
Compact Indexes for Flexible Top-k Retrieval

Simon Gog1(B) and Matthias Petri2

1 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
gog@kit.edu

2 The University of Melbourne, Parkville, VIC 3010, Australia
matthias.petri@unimelb.edu.au

Abstract. We design and engineer a self-index based retrieval system
capable of rank-safe evaluation of top-k queries. The framework gener-
alizes the GREEDY approach of Culpepper et al. (ESA 2010) to handle
multi-term queries, including over phrases. We propose two techniques
which significantly reduce the ranking time for a wide range of popu-
lar Information Retrieval (IR) relevance measures, such as TF × IDF and
BM25. First, we reorder elements in the document array according to doc-
ument weight. Second, we introduce the repetition array, which general-
izes Sadakane’s (JDA 2007) document frequency structure to document
subsets. Combining document and repetition array, we achieve attractive
functionality-space trade-offs. We provide an extensive evaluation of our
system on terabyte-sized IR collections.

1 Introduction

Calculating the k most relevant documents for a multi-term query Q against a
set of documents D is a fundamental problem – the top-k document retrieval
problem – in Information Retrieval (IR). The relevance of a document d to Q
is determined by evaluating a similarity function S such as BM25. Exhaustive
evaluation of S generates scores for all d in D. The top-k scored documents in
the list are then reported. Algorithms which guarantee production of the same
top-k results list as the exhaustive process are called rank-safe.

The inverted index is a highly-engineered data structure designed to solve
this problem. The index stores, for each unique term in D, the list of documents
containing that term. Queries are answered by processing the lists of all the
query terms. Advanced query processing schemes [2] process lists only partially
while remaining rank-safe. However, additional work during construction time
is required to avoid scoring non-relevant documents at query time. Techniques
used to speed up query processing include sorting lists in decreasing score order,
or pre-storing score upper bounds for sets of documents which can then safely be
skipped during query processing. These pre-processing steps introduce a depen-
dency between S and the stored index. Changing the S requires at least partial
reconstruction of the index, which in turn reduces the flexibility of the retrieval
system.

Another family of retrieval systems is based on self-indexes [16]. These
systems support functionality not easily provided by inverted indexes, such as
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 207–218, 2015.
DOI: 10.1007/978-3-319-19929-0 18

208 S. Gog and M. Petri

efficient phrase search, and text extraction. Systems capable of single-term top-k
queries have been proposed [17,20] and work well in practice [8,13].

Hon et al. [12] investigate top-k indexes which support different scoring
schemes such as term frequency or static document scores. They also extended
their framework to multi-term queries and term proximity. While the space of
the multi-term versions is still linear in the collection size the query time gets
dependent on the root of the collection size. At CPM 2014, Larson et al. [14]
showed that it is not expected to improve their result significantly by reducing
the boolean matrix multiplication problem to a relaxed version of Hon et al.’s
problem, i.e. just answering the question whether there is a document which
contains both of the query times. While the single-term version of Hon et al.’s
framework was implemented and studied by several authors [5,19] there is not
yet an implementation of a rank-safe multi-term version.

Our Contributions. We propose, to the best of our knowledge, the first flexible
self-index based retrieval framework capable of rank-safe evaluation of multi-
term top-k queries for complex IR relevance measures. It is based on a general-
ization of GREEDY [4]. We suggest two techniques to decrease the number of
evaluated nodes in the GREEDY approach. The first is reordering of documents
according to their length (or other suitable weight), the second is a new struc-
ture called the repetition array, R. The latter is derived from Sadakane’s [25]
document frequency structure, and is used to calculate the document frequency
for subsets of documents. We further show that it is sufficient to use only R
and a subset of the document array if query terms, which can also be phrases,
are length-restricted. Finally, we evaluate our proposal on two terabyte-scale IR
collections. This is, to our knowledge, three orders of magnitudes larger than
previous self-index based studies. Our source code and experimental setup is
publicly available.

2 Notation and Problem Definition

Let D′ = {d1, . . . , dN−1} be a collection of N − 1 documents. Each di is a
string over an alphabet (words or characters) Σ′ = [2, σ] and is terminated
by the sentinel symbol ‘1’, also represent as ‘#’. Adding the one-symbol doc-
ument d0 = 0 results in a collection D of N documents. The concatenation
C = dπ(0)dπ(1) . . . dπ(N−1) is a string over Σ = [0, σ], where π is a permutation
of [0, N −1] with π(N −1) = 0. We denote the length of a document di with
|di| = ndi

, and |C| = n. See Fig. 1 for a running example. In the “bag of words”
model a query Q = {q0, q1, . . . , qm−1} is an unordered set of length m. Each
element qi is either a term (chosen from Σ′) or a phrase (chosen from Σ′p for
p > 1).

