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Preface

This volume contains the papers presented at the 26th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2015) held during June 29 – July 1, 2015, in Ischia,
Italy.

The conference program included 34 contributed papers and three invited talks by
Sorin Istrail from Brown University, USA, Rasmus Pagh from IT University of
Copenhagen, Denmark, and Wojciech Szpankowski from Purdue University, USA.
The contributed papers were selected out of 83 submissions from 35 countries, cor-
responding to an acceptance ratio of 40.9 %. Each submission received at least three
reviews. We thank the members of the Program Committee and all the additional
external reviewers for their hard and invaluable work that resulted in an excellent
scientific program. Their names are listed on the following pages.

The objective of the annual CPM meetings is to provide an international forum for
research in combinatorial pattern matching and related applications. It addresses issues
of searching and matching strings and more complicated patterns such as trees, regular
expressions, graphs, point sets, and arrays. The goal is to derive combinatorial prop-
erties of such structures and to exploit these properties in order to achieve a superior
performance for the corresponding computational problems. The meeting also deals
with problems in computational biology, data compression and data mining, coding,
information retrieval, natural language processing, and pattern recognition.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and
has since taken place every year. Previous CPM meetings were held in Paris, London
(UK), Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway,
Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona,
London (Ontario, Canada), Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb,
and Moscow. Starting from the third meeting, proceedings of all meetings have been
published in the LNCS series, as volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645,
1848, 2089, 2373, 2676, 3109, 3537, 4009, 4580, 5029, 5577, 6129, 6661, 7354, 7922,
and 8486, respectively.

Selected papers from the first meeting appeared in volume 92 of Theoretical
Computer Science, from the 11th meeting in volume 2 of the Journal of Discrete
Algorithms, from the 12th meeting in volume 146 of Discrete Applied Mathematics,
from the 14th meeting in volume 3 of the Journal of Discrete Algorithms, from the 15th
meeting in volume 368 of Theoretical Computer Science, from the 16th meeting in
volume 5 of the Journal of Discrete Algorithms, from the 19th meeting in volume 410
of Theoretical Computer Science, from the 20th meeting in volume 9 of the Journal of
Discrete Algorithms, from the 21st meeting in volume 213 of Information and
Computation, from the 22nd meeting in volume 483 of Theoretical Computer Science,
and from the 23rd meeting in volume 25 of the Journal of Discrete Algorithms. A
special issue of Algorithmica is planned for the extended versions of a selection of the
papers presented at this year’s meeting.



The whole submission and review process was carried out with the help of the
EasyChair conference system. We thank the CPM Steering Committee for supporting
Ischia as the site for CPM 2015, and for their advice and help in different issues.
We thank the Italian Chapter of the European Association for Theoretical Computer
Science for its scientific endorsement. We thank Dr. Aniello Castiglione for his
invaluable help in the local organization.

The conference was sponsored by the Department of Computer Science of the
University of Salerno and the Department of Computer Science of the University of
Verona, which we thank for their financial support.

April 2015 Ferdinando Cicalese
Ely Porat

Ugo Vaccaro
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On Humans, Plants and Disease: Algorithmic
Strategies for Haplotype Assembly Problems

Sorin Istrail

Department of Computer Science, Brown University, USA
sorin_istrail@brown.edu

This talk is about a set of computational problems about haplotypes reconstruction
from genome sequencing data for diploid organisms, such as humans, and for polyploid
organisms, such as plants. Polyploidy is a fundamental area of molecular biology with
powerful methods of Nobel prize recognition: polyploidy inducement for cell
reprogramming, mosaicism for aneuploid chromosome content as the constitutional
make-up of the mammalian brain, and the polyploidy design for highly sought after
agricultural crops and animal products. On the medical side, polyploidy refers to
changes in the number of whole sets of chromosomes of an organism, and aneuploidy
refers to changes in number of specific chromosomes or of parts of them. We will
present an algorithmic framework, HapCOMPASS for these problems that is based on
graph theory. The software tools implementing our algorithms (available from the
Istrail Lab) are already in use, by many users, and recognized as among the leading
tools in the areas of human genome haplotype assembly, plant polyploidy haplotype
assembly, and tumor haplotype assembly. We will also present a number of unresolved
computational problems whose solutions would advance our understanding of human
biology, plant biology and human disease.

To introduce the application areas, and a hint at the type of combinatorial problems
of that biological import, a short primer follows. Humans, like most species whose cells
have nuclei, are diploid, meaning they have two sets of chromosomesone set inherited
from each parent. In the genome era, the genome sequencing technologies are
generating big data-bases of empirical patterns of genetic variation within and across
species. A SNP (single nucleotide polymorphism) is a DNA sequence variation
occuring commonly (e.g. 3 %) at a fixed site on the genome within a population in
which a single nucleotide A, C, G or T differs between individuals of a species, or
between the mother-father chromosomes of a single individual. The different
nucleotide bases at the SNP site are called alleles. SNPs account for large majority
of genetic variation of species. For humans, there are about 10 million SNPs, so
conceptually the SNPs variation of any individual is captured by two allele vectors
(each with 10 million components), one inherited from mother and one from the father.
Our approach to haplotype assembly is based on graph theoretical modeling of
sequencing reads linking SNPs and assembling whole haplotypes based on such basic
read-SNPs linkings.

S. Istrail—Work in collaboration with Derek Aguiar (Princeton University) and Wendy Wong
(INOVA Translational Medicine Institute).



Polyploid organisms have more than two sets of chromosomes. Although this
phenomenon is particularly common in plants (e.g., seedless watermelon is 3x, wheat
6x, strawberries 10x), it is also present in animals (e.g. fish could have 12x and up to
400 haplotypes), and in humans (e.g., some mammalian liver cells or heart cells or
bone marrow cells are polyploid). While polyploidy refers to numerical change in the
whole set of chromosomes, aneuploidy refers to organisms in which a part of the set of
chromosomes (e.g. a particular chromosome or a segment of a chromosome) is under-
or over- represented. Polyploidy and aneuploidy phenomena are recognized as disease
mechanisms. Examples for polyploidy: triploidy birth conceptions end in miscarriages,
although mixoploidy, when both diploid and triploid cells are present, could lead to
survival; triploidy, as a result of either digyny (the extra haploid set is from the mother
by failure of one meiotic division during oogenesis) or diandry (mostly caused by
reduplication of paternal haploid set from a single sperm or dispermic fertilization
of the egg) could have parent-of-origin (genomic imprinting) medical consequences:
diandry predominate among preterm labor miscarrieges while digyny predominates
into survival into fetal period, although with a poor grown fetus and very small
placenta). Examples for aneuploidy: trisomy in the the Down syndrome, cells with one
chromosome missing while others with an extra copy of the chromosome, cells with
unpredictably many chromosomes of a given type; mosaicism (when two or more
populations of cells with different genotypes derived from a single individual)
aneuploidy occurs in virtually all cancer cells.

XII S. Istrail



Analytic Pattern Matching: From DNA to Twitter

Philippe Jacquet1 and Wojciech Szpankowski2

1 Alcatel-Lucent Bell Labs, Nozay, France
philippe.jacquet@alcatel-lucent.com

2 Department of Computer Science, Purdue University, USA
spa@cs.purdue.edu

Repeated patterns and related phenomena in words are known to play a central role in
many facets of computer science, telecommunications, coding, data compression, data
mining, and molecular biology. One of the most fundamental questions arising in such
studies is the frequency of pattern occurrences in a given string known as the text.
Applications of these results include gene finding in biology, executing and analyzing
tree-like protocols for multiaccess systems, discovering repeated strings in Lempel–Ziv
schemes and other data compression algorithms, evaluating string complexity and its
randomness, synchronization codes, user searching in wireless communications, and
detecting the signatures of an attacker in intrusion detection.

This talk is based on our yet unpublished book “Analytic Pattern Matching: From
DNA to Twitter”, Cambridge, 2015. After a brief motivation, we review several pattern
matching problems (e.g., exact string matching, constrained pattern matching,
generalized pattern matching, and subsequence pattern matching), and then we discuss
a few applications (e.g., spike trains of neuronal data, Google search, Lempel-Ziv’77
and Lempel-Ziv’78 data compression schemes, and string complexity used in Twitter
classification). Finally, we illustrate our approach to solve these problems using tools of
analytic combinatorics, which we discuss in some depth.

The basic pattern matching problem is to find for a given (or random) pattern w or
set of patterns W and a text X how many times W occurs in the text X and how long it
takes for W to occur in X for the first time. There are many variations of this basic
pattern matching setting which is known as exact string matching. In generalized string
matching certain words from W are expected to occur in the text while other words are
forbidden and cannot appear in the text. In some applications, especially in constrained
coding and neural data spikes, one puts restrictions on the text (e.g., only text without
the patterns 000 and 0000 is permissible), leading to constrained string matching.
Finally, in the most general case, patterns from the set W do not need to occur as
strings (i.e., consecutively) but rather as subsequences; this leads to subsequence
pattern matching, also known as hidden pattern matching.

The approach we advocate to study these problems is the analysis of pattern
matching problems through a formal description by means of regular languages.

This work was supported in part by NSF Science and Technology Center on Science of Information
Grant CCF-0939370, NSF Grants DMS-0800568 and CCF-0830140, NSA Grant H98230-11-1-0141.



Basically, such a description of the contexts of one, two, or more occurrences of a
pattern gives access to the expectation, the variance, and higher moments. A systematic
translation into the generating functions of a complex variable is available by methods
of analytic combinatorics deriving from the original Chomsky–Schützenberger
theorem. The structure of the implied generating functions at a pole, an algebraic
singularity, or a saddle point provides the necessary asymptotic information. In fact,
there is an important phenomenon, that of asymptotic simplification, in which the
essentials of combinatorial-probabilistic features are reflected by the singular forms of
generating functions.

XIV P. Jacquet and W. Szpankowski



On Multiseed Lossless Filtration

Rasmus Pagh

IT University of Copenhagen, Denmark

Abstract. In approximate string matching a string x 2 Rn is given and
preprocessed in order to support k-approximate match queries: we seek
all substrings of x that differ from a query string q in at most k positions.
This problem is motivated for example by biological sequence analysis
where approximate occurrences of a sequence q are of interest.

Filtration is an approach to approximate string matching that aims
to be efficient when most substrings of x have distance to q considerably
larger than k. In these approaches a seed is used to extract multisets of
subequences Sx and Sq from x and q, respectively, such that every
k-approximate match gives rise to at least one element in Sq \ Sx.
(Elements in Sx are annotated with the substring position(s) they
correspond to.) Thus, computing Sq \ Sx (for example using an index
data structure for Sx to look up each element of Sq) gives a set of
candidate positions for k-approximate matches. The filter is efficient if it
generates few candidates that do not correspond to k-approximate
matches. It is known that filtering can be particularly effective in high-
entropy strings such as biological sequences.

In this talk we consider so-called multiseed methods where several
sequences of sets Six, S

i
q, i ¼ 1; 2; . . . are extracted from x and q, and

candidate matches are found in
S

i S
i
q \ Six. Multiseed methods can yield

better filtering efficiency, at the expense of a higher candidate generation
cost. While some filtration methods allow a nonzero error probability,
we focus on lossless methods that are guaranteed to report all
k-approximate matches. We present a randomized construction of a
set of roughly 2k seeds for which a substring x0 having k þ t mismatches
with q becomes a candidate match Hð2�tÞ times in expectation. Since
the method is lossless, every x0 with at most k mismatches becomes a
candidate at least once. This filtering efficiency is better than previous
methods with the same number of seeds for k[ 3. Finally, we use a
general transformation to present a new, improved trade-off between the
number of seeds and the filtering efficiency.

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement
no. 614331.
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Abstract. Vertex Relabeling is a variant of the graph relabeling prob-
lem. In this problem, the input is a graph and two vertex labelings, and
the question is to determine how close are the labelings. The distance
measure is the minimum number of label swaps necessary to transform
the graph from one labeling to the other, where a swap is the interchange
of the labels of two adjacent nodes. We are interested in the complex-
ity of determining the swap distance. The problem has been recently
explored for various restricted classes of graphs, but its complexity in
general graphs has not been established.
We show that the problem is NP-hard. In addition we consider restricted
versions of the problem where a node can only participate in a bounded
number of swaps. We show that the problem is NP-hard under these
restrictions as well.

1 Introduction

Graph labeling is a well-studied subject in computer science and mathematics and
has widespread applications in many other disciplines. Here we explore a variant
of graph labeling called the Vertex Relabeling Problem. In this problem, the input
is a graph and two vertex labelings, and the question is to determine how close
are the labelings. The distance measure is the minimum number of label swaps
necessary to transform the graph from one labeling to the other, where a swap
is the interchange of the labels of two adjacent nodes. We are interested in the
complexity of determining the swap distance. Some instances of this problem were
explored by Kantaburta [28] and later by Agnarsson et al. [1].

The graph labeling field has a rich and long history. It was first introduced
in the late 1960’s. In the intervening years dozens of graph labelings techniques
and variation have been studied. For a comprehensive survey of the topic see
Gallian’s excellent dynamic survey [24].

The Vertex Relabeling Problem is not only interesting in its own right but
also has applications in several area such as BioInformatics, networks and VLSI.
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New application for such work are constantly emerging, and sometimes in unex-
pected contexts. For instance the Vertex Relabeling Problem can be used to
model a wormhole routing in processor networks [22]. Perhaps the most famous
special case of this problem is the so-called 15-Puzzle [27]. The 15-Puzzle consists
of 15 tiles numbered from 1 to 15 that are placed on a 4 × 4 board leaving one
position empty. The goal is to reposition the tiles of an arbitrary arrangement
into increasing order from left-to-right and from top-to-bottom by swapping an
adjacent tile with the open hole. In [28] a generalized version of this puzzle
called the (n × n) Puzzle was used to show that a variant of the Vertex Rela-
beling Problem With Privileged Labels is NP-hard. Other well known problems,
for example, the Pancake Flipping Problem [23,25,26], can also be viewed as
special cases of the vertex relabeling problem.

Another special case of the vertex relabeling problem appears in pattern
matching. The Pattern Matching with Swaps problem (the Swap Matching prob-
lem, for short), defined by Muthukrishnan [34], requires finding all swapped
occurrences of a pattern of length m in a text of length n. The pattern is said
to match the text at a given location i if adjacent pattern characters can be
swapped, if necessary, so as to make the pattern identical to the substring of
the text starting at location i. All the swaps are constrained to be disjoint, i.e.,
each character is involved in at most one swap. Muthukrishnan asked whether
all swap matches of a pattern in a text can be found in time o(nm).

This question led to a flurry of activity. Amir et al. [7] obtained the first
non-trivial results on this problem. They showed that the case when the size
of the alphabet set Σ exceeds 2 can be reduced to the case when it is exactly
2 with a time overhead of O(log2 σ), where σ = min{|Σ|,m}. (The reduction
overhead was reduced to O(log σ) in the journal version [8].) They then showed
how to solve the problem for alphabet sets of size 2 in time O(nm1/3 log m),
which was the best deterministic time bound known to date. Amir et al. [12]
also gave certain special cases for which O(npolylog(m)) time can be obtained.
However, these cases are rather restrictive. In a Technical Report [19] Cole and
Hariharan provide a randomized algorithm that solves the swap matching prob-
lem over a binary alphabet in time O(n log n). Finally, Amir et al. [9] showed
an algorithm for swap matching over a general alphabet whose running time
is O(n log m log σ). The question of measuring the swap distance, i.e. counting
the minimum number of swaps, which concerns us in vertex relabeling, was also
considered [13]. It was shown that this too can be done in time O(n log m log σ).
In the literature, mismatches were considered in conjunction with other forms
of inexactness [16–18,20]. Similarly, swaps were considered in conjunction with
other edit operations. It was shown [10] that the swap and mismatch edit dis-
tance can be computed in time O(n

√
m log m). Algorithms for approximate swap

and mismatch appeared in [21,31]. This time is the same as the best-known time
for computing pattern matching with mismatches alone. It should be noted that
the Swap Matching problem also led to the pattern matching with rearrange-
ments paradigm [3,5,6,11,29]. Most of the pattern matching work is carried out
in the traditional string matching model, where both the pattern and the text
are strings (one dimensional arrays). The function matching work [4] considers
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both pattern and text as two dimensional arrays. However, there are applications
where a pattern is sought in non-linear structures. These applications are derived
both from searching in hypertext, or comparing non-linear structures, such as
folded proteins. Manber and Wu [32] pioneered the study of pattern matching
in hypertext and defined a hypertext model for pattern matching. This led to
much activity [2,14,15,30,35].

The vertex relabeling problem is the extension of the swap matching problem
to graphs and thus is a natural step in the direction of pattern matching research
over non-linear structures.

The Contribution of this Paper: The main contributions of this paper are
conceptual rather than technical. The value of this paper lies in the fact that we
juxtapose two research efforts in two disparate areas and this leads to a crisper
understanding of issues in both realms. This cross-fertilization of ideas led to
some of the following new insights:

1. We define the vertex relabeling problem as a distance measure. To our under-
standing, this is the first time it is so defined in the vertex relabeling literature.
We prove that finding the optimal number of swaps necessary to relabel is
NP-hard. We show that in the pattern matching case this problem is poly-
nomially computable.

2. We define the restricted version of graph relabeling, which bounds the number
of swaps each vertices can participate in. We show that, unlike in the pattern
matching case where this problem is solved in almost linear time, in the graph
domain the problem is NP-hard. The only exception is the restriction to a
single swap, which is linear time computable in the vertex relabeling case as
well.

2 Definitions

2.1 Pattern Matching

At the core of the swap matching problem is the constraint that no character
is allowed to participate in more then 1 swap. Following the vertex relabeling
problem, we generalize this constraint and allow each character to participate in
up to k swaps. We call this problem the k-Swap Matching problem. Of course the
1−Swap Matching problem is exactly the well known Swap Matching problem.
Formally, the k-swap matching problem is defined as follows:

Definition 1. Let S = S[0], . . . , S[n − 1] be a string over alphabet Σ. A swap
permutation for S is a permutation π : {0, . . . , n−1} → {0, . . . , n−1} such that
for all i, π(i) ∈ {i − 1, i, i + 1} (only adjacent characters are swapped).

For a given series of swap permutations π1, π2, . . . , πk (we denote f = π1 ◦
π2 . . . ◦ πk) and string S. We denote f(S) = S[f(0)], S[f(1)], . . . , S[f(n − 1)].
We call f(S) a k-swapped version of S. For pattern P = P [0], . . . , P [m− 1] and
text T = T [0], . . . , T [n − 1], we say that P has a k-swapped match at location
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i if there exists a k-swapped version P ′ of P such that P ′ has an exact match
with T starting at location i, i.e. P ′[j] = T [i + j] for j = 0, . . . , m − 1.

The Pattern Matching with k-Swaps Problem is the following:

INPUT: Text string T = T [0], . . . , T [n − 1] and pattern string
P = P [0], . . . , P [m − 1] over alphabet Σ.

OUTPUT: All locations i where P has a k-swapped match in T .

If there is no limit on the number of swaps each location can be involved in, then
we call the problem the Unbounded Swap Matching Problem.

2.2 Graphs

Definition 2. Let G = (V,E) be an undirected, connected, simple graph, let
LV , L′

V : V → Σ be two vertex labelings of the vertices of G. We call the operation
of exchanging a pair of labels of adjacent vertices the label swap operation. The
Vertex Relabeling up to k Problem is to transform G from LV into L′

V using
the swap operation with one constraint: Each vertex can participate in at most
k label swap operation.

If there is no limit on the number of swaps each vertex can participate in,
then we call the problem the Vertex Relabeling Problem.

Example: In this example, G can be transformed from Lv to L′
v by swapping

the labels of v2 and v4, v3 and v5, and then v3 and v1. This means that it was
a relabeling up to 2, since v3 participated in two swaps.

3 Unbounded Swap Matching and Vertex Relabeling

Each of these problems can be regarded as either a decision problem, where we
need to decide if there exists a swap matching or a vertex relabeling, or as an
optimization problem, where we seek the swap distance, i.e. the smallest number
of swaps necessary for the transformation.

3.1 Decision Problem

For the decision problem is it easy to see that the Unbounded Swap Matching
can be solved iff the two string have the same histogram, i.e. the same alphabet
symbols and the same frequency of occurrence of each symbol. For the Vertex
Relabeling problem we also show (the details will appear in the journal version)
that there exists a vertex relabeling iff the histograms of the two labelings are
equal. This give us a trivial linear time solution for the decision problem for fixed
finite label sets, and an almost linear time algorithm for unbounded label sets.
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3.2 The Distance Problem

Vertex Relabeling: The distance version of the vertex relabeling problem,
is whether one vertex label can be transformed to the other using at most t
swap operations. Formally:

Definition 3. Let G = (V,E) be an undirected, connected, simple graph, let
LV , L′

V : V → Σ be two vertex labelings of the vertices of G. The Vertex Rela-
beling with distance t Problem is that of determining whether G’s labeling can
be transformed from LV into L′

V using at most t swap operations.

Note that in Definition 3 the number of label swap operation per vertex is not
bound.

To the best of our knowledge it was not known in the vertex relabeling
literature whether vertex relabeling with distance t is efficiently computable.
Using pattern matching results we can easily prove the following.

Theorem 1. The Vertex Relabeling Problem with at most t swap, is NP-
complete.

Proof. We reduce the interchange distance on strings problem to the vertex rela-
beling with distance t problem. In the interchange distance on strings problem
we are given two string x = x[0], x[1], . . . , x[m−1] and y = y[0], y[1], . . .y[m − 1].
The question is whether x can be transformed to y using at most t interchange
operations. When an interchange operation, exchanges the values of two indices
i and j, i.e. exchange x[i] with x[j] . and xj . Formally:

Definition 4. Let x, y ∈ Σm be two strings that have the same histogram, and
let s = s1, . . . , sk be a sequence of interchanges that transforms x to y, where sj

interchanges elements in positions ij , i
′
j. We define cost(s) = k. The interchange

distance problem is to compute d(x, y) = min{cost(s)| s transforms x to y}.

Amir et al., prove that the interchange distance problem is NP-complete [11]. We
show a reduction from the interchange distance problem to the vertex relabeling
problem.

The Reduction: The input of the reduction is an instance of the interchange
distance problem, and the output is an instance for vertex relabeling problem.

Given two string x = x[0], x[1], . . . , x[m − 1] and y = y[0], y[1], . . . , y[m − 1]
construct G = (V,E), Lv and L′

v in the following manner. Build a vertex for
each index of the string, so V = {v0, v1, . . . , vm−1},. An interchange operation
exchanges the value of two indices. To simulate an interchange by a swap we
need to construct graph edges that allow a swap between any two nodes. This is
accomplished by constructing a complete graph on the m vertices, and labeling it
by x and by y. In other words, LV (vi) = x[i] and L′

V (vi) = y[i] for 0 ≤ i ≤ m−1.

Claim. x can be transformed to y using at most t interchange operations iff LV

can be transformed to L′
V using at most t swap operations.
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Proof. Assume that there exist a sequence s = s1, s2, . . .st of interchange oper-
ations that transform x to y. We build a sequence s′ = s′

1, s
′
2, . . .s

′
t of swap

operation that transforms Lv into L′
v. sj interchanges the contents of positions

ij , i
′
j . Then the swap s′

j swaps the labels of v[ij ] and v[i′j ].
We show that s′ = s′

1, s
′
2, . . .s

′
t transforms Lv to L′

v

Assume, to the contrary, that there exists a v[i] ∈ V such that after applying
the sequence of swap operations, the label of v[i] is σ, and σ �= L′

V (v[i]). let
s′σ = s′

i1
, s′

i2
, . . .s′

ik
be the sequence of swap operations that moves the label σ.

This sequence of swaps takes the σ label form some starting vertex v[j] and
moves it to the vertex v[i]. Consider, now, the corresponding sequence of inter-
changes operation sσ = si1 , si2 , . . . , sik . L(vj) = x[j] = σ, hence, this sequence
of interchanges takes σ, and moves it until index i. Conclude that after the
sequence of interchanges, σ is in the ith position. But σ �= L′

V (vi) = y[i]. �	

Swap Matching Distance: The following observation is key to the efficient
swap matching algorithm.

Observation 1. Two equal adjacent characters need not be swapped.

The observation allows us to treat each occurrence of the same symbol as a dif-
ferent character, all we need to do is maintain the order. Therefore, if a string has
an alphabet letter σ that appears multiple times, we can convert each occurrence
of σ to σi where i is a running counter. Formally:

Definition 5. Given a string s = s[0], s[1], . . .s[m − 1] we define the unique
version of s and denote it by su, to be su[i] = s[i]j for 0 ≤ i ≤ m − 1 where
j = |{k | sk = si and 1 ≤ k ≤ i}|.
Example: The string s = a b a c c a we will convert to su = a1 b1 a2, c1 c2 a3.
Given two strings as an input for the swap matching distance problem, we can
convert them easily to their unique versions, where all their characters are dif-
ferent. The following theorem, a version of which appears as early as 1882 [33]
is key to our algorithm.

Theorem 2. Given two string s = s[0], s[1], . . . , s[m − 1] and t = t[0], t[1], . . . ,
t[m − 1] where s[i] �= s[j] and t[i] �= t[j] for all 0 ≤ i, j ≤ m − 1, the minimum
number of swaps needed in order to transform s to t is the number of inversions
between s and t, where an inversion is a pair of indices (i, j) such that i > j and
s[i] appears before s[j] in t.

Proof
Minimality: Assume, to the contrary, that there is a sequences of swaps of
length k that transforms s to t where k is smaller than the number of inversions.
This means that there must exist two character s[i] and s[j] such that i > j and
s[i] appears before s[j] in t that don’t swap. Hence, at the end of the sequence of
swaps, s[i] appears after s[j], but this not the case on the string t. Contradiction.

Correctness: For all 0 ≤ i ≤ m − 1, we denote the position of s[i] after the
sequence of swaps by i′.
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Observe that after the sequence of swaps, for all 0 ≤ i ≤ m − 1, there is
no 0 ≤ j ≤ m − 1 such that i′ > j′ and s[i] appears before s[j] in t. The
observation says that for each character s[i], all the characters s[j] that appear
after s[i] in t after the sequence of swaps, actually occur after si. Applying the
observation inductively from the first character of t until the last, gives us that
for all 0 ≤ i ≤ m−1, there is no 0 ≤ j ≤ m−1 such that i′ < j′ and s[i] appears
after s[j] in t.
This sequence of swaps transforms s to t. �	
Now we are ready for the algorithm:

Algorithm – Swap Matching Distance(s, t)

1. Initialization: Given two strings s and t build the corresponding unique
strings su = s[0], s[1], ..., s[m − 1] and tu = t[0], t[1], ...t[m − 1].

2. C = 0.
3. For i = 0 to m − 1

– C+ = |{s[j] | 0 ≤ j < i and s[i] appears before s[j] in t}|
4. C is the minimum number of swaps needed to transform s to t.

end Algorithm

Time: Using such data structures as, AVL trees, for example, this algorithm
can be implemented in time O(m log m).

4 (1)-Swap Matching and Vertex Relabeling up to 1

4.1 Swap Matching

As previously mentioned, Swap Matching is a well studied problem. The best
know result solves it in time O(n log m log Σ), for a length m pattern “sliding”
across a length n text. It is easy to see that when n = m it can be trivially
solved in linear time.

4.2 Vertex Relabeling up to 1

We show a two way reduction between Vertex Relabeling and the Graph Perfect
Matching problem.

Definition 6. Given a graph G = (V,E), a matching M in G is a set of pairwise
non-adjacent edges; that is, no two edges share a common vertex.

Definition 7. A perfect matching is a matching which matches all vertices of
the graph. That is, every vertex of the graph is incident to exactly one edge of
the matching.
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The Perfect Matching on Bipartite Graph problem is, given a bipartite graph to
find if their is a perfect matching in that graph.

We will show two reductions:

– Given an algorithm for the Perfect Matching on bipartite graphs problem, we
can use that algorithm to solve the Vertex Relabeling problem.

– Given an algorithm for the Vertex Relabeling up to 1 problem we can use that
algorithm to solve the Perfect Matching on bipartite graphs problem.

4.3 Perfect Matching On Bipartite Graphs ⇒ Vertex
Relabeling up to 1

Given an undirected, connected, simple graph G = (V,E), with two vertex
labelings LV and L′

V of the vertices of G. Construct G′ = (V ′ = (X,Y ), E′) in
the following way.

For each pair of labels a, b, and for each u, v ∈ V such that (LV (u) = L′
V (v) =

a) ∧ (L′
V (u) = LV (v) = b). We put u in X and v in Y . Also we build an edge

between u and v.

Example:

Theorem 3. G′ has a Perfect Matching iff G has a Vertex Relabeling up to 1
from LV to L′

V .

Proof. Immediate form the definitions of the problems. �	
Construction Time: Although the construction considers all pairs of labels, it
still only takes linear time because the number of pairs is bounded by |V | .

4.4 Vertex Relabeling up to 1 ⇒ Perfect Matching
on Bipartite Graph

Given a bipartite graph G = (V = (X,Y ), E). We construct G′ = (V ′, E′) and
two vertex labeling LV and L′

V in the following way. V ′ = X ∪ Y and E′ = E
LV (v) = 0 for v ∈ X and LV (v) = 1 for v ∈ Y L′

V (v) = 1 for v ∈ X and
L′

V (v) = 0 for v ∈ Y . See Fig. 1 for an example.

Theorem 4. G has a Perfect Matching iff G′ has a Vertex Relabeling up to 1
from LV to L′

V .

Proof. Immediate from the definitions of the problems. �	
Algorithm Time: The best known algorithm for Perfect Matching in bipar-
tite graphs run in time O(

√
V E) or in O(V 2.376). Hence, due to the two side

reduction, those solution also apply to the Vertex relabeling up to 1 problem.
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Fig. 1. Example of reduction from Perfect Matching to Vertex Relabeling.

5 2-Swap Matching and Vertex Relabeling up to 2

The 2-Swap matching problem can be easily solved in polynomial time. However
the Vertex Relabeling up to 2 is NP-complete.. We present a reduction from
3D−Matching.

