Ferdinando Cicalese
Ely Porat
Ugo Vaccaro (Eds.)

Combinatorial
Pattern Matching

26th Annual Symposium, CPM 2015
Ischia Island, Italy, June 29 - July 1, 2015
Proceedings

LNCS 9133

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Ziirich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9133

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ferdinando Cicalese - Ely Porat
Ugo Vaccaro (Eds.)

Combinatorial
Pattern Matching

26th Annual Symposium, CPM 2015
Ischia Island, Italy, June 29 — July 1, 2015
Proceedings

@ Springer

Editors
Ferdinando Cicalese

Department of Computer Science
University of Verona

Ugo Vaccaro
Department of Computer Science
University of Salerno

Verona Fisciano
Italy Italy
Ely Porat

Department of Computer Science
Bar-Ilan University

Ramat Gan

Israel

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-319-19928-3

DOI 10.1007/978-3-319-19929-0

ISSN 1611-3349 (electronic)

ISBN 978-3-319-19929-0 (eBook)

Library of Congress Control Number: 2015940414
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(Www.springer.com)

Preface

This volume contains the papers presented at the 26th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2015) held during June 29 — July 1, 2015, in Ischia,
Italy.

The conference program included 34 contributed papers and three invited talks by
Sorin Istrail from Brown University, USA, Rasmus Pagh from IT University of
Copenhagen, Denmark, and Wojciech Szpankowski from Purdue University, USA.
The contributed papers were selected out of 83 submissions from 35 countries, cor-
responding to an acceptance ratio of 40.9 %. Each submission received at least three
reviews. We thank the members of the Program Committee and all the additional
external reviewers for their hard and invaluable work that resulted in an excellent
scientific program. Their names are listed on the following pages.

The objective of the annual CPM meetings is to provide an international forum for
research in combinatorial pattern matching and related applications. It addresses issues
of searching and matching strings and more complicated patterns such as trees, regular
expressions, graphs, point sets, and arrays. The goal is to derive combinatorial prop-
erties of such structures and to exploit these properties in order to achieve a superior
performance for the corresponding computational problems. The meeting also deals
with problems in computational biology, data compression and data mining, coding,
information retrieval, natural language processing, and pattern recognition.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and
has since taken place every year. Previous CPM meetings were held in Paris, London
(UK), Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway,
Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona,
London (Ontario, Canada), Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb,
and Moscow. Starting from the third meeting, proceedings of all meetings have been
published in the LNCS series, as volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645,
1848, 2089, 2373, 2676, 3109, 3537, 4009, 4580, 5029, 5577, 6129, 6661, 7354, 7922,
and 8486, respectively.

Selected papers from the first meeting appeared in volume 92 of Theoretical
Computer Science, from the 11th meeting in volume 2 of the Journal of Discrete
Algorithms, from the 12th meeting in volume 146 of Discrete Applied Mathematics,
from the 14th meeting in volume 3 of the Journal of Discrete Algorithms, from the 15th
meeting in volume 368 of Theoretical Computer Science, from the 16th meeting in
volume 5 of the Journal of Discrete Algorithms, from the 19th meeting in volume 410
of Theoretical Computer Science, from the 20th meeting in volume 9 of the Journal of
Discrete Algorithms, from the 21st meeting in volume 213 of Information and
Computation, from the 22nd meeting in volume 483 of Theoretical Computer Science,
and from the 23rd meeting in volume 25 of the Journal of Discrete Algorithms. A
special issue of Algorithmica is planned for the extended versions of a selection of the
papers presented at this year’s meeting.

VI Preface

The whole submission and review process was carried out with the help of the
EasyChair conference system. We thank the CPM Steering Committee for supporting
Ischia as the site for CPM 2015, and for their advice and help in different issues.
We thank the Italian Chapter of the European Association for Theoretical Computer
Science for its scientific endorsement. We thank Dr. Aniello Castiglione for his
invaluable help in the local organization.

The conference was sponsored by the Department of Computer Science of the
University of Salerno and the Department of Computer Science of the University of
Verona, which we thank for their financial support.

April 2015 Ferdinando Cicalese
Ely Porat
Ugo Vaccaro

Program Committee

Francine Blanchet-Sadri
Timothy M. Chan
Ferdinando Cicalese
Raphael Clifford
Paolo Ferragina
Travis Gagie
Leszek A. Gasieniec
Raffaele Giancarlo
Roberto Grossi
John Iacono

Tsvi Kopelowitz
Gregory Kucherov
Eduardo Laber

Gad M. Landau
Jesper Larsson

Noa Lewenstein
Inge Li Gortz
Stefano Lonardi
Veli Makinen

Ian Munro

Gonzalo Navarro
Ely Porat

Simon Puglisi
Kunihiko Sadakane
Marie-France Sagot
Tatiana Starikovskaya
Jens Stoye

Oren Weimann

Organization

University of North Carolina, USA
University of Waterloo, Canada
University of Verona, Italy (Co-chair)
University of Bristol, UK

University of Pisa, Italy

University of Helsinki, Finland

University of Liverpool, UK

University of Palermo, Italy

University of Pisa, Italy

New York University, USA

University of Michigan, USA

Université Paris-Est Marne-la-Vallée, France
PUC-Rio, Brazil

University of Haifa, Israel

Malmoé University, Sweden

Netanya College, Israel

Technical University of Denmark, Denmark
University of California, Riverside, USA
University of Helsinki, Finland

University of Waterloo, Canada
University of Chile, Chile

Bar-Ilan University, Israel (Co-chair)
University of Helsinki, Finland

University of Tokyo, Japan

Inria Grenoble Rhone-Alpes, Lyon, France
Higher School of Economics, Russia
Bielefeld University, Germany

University of Haifa, Israel

Additional Reviewers

Amit, Mika
Backofen, Rolf
Badkobeh, Golnaz
Belazzougui, Djamal

Blondin Massé, Alexandre

Bodnar, Michelle

Boucher, Christina
Bowe, Alexander
Boytsov, Leonid
Bucher, Philipp
Bulteau, Laurent
Cannon, Sarah

VI Organization

Chikhi, Rayan
Christiansen, Anders Roy
Claude, Francisco
Cording, Patrick Hagge
Cunial, Fabio

Doerr, Daniel
El-Zein, Hicham
Elzein, Hicham
Farruggia, Andrea
Farrugia, Ashley
Feijao, Pedro

Fertin, Guillaume
Fici, Gabriele
Fischer, Johannes
Fontaine, Allyx

Fox, Nathan

Ganguly, Arnab
Gawrychowski, Pawel
Grant, Oliver

Gutin, Gregory
Hamel, Sylvie
Hamilton, David

He, Meng

Hermelin, Danny
Hoener Zu Siederdissen, Christian
Hon, Wing-Kai

I, Tomohiro

Jahn, Katharina
Kociumaka, Tomasz
Konow, Roberto
Kurpicz, Florian
Kuszner, Lukasz
Kaérkkdinen, Juha
Koppl, Dominik
Lewenstein, Moshe
Li, Jing

Lombardy, Sylvain
Manea, Florin
Manzini, Giovanni
Meidanis, Joao
Mercas, Robert
Mitzenmacher, Michael
Nekrich, Yakov
Nicholson, Patrick K.
Nishimoto, Takaaki

Niskanen, Reino

Ono, Hirotaka

Ordoiiez Pereira, Alberto
Ounit, Rachid

Pacheco, Eduardo

Park, Heejin

Patil, Manish

Pedersen, Christian Nergaard Storm

Pissis, Solon
Radoszewski, Jakub
Raman, Rajeev
Rampersad, Narad
Roscigno, Gianluca
Rozenberg, Liat
Roézanski, Michat
Sach, Benjamin
Sadakane, Kunihiko
Salikhov, Kamil
Salmela, Leena
Seki, Shinnosuke
Shah, Rahul
Sheinwald, Dafna
Simmons, Sean
Simpson, Olivia
Sirén, Jouni
Skjoldjensen, Frederik Rye
Sun, He

Takeda, Masayuki
Thachuk, Chris
Theodoridis, Evangelos
Tiskin, Alexander

To, Thu-Hien
Tomescu, Alexandru 1.
Tsur, Dekel

Uznanski, Przemystaw
Valenzuela, Daniel

van lersel, Leo
Venturini, Rossano
Vialette, Stéphane
Vildhej, Hjalte Wedel
Vind, Seren

Vuillon, Laurent
Walen, Tomasz
Wittler, Roland

Zhou, Gelin

Invited Talks

On Humans, Plants and Disease: Algorithmic
Strategies for Haplotype Assembly Problems

Sorin Istrail

Department of Computer Science, Brown University, USA
sorin_istrail@brown. edu

This talk is about a set of computational problems about haplotypes reconstruction
from genome sequencing data for diploid organisms, such as humans, and for polyploid
organisms, such as plants. Polyploidy is a fundamental area of molecular biology with
powerful methods of Nobel prize recognition: polyploidy inducement for cell
reprogramming, mosaicism for aneuploid chromosome content as the constitutional
make-up of the mammalian brain, and the polyploidy design for highly sought after
agricultural crops and animal products. On the medical side, polyploidy refers to
changes in the number of whole sets of chromosomes of an organism, and aneuploidy
refers to changes in number of specific chromosomes or of parts of them. We will
present an algorithmic framework, HapCOMPASS for these problems that is based on
graph theory. The software tools implementing our algorithms (available from the
Istrail Lab) are already in use, by many users, and recognized as among the leading
tools in the areas of human genome haplotype assembly, plant polyploidy haplotype
assembly, and tumor haplotype assembly. We will also present a number of unresolved
computational problems whose solutions would advance our understanding of human
biology, plant biology and human disease.

To introduce the application areas, and a hint at the type of combinatorial problems
of that biological import, a short primer follows. Humans, like most species whose cells
have nuclei, are diploid, meaning they have two sets of chromosomesone set inherited
from each parent. In the genome era, the genome sequencing technologies are
generating big data-bases of empirical patterns of genetic variation within and across
species. A SNP (single nucleotide polymorphism) is a DNA sequence variation
occuring commonly (e.g. 3 %) at a fixed site on the genome within a population in
which a single nucleotide A, C, G or T differs between individuals of a species, or
between the mother-father chromosomes of a single individual. The different
nucleotide bases at the SNP site are called alleles. SNPs account for large majority
of genetic variation of species. For humans, there are about 10 million SNPs, so
conceptually the SNPs variation of any individual is captured by two allele vectors
(each with 10 million components), one inherited from mother and one from the father.
Our approach to haplotype assembly is based on graph theoretical modeling of
sequencing reads linking SNPs and assembling whole haplotypes based on such basic
read-SNPs linkings.

S. Istrail—Work in collaboration with Derek Aguiar (Princeton University) and Wendy Wong
(INOVA Translational Medicine Institute).

XII S. Istrail

Polyploid organisms have more than two sets of chromosomes. Although this
phenomenon is particularly common in plants (e.g., seedless watermelon is 3x, wheat
6x, strawberries 10x), it is also present in animals (e.g. fish could have 12x and up to
400 haplotypes), and in humans (e.g., some mammalian liver cells or heart cells or
bone marrow cells are polyploid). While polyploidy refers to numerical change in the
whole set of chromosomes, aneuploidy refers to organisms in which a part of the set of
chromosomes (e.g. a particular chromosome or a segment of a chromosome) is under-
or over- represented. Polyploidy and aneuploidy phenomena are recognized as disease
mechanisms. Examples for polyploidy: triploidy birth conceptions end in miscarriages,
although mixoploidy, when both diploid and triploid cells are present, could lead to
survival; triploidy, as a result of either digyny (the extra haploid set is from the mother
by failure of one meiotic division during oogenesis) or diandry (mostly caused by
reduplication of paternal haploid set from a single sperm or dispermic fertilization
of the egg) could have parent-of-origin (genomic imprinting) medical consequences:
diandry predominate among preterm labor miscarrieges while digyny predominates
into survival into fetal period, although with a poor grown fetus and very small
placenta). Examples for aneuploidy: trisomy in the the Down syndrome, cells with one
chromosome missing while others with an extra copy of the chromosome, cells with
unpredictably many chromosomes of a given type; mosaicism (when two or more
populations of cells with different genotypes derived from a single individual)
aneuploidy occurs in virtually all cancer cells.

Analytic Pattern Matching: From DNA to Twitter

Philippe Jacquet' and Wojciech Szpankowski’

! Alcatel-Lucent Bell Labs, Nozay, France
philippe. jacquet@alcatel-lucent. com
2 Department of Computer Science, Purdue University, USA
spa@cs. purdue. edu

Repeated patterns and related phenomena in words are known to play a central role in
many facets of computer science, telecommunications, coding, data compression, data
mining, and molecular biology. One of the most fundamental questions arising in such
studies is the frequency of pattern occurrences in a given string known as the text.
Applications of these results include gene finding in biology, executing and analyzing
tree-like protocols for multiaccess systems, discovering repeated strings in Lempel-Ziv
schemes and other data compression algorithms, evaluating string complexity and its
randomness, synchronization codes, user searching in wireless communications, and
detecting the signatures of an attacker in intrusion detection.

This talk is based on our yet unpublished book “Analytic Pattern Matching: From
DNA to Twitter”, Cambridge, 2015. After a brief motivation, we review several pattern
matching problems (e.g., exact string matching, constrained pattern matching,
generalized pattern matching, and subsequence pattern matching), and then we discuss
a few applications (e.g., spike trains of neuronal data, Google search, Lempel-Ziv’77
and Lempel-Ziv’78 data compression schemes, and string complexity used in Twitter
classification). Finally, we illustrate our approach to solve these problems using tools of
analytic combinatorics, which we discuss in some depth.

The basic pattern matching problem is to find for a given (or random) pattern w or
set of patterns V¥ and a text X how many times WV occurs in the text X and how long it
takes for W to occur in X for the first time. There are many variations of this basic
pattern matching setting which is known as exact string matching. In generalized string
matching certain words from W are expected to occur in the text while other words are
forbidden and cannot appear in the text. In some applications, especially in constrained
coding and neural data spikes, one puts restrictions on the text (e.g., only text without
the patterns 000 and 0000 is permissible), leading to constrained string matching.
Finally, in the most general case, patterns from the set ¥V do not need to occur as
strings (i.e., consecutively) but rather as subsequences; this leads to subsequence
pattern matching, also known as hidden pattern matching.

The approach we advocate to study these problems is the analysis of pattern
matching problems through a formal description by means of regular languages.

This work was supported in part by NSF Science and Technology Center on Science of Information
Grant CCF-0939370, NSF Grants DMS-0800568 and CCF-0830140, NSA Grant H98230-11-1-0141.

XV P. Jacquet and W. Szpankowski

Basically, such a description of the contexts of one, two, or more occurrences of a
pattern gives access to the expectation, the variance, and higher moments. A systematic
translation into the generating functions of a complex variable is available by methods
of analytic combinatorics deriving from the original Chomsky—Schiitzenberger
theorem. The structure of the implied generating functions at a pole, an algebraic
singularity, or a saddle point provides the necessary asymptotic information. In fact,
there is an important phenomenon, that of asymprotic simplification, in which the
essentials of combinatorial-probabilistic features are reflected by the singular forms of
generating functions.

On Multiseed Lossless Filtration

Rasmus Pagh

IT University of Copenhagen, Denmark

Abstract. In approximate string matching a string x € X" is given and
preprocessed in order to support k-approximate match queries: we seek
all substrings of x that differ from a query string g in at most k positions.
This problem is motivated for example by biological sequence analysis
where approximate occurrences of a sequence ¢ are of interest.

Filtration is an approach to approximate string matching that aims
to be efficient when most substrings of x have distance to g considerably
larger than k. In these approaches a seed is used to extract multisets of
subequences S, and S, from x and g, respectively, such that every
k-approximate match gives rise to at least one element in S;NS,.
(Elements in S, are annotated with the substring position(s) they
correspond to.) Thus, computing S, NS, (for example using an index
data structure for S, to look up each element of S,) gives a set of
candidate positions for k-approximate matches. The filter is efficient if it
generates few candidates that do not correspond to k-approximate
matches. It is known that filtering can be particularly effective in high-
entropy strings such as biological sequences.