Top-k Document Retrieval Problem. Given a collection D, a query Q of length m,
and a similarity measure S :D×P=m(Σ′) → R. Calculate the top-k documents
of D with regard to Q and S, i.e. a sorted list of document identifiers T =
{τ0, . . . , τk−1}, with S(dτi , Q) ≥ S(dτi+1 , Q) for i < k and S(dτk−1 , Q) ≥ S(dj , Q)
for j �∈ T.

Compact Indexes for Flexible Top-k Retrieval 209

Fig. 1. C is the concatenation of a document collection D for π = [1, 3, 2, 0]. We use
both words (as in Cword) or integer identifiers (as in C) to refer to document tokens.

A basic similarity measure used in many self-index based document retrieval
systems (see [16]), is the frequency measure Sfreq. It scores d by accumulating
the term frequency of each term. Term frequency fd,q is defined as the number
of occurrences of term q in d; e.g. in Fig. 1. In IR, more complex
TF × IDF measures also include two additional factors. The first is the inverse of
the document frequency (df), which is the number of documents in D that contain
q, defined FD,q; e.g. The second is the length of the document nd.
Due to space limitations, we only present the popular Okapi BM25 function:

SBM25
Q,d =

∑

q∈Q

(k1 + 1)fd,q

k1

(
1 − b + b nd

navg

)
+ fd,q

︸ ︷︷ ︸
=wd,q

· fQ,q · ln
(

N − FD,q + 0.5

FD,q + 0.5

)

︸ ︷︷ ︸
=wQ,q

(1)

where navg is the mean document length, and wd,q and wQ,q refer to components
that we address shortly. Parameters k1 and b are commonly set to 1.2 and 0.75
respectively. Note that the wQ,q part is negative for FD,q > N

2 . To avoid negative
scores, real-world systems, such as Vigna’s MG4J [1] search engine, set wQ,q to
a small positive value (10−6), in this case. We refer to Zobel and Moffat [29] for
a survey on IR similarity measures including TF × IDF, BM25, and LMDS.

3 Data Structure Toolbox

We briefly describe the two most important building blocks of our systems, and
refer the reader to Navarro’s survey [16] for detailed information. A wavelet tree
(WT) [10] of a sequence X[0, n−1] over alphabet Σ[0, σ−1] is a perfectly balanced
binary tree of height h = �log σ�, referred to as WT-X. The i-th node of level
� ∈ [0, h−1] is associated with symbols c such that �c/2h−1−�� = i. Node v,
corresponding to symbols Σv = [cb, ce] ⊆ [0, σ − 1], represent the subsequence
Xv of X filtered by symbols in Σv. Only the bitvector which indicates if an
element will move to the left or right subtree is stored at each node; that is,
WT-X is stored in n�log σ� bits. Using only sub-linear extra space it is possible
to efficiently navigate the tree. Let v be the i-th node on level � < h−1, then
method expand(v) returns in constant time a node pair 〈u,w〉, where u is the
(2·i)-th and w the (2·i+1)-th node on level �+1. A range [l, r] ⊆ [0, n−1] in X can
be mapped to range [l, r]v in node v such that the sequence Xv[l, r]v represents
X[l, r] filtered by Σv. Operation expand(v, [l, r]v) then returns in constant time

210 S. Gog and M. Petri

Fig. 2. Wavelet tree over document array D. Method expand(vroot, [4, 9]) maps range
[4, 9] (locus of) to range [2, 3] in the left and range [2, 5] in the right child.

a pair of ranges 〈[l, r]u, [l, r]w〉 such that the sequence Xu[l, r]u (resp. Xw[l, r]w)
represents X[l, r] filtered by Σu (resp. Σw). Figure 2 provides an example.