Definition 8. Let X, Y , and Z be finite, disjoint sets, and let T be a subset of
X × Y × Z. That is, T consists of triples (x, y, z) such that x ∈ X, y ∈ Y , and
z ∈ Z. M ⊆ T is a 3-dimensional matching if the following holds: for any two
distinct triples (x1, y1, z1) ∈ M and (x2, y2, z2) ∈ M , we have x1 �= x2, y1 �= y2,
and z1 �= z2. The 3D−matching problem is that of deciding if there exist M ⊆ T
such that |M | = k.

5.1 The Reduction

We show that a polynomial-time algorithm that solves the Vertex Relabeling
up to 2 problem can be used to solve the 3D−Matching problem.

Let X, Y , and Z be finite, disjoint sets,|X| = |Y | = |Z| = m, and let T be a
subset of X × Y × Z. Construct G = (V,E) in the following way:

V = X ∪ Y ∪ Z and E = {(x, y), (y, z)|∀(x, y, z) ∈ T}.

Define LV and L′
V in the following way:

LV ⇒ LV (x) = 0 for x ∈ X, LV (y) = 0 for y ∈ Y and LV (z) = 1 for z ∈ Z.
L′

V ⇒ L′
V (x) = 1 for x ∈ X, L′

V (y) = 0 for y ∈ Y and L′
V (z) = 0 for z ∈ Z.

Example:

Theorem 5. Given X,Y,Z and T , there exist 3D−Matching of size m iff graph
G can be vertex relabeled up to 2 for labels LV and L′

V .

Proof. ⇐: Assume that there exist a sequence of swap operations S = s1, s2, . . .
that relabels LV to L′

V . We will build a M ⊂ T such that M will be a perfect
Matching for X,Y,Z. |Z| = |X|, LV (x) = L′

V (z) = 1 and LV (z) = L′
V (x) = 0,
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hence for all zi ∈ Z there exist xj ∈ X such that zi got the label of xj . For
any xj ∈ X and zi ∈ Z (xj , zi) �∈ E. Hence there exist some yk such that xj

swaps with yk and yk swaps with zi. We put each such triplet in M .

Lemma 1. M ⊂ T is a perfect Matching for X,Y,Z.

Proof. From the building process of M we know that for any xj ∈ X and zi ∈
Z M covers them exactly once. We need to prove this also for all yk ∈ Y .
Assume that there exist yk ∈ Y that appear in two triplets m1 = (x1, yk, z1)
and m2 = (x2, yk, z2) such that m1,m2 ∈ M . The triplets construction means
that yk swaps 4 times. A contradiction. Assume that there exist yk ∈ Y such
that for any (x, y, z) inM yk �= y. |M | = |Y | = n and we prove that each yk ∈ Y
appears at most in 1 triplet in M . This is a contradiction to the size of M . M
is a perfect Matching.

⇒: Assume that there exist M ⊂ T such that M is a perfect matching. Construct
a sequence s of swap operations, such that S relabels G from LV to L′

V . For any
triplet (x, y, z) ∈ M we execute two swap operations in S, (z, y), (y, x). �	
Lemma 2.

1. There are now vertices that participate in more then 2 swap operation in S.
2. S relabels from LV to L′

V .

Proof

1. M is a perfect matching. Hence for any x ∈ X x appears in exactly 1 triplet
in M . From that triplet x has exactly 1 swap operation. The same applies
to all z ∈ Z. For all y ∈ Y . y appears in exactly one triplet in M and from
that triplet it has exactly 2 swap operations. Overall there is no vertex that
participates in more then two swap operations.

2. Each triplet (x, y, z) ∈ M produces two swap operations, (z, y), (y, x). Start-
ing with the labeling LV , will finish with label 0 to z and y and label 1 for x
which is exactly L′

V . �	

6 Conclusions and Open Problems

To fully understand the behavior of swaps, many more issues need to be explored.
Unlike graphs where graph sub-isomorphism is already NP-hard, in pattern
matching one usually considers a small pattern of length m sliding across a large
text of length n. We have pointed out that the k-swap matching on strings of
equal length can be done in linear time. Can we use previous knowledge and
find, in a text of length n, all locations with a k-swap match in time shorter
than o(nm)?

In the vertex relabeling arena, NP-hardness is only the beginning of the
story. The next step is providing approximation algorithms for these swap-
distance problems. Another intriguing question is considering these graph prob-
lems as on-line problems, where the graphs are input together a vertex at a
time.
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Abstract. String kernels are typically used to compare genome-scale
sequences whose length makes alignment impractical, yet their compu-
tation is based on data structures that are either space-inefficient, or
incur large slowdowns. We show that a number of exact string kernels,
like the k-mer kernel, the substrings kernels, a number of length-weighted
kernels, the minimal absent words kernel, and kernels with Markovian
corrections, can all be computed in O(nd) time and in o(n) bits of space
in addition to the input, using just a rangeDistinct data structure on
the Burrows-Wheeler transform of the input strings that takes O(d) time
per element in its output. The same bounds hold for a number of mea-
sures of compositional complexity based on multiple values of k, like the
k-mer profile and the k-th order empirical entropy, and for calibrating
the value of k using the data.

1 Introduction

Given two strings T 1 and T 2, a kernel is a function that simultaneously con-
verts T 1 and T 2 into vectors T1 and T2 in R

n for some n > 0, and computes
a similarity or a distance measure between T1 and T2, without building and
storing Ti explicitly [14]. Kernels are often the method of choice for compar-
ing extremely long strings, like genomes, read sets, and metagenomic samples,
whose size makes alignment infeasible, yet their computation is typically based
on space-inefficient data structures, like (truncated) suffix trees, or on space-
efficient data structures with O(logε n) slowdowns, like compressed suffix trees
(see e.g. [1,9] and references therein). The (possibly infinite) dimensions of Ti

are, for example, all strings of a specific family on the alphabet of T 1 and T 2, and
the value assigned to vector Ti along dimension W corresponds to the number
of occurrences of string W in T i, often rescaled and corrected in domain-specific
ways. Ti is often called composition vector, and a large number of its compo-
nents can be zero in practice. In this paper we focus on space- and time-efficient
algorithms for computing the cosine of the angle between two composition vec-
tors T1 and T2, i.e. on computing the kernel κ(T1,T2) = N/

√
D1D2 ∈ [−1..1],

where N =
∑

W T1[W ]T2[W ] and Di =
∑

W Ti[W ]2. This measure of similarity
can be converted into a distance d(T1,T2) = (1−κ(T1,T2))/2 ∈ [0..1], and the
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algorithms we describe can be applied to compute norms of vector T1 −T2, like
the p-norm and the infinity norm. When T1 and T2 are bitvectors, we are more
interested in interpreting them as sets and in computing the Jaccard distance
J(T1,T2) = ||T1 ∧T2||/||T1 ∨T2|| = ||T1 ∧T2||/(||T1|| + ||T2|| − ||T1 ∧T2||),
where ∧ and ∨ are the bitwise AND and OR operators, and where || · || measures
the number of ones in a bitvector.

Given a data structure that supports rangeDistinct queries on the Burrows-
Wheeler transform of each string in input, we show that a number of popular
string kernels, like the k-mer kernel, the substrings kernels, a number of length-
weighted kernels, the minimal absent words kernel, and kernels with Markovian
corrections, can all be computed in O(nd) time and in o(n) bits of space in addi-
tion to the input, all in a single pass over the BWTs of the input strings, where
d is the time taken by the rangeDistinct query per element in its output. The
same bounds hold for computing a number of measures of compositional com-
plexity for multiple values of k at the same time, like the k-mer profile and the
k-th order empirical entropy, and for choosing the value of k used in k-mer kernels
from the data. All these algorithms become O(n) using the rangeDistinct data
structure described in [4], and concatenating this setup to the BWT construc-
tion algorithm described in [3], we can compute all such kernels and complexity
measures from the input strings in randomized O(n) time and in O(n log σ) bits
of space in addition to the input. Finally, we show that measures of expectation
based on Markov models are related to the left and right extensions of maximal
repeats.

2 Preliminaries

2.1 Strings

Let Σ = [1..σ] be an integer alphabet, let # = 0, #1 = −1 and #2 = −2 be
distinct separators not in Σ, and let T = [1..σ]n−1# be a string. We assume σ ∈
o(

√
n/ log n) throughout the paper. A k-mer is any string W ∈ [1..σ] of length

k > 0. We denote by fT (W ) the number of (possibly overlapping) occurrences
of a string W in the circular version of T , and we use the shorthand pT (W ) =
fT (W )/(n − |W |) to denote an approximation of the empirical probability of
observing W in T , assuming that all positions of T except the last |W | ones are
equally probable starting positions for W . A repeat W is a string that satisfies
fT (W ) > 1. We denote by Σ�

T (W ) the set of characters {a ∈ [0..σ] : fT (aW ) > 0}
and by Σr

T (W ) the set of characters {b ∈ [0..σ] : fT (Wb) > 0}. A repeat W
is right-maximal (respectively, left-maximal) iff |Σr

T (W )| > 1 (respectively, iff
|Σ�

T (W )| > 1). It is well known that T can have at most n − 1 right-maximal
substrings and at most n − 1 left-maximal substrings. A maximal repeat of T is
a repeat that is both left- and right-maximal.

For reasons of space we assume the reader to be familiar with the notion of
suffix tree STT of a string T , and with the notion of generalized suffix tree of
two strings, which we do not define here. We denote by �(v) the string label of a
node v in a suffix tree. It is well known that a substring W of T is right-maximal
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iff W = �(v) for some internal node v of STT . We assume the reader to be
familiar with the notion of suffix link connecting a node v with �(v) = aW for
some a ∈ [0..σ] to a node w with �(w) = W : we say that w = suffixLink(v) in
this case. Here we just recall that suffix links and internal nodes of STT form a
tree, called the suffix-link tree of T and denoted by SLTT , and that inverting the
direction of all suffix links yields the so-called explicit Weiner links. Given an
internal node v and a symbol a ∈ [0..σ], it might happen that string a�(v) does
occur in T , but that it is not right-maximal, i.e. it is not the label of any internal
node of STT : all such left extensions of internal nodes that end in the middle
of an edge are called implicit Weiner links. An internal node v of STT can have
more than one outgoing Weiner link, and all such Weiner links have distinct
labels: in this case, �(v) is a maximal repeat. It is known that the number of
suffix links (or, equivalently, of explicit Weiner links) is upper-bounded by 2n−2,
and that the number of implicit Weiner links can be upper-bounded by 2n − 2
as well.

2.2 Enumerating Right-Maximal Substrings and Maximal Repeats

For reasons of space we assume the reader to be familiar with the notion and uses
of the Burrows-Wheeler transform of T , including the C array, the rank function,
and backward searching. In this paper we use BWTT to denote the BWT of T ,
we use range(W ) = [sp(W )..ep(W )] to denote the lexicographic interval of a
string W in a BWT that is implicit from the context, and we use Σi,j to denote
the set of distinct characters that occur inside interval [i..j] of a string that is
implicit from the context. We also denote by rangeDistinct(i, j) the function
that returns the set of tuples {(c, rank(c, pc), rank(c, qc)) : c ∈ Σi,j}, in any
order, where pc and qc are the first and the last occurrence of c inside interval
[i..j], respectively. Here we focus on a specific application of BWTT : enumerating
all the right-maximal substrings of T , or equivalently all the internal nodes of
STT . In particular, we use the algorithm described in [3] (Sect. 4.1), which we
sketch here for completeness.

Given a substring W of T , let b1 < b2 < · · · < bk be the sorted sequence of all
the distinct characters in Σr

T (W ), and let a1, a2, . . . , ah be the list of all the char-
acters in Σ�

T (W ), not necessarily sorted. Assume that we represent a substring
W of T as a pair repr(W ) = (chars[1..k], first[1..k + 1]), where chars[i] = bi,
range(Wbi) = [first[i]..first[i + 1] − 1] for i ∈ [1..k], and range() refers to
BWTT . Note that range(W ) = [first[1]..first[k+1]−1], since it coincides with
the concatenation of the intervals of the right extensions of W in lexicographic
order. If W is not right-maximal, array chars in repr(W ) has length one. Given
a data structure that supports rangeDistinct queries on BWTT , and given the
C array of T , there is an algorithm that converts repr(W ) into the sequence
a1, . . . , ah and into the corresponding sequence repr(a1W ), . . . , repr(ahW ), in
O(de) time and O(σ2 log n) bits of space in addition to the input and the output
[3], where d is the time taken by the rangeDistinct operation per element in its
output, and e is the number of distinct strings aiWbj that occur in the circular
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version of T , where i ∈ [1..h] and j ∈ [1..k]. We encapsulate this algorithm into
a function that we call extendLeft.

If aiW is right-maximal, i.e. if array chars in repr(aiW ) has length greater
than one, we push pair (repr(aiW ), |W |+1) onto a stack S. In the next iteration
we pop the representation of a string from the stack and we repeat the process,
until the stack itself becomes empty. This process is equivalent to following all
the explicit Weiner links from the node v of STT with �(v) = W , not necessarily
in lexicographic order. Thus, running the algorithm from a stack initialized with
repr(ε) is equivalent to performing a preorder depth-first traversal of the suffix-
link tree of T (with children explored in arbitrary order), which guarantees to
enumerate all the right-maximal substrings of T . Every operation performed by
the algorithm can be charged to a distinct node or Weiner link of STT , thus the
algorithm runs in O(nd) time. The depth of the stack is O(log n) rather than
O(n), since at every iteration we push the pair (repr(aiW ), |aiW |) with largest
range(aiW ) first. Every suffix-link tree level in the stack contains at most σ
pairs, and each pair takes at most σ log n bits of space, thus the total space
used by the stack is O(σ2 log2 n) bits. The following theorem follows from our
assumption that σ ∈ o(

√
n/ log n):

Theorem 1 ([3]). Let T ∈ [1..σ]n−1# be a string. Given a data structure that
supports rangeDistinct queries on BWTT , we can enumerate all the right-
maximal substrings W of T , and for each of them we can return |W |, repr(W ),
the sequence a1, a2, . . . , ah of all characters in Σ�

T (W ) (not necessarily sorted),
and the sequence repr(a1W ), . . . , repr(ahW ), in O(nd) time and in o(n) bits of
space in addition to the input and the output, where d is the time taken by the
rangeDistinct operation per element in its output.

Theorem 1 does not specify the order in which the right-maximal substrings
must be enumerated, nor the order in which the left extensions of a right-
maximal substring must be returned. The algorithm we just described can be
adapted to return all the maximal repeats of T , with the same bounds, by
outputting a right-maximal string W iff |rangeDistinct(sp(W ), ep(W ))| > 1.
A version of the same algorithm can also enumerate all the internal nodes
of the generalized suffix tree of two string T 1 and T 2, using BWTT 1 and
BWTT 2 : in this case, a string W is represented as a quadruple repr′(W ) =
(chars1[1..k1], first1[1..k1+1], chars2[1..k2], first2[1..k2+1]), and we assume
that firsti[1] = 0 iff W does not occur in T i. We call extendLeft′ the function
that maps repr′(W ) to the list of its left extensions repr′(aiW ).

Theorem 2 ([3]). Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be two strings.
Given two data structures that support rangeDistinct queries on BWTT 1 and
on BWTT 2 , respectively, we can enumerate all the right-maximal substrings W
of T = T 1T 2, and for each of them we can return |W |, repr′(W ), the sequence
a1, a2, . . . , ah of all characters in Σ�

T 1T 2(W ) (not necessarily sorted), and
the sequence repr′(a1W ), . . . , repr′(ahW ), in O(nd) time and in o(n) bits of
space in addition to the input and the output, where n = n1 + n2 and d is the
time taken by the rangeDistinct operation per element in its output.
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For reasons of space, we assume throughout the paper that d is the time per
element in the output of a rangeDistinct data structure that is implicit from the
context. We also replace T i by i in subscripts, or we waive subscripts completely
whenever they are clear from the context.

3 Kernels and Complexity Measures on k-mers

Given a string T ∈ [1..σ]n−1# and a length k > 0, let vector Tk[1..σk] be such
that Tk[W ] = fT (W ) for every W ∈ [1..σ]k. The k-mer complexity Ck(T ) of
string T is the number of nonzero components of Tk. The k-mer kernel of two
strings T 1 and T 2 is κ(T1

k,T2
k). Recall that Theorems 1 and 2 enumerate all

nodes of a suffix tree in no specific order. In this section we describe algorithms
to compute Ck(T ) and κ(T1

k,T2
k) in a way that does not depend on the order

in which the nodes of a suffix tree are enumerated: we can thus implement such
algorithms on top of Theorems 1 and 2. The main idea behind our approach is
a telescoping strategy that works by adding and subtracting terms in a sum, as
described below:

Theorem 3. Let T ∈ [1..σ]n−1# be a string. Given an integer k and a data
structure that supports rangeDistinct queries on BWTT , we can compute Ck(T )
in O(nd) time and in o(n) bits of space in addition to the input.

Proof. A k-mer of T can either be the label of a node of STT , or it could end in
the middle of an edge (u, v) of ST. In the latter case, we assume that the k-mer
is represented by its locus v, which might be a leaf. Let Ck(T ) be initialized to
n − k, i.e. to the number of leaves that correspond to suffixes of T of length
at least k + 1. We enumerate the internal nodes of ST using Theorem 1, and
every time we enumerate a node v we proceed as follows: if |�(v)| < k we leave
Ck(T ) unaltered, otherwise we increment Ck(T ) by one and we decrement Ck(T )
by the number of children of v in ST, which is the length of array chars in
repr(�(v)). In this way, every internal node v of ST that is located at string
depth at least k and that is not the locus of a k-mer is both added to Ck(T )
(when the algorithm visits v) and subtracted from Ck(T ) (when the algorithm
visits parent(v)). Leaves at depth at least k + 1 that are not the locus of a
k-mer are added by the initialization of Ck(T ), and they are subtracted during
the enumeration. Conversely, every locus v of a k-mer of T (including leaves) is
just added to Ck(T ), since |�(parent(v))| < k.

We can apply the same telescoping strategy to compute κ(T1
k,T2

k):

Theorem 4. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
an integer k and two data structures that support rangeDistinct queries on
BWTT 1 and on BWTT 2 , respectively, we can compute κ(T1

k,T2
k) in O(nd) time

and in o(n) bits of space in addition to the input, where n = n1 + n2.
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Proof. Recall that κ(T1
k,T2

k) = N/
√

D1D2, where N =
∑

W T1
k[W ]T2

k[W ],
Di =

∑
W Ti

k[W ]2, and W ∈ [1..σ]k. We initially set N = 0 and Di = ni − k,
since these are the contributions of all the leaves at depth at least k + 1 in the
generalized suffix tree of T 1 and T 2. Then, we enumerate every internal node u
of the generalized suffix tree, using Theorem 2: if |�(u)| < k we keep all variables
unchanged, otherwise we set N to N + f1(�(u)) · f2(�(u))−∑

v f1(�(v)) · f2(�(v))
and we set Di to Di + fi(�(u))2 − ∑

v fi(�(v))2, where v ranges over all children
of u in the generalized suffix tree. Clearly fi(�(u)) = firsti[ki + 1] − firsti[1]
where ki is the size of array charsi in repr′(�(u)), and fi(�(v)) = fi(�(u)bj) =
firsti[j + 1] − firsti[j] for some j ∈ [1..ki]. In analogy to Theorem 3, the
contribution of the loci of the distinct k-mers of T 1, of T 2, or of both, is added
to the three temporary variables and never subtracted, while the contribution of
every other node u at depth at least k in the generalized suffix tree is both added
(when the algorithm visits u, or when N and Di are initialized) and subtracted
(when the algorithm visits parent(u)).

An even more specific notion of compositional complexity is Ck,f (T ), the num-
ber of distinct k-mers that occur exactly f times in T . In the k-mer profil-
ing problem [6,7] we are given a string T , an interval [k1..k2] of lengths and
an interval [f1..f2] of frequencies, and we are asked to compute the matrix
profile[k1..k2, f1..f2] defined as follows: profile[i, j] = Ci,j(T ) if j < f2, and
profile[i, j] =

∑
h≥j Ci,h(T ) if j = f2. Note that the jth column of profile

can have nonzero cells only if fj is the frequency of some internal node of STT .
In practice profile is often computed by running a k-mer extraction algorithm
k2 − k1 + 1 times, and by scanning the output of all such runs (see e.g. [6] and
references therein). The following lemma shows that we can compute profile
in just one pass over the BWT of the input string, and in linear time in the size
of profile:

Theorem 5. Let T ∈ [1..σ]n−1# be a string. Given ranges [k1..k2] and [f1..f2],
and given a data structure that supports rangeDistinct queries on BWTT , we
can compute matrix profile[k1..k2, f1..f2] in O(nd + (k2 − k1)(f2 − f1)) time
and in o(n) bits of space in addition to the input and the output.

Proof. We use Theorem 1 again. Assume that, for every internal node u of
STT with string depth at least k1 and with frequency at least f1, and for
every k ∈ [k1..min{|�(u)|, k2}], we increment profile[k,min{f(u), f2}] by
one and we decrement profile[k,min{f(v), f2}] by one for every child v
of u in ST such that f(v) ≥ f1. This would take O(n2) total updates to
profile. However, we can perform all of these updates in batch, as follows:
for every node u of ST with f(u) ≥ f1 and with |�(u)| ≥ k1, we just incre-
ment profile[min{|�(u)|, k2}, min{f(u), f2}] by one, and we just decrement
profile[min{|�(u)|, k2}, min{f(v), f2}] by one for every child v of u in ST such
that f(v) ≥ f1. After having traversed all the internal nodes of ST, we scan
profile as follows: for every j ∈ [f1..f2], we traverse all values of i in the decreas-
ing order k2 − 1, . . . , k1, and we set profile[i, j] = profile[i, j] + profile[i +
1, j]. If f1 = 1, at the end of this process the first column of profile contains
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negative numbers, since Theorem 1 does not enumerate the leaves of ST. Thus,
before returning, we add to profile[i, 1] the number of leaves with string depth
at least ki + 1, i.e. value n − ki, for all i ∈ [k1..k2].

A similar algorithm allows computing κ(T1
k,T2

k) for all k in a user-specified
range [k1..k2] in O(nd+k2 −k1) time. Matrix profile can be used to determine
a range of values of k to be used in k-mer kernels. The smallest number in this
range is typically the value of k that maximizes the number of distinct k-mers
that occur at least twice in T [15]. The largest number in the range is typically
determined using some measure of expectation: we cover this computation in
Sect. 5.

A related notion of compositional complexity is the k-th order empir-
ical entropy of T , defined as Hk(T ) = (1/|T |) · ∑

W

∑
a∈Σr(W ) fT (Wa) ·

log(fT (W )/fT (Wa)), where W ranges over all strings in [1..σ]k. Clearly only
the internal nodes of STT contribute to some Hk(T ) [9], thus our methods allow
computing Hk(T ) for a user-specified range of lengths [k1..k2] in O(nd+k2 −k1)
time, using just one pass over BWTT .

4 Kernels and Complexity Measures on All Substrings

Given a string T ∈ [1..σ]n−1#, consider the infinite-dimensional vector T∞
indexed by all distinct substrings W ∈ [1..σ]+, such that T∞[W ] = fT (W ). The
substring complexity C∞(T ) of T is the number of nonzero components of T∞.
The substring kernel of two strings T 1 and T 2 is the cosine of composition vectors
T1

∞ and T2
∞. Computing substring complexity and substring kernel amounts to

applying the same telescoping strategy described in Theorems 3 and 4, but with
different contributions:

Corollary 1. Let T ∈ [1..σ]n−1# be a string. Given a data structure that sup-
ports rangeDistinct queries on BWTT , we can compute C∞(T ) in O(nd) time
and in o(n) bits of space in addition to the input.

Proof. The substring complexity of T coincides with the number of characters
in [1..σ] that occur on all edges of STT . We can thus proceed as in Theorem 3,
initializing C∞(T ) to (n − 1)n/2, or equivalently to the sum of the lengths of all
suffixes of T [1..n − 1]. Whenever we visit a node v of ST, we add to C∞(T ) the
quantity |�(v)|, and we subtract from C∞(T ) the quantity |�(v)| · |children(v)|.
The net effect of all such operations coincides with summing the lengths of all
edges of ST, discarding all occurrences of character #. Note that |�(u)| is pro-
vided by Theorem 1, and |children(v)| is the size of array chars in repr(�(v)).

Corollary 2. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
data structures that support rangeDistinct queries on BWTT 1 and on BWTT 2 ,
respectively, we can compute κ(T1

∞,T2
∞) in O(nd) time and in o(n) bits of space

in addition to the input, where n = n1 + n2.
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Proof. We proceed as in Theorem 4, setting again N = 0 and Di = (ni − 1)ni/2
at the beginning of the algorithm. When we visit a node u of the generalized suffix
tree of T 1 and T 2, we set N to N+|�(u)|·(f1(�(u))f2(�(u))−∑

v f1(�(v))f2(�(v)))
and we set Di to Di + |�(u)| · (fi(�(u))2 − ∑

v fi(�(v))2), where v ranges over all
children of u in the generalized suffix tree.

In a substring kernel it is common to weight a substring W by a user-specified
function of its length: typical choices are ε|W | for a given constant ε, or indicators
that select only substrings within a specific range of lengths [16]. We denote
by Ti

∞,g a weighted version of the infinite-dimensional vector Ti
∞ such that

Ti
∞,g[W ] = g(|W |) · Ti

∞[W ], where g is any user-specified function. We assume
that the number of bits required to represent the output of g with sufficient
precision is O(log n). It is easy to adapt Corollary 2 to support this type of
composition vector:

Corollary 3. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given a
function g(k) that can be evaluated in constant time, and given data structures
that support rangeDistinct queries on BWTT 1 and on BWTT 2 , respectively, we
can compute κ(T1

∞,g,T
2
∞,g) in O(nd) time and in o(n) bits of space in addition

to the input, where n = n1 + n2.

Proof. We modify Corollary 2 as follows. Assume that we are processing an inter-
nal node v of the generalized suffix tree, let �(v) = W , and assume that we have
computed repr′(aW ) for all the left extensions aW of W . In addition to pushing
repr′(aW ) onto the stack, we also push value prefixSum(aW ) =

∑|W |+1
i=1 g(i)2

with it, where prefixSum(aW ) = prefixSum(W ) + g(|W | + 1)2. When we pop
repr′(aW ), we compute its contributions to N and Di as described in Corollary 2,
but replacing |aW | by prefixSum(aW ). We initialize Di to

∑ni−1
j=1 g(j)2.

Corollary 3 can clearly support distinct weight functions for T 1 and T 2. For
some functions, like ε|W |, prefix sums can be computed in closed form [16],
thus there is no need to push prefixSum values on the stack. Another frequent
weighting scheme for a string W associates a score q(c) to every character c of
W , and it weights W by e.g. q(W ) =

∏|W |
i=1 q(W [i]). In this case we could just

push prefixSum(V ) =
∑|V |

i=1

∏i
j=1 q(V [j])2 onto the stack, where V = aW and

prefixSum(V ) = q(a)2 · (1 + prefixSum(W )). A similar weighting scheme can
be used for k-mers as well. Let Tk,q be a version of Tk such that Tk,q[W ] =
fT (W ) − (|T | − |W |)q(W ) for every W ∈ [1..σ]k, and consider the following
distances defined in [13]:

Ds
2(T

1
k,q,T

2
k,q) =

∑

W

T1
k,q[W ]T2

k,q[W ]/
√

(T1
k,q[W ])2 + (T2

k,q[W ])2

D∗
2(T

1
k,q,T

2
k,q) =

∑

W

T1
k,q[W ]T2

k,q[W ]/
(√

(n1 − k)(n2 − k) · q(W )
)

where W ranges over all strings in [1..σ]k. We can compute such distances using
just a minor modification to Theorem4:
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Corollary 4. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
an integer k and data structures that support rangeDistinct queries on BWTT 1

and on BWTT 2 , respectively, we can compute Ds
2(T

1
k,p,T

2
k,p) and D∗

2(T
1
k,p,T

2
k,p)

in O(nd) time and in λ log σ + o(n) bits of space in addition to the input, where
n = n1 + n2 and λ is the length of the longest repeat in T 1T 2.

Proof. We proceed as in Theorem 4, pushing on the stack value q(W,k) =
∏k

j=1 q(W [j]) in addition to repr′(W ), and maintaining a separate stack of
characters to represent the string we are processing during the depth-first tra-
versal of the generalized suffix-link tree. We set q(aW, k) = q(a) · q(W,k)/q(b),
where b is the kth character from the top of the character stack when we are
processing W .

An orthogonal way to measure the similarity between T 1 and T 2 consists in
comparing the repertoire of all strings that do not appear in T 1 and in T 2.
Given a string T and two frequency thresholds τ1 < τ2, a string W is a minimal
rare word of T if τ1 ≤ fT (W ) < τ2 and if fT (V ) ≥ τ2 for every proper substring
V of W . Setting τ1 = 0 and τ2 = 1 gives the well-known minimal absent words
(see e.g. [5,10] and references therein), whose total number can be Θ(σn) [8].
Setting τ1 = 1 and τ2 = 2 gives the so-called minimal unique substrings (see
e.g. [11] and references therein), whose total number is O(n), like the number
of strings obtained by any other setting of τ1 ≥ 1. In what follows we focus on
minimal absent words, but our algorithms can be generalized to other settings
of the thresholds.

To decide whether aWb is a minimal absent word of T , where a and b are
characters, it clearly suffices to check whether fT (aWb) = 0 and whether both
fT (aW ) ≥ 1 and fT (Wb) ≥ 1. It is well known that only a maximal repeat of
T can be the infix W of a minimal absent word aWb, and this applies to any
setting of τ1 and τ2. To enumerate all the minimal absent words, for example
to count their total number C−(T ), we can thus iterate over all nodes of STT

associated with maximal repeats, as described below:

Theorem 6. Let T ∈ [1..σ]n−1# be a string. Given a data structure that sup-
ports rangeDistinct queries on BWTT , we can compute C−(T ) in O(nd) time
and in o(n) bits of space in addition to the input.