In this talk we consider so-called multiseed methods where several
sequences of sets Si, Sf], i=1,2,... are extracted from x and ¢, and
candidate matches are found in | J; Sf{ NS, Multiseed methods can yield
better filtering efficiency, at the expense of a higher candidate generation
cost. While some filtration methods allow a nonzero error probability,
we focus on lossless methods that are guaranteed to report all
k-approximate matches. We present a randomized construction of a
set of roughly 2* seeds for which a substring x’ having k 4 ¢ mismatches
with g becomes a candidate match ©(27') times in expectation. Since
the method is lossless, every X’ with at most k mismatches becomes a
candidate at least once. This filtering efficiency is better than previous
methods with the same number of seeds for k > 3. Finally, we use a
general transformation to present a new, improved trade-off between the
number of seeds and the filtering efficiency.

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement
no. 614331.

Contents

On the Hardness of Optimal Vertex Relabeling and Restricted
Vertex Relabeling
Amihood Amir and Benny Porat

A Framework for Space-Efficient String Kernels.
Djamal Belazzougui and Fabio Cunial

Composite Repetition-Aware Data Structures
Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza,
and Mathieu Raffinot

Efficient Construction of a Compressed de Bruijn Graph for Pan-Genome
ANalysSis.
Timo Beller and Enno Ohlebusch

Longest Common Extensions in Trees.
Philip Bille, Pawel Gawrychowski, Inge Li Gortz, Gad M. Landau,
and Oren Weimann

Longest Common Extensions in Sublinear Space
Philip Bille, Inge Li Gortz, Mathias Beek Tejs Knudsen,
Moshe Lewenstein, and Hjalte Wedel Vildhaj

Ranked Document Retrieval with Forbidden Pattern
Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan

Parameterized Complexity of Superstring Problems.
Ivan Bliznets, Fedor V. Fomin, Petr A. Golovach, Nikolay Karpov,
Alexander S. Kulikov, and Saket Saurabh

On the Fixed Parameter Tractability and Approximability

of the Minimum Error Correction Problem.
Paola Bonizzoni, Riccardo Dondi, Gunnar W. Klau, Yuri Pirola,
Nadia Pisanti, and Simone Zaccaria

Fast String Dictionary Lookup with One Error
Timothy Chan and Moshe Lewenstein

On the Readability of Overlap Digraphs.
Rayan Chikhi, Paul Medvedev, Martin Milanic,
and Sofya Raskhodnikova

http://dx.doi.org/10.1007/978-3-319-19929-0_1
http://dx.doi.org/10.1007/978-3-319-19929-0_1
http://dx.doi.org/10.1007/978-3-319-19929-0_2
http://dx.doi.org/10.1007/978-3-319-19929-0_3
http://dx.doi.org/10.1007/978-3-319-19929-0_4
http://dx.doi.org/10.1007/978-3-319-19929-0_4
http://dx.doi.org/10.1007/978-3-319-19929-0_5
http://dx.doi.org/10.1007/978-3-319-19929-0_6
http://dx.doi.org/10.1007/978-3-319-19929-0_7
http://dx.doi.org/10.1007/978-3-319-19929-0_8
http://dx.doi.org/10.1007/978-3-319-19929-0_9
http://dx.doi.org/10.1007/978-3-319-19929-0_9
http://dx.doi.org/10.1007/978-3-319-19929-0_10
http://dx.doi.org/10.1007/978-3-319-19929-0_11

XVIIL Contents

Improved Algorithms for the Boxed-Mesh Permutation Pattern
Matching Problem. 138
Sukhyeun Cho, Joong Chae Na, and Jeong Seop Sim

Range Minimum Query Indexes in Higher Dimensions 149
Pooya Davoodi, John lacono, Gad M. Landau, and Moshe Lewenstein

Alphabet-Dependent String Searching with Wexponential Search Trees 160
Johannes Fischer and Pawel Gawrychowski

Lempel Ziv Computation in Small Space (LZ-CISS) 172
Johannes Fischer, Tomohiro I, and Dominik Koppl

Succinct Non-overlapping Indexing., 185
Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan

Encodings of Range Maximum-Sum Segment Queries and Applications 196
Pawel Gawrychowski and Patrick K. Nicholson

Compact Indexes for Flexible Top-k Retrieval 207
Simon Gog and Matthias Petri

LZD Factorization: Simple and Practical Online Grammar Compression
with Variable-to-Fixed Encoding. 219
Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda

Combinatorial RNA Design: Designability and Structure-Approximating
Algorithm 231
Jozef Hales, Jan Mariuch, Yann Ponty, and Ladislav Stacho

Dictionary Matching with Uneven Gaps. 247
Wing-Kai Hon, Tak-Wah Lam, Rahul Shah, Sharma V. Thankachan,
Hing-Fung Ting, and Yilin Yang

Partition into Heapable Sequences, Heap Tableaux and a Multiset
Extension of Hammersley’s Process 261
Gabriel Istrate and Cosmin Bonchis

The Approximability of Maximum Rooted Triplets Consistency
with Fan Triplets and Forbidden Triplets 272
Jesper Jansson, Andrzej Lingas, and Eva-Marta Lundell

String Powers in Trees. 284
Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter,
and Tomasz Walen

Online Detection of Repetitions with Backtracking 295
Dmitry Kosolobov

http://dx.doi.org/10.1007/978-3-319-19929-0_12
http://dx.doi.org/10.1007/978-3-319-19929-0_12
http://dx.doi.org/10.1007/978-3-319-19929-0_13
http://dx.doi.org/10.1007/978-3-319-19929-0_14
http://dx.doi.org/10.1007/978-3-319-19929-0_15
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dx.doi.org/10.1007/978-3-319-19929-0_17
http://dx.doi.org/10.1007/978-3-319-19929-0_18
http://dx.doi.org/10.1007/978-3-319-19929-0_18
http://dx.doi.org/10.1007/978-3-319-19929-0_19
http://dx.doi.org/10.1007/978-3-319-19929-0_19
http://dx.doi.org/10.1007/978-3-319-19929-0_20
http://dx.doi.org/10.1007/978-3-319-19929-0_20
http://dx.doi.org/10.1007/978-3-319-19929-0_21
http://dx.doi.org/10.1007/978-3-319-19929-0_22
http://dx.doi.org/10.1007/978-3-319-19929-0_22
http://dx.doi.org/10.1007/978-3-319-19929-0_23
http://dx.doi.org/10.1007/978-3-319-19929-0_23
http://dx.doi.org/10.1007/978-3-319-19929-0_24
http://dx.doi.org/10.1007/978-3-319-19929-0_25

Contents

Greedy Conjecture for Strings of Length 4.
Alexander S. Kulikov, Sergey Savinov, and Evgeniy Sluzhaev

Tighter Bounds for the Sum of Irreducible LCP Values.
Juha Kdrkkdinen, Dominik Kempa, and Marcin Pigtkowski

Parallel External Memory Suffix Sorting
Juha Kdirkkdinen, Dominik Kempa, and Simon J. Puglisi

On Maximal Unbordered Factors
Alexander Loptev, Gregory Kucherov, and Tatiana Starikovskaya

Semi-dynamic Compact Index for Short Patterns and Succinct

van Emde Boas Tree. e
Yoshiaki Matsuoka, Tomohiro I, Shunsuke Inenaga, Hideo Bannai,
and Masayuki Takeda

Reporting Consecutive Substring Occurrences Under Bounded Gap
CONStraintS o ottt e e e e e e
Gonzalo Navarro and Sharma V. Thankachan

A Probabilistic Analysis of the Reduction Ratio in the Suffix-Array
IS-Algorithm e
Cyril Nicaud

Encoding Nearest Larger Values.,
Patrick K. Nicholson and Rajeev Raman

Sorting by Cuts, Joins and Whole Chromosome Duplications.
Ron Zeira and Ron Shamir

Author Index e

http://dx.doi.org/10.1007/978-3-319-19929-0_26
http://dx.doi.org/10.1007/978-3-319-19929-0_27
http://dx.doi.org/10.1007/978-3-319-19929-0_28
http://dx.doi.org/10.1007/978-3-319-19929-0_29
http://dx.doi.org/10.1007/978-3-319-19929-0_30
http://dx.doi.org/10.1007/978-3-319-19929-0_30
http://dx.doi.org/10.1007/978-3-319-19929-0_31
http://dx.doi.org/10.1007/978-3-319-19929-0_31
http://dx.doi.org/10.1007/978-3-319-19929-0_32
http://dx.doi.org/10.1007/978-3-319-19929-0_32
http://dx.doi.org/10.1007/978-3-319-19929-0_33
http://dx.doi.org/10.1007/978-3-319-19929-0_34

On the Hardness of Optimal Vertex Relabeling
and Restricted Vertex Relabeling

Amihood Amir'2(®*) and Benny Porat’

! Department of Computer Science, Bar-Ilan University, 52900 Ramat-gan, Israel
amir@cs.biu.ac.il, bennyporat@gmail.com
2 Department of Computer Science, Johns Hopkins University,
Baltimore, MD 21218, USA

Abstract. Vertex Relabeling is a variant of the graph relabeling prob-
lem. In this problem, the input is a graph and two vertex labelings, and
the question is to determine how close are the labelings. The distance
measure is the minimum number of label swaps necessary to transform
the graph from one labeling to the other, where a swap is the interchange
of the labels of two adjacent nodes. We are interested in the complex-
ity of determining the swap distance. The problem has been recently
explored for various restricted classes of graphs, but its complexity in
general graphs has not been established.

We show that the problem is N“P-hard. In addition we consider restricted
versions of the problem where a node can only participate in a bounded
number of swaps. We show that the problem is N“P-hard under these
restrictions as well.

1 Introduction

Graph labeling is a well-studied subject in computer science and mathematics and
has widespread applications in many other disciplines. Here we explore a variant
of graph labeling called the Vertex Relabeling Problem. In this problem, the input
is a graph and two vertex labelings, and the question is to determine how close
are the labelings. The distance measure is the minimum number of label swaps
necessary to transform the graph from one labeling to the other, where a swap
is the interchange of the labels of two adjacent nodes. We are interested in the
complexity of determining the swap distance. Some instances of this problem were
explored by Kantaburta [28] and later by Agnarsson et al. [1].

The graph labeling field has a rich and long history. It was first introduced
in the late 1960’s. In the intervening years dozens of graph labelings techniques
and variation have been studied. For a comprehensive survey of the topic see
Gallian’s excellent dynamic survey [24].

The Vertex Relabeling Problem is not only interesting in its own right but
also has applications in several area such as Biolnformatics, networks and VLSI.

A. Amir—Partly supported by ISF grant 571/14.
B. Porat—Partly supported by a Bar Ilan University President Fellowship. This
work is part of Benny Porat’s Ph.D. thesis.

© Springer International Publishing Switzerland 2015

F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 1-12, 2015.
DOI: 10.1007/978-3-319-19929-0_1

2 A. Amir and B. Porat

New application for such work are constantly emerging, and sometimes in unex-
pected contexts. For instance the Vertex Relabeling Problem can be used to
model a wormhole routing in processor networks [22]. Perhaps the most famous
special case of this problem is the so-called 15-Puzzle [27]. The 15-Puzzle consists
of 15 tiles numbered from 1 to 15 that are placed on a 4 x 4 board leaving one
position empty. The goal is to reposition the tiles of an arbitrary arrangement
into increasing order from left-to-right and from top-to-bottom by swapping an
adjacent tile with the open hole. In [28] a generalized version of this puzzle
called the (n x n) Puzzle was used to show that a variant of the Vertex Rela-
beling Problem With Privileged Labels is N'P-hard. Other well known problems,
for example, the Pancake Flipping Problem [23,25,26], can also be viewed as
special cases of the vertex relabeling problem.

Another special case of the vertex relabeling problem appears in pattern
matching. The Pattern Matching with Swaps problem (the Swap Matching prob-
lem, for short), defined by Muthukrishnan [34], requires finding all swapped
occurrences of a pattern of length m in a text of length n. The pattern is said
to match the text at a given location 7 if adjacent pattern characters can be
swapped, if necessary, so as to make the pattern identical to the substring of
the text starting at location 7. All the swaps are constrained to be disjoint, i.e.,
each character is involved in at most one swap. Muthukrishnan asked whether
all swap matches of a pattern in a text can be found in time o(nm).

This question led to a flurry of activity. Amir et al. [7] obtained the first
non-trivial results on this problem. They showed that the case when the size
of the alphabet set X exceeds 2 can be reduced to the case when it is exactly
2 with a time overhead of O(log? &), where o = min{|¥|,m}. (The reduction
overhead was reduced to O(log o) in the journal version [8].) They then showed
how to solve the problem for alphabet sets of size 2in time O(nm'/?logm),
which was the best deterministic time bound known to date. Amir et al. [12]
also gave certain special cases for which O(npolylog(m)) time can be obtained.
However, these cases are rather restrictive. In a Technical Report [19] Cole and
Hariharan provide a randomized algorithm that solves the swap matching prob-
lem over a binary alphabet in time O(nlogn). Finally, Amir et al. [9] showed
an algorithm for swap matching over a general alphabet whose running time
is O(nlogmlogo). The question of measuring the swap distance, i.e. counting
the minimum number of swaps, which concerns us in vertex relabeling, was also
considered [13]. It was shown that this too can be done in time O(nlogmlogo).
In the literature, mismatches were considered in conjunction with other forms
of inexactness [16-18,20]. Similarly, swaps were considered in conjunction with
other edit operations. It was shown [10] that the swap and mismatch edit dis-
tance can be computed in time O(n+/mlogm). Algorithms for approximate swap
and mismatch appeared in [21,31]. This time is the same as the best-known time
for computing pattern matching with mismatches alone. It should be noted that
the Swap Matching problem also led to the pattern matching with rearrange-
ments paradigm [3,5,6,11,29]. Most of the pattern matching work is carried out
in the traditional string matching model, where both the pattern and the text
are strings (one dimensional arrays). The function matching work [4] considers

On the Hardness of Optimal and Restricted Vertex Relabeling 3

both pattern and text as two dimensional arrays. However, there are applications
where a pattern is sought in non-linear structures. These applications are derived
both from searching in hypertext, or comparing non-linear structures, such as
folded proteins. Manber and Wu [32] pioneered the study of pattern matching
in hypertext and defined a hypertext model for pattern matching. This led to
much activity [2,14,15,30,35].

The vertex relabeling problem is the extension of the swap matching problem
to graphs and thus is a natural step in the direction of pattern matching research
over non-linear structures.

The Contribution of this Paper: The main contributions of this paper are
conceptual rather than technical. The value of this paper lies in the fact that we
juxtapose two research efforts in two disparate areas and this leads to a crisper
understanding of issues in both realms. This cross-fertilization of ideas led to
some of the following new insights:

1. We define the vertex relabeling problem as a distance measure. To our under-
standing, this is the first time it is so defined in the vertex relabeling literature.
We prove that finding the optimal number of swaps necessary to relabel is
NP-hard. We show that in the pattern matching case this problem is poly-
nomially computable.

2. We define the restricted version of graph relabeling, which bounds the number
of swaps each vertices can participate in. We show that, unlike in the pattern
matching case where this problem is solved in almost linear time, in the graph
domain the problem is A"P-hard. The only exception is the restriction to a
single swap, which is linear time computable in the vertex relabeling case as
well.

2 Definitions

2.1 Pattern Matching

At the core of the swap matching problem is the constraint that no character
is allowed to participate in more then 1 swap. Following the vertex relabeling
problem, we generalize this constraint and allow each character to participate in
up to k swaps. We call this problem the k-Swap Matching problem. Of course the
1—Swap Matching problem is exactly the well known Swap Matching problem.
Formally, the k-swap matching problem is defined as follows:

Definition 1. Let S = S[0],...,S[n — 1] be a string over alphabet X. A swap

permutation for S is a permutation 7 : {0,...,n—1} — {0,...,n—1} such that
for alli, w(i) € {i — 1,i,7+ 1} (only adjacent characters are swapped).
For a given series of swap permutations my,ms, ..., 7, (we denote f = m o

Ty ...omy) and string S. We denote f(S) = S[f(0)],S[f(1)],...,S[f(n —1)].
We call f(S) a k-swapped version of S. For pattern P = P[0],..., P[m —1] and
text T = TI0],...,T[n — 1], we say that P has a k-swapped match at location

4 A. Amir and B. Porat

1 if there exists a k-swapped version P’ of P such that P’ has an exact match
with T starting at location i, i.e. P'[j] =T[i+ j] for j=0,...,m— 1.
The Pattern Matching with k-Swaps Problem is the following:

INPUT: Text string T =TI0],...,T[n — 1] and pattern string
P = P[0],..., P[m — 1] over alphabet X.
OUTPUT: All locations i where P has a k-swapped match in T.