The binary suffix tree (BST) of string X[0, n−1] is the compact binary trie
of all suffixes of X. For each path p from the root to a leaf, the concatenation of
the edge labels of p, corresponds to a suffix. The children of a node are ordered
lexicographically by their edge labels. Each leaf is labeled with the starting
position of its suffix in X. Read from left to right, the leaves form the suffix
array (SA), which is a permutation of [0, n − 1] such that X[SA[i], n−1] <lex

X[SA[i+1], n− 1] for all 0 ≤ i < n− 1. We refer to Fig. 3 for an example.
Compressed versions of SA and ST – the compressed SA (CSA) and compressed
ST (CST) – use space essentially equivalent to that of the compressed input,
while efficiently supporting the same operations [23,24]. For example, given a
pattern P of length m, the range [l, r] in SA containing all suffixes start with
P or the corresponding node, that is the locus of P , in the BST is calculated in
O(m log σ).

Fig. 3. Top: BST of the example in Fig. 1. The leaves form SA, the gray numbers
below form D. Bottom: Bitvector H[0, 2n− N− 1] and repetition array R.

Compact Indexes for Flexible Top-k Retrieval 211

4 Revisiting and Generalizing the GREEDY Framework

The GREEDY framework [4] consists of two parts: a CSA built over C, and a WT
over the document array D[0..N − 1]; with each D[i] specifying the document in
which suffix SA[i] starts. A top-k query using Sfreq with m = 1 is answered as
follows. For term q = q0 the CSA returns a range [l, r], such that all suffixes in
SA[l, r] are prefixed by q. The size of the range corresponds to fD,q, the number
of occurrences of q in D. In WT-D the alphabet Σv of each node represents a subset
Dv ⊆ D of documents of D; and the size of the mapped interval [l, r]v equals fDv,q,
the number of occurrences of q in the subset Dv. Each leaf v in WT-D corresponds
to a d ∈ D, such that the size of [l, r]v equals term frequency fd,q.

To calculate the documents with maximal fd,q, i.e. maximizing Sfreq
q,d , a max

priority queue stores 〈v, [l, r]v〉-tuples sorted by interval size. Initially, WT-D’s
root node and [l, r] is enqueued. The following process is repeated until k doc-
uments are reported or the queue is empty: dequeue the top element 〈v, [l, r]v〉.
If v is a leaf, the corresponding document is reported. Otherwise the interval is
expanded and the two tuples 〈u, [l, r]u〉 and 〈w, [l, r]w〉 containing the expanded
ranges are enqueued.

This process returns the correct result if fD,q at a parent is never smaller
than that of a child (fDu,q or fDw,q). The interval size fD,q is never smaller
than the maximum fd,q value in the subtree. Thus, in general the algorithm is
correct, if (1) the score estimate sv at any node v is larger than or equal to
the maximum document score in v’s subtree and (2) the score estimates su and
sw of the children of v are not larger than sv. For many similarity measures
(e.g. TF × IDF, BM25, and LMDS) theses conditions hold true if sv is computed
as follows: first, all document-independent parts, such as query weight wQ,q are
determined. Then nd is estimated with the smallest document length nmin in D
if v is an inner node. Last, the maximal term frequency fd,q of each term qi is
set to fD,qi , the size of interval [li, ri]v. Since each interval size is non-increasing
when traversing down WT-D the algorithm is correct, but not necessarily effi-
cient. Instead of processing only one range, wavelet tree based algorithms can be
process multiple ranges simultaneously [6]. In this case, the queue stores states
〈sv, v, {[l0, r0]v, . . . , [lm−1, rm−1]v}〉 sorted by sv. Processing a state takes O(m)
time as m intervals are expanded.

5 Improving Score Estimation

The runtime of GREEDY is dependent on the process time of a state and the
number of states evaluated, which is determined by the quality of the score
estimations.

Length Estimation by Document Relabelling. We improve document length esti-
mation in Dv by replacing the collection-wide value nmin by the smallest docu-
ment length nd̃ in the sub-collection Dv. The computation of nd̃ can be performed
in constant time if the document identifiers are assigned in documents length
order. Thus, the smallest document corresponds to smallest symbol in Dv which

212 S. Gog and M. Petri

is Σv[0] which can be computed in constant time. Let v be the i-th node of level
� in WT-Dn then Σv[0] = i · 2�log N�−�−1. The document lengths are stored in
an array L[0, N − 1]. In Figs. 1 and 2 the documents are reordered using the
permutation π = [1, 3, 2, 0]. The additional space of N log N + N log nmax bits
is negligible compared to the size of the CSA and D.