Proof. For clarity, we first describe how to enumerate all the distinct minimal
absent words of T : we specialize this algorithm to counting at the end of the
proof. We use Theorem 1 to enumerate all nodes v of STT associated with
maximal repeats, as described in Sect. 2.2. Let {a1, . . . , ah} be the set of distinct
left extensions of string �(v) in T returned by operation extendLeft(repr(�(v))),
let extensions[1..σ +1, 0..σ] be a boolean matrix initialized to all zeros, and let
leftExtensions[1..σ +1] be an array initialized to all zeros. Let h′ be a pointer
initialized to one. Operation extendLeft allows following all the Weiner links
from v, not necessarily in lexicographic order: for every string ai�(v) obtained
in this way, we set leftExtensions[h′] = ai, we enumerate its right extensions
{c1, . . . , ck′} using array chars of repr(ai�(v)), we set extensions[h′, cj ] = 1
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for all j ∈ [1..k′], and we finally increment h′ by one. Note that only the columns
of extensions that correspond to the right extensions of �(v) are updated by
this procedure. Then, we enumerate all the right extensions {b1, . . . , bk} of �(v)
using array chars of repr(�(v)), and for every such extension bj we report all
pairs (ai, bj) such that ai = chars[x], x ∈ [1..h′], and extensions[x, bj ] = 0.
This process takes time proportional to the number of Weiner links from v, plus
the number of children of v, plus the number of Weiner links from v multiplied
by σ. When applied to all nodes of ST, this takes in total O(nσ) time, which is
optimal in the size of the output. The matrices and vectors used by this process
can be reset to all zeros after processing each node: the total time spent in such
reinitializations in O(n).

If we just need C−(T ), rather than storing the temporary matrices
extensions and leftExtensions, we store just a number area which we ini-
tialize to hk before processing node v. Whenever we observe a right extension
cj of a string ai�(v), we decrease area by one. Before moving to the next node,
we increment C−(T ) by area.

Let T− be the infinite-dimensional vector indexed by all distinct substrings
W ∈ [1..σ]+, such that T−[W ] = 1 iff W is a minimal absent word of T .
Theorem 6 can be adapted to compute the Jaccard distance between the com-
position vectors of two strings:

Corollary 5. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
data structures that support rangeDistinct queries on BWTT 1 and on BWTT 2 ,
respectively, we can compute J(T1

−,T2
−) in O(nd) time and in o(n) bits of space

in addition to the input, where n = n1 + n2.

Proof. We apply the strategy of Theorem 6 to the internal nodes of the gener-
alized suffix tree of T 1 and T 2 whose label is a maximal repeat of T 1 and a
maximal repeat of T 2: such strings are clearly maximal repeats of T 1T 2 as well.
We enumerate such nodes as described in Sect. 2.2. We keep a global variable
intersection and a bitvector sharedRight[1..σ]. For every node v that corre-
sponds to a maximal repeat of T 1 and of T 2, we merge the sorted arrays chars1
and chars2 of repr′(�(v)), we set sharedRight[c] = 1 for every character c that
belongs to the intersection of the two arrays, and we cumulate in a variable k′

the number of ones in sharedRight. Then, we scan every left extension ai pro-
vided by extendLeft′, we determine in constant time whether it occurs in both
T 1 and T 2, and if so we increment a variable h′ by one. Finally, we initialize a
variable area to h′k′, and we process again every left extension ai provided by
extendLeft′: if ai�(v) occurs in both T 1 and T 2, we compute the union of arrays
chars1 and chars2 of repr′(ai�(v)), and for every character c in the union such
that sharedRight[c] = 1, we decrement area by one. At the end of this process,
we add area to the global variable intersection. To compute ||T1

− ∨ T2
−|| we

apply Theorem 6 to T 1 and T 2 separately.

It is easy to extend Corollary 5 to compute κ(T1
−,T2

−), as well as to support
weighting schemes based on the length and on the characters of minimal absent
words.
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5 Markovian Corrections

In some applications it is desirable to assign to component W ∈ [1..σ]k of
composition vector T∞ an estimate of the statistical significance of observing
fT (W ) occurrences of W in T : intuitively, strings whose frequency departs from
its expected value are more likely to carry “information”, and they should be
weighted more [12]. Assume that T is generated by a Markov random process
of order k − 2 or smaller, that produces strings on alphabet [1..σ] accord-
ing to a probability distribution P. It is well known that the probability of
observing W in a string generated by such a random process is P(W ) =
P(W [1..k − 1]) · P(W [2..k])/P(W [2..k − 1]). We can estimate P(W ) using the
empirical probability pT (W ), obtaining the following approximation for P(W ):
p̃T (W ) = pT (W [1..k − 1]) · pT (W [2..k])/pT (W [2..k − 1]) if pT (W [2..k − 1]) �= 0,
and p̃T (W ) = 0 otherwise. We can thus estimate the significance of the event
that substring W has empirical probability pT (W ) in string T using the follow-
ing score: zT (W ) = (pT (W ) − p̃T (W ))/p̃T (W ) if p̃T (W ) �= 0, and zT (W ) = 0 if
p̃T (W ) = 0 [12]. After elementary manipulations [2], zT (W ) becomes:

zT (W ) = g(n, k) · fT (W ) · fT (W [2..k − 1])
fT (W [1..k − 1]) · fT (W [2..k])

− 1

g(x, y) = (x − y + 2)2/(x − y + 1)(x − y + 3)

Since g(x, y) ∈ [1..1.125], we temporarily assume g(x, y) = 1 in what follows,
removing this assumption later.

Let Tz be a version of the infinite-dimensional vector T∞ in which Tz[W ] =
zT (W ). Among all strings that occur in T , only strings aWb such that a and
b are characters in [0..σ] and such that W is a maximal repeat of T can
have Tz[aWb] �= 0. Similarly, among all strings that do not occur in T , only
the minimal absent words of T have a nonzero component in Tz: specifically,
Tz[aWb] = −1 for all minimal absent words aWb of T , where a and b are char-
acters in [0..σ] [2]. Given two strings T 1 and T 2, we can thus compute κ(T1

z,T
2
z)

using the same strategy as in Corollary 5:

Theorem 7. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given
data structures that support rangeDistinct queries on BWTT 1 and on BWTT 2 ,
respectively, and assuming g(x, y) = 1 for all settings of x and y, we can compute
κ(T1

z,T
2
z) in O(nd) time and in o(n) bits of space in addition to the input, where

n = n1 + n2.

Proof. We focus here on computing component N of κ(T1
z,T

2
z): comput-

ing Di follows a similar algorithm on BWTT i . We keep again a bitvector
sharedRight[1..σ], and we enumerate all the internal nodes of the generalized
suffix tree of T 1 and T 2 whose label is a maximal repeat of T 1 and a maximal
repeat of T 2, as described in Corollary 5. For every such node v, we merge the
sorted arrays chars1 and chars2 of repr′(�(v)), we set sharedRight[c] = 1 for
every character c that belongs to the intersection of the two arrays, and we cumu-
late in a variable k′ the number of ones in sharedRight. Then, we scan every left
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extension ai provided by extendLeft′, we determine in constant time whether
it occurs in both T 1 and T 2, and if so we increment a variable h′ by one. Finally,
we initialize a variable area to h′k′, and we process again every left extension ai

provided by extendLeft′. If ai�(v) occurs in both T 1 and T 2, we merge arrays
chars1 and chars2 of repr′(ai�(v)): for every character b in the intersection
of chars1 and chars2, we add to N value z1(ai�(v)b) · z2(ai�(v)b), retrieving
the corresponding frequencies from repr′(ai�(v)) and from repr′(�(v)), and we
decrement area by one. For every character b that occurs only in chars1, we
test whether sharedRight[b] = 1: if so, aiWb is a minimal absent word of T 2

that occurs in T 1, thus we decrement area by one and we add to N value
−z1(ai�(v)b). We proceed symmetrically if b occurs only in chars2. At the end
of this process, area counts the number of minimal absent words with infix �(v)
that are shared by T 1 and T 2: thus, we add area to N .

It is easy to remove the assumption that g(x, y) is always equal to one. There
are only two differences from the previous case. First, the score of the substrings
W of T i that have a maximal repeat of T i as an infix changes, but g(ni, |W |)
can be immediately computed from |W |, which is provided by the enumeration
algorithm. Second, the score of all substrings W of T i that do not have a maximal
repeat as an infix changes from zero to g(ni, |W |) − 1: we can take all such
contributions into account by pushing prefix-sums to the stack, as in Corollary 3.
For example, to compute component N of κ(T1

z,T
2
z), we can first assume that

all substring W that occur both in T 1 and in T 2 have score g(ni, |W |) − 1, by
pushing on the stack the prefix-sums described in [2] and by enumerating only
nodes v of the generalized suffix tree of T 1 and T 2 such that �(v) occurs both in
T 1 and in T 2. Then, we can run a similar algorithm as in Theorem 7, subtracting
quantity (g(n1, |W | + 2) − 1) · (g(n2, |W | + 2) − 1) from the contribution to N of
every string aiWb that occurs both in T 1 and in T 2.

Finally, recall that in Sect. 3 we mentioned the problem of determining an
upper bound on the values of k to be used in k-mer kernels. Let Tk be the
composition vector indexed by all strings in [1..σ]k such that Tk[W ] = pT (W ),
and let T̃k be a similar composition vector with T̃k[W ] = p̃T (W ), where p̃T (W )
is defined as in the beginning of this section. It makes sense to disregard values
of k for which Tk and T̃k are very similar, and more formally whose Kullback-
Leibler divergence KL(Tk, T̃k) =

∑
W Tk[W ] · (log(Tk[W ]) − log(T̃k[W ])) is

small, where W ranges over all strings in [1..σ]k. Thus, we could use as an
upper bound on k the minimum value k∗ such that

∑∞
k′=k∗ KL(Tk′ , T̃k′) <

τ for some user-specified threshold τ [15]. Note again that only strings aWb
such that a and b are characters in [0..σ] and W is a maximal repeat of T
contribute to KL(T|W |+2, T̃|W |+2). We can thus adapt Theorem 7 to compute
the KL divergence for a user-specified range of lengths [k1..k2], using just one
pass over BWTT , in O(nd) time and in o(n) bits of space in addition to the
input and the output. The same approach can be used to compute the KL-
divergence kernel κ(T1

KL,T2
KL), where Ti

KL[W ] = KLT i(W ) and KLT i(W ) =∑
a,b∈Σ pT i(aWb) · (log(pT i(aWb)) − log(p̃T i(aWb))).
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Abstract. In highly repetitive strings, like collections of genomes from
the same species, distinct measures of repetition all grow sublinearly in
the length of the text, and indexes targeted to such strings typically
depend only on one of these measures. We describe two data struc-
tures whose size depends on multiple measures of repetition at once, and
that provide competitive tradeoffs between the time for counting and
reporting all the exact occurrences of a pattern, and the space taken by
the structure. The key component of our constructions is the run-length
encoded BWT (RLBWT), which takes space proportional to the number
of BWT runs: rather than augmenting RLBWT with suffix array sam-
ples, we combine it with data structures from LZ77 indexes, which take
space proportional to the number of LZ77 factors, and with the compact
directed acyclic word graph (CDAWG), which takes space proportional
to the number of extensions of maximal repeats. The combination of
CDAWG and RLBWT enables also a new representation of the suffix
tree, whose size depends again on the number of extensions of maximal
repeats, and that is powerful enough to support matching statistics and
constant-space traversal.

1 Introduction

The space taken by compressed data structures for highly-repetitive strings is
typically a function of a specific measure of repetition, for example the number z
of factors in a Lempel-Ziv parsing [1,11], or the number r of runs in a Burrows-
Wheeler transform [14]. For many such compressed data structures, computing
all the occurrences of a pattern in the indexed string is a bottleneck. In this
paper we explore the advantages of combining data structures that depend on
distinct measures of repetition. Specifically, we describe a data structure that
takes approximately O(z+r) words of space, and that reports all the occurrences
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of a pattern of length m in O(m(log log n + log z) + pocc logε z + socc log log n)
time, where n is the length of the string and pocc and socc are the number of
primary and of secondary occurrences, respectively (see Sect. 2.2 for definitions).
This compares favorably to the O(m2h + (m + occ) log z) reporting time of
LZ77 indexes [11], where h is the height of the parse tree. It also compares
favorably in space to solutions based on run-length encoded BWT (RLBWT)
and suffix array samples [14], which take O(n/k + r) words of space to achieve
O(m log log n + k · occ log log n) reporting time, where k is a sampling rate.

We also introduce a new measure of the repetitiveness of a string, the number
e of right extensions of maximal repeats, which is related to the number of arcs
in the compact directed acyclic word-graph (CDAWG) and which is an upper
bound on r and z. We show a data structure whose size depends on e and that
reports all the occ occurrences of a pattern of length m in a string of length n
in O(m log log n + occ) time. The main component of our constructions is the
RLBWT, which we use to count the number of occurrences of a pattern, and
which we combine with the CDAWG and with data structures from LZ indexes,
rather than with suffix array samples, for reporting. Similar combinations have
already appeared in the literature, but their space has been related to statistical
compressibility rather than to the number of repetitions: for example, an FM-
index has already been combined with an LZ78 self-index to achieve faster search
or reporting [1,7], but the size of the resulting data structure depends on k-
th order empirical entropy. Bounds in terms of k-th order empirical entropy
have redundancy terms that depend exponentially on k, so they cannot capture
compressibility based on long repetitions.

Combining the RLBWT with the CDAWG enables also a new representation
of the suffix tree, which takes space proportional to e+e� (where e� is the number
of left extensions of maximal repeats) and which supports a number of operations
in O(log log n) time. Among other properties, this new representation allows
computing the matching statistics of a pattern of length m in O(m log log n) time.
Our constructions are targeted to highly-repetitive strings, like large databases
of similar genomes, in which all the measures of repetition on which our data
structures depend grow sublinearly in the size of the database (see Fig. 1 for an
example). In a future paper we will provide a full experimental comparison of our
results against other data structures for pattern matching in highly-repetitive
strings.

2 Preliminaries

Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let
T = [1..σ]n−1# be a string. We denote the reverse of T by T . Given a substring
W of T , let PT (W ) be the set of all starting positions of W in the circular
version of T . A repeat W is a string that satisfies |PT (W )| > 1. We denote by
Σ�

T (W ) the set of characters {a ∈ [0..σ] : |PT (aW )| > 0} and by Σr
T (W ) the

set of characters {b ∈ [0..σ] : |PT (Wb)| > 0}. A repeat W is right-maximal
(respectively, left-maximal) iff |Σ�

T (W )| > 1 (respectively, iff |Σr
T (W )| > 1).
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Fig. 1. Growth of the number of maximal repeats |MT | (black circles), of |Er
T ∪ Fr

T |
(white circles, e in the introduction), of the number of runs in BWT |RT | (squares, r
in the introduction), and of |ZT | (triangles, z in the introduction) in a concatenation T
of 39 highly similar Saccharomyces cerevisiae genomes [8] (see Sect. 2 for definitions).
Left: growth inside the first genome of the database. Center: growth after the addition
of each genome (one sample per genome). Right: the same as the plot in the center,
but with each curve normalized by its first sample. |E�

T ∪ F�
T |, |RT | and |ZT | are not

shown since they behave approximately as their symmetrical counterparts.

It is well known that T can have at most n − 1 right-maximal substrings and at
most n − 1 left-maximal substrings. A maximal repeat of T is a repeat that is
both left- and right-maximal: we call MT the set of all maximal repeats of T .
A maximal repeat W can be seen as a set of right-maximal substrings of T , and
specifically as the set of all right-maximal strings W [i..|W |] for i ∈ [1..k] that
are not left-maximal, and such that W [k + 1..|W |] is left-maximal.

For reasons of space we assume the reader to be familiar with the notion
of suffix tree STT = (V,E) of T , which we do not define here. We denote by
�(γ), or equivalently by �(u, v), the label of edge γ = (u, v) ∈ E, and we denote
by �(v) the string label of node v ∈ V . It is well known that a substring W of
T is right-maximal (respectively, left-maximal) iff W = �(v) for some internal
node v of STT (respectively, iff W = �(v) for some internal node v of STT ). We
assume the reader to be familiar with the notion of suffix link connecting a node
v with �(v) = aW for some a ∈ [0..σ] to a node w with �(w) = W : we say that
w = suffixLink(v) in this case. Here we just recall that inverting the direction
of all suffix links yields the so-called explicit Weiner links. Given an internal
node v and a symbol a ∈ [0..σ], it might happen that string a�(v) does occur in
T , but that it is not right-maximal, i.e. it is not the label of any internal node:
all such left extensions of internal nodes that end in the middle of an edge are
called implicit Weiner links. An internal node can have more than one outgoing
Weiner link, and all such Weiner links have distinct labels.

The compact directed acyclic word graph of a string T (denoted by CDAWGT

in what follows) is the minimal compact automaton representing the set of suf-
fixes of a given string [3,6]. It can be seen as the minimization of STT , in which
all leaves are merged to the same node (the sink) that represents T itself, and
in which all nodes except the sink are in one-to-one correspondence with the
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maximal repeats of T [16]. Since a maximal repeat corresponds to a set of right-
maximal substrings, CDAWGT can be built by putting in the same equivalence
class all nodes of STT that belong to the same maximal unary path of explicit
Weiner links.

For reasons of space we assume the reader to be familiar with the notion
and uses of the Burrows-Wheeler transform of T , including the C array and
backward searching. In this paper we use BWTT to denote the BWT of T , and
we use range(W ) = [sp(W )..ep(W )] to denote the lexicographic interval of a
string W in a BWT that is implicit from the context. We say that BWTT [i..j]
is a run iff BWTT [k] = c ∈ [0..σ] for all k ∈ [i..j], and moreover if any substring
BWTT [i′..j′] such that i′ ≤ i, j′ ≥ j, and either i′ �= i or j′ �= j, contains at
least two distinct characters. It is well known that repetitions in T tend to be
converted into runs of BWTT . We denote by RT the set of all triplets (c, i, j)
such that BWTT [i..j] is a run of character c, and we use rT and rT as shorthands
for |RT | and |RT |, respectively.

The LZ77 factorization of T [20] is the greedy decomposition T1T2 · · · Tz of T
obtained as follows. Assume that T is virtually preceded by the σ distinct char-
acters in its alphabet, and assume that T1T2 · · · Ti has already been computed
for some prefix of length k of T : then, Ti+1 is the longest prefix of T [k + 1..n]
such that there is a j ≤ k that satisfies T [j..j + |Ti+1|− 1] = Ti+1. We denote by
ZT the set of pairs (Ti, pi) for all i ∈ [1..z], where pi is the starting position of Ti

in T , and we use zT as a shorthand for |ZT |. From now on, we drop subscripts
whenever the string T they specify is clear from the context.

2.1 Relationships Among Maximal Repeats, Runs in BWT,
and LZ Factors

Clearly |R| can be as small as two, e.g. in string 0n−1#, and as large as Θ(n),
e.g. in the string of length n that contains exactly n distinct characters, or in a de
Bruijn string of order k > 1 on a binary alphabet: this string of length σk +k−1
contains all the distinct k-mers, thus the interval of every (k − 1)-mer in BWTT

contains exactly σ distinct characters, and the number of runs in BWTT is thus at
least σk−1(k−1). It is known that |Z| is O(n/ logσ n) [12], and it can be constant,
e.g. in 0n−1#. Conversely, |M| can be zero, e.g. in a string of length n that
contains exactly n distinct characters, and it can be Θ(n) in the worst case, e.g.
in string 0n−1#. When maximal repeats exist, the number of right extensions of
maximal repeats

∑
W∈M |Σr(W )| is Ω(log n), and this lower bound is matched

by Fibonacci strings and by Thue-Morse strings of length n, whose CDAWG
contains O(log n) nodes [15,17]. Both |M|/|R| and |M|/|Z| can be Θ(n), for
example in the already mentioned 0n−1#. |R|/|Z| can be Θ(log n), e.g. in the
already mentioned de Bruijn string T of order k, which has Θ(n/ logσ n) LZ
factors. However, |M|, |R| and |Z| can all grow at the same asymptotic rate in
the same family of strings. Consider e.g. string T = 011021 · · · 0x1# of length
x(x + 3)/2 + 1. Clearly |Z| = x + 3, and |M| = 3(x − 1) since the maximal
repeats of T are only the substrings 0i1 for i ∈ [1..x − 1], 0j for j ∈ [1..x − 1],
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and 0k−110k for k ∈ [2..x − 1]. Replacing # with a new block 0x+11# in string
T creates two new runs for every x > 1 , thus |R| = 2x for x > 1.

Recall that a substring W of T is a maximal repeat iff W = �(v) for some
internal node v of STT = (V,E), and moreover if there are at least two Weiner
links from v. Since the set of all left-maximal substrings of T is closed under the
prefix operation, there is a bijection between M and the nodes that lie on the
paths of STT that start from the root and that end at nodes labeled by maximal
repeats defined as follows:

Definition 1. A maximal repeat W of a string T ∈ [1..σ]n−1# is rightmost if
no string WV with V ∈ [0..σ]+ is left-maximal in T .

We denote the set of rightmost maximal repeats of T by Mr
T . We also denote

by Er
T the set of edges of STT that connect pairs of nodes labeled by maximal

repeats, and we denote by Fr
T the set of edges (v, w) in STT such that �(v) ∈ MT

and �(w) /∈ MT . We use M�
T , E�

T and F�
T to denote symmetrical concepts in

STT , and we use eT and e�
T as shorthands for |Er

T | + |Fr
T | and for |E�

T | + |F�
T |,

respectively. Clearly Er and Fr are the image of explicit and implicit Weiner
links of STT :

Lemma 1. Let STT = (V,E). There is a bijection between Er
T and the set of all

explicit Weiner links from nodes of STT that correspond to maximal repeats of
T . There is a bijection between Fr

T and the set of all implicit Weiner links from
nodes of STT that correspond to maximal repeats of T .

The proof of Lemma 1 is provided in the appendix. It is clear that the set of
suffix tree edges Er

T ∪ Fr
T is in one-to-one correspondence with the set of all arcs

of CDAWGT . This set of edges is also related to runs in BWTT :

Theorem 1. |[0..σ]\∪W∈Mr
T
Σ�

T (W )|+∑
W∈Mr

T
|Σ�

T (W )|−|Mr
T |+1 ≤ |RT | ≤

|Fr
T |.

Proof. The root of STT is a maximal repeat, thus the destinations of all edges in
Fr partition all leaves of STT into disjoint subtrees, or equivalently they partition
the entire BWTT in disjoint blocks. Since every such block is the interval in
BWTT of some string that is not left-maximal, all characters of BWTT in the
same block are identical, thus the number of runs in BWTT cannot be bigger
than |Fr|.

The interval of a string W ∈ Mr in BWTT contains exactly |Σ�(W )| distinct
characters, and at most one of them is identical to the character that precedes
the largest suffix of T smaller than W in lexicographic order (note that such
suffix might not be prefixed by any string in Mr). Thus, the number of runs in
BWTT is at least

∑
W∈Mr |Σ�(W )|− |Mr|+1. Factor [0..σ]\∪W∈MrΣ�

T (W ) in
the claim takes into account symbols of T that never occur to the left of strings
in Mr. ��
A symmetrical argument holds for RT . The set of arcs in CDAWGT is also related
to the LZ factorization of T :
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Theorem 2. |ZT | ≤ |Er
T ∪ Fr

T |
Proof. Let T = T1T2 . . . Tz be the LZ factorization of T , and let p1, p2, . . . , pz

be the sequence such that pi is the starting position of factor Ti in T . Every
factor is a right-maximal substring of T , but it is not necessarily left-maximal:
let Wi be a suffix of T [1..pi − 1] such that WiTi is both right-maximal and left-
maximal, and assume that we assign Ti to the edge (v, w) in Er

T ∪ Fr
T such that

�(v) = WiTi, v = parent(w), and the first character of Ti+1 equals the first
character of �(v, w). Assume that there is some j > i for which we assign Tj

to the same maximal repeat WiTi. Then, the first character of Tj+1 must be
different from the first character of Ti+1, otherwise factor Tj would have been
longer. It follows that every LZ factor can be assigned to a distinct element of
Er

T ∪ Fr
T . ��

The gap between r and e, and between z and e, is apparent from Fig. 1 (center).
However, all these measures seem to grow at the same relative rate in practice
(right panel).

2.2 Repetition-Aware Data Structures

Given a string T ∈ [1..σ]n−1#, we call run-length encoded BWT any represen-
tation of BWTT that takes O(|RT |) words of space, and that supports rank and
select operations: see for example [13,14,18]. Let RT be a set of triplets (c, i, j)
such that BWTT [i..j] is a run of character c. It is easy to implement rank in
O(log log n) time, by encoding RT as σ + 1 predecessor data structures [19],
each of which stores the second component of all triplets with the same first
component. For every such second component i, we also store in an array the
sum of all occurrences of c up to i, exclusive. To implement select in O(log log n)
time, we can similarly encode RT as σ + 1 predecessor data structures, each of
which stores value rankc(BWTT , i−1) for all triplets (c, i, j) with the same value
of c. We also store the value of i for every such triplet. We denote the run-length
encoded BWT of T by RLBWTT .

For reasons of space we assume the reader to be familiar with LZ77-indexes:
see e.g. [9,10]. Here we just recall that a primary occurrence of a pattern P in a
string T ∈ [1..σ]n−1# is one that crosses a phrase boundary in the LZ77 factor-
ization T1T2 · · · Tz of T . All other occurrences are called secondary. Once we have
determined all primary occurrences, locating secondary occurrences reduces to
two-sided range reporting and takes O(occ log log n) time with a data structure
that takes O(z) words of space [10]. To locate primary occurrences, we can use
a data structure for four-sided range reporting on a z × z grid, with a marker
at (x, y) if the xth LZ factor in lexicographic order is preceded in the text by
the lexicographically yth reversed prefix ending at a phrase boundary. This data
structure takes O(z) words of space, and it returns all the phrase boundaries
immediately followed by a factor in the specified range, and immediately pre-
ceded by a reversed prefix in the specified range, in O((1+k) logε z) time, where
k is the number of phrase boundaries reported [4].
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3 Combining Runs in BWT and LZ Factors

In this section we describe how to combine data structures whose size depends on
the number of LZ factors of a string T ∈ [1..σ]n−1#, and data structures whose
size depends on the number of runs in BWTT , to report all the occurrences of a
pattern in T . To do so, we first need to solve the following subproblem. Let STT =
(V,E) be the suffix tree of T , and let V ′ = {v1, v2, . . . , vk} ⊆ V be a subset of
the nodes of STT . Consider the list of node labels L = �(v1), �(v2), . . . , �(vk),
sorted in lexicographic order. Given a string W ∈ [0..σ]∗, we want to implement
function I(W,V ′) that returns the (possibly empty) interval of W in L. The
following lemma describes how to do this in O(k) words of space:

Lemma 2. Let T ∈ [1..σ]n−1# be a string, and let V ′ be a subset of k nodes
of its suffix tree, represented as intervals in BWTT . Given the interval [i..j] of a
string W ∈ [0..σ]∗ in BWTT , there is a data structure that takes O(k) words of
space and that computes I(W,V ′) in O(log k) time.

Proof. Let F [1..n] be a bitvector such that F [i] = 1 iff there is a node v′ ∈
V ′ such that range(v′) = [i..j]. Similarly, let L[1..n] be a bitvector such that
L[j] = 1 iff there is a node v′ ∈ V ′ such that range(v′) = [i..j]. Let α and β
be the number of ones in F and L, respectively. We store in array first[1..α]
(respectively, last[1..β]) the sorted positions of the ones in F (respectively, in
L), using O(k) words of space. Let F ′[1..α] be the array such that F ′[i] equals the
number of intervals [p..q] such that p is the ith one in F and [p..q] = range(v′)
for a node v′ ∈ V ′. Similarly, let L′[1..β] be the array such that L′[i] equals the
number of intervals [p..q] such that q is the ith one in L and [p..q] = range(v′)
for a node v′ ∈ V ′. We represent F ′ and L′ as prefix-sum arrays first′[1..α] and
last′[1..β] using O(k) words of space, i.e. first′[i] =

∑i
h=1 F ′[h] and last′[i] =

∑i
h=1 L′[h].
Let I(W,V ′) = [x..y]. Given the interval [i..j] of a string W in BWTT , we

find the corresponding interval [i′..j′] in array first in O(log α) time, using
binary search on first′. Specifically, i′ = min{h ∈ [1..α] : first′[h] ≥ i} and
j′ = max{h ∈ [1..α] : first′[h] ≤ j}. If j′ < i′ then W is not the prefix of a label
of a node in V ′. Otherwise, since all nodes v′ ∈ V ′ whose BWT interval starts
inside [i + 1..j] are right extensions of W , we set y =

∑j′

h=1 F ′[h] = first′[j′]
in constant time. If first[i′] �= i, i.e. if no interval of a node v′ ∈ V ′ starts at
position i in BWTT , then we can just set x = 1+

∑i′−1
h=1 F ′[h] = 1+first′[i′ −1]

in constant time and stop.
Otherwise, it could happen that just a (possibly empty) subset of all the

nodes in V ′ whose interval starts at position i in BWTT correspond to W or to
right extensions of W : the intervals of such nodes necessarily end inside [i..j]. All
the other intervals that start at position i could correspond instead to prefixes
of W , and they necessarily end after position j in BWTT . Thus, let [i′′..j′′] be
the interval in last that corresponds to [i..j]: specifically, let i′′ = min{h ∈
[1..β] : last[h] ≥ i} and j′′ = max{h ∈ [1..β] : last[h] ≤ j}. To determine
the number of intervals that start at position i in BWTT and that correspond
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to prefixes of W , it suffices to compute the difference δ between the number
of starting positions and the number of ending positions inside interval [i..j],
as follows: δ =

∑j′

h=1 F ′[h] − ∑i′−1
h=1 F ′[h] − ∑j′′

h=1 L′[h] +
∑i′′−1

h=1 L′[h]. Then,
x =

∑i′−1
h=1 F ′[h] + δ + 1. All such sums can be computed in constant time using

the prefix-sum representations of F ′ ad L′.
If the interval of some node in V ′ starts at i and ends after j in BWTT , then

no interval can end at j and start before i, so δ is nonnegative. ��
Consider now a factorization of T such that all factors are right-maximal sub-
strings of T , and let V ′ be the set of nodes of STT that correspond to the distinct
factors. To locate all the occurrences of a pattern that cross or end at a boundary
between two factors, we just need an implementation of function I(W,V ′) and a
pair of RLBWTs:

Lemma 3. Let T ∈ [1..σ]n−1# be a string, and let T = T1T2 · · · Tz be a factor-
ization of T in which all factors are right-maximal substrings. There is a data
structure that takes O(z + rT + rT ) words of space and that reports all the occ
occurrences of a pattern P ∈ [0..σ]m that cross or end at a boundary between
two factors of T , in O(m(log log n + log z) + occ logε z) time.