If there is no limit on the number of swaps each location can be involved in, then
we call the problem the Unbounded Swap Matching Problem.

2.2 Graphs

Definition 2. Let G = (V,E) be an undirected, connected, simple graph, let
Ly,Li, : V — X be two vertex labelings of the vertices of G. We call the operation
of exchanging a pair of labels of adjacent vertices the label swap operation. The
Vertex Relabeling up to k Problem is to transform G from Ly into L}, using
the swap operation with one constraint: Fach vertexr can participate in at most
k label swap operation.

If there is no limit on the number of swaps each vertex can participate in,
then we call the problem the Vertex Relabeling Problem.

Example: In this example, G can be transformed from L, to L] by swapping

Ly labeling L'y labeling

the labels of v and vy, v3 and v, and then v3 and v;. This means that it was
a relabeling up to 2, since vs participated in two swaps.

3 Unbounded Swap Matching and Vertex Relabeling

Each of these problems can be regarded as either a decision problem, where we
need to decide if there ezists a swap matching or a vertex relabeling, or as an
optimization problem, where we seek the swap distance, i.e. the smallest number
of swaps necessary for the transformation.

3.1 Decision Problem

For the decision problem is it easy to see that the Unbounded Swap Matching
can be solved iff the two string have the same histogram, i.e. the same alphabet
symbols and the same frequency of occurrence of each symbol. For the Vertex
Relabeling problem we also show (the details will appear in the journal version)
that there exists a vertex relabeling iff the histograms of the two labelings are
equal. This give us a trivial linear time solution for the decision problem for fixed
finite label sets, and an almost linear time algorithm for unbounded label sets.

On the Hardness of Optimal and Restricted Vertex Relabeling 5

3.2 The Distance Problem

Vertex Relabeling: The distance version of the vertex relabeling problem,
is whether one vertex label can be transformed to the other using at most ¢
swap operations. Formally:

Definition 3. Let G = (V,E) be an undirected, connected, simple graph, let
Ly,Lj, : V — X be two vertex labelings of the vertices of G. The Vertex Rela-
beling with distance ¢t Problem is that of determining whether G’s labeling can
be transformed from Ly into Li, using at most t swap operations.

Note that in Definition 3 the number of label swap operation per vertex is not
bound.

To the best of our knowledge it was not known in the vertex relabeling
literature whether vertex relabeling with distance ¢ is efficiently computable.
Using pattern matching results we can easily prove the following.

Theorem 1. The Vertex Relabeling Problem with at most t swap, is NP-
complete.

Proof. We reduce the interchange distance on strings problem to the vertex rela-
beling with distance ¢ problem. In the interchange distance on strings problem
we are given two string z = z[0], z[1], ..., z[m—1] and y = y[0], y[1], ...y[m — 1].
The question is whether x can be transformed to y using at most ¢ interchange
operations. When an interchange operation, exchanges the values of two indices
i and j, i.e. exchange z[i] with z[j] . and z;. Formally:

Definition 4. Let x,y € L™ be two strings that have the same histogram, and
let s = s1,...,5 be a sequence of interchanges that transforms x to y, where s;
interchanges elements in positions i;,i,. We define cost(s) = k. The interchange
distance problem is to compute d(x,y) = min{cost(s)| s transforms x to y}.

Amir et al., prove that the interchange distance problem is N'P-complete [11]. We
show a reduction from the interchange distance problem to the vertex relabeling
problem.

The Reduction: The input of the reduction is an instance of the interchange
distance problem, and the output is an instance for vertex relabeling problem.

Given two string = z[0],z[1],...,z[m — 1] and y = y[0],y[1],...,y[m — 1]
construct G = (V, E), L, and L, in the following manner. Build a vertex for
each index of the string, so V = {vg,v1,...,Um_1},. An interchange operation

exchanges the value of two indices. To simulate an interchange by a swap we
need to construct graph edges that allow a swap between any two nodes. This is
accomplished by constructing a complete graph on the m vertices, and labeling it
by « and by y. In other words, Ly (v;) = z[¢] and L}, (v;) = y[i] for 0 <i <m—1.

Claim. x can be transformed to y using at most ¢ interchange operations iff Ly
can be transformed to L, using at most ¢ swap operations.

6 A. Amir and B. Porat

Proof. Assume that there exist a sequence s = s1, So, .. .5; of interchange oper-
ations that transform z to y. We build a sequence s’ = s},s),...s; of swap
operation that transforms L, into L. s; interchanges the contents of positions
ij,4%. Then the swap s’ swaps the labels of v[i;] and v[i’].

We show that s’ = s/, s}, ...s} transforms L, to L,

Assume, to the contrary, that there exists a v[i] € V such that after applying
the sequence of swap operations, the label of v[i] is o, and o # L{, (v[d]). let
s'7 = s ,s;,,...s; be the sequence of swap operations that moves the label o.
This sequence of swaps takes the o label form some starting vertex v[j] and
moves it to the vertex v[i]. Consider, now, the corresponding sequence of inter-
changes operation s° = s;,, Si,, .-, Si,- L(v;) = x[j] = o, hence, this sequence
of interchanges takes o, and moves it until index . Conclude that after the
sequence of interchanges, o is in the ith position. But o # L}, (v;) = y[i]. O

Swap Matching Distance: The following observation is key to the efficient
swap matching algorithm.

Observation 1. Two equal adjacent characters need not be swapped.

The observation allows us to treat each occurrence of the same symbol as a dif-
ferent character, all we need to do is maintain the order. Therefore, if a string has
an alphabet letter o that appears multiple times, we can convert each occurrence
of o to o; where i is a running counter. Formally:

Definition 5. Given a string s = s[0],s[1],...s[m — 1] we define the unique
version of s and denote it by sy, to be s,[i] = s[i]; for 0 < i < m — 1 where
j=Wk| sk =s; and 1 <k <i}|.

Example: The string s = a b a ¢ ¢ a we will convert to s, = a1 by as,c1 c2 as.
Given two strings as an input for the swap matching distance problem, we can
convert them easily to their unique versions, where all their characters are dif-
ferent. The following theorem, a version of which appears as early as 1882 [33]
is key to our algorithm.

Theorem 2. Given two string s = s[0],s[1],...,s[m — 1] and t = ¢[0],¢[1],...,
t[m — 1] where s[i] # s[j] and t[i] # t[j] for all 0 < i,j < m — 1, the minimum
number of swaps needed in order to transform s to t is the number of inversions
between s and t, where an inversion is a pair of indices (i,7) such thati > j and
s[i] appears before s[j] in t.

Proof

Minimality: Assume, to the contrary, that there is a sequences of swaps of
length k that transforms s to ¢t where k is smaller than the number of inversions.
This means that there must exist two character s[i] and s[j] such that ¢ > j and
s[i] appears before s[j] in ¢t that don’t swap. Hence, at the end of the sequence of
swaps, s[i] appears after s[j], but this not the case on the string ¢. Contradiction.

Correctness: For all 0 < i < m — 1, we denote the position of s[i] after the
sequence of swaps by 7’.

On the Hardness of Optimal and Restricted Vertex Relabeling 7

Observe that after the sequence of swaps, for all 0 < i < m — 1, there is
no 0 < j < m — 1 such that i > j' and s[i] appears before s[j] in t. The
observation says that for each character s[i], all the characters s[j] that appear
after s[i] in ¢ after the sequence of swaps, actually occur after s;. Applying the
observation inductively from the first character of ¢ until the last, gives us that
forall 0 <i < m—1, thereis no 0 < j < m—1 such that i < j’ and s[i] appears
after s[j] in ¢.

This sequence of swaps transforms s to t. a

Now we are ready for the algorithm:

Algorithm — Swap Matching Distance(s, t)

1. Initialization: Given two strings s and ¢ build the corresponding unique
strings s, = s[0], s[1], ..., sjm — 1] and t,, = ¢[0], ¢[1],...t[m — 1].
2. C=0.
3. Fori=0tom—1
- C+ = |{s]j] | 0 <j < i and s[i] appears before s[j] in t}]
4. C'is the minimum number of swaps needed to transform s to t.

end Algorithm

Time: Using such data structures as, AVL trees, for example, this algorithm
can be implemented in time O(mlogm).

4 (1)-Swap Matching and Vertex Relabeling up to 1

4.1 Swap Matching

As previously mentioned, Swap Matching is a well studied problem. The best
know result solves it in time O(nlogmlog X)), for a length m pattern “sliding”
across a length n text. It is easy to see that when n = m it can be trivially
solved in linear time.

4.2 Vertex Relabeling up to 1

We show a two way reduction between Vertex Relabeling and the Graph Perfect
Matching problem.

Definition 6. Given a graph G = (V, E), a matching M in G is a set of pairwise
non-adjacent edges; that is, no two edges share a common vertex.

Definition 7. A perfect matching is a matching which matches all vertices of
the graph. That is, every vertex of the graph is incident to exactly one edge of
the matching.

8 A. Amir and B. Porat

The Perfect Matching on Bipartite Graph problem is, given a bipartite graph to
find if their is a perfect matching in that graph.
We will show two reductions:

— Given an algorithm for the Perfect Matching on bipartite graphs problem, we
can use that algorithm to solve the Vertex Relabeling problem.

— Given an algorithm for the Vertex Relabeling up to 1 problem we can use that
algorithm to solve the Perfect Matching on bipartite graphs problem.

4.3 Perfect Matching On Bipartite Graphs = Vertex
Relabeling up to 1

Given an undirected, connected, simple graph G = (V| E), with two vertex
labelings Ly and Lj, of the vertices of G. Construct G’ = (V' = (X,Y),E’) in
the following way.

For each pair of labels a, b, and for each u,v € V such that (Ly (u) = L}, (v) =
a) A (L, (u) = Ly(v) =b). We put v in X and v in Y. Also we build an edge
between u and v.

Example:

Vi

V2 s

Ly labeling Ly labeling 2-d matching input
Theorem 3. G’ has a Perfect Matching iff G has a Vertex Relabeling up to 1
from Ly to Lj,.

Proof. Immediate form the definitions of the problems. O

Construction Time: Although the construction considers all pairs of labels, it
still only takes linear time because the number of pairs is bounded by |V .

4.4 Vertex Relabeling up to 1 = Perfect Matching
on Bipartite Graph

Given a bipartite graph G = (V = (X,Y), E). We construct G’ = (V', E’) and
two vertex labeling Ly and L, in the following way. V/ = X UY and E' = E
Ly(v) =0forv e X and Ly(v) = 1forv € Y Lj,(v) = 1 for v € X and
L}, (v) =0 for v € Y. See Fig. 1 for an example.

Theorem 4. G has a Perfect Matching iff G' has a Vertex Relabeling up to 1
from Ly to Li,.

Proof. Immediate from the definitions of the problems. O

Algorithm Time: The best known algorithm for Perfect Matching in bipar-
tite graphs run in time O(v/VE) or in O(V?37%). Hence, due to the two side
reduction, those solution also apply to the Vertex relabeling up to 1 problem.

On the Hardness of Optimal and Restricted Vertex Relabeling 9

A % Vi

V2 V2 V2

V3 Ve V3 Ve V3 A
2-d matching input Ly labeling L'y labeling

Fig. 1. Example of reduction from Perfect Matching to Vertex Relabeling.
5 2-Swap Matching and Vertex Relabeling up to 2

The 2-Swap matching problem can be easily solved in polynomial time. However
the Vertex Relabeling up to 2 is N'P-complete.. We present a reduction from
3D —Matching.

Definition 8. Let X, Y, and Z be finite, disjoint sets, and let T be a subset of
X xY x Z. That is, T consists of triples (x,y,z) such thatx € X,y € Y, and
z € Z. M C T is a 3-dimensional matching if the following holds: for any two
distinct triples (x1,y1,21) € M and (z2,y2,22) € M, we have x1 # 2, y1 # Yo,
and ,1 # z9. The 3D—matching problem is that of deciding if there exist M C T
such that |M| = k.

5.1 The Reduction

We show that a polynomial-time algorithm that solves the Vertex Relabeling
up to 2 problem can be used to solve the 3D—Matching problem.
Let X, Y, and Z be finite, disjoint sets,|X| = |Y| = |Z| = m, and let T be a
subset of X x Y x Z. Construct G = (V, E) in the following way:
V=XUYUZand E = {(z,y), (y,2)|V(z,y,2) € T}.

Define Ly and Lj, in the following way:

Ly = Ly(z)=0forx € X, Ly(y) =0fory € Y and Ly (z) =1 for z € Z.
Ly, =L, (z)=1forx € X, L, (y) =0fory € Y and L}, () =0 for z € Z.

Example:

Theorem 5. Given X,Y,Z and T, there exist 3D— Matching of size m iff graph
G can be vertex relabeled up to 2 for labels Ly and Li,.

Proof. <: Assume that there exist a sequence of swap operations S = s1, So, . ..
that relabels Ly to Lj,. We will build a M C T such that M will be a perfect
Matching for XY, Z. |Z| = |X|, Lv(z) = Li,(¢) = 1 and Ly (z) = L}, (z) = 0,

@ OO @Q ©-©
o OO O ©©
OaOnO® O-0—©

3-d matching input Ly labeling L'y labeling

10 A. Amir and B. Porat

hence for all z; € Z there exist ; € X such that z; got the label of x;. For
any x; € X and 2z, € Z (z;,%) ¢ E. Hence there exist some y; such that z;
swaps with y, and y; swaps with z;. We put each such triplet in M.

Lemma 1. M C T is a perfect Matching for X,Y, Z.

Proof. From the building process of M we know that for any z; € X and z; €
Z M covers them exactly once. We need to prove this also for all y, € Y.
Assume that there exist y, € Y that appear in two triplets m; = (1, yx, 21)
and mg = (x2, Yk, 22) such that mi, me € M. The triplets construction means
that y, swaps 4 times. A contradiction. Assume that there exist y. € Y such
that for any (z,y, 2) inM yi # y. |M| = |Y| = n and we prove that each y, € Y
appears at most in 1 triplet in M. This is a contradiction to the size of M. M
is a perfect Matching.

=-: Assume that there exist M C T such that M is a perfect matching. Construct
a sequence s of swap operations, such that S relabels G from Ly to Lf,. For any
triplet (x,y, z) € M we execute two swap operations in S, (z,y), (y,). O

Lemma 2.

1. There are now vertices that participate in more then 2 swap operation in S.
2. S relabels from Ly to LY, .

Proof

1. M is a perfect matching. Hence for any x € X x appears in exactly 1 triplet
in M. From that triplet x has exactly 1 swap operation. The same applies
toall z € Z. For all y € Y. y appears in exactly one triplet in M and from
that triplet it has exactly 2 swap operations. Overall there is no vertex that
participates in more then two swap operations.

2. Each triplet (z,y,z) € M produces two swap operations, (z,y), (y, z). Start-
ing with the labeling Ly, will finish with label 0 to z and y and label 1 for x
which is exactly L, . O

6 Conclusions and Open Problems

To fully understand the behavior of swaps, many more issues need to be explored.
Unlike graphs where graph sub-isomorphism is already N’P-hard, in pattern
matching one usually considers a small pattern of length m sliding across a large
text of length n. We have pointed out that the k-swap matching on strings of
equal length can be done in linear time. Can we use previous knowledge and
find, in a text of length n, all locations with a k-swap match in time shorter
than o(nm)?