Improved Term Frequency Estimation. Until now we use the range size fDv,q

of term q in v to estimate an upper bound for the maximal term frequency in
a document d ∈ Dv. Knowing the number of distinct documents in Dv, called
FDv,q, helps to improve the upper bound to the number of repetitions plus one:
δDv,q = fDv,q − FDv,q + 1. In this section, we present a method that computes
δDv,q in constant time during WT-D traversal. The solution is built on top of
Sadakane’s [25] document frequency structure (DF), which solves the problem
solely for Cv = C. We briefly revisit the structure: first, a BST is built over C,
see Fig. 3. The leaves are labeled with the corresponding documents, i.e. from
left to right D is formed. The inner nodes are numbered from 1 to n − 1 in-
order. Each node wi holds a list Ri, containing all documents which occur in
both subtrees of wi. We refer to elements in Ri as repetitions. Let wi be the
locus of a term q in the BST and let [l, r] be wi’s interval. Then the total
number of repetitions in D[l, r] can be calculated by accumulating the length
of all repetition lists in wi’s subtree. To achieve this, Sadakane generated a
bitvector H that concatenates the unary coding of the lengths of all Ri: H =
10|R0|10|R1|1 . . . 0|Rn−1|1. The subtree interval [l, r] can be mapped into H via
select operations: [l′, r′] = [select1(l,H), select1(r,H)], since the accumulation
of the list lengths equals the number of zeros in [l′, r′]. The following example
illustrates the process: interval [4, 9] corresponds to term q = and is mapped
to [l′, r′] = [select1(4,H), select1(9,H)] = [7, 15] in H. It follows that there are
zl = l′ − l = 3 zeros in H[0, l′] and zr = r′ −r = 6 in H[0, r′]; thus there are
6−3 = 3 repetitions in D[4, 9]. We can overestimate the maximal term frequency
by assuming that all repetitions belong to the same document dx and add one
for dx itself. So δDv,q = 4 in this case. This overestimates the maximal term
frequency, which is fd3,q = 3, by one. The interval size estimate would have
been 6.

We now extend Sadakane’s solution to work on all subsets Dv. First, we
concatenate all Ri and form the repetition array R[0, n−N−1] (again, see Fig. 3),
containing the actual repetition value for each zero in H. As above, using H and
select1, we can map [l, r] to the corresponding range [l′′, r′′] = [zl, zr − 1] in R.
To calculate δDv,q for Dv we represent R as a WT. Now, we can traverse WT-D
and WT-R simultaneously, mapping [l′′, r′′] to [l′′, r′′]v in WT-R. The size of
[l′′, r′′]v+1 equals δDv,q since node v contains only repetitions of Dv.

6 Space Reduction

The space of R can be reduced to array R̂ by omitting all elements belonging to
the root vST of the non-binary ST since we will never query the empty string.
In Fig. 3 all nodes with empty path labels correspond to vST , i.e. v1, v4, and v10.

Compact Indexes for Flexible Top-k Retrieval 213

Hence R̂ = {3, 3, 1, 2} and we use a bitvector to map from the index domain of
R into R̂.

Second, we note that the space of WT-D and WT-R̂ can be reduced if the
length of query phrases is restricted to length �. In this case, we can sort ranges
in R̂ which belong to nodes vi, where vi are the loci of patterns of length �.
Since all query ranges are aligned at borders of sorted ranges, the interval sizes
during processing will not be affected. In our example, if � = 1, we sort the
elements of v9’s subtree, resulting in R̂1 = {1, 3, 3, 2}. The sorting will result in
H0(T)-compression of WT-R̂� for � = 1.

Third, we observe that when using WT-R̂� only a part of WT-D is necessary
to calculate δDv,q. If q occurs more than once in Dv, WT-R̂� can be used to
get δDv,q. Hence, WT-D is only used to determine the existence of q in Dv,
and we only need to store the unique values inside ranges corresponding to loci
of �-length patterns. In addition, values in these ranges can be sorted, since
this does not change the result of the existence queries. In our example we get
D1 = {3, 0, 1, 2, 0, 1, 2, 0, 1, 2}; one increasing sequence per symbol. A bitvector
is again used to map into D�.