Proof. Let p1, p2, . . . , pz be the sequence such that pi is the starting position of
factor Ti in T . The same occurrence of P in T can cover up to m boundaries
between two factors, thus we organize the computation as follows. We consider
every possible way to place the rightmost boundary between two factors in P , i.e.
every possible split of P into two parts P [1..k − 1] and P [k..m] for k ∈ [1..m],
such that P [k..m] is either a factor or a proper prefix of a factor. For every
such k, we use four-sided range reporting queries to list all the occurrences of P
in T that conform to this split, as described in Sect. 2.2. The four-sided range
reporting data structure represents the mapping between the lexicographic rank
of a factor W among all the distinct factors of T , and the lexicographic ranks of
all the reversed prefixes T [1..pi − 1] such that Ti = W , among all the reversed
prefixes of T that end at the last position of a factor. As described in Sect. 2.2,
this data structure takes O(z) words of space.

We encode sequence p1, p2, . . . , pz implicitly, as follows: we use a bitvector
last[1..n] such that last[i] = 1 iff SAT [i] = n − pj + 2 for some j ∈ [1..z],
i.e. iff SAT [i] is the last position of a factor. We represent such bitvector as a
predecessor data structure with partial ranks, using O(z) words of space [19].
Then, we build the data structure described in Lemma2, where V ′ is the set of
loci in STT of all factors of T . This data structure takes O(z) words of space, and
together with last, RLBWTT and RLBWTT , it is the output of our construction.

Given a pattern P ∈ [0..σ]m, we first perform a backward search in RLBWTT

to determine the number of occurrences of P in T : if this number is zero, we stop.
During this backward search, we store in a table the interval [ik..jk] of P [k..m]
in BWTT for every k ∈ [2..m]. Then, we compute the interval [i′k−1..j

′
k−1] of

P [1..k − 1] in BWTT for every k ∈ [2..m], using backward search in RLBWTT : if
rank1(last, j′

k−1)−rank1(last, i′k−1−1) = 0, then P [1..k−1] never ends at the
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last position of a factor, and we can discard this value of k. Otherwise, we convert
[i′k−1..j

′
k−1] to the interval [rank1(last, i′k−1) + 1..rank1(last, j′

k−1)] of all the
reversed prefixes of T that end at the last position of a factor. Rank operations
on last can be implemented in O(log log n) time using predecessor queries. We
get the lexicographic interval of P [k..m] in the list of all the distinct factors of T
using operation I(P [k..m], V ′), in O(log z) time. We use such intervals to query
the four-sided range reporting data structure. ��
The algorithm described in Lemma 3 can be engineered in a number of ways
in practice. Here we just apply it to the LZ factorization of T to find all the
primary occurrences of P in T , and we use the strategy described in Sect. 2.2 to
compute secondary occurrences, obtaining the key result of this section:

Theorem 3. Let T ∈ [1..σ]n−1# be a string, and let T = T1T2 . . . Tz be its LZ
factorization. There is a data structure that takes O(z + rT + rT ) words of space
and that reports all the pocc primary occurrences and all the socc secondary
occurrences of a pattern P ∈ [0..σ]m in O(m(log log n + log z) + pocc logε z +
socc log log n) time.

4 Combining Runs in BWT and Maximal Repeats

An alternative way to compute all the occurrences of a pattern in a string T
consists in combining RLBWTT with CDAWGT , using an amount of space pro-
portional to the number of right extensions of the maximal repeats of T :

Theorem 4. Let T ∈ [1..σ]n−1# be a string. There is a data structure that
takes O(eT ) words of space (or alternatively, O(e�

T ) words of space) and that
reports all the occ occurrences of a pattern P ∈ [0..σ]m in O(m log log n + occ)
time.

Proof. We build RLBWTT and CDAWGT . For every node v in the CDAWG, we
store |�(v)| in a variable v.length. Recall that an arc (v, w) of the CDAWG
means that maximal repeat �(w) can be obtained by extending maximal repeat
�(v) to the right and to the left. Thus, for every arc γ = (v, w) of CDAWGT , we
store the first character of �(γ) in a variable γ.char, and we store the length of
the right extension implied by γ in a variable γ.right. The length γ.left of the
left extension implied by γ can be computed by w.length−v.length−γ.right.
Clearly arcs of CDAWGT that correspond to edges of STT in set Er

T induce no left
extension. For every arc of CDAWGT that connects a maximal repeat W to the
sink, we store just γ.char and the starting position γ.pos of string W ·γ.char in
T . The total space used by the CDAWG is clearly O(e) words, and by Theorem1
the space used by RLBWTT is O(|Fr

T |) words. An alternative construction could
use CDAWGT and RLBWTT .

We use the RLBWT to count the number of occurrences of P in T in
O(m log log n) time: if this number is greater than zero, we use the CDAWG
to report all the occ occurrences of P in T in O(occ) time, using the technique
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sketched in [5]. Specifically, since we know that P occurs in T , we perform a
blind search for P in the CDAWG, as is typically done with Patricia trees. We
keep a variable i, initialized to zero, that stores the length of the prefix of P
that we have matched so far, and we keep a variable j, initialized to one, that
stores the starting position of P inside the last maximal repeat encountered dur-
ing the search. For every node v in the CDAWG, we choose the arc γ such that
γ.char = P [i+1] in constant time using hashing, we increment i by γ.right, and
we increment j by γ.left. If the search leads to the sink by an arc γ, we report
γ.pos+ j and we stop. If the search leads to a node v that is associated with the
maximal repeat W , we determine all the occurrences of W in T by performing a
depth-first traversal of all the nodes in the CDAWG that are reachable from v,
updating variables i and j as described above, and reporting γ.pos+ j for every
arc γ that leads to the sink. The total number of nodes and arcs reachable from
v is clearly O(occ). ��
The combination of CDAWGT and RLBWTT can also be used to implement a
repetition-aware representation of STT . We will apply the following property to
support operations on STT :

Property 1. A maximal repeat W = [1..σ]m of T is the equivalence class of all
the right-maximal strings {W [1..m], . . . ,W [k..m]} such that W [k +1..m] is left-
maximal, and W [i..m] is not left-maximal for all i ∈ [2..k]. Equivalently, the node
v′ of CDAWGT with �(v′) = W is the equivalence class of the nodes {v1, . . . , vk}
of STT such that �(vi) = W [i..m] for all i ∈ [1..k], and such that vk, vk−1, . . . , v1
is a maximal unary path of Weiner links.

Thus, the set of right-maximal strings that belong to the equivalence class of a
maximal repeat can be represented by a single integer k, and a right-maximal
string can be identified by the maximal repeat W it belongs to, and by the
length of the corresponding suffix of W . In BWTT , the right-maximal strings in
the same equivalence class enjoy the following additional properties:

Property 2. Let {W [1..m], . . . ,W [k..m]} be the right-maximal strings that
belong to the equivalence class of maximal repeat W ∈ [1..σ]m, and let
range(W [i..m]) = [pi..qi] for i ∈ [1..k]. Then:

1. |qi − pi + 1| = |qj − pj + 1| for all i and j in [1..k].
2. BWTT [pi..qi] = W [i − 1]qi−pi+1 for i ∈ [2..k]. Conversely, BWTT [p1..q1] con-

tains at least two distinct characters.
3. pi−1 = C[c] + rankc(BWTT , pi) and qi−1 = pi−1 + qi − pi for i ∈ [2..k], where

c = W [i − 1] = BWTT [pi].
4. pi+1 = selectc(BWTT , pi − C[c]) and qi+1 = pi+1 + qi − pi for i ∈ [1..k − 1],

where c = W [i] is the character that satisfies C[c] < pi ≤ C[c + 1]. This can
be computed in O(log log n) time using a predecessor data structure that uses
O(σ) words of space [19].

5. Let c ∈ [0..σ], and let range(W [i..m]c) = [xi..yi] for i ∈ [1..k]. Then, xi =
pi + x1 − p1 and yi = pi + y1 − p1.
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Table 1. Time complexities of two representations of STT : with intervals in BWTT

(row 1) and without intervals in BWTT (row 2).

stringDepth isAncestor parent child suffixLink weinerLink edgeChar nLeaves

locateLeaf nextSibling firstChild

1 O(1) O(1) O(log log n) O(1) O(log log n) O(log log n) O(log log n) O(1)

2 O(1) O(log log n) O(1) O(1)

The final property we will exploit relates the equivalence class of a maximal
repeat to the equivalence classes of its in-neighbors in the CDAWG:

Property 3. Let w be a node in CDAWGT with �(w) = W ∈ [1..σ]m, and let
Sw = {W [1..m], . . . , W [k..m]} be the right-maximal strings that belong to
the equivalence class of node w. Let {v1, . . . , vt} be the in-neighbors of w in
CDAWGT , and let {V 1, . . . , V t} be their labels. Then, Sw is partitioned into t
disjoint sets S1

w, . . . ,St
w such that Si

w = {W [xi +1..m],W [xi +2..m], . . . , W [xi +
|Svi |..m]}, and the right-maximal string V i[p..|V i|] labels the parent of the locus
of the right-maximal string W [xi + p..m] in STT .

Proof. It is clear that the parent in STT of every right-maximal string in the
equivalence class of node w belongs to the equivalence class of an in-neighbor of
w: we focus here just on showing that the in-neighbors of w induce a partition on
the equivalence class of w. Assume that the character that labels arc γ = (vi, w)
in the CDAWG is c. Since arc γ exists, we can factorize W as XiV iY i, where
Y i[1] = c, and we know that no prefix of V iY i longer than V i is right-maximal,
and that no suffix of W longer than |V iY i| is left-maximal. Consider any suf-
fix V i[p..|V i|] of V i that belongs to the equivalence class of V i: if p > 1, then
W [|Xi|+p..m] is not left-maximal, thus W [|Xi|+p..m] belongs to the equivalence
class of W . Its prefix V i[p..|V i|] is right-maximal, and no longer prefix is right-
maximal. Indeed, assume that string V i[p..|V i|]Zi is right-maximal for some
prefix Zi of Y i. Since V i[p..|V i|] is not left-maximal, then string V i[p..|V i|]Zi

is not left-maximal either, and this implies that V iZi is right-maximal, contra-
dicting the hypothesis. Thus, string V i[p..|V i|] labels the parent of the locus of
string W [|Xi| + p..m] in STT . If p = 1 and V iY i is not left-maximal, the same
argument applies. If V iY i is left-maximal, then W = V iY i, and since no right-
maximal prefix of W longer than V i exists, we have that V i labels the parent of
the locus of W in STT . ��
Combining Properties 1, 2 and 3, we obtain the following results:

Theorem 5. Let T ∈ [1..σ]n−1# be a string. There are two implementations of
STT that take O(eT + e�

T ) words of space each, and that support the operations
in Table 1 with the specified time complexities.

Proof. We build RLBWTT and CDAWGT , and we annotate the latter as described
in Theorem 4, with the only difference that arcs that connect a maximal repeat
to the sink are annotated with character and length like all other arcs. We store
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in every node v of the CDAWG the number v.size of right-maximal strings that
belong to its equivalence class, the interval [v.first..v.last] of �(v) in BWTT ,
a linear-space predecessor data structure [19] on the boundaries induced on the
equivalence class of v by its in-neighbors (see Observation 3), and pointers to
the in-neighbor that corresponds to the interval associated with each boundary.
Finally, we add to the CDAWG all suffix links (v, w) from STT such that both
v and w are maximal repeats, and the corresponding explicit Weiner links.

We represent a node v of STT as a tuple id(v) = (v′, |�(v)|, i, j), where v′ is the
node in CDAWGT that corresponds to the equivalence class of v, and [i..j] is the
interval of �(v) in BWTT . Thus, operation stringDepth can be implemented in
constant time, and if v is a leaf, the second component of id(v) is its starting posi-
tion in T . Operation isAncestor can be implemented by testing the containment
of the corresponding intervals in BWTT . To implement operation suffixLink,
we first check whether |�(v)| = v′.length − v′.size + 1: if so, we take the suffix
link (v′, w′) from v′ and we return (w′, w′.length, w′.first, w′.last). Otherwise,
we return (v′, |�(v)| − 1, i′, j′), where [i′..j′] is computed as described in point 2 of
Property 2. To implement weinerLink for some character c, we first check whether
|�(v)| = v′.length: if so, we take the Weiner link (v′, w′) from v′ labeled by char-
acter c (if any), and we return (w′, w′.length − w′.size + 1, i′, j′), where [i′..j′]
is computed by taking a backward step with character c from [v′.first..v′.last].
Otherwise, we check whether BWTT [i] = c: if so, we return (v′, |�(v)| + 1, i′, j′),
where [i′..j′] is computed as described in point 2 of Property 2.

To implement child for some character c, we follow the arc γ = (v′, w′) in
the CDAWG labeled by c (see Observation 3), and we return tuple (w′, |�(v)| +
γ.right, i′, j′), where [i′..j′] is computed as described in point 2 of Property 2.
To implement parent we exploit Property 2, i.e. we determine the partition of
the equivalence class of v′ that contains v by searching the predecessor of value
|�(v)| in the set of boundaries of v′: this can be done in O(log log n) time [19].
Let γ = (u′, v′) be the arc that connects to v′ the in-neighbor u′ associated with
the partition that contains v: we return tuple (u′, |�(v)| − γ.right, i′, j′), where
i′ = i − v′.first+ u′.first and j′ = j + u′.last− v′.last as described in point
2 of Property 2. Operation nextSibling can be implemented in the same way.

We read the label of an edge γ of STT in O(log log n) time per character (oper-
ation edgeChar), by storing RLBWTT and the interval in BWTT of the reverse of
the maximal repeat that corresponds to every node of the CDAWG. By removing
from id(v) the interval of �(v) in BWTT , we can implement stringDepth, child,
firstChild and suffixLink in constant time, and parent and nextSibling in
O(log log n) time. ��
Corollary 1. Let T ∈ [1..σ]n−1# be a string. There is an implementation of
STT that takes O(eT + e�

T ) words of space, that computes the matching statistics
of a pattern S ∈ [1..σ]m with respect to T in O(m log log n) time, and that can
be traversed in O(n log log n) time and in a constant number of words of space.

Proof. We combine the implementation in the first row of Table 1 with the folklore
algorithm for matching statistics, that issues suffixLink and child operations
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on STT , and that reads the label of some edges of STT . For traversal, we combine
the implementation in the second row of Table 1 with the folklore algorithm that
issues just firstChild, parent and nextSibling operations. ��
By storing RLBWTT in addition to RLBWTT , and by adding to id(v) the interval
of �(v) in BWTT , we can also implement a bidirectional index on T like those
described in [2], that supports the left and right extension of a string with any
character in O(log log n) time and that takes O(e + e�) words of space.

References

1. Arroyuelo, D., Navarro, G., Sadakane, K.: Stronger Lempel-Ziv based compressed
text indexing. Algorithmica 62(1–2), 54–101 (2012)
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6. Crochemore, M., Vérin, R.: Direct construction of compact directed acyclic word
graphs. In: Apostolico, A., Hein, J. (eds.) Proceedings of CPM. LNCS, vol. 1264,
pp. 116–129. Springer, Heidelberg (1997)

7. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

8. P. Ferragina and G. Navarro. Pizza&Chili repetitive corpus. http://pizzachili.dcc.
uchile.cl/repcorpus.html. Accessed on 25 January 2015
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Abstract. Recently, Marcus et al. (Bioinformatics 2014) proposed to
use a compressed de Bruijn graph of maximal exact matches to describe
the relationship between the genomes of many individuals/strains of the
same or closely related species. They devised an O(n log g) time algo-
rithm called splitMEM that constructs this graph directly (i.e., without
using the uncompressed de Bruijn graph) based on a suffix tree, where
n is the total length of the genomes and g is the length of the longest
genome. In this paper, we present an algorithm that outperforms their
algorithm in theory and in practice. More precisely, our algorithm has
a better worst-case time complexity of O(n log σ), where σ is the size
of the alphabet (σ = 4 for DNA). Moreover, experiments show that it
is much faster than splitMEM while using only a fraction of the space
required by splitMEM.

1 Introduction

Today, next generation sequencers produce vast amounts of DNA sequence infor-
mation and it is often the case that multiple genomes of the same or closely
related species are available. An example is the 1000 Genomes Project, which
started 2008. Its goal was to sequence the genomes of at least 1000 humans
from all over the world and to produce a catalog of all variations (SNPs, indels,
etc.) in the human population. The genomic sequences together with this cata-
log is called the “pan-genome” of the population. There are several approaches
that try to capture variations between many individuals/strains in a popula-
tion graph; see e.g. [11,20,22]. These works all require a multi-alignment as
input. By contrast, Marcus et al. [14] use a compressed de Bruijn graph of max-
imal exact matches (MEMs) as a graphical representation of the relationship
between genomes; see Sect. 3 for a definition of de Bruijn graphs. They describe
an O(n log g) time algorithm that directly computes the compressed de Bruijn
graph based on a suffix tree, where n is the total length of the genomes and g
is the length of the longest genome. Marcus et al. write in [14, Sect. 4]: “Future
work remains to improve splitMEM and further unify the family of sequence
indices. Although ..., most desired are techniques to reduce the space consump-
tion ...” In this paper, we present such a technique. To be more precise, we will
develop an O(n log σ) time algorithm that computes the compressed de Bruijn
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 40–51, 2015.
DOI: 10.1007/978-3-319-19929-0 4
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Fig. 1. The suffix array of the string ACTACGTACGTACG$.

graph directly based on an FM-index of the genomes, where σ is the size of the
underlying alphabet.

Closely related is the contracted de Bruijn graph introduced by Cazaux
et al. [5]. A node in the contracted de Bruijn graph is not necessarily a sub-
string of one of the genomic sequences (see the remark following Definition 3 in
[5]). Thus the contracted de Bruijn graph, which can be constructed in linear
time from the suffix tree [5], is not useful for our purposes. Nevertheless, it is
worth mentioning that Cazaux et al. write in the full version of their paper (a
technical report): “Other topics for future research include transforming com-
pressed indexes, such as a FM-index” into a contracted de Bruijn graph. Maybe
our new method can be applied to their problem as well, but we did not inves-
tigate this yet.

As discussed in [14, Sect. 1.4], techniques such as Bloom filters or succinct
representations of de Bruijn graphs cannot directly be extended to pan-genome
analysis.

2 Preliminaries

Let Σ be an ordered alphabet of size σ whose smallest element is the sentinel
character $. In the following, S is a string of length n on Σ having the sen-
tinel character at the end (and nowhere else). In pan-genome analysis, S is the
concatenation of multiple genomic sequences, where the different sequences are
separated by special symbols (in practice, we use one separator symbol and treat
the different occurrences of it as if they were different characters; see Sect. 5).
For 1 ≤ i ≤ n, S[i] denotes the character at position i in S. For i ≤ j, S[i..j]
denotes the substring of S starting with the character at position i and ending
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with the character at position j. Furthermore, Si denotes the i-th suffix S[i..n]
of S. The suffix array SA of the string S is an array of integers in the range 1 to
n specifying the lexicographic ordering of the n suffixes of S, that is, it satisfies
SSA[1] < SSA[2] < · · · < SSA[n]; see Fig. 1 for an example. A suffix array can be
constructed in linear time; see e.g. the overview article [19]. For every substring
ω of S, the ω-interval is the suffix array interval [i..j] so that ω is a prefix of
SSA[k] if and only if i ≤ k ≤ j.

The Burrows-Wheeler transform [4] converts S into the string BWT[1..n]
defined by BWT[i] = S[SA[i] − 1] for all i with SA[i] �= 1 and BWT[i] = $
otherwise; see Fig. 1. Several semi-external and external memory algorithms are
known that construct the BWT directly (i.e., without constructing the suffix
array); see e.g. [3,6,13,18]. The wavelet tree [10] of the BWT supports one back-
ward search step in O(log σ) time [7]: Given the ω-interval and c ∈ Σ, it returns
the cω-interval if cω is a substring of S (otherwise it returns an empty interval).
This crucially depends on the fact that a bit vector B can be preprocessed in lin-
ear time so that an arbitrary rank1(B, i) query (asks for the number of ones in B
up to and including position i) can be answered in constant time [12]. Backward
search can be generalized on the wavelet tree as follows: Given an ω-interval
[lb..rb], a slight modification of the procedure getIntervals([lb..rb]) described in
[2] returns the list [(c, [i..j]) | cω is a substring of S and [i..j] is the cω-interval],
where the first component of an element (c, [i..j]) must be a character. The
worst-case time complexity of the procedure getIntervals is O(z + z log(σ/z)),
where z is the number of elements in the output list; see [8, Lemma 3].

The suffix array SA is often enhanced with the so-called LCP-array containing
the lengths of longest common prefixes between consecutive suffixes in SA; see
Fig. 1. Formally, the LCP-array is an array so that LCP[1] = −1 = LCP[n+1] and
LCP[i] = |lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the longest
common prefix between two strings u and v. The LCP-array can be computed
in linear time from the suffix array and its inverse, but it is also possible to
construct it directly from the wavelet tree of the BWT in O(n log σ) time with
the help of the procedure getIntervals [2].

A substring ω of S is a repeat if it occurs at least twice in S. Let ω be a
repeat of length � and let [i..j] be the ω-interval. The repeat ω is left-maximal
if |{BWT[x] | i ≤ x ≤ j}| ≥ 2, i.e., the set {S[SA[x] − 1] | i ≤ x ≤ j}
of all characters that precede at least one of the suffixes SSA[i], . . . , SSA[j] is
not singleton (where S[0] := $). Analogously, the repeat ω is right-maximal if
|{S[SA[x] + �] | i ≤ x ≤ j}| ≥ 2.

A detailed explanation of the techniques used here can be found in [16].

3 Construction of a Compressed de Bruijn Graph

Given S and k > 0, the de Bruijn graph representation of S contains a node for
each distinct length k substring of S, called a k-mer. Two nodes u and v are
connected by a directed edge (u, v) if u = S[i..i + k − 1] and v = S[i + 1..i + k];
see Fig. 2 for an example. Clearly, the graph contains at most n nodes and n
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Fig. 2. The de Bruijn graph for k = 3 and the string ACTACGTACGTACG$ is shown
on the left, while its compressed counterpart is shown on the right.

edges. By construction, adjacent nodes will overlap by k − 1 characters, and
the graph can include multiple edges connecting the same pair of nodes or self-
loops representing overlapping repeats. For every node, except for the start node
(containing the first k characters of S) and the stop node (containing the last k
characters of S), the in-degree coincides with the out-degree. A de Bruijn graph
can be “compressed” by merging non-branching chains of nodes into a single
node with a longer string. More precisely, if node u is the only predecessor of
node v and v is the only successor of u (but there may be multiple edges (u, v)),
then u and v can be merged into a single node that has the predecessors of u and
the successors of v. After maximally compressing the graph, every node (apart
from possibly the start node) has at least two different predecessors or its single
predecessor has at least two different successors and every node (apart from the
stop node) has at least two different successors or its single successor has at least
two different predecessors; see Fig. 2. Of course, the compressed de Bruijn graph
can be built from its uncompressed counterpart (a much larger graph), but this
is disadvantageous because of the huge space consumption. That’s why we build
it directly from an FM-index (the wavelet tree of the BWT) of S, using Lemma 1
(the simple proof is omitted).

Lemma 1. Let ω be a node in the compressed de Bruijn graph. If ω is not the
start node, then it has at least two different predecessors if and only if the length
k prefix of ω is a left-maximal repeat. It has at least two different successors if
and only if the length k suffix of ω is a right-maximal repeat.

The general idea behind our algorithm is as follows. Compute all right-maximal
k-mers. For each such k-mer v, compute all cv-intervals, where c ∈ Σ. Then, for
each u = cv, compute all bu-intervals, where b ∈ Σ, etc. In other words, we start
with all right-maximal k-mers and extend them as long as possible (and in all
possible ways with the procedure getIntervals), character by character, to the
left. According to Lemma 1, the left-extension of a string ω must stop if (i) the
length k prefix of ω is a left-maximal repeat (this is the case if the procedure
getIntervals applied to the ω-interval returns a non-singleton list). It must also
stop if (ii) the length k prefix v of cω is a right-maximal repeat for some c ∈ Σ.
This is because by Lemma 1 there is a node uv, u ∈ Σ∗, in the compressed de
Bruijn graph with at least two different successors (the length k suffix v of uv is
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a right-maximal repeat). Consequently, there must be a directed edge (uv, ω) in
the compressed de Bruijn graph. In the following, we will explain the different
phases of the algorithm in detail.

First, we compute all right-maximal k-mers and their suffix array intervals.
Moreover, we number them in lexicographic order. This number will serve as a
unique identifier. Let u be a right-maximal k-mer and consider the u-interval
[lb..rb] in the suffix array. Note that (1) LCP[lb] < k and (2) LCP[rb + 1] < k.
Since u is right-maximal, u is the longest common prefix of all suffixes in the
interval [lb..rb]. This implies (3) LCP[i] ≥ k for all i with lb + 1 ≤ i ≤ rb and
(4) LCP[i] = k for at least one i with lb + 1 ≤ i ≤ rb (in the terminology
of Abouelhoda et al. [1], [lb..rb] is an lcp-interval of lcp-value k). With this
knowledge, it is not difficult to verify that lines 7 to 18 (ignore lines 11 to
12 for a moment) of Algorithm 1 compute all suffix array intervals of right-
maximal k-mers, including their identifiers. Furthermore, on lines 10 and 15
the boundaries of the k-mer intervals are marked by setting the entries of a
bit vector B at these positions to 1 (the purpose of the bit vector B will be
explained below); see Fig. 1. We would like to stress, however, that all right-
maximal k-mers can be determined without the entire LCP-array. In order to
verify whether or not an interval satisfies properties (1)–(4), it is sufficient to
compute all entries ≤ k in the LCP-array (the others have a value > k). Since
the algorithm presented in [2] calculates entries in the LCP-array in ascending
order, we use it for our purpose; see [24] for related work. We initialize an array
L with values 2 and set L[1] = 0 and L[n + 1] = 0. Two bits are enough to
encode the case “< k” by 0, the case “= k” by 1, and the case “> k” by 2 (so
initially all entries in the LCP-array are marked as being > k, except for L[1]
and L[n + 1], which are marked as being < k). Then, for � from 0 to k − 1, the
algorithm of Beller et al. [2] calculates all indices p with entries LCP[p] = � and
sets L[p] = 0. Furthermore, it continues to calculates all indices q with entries
LCP[q] = k and sets L[q] = 1. Now the array L contains all the information that
is needed to compute right-maximal k-mers. For each such k-mer u, Algorithm 1
inserts a node node = (id, lb, rb, len) into the compressed de Bruijn graph G
(line 11), where id is its identifier (lexicographic rank), [lb..rb] is its suffix array
interval, and len = k is its length. Furthermore, on line 12, a pointer node to the
node (id, lb, rb, len) is added to an initially empty queue Q (one could also use
another data structure like a stack to administer these pointers). The identifier
node.id of a node will never change, but its attributes node.lb, node.rb, and
node.len will change when a left-extension is possible. As long as the queue Q
is not empty, the algorithm removes a pointer node from Q and in a repeat-
loop computes list = getIntervals([node.lb..node.rb]). During the repeat-loop,
the interval [node.lb..node.rb] is the suffix array interval of some string ω of
length node.len. In the body of the repeat-loop, a flag extendable is set to false.
The procedure call getIntervals([node.lb..node.rb]) then returns the list list of
all cω-intervals. At this point, the algorithm tests whether or not the length k
prefix of cω is a right-maximal repeat. It is not difficult to see that the length
k prefix of cω is a right-maximal repeat if and only if the cω-interval [i..j] is a
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subinterval of a right-maximal k-mer interval. Here, the bit vector B comes into
play. At the beginning of Algorithm1, all suffix array intervals of right-maximal
k-mers have been computed and their boundaries have been marked in B. It is
crucial to note that these intervals are disjoint. Thus, the cω-interval [i..j] is not
a subinterval of a right-maximal k-mer interval if and only if rank1(B, i) is even
and B[i] = 0 (the proof of this fact is omitted due to lack of space). Now, the
algorithm proceeds by case analysis:

1. If the length k prefix of cω is a right-maximal repeat, there must be a node
v that ends with the length k prefix of cω (note that cω[1..k] and ω have
a suffix-prefix-overlap of k − 1 characters), and this node v will be detected
by a computation that starts with the k-mer cω[1..k]. Consequently, an edge
(v.id, node.id) is added to the compressed de Bruijn graph, and the compu-
tation stops here. If the length k prefix of cω is not a right-maximal repeat,
one of the following two cases occurs:

2. If list contains just one element (c, [i..j]), then ω is not left maximal. In this
case, the algorithms sets extendable to true, node.lb to i, node.rb to j, and
increments node.len by one. Now node represents the cω-interval [i..j] and
the repeat-loop continues with this interval.

3. Otherwise, ω is left maximal. In this case, the attributes of node will not
change any more. So a node newNode = (counter, i, j, k) is inserted into G.
For the correctness of the algorithm, it is important to note that the interval
[i..j] is the cω[1..k]-interval (the proof of this fact is omitted due to lack of
space). An edge (counter, node.id) is added to G (note that cω[1..k] and ω
have a suffix-prefix-overlap of k − 1 characters) and the pointer newNode is
added to Q.