In the vertex relabeling arena, NP-hardness is only the beginning of the
story. The next step is providing approximation algorithms for these swap-
distance problems. Another intriguing question is considering these graph prob-
lems as on-line problems, where the graphs are input together a vertex at a
time.

On the Hardness of Optimal and Restricted Vertex Relabeling 11

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Agnarsson, G., Greenlaw, R., Kantabutra, S.: On the graph relabeling problem.
Thai J. Math. 8(1), 21-42 (2010)

Akutsu, T.: A linear time pattern matching algorithm between a string and a tree.
In: Proceedings of 4th Symposium on Combinatorial Pattern Matching (CPM),
pp. 1-10, Padova (1993)

Amir, A., Aumann, Y., Indyk, P., Levy, A., Porat, E.: Efficient computations of
{1 and o rearrangement distances. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE
2007. LNCS, vol. 4726, pp. 39-49. Springer, Heidelberg (2007)

Amir, A.; Aumann, A., Lewenstein, M., Porat, E.: Function matching. STAM J.
Comput. 35(5), 1007-1022 (2006)

Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S.,
Vishne, U.: Pattern matching with address errors: rearrangement distances. In:
Proceedings of 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1221-1229 (2006)

Amir, A., Aumann, Y., Kapah, O., Levy, A., Porat, E.: Approximate string match-
ing with address bit errors. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008.
LNCS, vol. 5029, pp. 118-129. Springer, Heidelberg (2008)

Amir, A., Aumann, Y., Landau, G., Lewenstein, M., Lewenstein, N.: Pattern
matching with swaps. In: Proceedings of 38th IEEE FOCS, pp. 144-153 (1997)
Amir, A., Aumann, Y., Landau, G., Lewenstein, M., Lewenstein, N.: Pattern
matching with swaps. J. Algorithms 37(2), 247-266 (2000). (Preliminary version
appeared at FOCS 1997)

Amir, A., Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: Overlap matching.
Inf. Comput. 181(1), 57-74 (2003)

Amir, A., Eisenberg, E., Porat, E.: Swap and mismatch edit distance. Algorithmica
45(1), 109-120 (2006)

Amir, A., Hartman, T., Kapah, O., Levy, A., Porat, E.: On the cost of interchange
rearrangement in strings. SIAM J. Comp. 39(4), 1444-1461 (2009)

Amir, A., Landau, G.M., Lewenstein, M., Lewenstein, N.: Efficient special cases of
pattern matching with swaps. Inf. Process. Lett. 68(3), 125-132 (1998)

Amir, A., Lewenstein, M., Porat, E.: Approximate swapped matching. Inf. Process.
Lett. 83(1), 33-39 (2002)

Amir, A., Lewenstein, N., Lewenstein, M.: Pattern matching in hypertext. J. Algo-
rithms 35, 82-99 (2000)

Amir, A., Navarro, G.: Parameterized matching of non-linear structures. Inf.
Process. Lett. 109(15), 864-867 (2009)

Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: From coding theory to effi-
cient pattern matching. In: Proceedings of 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 778-784 (2009)

Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: k-Mismatch with don’t
cares. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp.
151-162. Springer, Heidelberg (2007)

Clifford, R., Porat, E.: A Filtering algorithm for k-mismatch with don’t cares. In:
Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 130-136.
Springer, Heidelberg (2007)

Cole, R., Hariharan, R.: Randomized swap matching in o(mlogmlog|o|) time.
Technical report TR1999-789, New York University, Courant Institute, September
1999

12

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

A. Amir and B. Porat

Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: A faster implementation of
the goemans-williamson clustering algorithm. In: Proceedings of 12th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 17-25 (2001)

Dombb, Y., Lipsky, O., Porat, B., Porat, E., Tsur, A.: Approximate swap and
mismatch edit distance. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS,
vol. 4726, pp. 149-163. Springer, Heidelberg (2007)

Duato, J.: A theory of fault-tolerant routing in wormhole networks. IEEE Trans.
Parallel Distrib. Syst. 8(8), 790-802 (1997)

Dweighter, H.: Problem €2569. Am. Math. Mon. 82, 1010 (1975)

Gallian, J.A.: A dynamic survey of graph labeling. Electronic Journal of Combi-
natorics 18, 1-219 (2011)

Gates, W.H., Papadimittiou, C.H.: Bounds for sorting by prefix reversal. Discrete
Math. 27, 47-57 (1979)

Heydari, M.H., Sudborough, I.LH.: On the diameter of the pancake network. J.
Algorithms 25(1), 67-94 (1997)

Johnson, W.W., Woolsay, W.E.: Notes on the ‘15 puzzle’. Am. J. Math. 2(4),
397-404 (1879)

Kantabutra, S.: The complexity of label relocation problems on graphs. In: Pro-
ceedings of 8th Asian Symposium of Computer Mathematics, National University
of Singapore (2007)

Kapah, O., Landau, G.M., Levy, A., Oz, N.: Interchange rearrangement: the
element-cost model. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS,
vol. 5280, pp. 224-235. Springer, Heidelberg (2008)

Kim, D.K., Park, K.: String matching in hypertext. In: Proceedings of 6th Sym-
posium on Combinatorial Pattern Matching (CPM 1995) (1995)

Lipsky, O., Porat, B., Porat, E., Shalom, B.R., Tzur, A.: Approximate string
matching with swap and mismatch. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS,
vol. 4835, pp. 869-880. Springer, Heidelberg (2007)

Manber, U., Wu, S.: Approximate string matching with arbitrary cost for text and
hypertext. In: Proceedings International Workshop on Structural and Syntactic
Pattern Recognition, pp. 22-33 (1992)

Muir, T.: A treatise of the thoery of determinants with graduated sets of exercises.
Macmillan and Co., London (1882)

Muthukrishnan, S.: New results and open problems related to non-standard
stringology. In: Galil, Zvi, Ukkonen, Esko (eds.) CPM 1995. LNCS, vol. 937, pp.
298-317. Springer, Heidelberg (1995)

Navarro, G.: Improved approximate pattern matching on hypertext. Theoret. Com-
put. Sci. 237, 455-463 (2000)

A Framework for Space-Efficient String Kernels

Djamal Belazzougui'*? and Fabio Cunial®»?(®9)
! Department of Computer Science, University of Helsinki, Helsinki, Finland
2 Helsinki Institute for Information Technology, Helsinki, Finland
fabio.cunial@cs.helsinki.fi

Abstract. String kernels are typically used to compare genome-scale
sequences whose length makes alignment impractical, yet their compu-
tation is based on data structures that are either space-inefficient, or
incur large slowdowns. We show that a number of exact string kernels,
like the k-mer kernel, the substrings kernels, a number of length-weighted
kernels, the minimal absent words kernel, and kernels with Markovian
corrections, can all be computed in O(nd) time and in o(n) bits of space
in addition to the input, using just a rangeDistinct data structure on
the Burrows-Wheeler transform of the input strings that takes O(d) time
per element in its output. The same bounds hold for a number of mea-
sures of compositional complexity based on multiple values of k, like the
k-mer profile and the k-th order empirical entropy, and for calibrating
the value of k using the data.

1 Introduction

Given two strings 7' and T2, a kernel is a function that simultaneously con-
verts T! and T2 into vectors T! and T? in R™ for some n > 0, and computes
a similarity or a distance measure between T! and T2, without building and
storing T* explicitly [14]. Kernels are often the method of choice for compar-
ing extremely long strings, like genomes, read sets, and metagenomic samples,
whose size makes alignment infeasible, yet their computation is typically based
on space-inefficient data structures, like (truncated) suffix trees, or on space-
efficient data structures with O(log®n) slowdowns, like compressed suffix trees
(see e.g. [1,9] and references therein). The (possibly infinite) dimensions of T*
are, for example, all strings of a specific family on the alphabet of T* and T2, and
the value assigned to vector T? along dimension W corresponds to the number
of occurrences of string W in T%, often rescaled and corrected in domain-specific
ways. T? is often called composition vector, and a large number of its compo-
nents can be zero in practice. In this paper we focus on space- and time-efficient
algorithms for computing the cosine of the angle between two composition vec-
tors T* and T2, i.e. on computing the kernel x(T!, T?) = N/vD'D? € [-1..1],
where N = Y, T'W]T?[W] and D = Y ;, T/[W]2. This measure of similarity
can be converted into a distance d(T*!, T?) = (1 —x(T!,T?))/2 € [0..1], and the

This work was partially supported by Academy of Finland under grant 284598 (Cen-
ter of Excellence in Cancer Genetics Research).
© Springer International Publishing Switzerland 2015

F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 13-25, 2015.
DOI: 10.1007/978-3-319-19929-0_2

14 D. Belazzougui and F. Cunial

algorithms we describe can be applied to compute norms of vector T! — T2, like
the p-norm and the infinity norm. When T*! and T? are bitvectors, we are more
interested in interpreting them as sets and in computing the Jaccard distance
J(TL,T2) = [TV A T2/ T v T2| = | T AT]|/ ([T + T2 — [T AT,
where A and V are the bitwise AND and OR operators, and where || - || measures
the number of ones in a bitvector.

Given a data structure that supports rangeDistinct queries on the Burrows-
Wheeler transform of each string in input, we show that a number of popular
string kernels, like the k-mer kernel, the substrings kernels, a number of length-
weighted kernels, the minimal absent words kernel, and kernels with Markovian
corrections, can all be computed in O(nd) time and in o(n) bits of space in addi-
tion to the input, all in a single pass over the BWTs of the input strings, where
d is the time taken by the rangeDistinct query per element in its output. The
same bounds hold for computing a number of measures of compositional com-
plexity for multiple values of k at the same time, like the k-mer profile and the
k-th order empirical entropy, and for choosing the value of k used in k-mer kernels
from the data. All these algorithms become O(n) using the rangeDistinct data
structure described in [4], and concatenating this setup to the BWT construc-
tion algorithm described in [3], we can compute all such kernels and complexity
measures from the input strings in randomized O(n) time and in O(nlog o) bits
of space in addition to the input. Finally, we show that measures of expectation
based on Markov models are related to the left and right extensions of maximal
repeats.

2 Preliminaries

2.1 Strings

Let X = [1..0] be an integer alphabet, let # = 0, #1 = —1 and #3 = —2 be
distinct separators not in X, and let T' = [1..0]"~1# be a string. We assume o €
o(y/n/logn) throughout the paper. A k-mer is any string W € [1..0] of length
k > 0. We denote by fr(W) the number of (possibly overlapping) occurrences
of a string W in the circular version of T, and we use the shorthand pp(W) =
fr(W)/(n — |W]) to denote an approximation of the empirical probability of
observing W in T, assuming that all positions of T except the last |W| ones are
equally probable starting positions for W. A repeat W is a string that satisfies
fr(W) > 1. We denote by L% (W) the set of characters {a € [0..0] : fr(aW) > 0}
and by X7.(W) the set of characters {b € [0..0] : fr(Wb) > 0}. A repeat W
is right-mazimal (respectively, left-mazimal) iff |X5(W)| > 1 (respectively, iff
|XE(W)| > 1). Tt is well known that 7' can have at most n — 1 right-maximal
substrings and at most n — 1 left-maximal substrings. A maximal repeat of T is
a repeat that is both left- and right-maximal.

For reasons of space we assume the reader to be familiar with the notion of
suffix tree STp of a string T', and with the notion of generalized suffix tree of
two strings, which we do not define here. We denote by £(v) the string label of a
node v in a suffix tree. It is well known that a substring W of T is right-maximal

A Framework for Space-Efficient String Kernels 15

ifft W = {(v) for some internal node v of STr. We assume the reader to be
familiar with the notion of suffiz link connecting a node v with ¢(v) = aW for
some a € [0..0] to a node w with ¢(w) = W: we say that w = suffixLink(v) in
this case. Here we just recall that suffix links and internal nodes of ST form a
tree, called the suffiz-link tree of T and denoted by SLTr, and that inverting the
direction of all suffix links yields the so-called explicit Weiner links. Given an
internal node v and a symbol a € [0..0], it might happen that string af(v) does
occur in 7', but that it is not right-maximal, i.e. it is not the label of any internal
node of STr: all such left extensions of internal nodes that end in the middle
of an edge are called implicit Weiner links. An internal node v of STt can have
more than one outgoing Weiner link, and all such Weiner links have distinct
labels: in this case, £(v) is a maximal repeat. It is known that the number of
suffix links (or, equivalently, of explicit Weiner links) is upper-bounded by 2n—2;
and that the number of implicit Weiner links can be upper-bounded by 2n — 2
as well.

2.2 Enumerating Right-Maximal Substrings and Maximal Repeats

For reasons of space we assume the reader to be familiar with the notion and uses
of the Burrows-Wheeler transform of T, including the C array, the rank function,
and backward searching. In this paper we use BWTr to denote the BWT of T,
we use range(W) = [sp(W)..ep(W)] to denote the lexicographic interval of a
string W in a BW'T that is implicit from the context, and we use X; ; to denote
the set of distinct characters that occur inside interval [i..j] of a string that is
implicit from the context. We also denote by rangeDistinct(s,j) the function
that returns the set of tuples {(c, rank(c,p.),rank(c,q.)) : ¢ € X;;}, in any
order, where p. and g. are the first and the last occurrence of ¢ inside interval
[i..7], respectively. Here we focus on a specific application of BWT: enumerating
all the right-maximal substrings of T, or equivalently all the internal nodes of
STr. In particular, we use the algorithm described in [3] (Sect.4.1), which we
sketch here for completeness.

Given a substring W of T, let by < by < - -+ < by be the sorted sequence of all
the distinct characters in X7.(W), and let a1, as, . . ., aj, be the list of all the char-
acters in X4 (W), not necessarily sorted. Assume that we represent a substring
W of T as a pair repr(W) = (chars|l..k|, first[l..k + 1]), where chars[i] = b;,
range(Wb;) = [first[i]..first[i + 1] — 1] for ¢ € [1..k], and range() refers to
BWT 7. Note that range(W) = [first[l]..first[k+1]—1], since it coincides with
the concatenation of the intervals of the right extensions of W in lexicographic
order. If W is not right-maximal, array chars in repr(W) has length one. Given
a data structure that supports rangeDistinct queries on BWTr, and given the
C array of T, there is an algorithm that converts repr(W) into the sequence
ai,...,ap and into the corresponding sequence repr(a;W),...,repr(a,W), in
O(de) time and O(o? logn) bits of space in addition to the input and the output
[3], where d is the time taken by the rangeDistinct operation per element in its
output, and e is the number of distinct strings a;Wb; that occur in the circular

16 D. Belazzougui and F. Cunial

version of T, where 7 € [1..h] and j € [1..k]. We encapsulate this algorithm into
a function that we call extendLeft.

If a;W is right-maximal, i.e. if array chars in repr(a; W) has length greater
than one, we push pair (repr(a;W), |W|+1) onto a stack S. In the next iteration
we pop the representation of a string from the stack and we repeat the process,
until the stack itself becomes empty. This process is equivalent to following all
the explicit Weiner links from the node v of STy with ¢(v) = W, not necessarily
in lexicographic order. Thus, running the algorithm from a stack initialized with
repr(e) is equivalent to performing a preorder depth-first traversal of the suffix-
link tree of T (with children explored in arbitrary order), which guarantees to
enumerate all the right-maximal substrings of T'. Every operation performed by
the algorithm can be charged to a distinct node or Weiner link of ST, thus the
algorithm runs in O(nd) time. The depth of the stack is O(logn) rather than
O(n), since at every iteration we push the pair (repr(a;W), |a;W|) with largest
range(a; W) first. Every suffix-link tree level in the stack contains at most o
pairs, and each pair takes at most ologn bits of space, thus the total space
used by the stack is O(02log®n) bits. The following theorem follows from our
assumption that o € o(y/n/logn):

Theorem 1 ([3]). Let T € [1..0]" "4 be a string. Given a data structure that
supports rangeDistinct queries on BWTrp, we can enumerate all the right-
mazximal substrings W of T, and for each of them we can return |W|, repr(W),
the sequence ai,as,...,an of all characters in E’%(W) (not necessarily sorted),
and the sequence repr(a1W), ... ,repr(a,W), in O(nd) time and in o(n) bits of
space in addition to the input and the output, where d is the time taken by the
rangeDistinct operation per element in its output.