7 Experimental Study

Indexes and Implementations. To evaluate our proposals we created the SUccinct
Retrieval Framework (surf) which implements document retrieval specific com-
ponents, like Sadakane’s DF structure. These components can be parametrized
by structures provided by the sdsl library [7]. We assembled three self-index
based systems, corresponding to different functionality-space trade-offs. All sys-
tems use the same CSA and DF structure. The CSA is a FM-index using a WT.
The WT as well as DF use RRR bitvectors [18,22] to minimize space.

Our first index (i-dn) adds WT-Dn, which uses plain bitvectors to allow fast
WT traversal. Our second structure adds WT-R̂n. A RRR bitvectors
compresses the increasing sequences in R̂n. A variant of the latter index is ,
which restricts the phrase length to one, and will show a functionality-space
trade-off. In this version WT-D1 is also compressed by using RRR vectors.

As a reference point we also implemented a competitive inverted index
(invidx) which stores block-based postings lists compressed using OptPFD [15,
28]. For each block, a representative is stored to allow efficient skipping. The top-
k documents are calculated using two processing schemes. The first scheme –
invidx-w – uses the efficient Wand list processing algorithm [2]. However,
Wand requires pre-computation specific to S at construction time. A more flex-
ible, but less efficient algorithm – invidx-e – exhaustively evaluates all postings
in document-at-a-time order without either the burden or benefit of score pre-
computation.

Data Sets and Environment. We use two standard IR test collections: (1) the
Gov2 test collection of the TREC 2004 Terabyte Track and (2) the ClueWeb09
collection consists of “Category B” subset of the ClueWeb09 dataset. To ensure
reproducibility we extract the integer token sequence C from Indri [26] using

214 S. Gog and M. Petri

Fig. 4. Collection statistics for Gov2 and ClueWeb09.

default parameters. We selected 1000 randomly sampled queries from both the
TREC 2005 and 2006 Terabyte tracks efficiency queries, ensuring all query terms
are present in both collections. Statistics of our datasets (see Fig. 4) are in line
with other studies [27]. We support ranked disjunctive (Ranked-OR, at least one
term must occur) and ranked conjunctive (Ranked-AND, all terms must occur)
retrieval. All indexes were loaded into RAM prior to query processing. Our
machine was equipped with 256 GiB RAM and one Intel E5-2680 CPU.

Space Usage. The space usage of our indexes is summarized in Fig. 5 (right). All
indexes are much larger than our inverted index, which uses 7.3 GiB for Gov2
and 22.8 GiB for ClueWeb09. The space of the compressed docid and frequency
representations is 5.1 GiB and 17.6 GiB respectively which is comparable to other
recent studies [21]. However, an inverted index supporting phrase queries would
require additional positional information, which would significantly increase its
size. The size of our integer parsing of size n�log σ� is shown as a horizontal
line. The CSA for both collections compresses to roughly 30% of the size of
the integer parsing. The space for DF is negligible. The WT-Dn has the size of

Fig. 5. Left: Memory breakdown of our indexes. |Craw| denotes the original size of the
collection, while |Cword| denotes the size after parsing it. A more detailed space break-
down of the indexes is available at http://go.unimelb.edu.au/6a4n. Right: Percentage
of states evaluated for k = 10, 100, and 1000 during Ranked-OR retrieval using BM25 for
queries on Gov2.

http://go.unimelb.edu.au/6a4n

Compact Indexes for Flexible Top-k Retrieval 215

the integer parsing plus 5% overhead for a rank structure. The size reduction
from R to R̂ is substantial. For example, storing R for ClueWeb09 requires
123 GiB, whereas R̂ requires only 74 GiB. Restricting the phrase length to one

, which makes it equivalent to a non-positional inverted index, shrinks
the structure below the original input size.

Processed States. First, we measure the quantitative effects of our improved score
estimation during GREEDY processing. We compare the range size (fDv,q)-only
estimation to (a) range size estimation including document length estimation and
(b) repeats estimation (δDv,q) including document length estimation. Figure 5
shows the percentage of processed states for all methods and k = {10, 100, 1000}
for both query sets on Gov2 using BM25 Ranked-OR processing. The percentage is
calculated as the fraction of states processed compared to the exhaustive process-
ing of each query (k = N). For all k, range size only estimation evaluates the
most states on average. For k = 10, the median percentage of evaluated states for
range size only estimation is 1.6%. Adding document length estimation reduces
the number of evaluated states to 0.8%. Using δDv,q instead of fDv,q to estimate
the frequency further improved the percentage of evaluated states to 0.06%.
Similar effects can be observed for k = 100 and k = 1000. For k = 1000, docu-
ment length estimation reduces the percentage from 5.1% to 3.2%. Frequency
estimation using δDv,q again marginally improves the number of evaluated nodes
to 2.8%. Overall, document length estimation has a larger impact on GREEDY
than better frequency estimation via δDv,q.