As an example, we apply Algorithm 1 to k = 3 and the LCP-array and the BWT
of the string ACTACGTACGTACG$; see Fig. 1. There is only one right maximal k-
mer, ACG, so a node (id, lb, rb, len) = (1, 2, 4, 3) is inserted to G on line 11 and a
pointer to it is added to the queue Q. Furthermore, the stop node (2, 1, 1, 1) of G
is inserted on line 20 and a pointer to it is enqueued to Q. In the while-loop, the
pointer to node (1, 2, 4, 3) is dequeued and the procedure call getIntervals([2..4])
returns a list that contains just one interval, the TACG-interval [13..15]. Since
rank1(B, 13) = 2 is even and B[13] = 0, Case 2 applies. So extendable is set to
true and node 1 is modified to (1, 13, 15, 4). In the next iteration of the repeat-
loop, getIntervals([13..15]) returns the list [(C, [9..9]), (G, [11..12])], where [9..9]
is the CTACG-interval and [11..12] is the GTACG-interval. It is readily verified that
Case 3 applies in both cases, so a node (3, 9, 9, 3) corresponding to the CTA-
interval and a node (4, 11, 12, 3) corresponding to the GTA-interval is added to G
and pointers to them are added to Q. Furthermore, an edge (3, 1) and two edges
(4, 1) (the multiplicity is 2) are added to G. Next, the pointer to node (2, 1, 1, 1) is
dequeued and the procedure call getIntervals([1..1]) returns a list that contains
just one interval, the G$-interval [10..10]. Case 2 applies, so node 2 is modified
to (2, 10, 10, 2). In the second iteration of the repeat-loop, getIntervals([10..10])
returns the CG$-interval [6..6]. Again Case 2 applies and node 2 is modified
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Algorithm 1. FM-index based construction of a compressed de Bruijn graph
1: function create-compressed-graph(k, LCP,BWT)
2: open ← false
3: counter ← 1
4: create an empty graph G
5: create an empty queue Q
6: initialize a bit vector B of length n with zeros
7: for i ← 1 to n do � Note that LCP ends with −1
8: if LCP[i] < k and open then
9: open ← false

10: B[i − 1] ← 1
11: insert a node node = (counter, lb, i − 1, k) into G
12: enqueue(Q, node) � Add a pointer to node (counter, lb, i − 1, k)
13: counter ← counter + 1
14: else if LCP[i] = k and not open then
15: B[lb] ← 1
16: open ← true

17: if LCP[i] < k then
18: lb ← i

19: process bit vector B so that rank1 queries can be answered in constant time
20: insert a node stopNode = (counter, 1, 1, 1) into G
21: enqueue(Q, stopNode) � Add a pointer to the stop node
22: counter ← counter + 1
23: while Q is not empty do
24: node ← dequeue(Q)
25: repeat
26: extendable ← false
27: list ← getIntervals([node.lb..node.rb])
28: for each (c, [i..j]) in list do
29: ones ← rank1(B, i)
30: if ones is even and B[i] = 0 then
31: number ← ⊥
32: else
33: number ← (ones + 1)/2

34: if number �= ⊥ then � Case 1
35: add an edge (number, node.id) with multiplicity j − i + 1 to G
36: else if c �= $ then
37: if list contains just one element then � Case 2
38: extendable ← true
39: node.len ← node.len + 1
40: node.lb ← i
41: node.rb ← j
42: else � Case 3
43: insert a node newNode = (counter, i, j, k) into G
44: add edge (counter, node.id) with multiplicity j − i + 1 to G
45: enqueue(Q, newNode) � Add a pointer to (counter, i, j, k)
46: counter ← counter + 1

47: until not extendable
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Algorithm 2. Adding the sorted lists of positions and edges to the nodes.
1: function create-compressed-graph2(G)
2: initialize an array A of length n with ⊥
3: m ← number of nodes in G
4: for i ← 1 to m do
5: node ← node with identifier i
6: for j ← node.lb to node.rb do
7: A[SA[j]] ← i

8: id ← A[1]
9: node ← node with identifier id � start node

10: append(node.posList, 1)
11: for j ← 2 to n do
12: i ← A[j]
13: if i �= ⊥ then
14: append(node.adjList, i) � add the edge (node.id, i)
15: node ← node with identifier i
16: append(node.posList, j) � add j at the back of node.posList

to (2, 6, 6, 3). In the third iteration of the repeat-loop, getIntervals([6..6]) returns
the ACG$-interval [2..2]. This time, Case 1 applies because number gets the
value 1. Consequently, an edge (1, 2) is added to G. The computation continues
until the queue Q is empty; the final compressed de Bruijn graph is shown in
Fig. 2.

We claim that Algorithm 1 has a worst-case time complexity of O(n log σ).
This can be proven by considering the three mutually distinct cases 1–3. In
Cases 1 and 3, an edge is added to G. Since G contains at most n edges, this
implies that Cases 1 and 3 can occur at most n times. Case 2 can also occur at
most n times because there are at most n left-extensions. In summary, at most
2n intervals are generated by the procedure getIntervals. Since this procedure
takes O(log σ) time for each generated interval, the claim follows.

4 A Different Representation of the Graph

Algorithm 1 computes a compressed de Bruijn graph, in which a node is repre-
sented by the quadruple (id, lb, rb, len), where [lb..rb] is the suffix array interval
and len is the length of the corresponding string ω. Marcus et al. [14], store
the positions SA[lb], . . . ,SA[rb] at which ω occurs in S (together with the cor-
responding outgoing edges) in ascending order. To model this, a node now has
five components (id, lb, rb, len, posList, adjList), where posList is the sorted list
of positions and adjList is the corresponding adjacency list (depending on the
application, redundant information should be removed). In this way, the walk
through the graph G that gives S is induced by the adjacency lists (if node v
is visited for the i-th time, then its successor is the node that can be found at
position i in the adjacency list of v). The representation suggested in [14] can
be obtained in three different ways as follows:
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Fig. 3. The array A.

Fig. 4. Representation of the graph G.

A1 Use a comparison based sorting algorithm as in [14].
A2 Use a non-comparison based sorting algorithm; see Algorithm 2.
A3 Use a backward search to track the suffixes of S in G.

Marcus et al. [14] can afford a comparison-based sorting algorithm because
their core algorithm already has a worst-case time complexity of O(n log n). If
we use Algorithm 2 instead, the sort takes only O(n) time. Algorithm 2 applied
to the compressed de Bruijn graph of Fig. 2 first yields the array depicted in
Fig. 3 and then scans this array from left to right. The identifier i of the start
node is A[1], so 1 is added to its posList. Let j be the second position with
A[j] �= ⊥ that is encountered during the scan. The successor of the start node is
the node i = A[j], so the algorithm appends i to its (empty) adjList, etc. Upon
termination, we have the situation depicted in Fig. 4.

Possibility 3, called Algorithm 3 in what follows, takes O(n log σ) time but
it does not need the suffix array! This is an important advantage over the other
algorithms because memory-usage is the bottleneck in pan-genome analysis. In
fact, Algorithm 3 can be obtained by a modification of Algorithm1. By means
of the bit vector B, it is possible to detect (from right to left because a backward
search is used) every node—together with its identifier—that ends with a right-
maximal k-mer. The remaining difficulty is to modify lines 7 to 18 in such a
way that every other node—together with its identifier—can be detected in a
similar fashion. For space reasons, a detailed description of Algorithm 3 must be
omitted here. It will be presented in the full version of this paper.

5 Implementation Details and Experimental Results

In pan-genome analysis, S = S1#S2# . . . Sm−1#Sm$ is the concatenation of
multiple genomic sequences S1, . . . , Sm, separated by a special symbol #. To
avoid that # may be part of a repeat, we treat (in contrast to splitMEM) the
different occurrences of # as if they were different characters. Assuming that #
is the second smallest character, this can be achieved as follows. We have seen
that all right-maximal k-mers can be determined without the entire LCP-array
if the algorithm in [2] is used. If there are m − 1 occurrences of # in total and
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Table 1. The first column describes the input file, e.g. 40 E.coli (199) means the
first forty E.coli genomes listed in the supplementary material of [14] (containing 199
million base pairs). The 7 genomes are human genomes and chr1 denotes their first
chromosome. The second column contains the values of k and, in parentheses, the size
of the compressed de Bruijn graph in bytes per base pair; a minus indicates that only
the construction of the needed data structures was measured (which does not depend
on k). The remaining columns show the runtimes in seconds and, in parentheses, the
maximum main memory usage in bytes per base pair (including the construction).
A minus indicates that the respective algorithm was not able to solve its task on our
machine equipped with 128 GB of RAM.

file (Mbp) k (size) A1 A2 A3 splitMEM

40 E.coli - 38 (5.00) 38 (5.00) 127 (1.32) 94 (315)

(199) 25 (1.50) 55 (6.06) 57 (9.18) 190 (2.87) 2,170 (572)

100 (0.65) 58 (5.00) 65 (7.89) 207 (1.63) 1,684 (572)

1000 (0.06) 76 (5.00) 81 (7.08) 190 (1.49) 1,671 (572)

62 E.coli - 64 (5.00) 64 (5.00) 201 (1.24) 134 (316)

(310) 25 (1.57) 86 (6.06) 93 (9.38) 295 (2.83) -

100 (0.68) 92 (5.00) 105 (8.19) 331 (1.68) -

1000 (0.06) 134 (5.00) 123 (7.33) 305 (1.53) -

7 chr1 - 399 (5.00) 399 (5.00) 1,163 (1.24) -

(1,736) 25 (3.10) 601 (7.70) 646 (11.44) 1,910 (4.45) -

100 (1.59) 549 (5.88) 598 (9.70) 1,628 (2.76) -

1000 (1.50) 606 (5.86) 621 (9.57) 1,655 (2.66) -

7 genomes - - - 22,038 (1.24) -

(21,201) 25 (3.34) - - 33,247 (4.84) -

100 (1.16) - - 29,641 (2.22) -

1000 (1.01) - - 29,962 (2.04) -

this algorithm starts with m − 1 singleton intervals [i..i], 2 ≤ i ≤ m, instead of
the #-interval [2..m], then the different occurrences of # are treated as if they
were different characters.

We implemented the three algorithms A1–A3 using Simon Gog’s library sdsl
[9]. Software and test data are available at http://www.uni-ulm.de/in/theo/
research/seqana.html. Both A1 and A2 require at least n log n bits because the
suffix array is needed in main memory during the conversion of nodes of the form
(id, lb, rb, len) to nodes with the components (id, lb, rb, len, posList, adjList).
Hence Yuta Mori’s algorithm divsufsort can be used to construct the suffix array
without increasing the memory requirements. Since A3 does not need the suffix
array, we used a variant of the semi-external algorithm described in [3] to con-
struct the BWT. The experiments were conducted on a 64 bit Ubuntu 14.04.1
LTS (Kernel 3.13) system equipped with two ten-core Intel Xeon processors
E5-2680v2 with 2.8 GHz and 128GB of RAM (but no parallelism was used).

http://www.uni-ulm.de/in/theo/research/seqana.html
http://www.uni-ulm.de/in/theo/research/seqana.html
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All programs were compiled with g++ (version 4.8.2) using the provided make-
file. As test files we used the E.coli genomes listed in the supplementary mate-
rial of [14]. Additionally, we used 5 different assemblies of the human reference
genome (UCSC Genome Browser assembly IDs: hg16, hg17, hg18, hg19, and
hg38) as well as the maternal and paternal haplotype of individual NA12878
(Utah female) of the 1000 Genomes Project [21]. The experimental results
(Table 1) show that our algorithms are more than an order of magnitude faster
than splitMEM while using significantly less space (two orders of magnitude).

6 Future Work

Future work will focus on even more space-efficient solutions to the problem,
e.g. by using run-length encoded wavelet trees [23] (or similar compression tech-
niques) or by matching the genomic sequences against the FM-index of just
one of them [17]. Another possibility is to use index data structures that are
optimized for repetitive text collections; see e.g. [15] and the references therein.

Acknowledgments. This work was supported by the DFG (OH 53/6-1).
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Abstract. The longest common extension (LCE) of two indices in a
string is the length of the longest identical substrings starting at these
two indices. The LCE problem asks to preprocess a string into a compact
data structure that supports fast LCE queries.

In this paper we generalize the LCE problem to trees and suggest
a few applications of LCE in trees to tries and XML databases. Given
a labeled and rooted tree T of size n, the goal is to preprocess T into a
compact data structure that support the following LCE queries between
subpaths and subtrees in T . Let v1, v2, w1, and w2 be nodes of T such
that w1 and w2 are descendants of v1 and v2 respectively.

– LCEPP (v1, w1, v2, w2): (path-path LCE) return the longest common
prefix of the paths v1 � w1 and v2 � w2.

– LCEPT (v1, w1, v2): (path-tree LCE) return maximal path-path LCE
of the path v1 � w1 and any path from v2 to a descendant leaf.

– LCETT (v1, v2): (tree-tree LCE) return a maximal path-path LCE of
any pair of paths from v1 and v2 to descendant leaves.

We present the first non-trivial bounds for supporting these queries.
For LCEPP queries, we present a linear-space solution with O(log∗ n)
query time. For LCEPT queries, we present a linear-space solution with
O((log log n)2) query time, and complement this with a lower bound
showing that any path-tree LCE structure of size O(n polylog(n)) must
necessarily use Ω(log log n) time to answer queries. For LCETT queries,
we present a time-space trade-off, that given any parameter τ , 1 ≤ τ ≤ n,
leads to an O(nτ) space and O(n/τ) query-time solution. This is comple-
mented with a reduction to the set intersection problem implying that a
fast linear space solution is not likely to exist.
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1 Introduction

Given a string S, the longest common extension (LCE) of two indices is the
length of the longest identical substring starting at these indices. The longest
common extension problem (LCE problem) is to preprocess S into a compact
data structure supporting fast LCE queries. The LCE problem is a basic prim-
itive in a wide range of string matching problems such as approximate string
matching, finding exact and approximate tandem repeats, and finding palin-
dromes [2,9,15,18–20]. The classic textbook solution to the LCE problem on
strings combines a suffix tree with a nearest common ancestor (NCA) data struc-
ture leading to a linear space and constant query-time solution [14].

In this paper we study generalizations of the LCE problem to trees. The goal
is to preprocess an edge-labeled, rooted tree T to support the various LCE queries
between paths in T . Here a path starts at a node v and ends at a descendant of
v, and the LCEs are on the strings obtained by concatenating the characters on
the edges of the path from top to bottom (each edge contains a single character).
We consider path-path LCE queries between two specified paths in T , path-tree
LCE queries defined as the maximal path-path LCE of a given path and any
path starting at a given node, and tree-tree LCE queries defined as the maximal
path-path LCE between any pair of paths starting from two given nodes. We
next define these problems formally.

Tree LCE Problems. Let T be an edge-labeled, rooted tree with n nodes. We
denote the subtree rooted at a node v by T (v), and given nodes v and w such
that w is in T (v) the path going down from v to w is denoted v � w. A path
prefix of v � w is any subpath v � u such that u is on the path v � w. Two
paths v1 � w1 and v2 � w2 match if concatenating the labels of all edges in
the paths gives the same string. Given nodes v1, w1 such that w1 ∈ T (v1) and
nodes v2, w2 such that w2 ∈ T (v2) define the following queries:

– LCEPP (v1, w1, v2, w2): (path-path LCE) return the longest common matching
prefix of the paths v1 � w1 and v2 � w2.

– LCEPT (v1, w1, v2): (path-tree LCE) return the maximal path-path LCE of
the path v1 � w1 and any path from v2 to a descendant leaf.

– LCETT (v1, v2): (tree-tree LCE) return a maximal path-path LCE of any pair
of paths from v1 and v2 to descendant leaves.

We assume that the output of the queries is reported compactly as the end-
point(s) of the LCE. This allows us to report the shared path in constant time per
edge. Furthermore, we will assume w.l.o.g. that for each node v in T , all the edge-
labels to children of v are distinct. If this is not the case, then we can merge
all identical edges of a node to its children in linear time, without affecting the
result of all the above LCE queries.

We note that the direction of the paths in T is important for the LCE queries.
In the above LCE queries, the paths start from a node and go downwards. If we
instead consider paths from a node going upwards towards the root of T , the
problem is easier and can be solved in linear space and constant query-time by



54 P. Bille et al.

combining Breslauer’s suffix tree of a tree [7] with a nearest common ancestor
(NCA) data structure [16].

Our Results. First consider the LCEPP and LCEPT problems. To answer an
LCEPP (v1, w1, v2, w2) query, a straightforward solution is to traverse both paths
in parallel-top down. Similarly, to answer an LCEPT (v1, w1, v2) query we can
traverse v1 � w1 top-down while traversing the matching path from v2 (recall
that all edges to a child are distinct and hence the longest matching path is
unique). This approach leads to a linear-space solution with O(h) query-time
to both problems, where h is the height of T . Note that for worst-case trees we
have that h = Ω(n).

We show the following results. For LCEPP we give a linear O(n) space and
O(log∗ n) query-time solution. For LCEPT we give a linear O(n) space and
O((log log n)2) query-time solution, and complement this with a lower bound
stating that any LCEPT solution using O(n polylog(n)) space must necessarily
have Ω(log log n) query time.

Next consider the LCETT problem. Here, the simple top down traversal does
not work and it seems that substantially different ideas are needed. We first
show a reduction from the set-intersection problem, i.e., preprocessing a family
of sets of total size n to support disjointness queries between any pairs of sets.
In particular, the reduction implies that a fast linear space solution is not likely
assuming a widely believed conjecture on the complexity of the set-intersection
problem. We complement this result with a time-space trade-off that achieves
O(nτ) space and O(n/τ) query time for any parameter 1 ≤ τ ≤ n.

All results assume the standard word RAM model with word size Θ(log n).
We also assume the alphabet is either sorted or is linear-time sortable.

Applications. We suggest a few immediate applications of LCE in trees. Con-
sider a set of strings S = {S1, . . . , Sk} of total length

∑k
i=1 |Si| = N and let T

be the trie of S of size n, i.e., T is the labeled, rooted tree obtained by merg-
ing shared prefixes in S maximally. If we want to support LCE queries between
suffixes of strings in S, the standard approach is to build a generalized suffix
tree for the strings and combine it with an NCA data structure. This leads to
a solution using O(N) space and O(1) query time. We can instead implement
the LCE query between the suffixes of strings in S as an LCEPP on the trie T .
With our data structure for LCEPP , this leads to a solution using O(n) space
and O(log∗ n) query time. In general, n can be significantly smaller than N ,
depending on the amount of shared prefixes in S. Hence, this solution provides
a more space-efficient representation of S at the expense of a tiny increase in
query time. An LCEPT query on T corresponds to computing a maximal LCE
of a suffix of a string in S with suffixes of strings in S sharing a common prefix.
An LCETT query on T corresponds to computing a maximal LCE over pairs of
suffixes of strings in S that share a common prefix. To the best of our knowledge
these queries are novel one-to-many and many-to-many LCE queries. Since tries
are a basic data structure for storing strings we expect these queries to be of
interest in a number of applications.
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Another interesting application is using LCE in trees as a query primitive
for XML data. XML documents can be viewed as a labeled tree and typical
queries (e.g., XPath queries) involve traversing and identifying paths in the tree.
The LCE queries provide simple and natural primitives for comparing paths and
subtrees without explicit traversal. For instance, our solution for LCEPT queries
can be used to quickly identify the “best match” of a given path in a subtree.

2 Preliminaries

Given a node v and an integer d ≥ 0, the level ancestor of v at depth d, denoted
LA(v, d) is the ancestor of v at depth d. We explicitly compute and store the
depth of every node v, denoted depth(v). Given a pair of nodes v and w the
nearest common ancestor of v and w, denoted NCA(v, w), is the common ances-
tor of v and w of greatest depth. Both LA and NCA queries can be supported in
constant time with a linear space data structures, see e.g., [1,4–6,10,11,13,16].

Finally, the suffix tree of a tree [7,17,24] is the compressed trie of all suffixes
of leaf-to-root paths in T . The suffix tree of a tree uses O(n) space and can be
constructed in O(n log log n) time for general alphabets [24]. Note that the suffix
tree of a tree combined with NCA can support LCE queries in constant time for
paths going upwards. Since we consider paths going downwards, we will only use
the suffix tree to check (in constant time) if two paths are completely identical.

We also need the following three primitives. Range minimum queries: A list
of n numbers a1, a2, . . . an can be augmented with 2n + o(n) bits of additional
data in O(n) time, so that for any i ≤ j the position of the smallest number
among ai, ai+1, . . . , aj can be found in O(1) time [11]. Predecessor queries: Given
a sorted collection of n integers from [0, U), a structure of size O(n) answering
predecessor queries in O(log log U) time can be constructed in time O(n) [25],
where a predecessor query locates, for a given x, the largest y ≤ x such that
y ∈ S. Finally, Perfect hashing: given a collection S of n integers a perfect hash
table can be constructed in expected O(n) time [12], where a perfect hash table
checks, for a given x, if x ∈ S, and if so returns its associated data in O(1)
time. The last result can be made deterministic at the expense of increasing the
preprocessing time to O(n log log n) [23], but then we need one additional step
in our solution for the path-tree LCE as to ensure O(n) total construction time.

3 Difference Covers for Trees

In this section we introduce a generalization of difference covers from strings to
trees. This will be used to decrease the space of our data structures. We believe
it is of independent interest.

Lemma 1. For any tree T with n nodes and a parameter x, it is possible to
mark 2n/x nodes of T , so that for any two nodes u, v ∈ T at (possibly different)
depths at least x2, there exists d ≤ x2 such that the d-th ancestors of both u and
v are marked. Furthermore, such d can be calculated in O(1) time and the set of
marked nodes can be determined in O(n) time.
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Proof. We distinguish between two types of marked nodes. Whether a node v is
marked or not depends only on its depth. The marked nodes are determined as
follows:

Type I. For every i = 0, 1, . . . , x− 1, let Vi be the set of nodes at depth leaving
a remainder of i when divided by x. Because

⋃
i Vi = T and all V ′

i s are
disjoint, there exists r1 ∈ [0, x − 1] such that |Vr1 | ≤ n/x. Then v is a type I
marked node iff depth(v) = r1 mod x.

Type II. For every i = 0, 1, . . . , x − 1, let Vi be the set of nodes v such that
�depth(v)/x� leaves a remainder of i when divided by x. By the same argu-
ment as above, there exists r2 ∈ [0, x − 1] such that |Vr2 | ≤ n/x. Then v is
a type II marked node iff �depth(v)/x� = r2 mod x.

Now, given two nodes u and v at depths at least x2, we need to show that
there exists an appropriate d ≤ x2. Let depth(u) = t1 mod x and choose d1 =
t1 + x − r1. Then the d1-th ancestor of u is a type I marked node, because its
depth is depth(u)−d1 = depth(u)− (t1 +x−r1) = depth(u)− t1 −x+r1, which
leaves a remainder of r1 when divided by x. Our d will be of the form d1 + d2x.
Observe that regardless of the value of d2, we can be sure that the d-th ancestor
of u is a type I marked node. Let v′ be the d1-th ancestor of v, �depth(v′)/x� = t2
mod x and choose d2 = t2+x−r2. The (d2x)-th ancestor of v′ is a type II marked
node, because �(depth(v′)−d2x)/x� = �depth(v′)/x�−t2−x+r2, which leaves a
remainder of r2 when divided by x. Therefore, choosing d = d1 +d2x guarantees
that d ≤ x−1+x(x−1) < x2, so the d-th ancestors of u and v are both defined,
the d-th ancestor of u is a type I marked node, and the d-th ancestor of v is a
type II marked node.

The total number of marked nodes is clearly at most 2n/x, and the values
of r and r′ can be determined by a single traversal of T . To determine d, we
only need to additionally know depth(u) and depth(v) and perform a few simple
arithmetical operations. ��
Remark. Our difference cover has the following useful property: whether a node
v is marked or not depends only on the value of depth(v) (mod x2). Hence, if a
node at depth at least x2 is marked then so is its (x2)-th ancestor. Similarly, if
a node is marked, so are all of its descendants at distance x2.

4 Path-Path LCE

In this section we prove the following theorem.

Theorem 1. For a tree T with n nodes, a data structure of size O(n) can be
constructed in O(n) time to answer path-path LCE queries in O(log∗ n) time.

We start with a simple preliminary O(n log n)-space O(1)-query data structure
which will serve as a starting point for the more complicated final implementa-
tion. We note that a data structure with similar guarantees to Lemma2 is also
implied from [3].
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Lemma 2. For a tree T with n nodes, a data structure of size O(n log n) can be
constructed in O(n log n) time to answer path-path LCE queries in O(1) time.

Proof. The structure consists of log n separate parts, each of size O(n). The k-th
part answers in O(1) time path-path LCE queries such that both paths are of
the same length 2k. This is enough to answer a general path-path LCE query in
the same time complexity, because we can first truncate the longer path so that
both paths are of the same length �, then calculate k such that 2k ≤ � < 2k+1.
Then we have two cases:

1. The prefixes of length 2k of both paths are different. Then replacing the paths
by their prefixes of length 2k does not change the answer.

2. The prefixes of length 2k of both paths are the same. Then replacing the
paths by their suffixes of length 2k does not change the answer.

We can check if the prefixes are the same and then (with level ancestor queries)
reduce the query so that both paths are of the same length 2k, all in O(1) time.

Consider all paths of length 2k in the tree. There are at most n of them,
because every node u creates at most one new path LA(v,depth(v) − 2k) � v.
We lexicographically sort all such paths and store the longest common extension
of every two neighbours on the sorted list. Additionally, we augment the longest
common extensiones with a range minimum query structure, and keep at every
v the position of the path LA(v,depth(v) − 2k) � v (if any) on the sorted
list. This allows us to answer LCEPP (LA(u,depth(u) − 2k), u,LA(v,depth(v) −
2k), v) in O(1) time: we lookup the positions of LA(u, depth(u) − 2k) � u and
LA(v,depth(v) − 2k) � v on the sorted list and use the range minimum query
structure to calculate their longest common prefix, all in O(1) time. The total
space usage is O(n), because every node stores one number and additionally
we have a list of at most n numbers augmented with a range minimum query
structure.

To construct the structure efficiently, we need to lexicographically sort all
paths of length k. This can be done in O(n) time for every k after observing
that every path of length 2k+1 can be conceptually divided into two paths of
length 2k. Therefore, if we have already lexicographically sorted all paths of
length 2k, we can lexicographically sort all paths of length 2k+1 by sorting pairs
of numbers from [1, n], which are the positions of the prefix and the suffix of a
longer path on the sorted list of all paths of length 2k. With radix sorting, this
takes O(n) time. Then we need to compute the longest common extension of
ever two neighbours on the sorted list, which can be done in O(1) time by using
the already constructed structure for paths of length 2k. Consequently, the total
construction time is O(n log n). ��
To decrease the space usage of the structure from Lemma 2, we use the difference
covers developed in Lemma 1. Intuitively, the first step is to apply the lemma
with x = log n and preprocess only paths of length 2k log2 n ending at the
marked nodes. Because we have only O(n/ log n) marked nodes, this requires
O(n) space. Then, given two paths of length �, we can either immediately return
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their LCE using the preprocessed data, or reduce the query to computing the
LCE of two paths of length at most log2 n. Using the same reasoning again with
x = log(log2 n), we can reduce the length even further to at most log2(log2 n)
and so on. After O(log∗ n) such reduction steps, we guarantee that the paths
are of length O(1), and the answer can be found naively. Formally, every step is
implemented using the following lemma.

Lemma 3. For a tree T with n nodes and a parameter b, a data structure of
size O(n) can be constructed in O(n) time, so that given two paths of length at
most b ending at u ∈ T and v ∈ T in O(1) time we can either compute the
path-path LCE or reduce the query so that the paths are of length at most log2 b.

Proof. We apply Lemma 1 with x = log b. Then, for every k = 0, 1, . . . , log b
separately, we consider all paths of length 2k log2 b ending at marked nodes. As
in the proof of Lemma2, we lexicographically sort all such paths and store the
longest common extension of every two neighbours on the sorted list augmented
with a range minimum query structure. Because we have only O(n/ log b) marked
nodes, the space decreases to O(n). Furthermore, because the length of the paths
is of the form 2k log2 b (as opposed to the more natural choice of 2k), all lists can
be constructed in O(n) total time by radix sorting, as a path of length 2k+1 log2 b
ending at a marked node can be decomposed into two paths of length 2k logb

ending at marked nodes, because if a node is marked, so is its (x2)-th ancestor.
Consider two paths of the same length � ≤ b ending at u ∈ T and v ∈ T .

We need to either determine their LCE, or reduce the query to determining the
LCE of two paths of length at most log2 b. If � ≤ log2 b, there is nothing to
do. Otherwise, first we check if the prefixes of length log2 b of both paths are
different in O(1) time. If so, we replace the paths with their prefixes of such
length and we are done. Otherwise, if � ≤ 2 log2 b we replace the paths with
their suffixes of length �− log2 b ≤ log2 b and we are done. The remaining case is
that the prefixes of length log2 b are identical and � > 2 log2 b. In such case, we
can calculate k such that 2k log2 b ≤ � − log2 b < 2k+1 log2 b. Having such k, we
cover the suffixes of length �− log2 b with two (potentially overlapping) paths of
length exactly 2k log2 b. More formally, we create two pairs of paths:

1. LA(u,depth(u) − 2k log2 b) � u and LA(v,depth(v) − 2k log2 b) � v,
2. LA(u,depth(u) − � + log2 b) � LA(u,depth(u) − � + log2 b + 2k log2 b) and

LA(v,depth(v) − � + log2 b) � LA(v,depth(v) − � + log2 b + 2k log2 b).

If the paths from the first pair are different, it is enough to compute their LCE. If
they are identical, it is enough to compute the LCE of the paths from the second
pair. Because we can distinguish between these two cases in O(1) time, we focus
on computing the LCE of two paths of length 2k log2 b ending at some u′ and
v′. The important additional property guaranteed by how we have defined the
pairs is that the paths of length log2 b ending at LA(u′,depth(u′)−2k log2 b) and
LA(v′,depth(v′)−2k log2 b) are the same. Now by the properties of the difference
cover we can calculate in O(1) time d ≤ log2 b such that the d-th ancestors of u′

and v′ are marked. We conceptually slide both paths up by d, so that they both
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end at these marked nodes. Because of the additional property, either the paths
of length 2k log2 b ending at LA(u′,depth(′u) − d) and LA(v′,depth(v′) − d) are
identical, or their first mismatch actually corresponds to the LCE of the original
paths ending at u′ and v′. These two cases can be distinguished in O(1) time.
Then we either use the preprocessed data to calculate the LCE in O(1) time, or
we are left with the suffixes of length d of the paths ending at u′ and v′. But
because d ≤ log2 b, also in the latter case we are done. ��
We apply Lemma 3 with b = n, log2 n, log2(log2 n), . . . terminating when b ≤
4. The total number of applications is just O(log∗ n), because log2(log2 z) =
4 log2(log z) ≤ log z for z large enough1. Therefore, the total space usage becomes
O(n log∗ n) and, by iteratively applying the reduction step, for any two paths
of length at most n ending at given u and v we can in O(log∗ n) time either
compute their LCE, or reduce the query to computing the LCE of two paths of
length O(1), which can be computed naively in additional O(1) time.

