v such that
str(v) = fi, with a new edge from u to v. We finally mark v.

Since we repeat the above procedure m times, it takes a total of O(m(M +
min(m,M) log σ)) time to compute the LZD tree for all the factors. Notice that
N ≤ mM , and hence N is hidden in the above time complexity. Since the LZD
tree is the Patricia tree for the set of m factors of LZDT , the size of the tree
(and hence the extra space requirement of this algorithm) is O(m).

Since LZDT is a kind of context-free grammar which only generates string
T , we can obtain the original string T in O(N) time from LZDT .

The following theorem summarizes this subsection.

Theorem 1 (Space-Efficient Online LZD Factorization). Given a string
T of length N , we can compute LZDT = f1 · · · fm in O(m(M+min(m,M) log σ))
time and O(m) space in an online manner, where M is the length of the longest
factor in LZDT .

Since m = O(N/ logσ N) and M = O(N)1, the space-efficient algorithm takes
O(N2/ logσ N) time. However, we have not found an instance which gives the
above bound. As we will see in Sect. 5, this algorithm runs fast in practice.
1 The bound M = O(N) can be achieved with string aN−1$ with N −1 = 2k for some

k. Observe that f1 = aa, f2 = f1f1 = aaaa, . . ., fm−1 = a
N−1

2 , and fm =$.
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3.2 Fast Online Algorithm for LZD Factorization

Here, we present a fast online algorithm to compute LZDT for a given string T
of length N . Our algorithm uses the suffix tree STT of a given string T . Since
every factor fi of LZDT = f1, . . . , fm is a substring of T , it is also represented
by either an implicit or explicit node of STT . Hence we have the following
observation: For any string T , the LZD tree for LZDT can be superimposed on
STT , by possibly introducing some non-branching internal nodes. Due to this
observation, we can compute LZDT in O(N) time and space in an offline manner
for integer alphabets, using the offline algorithm of [2] which computes the LZ78
factorization of T from the suffix tree of T . In what follows, we show how to
compute LZDT in O(N log σ) time using O(N) space in an online manner.

The basic strategy of our online algorithm is as follows. We first build the
suffix tree of T incrementally, using Ukkonen’s online suffix tree construction
algorithm [14]. Then, for each 1 ≤ i ≤ m, we find fi1 and fi2 on the suffix tree,
and then mark the node which represents fi (if there is no such node in the tree,
then we create a new node and mark it).

We modify Ukkonen’s algorithm as follows. As soon as we find the first
occurrence of each character c at some position r in the string, we create a
marked non-branching node v representing c, i.e., str(v) = c. A new leaf for the
suffix starting at position r is then created as a child of v. This permits us to
superimpose the children of the root of the LZD tree onto the suffix tree.

We construct the suffix tree of T [1..j] online, for increasing j = 1, . . . , N . For
each position 1 ≤ j ≤ N , Ukkonen’s algorithm maintains the following invariant:
the longest suffix T [sj ..j] of T [1..j] that has an occurrence in T [1..j − 1]. For
convenience, when the longest suffix is the empty string ε, then let sj = j + 1.
Also, let s0 = 0. We will use this suffix (and its location in the suffix tree) to
determine the first and second elements of each LZD factor.

Fig. 2. T [sj−1..j − 1] (resp. T [sj ..j]) is the longest suffix of T [1..j − 1] (resp. T [1..j])
that has an occurrence in T [1..j −2] (resp. T [1..j −1]). We have computed f1, . . . , fi−1

for the minimum i satisfying sj−1 ≤ |f1 · · · fi−1| + 1 < sj .

Assume that we have constructed the suffix tree for T [1..j] for some 1 ≤ j <
N such that sj−1 < sj . Also, assume that we have computed f1, . . . , fi−1 for the
minimum integer i satisfying sj−1 ≤ |f1 · · · fi−1| + 1 < sj (see also Fig. 2). For
any sj−1 ≤ k < sj , let Pk be the path spelling out T [k..j − 1] from the root.
While we update the suffix tree of T [1..j − 1] to that of T [1..j] by Ukkonen’s
algorithm, the ending position of path Pk in the tree can be found in amortized
constant time for each k, in increasing order. Let fi, . . . , fi′ be the consecutive
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LZD factors such that i′ is the minimum integer with |f1 · · · fi′ |+1 ≥ sj . Since a
node of the suffix tree is marked iff it represents one of the previous LZD factors
or a single character, for any k (sj−1 ≤ k < sj) the lowest marked node vk in the
path Pk represents the longest prefix T [k..k + depth(vk) − 1] of T [k..N ] which
is also a previous LZD factor or a single character. This allows us to efficiently
compute f� for each � = i, . . . , i′ − 1 in increasing order. As soon as we finish
computing each f�, we maintain the suffix tree so that it contains a marked
node which represents f�. Since we already know the location of the node which
represents f�1 , we can find the ending position of the path spelling out f� = f�1f�2

simply by traversing f�2 from the node representing f�1 . If f� is represented by
an explicit node in the current tree, we mark the node. Otherwise, we insert a
new marked node representing f� into the tree. Since