Disjunctive Ranked Retrieval. Next we evaluate the performance of i-dn,
for BM25 Ranked-OR query processing. Figure 6 (left) shows run-

time on Gov2 and both query sets for k = {10, 100, 1000}. We additionally
included invidx-w as a reference point for an efficient inverted index. The latter
uses additional similarity measure dependent information and clearly outper-
forms all self-index based indexes. For k = 10, it achieves a median runtime
performance of less than 20 ms, and performs well for other test cases. How-
ever, if an additional k + 1-th item is to be retrieved with the inverted index,
the computation has to be restarted, whereas returning additional results using
GREEDY is efficient. Our fastest index, i-dn, is roughly 15 times slower, achiev-
ing a median runtime of 300 ms for k = 10. The indexes and are
approximately two times slower than i-dn. This can be explained by the fact that
i-dn uses an uncompressed WT, whereas the other indexes use compressed WTs
to save space. Also note that is faster than as ranges in R̂1 can be
sorted, which creates runs in the WT which in turn allows faster state processing.
The mean time per processed state – depicted in Fig. 6 (right) – highlights this
observation. For i-dn, the time linearly increases from 2 to 5 microseconds. While
there is a correlation to the number of query terms, rank operations occur in
close proximity – cache friendly – within WT-Dn, which increases performance.
For the other indexes, we simultaneously access two WTs to evaluate a single
state. This doubles the processing time per state.

216 S. Gog and M. Petri

Fig. 6. Runtime (left) and WT state process time for k = 100 (right) for BM25

Ranked-OR.

Efficient Retrieval Using Multi-Word Expressions. Multi-word queries often con-
tain mutli word expressions (MWE), i.e. sequences of words which describe one
concept; e.g. the terms “saudi” and “arabia” are strongly associated [3] in our
collections and would be recognized as one concept “saudi arabia”. Using our
index we can efficiently parse a query into MWE [9] (the problem of parsing
MWE is also know as the query segmentation problem in IR; see e.g. [11]).
Figure 7 (left) explores the runtime of MWE queries generated from Trec2006
for Gov2 using i-dn. The runtime is reduced by an order of magnitude. This
experiment shows how our system would support retrieval tasks where the vocab-
ulary does not consist of words but a large number of entities. Supporting MWE
does not increase the size of our index, but vastly increases the size of an inverted
index.

Flexible Document Retrieval. Our indexes efficiently support a wide range of
similarity measures, which can be changed and tuned after the index is built,
while optimized inverted indexes require pre-computation depending on S at
construction time [2]. If ranking functions are only chosen at query time, inverted
indexes require exhaustive list processing. Figure 7 (right) shows the benefits of
scoring flexibility. We compare our index structures to invidx-e using three
ranking formulas: TF × IDF, BM25, and LMDS on Gov2. Our index structures
significantly outperform the exhaustive inverted index for TF × IDF. This can
be attributed to the influence of the document length nd on STF×IDF. Unlike
BM25 or LMDS, the final document score is linearly proportional to the actual
size of the document, thus document length estimation significantly reduces the
number of evaluated states. For BM25, the document length contribution to the
final document score is normalized by the average document length, and thus
has a smaller effect on the overall score of each document.

Compact Indexes for Flexible Top-k Retrieval 217

Fig. 7. BM25 runtime for MWE queries (left) Ranked-OR runtime for different S (right).

8 Conclusions

We presented a self-index based retrieval framework which allows rank-safe top-
k retrieval on multi-term queries using complex scoring functions. The proposed
estimation methods have improved the query speed compared to frequency-only
score estimation. We found that top-k document retrieval is still solved more
efficiently by inverted indexes, if augmented by similarity measure-dependent
pre-computations. However, self-index based systems provide can be used in
scenarios where the inverted index is not applicable or slower such as phrase
retrieval or query segmentation.