To prove Theorem 1, we need to decrease the space usage from O(n log∗ n)
down to O(n). To this end, we create a smaller tree T ′ on O(n/b) nodes, where
b = log∗ n is the parameter of the difference cover, as follows. Every marked node
u ∈ T becomes a node of T ′. The parent of u ∈ T in T ′ is the node corresponding
in T ′ to the (b2)-th ancestor of u in T , which is always marked. Additionally,
we add one artificial node, which serves as the root of the whole T ′, and make
it the parent of all marked nodes at depth (in T ) less than b2. Now edges of T ′

correspond to paths of length b2 in T (except for the edges outgoing from the
root; we will not be using them). We need to assign unique names to these paths,
so that the names of two paths are equal iff the paths are the same. This can be
done by traversing the suffix tree of T in O(n) time. Finally, T ′ is preprocessed
by applying Lemma 3 O(log∗ n) times as described above. Because its size of T ′

is just O(n/b), the total space usage preprocessing time is just O(n) now.
To compute the LCE of two paths of length � ending at u ∈ T and v ∈ T , we

first compare their prefixes of length b2. If they are identical, by the properties
of the difference cover we can calculate d ≤ b2 such that the d-th ancestors of
both u and v, denoted u′ and v′, are marked, hence exist in T ′. Consequently, if
the prefixes of length � − d of the paths are different, we can calculate their first
mismatch by computing the first mismatch of the paths of length �(� − d)/b2�
ending at u′ ∈ T ′ and v′ ∈ T ′. This follows because every edge of T ′ corresponds
to a path of length b2 in T , so a path of length �(� − d)/b2� in T ′ corresponds
to a path of length belonging to [� − d − b2, � − d] in T , and we have already
verified that the first mismatch is outside of the prefix of length b2 of the original
paths. Hence the first mismatch of the corresponding paths in T ′ allows us to
narrow down where the first mismatch of the original paths in T occurs up to b2

consecutive edges. All in all, in O(1) time plus a single path-path LCE query in
T ′ we can reduce the original query to a query concerning two paths of length
at most b2.

1 This follows from limz→∞
log2(log2 z)

log z
= limz→∞

4 log(log2 z)
ln z

= limz→∞ 8
ln z

= 0.
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The final step is to show that T can be preprocessed in O(n) time and space,
so that the LCE of any two paths of length at most b2 can be calculated in O(b)
time. We assign unique names to all paths of length b in T , which can be again
done by traversing the suffix tree of T in O(n) time. More precisely, every u ∈ T
such that depth(u) ≥ b stores a single number, which is the name of the path
of length b ending at u. To calculate the LCE of two paths of length at most
b2 ending at u ∈ T and v ∈ T , we proceed as follows. We traverse both paths
in parallel top-down moving by b edges at once. Using the preprocessed names,
we can check if the first mismatch occurs on these b consecutive edges, and if so
terminate. Therefore, after at most b steps we are left with two paths of length
at most b, such that computing their LCE allows us to answer the original query.
But this can be calculated by naively traversing both paths in parallel top-down.
The total query time is O(b).

To summarize, the total space and preprocessing time is O(n) and the query
time remains O(log∗ n), which proves Theorem 1.

5 Path-Tree LCE

In this section we prove the following theorem.

Theorem 2. For a tree T with n nodes, a data structure of size O(n) can be
constructed in O(n) time to answer path-tree LCE queries in O((log log n)2)
time.

The idea is to apply the difference covers recursively with the following lemma.

Lemma 4. For a tree T with n nodes and a parameter b, a data structure of
size O(n) can be constructed in O(n log n) time, so that given a path of length
� ≤ b ending at u ∈ T and a subtree rooted at v ∈ T we can reduce the query in
O(log log n) time so that the path is of length at most b4/5.

Proof. The first part of the structure is designed so that we can detect in O(1)
time if the path-tree LCE is of length at most b4/5. We consider all paths of length
exactly b4/5 in the tree. We assign names to every such path, so that testing if
two paths are identical can be done by looking at their names. Then, for every
node w we gather all paths of length b4/5 starting at w (i.e., w � v, where
w = LA(v,depth(v)−b4/5)) and store their names in a perfect hash table, where
every name is linked to the corresponding node w. This allows us to check if the
answer is at least b4/5 by first looking up the name of the prefix of length b4/5 of
the path, and then querying the perfect hash table kept at v. If the name does
not occur there, the answer is less than b4/5 and we are done. Otherwise, we can
move by b4/5 down, i.e., decrease � by b4/5 and replace v with its descendant of
distance b4/5.

The second part of the structure is designed to work with the marked nodes.
We apply Lemma 1 with x = b2/5 and consider canonical paths of length i ·x2 in
the tree, where i = 1, 2, . . . ,

√
x, ending at marked nodes. The total number of

such paths is O(n/
√

x), because every marked node is the endpoint of at most
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√
x of them. We lexicographically sort all canonical paths and store the longest

common extension of every two neighbours on the global sorted list augmented
with a range minimum query structure. Also, for every marked node v and every
i = 1, 2, . . . , x, we save the position of the path LA(v,depth(v) − i · x2) � v on
the global sorted list. Additionally, at every node u we gather all canonical
paths starting there, i.e., u � v such that LA(v,depth(v) − i · x2) = u for some
i = 1, 2, . . . , x, sort them lexicographically and store on the local sorted list of u.
Every such path is represented by a pair (u, i). The local sorted list is augmented
with a predecessor structure storing the positions on the global sorted list.

Because we have previously decreased � and replaced v, now by the properties
of the difference cover we can find d ≤ x2 such that the (�+d)-th ancestor of u and
the d-th ancestor of v are marked, and then increase � by d and replace v by its d-
th ancestor. Consequently, from now on we assume that both LA(u, depth(u)−�)
and v are marked.

Now we can use the second part of the structure. If � ≤ b4/5, there is nothing
to do. Otherwise, the prefix of length ��/x2� · x2 of the path is a canonical path
(because � ≤ √

x ·x2), so we know its position on the global sorted list. We query
the predecessor structure stored at v with that position to get the lexicographical
predecessor and successor of the prefix among all canonical paths starting at v.
This allows us to calculate the longest common extension p of the prefix and
all canonical paths starting at v by taking the maximum of the longest common
extension of the prefix and its predecessor, and the prefix and its successor. Now,
because canonical paths are all paths of the form i·x2, the length of the path-tree
LCE cannot exceed p+x2. Furthermore, with a level ancestor query we can find
v′ such that the paths LA(u,depth(u)−�) � LA(u, depth(u)−�+p) and v � v′

are identical. Then, to answer the original query, it is enough to calculate the
path-tree LCE for LA(u,depth(u)−�+p) � LA(u, depth(u)−�+min(�, p+x2))
and the subtree rooted at v′. Therefore, in O(log log n) time we can reduce the
query so that the path is of length at most x2 = b4/5 as claimed.

To achieve O(n) construction time, we need to assign names to all paths of
length b4/5 in the tree, which can be done in O(n) by traversing the suffix tree
of T . We would also like to lexicographically sort all canonical paths, but this
seems difficult to achieve in O(n). Therefore, we change the lexicographical order
as follows: we assign names to all canonical paths of length exactly x2, so that
different paths get different names and identical paths get identical names (again,
this can be done in O(n) time by traversing the suffix tree). Then we treat every
canonical path of length i·x2 as a sequence of consisting of i names, and sort these
sequences lexicographically in O(n) time with radix sort. Even though this is not
the lexicographical order, the canonical paths are only used to approximate the
answer up to an additive error of x2, and hence such modification is still correct.

��
We apply Lemma 4 with b = n, n4/5, n(4/5)2 , . . . , 1. The total number of appli-
cations is O(log log n). Therefore, the total space usage becomes O(n log log n),
and by applying the reduction step iteratively, for any path of length n ending at
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u and a subtree rooted at v we can compute the path-tree LCE in O((log log n)2)
time. The total construction time is O(n log log n).

To prove Theorem 2, we need to decrease the space usage and the construction
time. The idea is similar to the one from Sect. 4: we create a smaller tree T ′ on
O(n/b) nodes, where b = log log n is the parameter of the difference cover. The
edges of T ′ correspond to paths of length b2 in T . We preprocess T ′ as described
above, but because its size is now just O(n/b), the preprocessing time and space
become O(n).

To compute the path-tree LCE for a given path of length � ending at u and a
subtree rooted at v, we first check if the answer is at least b2. This can be done
in O(log log n) time by preprocessing all paths of length b2 in T , as done inside
Lemma 4 for paths of length b4/5. If so, we can decrease � and replace v with its
descendant, so that both LA(u,depth(u) − �) and v are marked, hence exist in
T ′. Then we use the structure constructed for T ′ to reduce the query, so that
the path is of length at most b2. Therefore, it is enough how to answer a query,
where a path is of length at most b2, in O(log log n) time after O(n) time and
space preprocessing.

The final step is to preprocess T in O(n) time and space, so that the path-
tree LCE of a path of length at most b2 and any subtree can be computed in
O(b) time. We assign unique names to all paths of length b in T . Then, for every
u we gather the names of all paths u � v of length b in a perfect hash table. To
calculate the path-tree LCE, we traverse the path top-down while tracing the
corresponding node in the subtree. Initially, we move by b edges by using the
perfect hash tables. This allows us to proceed as long as the remaining part of
the LCE is at least b. Then, we traverse the remaining part consisting of at most
b edges naively. In total, this takes O(b) time. The space is clearly O(n) and the
preprocessing requires constructing the perfect hash tables, which can be done
in O(n) time.

5.1 Lower Bound

In this section, we prove that any path-tree LCE structure of size
O(n polylog(n)) must necessarily use Ω(log log n) time to answer queries. As
shown by Pǎtraşcu and Thorup [22], for U = n2 any predecessor structure
consisting of O(n polylog(n)) words needs Ω(log log n) time to answer queries,
assuming that the word size is Θ(log n). In the full version of this paper, we
show the following reduction, which implies the aforementioned lower bound.

Theorem 3. For any ε > 0, given an LCEPT structure that uses s(n) = Ω(n)
space and answers queries in q(n) = Ω(1) time we can build a predecessor struc-
ture using O(s(2U ε + n log |U |)) space and O(q(2U ε + n log |U |)) query time for
any S ⊆ [0, U) of size n.

By applying the reduction with U = n2 and ε = 1/2, we get that an LCEPT

structure using O(n polylog(n)) space and answering queries in o(log log n)
time implies a predecessor structure using O(n polylog(n)) space and answering
queries in o(log log(n)) time, which is not possible.
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6 Tree-Tree LCE

The set intersection problem is defined as follows. Given a family S =
{S1, . . . , Sk} of sets of total size n =

∑k
i=1 |Si| the goal is to preprocess S

to answer queries: given two sets Si and Sj determine if Si ∩ Sj = ∅. The set
intersection problem is widely believed to require superlinear space in order to
support fast queries. A folklore conjecture states that for sets of size polyloga-
rithmic in k, supporting queries in constant time requires Ω̃(k2) space [21] (see
also [8]).

We now consider the LCETT problem. In the full version of this paper we
show that the problem is set intersection hard and give a time-space trade-off
as stated by the following theorems:

Theorem 4. Let T be a tree with n nodes. Given an LCETT data structure that
uses s(n) space and answers queries in q(n) time we can build a set intersec-
tion data structure using O(s(n)) space and O(q(n)) query time, for input sets
containing O(n) elements.

Theorem 5. For a tree T with n nodes and a parameter τ , 1 ≤ τ ≤ n, a data
structure of size O(nτ) can be constructed in O(nτ) time to answer tree-tree
LCE queries in O(n/τ) time.
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Abstract. The longest common extension problem (LCE problem) is to
construct a data structure for an input string T of length n that supports
LCE(i, j) queries. Such a query returns the length of the longest common
prefix of the suffixes starting at positions i and j in T . This classic
problem has a well-known solution that uses O(n) space and O(1) query
time. In this paper we show that for any trade-off parameter 1 ≤ τ ≤ n,
the problem can be solved in O(n

τ
) space and O(τ) query time. This

significantly improves the previously best known time-space trade-offs,
and almost matches the best known time-space product lower bound.

1 Introduction

Given a string T , the longest common extension of suffix i and j, denoted
LCE(i, j), is the length of the longest common prefix of the suffixes of T starting
at position i and j. The longest common extension problem (LCE problem) is
to preprocess T into a compact data structure supporting fast longest common
extension queries.

The LCE problem is a basic primitive that appears as a central subproblem in
a wide range of string matching problems such as approximate string matching
and its variations [1,4,11,13,16], computing exact or approximate repetitions
[6,12,14], and computing palindromes [10,15]. In many cases the LCE problem
is the computational bottleneck.

Here we study the time-space trade-offs for the LCE problem, that is, the
space used by the preprocessed data structure vs. the worst-case time used by

P. Bille— Supported by the Danish Research Council and the Danish Research
Council under the Sapere Aude Program (DFF 4005-00267).
I. L. Gørtz— Research partly supported by Mikkel Thorup’s Advanced Grant from
the Danish Council for Independent Research under the Sapere Aude research career
programme and the FNU project AlgoDisc - Discrete Mathematics, Algorithms, and
Data Structures.
H. W. Vildhøj— This research was supported by a Grant from the GIF, the German-
Israeli Foundation for Scientific Research and Development, and by a BSF grant
2010437.

c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 65–76, 2015.
DOI: 10.1007/978-3-319-19929-0 6



66 P. Bille et al.

LCE queries. The input string is given in read-only memory and is not counted
in the space complexity. Throughout the paper we use � as a shorthand for
LCE(i, j). The standard trade-offs are as follows: At one extreme we can store
a suffix tree combined with an efficient nearest common ancestor (NCA) data
structure [7,17]. This solution uses O(n) space and supports LCE queries in
O(1) time. At the other extreme we do not store any data structure and instead
answer queries simply by comparing characters from left-to-right in T . This
solution uses O(1) space and answers an LCE(i, j) query in O(�) = O(n) time.
Recently, Bille et al. [2] presented a number of results. For a trade-off parameter
τ , they gave: (1) a deterministic solution with O(n

τ ) space and O(τ2) query time,
(2) a randomized Monte Carlo solution with O(n

τ ) space and O(τ log( �
τ )) =

O(τ log(n
τ )) query time, where all queries are correct with high probability, and

(3) a randomized Las Vegas solution with the same bounds as 2) but where all
queries are guaranteed to be correct. Bille et al. [2] also gave a lower bound
showing that any data structure for the LCE problem must have a time-space
product of Ω(n) bits.

Our Results. Let τ be a trade-off parameter. We present four new solutions with
the following improved bounds. Unless otherwise noted the space bound is the
number of words on a standard RAM with logarithmic word size, not including
the input string, which is given in read-only memory.

– A deterministic solution with O(n/τ) space and O(τ log2(n/τ)) query time.
– A randomized Monte Carlo solution with O(n/τ) space and O(τ) query time,

such that all queries are correct with high probability.
– A randomized Las Vegas solution with O(n/τ) space and O(τ) query time.

Table 1. Overview of solutions for the LCE problem. Here � = LCE(i, j), ε > 0 is an
arbitrarily small constant and w.h.p. (with high probability) means with probability
at least 1 − n−c for an arbitrarily large constant c. The data structure is correct if it
answers all LCE queries correctly.
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– A derandomized version of the Monte Carlo solution with O(n/τ) space and
O(τ) query time.

Hence, we obtain the first trade-off for the LCE problem with a linear time-space
product in the full range from constant to linear space. This almost matches the
time-space product lower bound of Ω(n) bits, and improves the best deterministic
upper bound by a factor of τ , and the best randomized bound by a factor log(n

τ ).
See the columns marked Data Structure in Table 1 for a complete overview.

While our main focus is the space and query time complexity, we also provide
efficient preprocessing algorithms for building the data structures, supporting
independent trade-offs between the preprocessing time and preprocessing space.
See the columns marked Preprocessing in Table 1.

To achieve our results we develop several new techniques and specialized data
structures which are likely of independent interest. For instance, in our determin-
istic solution we develop a novel recursive decomposition of LCE queries and for
the randomized solution we develop a new sampling technique for Karp-Rabin
fingerprints that allow fast LCE queries. We also give a general technique for
efficiently derandomizing algorithms that rely on “few” or “short” Karp-Rabin
fingerprints, and apply the technique to derandomize our Monte Carlo algo-
rithm. To the best of our knowledge, this is the first derandomization technique
for Karp-Rabin fingerprints.

Preliminaries. We assume an integer alphabet, i.e., T is chosen from some alpha-
bet Σ = {0, . . . , nc} for some constant c, so every character of T fits in O(1)
words. For integers a ≤ b, [a, b] denotes the range {a, a + 1, . . . , b} and we define
[n] = [0, n− 1]. For a string S = S[1]S[2] . . . S[|S|] and positions 1 ≤ i ≤ j ≤ |S|,
S[i...j] = S[i]S[i + 1] · · · S[j] is a substring of length j − i + 1, S[i...] = S[i, |S|]
is the ith suffix of S, and S[...i] = S[1, i] is the ith prefix of S.

2 Deterministic Trade-Off

Here we describe a completely deterministic trade-off for the LCE problem with
O(n

τ log n
τ ) space and O(τ log n

τ ) query time for any τ ∈ [1, n]. Substituting
τ̂ = τ/ log(n/τ), we obtain the bounds reflected in Table 1 for τ̂ ∈ [1/ log n, n].

A key component in this solution is the following observation that allows us
to reduce an LCE(i, j) query on T to another query LCE(i′, j′) where i′ and j′

are both indices in either the first or second half of T .

Observation 1. Let i, j and j′ be indices of T , and suppose that LCE(j′, j) ≥
LCE(i, j). Then LCE(i, j) = min(LCE(i, j′),LCE(j′, j)).

We apply Observation 1 recursively to bring the indices of the initial query within
distance τ in O(log(n/τ)) rounds. We show how to implement each round with a
data structure using O(n/τ) space and O(τ) time. This leads to a solution using
O(n

τ log n
τ ) space and O(τ log n

τ ) query time. Finally in Sect. 2.4, we show how to
efficiently solve the LCE problem for indicies within distance τ in O(n/τ) space
and O(τ) time by exploiting periodicity properties of LCEs.
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2.1 The Data Structure

We will store several data structures, each responsible for a specific subinterval
I = [a, b] ⊆ [1, n] of positions of the input string T . Let Ileft = [a, (a + b)/2],
Iright = ((a + b)/2, b], and |I| = b − a + 1. The task of the data structure for
I will be to reduce an LCE(i, j) query where i, j ∈ I to one where both indices
belong to either Ileft or Iright.

The data structure stores information for O(|I|/τ) suffixes of T that start in
Iright. More specifically, we store information for the suffixes starting at positions
b − kτ ∈ Iright, k = 0, 1, . . . , (|I|/2)/τ . We call these the sampled positions of
Iright. See Fig. 1 for an illustration.

Fig. 1. Illustration of the contents of the data structure for the interval I = [a, b]. The
black dots are the sampled positions in Iright, and each such position has a pointer to
an index j′

k ∈ Ileft.

For every sampled position b − kτ ∈ Iright, k = 0, 1, . . . , (|I|/2)/τ , we store
the index j′

k of the suffix starting in Ileft that achieves the maximum LCE value
with the suffix starting at the sampled position, i.e., T [b − kτ...] (ties broken
arbitrarily). Along with j′

k, we also store the value of the LCE between suffix
T [j′

k...] and T [b − kτ...]. Formally, j′
k and Lk are defined as follows,

j′
k = argmax

h ∈ Ileft

LCE(h, b − kτ) and Lk = LCE(j′
k, b − kτ) .

Building the Structure. We construct the above data structure for the inter-
val [1, n], and build it recursively for [1, n/2] and (n/2, n], stopping when the
length of the interval becomes smaller than τ .

2.2 Answering a Query

We now describe how to reduce a query LCE(i, j) where i, j ∈ I to one where
both indices are in either Ileft or Iright. Suppose without loss of generality that
i ∈ Ileft and j ∈ Iright. We start by comparing δ < τ pairs of characters of T ,
starting with T [i] = T [j], until (1) we encounter a mismatch, (2) both positions
are in Iright or (3) we reach a sampled position in Iright. It suffices to describe the
last case, in which T [i, i+ δ] = T [j, j + δ], i+ δ ∈ Ileft and j + δ = b− kτ ∈ Iright

for some k. Then by Observation 1, we have that

LCE(i, j) = δ + LCE(i + δ, j + δ)
= δ + min(LCE(i + δ, j′

k),LCE(j′
k, b − kτ))

= δ + min(LCE(i + δ, j′
k), Lk) .
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Thus, we have reduced the original query to computing the query LCE(i+ δ, j′
k)

in which both indices are in Ileft.

2.3 Analysis

Each round takes O(τ) time and halves the upper bound for |i−j|, which initially
is n. Thus, after O(τ log(n/τ)) time, the initial LCE query has been reduced to
one where |i − j| ≤ τ . At each of the O(log(n/τ)) levels, the number of sampled
positions is (n/2)/τ , so the total space used is O((n/τ) log(n/τ)).

2.4 Queries with Nearby Indices

We now describe the data structure used to answer a query LCE(i, j) when
|i − j| ≤ τ . We first give some necessary definitions and properties of periodic
strings. We say that the integer 1 ≤ p ≤ |S| is a period of a string S if any
two characters that are p positions apart in S match, i.e., S[i] = S[i + p] for all
positions i s.t. 1 ≤ i < i + p ≤ |S|. The following is a well-known property of
periods.

Lemma 1 (Fine and Wilf [5]). If a string S has periods a and b and |S| ≥
|a| + |b| − gcd(a, b), then gcd(a, b) is also a period of S.

The period of S is the smallest period of S and we denote it by per(S). If
per(S) ≤ |S|/2, we say S is periodic. A periodic string S might have many
periods smaller than |S|/2, however it follows from the above lemma that

Corollary 1. All periods smaller than |S|/2 are multiples of per(S).

The Data Structure. Let Tk = T [kτ...(k + 2)τ − 1] denote the substring of
length 2τ starting at position kτ in T , k = 0, 1, . . . , n/τ . For the strings Tk that
are periodic, let pk = per(Tk) be the period. For every periodic Tk, the data
structure stores the length �k of the maximum substring starting at position kτ ,
which has period pk. Nothing is stored if Tk is aperiodic.

Answering a Query. We may assume without loss of generality that i = kτ ,
for some integer k. If not, then we check whether T [i + δ] = T [j + δ] until
i+ δ = kτ . Hence, assume that i = kτ and j = i+d for some 0 < d ≤ τ . In O(τ)
time, we first check whether T [i + δ] = T [j + δ] for all δ ∈ [0, 2τ ]. If we find a
mismatch we are done, and otherwise we return LCE(i, j) = �k − d.

Correctness. If a mismatch is found when checking that T [i + δ] = T [j + δ]
for all δ ∈ [0, 2τ ], the answer is clearly correct. Otherwise, we have established
that d ≤ τ is a period of Tk, so Tk is periodic and d is a multiple of pk (by
Corollary 1). Consequently, T [i + δ] = T [j + δ] for all δ s.t. d + δ ≤ �k, and thus
LCE(i, j) = �k − d.
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2.5 Preprocessing

The preprocessing details appear in the full version of this paper [3].

3 Randomized Trade-Offs

In this section we describe a randomized LCE data structure using O(n/τ) space
with O(τ+log �

τ ) query time. In Sect. 3.6 we describe another O(n/τ)-space LCE
data structure that either answers an LCE query in constant time, or provides a
certificate that � ≤ τ2. Combining the two data structures, shows that the LCE
problem can be solved in O(n/τ) space and O(τ) time.

The randomization comes from our use of Karp-Rabin fingerprints [9] for
comparing substrings of T for equality. Before describing the data structure,
we start by briefly recapping the most important definitions and properties of
Karp-Rabin fingerprints.

3.1 Karp-Rabin Fingerprints

For a prime p and x ∈ [p] the Karp-Rabin fingerprint [9], denoted φp,x(T [i...j]),
of the substring T [i...j] is defined as

φp,x(T [i...j]) =
∑

i≤k≤j

T [k]xk−i mod p .

If T [i...j] = T [i′...j′] then clearly φp,x(T [i...j]) = φp,x(T [i′...j′]). In the Monte
Carlo and the Las Vegas algorithms we present we will choose p such that p =
Θ(n4+c) for some constant c > 0 and x uniformly from [p]\ {0}. In this case a
simple union bound shows that the converse is also true with high probability,
i.e., φ is collision-free on all substring pairs of T with probability at least 1−n−c.
Storing a fingerprint requires O(1) space. When p, x are clear from the context
we write φ = φp,x.

For shorthand we write f(i) = φ(T [1, i]), i ∈ [1, n] for the fingerprint of the
ith prefix of T . Assuming that we store the exponent xi mod p along with the
fingerprint f(i), the following two properties of fingerprints are well-known and
easy to show.

Lemma 2. (1) Given f(i), the fingerprint f(i ± a) for some integer a, can be
computed in O(a) time. (2) Given fingerprints f(i) and f(j), the fingerprint
φ(T [i..j]) can be computed in O(1) time.

In particular this implies that for a fixed length l, the fingerprint of all substrings
of length l of T can be enumerated in O(n) time using a sliding window.

3.2 Overview

The main idea in our solution is to binary search for the LCE(i, j) value using
Karp-Rabin fingerprints. Suppose for instance that φ(T [i, i + M ]) �= φ(T [j, j +
M ]) for some integer M , then we know that LCE(i, j) ≤ M , and thus we can
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find the true LCE(i, j) value by comparing log(M) additional pair of fingerprints.
The challenge is to obtain the fingerprints quickly when we are only allowed to
use O(n/τ) space. We will partition the input string T into n/τ blocks each of
length τ . Within each block we sample a number of equally spaced positions.
The data structure consists of the fingerprints of the prefixes of T that ends
at the sampled positions, i.e., we store f(i) for all sampled positions i. In total
we sample O(n/τ) positions. If we just sampled a single position in each block
(similar to the approach in [2]), we could compute the fingerprint of any substring
in O(τ) time (see Lemma 2), and the above binary search algorithm would take
time O(τ log n) time. We present a new sampling technique that only samples an
additional O(n/τ) positions, while improving the query time to O(τ +log(�/τ)).

Preliminary Definitions. We partition the input string T into n/τ blocks of
τ positions, and by block k we refer to the positions [kτ, kτ + τ), for k ∈ [n/τ ].

We assume without loss of generality that n and τ are both powers of two.
Every position q ∈ [1, n] can be represented as a bit string of length lg n. Let
q ∈ [1, n] and consider the binary representation of q. We define the leftmost
lg(n/τ) bits and rightmost lg(τ) bits to be the head, denoted h(q) and the tail,
denoted t(q), respectively. A position is block aligned if t(q) = 0. The significance
of q, denoted s(q), is the number of trailing zeros in h(q). Note that the τ
positions in any fixed block k ∈ [n/τ ] all have the same head, and thus also the
same significance, which we denote by μk. See Fig. 2.

Fig. 2. Example of the definitions for the position q = 205035 in a string of length
n = 219 with block length τ = 28. Here h(q) is the first lg(n/τ) = 11 bits, and t(q) is
the last lg(τ) = 8 bits in the binary representation of q. The significance is s(q) = 5.

3.3 The Monte Carlo Data Structure

The data structure consists of the values f(i), i ∈ S, for a specific set of sampled
positions S ⊆ [1, n], along with the information necessary in order to look up
the values in constant time. We now explain how to construct the set S. In
block k ∈ [n/τ ] we will sample bk = min

{
2�μk/2�, τ

}
evenly spaced positions,

where μk is the significance of the positions in block k, i.e., μk = s(kτ). More
precisely, in block k we sample the positions Bk = {kτ + jτ/bk | j ∈ [bk]}, and
let S = ∪k∈[n/τ ] Bk. See Fig. 3.

We now bound the size of S. The significance of a block is at most lg(n/τ),
and there are exactly 2lg(n/τ)−μ blocks with significance μ, so

|S| =
n/τ−1∑

k=0

bk ≤
lg(n/τ)∑

μ=0

2lg(n/τ)−μ2�μ/2� ≤ n

τ

∞∑

μ=0

2−μ/2 =
(
2 +

√
2
) n

τ
= O

(n

τ

)
.
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Fig. 3. Illustration of a string T partitioned into 16 blocks each of length τ . The
significance μk for the positions in each block k ∈ [n/τ ] is shown, as well as the bk

values. The block dots are the sampled positions S.

3.4 Answering a Query

We now describe how to answer an LCE(i, j) query. We will assume that i is
block aligned, i.e., i = kτ for some k ∈ [n/τ ]. Note that we can always obtain this
situation in O(τ) time by initially comparing at most τ − 1 pairs of characters
of the input string directly.

Algorithm 1 shows the query algorithm. It performs an exponential search to
locate the block in which the first mismatch occurs, after which it scans the block
directly to locate the mismatch. The search is performed by calls to check(i, j, c),
which computes and compares φ(T [i...i + c]) and φ(T [j...j + c]). In other words,
assuming that φ is collision-free, check(i, j, c) returns true if LCE(i, j) ≥ c and
false otherwise.