Theorem 1 does not specify the order in which the right-maximal substrings
must be enumerated, nor the order in which the left extensions of a right-
maximal substring must be returned. The algorithm we just described can be
adapted to return all the maximal repeats of T, with the same bounds, by
outputting a right-maximal string W iff |rangeDistinct(sp(W),ep(W))| > 1.
A version of the same algorithm can also enumerate all the internal nodes
of the generalized suffiz tree of two string T' and T2, using BWTp and
BWTz2: in this case, a string W is represented as a quadruple repr’ (W) =
(charsi[l..kq], firstq[l..k1 + 1], charss[l..ko], firsts[l..ks +1]), and we assume
that first;[1] = 0 iff W does not occur in T°. We call extendLeft’ the function
that maps repr’(W) to the list of its left extensions repr’(a;W).

Theorem 2 ([3]). LetT' € [1..o]"~1#; and T? € [1..0]"2 7 #4 be two strings.
Given two data structures that support rangeDistinct queries on BWTp 1 and
on BWT 2, respectively, we can enumerate all the right-maximal substrings W
of T = T'T?, and for each of them we can return |W|, repr’ (W), the sequence
ai,as,...,ap of all characters in E%lTZ(W) (not necessarily sorted), and
the sequence repr’'(aaW),...,repr’ (ayW), in O(nd) time and in o(n) bits of
space in addition to the input and the output, where n = ny + ny and d s the
time taken by the rangeDistinct operation per element in its output.

A Framework for Space-Efficient String Kernels 17

For reasons of space, we assume throughout the paper that d is the time per
element in the output of a rangeDistinct data structure that is implicit from the
context. We also replace T? by i in subscripts, or we waive subscripts completely
whenever they are clear from the context.

3 Kernels and Complexity Measures on k-mers

Given a string 7' € [1..0]""1# and a length k > 0, let vector T[1..0%] be such
that Tr[W] = fr(W) for every W € [1..0]*. The k-mer complezity Cy(T) of
string T is the number of nonzero components of Ty. The k-mer kernel of two
strings 7" and 77 is x(T}, T?). Recall that Theorems 1 and 2 enumerate all
nodes of a suffix tree in no specific order. In this section we describe algorithms
to compute Cy(T) and k(T}, T7) in a way that does not depend on the order
in which the nodes of a suffix tree are enumerated: we can thus implement such
algorithms on top of Theorems1 and 2. The main idea behind our approach is
a telescoping strategy that works by adding and subtracting terms in a sum, as
described below:

Theorem 3. Let T € [1..0]"~'# be a string. Given an integer k and a data
structure that supports rangeDistinct queries on BWTr, we can compute Cy(T)
in O(nd) time and in o(n) bits of space in addition to the input.

Proof. A k-mer of T can either be the label of a node of ST, or it could end in
the middle of an edge (u,v) of ST. In the latter case, we assume that the k-mer
is represented by its locus v, which might be a leaf. Let C(7") be initialized to
n — k, i.e. to the number of leaves that correspond to suffixes of T of length
at least £ + 1. We enumerate the internal nodes of ST using Theorem 1, and
every time we enumerate a node v we proceed as follows: if [¢(v)| < k we leave
Cx(T) unaltered, otherwise we increment Ci(T') by one and we decrement Cy(T')
by the number of children of v in ST, which is the length of array chars in
repr({(v)). In this way, every internal node v of ST that is located at string
depth at least k& and that is not the locus of a k-mer is both added to Ci(T)
(when the algorithm visits v) and subtracted from Cg(T) (when the algorithm
visits parent(v)). Leaves at depth at least k + 1 that are not the locus of a
k-mer are added by the initialization of Cx(T'), and they are subtracted during
the enumeration. Conversely, every locus v of a k-mer of T (including leaves) is
just added to Ci(T), since |¢(parent(v))| < k.

We can apply the same telescoping strategy to compute x(T}, T?):

Theorem 4. Let T € [1.o]™ '#1 and T? € [l..0|"27 45 be strings. Given
an integer k and two data structures that support rangeDistinct queries on
BWTr1 and on BWTq2, respectively, we can compute k(T}, T%) in O(nd) time
and in o(n) bits of space in addition to the input, where n = ni + na.

18 D. Belazzougui and F. Cunial

Proof. Recall that x(T},T;) = N/VD'D?, where N = >, TL[W]|T:[W],
Dt =", Ti[W]?, and W € [l..0]*. We initially set N = 0 and D = n; — k,
since these are the contributions of all the leaves at depth at least k£ + 1 in the
generalized suffix tree of T and T2. Then, we enumerate every internal node u
of the generalized suffix tree, using Theorem 2: if |¢(u)| < k we keep all variables
unchanged, otherwise we set N to N + f1(£(u)) - fo(€(u)) =", f1(€(v)) - f2(£(v))
and we set D’ to D" + f;(£(u))? — Y, fi(€(v))?, where v ranges over all children
of u in the generalized suffix tree. Clearly f;(¢(u)) = first,[k; + 1] — first;[1]
where k; is the size of array chars; in repr’(¢(u)), and f;(¢(v)) = fi(£(u)b;) =
first;[j + 1] — first;[j] for some j € [1..k;]. In analogy to Theorem 3, the
contribution of the loci of the distinct k-mers of T, of T2, or of both, is added
to the three temporary variables and never subtracted, while the contribution of
every other node u at depth at least k in the generalized suffix tree is both added
(when the algorithm visits u, or when N and D' are initialized) and subtracted
(when the algorithm visits parent(u)).

An even more specific notion of compositional complexity is Cj ¢(7"), the num-
ber of distinct k-mers that occur exactly f times in T. In the k-mer profil-
ing problem [6,7] we are given a string T, an interval [k;..ks] of lengths and
an interval [fi..fs] of frequencies, and we are asked to compute the matrix
profilelki..ka, fi..f2] defined as follows: profilels, j| = C;;(T) if j < f2, and
profileli,j] = 3,5 ; Cin(T) if j = fo. Note that the jth column of profile
can have nonzero cells only if f; is the frequency of some internal node of STr.
In practice profile is often computed by running a k-mer extraction algorithm
ko — k1 + 1 times, and by scanning the output of all such runs (see e.g. [6] and
references therein). The following lemma shows that we can compute profile
in just one pass over the BWT of the input string, and in linear time in the size
of profile:

Theorem 5. Let T € [1..0]" " 4 be a string. Given ranges [k1..k2] and [fi..fs],
and given a data structure that supports rangeDistinct queries on BWTp, we
can compute matriz profilelky..ka, f1..f2] in O(nd + (ko — k1)(f2 — f1)) time
and in o(n) bits of space in addition to the input and the output.

Proof. We use Theorem 1 again. Assume that, for every internal node wu of
STp with string depth at least k; and with frequency at least f;, and for
every k € [ky..min{|f(u)|,k2}], we increment profile[k, min{f(u), fo}] by
one and we decrement profile[k, min{f(v), fo}] by one for every child v
of u in ST such that f(v) > fi. This would take O(n?) total updates to
profile. However, we can perform all of these updates in batch, as follows:
for every node w of ST with f(u) > f; and with |[¢(u)| > ki, we just incre-
ment profile[min{|¢(u)|, k2}, min{f(u), fo}] by one, and we just decrement
profile[min{|/(u)|, k2}, min{f(v), f2}] by one for every child v of v in ST such
that f(v) > fi. After having traversed all the internal nodes of ST, we scan
profile as follows: for every j € [fi..f2], we traverse all values of 7 in the decreas-
ing order ko — 1,..., k1, and we set profileli,j| = profile[i,j] + profile[i +
1,4]. If f1 = 1, at the end of this process the first column of profile contains

A Framework for Space-Efficient String Kernels 19

negative numbers, since Theorem 1 does not enumerate the leaves of ST. Thus,
before returning, we add to profile[i, 1] the number of leaves with string depth
at least k; + 1, i.e. value n — k;, for all ¢ € [ky..ko].

A similar algorithm allows computing (T}, T?) for all k in a user-specified
range [k1..k2] in O(nd+ ke — k1) time. Matrix profile can be used to determine
a range of values of k to be used in k-mer kernels. The smallest number in this
range is typically the value of k that maximizes the number of distinct k-mers
that occur at least twice in T [15]. The largest number in the range is typically
determined using some measure of expectation: we cover this computation in
Sect. 5.

A related notion of compositional complexity is the k-th order empir-
ical entropy of T, defined as Hy(T) = (1/|T]) - 2w Xuesrmn fr(Wa) -
log(fr(W)/fr(Wa)), where W ranges over all strings in [1..0]*. Clearly only
the internal nodes of ST contribute to some Hy(T") [9], thus our methods allow
computing Hy (T) for a user-specified range of lengths [ky..k2] in O(nd + ko — k1)
time, using just one pass over BWT .

4 Kernels and Complexity Measures on All Substrings

Given a string T € [l..0]" 14, consider the infinite-dimensional vector T
indexed by all distinct substrings W € [1..0]™, such that To,[W] = fr(W). The
substring complezity Coo(T) of T is the number of nonzero components of T.
The substring kernel of two strings T and T2 is the cosine of composition vectors
T! and T2 . Computing substring complexity and substring kernel amounts to
applying the same telescoping strategy described in Theorems 3 and 4, but with
different contributions:

Corollary 1. Let T € [1..o]" 14 be a string. Given a data structure that sup-
ports rangeDistinct queries on BWTr, we can compute Coo(T') in O(nd) time
and in o(n) bits of space in addition to the input.

Proof. The substring complexity of T coincides with the number of characters
in [1..0] that occur on all edges of STy. We can thus proceed as in Theorem 3,
initializing Coo (T') to (n — 1)n/2, or equivalently to the sum of the lengths of all
suffixes of T'[1..n — 1]. Whenever we visit a node v of ST, we add to Coo(T") the
quantity [¢(v)|, and we subtract from C(T") the quantity |£(v)| - |children(v)|.
The net effect of all such operations coincides with summing the lengths of all
edges of ST, discarding all occurrences of character #. Note that |¢(u)| is pro-
vided by Theorem 1, and |children(v)| is the size of array chars in repr(4(v)).

Corollary 2. Let T' € [l.o|™ 141 and T? € [1..0]™> 14, be strings. Given
data structures that support rangeDistinct queries on BWT 1 and on BWT 2,
respectively, we can compute k(TL , T2) in O(nd) time and in o(n) bits of space
i addition to the input, where n = ni + na.

20 D. Belazzougui and F. Cunial

Proof. We proceed as in Theorem 4, setting again N = 0 and D? = (n; — 1)n;/2
at the beginning of the algorithm. When we visit a node u of the generalized suffix
tree of 7' and T, we set N to N-+[6(u)|-(fu(£(w) f2(¢(u)) ~ 3, A(U)f2(£(0)))
and we set D® to D + |0(u)| - (fi(£(u))* = >, fi(£(v))?), where v ranges over all
children of u in the generalized suffix tree.

In a substring kernel it is common to weight a substring W by a user-specified
function of its length: typical choices are e/ for a given constant e, or indicators
that select only substrings within a specific range of lengths [16]. We denote
by T¢, g & weighted version of the infinite-dimensional vector T such that
Ti, (W] = g(|W]) - T.,[W], where g is any user-specified function. We assume
that the number of bits required to represent the output of g with sufficient
precision is O(logn). It is easy to adapt Corollary 2 to support this type of
composition vector:

Corollary 3. Let T! € [1..0]™ 714, and T? € [1..0]"> 145 be strings. Given a
function g(k) that can be evaluated in constant time, and given data structures
that support rangeDistinct queries on BWT 1 and on BWT 2, respectively, we
can compute r(TL, ,,T%) in O(nd) time and in o(n) bits of space in addition
to the input, where n = ni + ns.

Proof. We modify Corollary 2 as follows. Assume that we are processing an inter-
nal node v of the generalized suffix tree, let £/(v) = W, and assume that we have
computed repr’(aW) for all the left extensions aW of W. In addition to pushing
repr’(aW) onto the stack, we also push value prefixSum(aW) = le‘ﬂ (i)?
with it, where prefixSum(aW) = prefixSum(W) + g(|W| + 1)2. When we pop
repr’(aW), we compute its contributions to NV and D® as described in Corollary 2,
but replacing [aW| by prefixSum(aWW). We initialize D* to Y7 Yg(5)2.

Corollary 3 can clearly support distinct weight functions for 7' and T2. For
some functions, like /!, prefix sums can be computed in closed form [16],
thus there is no need to push prefixSum values on the stack. Another frequent
weighting scheme for a string W associates a score ¢(c¢) to every character ¢ of
W, and it weights W by e.g. q(W) = H’\LW1| g(Wi]). In this case we could just
push prefixSum(V) = Z‘Vl =1 q(V'[j])? onto the stack, where V = aW and
prefixSum(V) = g(a)? - (1 + prefixSum(W)). A similar weighting scheme can
be used for k-mers as well. Let Ty, be a version of Ty such that Ty ,[WW] =
fr(W) — (|T| — [W|)g(W) for every W € [1..0]%, and consider the following
distances defined in [13]:

D5(T} g T3,) = 0Tk WITE [W]/(/(Th W])? + (T3, [W])?
w

D5(T} g T o) = Y Th o [WITE W]/ (Vin1 =)z = k) - (W)
w

where W ranges over all strings in [1..0]¥. We can compute such distances using
just a minor modification to Theorem 4:

A Framework for Space-Efficient String Kernels 21

Corollary 4. Let T € [1.o]™ 41 and T? € [1..0]">7 45 be strings. Given
an integer k and data structures that support rangeDistinct queries on BWT 1
and on BWT 2, respectively, we can compute D} (T}w, Ti7p) and D3 (T,IW, T%p)
in O(nd) time and in Xlogo + o(n) bits of space in addition to the input, where

n=mn1 +ns and X\ is the length of the longest repeat in T T2.

Proof. We proceed as in Theorem4, pushing on the stack value ¢(W,k) =
H§=1 qg(W1j]) in addition to repr’/(W), and maintaining a separate stack of
characters to represent the string we are processing during the depth-first tra-
versal of the generalized suffix-link tree. We set q(aW, k) = q(a) - ¢(W, k)/q(b),
where b is the kth character from the top of the character stack when we are
processing W.

An orthogonal way to measure the similarity between T' and T? consists in
comparing the repertoire of all strings that do not appear in T' and in T2
Given a string T and two frequency thresholds 7 < 7o, a string W is a minimal
rare word of T if 7y < fr(W) < 19 and if fr(V) > 7 for every proper substring
V of W. Setting 7 = 0 and 75 = 1 gives the well-known minimal absent words
(see e.g. [5,10] and references therein), whose total number can be ©(on) [8].
Setting 71 = 1 and 72 = 2 gives the so-called minimal unique substrings (see
e.g. [11] and references therein), whose total number is O(n), like the number
of strings obtained by any other setting of 73 > 1. In what follows we focus on
minimal absent words, but our algorithms can be generalized to other settings
of the thresholds.

To decide whether alWWb is a minimal absent word of T, where a and b are
characters, it clearly suffices to check whether fr(aWb) = 0 and whether both
fr(@W) > 1 and fr(Wb) > 1. It is well known that only a maximal repeat of
T can be the infix W of a minimal absent word aWb, and this applies to any
setting of 7 and 75. To enumerate all the minimal absent words, for example
to count their total number C_(T'), we can thus iterate over all nodes of ST
associated with maximal repeats, as described below:

Theorem 6. Let T € [1..0]" 14 be a string. Given a data structure that sup-
ports rangeDistinct queries on BWTr, we can compute C_(T) in O(nd) time
and in o(n) bits of space in addition to the input.