Acknowledgments. We are grateful to Paul Cook, who pointed us to [3], and Alistair
Moffat and Andrew Turpin for fixing our grammar. This research was supported by a
Victorian Life Sciences Computation Initiative (VLSCI) grant number VR0052 on its
Peak Computing Facility at the University of Melbourne, an initiative of the Victorian
Government. Both authors were funded by ARC DP grant DP110101743.

References

1. Boldi, P., Vigna, S.: MG4J at TREC 2005. In: Proceedings of the TREC (2005)
2. Broder, A.Z., Carmel, D., Herscovici, H., Soffer, A., Zien, J.: Efficient query evalu-

ation using a two-level retrieval process. In: Proceedings of the CIKM, pp. 426–434
(2003)

3. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexi-
cography. Comput. Linguist. 16(1), 22–29 (1990)

4. Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k ranked document
search in general text databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part
II. LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

5. Culpepper, J.S., Petri, M., Scholer, F.: Efficient in-memory top-k document
retrieval. In: Proceedings of the SIGIR, pp. 225–234 (2012)

6. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-
cations to information retrieval. Theoret. Comput. Sci. 426, 25–41 (2012)

218 S. Gog and M. Petri

7. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

8. Gog, S., Navarro, G.: Improved single-term top-k document retrieval. In: Proceed-
ings of the ALENEX, pp. 24–32 (2015)

9. Gog, S., Moffat, A., Petri, M.: On identifying phrases using collection statistics.
In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol.
9022, pp. 278–283. Springer, Heidelberg (2015)

10. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of the SODA, pp. 841–850 (2003)

11. Hagen, M., Potthast, M., Beyer, A., Stein, B.: Towards optimum query segmen-
tation: in doubt without. In: Proceedings of the DIR, pp. 28–29 (2013). http://
ceur-ws.org/Vol-986/paper 8.pdf

12. Hon, W.K., Shah, R., Thankachan, S.V., Vitter, J.S.: Space-efficient frameworks
for top-k string retrieval. J. ACM 61(2), 1–36 (2014)

13. Konow, R., Navarro, G.: Faster compact top-k document retrieval. In: Proceedings
of the DCC, pp. 351–360 (2013)

14. Larsen, K.G., Munro, J.I., Nielsen, J.S., Thankachan, S.V.: On hardness of several
string indexing problems. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.)
CPM 2014. LNCS, vol. 8486, pp. 242–251. Springer, Heidelberg (2014)

15. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. Soft. Prac. Exp. 45, 1–29 (2013)

16. Navarro, G.: Spaces, trees and colors: the algorithmic landscape of document
retrieval on sequences. ACM Comp. Surv. 46(4), 1–47 (2014)

17. Navarro, G., Nekrich, Y.: Top- k document retrieval in optimal time and linear
space. In: Proceedings of the SODA, pp. 1066–1077 (2012)

18. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 295–306. Springer, Heidelberg (2012)

19. Navarro, G., Puglisi, S.J., Valenzuela, D.: General document retrieval in compact
space. J. Experimental Alg. 19(2), 1–46 (2014)

20. Navarro, G., Thankachan, S.V.: New space/time tradeoffs for top-k document
retrieval on sequences. Theor. Comput. Sci. 542, 83–97 (2014)

21. Ottaviano, G., Venturini, R.: Partitioned Elias-Fano indexes. In: Proceedings of
the SIGIR, pp. 273–282 (2014)

22. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proceedings of the SODA, pp. 233–242
(2002)

23. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
Alg. 48(2), 294–313 (2003)

24. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007)

25. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Dis-
crete Alg. 5(1), 12–22 (2007)

26. Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language model-based
search engine for complex queries. In: Proceedings of the International Conference
on Intelligent Analysis (2005)

27. Vigna, S.: Quasi-succinct indices. In: Proceedings of the WSDM, pp. 83–92 (2013)
28. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with

optimized document ordering. In: Proceedings of the WWW, pp. 401–410 (2009)
29. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comp. Surv.

38(2), 1–56 (2006)

http://ceur-ws.org/Vol-986/paper_8.pdf
http://ceur-ws.org/Vol-986/paper_8.pdf

	Compact Indexes for Flexible Top-k Retrieval
	1 Introduction
	2 Notation and Problem Definition
	3 Data Structure Toolbox
	4 Revisiting and Generalizing the GREEDY Framework
	5 Improving Score Estimation
	6 Space Reduction
	7 Experimental Study
	8 Conclusions
	References