Algorithm 1. Computing the answer to a query LCE(i, j)
1: procedure LCE(i, j)
2: �̂ ← 0
3: μ ← 0
4: while check(i, j, 2μτ) do � Compute an interval such that � ∈ [�̂, 2�̂].
5: (i, j, �̂) ← (i + 2μτ, j + 2μτ, �̂ + 2μτ)
6: if s(j) > μ then
7: μ ← μ + 1
8: while μ > 0 do � Identify the block in which the first mismatch occurs
9: if check(i, j, 2μ−1τ) then

10: (i, j, �̂) ← (i + 2μ−1τ, j + 2μ−1τ, �̂ + 2μ−1τ)
11: μ ← μ − 1
12: while T [i] = T [j] do � Scan the final block left to right to find the mismatch
13: (i, j, �̂) ← (i + 1, j + 1, �̂ + 1)
14: return �̂

Analysis. We now prove that Algorithm1 correctly computes � = LCE(i, j) in
O(τ + log(�/τ)) time. The algorithm is correct assuming that check(i, j, 2μτ)
always returns the correct answer, which will be the case if φ is collision-free.

The following is the key lemma we need to bound the time complexity.

Lemma 3. Throughout Algorithm1 it holds that � ≥ (2μ − 1) τ , s(j) ≥ μ, and
μ is increased in at least every second iteration of the first while-loop.
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Proof. We first prove that s(j) ≥ μ. The claim holds initially. In the first loop j
is changed to j + 2μτ , and s(j + 2μτ) ≥ min {s(j), s(2μτ)} = min {s(j), μ} = μ,
where the last equality follows from the induction hypothesis s(j) ≥ μ. Moreover,
μ is only incremented when s(j) > μ. In the second loop j is changed to j+2μ−1τ ,
which under the assumption that s(j) ≥ μ, has significance s(j+2μ−1τ) = μ−1.
Hence the invariant is restored when μ is decremented at line 11.

Now consider an iteration of the first loop where μ is not incremented, i.e.,
s(j) = μ. Then j

2μτ is an odd integer, i.e. j+2μτ
2μτ is even, and hence s(j+2μτ) > μ,

so μ will be incremented in the next iteration of the loop.
In order to prove that � ≥ (2μ − 1) τ we will prove that �̂ ≥ (2μ − 1) τ in the

first loop. This is trivial by induction using the observation that (2μ − 1) τ +
2μτ =

(
2μ+1 − 1

)
τ . 	


Since � ≥ (2μ − 1)τ and μ is increased at least in every second iteration of the
first loop and decreased in every iteration of the second loop, it follows that
there are O(log(�/τ)) iterations of the two first loops. The last loop takes O(τ)
time. It remains to prove that the time to evaluate the O(log(�/τ)) calls to
check(i, j, 2μτ) sums to O(τ + log(�/τ)).

Evaluating check(i, j, 2μτ) requires computing φ(T [i...i + 2μτ ]) and
φ(T [j...j +2μτ ]). The first fingerprint can be computed in constant time because
i and i + 2μτ are always block aligned (see Lemma 2). The time to compute the
second fingerprint depends on how far j and j + 2μτ each are from a sampled
position, which in turn depends inversely on the significance of the block contain-
ing those positions. By Lemma 3, μ is always a lower bound on the significance
of j, which implies that μ also lower bounds the significance of j +2μτ , and thus
by the way we sample positions, neither will have distance more than τ/2�μ/2�

to a sampled position in S. Finally, note that by the way μ is increased and
decreased, check(i, j, 2μτ) is called at most three times for any fixed value of μ.
Hence, the total time to compute all necessary fingerprints can be bounded as

O
⎛

⎝
lg(�/τ)∑

μ=0

1 + τ/2�μ/2�

⎞

⎠ = O(τ + log(�/τ)) .

3.5 The Las Vegas Data Structure

We now describe an O(
n3/2

)
-time and O(n/τ)-space algorithm for verifiying

that φ is collision-free on all pairs of substrings of T that the query algorithm
compares. If a collision is found we pick a new φ and try again. With high
probability we can find a collision-free φ in a constant number of trials, so we
obtain the claimed Las Vegas data structure.

If τ ≤ √
n we use the verification algorithm of Bille et al. [2], using O(nτ +

n log n) time and O(n/τ) space. Otherwise, we use the simple O(n2/τ)-time and
O(n/τ)-space algorithm described below.
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Recall that all fingerprint comparisions in our algorithm are of the form

φ
(
T [kτ...kτ + 2lτ − 1]

) ?= φ
(
T [j...j + 2lτ − 1]

)

for some k ∈ [n/τ ], j ∈ [n], l ∈ [log(n/τ)]. The algorithm checks each l ∈
[log(n/τ)] separately. For a fixed l it stores the fingerprints φ(T [kτ...kτ + 2lτ ])
for all k ∈ [n/τ ] in a hash table H. This can be done in O(n) time and O(n/τ)
space. For every j ∈ [n] the algorithm then checks whether φ

(
T [j...j+2lτ ]

) ∈ H,
and if so, it verifies that the underlying two substrings are in fact the same by
comparing them character by character in O(2lτ) time. By maintaining the fin-
gerprint inside a sliding window of length 2lτ , the verification time for a fixed l
becomes O(n2lτ), i.e., O(n2/τ) time for all l ∈ [log(n/τ)].

3.6 Queries with Long LCEs

In this section we describe an O(n
τ ) space data structure that in constant time

either correctly computes LCE(i, j) or determines that LCE(i, j) ≤ τ2. The data
structure can be constructed in O(n log n

τ ) time by a Monte Carlo or Las Vegas
algorithm.

The Data Structure. Let Sτ ⊆ [1, n] called the sampled positions of T (to
be defined below), and consider the sets A and B of suffixes of T and TR,
respectively.

A = {T [i...] | i ∈ Sτ}, B = {T [...i]R | i ∈ Sτ} .

We store a data structure for A and B, that allows us to perform constant time
longest common extension queries on any pair of suffixes in A or any pair in
B. This can be achieved by well-known techniques, e.g., storing a sparse suffix
tree for A and B, equipped with a nearest common ancestor data structure. To
define Sτ , let Dτ = {0, 1, . . . , τ} ∪ {2τ, . . . , (τ − 1)τ}, then

Sτ = {1 ≤ i ≤ n | i mod τ2 ∈ Dτ} . (1)

Answering a Query. To answer an LCE query, we need the following def-
initions. For i, j ∈ Sτ let LCER(i, j) denote the longest common prefix of
T [...i]R ∈ B and T [...j]R ∈ B. Moreover, for i, j ∈ [n], we define the function

δ(i, j) =
(
((i − j) mod τ) − i

)
mod τ2 . (2)

We will write δ instead of δ(i, j) when i and j are clear from the context.
The following lemma gives the key property that allows us to answer a query.

Lemma 4. For any i, j ∈ [n − τ2], it holds that i + δ, j + δ ∈ Sτ .

Proof. Direct calculation shows that (i + δ) mod τ2 ≤ τ , and that (j + δ)
mod τ = 0, and thus by definition both i + δ and j + δ are in Sτ .

To answer a query LCE(i, j), we first verify that i, j ∈ [n−τ2] and that LCER(i+
δ, j + δ) ≥ δ. If this is not the case, we have established that LCE(i, j) ≤ δ < τ2,
and we stop. Otherwise, we return δ + LCE(i + δ, j + δ) − 1.
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Analysis. To prove the correctness, suppose i, j ∈ [n − τ2] (if not clearly
LCE(i, j) < τ2) then we have that i+δ, j +δ ∈ Sτ (Lemma 4). If LCER(i+δ, j +
δ) ≥ δ it holds that T [i...i+ δ] = T [j...j + δ] so the algorithm correctly computes
LCE(i, j) as δ + 1 + LCE(i + δ, j + δ). Conversely, if LCER(i + δ, j + δ) < δ,
T [i...i + δ] �= T [j...j + δ] it follows that LCE(i, j) < δ < τ2.

Query time is O(1), since computing δ, LCER(i+δ, j+δ) and LCE(i+δ, j+δ)
all takes constant time. Storing the data structures for A and B takes space
O(|A| + |B|) = O(|Sτ |) = O(n

τ ). For the preprocessing stage, we can use recent
algorithms by I et al. [8] for constructing the sparse suffix tree for A and B
in O(n

τ ) space. They provide a Monte Carlo algorithm using O(n log n
τ ) time

(correct w.h.p.), and a Las Vegas algorithm using O(n
τ ) time (w.h.p.).

4 Derandomizing the Monte Carlo Data Structure

Here we give a general technique for derandomizing Karp-Rabin fingerprints,
and apply it to our Monte Carlo algorithm. The main result is that for any con-
stant ε > 0, the data structure can be constructed completely deterministically
in O(n2+ε) time using O(n/τ) space. Thus, compared to the probabilistic pre-
processing of the Las Vegas structure using O(n3/2) time with high probability,
it is relatively cheap to derandomize the data structure completely.

Our derandomizing technique is stated in the following lemma.

Lemma 5. Let A,L ⊂ {1, 2, . . . , n} be a set of positions and lengths respectively
such that max(L) = nΩ(1). For every ε ∈ (0, 1), there exist a fingerprinting
function φ that can be evaluated in O (

1
ε

)
time and has the property that for all

a ∈ A, l ∈ L, i ∈ {1, 2, . . . , n}:
φ(T [a...a+(l−1)]) = φ(T [i...i+(l−1)]) ⇐⇒ T [a...a+(l−1)] = T [i...i+(l−1)]

We can find such a φ using O (
S
ε

)
space and O

(
n1+ε log n

ε2
|A|
S max(L) |L|

)
time,

for any value of S ∈ [1, |A|].
The proof of the lemma appears in the full version of this paper [3].

Corollary 2. For any τ ∈ [1, n], the LCE problem can be solved by a deter-
ministic data structure with O(n/τ) space usage and O(τ) query time. The data
structure can be constructed in O(n2+ε) time using O(n/τ) space.

Proof. We use the lemma with A = {kτ | k ∈ [n/τ ]}, L = {2lτ | l ∈ [log(n/τ)]},
S = |A| = n/τ and a suitable small constant ε > 0.
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Abstract. Let D = {T1,T2, . . . ,TD} be a collection of D string doc-
uments of n characters in total. The forbidden pattern document list-
ing problem asks to report those documents D′ ⊆ D which contain the
pattern P , but not the pattern Q. The top-k forbidden pattern query
(P,Q, k) asks to report those k documents in D′ that are most relevant
to P . For typical relevance functions (like document importance, term-
frequency, term-proximity), we present a linear space index with worst
case query time of O(|P |+ |Q|+√

nk) for the top-k problem. As a corol-
lary of this result, we obtain a linear space and O(|P |+ |Q|+√

nt) query
time solution for the document listing problem, where t is the number
of documents reported. We conjecture that any significant improvement
over the results in this paper is highly unlikely.

1 Introduction and Related Work

A fundamental problem in information retrieval is indexing a collection of doc-
uments for efficient retrieval of the (most relevant) documents corresponding to
a query, which may consist of one or more patterns (strings). The traditional
approach is to partition the documents into sub-strings (called words), and then
build an inverted index over them. In numerous scenarios, such as genome data
or texts from some Asian languages, there is no clear demarcation of words,
and documents need to be treated as plain strings (see [18] for an excellent sur-
vey). In these cases, inverted index approach may either require too much space,
or support only limited search functions [22]. Therefore, we require alternative
approaches based on full-text indexes such as (compressed) suffix trees/arrays.

In most of the earlier string retrieval problems, the query consists of a single
pattern P . Introduced by Matias et al. [16], the most basic problem is docu-
ment listing, which asks to report all unique documents containing P . Later
Muthukrishnan [17] gave a linear space and optimal query time solution. The
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top-k document retrieval, introduced by Hon et al. [14], is an important exten-
sion of this problem, and asks to report the k documents that are most relevant
to P . Relevance of a document is based on various measures such as document
PageRank (which is independent of P ), term-frequency (i.e., the number of times
a pattern appears in the document), term-proximity (i.e., the distance between
the closest appearance of a pattern in the document). See [13,19] for linear space
and optimal i.e., O(|P | + k) query time solutions.

For two patterns P and Q, Muthukrishnan [17] showed that by maintaining
an O(n3/2 logO(1) n) space index, all t documents containing both P and Q can
be reported in time O(|P | + |Q| +

√
n + t), where n is the total length of all

documents. Cohen and Porat [2] observed that the problem can be reduced to the
set intersection problem, and presented an O(n log n) space (in words) index with
query time O(|P |+|Q|+√

nt log5/2 n). Subsequently, Hon et al. [11] improved this
to an O(n) space (in words) index with query time O(|P | + |Q| + √

nt log3/2 n).
Also see [13,14] for a succinct solution, and [7] for a lower bound which states
that for O(|P | + |Q| + logO(1) n + t) query time, Ω(n(log n/ log log n)3) bits are
required. A recent result [15] on the hardness of this problem states that any
improvement other than poly-logarithmic factors is highly unlikely.

The problem of forbidden pattern queries can be seen as a variation of the
two-pattern problem described above, and can be defined as follows.

Problem 1 (Document Listing with Forbidden Pattern). Index a col-
lection D = {T1,T2, . . . ,TD} of D strings (called documents) of n characters
in total, such that when two patterns P (called included pattern) and Q (called
excluded or forbidden pattern) come as a query, all those d’s, where P is a sub-
string of Td and Q is not a substring of Td can be reported efficiently.

Such queries are common in web-search applications, and a typical example is
the following [12]: say we are interested in accessing the websites on “jaguar”,
the big cat. However, searching for “jaguar” will give many web sites related to
“jaguar car”, which we are not interested in. So, the query can be modeled as a
forbidden pattern query with P = jaguar and Q = car.

Fischer et al. [7] introduced this problem, and presented an O(n3/2)-bit solu-
tion with query time O(|P |+|Q|+√

n+t). Hon et al. [12] presented an O(n)-word
index with query time O(|P | + |Q| +

√
nt log5/2 n). Larsen et al. [15] presented

a hardness result of this problem via a reduction from boolean matrix multipli-
cation and claimed that any significant (i.e., beyond poly-logarithmic factors)
improvement over the existing results are highly unlikely. In this paper, we revisit
Problem 1 as well as a more general top-k version of it described below.

Problem 2 (Top-k Document Retrieval with Forbidden Pattern). Index
a collection D = {T1,T2, . . . ,TD} of D strings (called documents) of n charac-
ters in total such that when two patterns P and Q, and an integer k come as
a query, among all documents containing P , but not Q, those k documents that
are the most relevant to P can be reported efficiently.
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Relevance Function. In Problem 2 above, the relevance of a document Td

is determined by a function score(P,Q, d). In particular, score(P,Q, d) = −∞
if Q occurs in Td, otherwise it is a function of the set of occurrences of P
in Td. We assume that the relevance function is monotonic increasing i.e.,
score(P,Q, d) ≤ score(P ′, Q, d), where P ′ is a prefix of P . Various functions
will fall under this category, such as term-frequency, and PageRank. With
respect to the patterns P and Q, a document Td is more relevant than Td′

iff score(P,Q, d) > score(P,Q, d′). We remark that term-proximity is monotonic
decreasing; however, by considering the negation of the proximity function, this
can be made to fit the criteria of monotonic increasing; in this case Td is more
relevant than Td′ iff score(P,Q, d) < score(P,Q, d′). See the bottom-k document
retrieval problem in [21] as an example of a relevance function which is not
monotonic.

We use the generalized suffix tree GST on the collection of documents D,
and use a modified form of the marking scheme introduced by Hon et al. [14].
Specifically, we identify few nodes in the GST as marked and prime nodes. For
each pair of marked and prime node, and properly chosen values of k, we pre-
compute and store the answers in a space-efficient way so that can be retrieved
efficiently. Our solution for Problem 2 is summarized in the following theorem.

Theorem 1. Let D be a collection of D documents of n characters in total.
There exists an O(n) space (in words) and O(|P | + |Q| + √

nk) query time data
structure such that when two patterns P and Q, and an integer k come as a query,
among all documents containing P , but not Q, we can report those k documents
that are the most relevant to P , where the relevance function is monotonic.

Using the above result as a black box, we can easily obtain the following solution
for Problem 1.

Corollary 1. There exists an O(n) space (in words) and O(|P | + |Q| +
√

nt)
query time data structure for Problem 1.

Proof. In the query time complexity of Theorem 1, the term O(|P | + |Q|) is
due to the time for finding the locus nodes of P and Q in a generalized suffix
tree of D. To answer document listing queries using Theorem 1, we perform
top-k queries for values of k from 1, 2, 4, 8, · · · up to k′, where the number of
documents returned by the top-k′ query is < k′, whereas that of every top-k′′

query, k′′ < k′, is k′′. This means the answer to top-k′ query is the same as that
of a document listing query. Also, k′/2 ≤ t < k′. Therefore, total time spend
over all queries (in addition to the time for initial loci search) can be bounded
by O(

√
n +

√
2n +

√
4n + · · · +

√
nk′) = O(

√
nt). �

A Note on the Tightness of Our Result. In order to show the hard-
ness of Problem 1, let us first define a couple of related problems. Let S =
{S1,S2, . . . ,Sr} be a collection of sets of total cardinality n. The set intersection
(resp. set difference) problem is to preprocess S into a data structure so that we
can report the elements in Si ∩ Sj (resp. Si \ Sj) efficiently for any query (i, j).
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For each element ex in the collection of sets, create document Tx, where the
content of Tx is the sequence of identifiers of all sets containing ex. Clearly,
a forbidden pattern query with P = i and Q = j gives the answer to the
set difference problem. We conclude that Problem 1 is at least as hard as the
set difference problem. The best known upper bound for the set intersection
problem is by Cohen and Porat [2], where the space is O(n) words and time
is O(

√
n|Si ∩ Sj |). The framework by Cohen and Porat can be used to obtain

the same space and time solution for the set difference problem. It is unclear
whether a better solution for the set difference problem exists, or not; however,
the existence of such a solution seems unlikely.

Organization of the Paper. The rest of the paper is dedicated for proving
Theorem 1. In Sect. 2, we discuss standard data-structures, and introduce the
terminologies used in this paper. We prove Theorem 1 in Sect. 3, and finally
conclude the paper in Sect. 4.

2 Preliminaries

We refer the reader to [10] for standard definitions. Let D = {T1,T2, · · · ,TD}
be a collection of documents of total size n characters; each document in D has
a special terminating character that does not appear anywhere in the document.

Generalized Suffix Tree. The generalized suffix tree (denoted by GST) is a
compact trie that stores all (non-empty) suffixes of every string in D. The GST
consists of n leaves, and at most n−1 internal nodes, and can be stored in space
O(n log n) bits. Let leaf(u) be the set of leaves in the sub-tree of GST rooted at
u, and leaf(u \ v) be the set leaf(u) \ leaf(v). Leaves in GST are numbered in
the lexicographic order of the suffix they represent. We use �i to denote the ith

leftmost leaf of GST, and doc(i) to denote the index of the document to which
the suffix corresponding to �i belongs. By maintaining an array, referred to as
document array, of size O(n log D) bits, in constant time we can find doc(i)
corresponding to leaf �i. The locus of a pattern P , denoted by locus(P ), is the
highest node u such that path(u) i.e., the concatenation of edge labels on the
path from root to u is prefixed by P ; we can compute locus(P ) in O(|P |) time,
where |P | is the length of P . We refer to [sp(p), ep(p)] as the suffix range of
a pattern P , where p = locus(P ), and sp(u) (resp. ep(u)) is the index of the
leftmost (resp. rightmost) leaf in the sub-tree of u.

Computing the Relevance Function. Note that a pattern P occurs in a
document Td iff d = doc(i) for some leaf �i which lies in the suffix range of P .
We now prove an important lemma.

Lemma 1. Given the locus nodes of pattern P and Q in GST, and the identifier
d of a document in D, by using O(n) space (in words) data-structures, in constant
time we can compute score(P,Q, d).
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Proof. Let I be a set of integers drawn from a set U = {0, 1, 2, · · · , 2w−1}, where
w ≥ log n is the word size. Alstrup et al. [1] presents a data-structure of size
O(|I|) words which for a given a, b ∈ U , b ≥ a, can report in O(1) time whether
I∩[a, b] is empty or not. In case I∩[a, b] is not-empty, the data-structure returns
any arbitrary value in I ∩ [a, b]. We build the above data-structure of Alstrup
et al. for the sets Id = {i | doc(i) = d} for d = 1, 2, · · · ,D. The total space
can be bounded by O(n) words. Using this, we can answer whether a pattern
P ′ occurs in Td, or not, by checking if there exists an element in Id ∩ [sp′, ep′],
where [sp′, ep′] is the suffix range of a pattern P ′. In case an element exists, we
a get a leaf �i ∈ GST such that doc(i) = d.

We assign score(P,Q, d) = −∞ iff Td contains Q. Otherwise, score(P,Q, d)
equals the relevance of document Td w.r.t P . Denote by STd, the suffix tree of
document Td, and by pathd(u), the string formed by the concatenation of the
edge-labels from root to a node u in STd. For every node u in STd, we maintain
the relevance of the pattern pathd(u) w.r.t the document Td. Also, we maintain
a pointer from every leaf �i of GST to that leaf node �j of STdoc(i) for which
pathdoc(i)(�j) is same as path(�i). Figure 1 illustrates this. We now use a more
recent result of Gawrychowski et al. [8], which can be summarized as follows:
given a suffix tree ST having |ST| nodes, where every node u has an integer
weight weight(u) ≤ |ST |, and satisfies the min-heap property, there exists an
O(|ST|) words data structure, such that for any leaf � ∈ ST and an integer W ,
in constant time we can find the lowest ancestor v (if any) of �, that satisfies
weight(v) ≤ W . For every node u ∈ STd, we let weight(u) = |pathd(u)|. Note
that this satisfies the min-heap property, and |weight(u)| ≤ |STd|. Using the
data-structure of Gawrychowski et al., in constant time we can locate the lowest
ancestor v of �j such that |pathd(v)| ≤ |P |. If |pathd(v)| = |P |, then v is the locus
node of P in STd. Otherwise, one of the children of v is the desired locus, which
can be found in constant time by checking the (|pathd(v)| + 1)th character of
P . Therefore, we can compute score(P,Q, d) in constant time; clearly, the total
space required for storing the data-structures is bounded by O(n) words. �

Fig. 1. Illustration of Lemma 1
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Marked Nodes and Prime Nodes. We identify certain nodes in GST as
marked nodes and prime nodes based on a parameter g called grouping fac-
tor [13]. First, starting from the leftmost leaf in GST, we combine every g leaves
together to form a group. In particular, the leaves �1 through �g forms the first
group, �g+1 through �2g forms the second, and so on. We mark the lowest com-
mon ancestor (LCA) of the first and last leaves of every group. Moreover, for any
two marked nodes, we mark their LCA (and continue this recursively). Note that
the root node is marked, and the number of marked nodes is at most 2�n/g	.
Lemma 2 ([11]). The suffix range [sp, ep] of any pattern P , where ep−sp+1 ≥
2g, can split into a suffix range [sp′, ep′] corresponding to a highest descendant
marked node u∗, and two other ranges [sp, sp′ − 1] and [ep′ + 1, ep] such that
sp′ − sp < g and ep − ep′ < g.

Note that u∗ is essentially the LCA of the leaves �i and �j , where �i (resp. �j) is
the first (resp. last) leaf after (resp. before) sp (resp. ep) such that i (resp. j) is
a multiple of g. If u is itself a marked node, then u∗ is same as u.

Corresponding to each marked node (except the root), we identify a unique
node called the prime node. Specifically, the prime node u′ corresponding to a
marked node u∗ is the node on the path from root to u∗, which is a child of the
lowest marked ancestor of u∗; we refer to u′ as the lowest prime ancestor of u∗.
Since the root node is marked, there is always such a node. If the parent of u∗ is
marked, then u′ is same as u∗. Also, for every prime node u′, the corresponding
closest marked descendant u∗ is unique. Therefore number of prime nodes is one
less than the number of marked node. From the definition of marked and prime
nodes, we have the following.

Observation 1. Let u∗ be a marked node, and u′ be the lowest prime ancestor
of u∗. Then |leaf(u′ \ u∗)| ≤ 2g.

Observation 2. If a node u has no marked descendant in its sub-tree, then
|leaf(u)| < 2g.

We assign each node in the GST its pre-order rank. Thus given a node u (i.e.,
its pre-order rank), in constant time we can find its highest marked descendant
(if any) using Lemma 2. We now present a useful lemma.

Lemma 3. Let u be any node in GST such that w.r.t a grouping factor g, u∗ is
its highest marked descendant and u′ is the lowest prime ancestor of u∗. Then
by maintaining an O(n/g) space array, we can compute the pre-order ranks of
u∗ and u′ in O(n/g) time. We can also compute the number of marked (resp.
prime) nodes that comes before u∗ (resp. u′) in pre-order.

Proof. We maintain two arrays containing all marked and prime nodes (along
with their pre-order ranks) of GST. The size of these arrays is bounded by
O(n/g). Note that in constant time we can check if a given node is an ances-
tor/descendant of another by comparing their ranges corresponding to the leaves
in its sub-tree. Therefore, by examining all elements in the array one by one, we
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can identify the nodes corresponding to u∗ and u′. We remark that it is possible
to achieve constant query time using additional structures; however, we chose
to use this simple structure as such an improvement would not affect the overall
query complexity of Theorem 1. �

3 The Framework

In this section we prove Theorem 1. We start with the following definitions.

Definition 1. Let u and v be any two nodes in GST. Then

– list(u, v) = {doc(i) | �i ∈ leaf(u)}\{doc(i) | �i ∈ leaf(v)} is the set of document
identifiers corresponding to the query (path(u), path(v)).

– listk(u, v) is the set of k most relevant document identifiers in list(u, v).
– candk(u, v), a candidate set, is any super set of listk(u, v).

Moving forward, we use p and q to denote the loci of the included pattern P and
the forbidden pattern Q respectively. Our task is then to report listk(p, q).

Lemma 4. Given a candidate set candk(p, q), and a score(P,Q, d) for each d ∈
candk(p, q), we can find listk(p, q) in time O(|candk(p, q)|).
Proof. Any document with score(P,Q, ·) = −∞ does not contribute to listk(p, q),
and can be safely ignored. Let this reduced set of documents be D′. Further, we
maintain only the distinct documents in D′ (which can be done easily using an
bitmap of size D). Among these distinct documents, we first find the document
identifier, say dk, with the kth largest score(P,Q, ·) value (which can be found
in O(|D′|) time using kth order statistics [3]), and report the identifiers d that
satisfy score(P,Q, d) ≥ score(P,Q, dk). Clearly, the time required for the entire
process can be bound by O(|candk(u, v)|). �

Lemma 5. For any two nodes u and v in GST, let u↓ be u or a descendent of
u and v↑ be v or an ancestor of v, and L = leaf(u \ u↓) ∪ leaf(v↑ \ v). Then,
listk(u, v) ⊆ listk(u↓, v↑) ∪ {doc(i) | �i ∈ L}.
Proof. Follows from the monotonicity property of the relevance function. �

3.1 Index Construction and top-k Query

The data-structure in the following lemma is the most intricate component for
retrieving listk(p, q).

Lemma 6. For grouping factor g =
√

nk, there exists a data-structure requiring
O(n) bits of space such that for any marked node u∗ and prime node v′ (w.r.t
g), we can find the documents d in listk(u∗, v′), and score(path(u∗), path(v′), d)
in O(

√
nk) time.



84 S. Biswas et al.

We prove the lemma in the following section. Using the lemma, we describe how
to obtain listk(p, q) in O(|P | + |Q| +

√
nk) time, thereby proving Theorem 1.

Let κ ≥ 1 be a parameter to be fixed later. For grouping factor
√

nκ,
construct the data-structure DSκ in Lemma 6 above. Further, we maintain
a data-structure DS′

κ, as described in Lemma 3, such that for any node, we
can find its highest marked descendant (if any), and its lowest prime ancestor;
this takes O(

√
n/κ log n) bits. Construct the data-structures DSκ and DS′

κ for
κ = 1, 2, 4, 8, · · · ,D. Clearly, maintaining the data-structures over all the above
values of κ takes O(n) words in total.

For the patterns P and Q, and some integer k for a top-k query, we first locate
the loci p and q in O(|P | + |Q|) time. Let k′ = min{D, 2�log k�} and g′ =

√
nk′.

Note that k ≤ k′ < 2k. Depending on whether p has any marked node below
it, we have the following two cases. We show that in either case, listk(p, q) can
be found in O(|P | + |Q| + √

nk) time by using data-structures of size O(n log n)
bits in total.

Case 1. Assume that p contains a descendant marked node, and therefore, the
highest descendant marked node, say p∗. If p is itself marked, then p∗ = p. Let
q′ be the lowest prime ancestor of q. Both p∗ and q′ are found in O(n/g′) =
O(

√
n/k′) time (refer to Lemma 3). Now using the data-structure DSk′ , we find

listk′(p∗ \q′) in O(
√

nk′) time. The number of leaves in L = leaf(p\p∗)∪ leaf(q′ \
q) is bounded by O(g′) = O(

√
nk) (see Observation 1). Finally, we compute

listk(p, q) from listk′(p∗ \ q′) and L in O(
√

n/k′ +
√

nk′) = O(
√

nk) time (refer
to Lemmas 4 and 5).

Case 2. If there is no descendant marked node of p, then the size of the suffix
range of P is less than 2g′ (see Observation 2). We find the document identifiers,
and their corresponding score(P,Q, ·) corresponding to the leaves in leaf(p) using
the document array in O(g′) time (refer to Lemma 1). Denote this set of docu-
ment identifiers by Dp, where |Dp| = O(g′). Now any document identifier d ∈ Dp,
for which score(P,Q, d) = −∞, can be safely ignored. The remaining document
constitute the candidate set, and as described in Lemma 4, we can find the top-k
documents. Clearly, the query time can be bounded by O(g′) = O(

√
nk).

3.2 Proof of Lemma 6

A slightly weaker version of the result can be easily obtained as follows: maintain
listk(·, ·) for all pairs of marked and prime nodes explicitly for g =

√
nk. This

requires space O((n/g)2k log D) = O(n log n) bits (off by a factor of log n from
our desired space), but offers O(k) query time (better than the desired time).
Note that this saving in time will not have any effect on the time complexity of
our final result implying that we can afford to spend any time up to O(

√
nk),

but the space cannot be more than O(n) bits. Therefore, we seek to encode these
lists in a compressed form, from which any list can be decoded in O(

√
nk) time.