Proof. For clarity, we first describe how to enumerate all the distinct minimal
absent words of T: we specialize this algorithm to counting at the end of the
proof. We use Theorem 1 to enumerate all nodes v of STy associated with
maximal repeats, as described in Sect. 2.2. Let {aq,...,as} be the set of distinct
left extensions of string ¢(v) in T returned by operation extendLeft(repr({(v))),
let extensions[l..0 +1,0..0] be a boolean matrix initialized to all zeros, and let
leftExtensions[l..o + 1] be an array initialized to all zeros. Let h’ be a pointer
initialized to one. Operation extendLeft allows following all the Weiner links
from v, not necessarily in lexicographic order: for every string a;¢(v) obtained
in this way, we set leftExtensions[h’] = a;, we enumerate its right extensions
{c1,...,cx} using array chars of repr(a;{(v)), we set extensions[h/,¢;] =1

22 D. Belazzougui and F. Cunial

for all j € [1..k'], and we finally increment h’ by one. Note that only the columns
of extensions that correspond to the right extensions of ¢(v) are updated by
this procedure. Then, we enumerate all the right extensions {b1,...,b;} of £(v)
using array chars of repr({(v)), and for every such extension b; we report all
pairs (a;,b;) such that a; = chars[z], z € [1..h'], and extensions|z,b;] = 0.
This process takes time proportional to the number of Weiner links from v, plus
the number of children of v, plus the number of Weiner links from v multiplied
by 0. When applied to all nodes of ST, this takes in total O(no) time, which is
optimal in the size of the output. The matrices and vectors used by this process
can be reset to all zeros after processing each node: the total time spent in such
reinitializations in O(n).

If we just need C_(T), rather than storing the temporary matrices
extensions and leftExtensions, we store just a number area which we ini-
tialize to hk before processing node v. Whenever we observe a right extension
¢; of a string a;¢(v), we decrease area by one. Before moving to the next node,
we increment C_(T') by area.

Let T_ be the infinite-dimensional vector indexed by all distinct substrings
W € [l.o]", such that T_[W] = 1 iff W is a minimal absent word of T.
Theorem 6 can be adapted to compute the Jaccard distance between the com-
position vectors of two strings:

Corollary 5. Let T' € [l.o]™ 741 and T? € [1..0]">7 145 be strings. Given
data structures that support rangeDistinct queries on BWT 1 and on BWT 2,
respectively, we can compute J(TL,T2) in O(nd) time and in o(n) bits of space
i addition to the input, where n = ni + na.

Proof. We apply the strategy of Theorem 6 to the internal nodes of the gener-
alized suffix tree of T and T? whose label is a maximal repeat of 7' and a
maximal repeat of T2: such strings are clearly maximal repeats of 172 as well.
We enumerate such nodes as described in Sect.2.2. We keep a global variable
intersection and a bitvector sharedRight|[l..c]. For every node v that corre-
sponds to a maximal repeat of T and of T2, we merge the sorted arrays chars;
and charss of repr’(£(v)), we set sharedRight[c] = 1 for every character ¢ that
belongs to the intersection of the two arrays, and we cumulate in a variable k'
the number of ones in sharedRight. Then, we scan every left extension a; pro-
vided by extendLeft’, we determine in constant time whether it occurs in both
T' and T2, and if so we increment a variable A’ by one. Finally, we initialize a
variable area to h'k’, and we process again every left extension a; provided by
extendLeft’: if a;¢(v) occurs in both T and T2, we compute the union of arrays
chars; and charss of repr’(a;4(v)), and for every character ¢ in the union such
that sharedRight[c] = 1, we decrement area by one. At the end of this process,
we add area to the global variable intersection. To compute ||TL Vv T2 || we
apply Theorem 6 to T* and T? separately.

It is easy to extend Corollary 5 to compute (T, T?), as well as to support
weighting schemes based on the length and on the characters of minimal absent
words.

A Framework for Space-Efficient String Kernels 23

5 Markovian Corrections

In some applications it is desirable to assign to component W € [l..0]¥ of
composition vector T, an estimate of the statistical significance of observing
Sfr(W) occurrences of W in T': intuitively, strings whose frequency departs from
its expected value are more likely to carry “information”, and they should be
weighted more [12]. Assume that T is generated by a Markov random process
of order k — 2 or smaller, that produces strings on alphabet [l..0] accord-
ing to a probability distribution P. It is well known that the probability of
observing W in a string generated by such a random process is P(W) =
P(W[l..k — 1)) - P(W][2..k])/P(W[2..k — 1]). We can estimate P(W) using the
empirical probability pr (W), obtaining the following approximation for P(W):
(W) = pr(WILk — 1) - pr(W[2..k])/pr (W2 — 1]) if pr(W[2. — 1]) 0,
and pr(W) = 0 otherwise. We can thus estimate the significance of the event
that substring W has empirical probability pr (W) in string T using the follow-
ing score: zp(W) = (pr(W) — pr(W))/pr(W) if pr(W) # 0, and zp(W) = 0 if
pr(W) = 0 [12]. After elementary manipulations [2], zr (W) becomes:

fr(W) - fr(W[2..k —1])
fr(W[l.k—=1])- fr(W[2..k])
g(z,y) = (@ —y+2)?/(x—y+1)(z—y+3)

2r(W) = g(n, k) - -1

Since g(z,y) € [1..1.125], we temporarily assume g(z,y) = 1 in what follows,
removing this assumption later.

Let T, be a version of the infinite-dimensional vector T, in which T,[W] =
zp(W). Among all strings that occur in T, only strings aWb such that a and
b are characters in [0..0] and such that W is a maximal repeat of T can
have T,[aWb] # 0. Similarly, among all strings that do not occur in T, only
the minimal absent words of T" have a nonzero component in T,: specifically,
T,[aWb] = —1 for all minimal absent words aWWb of T', where a and b are char-
acters in [0..0] [2]. Given two strings T and T2, we can thus compute x(T., T?)
using the same strategy as in Corollary 5:

Theorem 7. Let T € [1..o]™ 7141 and T? € [1..0|"2" #, be strings. Given
data structures that support rangeDistinct queries on BWT 1 and on BWT 2,
respectively, and assuming g(x,y) = 1 for all settings of x and y, we can compute
k(TL,T2) in O(nd) time and in o(n) bits of space in addition to the input, where
n=nmny+ng.

Proof. We focus here on computing component N of x(TL, T?): comput-
ing D! follows a similar algorithm on BWTz:. We keep again a bitvector
sharedRight[l..0], and we enumerate all the internal nodes of the generalized
suffix tree of T' and T2 whose label is a maximal repeat of T and a maximal
repeat of T2, as described in Corollary 5. For every such node v, we merge the
sorted arrays chars; and charss of repr’/(¢(v)), we set sharedRight[c] = 1 for
every character ¢ that belongs to the intersection of the two arrays, and we cumu-
late in a variable &’ the number of ones in sharedRight. Then, we scan every left

24 D. Belazzougui and F. Cunial

extension a; provided by extendLeft’, we determine in constant time whether
it occurs in both T and T2, and if so we increment a variable i’ by one. Finally,
we initialize a variable area to h’'k’, and we process again every left extension a;
provided by extendLeft’. If a;/(v) occurs in both T and T?, we merge arrays
chars; and charsy of repr’(a;{(v)): for every character b in the intersection
of chars; and charss, we add to N value z1(a;f(v)b) - z2(a;€(v)b), retrieving
the corresponding frequencies from repr’(a;¢(v)) and from repr’'(¢(v)), and we
decrement area by one. For every character b that occurs only in chars;, we
test whether sharedRight[b] = 1: if so, a;Wb is a minimal absent word of T2
that occurs in T, thus we decrement area by one and we add to N value
—z1(a;if(v)b). We proceed symmetrically if b occurs only in chars,. At the end
of this process, area counts the number of minimal absent words with infix ¢(v)
that are shared by 7' and 72: thus, we add area to N.

It is easy to remove the assumption that g(z,y) is always equal to one. There
are only two differences from the previous case. First, the score of the substrings
W of T® that have a maximal repeat of T% as an infix changes, but g(n;, |W|)
can be immediately computed from |W|, which is provided by the enumeration
algorithm. Second, the score of all substrings W of T that do not have a maximal
repeat as an infix changes from zero to g(n;, |W|) — 1: we can take all such
contributions into account by pushing prefix-sums to the stack, as in Corollary 3.
For example, to compute component N of x(T2, T?), we can first assume that
all substring W that occur both in 7' and in 72 have score g(n;,|W|) — 1, by
pushing on the stack the prefix-sums described in [2] and by enumerating only
nodes v of the generalized suffix tree of T and T such that ¢(v) occurs both in
T! and in T?. Then, we can run a similar algorithm as in Theorem 7, subtracting
quantity (g(n1, |[W|+2) —1)- (g(ne, |[W|+2) — 1) from the contribution to N of
every string a;Wb that occurs both in 7" and in T2.

Finally, recall that in Sect.3 we mentioned the problem of determining an
upper bound on the values of k to be used in k-mer kernels. Let T} be the
composition vector indexed by all strings in [1..0]¥ such that Ty[W] = pp (W),
and let T}, be a similar composition vector with Tj[W] = 7 (W), where pr (W)
is defined as in the beginning of this section. It makes sense to disregard values
of k for which Tj, and T} are very similar, and more formally whose Kullback-
Leibler divergence KL(Tk,’i‘k) = > w Te[W] - (log(Tx[W]) — log(Tk[W])) is
small, where W ranges over all strings in [1..0]*. Thus, we could use as an
upper bound on k the minimum value k* such that S p_,. KL(Tw, Tr) <
7 for some user-specified threshold 7 [15]. Note again that only strings aWb
such that ¢ and b are characters in [0..0] and W is a maximal repeat of T
contribute to KL(T‘WHQ,T‘WHQ). We can thus adapt Theorem 7 to compute
the KL divergence for a user-specified range of lengths [ki..ks], using just one
pass over BWTr, in O(nd) time and in o(n) bits of space in addition to the
input and the output. The same approach can be used to compute the KL-
divergence kernel k(Tk;,T%), where T% [W] = KLy:(W) and KLz (W) =
5 pess Pre(Wh) - (log(pr (alV'b)) — log(r- (aW)).

A Framework for Space-Efficient String Kernels 25

References

10.

11.

12.

13.

14.

15.

16.

Apostolico, A.: Maximal words in sequence comparisons based on subword compo-
sition. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010.
LNCS, vol. 6060, pp. 34-44. Springer, Heidelberg (2010)

Apostolico, A., Denas, O.: Fast algorithms for computing sequence distances by
exhaustive substring composition. Algorithms Mol. Biol. 3(1), 13 (2008)
Belazzougui, D.: Linear time construction of compressed text indices in compact
space. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
31 May—03 June, pp. 148-193 (2014)

Belazzougui, D., Navarro, G., Valenzuela, D.: Improved compressed indexes for
full-text document retrieval. J. Discret. Algorithms 18, 3-13 (2013)

Chairungsee, S., Crochemore, M.: Using minimal absent words to build phylogeny.
Theoret. Comput. Sci. 450, 109-116 (2012)

Chikhi, R., Medvedev, P.: Informed and automated k-mer size selection for genome
assembly. Bioinformatics 30(1), 31-37 (2014)

Chor, B., Horn, D., Goldman, N., Levy, Y., Massingham, T., et al.: Genomic DNA
k-mer spectra: models and modalities. Genome Biol. 10(10), R108 (2009)
Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Inf.
Process. Lett. 67(3), 111-117 (1998)

Gog, S.: Compressed suffix trees: design, construction, and applications. Ph.D.
thesis, University of Ulm, Germany (2011)

Herold, J., Kurtz, S., Giegerich, R.: Efficient computation of absent words in
genomic sequences. BMC Bioinform. 9(1), 167 (2008)

Tleri, A.M., Kiilekci, M.O., Xu, B.: Shortest unique substring query revisited. In:
Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486,
pp. 172-181. Springer, Heidelberg (2014)

Qi, J., Wang, B., Hao, B.-I.. Whole proteome prokaryote phylogeny without
sequence alignment: a k-string composition approach. J. Mol. Evol. 58(1), 1-11
(2004)

Reinert, G., Chew, D., Sun, F., Waterman, M.S.: Alignment-free sequence com-
parison (I): statistics and power. J. Comput. Biol. 16(12), 1615-1634 (2009)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

Sims, G.E., Jun, S.-R., Wu, G.A., Kim, S.-H.: Alignment-free genome comparison
with feature frequency profiles (FFP) and optimal resolutions. Proc. Natl. Acad.
Sci. 106(8), 2677-2682 (2009)

Smola, A.J., Vishwanathan, S.V.N.: Fast kernels for string and tree matching.
In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information
Processing Systems 15, pp. 585-592. MIT Press, Cambridge (2003)

Composite Repetition-Aware Data Structures

Djamal Belazzougui'2®™) Fabio Cunial'?, Travis Gagie'2,
Nicola Prezza®, and Mathieu Raffinot*

! Department of Computer Science, University of Helsinki, Helsinki, Finland
djamal.belazzougui@cs.helsinki.fi
2 Helsinki Institute for Information Technology, Helsinki, Finland
3 Department of Mathematics and Computer Science,
University of Udine, Udine, Italy
4 LIAFA, Paris Diderot University, Paris 7, France

Abstract. In highly repetitive strings, like collections of genomes from
the same species, distinct measures of repetition all grow sublinearly in
the length of the text, and indexes targeted to such strings typically
depend only on one of these measures. We describe two data struc-
tures whose size depends on multiple measures of repetition at once, and
that provide competitive tradeoffs between the time for counting and
reporting all the exact occurrences of a pattern, and the space taken by
the structure. The key component of our constructions is the run-length
encoded BWT (RLBWT), which takes space proportional to the number
of BWT runs: rather than augmenting RLBWT with suffix array sam-
ples, we combine it with data structures from LZ77 indexes, which take
space proportional to the number of LZ77 factors, and with the compact
directed acyclic word graph (CDAWG), which takes space proportional
to the number of extensions of maximal repeats. The combination of
CDAWG and RLBWT enables also a new representation of the suffix
tree, whose size depends again on the number of extensions of maximal
repeats, and that is powerful enough to support matching statistics and
constant-space traversal.

1 Introduction

The space taken by compressed data structures for highly-repetitive strings is
typically a function of a specific measure of repetition, for example the number z
of factors in a Lempel-Ziv parsing [1,11], or the number 7 of runs in a Burrows-
Wheeler transform [14]. For many such compressed data structures, computing
all the occurrences of a pattern in the indexed string is a bottleneck. In this
paper we explore the advantages of combining data structures that depend on
distinct measures of repetition. Specifically, we describe a data structure that
takes approximately O(z+7) words of space, and that reports all the occurrences

Travis Gagie—Supported by the Academy of Finland.
This work was partially supported by Academy of Finland under grant 284598 (Cen-
ter of Excellence in Cancer Genetics Research).

© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 26-39, 2015.
DOI: 10.1007/978-3-319-19929-0_3

Composite Repetition-Aware Data Structures 27

of a pattern of length m in O(m(loglogn + log z) + pocclog® z + soccloglogn)
time, where n is the length of the string and pocc and socc are the number of
primary and of secondary occurrences, respectively (see Sect. 2.2 for definitions).
This compares favorably to the O(m?h + (m + occ)logz) reporting time of
LZ77 indexes [11], where h is the height of the parse tree. It also compares
favorably in space to solutions based on run-length encoded BWT (RLBWT)
and suffix array samples [14], which take O(n/k + r) words of space to achieve
O(mloglogn + k - occloglogn) reporting time, where k is a sampling rate.

We also introduce a new measure of the repetitiveness of a string, the number
e of right extensions of maximal repeats, which is related to the number of arcs
in the compact directed acyclic word-graph (CDAWG) and which is an upper
bound on r and z. We show a data structure whose size depends on e and that
reports all the occ occurrences of a pattern of length m in a string of length n
in O(mloglogn + occ) time. The main component of our constructions is the
RLBWT, which we use to count the number of occurrences of a pattern, and
which we combine with the CDAWG and with data structures from LZ indexes,
rather than with suffix array samples, for reporting. Similar combinations have
already appeared in the literature, but their space has been related to statistical
compressibility rather than to the number of repetitions: for example, an FM-
index has already been combined with an LZ78 self-index to achieve faster search
or reporting [1,7], but the size of the resulting data structure depends on k-
th order empirical entropy. Bounds in terms of k-th order empirical entropy
have redundancy terms that depend exponentially on k, so they cannot capture
compressibility based on long repetitions.