∑i′−1
�=i |f�2 | < |fi · · · fi′−1|,

this takes a total of O(|fi · · · fi′−1| log σ) time for all i ≤ � < i′.
In the sequel, we show how to compute the first element fi′

1
of fi′ . If sj = j+1

(i.e., j is the first occurrence of character T [j] in T [1..j]), then fi′
1

= T [j]. After
computing this, we mark the node representing T [j]. Otherwise, let z be the
lowest marked node in the path from the root which spells out T [|f1 . . . fi′−1| +
1..j]. By definition, it holds that |f1 . . . fi′−1| + depth(z) ≤ j. If |f1 . . . fi′−1| +
depth(z) < j, then fi′

1
is computed in the same way as above, namely fi′

1
=

str(z). If |f1 . . . fi′−1| + depth(z) = j, then we update the suffix tree of T [1..j]
to that of T [1..j′], where j′ > j is the minimum integer such that sj = sj′−1 ≤
|f1 . . . fi′−1| + 1 < sj′ . Then, we can compute fi′

1
in the same way as above, on

the suffix tree for T [1..j′]. The second element fi′
2

can be computed analogously,
and the node representing fi′ can be found and marked in O(|fi′ | log σ) time.
We repeat this procedure till we obtain all LZD factors for T (Fig. 3).

Fig. 3. When computing fi′1 , if |f1 . . . fi′−1|+depth(z) > j, then we update the suffix

tree of T [1..j] to that of T [1..j′] with the minimum j′ > j such that sj = sj′−1 ≤
|f1 . . . fi′−1| + 1 < sj′ . Then, fi′1 is represented by the lowest marked node in the path
P|f1...fi′−1|+1.

What remains is how to efficiently compute the lowest marked node in each
path Pk. We use the following result:

Lemma 3 ([1,15]). A semi-dynamic rooted tree can be maintained in linear
space in its size so that the following operations are supported in amortized O(1)
time: (1) find the nearest marked ancestor of any node; (2) insert an unmarked
node; (3) mark an unmarked node.
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By semi-dynamic we mean that insertions of new nodes to the tree are allowed,
while deletions of existing nodes from the tree are not allowed. Since Ukkonen’s
algorithm does not delete any existing nodes, we can use the above lemma in
our algorithm. If path Pk ends on an edge (i.e., if T [k..j − 1] is represented by
an implicit node), then we can use the lowest explicit node in the path Pk to
find the desired nearest marked ancestor.

After computing all LZD factors, we can discard the suffix tree. Ukkonen’s
algorithm constructs the suffix tree STT of string T in O(N log σ) time and O(N)
space. Since we can find all LZD factors in O(

∑m
i=1 |fi| log σ) = O(N log σ) time

and O(N) space, we obtain the following theorem:
Theorem 2 (Fast Online LZD Factorization). Given a string T of length
N , we can compute LZDT = f1, . . . , fm in O(N log σ) time and O(N) space in
an online manner, where σ is the alphabet size.

4 LZD Factorization with Variable-to-Fixed Encoding

This section proposes an extension of LZD factorization of Sect. 3 to a variable-
to-fixed encoding that runs in O(N + min(m, 2L)(M + min(m,M, 2L) log σ))
time and O(min(2L,m)) space, where L is the fixed bit-length of code words
representing factors, m is the number of factors, and M is the length of the
longest factor. We call this variant the LZDVF factorization.