Combining the RLBWT with the CDAWG enables also a new representation
of the suffix tree, which takes space proportional to e+e’ (where e’ is the number
of left extensions of maximal repeats) and which supports a number of operations
in O(loglogn) time. Among other properties, this new representation allows
computing the matching statistics of a pattern of length m in O(m loglogn) time.
Our constructions are targeted to highly-repetitive strings, like large databases
of similar genomes, in which all the measures of repetition on which our data
structures depend grow sublinearly in the size of the database (see Fig.1 for an
example). In a future paper we will provide a full experimental comparison of our
results against other data structures for pattern matching in highly-repetitive
strings.

2 Preliminaries

Let ¥ = [1..0] be an integer alphabet, let # = 0 ¢ X be a separator, and let
T = [1..0]"~'# be a string. We denote the reverse of T by T. Given a substring
W of T, let Pr(W) be the set of all starting positions of W in the circular
version of T. A repeat W is a string that satisfies [Pr(W)| > 1. We denote by
YL (W) the set of characters {a € [0..0] : |Pr(aW)| > 0} and by X% (W) the
set of characters {b € [0..0] : |Pr(Wb)| > 0}. A repeat W is right-mazimal
(respectively, left-mazimal) iff |25(W)| > 1 (respectively, iff |X7.(W)| > 1).

28 D. Belazzougui et al.

x10° First genome x 10 Additional genomes Additional genomes (relative)

1 3 1.8
o
o
16 o ooo | 1.7 ar
o 25 00009 ad
o : 500000 a
14 o 0000 aass o
o° 009 16 P et
12 o2 2 oo A e0%%00°
() AA o®
o° 0000 15 & 20" 0000
o o 000
10 o o assrtqoe OO -
o° 15 14 a 000 an®

° " [T PYT) 00998

"o o | aaste
FL ast oy
n"lee
o atgee® 05 Agete”
2f o _gagee® [af
00 g8® AAAA | | ik ki AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 0

AAAAAAAL
§888 i iaaaaaananannn

Fig. 1. Growth of the number of maximal repeats |[Mr| (black circles), of |E7 U F7|
(white circles, e in the introduction), of the number of runs in BWT |Rr| (squares, r
in the introduction), and of | Z7| (triangles, z in the introduction) in a concatenation T
of 39 highly similar Saccharomyces cerevisiae genomes [8] (see Sect. 2 for definitions).
Left: growth inside the first genome of the database. Center: growth after the addition
of each genome (one sample per genome). Right: the same as the plot in the center,
but with each curve normalized by its first sample. |E% U Fr|, |Ry| and | 25| are not
shown since they behave approximately as their symmetrical counterparts.

It is well known that T' can have at most n — 1 right-maximal substrings and at
most n — 1 left-maximal substrings. A mazimal repeat of T is a repeat that is
both left- and right-maximal: we call M7 the set of all maximal repeats of T'.
A maximal repeat W can be seen as a set of right-maximal substrings of T, and
specifically as the set of all right-maximal strings Wi..|W|] for ¢ € [1..k] that
are not left-maximal, and such that Wk + 1..|]W|] is left-maximal.

For reasons of space we assume the reader to be familiar with the notion
of suffix tree STy = (V, E) of T, which we do not define here. We denote by
£(7y), or equivalently by £(u,v), the label of edge v = (u,v) € E, and we denote
by £(v) the string label of node v € V. It is well known that a substring W of
T is right-maximal (respectively, left-maximal) iff W = £(v) for some internal
node v of STy (respectively, iff W = {(v) for some internal node v of ST). We
assume the reader to be familiar with the notion of suffiz link connecting a node
v with ¢(v) = aW for some a € [0..0] to a node w with £(w) = W: we say that
w = suffixLink(v) in this case. Here we just recall that inverting the direction
of all suffix links yields the so-called explicit Weiner links. Given an internal
node v and a symbol a € [0..0], it might happen that string af(v) does occur in
T, but that it is not right-maximal, i.e. it is not the label of any internal node:
all such left extensions of internal nodes that end in the middle of an edge are
called implicit Weiner links. An internal node can have more than one outgoing
Weiner link, and all such Weiner links have distinct labels.

The compact directed acyclic word graph of a string T' (denoted by CDAWG
in what follows) is the minimal compact automaton representing the set of suf-
fixes of a given string [3,6]. It can be seen as the minimization of ST, in which
all leaves are merged to the same node (the sink) that represents T itself, and
in which all nodes except the sink are in one-to-one correspondence with the

Composite Repetition-Aware Data Structures 29

maximal repeats of T' [16]. Since a maximal repeat corresponds to a set of right-
maximal substrings, CDAWGy can be built by putting in the same equivalence
class all nodes of ST that belong to the same maximal unary path of explicit
Weiner links.

For reasons of space we assume the reader to be familiar with the notion
and uses of the Burrows-Wheeler transform of 7', including the C array and
backward searching. In this paper we use BWTr to denote the BWT of T, and
we use range(W) = [sp(WW)..ep(W)] to denote the lexicographic interval of a
string W in a BWT that is implicit from the context. We say that BWTr[i..J]
is a run iff BWTp[k] = ¢ € [0..0] for all k € [i..j], and moreover if any substring
BWTr[i'..5'] such that i’ < i, j/ > j, and either i’ # i or j/ # j, contains at
least two distinct characters. It is well known that repetitions in 7" tend to be
converted into runs of BWTr. We denote by R the set of all triplets (c,i,7)
such that BWT[i..j] is a run of character ¢, and we use rr and 7r as shorthands
for |[Rr| and |R|, respectively.

The LZ77 factorization of T [20] is the greedy decomposition T4 Ts - - - T, of T
obtained as follows. Assume that T is virtually preceded by the ¢ distinct char-
acters in its alphabet, and assume that 7175 ---T; has already been computed
for some prefix of length k of T": then, T;;1 is the longest prefix of T'[k + 1..n]
such that there is a j < k that satisfies T[j..j + |Ti+1]| — 1] = Ti+1. We denote by
Zr the set of pairs (T}, p;) for all i € [1..z], where p; is the starting position of T;
in T, and we use zr as a shorthand for |Zr|. From now on, we drop subscripts
whenever the string T they specify is clear from the context.

2.1 Relationships Among Maximal Repeats, Runs in BWT,
and LZ Factors

Clearly |R| can be as small as two, e.g. in string 0"~ !#, and as large as ©(n),
e.g. in the string of length n that contains exactly n distinct characters, or in a de
Bruijn string of order k£ > 1 on a binary alphabet: this string of length o* + % —1
contains all the distinct k-mers, thus the interval of every (k — 1)-mer in BWT
contains exactly o distinct characters, and the number of runs in BWT is thus at
least 0*~1(k—1). It is known that |Z| is O(n/log, n) [12], and it can be constant,
e.g. in 0"~!'#. Conversely, | M| can be zero, e.g. in a string of length n that
contains exactly n distinct characters, and it can be @(n) in the worst case, e.g.
in string 0"~ !#. When maximal repeats exist, the number of right extensions of
mazimal repeats Y y e aq | X7 (W)] is £2(logn), and this lower bound is matched
by Fibonacci strings and by Thue-Morse strings of length n, whose CDAWG
contains O(logn) nodes [15,17]. Both |[M|/|R| and |M|/|Z]| can be ©(n), for
example in the already mentioned 0"~!#. |R|/|Z| can be O(logn), e.g. in the
already mentioned de Bruijn string T of order k, which has ©(n/log, n) LZ
factors. However, |M|, |R| and |Z| can all grow at the same asymptotic rate in
the same family of strings. Consider e.g. string T = 0'10%1---0%1# of length
z(z + 3)/2+ 1. Clearly |Z| = z + 3, and |[M]| = 3(x — 1) since the maximal
repeats of T are only the substrings 01 for i € [l..xz — 1], 0/ for j € [l.xz — 1],

30 D. Belazzougui et al.

and 0*~110* for k € [2..7 — 1]. Replacing # with a new block 0**114 in string
T creates two new runs for every > 1, thus |R| = 2z for z > 1.

Recall that a substring W of T is a maximal repeat iff W = ¢(v) for some
internal node v of STy = (V, E), and moreover if there are at least two Weiner
links from v. Since the set of all left-maximal substrings of T is closed under the
prefix operation, there is a bijection between M and the nodes that lie on the
paths of ST that start from the root and that end at nodes labeled by maximal
repeats defined as follows:

Definition 1. A mazimal repeat W of a string T € [1..0]" "4 is rightmost if
no string WV with V € [0..0]" is left-maximal in T.

We denote the set of rightmost maximal repeats of T' by M’.. We also denote
by &7 the set of edges of STt that connect pairs of nodes labeled by maximal
repeats, and we denote by F7. the set of edges (v, w) in ST such that £(v) € My
and f(w) ¢ Mp. We use M4, E5 and Fb to denote symmetrical concepts in
ST, and we use er and e, as shorthands for |EF| + |Fr| and for |E4| + |Fx],
respectively. Clearly £ and F” are the image of explicit and implicit Weiner
links of ST

Lemma 1. Let STy = (V, E). There is a bijection between EF. and the set of all
explicit Weiner links from nodes of ST that correspond to mazimal repeats of
T. There is a bijection between Fr. and the set of all implicit Weiner links from
nodes of ST= that correspond to mazimal repeats of T'.

The proof of Lemma 1 is provided in the appendix. It is clear that the set of
suffix tree edges £ U F7. is in one-to-one correspondence with the set of all arcs
of CDAWGy. This set of edges is also related to runs in BWT:

Theorem 1. \[O..U}\UWGM%Z‘%(WH—&-ZWGMTT | ZHW)| = [ME|+1 < [Rp| <
FA

Proof. The root of ST is a maximal repeat, thus the destinations of all edges in
F" partition all leaves of ST into disjoint subtrees, or equivalently they partition
the entire BWTr in disjoint blocks. Since every such block is the interval in
BWT of some string that is not left-maximal, all characters of BWT in the
same block are identical, thus the number of runs in BWT, cannot be bigger
than |F7|.

The interval of a string W € M” in BWT 7 contains exactly | X*(W)| distinct
characters, and at most one of them is identical to the character that precedes
the largest suffix of T smaller than W in lexicographic order (note that such
suffix might not be prefixed by any string in M"). Thus, the number of runs in
BWTr is at least Y yc pgr | Z4(W)| — [M7]| + 1. Factor [0..0]\ Uwermr X%(W) in
the claim takes into account symbols of T' that never occur to the left of strings

in M". O

A symmetrical argument holds for R7. The set of arcs in CDAWG is also related
to the LZ factorization of T

Composite Repetition-Aware Data Structures 31

Theorem 2. |Zr| < |1 U FF|

Proof. Let T = T1T,...T, be the LZ factorization of T, and let p1,po,...,p.
be the sequence such that p; is the starting position of factor T; in T. Every
factor is a right-maximal substring of T', but it is not necessarily left-maximal:
let W; be a suffix of T[1..p; — 1] such that W;T; is both right-maximal and left-
maximal, and assume that we assign 7T; to the edge (v, w) in £} U FT. such that
L(v) = W;T;, v = parent(w), and the first character of T;,; equals the first
character of ¢(v,w). Assume that there is some j > ¢ for which we assign T
to the same maximal repeat W;T;. Then, the first character of T;,; must be
different from the first character of T;,, otherwise factor 7; would have been
longer. It follows that every LZ factor can be assigned to a distinct element of
Er U Fr. O

The gap between r and e, and between z and e, is apparent from Fig. 1 (center).
However, all these measures seem to grow at the same relative rate in practice
(right panel).

2.2 Repetition-Aware Data Structures

Given a string T' € [1..0]" 14, we call run-length encoded BWT any represen-
tation of BWTy that takes O(|Rr|) words of space, and that supports rank and
select operations: see for example [13,14,18]. Let Rt be a set of triplets (¢, 1, j)
such that BWTr[i..j] is a run of character c. It is easy to implement rank in
O(loglogn) time, by encoding Ry as o + 1 predecessor data structures [19],
each of which stores the second component of all triplets with the same first
component. For every such second component i, we also store in an array the
sum of all occurrences of ¢ up to i, exclusive. To implement select in O(loglogn)
time, we can similarly encode Rt as o + 1 predecessor data structures, each of
which stores value rank.(BWTr,i—1) for all triplets (¢, 4, j) with the same value
of c. We also store the value of ¢ for every such triplet. We denote the run-length
encoded BWT of T' by RLBWT .

For reasons of space we assume the reader to be familiar with LZ77-indexes:
see e.g. [9,10]. Here we just recall that a primary occurrence of a pattern P in a
string T € [1..0]"~!# is one that crosses a phrase boundary in the LZ77 factor-
ization T\ T - - - T, of T'. All other occurrences are called secondary. Once we have
determined all primary occurrences, locating secondary occurrences reduces to
two-sided range reporting and takes O(occloglogn) time with a data structure
that takes O(z) words of space [10]. To locate primary occurrences, we can use
a data structure for four-sided range reporting on a z x z grid, with a marker
at (x,y) if the zth LZ factor in lexicographic order is preceded in the text by
the lexicographically yth reversed prefix ending at a phrase boundary. This data
structure takes O(z) words of space, and it returns all the phrase boundaries
immediately followed by a factor in the specified range, and immediately pre-
ceded by a reversed prefix in the specified range, in O((1+k)log® z) time, where
k is the number of phrase boundaries reported [4].

32 D. Belazzougui et al.

3 Combining Runs in BWT and LZ Factors

In this section we describe how to combine data structures whose size depends on
the number of LZ factors of a string T' € [1..0]""'#, and data structures whose
size depends on the number of runs in BWT, to report all the occurrences of a
pattern in T'. To do so, we first need to solve the following subproblem. Let STy =
(V, E) be the suffix tree of T, and let V' = {v1,v9,...,05} C V be a subset of
the nodes of STp. Consider the list of node labels L = £(v1),4(va), ..., L(vk),
sorted in lexicographic order. Given a string W € [0..0]*, we want to implement
function I(W, V') that returns the (possibly empty) interval of W in L. The
following lemma describes how to do this in O(k) words of space:

Lemma 2. Let T € [1..0]""'# be a string, and let V' be a subset of k nodes
of its suffix tree, represented as intervals in BWT . Given the interval [i..j] of a
string W € [0..0]* in BWTr, there is a data structure that takes O(k) words of
space and that computes (W, V') in O(logk) time.

Proof. Let F[1..n] be a bitvector such that F[i] = 1 iff there is a node v’ €
V' such that range(v’) = [i..5]. Similarly, let L[1..n] be a bitvector such that
L[j] = 1 iff there is a node v' € V' such that range(v’) = [i..j]. Let o and 8
be the number of ones in F' and L, respectively. We store in array first[l..q]
(respectively, last[1..4]) the sorted positions of the ones in F' (respectively, in
L), using O(k) words of space. Let F'[1..a] be the array such that F”[i] equals the
number of intervals [p..¢] such that p is the ith one in F' and [p..q] = range(v’)
for a node v' € V. Similarly, let L'[1..3] be the array such that L’[i] equals the
number of intervals [p..q] such that ¢ is the ith one in L and [p..q] = range(v’)
for anode v’ € V'. We represent F’ and L' as prefix-sum arrays first’[1..a] and
last’[1..] using O(k) words of space, i.e. first/[i] = >, _, F'[h] and last/[i] =
2 hor L[]

Let I(W, V') = [z..y]. Given the interval [i..j] of a string W in BWT, we
find the corresponding interval [i’..j'] in array first in O(log«) time, using
binary search on first’. Specifically, ¢/ = min{h € [1..a] : first’[h] > i} and
j' = max{h € [l..o] : first/[h] < j}. If 7/ < ¢’ then W is not the prefix of a label
of a node in V’. Otherwise, since all nodes v’ € V' whose BWT interval starts
inside [i + 1..j] are right extensions of W, we set y = f;:l F'[h] = first/[j’]
in constant time. If first[i’] # 4, i.e. if no interval of a node v’ € V' starts at
position i in BWT 7, then we can just set z = 1+Z§;11 F'[h] = 1+ first'[i’ — 1]
in constant time and stop.