Since we are allowed to use only 2L codes to represent the factors, we can
store at most 2L previous factors to compute new factors. A näıve solution
would be to compute and store the first 2L factors for the prefix T [1..|f1 . . . f2L |],
and then factorize the remaining suffix T [|f1 . . . f2L | + 1..N ] using the existing
dictionary, without introducing new factors to it. We store these factors in a
Patricia tree, and hence this algorithm uses O(min(2L,m)) space. Since there
are at most min(m,M, 2L)−1 branching nodes in the trie, this algorithm runs in
O(N + min(m, 2L)(M + min(m,M, 2L) log σ)) time. However, when the content
of the remainder T [|f1 . . . f2L | + 1..N ] is significantly different from that of the
prefix T [1..|f1 . . . f2L |], then the näıve algorithm would decompose the remainder
into many short factors, resulting in a poor compression ratio.

To overcome the above difficulties, our algorithms reuse limited encoding
space by deleting some factors, and store new factors there. We propose two
kinds of replacement strategies which we call LZDVF Count and LZDVF Pre
respectively. The first one counts the number of factors appearing in the deriva-
tion trees of the factors that are currently stored in the dictionary, and deletes
factors with low frequencies. This method is similar to the ones used in [8,12].
The second one deletes the least recently used factor in the dictionary in a similar
way to [11] which uses an LRU strategy for LZ78 factorization.

In both strategies, there are at most 2L entries in the dictionary and thus each
factor is encoded by an L-bit integer. Since code words are reused as new factors
are inserted and old factors are deleted from the dictionary, one may think that
this introduces difficulties in decompression. However, since the procedure is
deterministic, the change in assignment can be recreated during decompression,
and thus will not cause problems.
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4.1 Counter-Based Strategy

We define the derivation tree of each factor fi = fi1fi2 recursively, as follows.
The root of the tree is labeled with fi, with two children such that the subtree
rooted at the left child is the derivation tree of fi1 , and the subtree rooted at
the right child is the derivation tree of fi2 . If fi1 is a single character a, then its
derivation tree consists only of the root labeled with a. The same applies to fi2 .
Let vOcci(fj) denote the number of nodes in the derivation tree of fi which are
labeled with fj . For all factors fj that appear at least once in the derivation tree
of fi, we can compute vOcci(fj) in a total of O(|fi|) time by simply traversing
the derivation tree. Let count(fj) be the sum of vOccq(fj) for all factors fq

that are currently stored in the dictionary.
Assume that we have just computed a new factor fi = fi1fi2 . For each factor

fj with vOcci(fj) > 0, we first add vOcci(fj) to count(fj). If 2L factors are
already stored, then we do the following to delete factors from the dictionary.
Depending on whether fi1 and fi2 are single characters or not, at least one (just
fi), and at most 3 (fi and both fi1 , fi2) new factors are introduced. For all
factors fh that are currently stored in the dictionary, we decrease count(fh)
one by one, until for some factor fk, count(fk) = 0. We delete all such factors
and repeat the procedure until enough factors have been deleted.

As the number of nodes in the derivation tree of each factor fj is O(|fj |), the
sum of counter values for all factors is O(N). Hence, the total time required to
increase and decrease the counter values is O(N). Thus, the counter-based algo-
rithm takes O(N+min(m, 2L)(M+min(m,M, 2L) log σ)) time and O(min(2L,m))
space. When L can be seen as a constant, the algorithm runs in O(N+M+log σ) =
O(N) time and uses O(1) space.

4.2 Prefix-Based Strategy

Assume that we have computed the first i factors f1, . . . , fi. In the prefix-based
strategy, we consider a factor to be used at step i if it is a prefix of fi. If
fh1(= fi), fh2 , . . . , fhk

are the sequence of all k factors in the dictionary which
are prefixes of fi in decreasing order of their lengths, then we consider that these
factors are used in this chronological order. Hence, fhk

will be the most recently
used factor for step i. We use a doubly-linked list to maintain the factors, with
the most recently used factor at the front and the least recently used factor at
the back of the list. At each step i, we update the information for the factors
fh1 , . . . , fhk

. For any 1 ≤ j ≤ k, if fhj
is already in the list, we simply move it

to the front of the list. Since the list is doubly linked, this can be done in O(1)
time. Otherwise, we simply insert a new element for fhj

to the front of the list,
and delete the LRU factor at the back of the list if the size of the list exceeded
2L. This can also be done in O(1) time.

The factors fh1 , . . . , fhk
can easily be found by maintaining the existing fac-

tors in a trie. Note that in each step of the algorithm, the LRU factor to be
deleted is always a leaf of the trie since we have inserted the most recently used
factors in decreasing order of their lengths. Hence, it takes O(1) time to remove
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the LRU factor from the trie. Overall, the prefix-based algorithm also takes
O(N + min(m, 2L)(M + min(m,M, 2L) log σ)) time and O(min(2L,m)) space,
which are respectively O(N) and O(1) when L is a constant.

5 Computational Experiments

All computations were conducted on a Mac Xserve (Early 2009) (Mac OS X
10.6.8) with 2 x 2.93 GHz Quad Core Xeon processors and 24 GB Memory, but
only running a single process/thread at once. Each core has L2 cache of 256 KB
and L3 cache of 8 MB. The programs were compiled using LLVM C++ compiler
(clang++) 3.4.2 with the -Ofast option for optimization.

We implemented the space efficient on-line LZD algorithm described in
Sect. 3.1, and the algorithms LZDVF Count and Pre with variable-to-fixed encod-
ing described in Sect. 42, and compared them with the state-of-the art of gram-
mar compression algorithms OLCA [7] and FOLCA [9]. For LZD, the resulting
grammar is first transformed to a Straight line program (SLP) by transform-
ing the first rule S → f1 · · · fm; replacing consecutive factors with non-terminal
variables iteratively until the number of non-terminal variables equals to 1, and
then the SLP is encoded in the same way as [7]. The output of LZDVF is a
sequence of pairs of fixed-length code words that describes each LZD factor.

We evaluated the compression ratio, compression and decompression speed3

of each algorithm for data (non highly-repetitive4 and highly-repetitive5) taken
from the Pizza & Chili Corpus. The running times are measured in seconds, and
includes the time reading from and writing to the disk. The disk and memory
caches are purged before every run using the purge command. The average of
three runs is reported. The results are shown in Fig. 4 (a)-(d). We can see that
compared to LZ78, LZD improves the compression ratio for all cases, as well
as compression/decompression times in almost all most cases. The compression
ratio of LZD is roughly comparable to OLCA, but the compression time of LZD
slightly outperforms that of OLCA for highly repetitive texts, though not for
the non-highly repetitive texts.

We also evaluated the performance of our algorithms for large-scale highly
repetitive data, using 10 GB of English Wikipedia edit history data6 (See Fig. 4
(e) and (f)). In this experiment, we modified LZDVF Pre and Count so that
they do not read the whole input text into memory, and to explicitly store the
edge labels of the Patricia tree that represents the factors. This modification
increases the required working space from O(min(2L,m)) to O(min(2L,m)M),
but allows us to process large-scale data which does not fit in main memory. We
compared the modified version of LZDVF Pre and Count with Freq and Lossy
2 Source codes are available at https://github.com/kg86/lzd.
3 The number of characters the algorithm can process a second.
4 http://pizzachili.dcc.uchile.cl/texts.html.
5 http://pizzachili.dcc.uchile.cl/repcorpus.html.
6 The first 10 GB of enwiki-20150112-pages-meta-history1.xml-p000000010p00000

2983.7z, downloaded from http://dumps.wikimedia.org/backup-index.html.

https://github.com/kg86/lzd
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://dumps.wikimedia.org/backup-index.html
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Fig. 4. Compression and decompression speed wrt. compression ratios. Results for
LZD, LZDVF Pre and Count (VFPre and VFCount), OLCA [7] and FOLCA [9] on:
(a), (b) non highly repetitive texts (DNA, English, Proteins, Sources, XML) of size
200 MB and (c), (d) highly repetitive texts (einstein.en, Escherichia Coli, influenza,
kernel, para, world leaders). (e), (f): Results for LZDVF Pre and Count (VFPre and
VFCount), Freq and Lossy FOLCA [8] (FOFreq and FOLossy), and ADS [12], which
are grammar compression algorithms that do not store the whole input text in RAM, on
10 GB of English Wikipedia edit history. The parameters that determine the maximum
number of non-terminal variables that VFPre, VFCount, FOFreq, ADS can store are
varied between 212, 214, 216 respectively. The block size parameter is varied 100 MB
and 500 MB for ADS, and 100 MB, 500 MB, 1000 MB for FOLossy. Note that the points
out of the frame are not plotted for visibility.
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FOLCA [8], and ADS [12] which use constant space. In this experiment, LZDVF
Pre with bit-size of 16 shows the best performance. Surprisingly, it reduces the
compression time to about a seventh of that of FOLCA Freq, which is the fastest
of the previous grammar compression algorithms applicable to such large-scale
data, while achieving a better compression ratio.

Acknowledgements. We would like to thank Shirou Maruyama and Takuya Kida
for providing source codes of their compression programs FOLCA and ADS.
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