Otherwise, it could happen that just a (possibly empty) subset of all the
nodes in V'’ whose interval starts at position ¢ in BWT+ correspond to W or to
right extensions of W: the intervals of such nodes necessarily end inside [i..j]. All
the other intervals that start at position ¢ could correspond instead to prefizes
of W, and they necessarily end after position j in BWTr. Thus, let [i”..5”] be
the interval in last that corresponds to [i..j]: specifically, let " = min{h €
[1..0] : last[h] > i} and j” = max{h € [1..0] : last[h] < j}. To determine
the number of intervals that start at position ¢ in BWT7 and that correspond

Composite Repetition-Aware Data Structures 33

to prefixes of W, it suffices to compute the difference § between the number
of starting positions and the number of ending positions inside interval [i..5],
as follows: 6 = Y0 _ F'[h] — Y0 L F'[n) — S0 L'[h] + S50 ' L/[1]. Then,
T = ;;;11 F'[h) + 6 + 1. All such sums can be computed in constant time using
the prefix-sum representations of I’ ad L.

If the interval of some node in V' starts at ¢ and ends after j in BWT, then
no interval can end at j and start before 7, so J is nonnegative. a

Consider now a factorization of T such that all factors are right-maximal sub-
strings of T', and let V'’ be the set of nodes of ST that correspond to the distinct
factors. To locate all the occurrences of a pattern that cross or end at a boundary
between two factors, we just need an implementation of function I(W, V') and a
pair of RLBWTs:

Lemma 3. Let T € [1..0]" " 1# be a string, and let T = Ty Ty --- T, be a factor-
ization of T in which all factors are right-mazximal substrings. There is a data
structure that takes O(z 4+ rp + 7r) words of space and that reports all the occ
occurrences of a pattern P € [0..0]™ that cross or end at a boundary between
two factors of T, in O(m(loglogn + log z) + occlog® z) time.

Proof. Let p1,pa,...,p, be the sequence such that p; is the starting position of
factor T; in T. The same occurrence of P in T can cover up to m boundaries
between two factors, thus we organize the computation as follows. We consider
every possible way to place the rightmost boundary between two factors in P, i.e.
every possible split of P into two parts P[l..k — 1] and P[k..m| for k € [1..m],
such that P[k..m] is either a factor or a proper prefix of a factor. For every
such k, we use four-sided range reporting queries to list all the occurrences of P
in T that conform to this split, as described in Sect.2.2. The four-sided range
reporting data structure represents the mapping between the lexicographic rank
of a factor W among all the distinct factors of T', and the lexicographic ranks of
all the reversed prefixes T[1..p; — 1] such that T; = W, among all the reversed
prefixes of T that end at the last position of a factor. As described in Sect. 2.2,
this data structure takes O(z) words of space.

We encode sequence pi,ps,...,p, implicitly, as follows: we use a bitvector
last[l..n| such that last[i] = 1 iff SA5[i] = n — p; + 2 for some j € [1..z],
i.e. iff SA%[i] is the last position of a factor. We represent such bitvector as a
predecessor data structure with partial ranks, using O(z) words of space [19].
Then, we build the data structure described in Lemma 2, where V' is the set of
loci in ST of all factors of T'. This data structure takes O(z) words of space, and
together with last, RLBWT7 and RLBWT, it is the output of our construction.

Given a pattern P € [0..0]™, we first perform a backward search in RLBWTp
to determine the number of occurrences of P in T: if this number is zero, we stop.
During this backward search, we store in a table the interval [if..jx] of P[k..m]
in BWTy for every k € [2..m]. Then, we compute the interval [i}_;..j;._,] of

P[1..k — 1] in BWTx for every k € [2..m], using backward search in RLBWT=: if
rank; (last, j;,_,) —rank;(last,ij,_; —1) = 0, then P[1..k—1] never ends at the

34 D. Belazzougui et al.

last position of a factor, and we can discard this value of k. Otherwise, we convert
[¢}._1--Jr_1] to the interval [rank,(last,i}_,) + l..rank;(last,j;_,)] of all the
reversed prefixes of T" that end at the last position of a factor. Rank operations
on last can be implemented in O(loglogn) time using predecessor queries. We
get the lexicographic interval of P[k..m] in the list of all the distinct factors of T
using operation I(P[k..m], V'), in O(log z) time. We use such intervals to query
the four-sided range reporting data structure. O

The algorithm described in Lemma3 can be engineered in a number of ways
in practice. Here we just apply it to the LZ factorization of T to find all the
primary occurrences of P in T', and we use the strategy described in Sect. 2.2 to
compute secondary occurrences, obtaining the key result of this section:

Theorem 3. Let T € [1..0]" 14 be a string, and let T =TTy ... T, be its LZ
factorization. There is a data structure that takes O(z +rp +7r) words of space
and that reports all the pocc primary occurrences and all the socc secondary
occurrences of a pattern P € [0..0]™ in O(m(loglogn + log z) + pocclog®z +
soccloglogn) time.

4 Combining Runs in BWT and Maximal Repeats

An alternative way to compute all the occurrences of a pattern in a string T
consists in combining RLBWT; with CDAWGT, using an amount of space pro-
portional to the number of right extensions of the maximal repeats of T":

Theorem 4. Let T € [1..0]""'4# be a string. There is a data structure that
takes O(er) words of space (or alternatively, O(e%) words of space) and that
reports all the occ occurrences of a pattern P € [0..0]™ in O(mloglogn + occ)

time.

Proof. We build RLBWT7 and CDAWGy. For every node v in the CDAWG, we
store |£(v)| in a variable v.length. Recall that an arc (v,w) of the CDAWG
means that maximal repeat ¢(w) can be obtained by extending maximal repeat
£(v) to the right and to the left. Thus, for every arc v = (v, w) of CDAWGT, we
store the first character of £(y) in a variable «.char, and we store the length of
the right extension implied by v in a variable y.right. The length v.1left of the
left extension implied by v can be computed by w.length —v.length —y.right.
Clearly arcs of CDAWGy that correspond to edges of ST in set £F induce no left
extension. For every arc of CDAWGT that connects a maximal repeat W to the
sink, we store just v.char and the starting position v.pos of string W -~.char in
T. The total space used by the CDAWG is clearly O(e) words, and by Theorem 1
the space used by RLBWT is O(|FF|) words. An alternative construction could
use CDAWG= and RLBWT.

We use the RLBWT to count the number of occurrences of P in T in
O(mloglogn) time: if this number is greater than zero, we use the CDAWG
to report all the occ occurrences of P in T in O(occ) time, using the technique

Composite Repetition-Aware Data Structures 35

sketched in [5]. Specifically, since we know that P occurs in T, we perform a
blind search for P in the CDAWG, as is typically done with Patricia trees. We
keep a variable i, initialized to zero, that stores the length of the prefix of P
that we have matched so far, and we keep a variable j, initialized to one, that
stores the starting position of P inside the last maximal repeat encountered dur-
ing the search. For every node v in the CDAWG, we choose the arc v such that
~v.char = P[i+1] in constant time using hashing, we increment ¢ by v.right, and
we increment j by y.left. If the search leads to the sink by an arc v, we report
~v.pos + j and we stop. If the search leads to a node v that is associated with the
maximal repeat W, we determine all the occurrences of W in T' by performing a
depth-first traversal of all the nodes in the CDAWG that are reachable from v,
updating variables ¢ and j as described above, and reporting ~v.pos + j for every
arc vy that leads to the sink. The total number of nodes and arcs reachable from
v is clearly O(occ). O

The combination of CDAWGs and RLBWT can also be used to implement a
repetition-aware representation of STp. We will apply the following property to
support operations on ST:

Property 1. A maximal repeat W = [1..0]™ of T is the equivalence class of all
the right-maximal strings {W[1..m],..., W/[k..m]} such that W[k + 1..m] is left-
maximal, and Wi..m] is not left-maximal for all ¢ € [2..k]. Equivalently, the node
v" of CDAWGr with ¢(v') = W is the equivalence class of the nodes {v1, ..., v}
of ST such that £(v;) = Wi..m] for all ¢ € [1..k], and such that v, vg_1,...,01
is a maximal unary path of Weiner links.

Thus, the set of right-maximal strings that belong to the equivalence class of a
maximal repeat can be represented by a single integer k, and a right-maximal
string can be identified by the maximal repeat W it belongs to, and by the
length of the corresponding suffix of W. In BWT, the right-maximal strings in
the same equivalence class enjoy the following additional properties:

Property 2. Let {W[l..m],...,W[k..m]} be the right-maximal strings that
belong to the equivalence class of maximal repeat W € [l..0]™, and let
range(W{i..m]) = [p;..q;] for i € [1..k]. Then:

1. |¢s —pi +1| =|g; —p; + 1] for all ¢ and j in [1..k].

2. BWTr[p;..qi] = Wi — 1]%~Pi*! for i € [2..k]. Conversely, BWTr[p;..q1] con-
tains at least two distinct characters.

3. pi—1 = C|c] + rank.(BWTr,p;) and ¢;—1 = p;—1 + ¢; — p; for i € [2..k], where
Cc = W[Z — 1] = BWTT[pl]

4. piy1 = select (BWTr,p; — Clc]) and ¢;41 = piy1 +q; — p; for ¢ € [1..k — 1],
where ¢ = W[i] is the character that satisfies C[¢] < p; < C[c + 1]. This can
be computed in O(loglogn) time using a predecessor data structure that uses
O(o) words of space [19].

5. Let ¢ € [0..0], and let range(W[i..m]c) = [x;..y;] for ¢ € [1..k]. Then, x; =
pi +x1—p1 and y; = p; +y1 — p1.

36 D. Belazzougui et al.

Table 1. Time complexities of two representations of STr: with intervals in BWTrp
(row 1) and without intervals in BWT¢ (row 2).

stringDepth | isAncestor | parent child suffixLink weinerLink edgeChar nlLeaves
locateLeaf nextSibling | firstChild

1| 0(1) O(1) O(loglogn) | O(1) O(loglogn) | O(loglogn) | O(loglogn) | O(1)

2 0(1) O(loglogn) | O(1) O(1)

The final property we will exploit relates the equivalence class of a maximal
repeat to the equivalence classes of its in-neighbors in the CDAWG:

Property 3. Let w be a node in CDAWGy with f(w) = W € [l..0]™, and let
Sw = {W][l.m], ..., W[k..m]} be the right-maximal strings that belong to
the equivalence class of node w. Let {v!,..., v’} be the in-neighbors of w in
CDAWGT, and let {V!,...,V!} be their labels. Then, S,, is partitioned into t
disjoint sets S}, ..., S! such that 8¢, = {W[z' + 1.m], W[z* +2..m], ..., Wz’ +
|Syi].-m]}, and the right-maximal string V[p..|V?|] labels the parent of the locus
of the right-maximal string W[z® + p..m] in STr.

Proof. 1t is clear that the parent in STp of every right-maximal string in the
equivalence class of node w belongs to the equivalence class of an in-neighbor of
w: we focus here just on showing that the in-neighbors of w induce a partition on
the equivalence class of w. Assume that the character that labels arc v = (v?, w)
in the CDAWG is c. Since arc v exists, we can factorize W as X'VY*, where
Y'i[1] = ¢, and we know that no prefix of VY longer than V* is right-maximal,
and that no suffix of W longer than |V*Y?| is left-maximal. Consider any suf-
fix Vi[p..|V]] of V* that belongs to the equivalence class of V*: if p > 1, then
W | X?|+p..m] is not left-maximal, thus W | X*|+p..m] belongs to the equivalence
class of W. Its prefix V¥[p..|V?|] is right-maximal, and no longer prefix is right-
maximal. Indeed, assume that string V¢[p..|V*|]Z? is right-maximal for some
prefix Z¢ of Y. Since V*[p..|V?|] is not left-maximal, then string V*[p..|V?|]Z*
is not left-maximal either, and this implies that V?Z is right-maximal, contra-
dicting the hypothesis. Thus, string V*[p..|V¢|] labels the parent of the locus of
string W[|X?| + p..m] in STr. If p=1 and V'Y is not left-maximal, the same
argument applies. If VY is left-maximal, then W = VY, and since no right-
maximal prefix of W longer than V' exists, we have that V? labels the parent of
the locus of W in ST. O

Combining Properties 1, 2 and 3, we obtain the following results:

Theorem 5. Let T € [1..0]" 14 be a string. There are two implementations of
STr that take O(er + e‘é«) words of space each, and that support the operations
in Table 1 with the specified time complezities.

Proof. We build RLBWT; and CDAWG7, and we annotate the latter as described
in Theorem 4, with the only difference that arcs that connect a maximal repeat
to the sink are annotated with character and length like all other arcs. We store

Composite Repetition-Aware Data Structures 37

in every node v of the CDAWG the number v.size of right-maximal strings that
belong to its equivalence class, the interval [v.first..v.last| of {(v) in BWTy,
a linear-space predecessor data structure [19] on the boundaries induced on the
equivalence class of v by its in-neighbors (see Observation 3), and pointers to
the in-neighbor that corresponds to the interval associated with each boundary.
Finally, we add to the CDAWG all suffix links (v, w) from ST such that both
v and w are maximal repeats, and the corresponding explicit Weiner links.

We represent a node v of STy as a tuple id(v) = (v/, [¢(v)|, 1, j), where v’ is the
node in CDAWGy that corresponds to the equivalence class of v, and [i..5] is the
interval of £(v) in BWTr. Thus, operation stringDepth can be implemented in
constant time, and if v is a leaf, the second component of 1d(v) is its starting posi-
tion in 7. Operation isAncestor can be implemented by testing the containment
of the corresponding intervals in BWTp. To implement operation suffixLink,
we first check whether |£(v)| = v'.1length — v’.size + 1: if so, we take the suffix
link (v/,w’) from v’ and we return (w’, w’.length, w’.first, w’.last). Otherwise,
we return (v/, [¢(v)| — 1,4, j"), where [i’..j'] is computed as described in point 2 of
Property 2. To implement weinerLink for some character ¢, we first check whether
[¢(v)] = v'.1length: if so, we take the Weiner link (v, w’) from v’ labeled by char-
acter ¢ (if any), and we return (w’, w’.length — w’.size + 1,4, j'), where [i'..5']
is computed by taking a backward step with character ¢ from [v'.first..v’.last].
Otherwise, we check whether BWTr[i] = ¢: if so, we return (v, |[¢(v)| + 1,4, j'),
where [¢'..7'] is computed as described in point 2 of Property 2.

To implement child for some character ¢, we follow the arc v = (v/,w’) in
the CDAWG labeled by ¢ (see Observation 3), and we return tuple (w’, [£(v)| +
~v.right,i’,j’), where [¢'..5'] is computed as described in point 2 of Property 2.
To implement parent we exploit Property 2, i.e. we determine the partition of
the equivalence class of v’ that contains v by searching the predecessor of value
[¢(v)| in the set of boundaries of v': this can be done in O(loglogn) time [19].
Let v = (u/,v") be the arc that connects to v’ the in-neighbor v’ associated with
the partition that contains v: we return tuple (v, [¢(v)| — v.right, ', j’), where
1! =i—' first +u/.first and j' = j +u'.1ast —v'.1ast as described in point
2 of Property 2. Operation nextSibling can be implemented in the same way.

We read the label of an edge v of ST7 in O(log log n) time per character (oper-
ation edgeChar), by storing RLBWT= and the interval in BWT of the reverse of
the maximal repeat that corresponds to every node of the CDAWG. By removing
from id(v) the interval of £(v) in BWT, we can implement stringDepth, child,
firstChild and suffixLink in constant time, and parent and nextSibling in
O(loglogn) time. O

Corollary 1. Let T € [1..0]" 14 be a string. There is an implementation of
STr that takes O(er —|—e§«) words of space, that computes the matching statistics
of a pattern S € [1..0]™ with respect to T in O(mloglogn) time, and that can
be traversed in O(nloglogn) time and in a constant number of words of space.

Proof. We combine the implementation in the first row of Table 1 with the folklore
algorithm for matching statistics, that issues suffixLink and child oper