The scheme is recursive, and is similar to that used in [4,20]. Before we begin
with the proof of Lemma 6, let us first present the following useful result.
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Lemma 7 ([5,6,9]). A set of m integers from {1, 2, · · · , U} can be encoded in
O(m log (U/m)) bits, such that they can be decoded back in O(1) time per integer.

We begin with some notations: let log(h) n = log(log(h−1) n) for h > 1, and
log(1) n = log n. Further, let log∗ n be the smallest integer α such that log(α) n ≤
2. Let gh =

√
nk log(h) n (rounded to the next highest power of 2). Note that

g = glog∗ n. Therefore, our task is to report listk(u∗, v′), whenever a marked node
u∗ and a prime node u′ comes as a query, where both u∗ and v′ are based on
the grouping factor glog∗ n. For 1 ≤ h ≤ log∗ n, let N∗

h (resp. N ′
h) be the set of

marked (resp. prime) nodes w.r.t gh. Also, let u∗
h be highest node in N∗

h , which
is either u∗ or a descendant of u∗. Likewise, let v′

h be lowest node in N ′
h, which

is either v′ or an ancestor of v′. As described in Lemma 3, we maintain the list
of all nodes in N∗

h and N ′
h for 1 ≤ h ≤ log∗ n. Using this we can compute u∗

h and
v′

h, corresponding to any u∗, v′ and h, in O(n/gh) = O(
√

n/k/ log(h) n) time.
The space required (in words) can be bounded as follows.

log∗ n∑

h=1

n

gh
=

√
n√
k

log∗ n∑

h=1

1

log(h) n
= O(

√
n)

We are now ready to present the recursive encoding scheme. Assume there
exists a scheme for encoding listk(·, ·) of all pairs of marked/prime nodes w.r.t.
to gh in Sh bits of space, such that the top-k documents corresponding to any
particular pair can be decoded in Th time. Then,

Sh+1 = Sh + O
( n

log(h+1) n

)
(1)

Th+1 = Th + O
( √

nk

log(h) n

)
(2)

By storing the answers explicitly for h = 1, the base case is established:
S1 = O((n/g1)2k log n) = O(n/ log n) and T1 = O(k) plus O(

√
n/k/ log n) time

for finding u∗
1 and v′

1 from u∗ and v′. Solving the above recursions leads to space
bound Slog∗ n (in bits) and time bound Tlog∗ n as follows:

Slog∗ n = O
( log∗ n∑

h=1

n

log(h) n

)
= O(n)

Tlog∗ n = O
( log∗ n∑

h=1

√
nk

log(h) n

)
= O(

√
nk)

Space Bound. First we show how to arrive at Eq. 1. Specifically, we show how
to encode listk(·, ·) w.r.t gh+1 given that listk(·, ·) w.r.t gh is already encoded sep-
arately. With abuse of notation, let x∗

h (resp. y′
h) be any marked (resp. prime)

node w.r.t gh. Further, let x∗
h+1 (w.r.t gh+1) be the lowest marked node above
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Fig. 2. Recursive encoding scheme.

x∗
h. Likewise, y′

h+1 is the highest prime node below y′
h. Consider, the set of leaves

in leaf(x∗
h+1 \ x∗

h). The number of such leaves are bounded above by 2gh; oth-
erwise, this contradicts the definition of x∗

h+1. Likewise, |leaf(y′
h \ y′

h+1)| < 2gh.
Figure 2 illustrates this. Let fh =

√
n/(

√
k log(h) n) (rounded to the next highest

power of 2). We divide the leaves in leaf(x∗
h+1 \ x∗

h) (resp. leaf(y′
h \ y′

h+1)) on
either side of the suffix range of x∗

h (resp. y′
h+1) into gh/fh chunks. Thus, there

are O(k(log(h) n)2) chunks, and each chunk has O(fh) leaves. For x∗
h+1 and y′

h+1

pair, we maintain those at most k chunks, leaves of which may contribute to the
top-k documents. This can be seen as selecting at most k integers from an uni-
verse of size O(k(log(h) n)2), and can be encoded in O(k log (k(log(h) n)2/k)) =
O(k log(h+1) n) bits (refer to Lemma 7). Since, the number of marked and prime
nodes at the (h + 1)th level are both bounded by O(n/gh+1), the total size in
bits for maintaining the top-k chunks for all pairs of marked and prime nodes
w.r.t gh+1 can be bounded by O((n/gh+1)2k log(h+1) n) = O(n/ log(h+1) n).
For gh+1, we also maintain the index w.r.t gh having size Sh. Thus we have
Sh+1 = Sh + O(n/ log(h+1) n).

Time Bound. Let Lh be the candidate leaves for u∗
h and v′

h. We show how
to obtain Lh+1 from Lh, using the index described above, in time Th+1 as
described in Eq. 2. We first locate u∗

h+1 and v′
h+1, which can be achieved in

time O(n/gh+1) = O(
√

n/k/ log(h+1) n) with the aid of the arrays maintain-
ing N∗

h+1 and N ′
h+1. By using the index, having size Sh+1, at the (h + 1)th

level of recursion, we decode the top-k chunks for u∗
h+1 and v′

h+1, and for each
chunk we find the leaves in it. The number of such leaves is bounded by O(kfh).
By Lemma 7, decoding each chunk takes constant time, and therefore finding
Lh+1, the set of candidate leaves for u∗

h+1 and v′
h+1 is achieved in total time

Th+1 = Th + O(kfh) = Th + O(
√

nk/ log(h) n).

Retrieving top-k Documents. In the query process described above, at the
end of log∗ n levels, we have the candidate leaves for listk(u∗, v′). The number of
such leaves is bounded by O(

√
nk). By using these leaves and document array,

as described in Lemma 1, we find the top-k (unique) document identifiers d, and
corresponding score(path(u∗), path(v′), d) in time O(

√
nk). This completes the

proof of Lemma 6.
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4 Conclusion

In this paper, we revisit the problem of reporting the documents which contains
a pattern P , and does not contain a pattern Q. We present a linear space index
which reports such documents in time O(|P |+ |Q|+√

nt), where t is the number
of documents reported. This improves the previously best known query time
of O(|P | + |Q| +

√
nt log5/2 n) using linear space data-structures. For solving

the problem, we actually solve a general version, in which we report the top-k
documents in time O(|P | + |Q| +

√
nk), where document relevance function is

monotonic increasing. We remark that our framework can be used to obtain
same space and time solution for the document retrieval problem (as well as the
top-k version of it) with two (included) patterns. In future, we will like to present
solutions to the top-k version of the problem with excluded patterns, where the
relevance metric is not limited to monotonic functions.
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Abstract. In the Shortest Superstring problem we are given a set
of strings S = {s1, . . . , sn} and an integer � and the question is to decide
whether there is a superstring s of length at most � containing all strings
of S as substrings. We obtain several parameterized algorithms and com-
plexity results for this problem.

In particular, we give an algorithm which in time 2O(k) poly(n) finds a
superstring of length at most � containing at least k strings of S. We com-
plement this by the lower bound showing that such a parameterization
does not admit a polynomial kernel up to some complexity assumption.
We also obtain several results about “below guaranteed values” parame-
terization of the problem. We show that parameterization by compression
admits a polynomial kernel while parameterization “below matching” is
hard.

1 Introduction

We consider the Shortest Superstring problem defined as follows:

This is a well-known NP-complete problem [10] with a range of practical appli-
cations from DNA assembly [7] to data compression [9]. Due to this fact
approximation algorithms for it are widely studied. The currently best known
approximation guarantee 211

23 is due to Mucha [17]. At the same time the best
known exact algorithms run in roughly 2n steps and are known for more than
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50 years already. More precisely, using known algorithms for the Traveling

Salesman problem, Shortest Superstring can be solved either in time
O∗(2n) and the same space by dynamic programming over subsets [3,13] or
in time O∗(2n) and only polynomial space by inclusion-exclusion [14,16] (here,
O∗(·) hides factors that are polynomial in the input length, i.e.,

∑n
i=1 |si|). Such

algorithms can only be used in practice to solve instances of very moderate
size. Stronger upper bounds are known for a special case when input strings
have bounded length [11,12]. There are heuristic methods for solving Travel-

ing Salesman, and hence also Shortest Superstring, they are efficient in
practice, however have no efficient provable guarantee on the running time (see,
e.g., [1]).

In this paper, we study the Shortest Superstring problem from the para-
meterized complexity point of view. This field studies the complexity of computa-
tional problems with respect not only to input size, but also to some additional
parameters and tries to identify parameters of input instances that make the
problem tractable. Interestingly, prior to our work, except observations follow-
ing from the known reductions to Traveling Salesman, not much about the
parameterized complexity of Shortest Superstring was known. We refer to
the survey of Bulteau et al. [4] for a nice overview of known results on parameter-
ized algorithms and complexity of strings problems. Thus our work can be seen
as the first non-trivial step towards the study of this interesting and important
problem from the perspective of parameterized complexity.

Our Results. In this paper we study two types of parameterization for Shortest
Superstring and present two kind of results. The first set of results concerns
“natural” parameterization of the problem. We consider the following general-
ization of Shortest Superstring:

If k = |S|, then this is Shortest Superstring. Notice that S can contain copies
of the same string and a string of S can be a substring of another string of the
collection. For Shortest Superstring, such cases could be easily avoided, but
for Partial Superstring it is natural to assume that we have such possibilities.

Here we show that Partial Superstring is fixed parameter tractable
(FPT) when parameterized by k or �. We complement this result by showing
that it is unlikely that the problem admits a polynomial kernel with respect to
these parameters.

The second set of results concerns “below guaranteed value” parameteriza-
tion. Note that an obvious (non-optimal) superstring of S = {s1, . . . , sn} is a
string of length

∑n
i=1 |si| formed by concatenating all strings from S. For a

superstring s of S the value
∑n

i=1 |si| − |s| is called by compression of s with
respect to S. Then finding a shortest superstring is equivalent to finding an
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order of s1, . . . , sn such that the consecutive strings have the largest possible
total overlap. We first show that it is FPT with respect to r to check whether
one can achieve a compression at least r by construction a kernel of size O(r4).
We complement this result by a hardness result about “stronger” parameteri-
zation. Let us partition n input strings into n/2 pairs such that the sum of the
n/2 resulting overlaps is maximized. Such a partition can be found in polyno-
mial time by constructing a maximum weight matching in an auxiliary graph.
Then this total overlap provides a lower bound on the maximum compression
(or, equivalently, an upper bound on the length of a shortest superstring). We
show that already deciding whether at least one additional symbol can be saved
beyond the maximum weight matching value is already NP-complete.

2 Basic Definitions and Preliminaries

Strings. Let s be a string. By |s| we denote the length of s. By s[i], where 1 ≤
i ≤ |s|, we denote the i-th symbol of s, and s[i, j] = s[i] . . . s[j] for 1 ≤ i ≤ j ≤ |s|.
We assume that s[i, j] is the empty string if i > j. We denote prefixi(s) = s[1, i]
and suffixi(s) = s[|s|−i+1, |s|] the i-th prefix and i-th suffix of s respectively for
i ∈ {1, . . . , |s|}; prefix0(s) = suffix0(s) is the empty string. Let s, s′ be strings. We
write s ⊆ s′ to denote that s is a substring of s′. If s ⊆ s′, then s′ is a superstring
of s. We write s ⊂ s′ and s ⊃ s′ to denote proper sub and superstrings. For a
collection of strings S, a string s is a superstring of S if s is a superstring of
each string in S. The compression measure of a superstring s of a collection of
strings S is

∑
x∈S |x| − |s|. If s ⊆ s′, then overlap(s, s′) = overlap(s′, s) = s;

otherwise, if s �⊆ s′ and s′ �⊆ s, then overlap(s, s′) = suffixr(s) = prefixr(s′),
where r = max{i | 0 ≤ i ≤ min{|s|, |s′|}, suffixi(s) = prefixi(s′)}. We denote by
ss′ the concatenation of s and s′. For strings s, s′, we define the concatenation
with overlap s◦s′ as follows. If s ⊆ s′, then s◦s′ = s′◦s = s′. If s �⊆ s′ and s′ �⊆ s,
then s◦s′ = prefixp(s)overlap(s, s′)suffixq(s′), where p = |s|−|overlap(s, s′)| and
q = |s′| − |overlap(s, s′)|.

We need the following folklore property of superstrings.

Lemma 1. Let s be a superstring of a collection S of strings. Let S′ =
{s1, . . . , sn} be a set of inclusion maximal pairwise distinct strings of S such that
each string of S is a substring of a string from S′. Let indices pi, qi ∈ {1, . . . , |s|}
be such that si = s[pi, qi] for i ∈ {1, . . . , n} and assume that p1 < · · · < pn. Then
s′ = s1 ◦ · · · ◦ sn is a superstring of S of length at most |s|.

Graphs. We consider finite directed and undirected graphs without loops or
multiple edges. The vertex set of a (directed) graph G is denoted by V (G), the
edge set of an undirected graph and the arc set of a directed graph G is denoted
by E(G). To distinguish edges and arcs, the edge with two end-vertices u, v
is denoted by {u, v}, and we write (u, v) for the corresponding arc. For an arc
e = (u, v), v is the head of e and u is the tail. Let G be a directed graph. For a ver-
tex v ∈ V (G), we say that u is an in-neighbor of v if (u, v) ∈ E(G). The set of all
in-neighbors of v is denoted by N−

G (v). The in-degree d−
G(v) = |N−

G (v)|. Respec-
tively, u is an out-neighbor of v if (v, u) ∈ E(G), the set of all out-neighbors
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of v is denoted by N+
G (v), and the out-degree d+G(v) = |N+

G (v)|. For a directed
graph G, a (directed) trail of length k is a sequence v0, e1, v1, e2, . . . , ek, vk of
vertices and arcs of G such that v0, . . . , vk ∈ V (G), e1, . . . , ek ∈ E(G), the arcs
e1, . . . , ek are pairwise distinct, and for i ∈ {1, . . . , k}, ei = (vi−1, vi). We omit
the word “directed” if it does not create a confusion. Slightly abusing notations
we often write a trail as a sequence of its vertices v0, . . . , vk or arcs e1, . . . , ek. If
v0, . . . , vk are pairwise distinct, then v0, . . . , vk is a (directed) path. Recall that
a path of length |V (G)|−1 is a Hamiltonian path. For an undirected graph G, a
set U ⊆ V (G) is a vertex cover of G if for any edge {u, v} of G, u ∈ U or v ∈ U .
A set of edges M with pairwise distinct end-vertices is a matching.
Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size and another one is a parameter. We refer to the books of
Downey and Fellows [5], Flum and Grohe [8], and Niedermeier [19] for detailed
introductions to parameterized complexity.

Formally, a parameterized problem P ⊆ Σ∗×N, where Σ is a finite alphabet,
i.e., an instance of P is a pair (I, k) for I ∈ Σ∗ and k ∈ N, where I is an input
and k is a parameter. It is said that a problem is fixed parameter tractable (or
FPT), if it can be solved in time f(k)·|I|O(1) for some function f . A kernelization
for a parameterized problem is a polynomial algorithm that maps each instance
(I, k) to an instance (I ′, k′) such that

(i) (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance of the problem,
and

(ii) the size of I ′ and k′ are bounded by f(k) for a computable function f .

The output (I ′, k′) is called a kernel. The function f is said to be a size of a kernel.
Respectively, a kernel is polynomial if f is polynomial. While a parameterized
problem is FPT if and only if it has a kernel, it is widely believed that not all
FPT problems have polynomial kernels.

We use randomized algorithms for our problems. Recall that a Monte Carlo
algorithm is a randomized algorithm whose running time is deterministic, but
whose output may be incorrect with a certain (typically small) probability.
A Monte-Carlo algorithm is true-biased (false-biased respectively) if it always
returns a correct answer when it returns a yes-answer (a no-answer respectively).

3 FPT-Algorithms for Partial Superstring

In this section we show that Partial Superstring is FPT, when parameterized
by k or �. For technical reasons, we consider the following variant of the problem
with weights:
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Clearly, if w ≡ 1 and W = k, then we have the Partial Superstring problem.

Theorem 1. Partial Weighted Superstring can be solved in time O((2e)k·
kn2m log W ) by a true-biased Monte-Carlo algorithm and in time (2e)kkO(log k) ·
n2 log n · m log W by a deterministic algorithm for a collection of n strings of
length at most m.

Proof. First, we describe the randomized algorithm and then explain how it can
be derandomized. The algorithm uses the color coding technique proposed by
Alon, Yuster and Zwick [2].

If � ≥ km, then the problem is trivial, as the concatenation of any k strings
of S has length at most � and we can greedily choose k strings of maximum
weight. Assume that � < km.

We color the strings of S by k colors 1, . . . , k uniformly at random indepen-
dently from each other. Now we are looking for a string s that is a superstring
of k strings of maximum total weight that have pairwise distinct colors.

To do it, we apply the dynamic programming across subsets. For simplicity,
we explain only how to solve the decision problem, but our algorithm can be
modified to find a colorful superstring as well. For X ⊆ {1, . . . , k}, a string x ∈ S
and a positive integer h ∈ {1, . . . , �}, the algorithm computes the maximum
weight W (X,x, h) of a string s of length at most h such that

(i) s is a superstring of a collection of k′ = |X| strings S′ ⊆ S of pairwise
distinct colors from X,

(ii) x is inclusion maximal string of S′ and x = suffix|x|(s).

If such a string s does not exist, then W (X,x, h) = −∞.
We compute the table of values of W (X,x, h) consecutively for |X| = 1, . . . , k.

To simplify computations, we assume that W (X,x, h) = −∞ for h < 0. If
|X| = 1, then for each string x ∈ S, we set W (X,x, h) = w(x) if x is colored
by the unique color of X and |x| ≤ h. In all other cases W (X,x, h) = −∞.
Assume that |X| = k′ ≥ 2 and the values of W (X ′, x, h) are already computed
for |X ′| < k′. Let

W ′ = max{W (X \ {c}, x, h) + w(y) | y ⊆ x has color c ∈ X},

and

W ′′ = max{W (X \ {c}, y, h − |x| + |overlap(y, x)|) + w(x) | x �⊆ y, y �⊆ x},

where c is the color of x; we assume that W ′ = −∞ if there is no substring y of
x of color c ∈ X, and W ′′ = −∞ if every string y is a sub or superstring of x.
We set W (X,x, h) = max{W ′,W ′′}.

We show that max{W ({1, . . . , k}, x, �) | x ∈ S} is the maximum weight of k
strings of S colored by distinct colors that have a superstring of length at most
�; if this value equals −∞, then there is no string of length at most � that is a
superstring of k string of S of distinct colors.
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To prove this, it is sufficient to show that the values W (X,x, h) computed
by the algorithms are the maximum weights of strings of length at most h that
satisfy (i) and (ii). The proof is by induction on the size of |X|. It is straight-
forward to verify that it holds if |X| = 1. Assume that |X| > 1 and the claim
holds for sets of lesser size. Denote by W ∗(X,x, h) the maximum weight of a
string s of length at most h that satisfies (i) and (ii). By the description of the
algorithm, W ∗(X,x, h) ≥ W (X,x, h). We show that W ∗(X,x, h) ≤ W (X,x, h).

Let S′ be a collection of k′ strings of pairwise distinct colors from X that
have s as a superstring. Denote by S′′ a set of inclusion maximal distinct strings
of S′ that contains x such that every string of S′ is a substring of a string of
S′′. Assume that S′′ = {x1, . . . , xr} and xi = s[pi, qi] for i ∈ {1, . . . , r}. Clearly,
x = xr.

Suppose that there is y ∈ S′ \ {x} such that y ⊆ x. Let c ∈ X be a color
of y. Then s is a superstring of S′ \ {y} and the total weight of these string is
W ∗(X,x, h) − w(y). By induction, W ∗(X,x, h) − w(y) ≤ W (X \ {c}, x, h) and
we have that W ∗(X,x, h) ≤ W (X \ {c}, x, h) + w(y) ≤ W ′ ≤ W (X,x, h).

Suppose now that S′ \ {x} does not contain substrings of x. Then r ≥ 2.
Let y = sr−1 and s′ = s[1, qi−1]. Observe that y = suffix|y|(s′). Notice that
s′ is a superstring of S′′ \ x. Because S′ \ {x} has no substrings of x, every
string in S′ \ {x} is a substring of any superstring of S′′ \ {x} and, therefore,
s′ is a superstring of S′ \ {x} of length at most |s| − |x| + |overlap(y, x)| ≤
h−|x|+|overlap(y, x)|. The weight of S′\{x} is W ∗(X,x, h)−w(x). By induction,
W ∗(X,x, h)−w(x) ≤ W (X\{c}, y, h−|x|+|overlap(y, x)|). Hence W ∗(X,x, h) ≤
W (X \ {c}, y, h − |x| + |overlap(y, x)|) + w(x) ≤ W ′′ ≤ W (X,x, h).

To evaluate the running time of the dynamic programming algorithm, observe
that we can check whether y is a substring of x or find overlap(y, x) in time O(m)
using, e.g., the algorithm of Knuth, Morris, and Pratt [15], and we can construct
the table of the overlaps and their sizes in time O(n2m). Hence, for each X, the
values W (X,x, h) can be computed in time O(n2km log W ), as h ≤ � < km.
Therefore, the running time is O(2k · n2km log W ).

We proved that an optimal colorful solution can be found in time O(2k ·
n2km log W ). Using the standard color coding arguments (see [2]), we obtain
that it is sufficient to consider N = ek random colorings of S to claim that with
probability α > 0, where α is a constant that does not depend on the input
size and the parameter, we get a coloring for which k string of S that have
a superstring of length at most � and the total weight at least W are colored
by distinct colors if such a string exists. It implies that Partial Weighted

Superstring can be solved in time O((2e)k · kn2m log W ) by our randomized
algorithm.

To derandomize the algorithm, we apply the technique proposed by Alon,
Yuster and Zwick [2] using the k-perfect hash functions constructed by Naor,
Schulman and Srinivasan [18]. The random colorings are replaced by the family
of at most ekklog k log n hash functions c : S → {1, . . . , k} that have the following
property: there is a hash function c that colors k string of S that have a super-
string of length at most � and the total weight at least W by distinct colors if
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such a string exists. It implies that Partial Weighted Superstring can be
solved in time (2e)kkO(log k) · n2 log n · m log W deterministically. 
�
Because Partial Superstring is a special case of Partial Weighted Super-

string, Theorem 1 implies that this problem is FPT when parameterized by k.
We show that the same holds if we parameterize the problem by �.

Corollary 1. Partial Superstring is FPT when parameterized by �.

Proof. Consider an instance (S, k, �) of Partial Superstring. Recall that S
can contain several copies of the same string. We construct a set of weighted
strings S′ by replacing a string s that occurs r times in S by the single copy of
s of weight w(s) = r. Let W = k. Observe that there is a string s of length at
most � such that s is a superstring of a collection of at least k strings of S if
and only if there a string s of length at most � such that s is a superstring of a
set of strings of S′ of total weight at least W . A string of length at most � has
at most �(�−1)/2 distinct substrings. We consider the instances (S′, w, k′, �,W )
of Partial Weighted Superstring for k′ ∈ {1, . . . , �(� − 1)/2}. For each of
these instances, we solve the problem using Theorem 1. It remains to observe
that there is a string s of length at most � such that s is a superstring of a set
of strings of S′ of total weight at least W if and only if one of the instances
(S′, w, k′, �,W ) is a yes-instance of Partial Weighted Superstring. 
�
We complement the above algorithmic results by showing that we hardly can
expect that Partial Superstring has a polynomial kernel when parameterized
by k or �.

Theorem 2. Partial Superstring does not admit a polynomial kernel when
parameterized by k+m or �+m for strings of length at most m over the alphabet
Σ = {0, 1} unless NP ⊆ coNP /poly.

4 Shortest Superstring Below Guaranteed Values

In this section we discuss Shortest Superstring parameterized by the dif-
ference between upper bounds for the length of a shortest superstring and the
length of a solution superstring. For a collection of strings S, the length of
the shortest superstring is trivially upper bounded by

∑
x∈S |x|. We show that

Shortest Superstring admits a polynomial kernel when parameterized by
the compression measure of a solution.

Theorem 3. Shortest Superstring admits a kernel of size O(r4) when para-
meterized by r =

∑
x∈S |x| − �.

Proof. Let (S, �) be an instance of Shortest Superstring, r =
∑

x∈S |x| − �.
First, we apply the following reduction rules for the instance.

Rule 1. If there are distinct elements x and y of S such that x ⊆ y, then delete
x and set r = r − |x|. If r ≤ 0, then return a yes-answer and stop.
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Rule 2. If there is x ∈ S such that for any y ∈ S \ {x}, |overlap(x, y)| =
|overlap(y, x)| = 0, then delete x and set � = � − |x|. If S = ∅ and � ≥ 0, then
return a yes-answer and stop. If � < 0, then return a no-answer and stop.

Rule 3. If there are distinct elements x and y of S such that |overlap(x, y)| ≥ r,
then return a yes-answer and stop.

It is straightforward to verify that these rules are safe, i.e., by the application of
a rule we either solve the problem or obtain an equivalent instance. We exhaus-
tively apply Rules 1–3. To simplify notations, we assume that S is the obtained
set of strings and � and r are the obtained values of the parameters. Notice that
all strings in S are distinct and no string is a substring of another. Our next aim
is to bound the lengths of considered strings.

Rule 4. If there is x ∈ S with |x| > 2r, then set � = � − |x| + 2r and x =
prefixr(x)suffixr(x). If � < 0, then return a no-answer and stop.

To see that the rule is safe, recall that x is not a sub or superstring of any other
string of S, and |overlap(x, y)| < r and |overlap(y, x)| < r for any y ∈ S distinct
from x after the applications of Rule 3. As before, we apply Rule 4 exhaustively.

Now we construct an auxiliary graph G with the vertex set S such that
two distinct x, y ∈ S are adjacent in G if and only if |overlap(x, y)| > 0 or
|overlap(y, x)| > 0. We greedily select a maximal matching M in G and apply
the following rule.

Rule 5. If |M | ≥ r, then return a yes-answer and stop.

To show that the rule is safe, it is sufficient to observe that if M =
{x1, x

′
1}, . . . , {xh, x′

h}, |overlap(xi, x
′
i)| > 0 for i ∈ {1, . . . , h} and h ≥ r,

then the string s obtained by the consecutive concatenations with overlaps of
x1, x

′
1, . . . , xh, x′

h and then all the other strings of S in arbitrary order, then the
compression measure of s is at least r.

Assume from now that we do not stop here, i.e., |M | ≤ r − 1. Let X ⊆ S be
the set of end-vertices of the edges of M and Y = S \ X. Let X = {x1, . . . , xh}.
Clearly, h ≤ 2(r − 1). Observe that X is a vertex cover of G and Y is an
independent set of G.

For each ordered pair (i, j) of distinct i, j ∈ {1, . . . , h}, find an ordering
y1, . . . , yt of the elements of Y sorted by the decrease of |overlap(xi, yp)| +
|overlap(yp, xj)| for p ∈ {1, . . . , t}. We construct the set R(i,j) that contains
the first min{2h, t} elements of the sequence.

For each i ∈ {1, . . . , h}, find an ordering y1, . . . , yt of the elements of Y sorted
by the decrease of |overlap(yp, xi)| for p ∈ {1, . . . , t}. We construct the set Si

that contains the first min{2h, t} elements of the sequence.
For each i ∈ {1, . . . , h}, find an ordering y1, . . . , yt of the elements of Y sorted

by the decrease of |overlap(xi, yp)| for p ∈ {1, . . . , t}. We construct the set Ti

that contains the first min{2h, t} elements of the sequence.
Let

S′ = X ∪ ( ⋃

(i,j), i,j∈{1,...,h},i �=j

R(i,j)

) ∪ ( ⋃

i∈{1,...,h}
Si

) ∪ ( ⋃

i∈{1,...,h}
Ti

)
.
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Claim (∗). There is a superstring s of S with the compression measure at least r if
and only if there is a superstring s′ of S′ with the compression measure at least r.

Proof (of Claim (∗)). If s′ is a superstring of S′ with the compression measure
at least r, then the string s obtained from s′ by the concatenation of s′ and the
strings of S \ S′ (in any order) is a superstring of S with the same compression
measure as s′.

Suppose that s is a shortest superstring of S and the compression measure
at least r. By Lemma 1, s = s1 ◦ . . . ◦ sn, where S = {s1, . . . , sn}. Let

Z = {si | si ∈ Y, |overlap(si−1, si)| > 0 or |overlap(si, si+1)| > 0, 1 ≤ i ≤ n};

we assume that s0, sn+1 are empty strings.
We show that |Z| ≤ 2h. Suppose that si ∈ Z. If |overlap(si−1, si)| > 0, then

si−1 ∈ X, because si ∈ Y and any two strings of Y have the empty overlap. By
the same arguments, if |overlap(si, si+1)| > 0, then si+1 ∈ X. Because |X| = h,
we have that |Z| ≤ 2h.

Suppose that the shortest superstring s is chosen in such a way that |Z \S′| is
minimum. We prove that Z ⊆ S′ in this case. To obtain a contradiction, assume
that there is si ∈ Z \ S′. We consider three cases.

Case 1. |overlap(si−1, si)| > 0 and |overlap(si, si+1)| > 0. Recall that si−1, si+1

∈ X in this case. Since si /∈ S′, si /∈ R(p,q) for xp = si−1 and xq = si+1. In par-
ticular, it means that |R(p,q)| = 2h. As |Z| ≤ 2h and |R(p,q)| = 2h, there is sj ∈
R(p,q) such that sj /∈ Z, i.e., |overlap(sj−1, sj)| = |overlap(sj , sj+1)| = 0. By the
definition of R(p,q), |overlap(si−1, sj)|+ |overlap(sj , si+1)| ≥ |overlap(si−1, si)|+
|overlap(si, si+1)|. Consider s∗ = s1 ◦ . . . ◦ si−1 ◦ sj ◦ si+1 . . . ◦ sj−1 ◦ si ◦
sj ◦ . . . ◦ sn assuming that i < j (the other case is similar). Because
|overlap(si−1, sj)| + |overlap(sj , si+1)| ≥ |overlap(si−1, si)| + |overlap(si, si+1)|,
|s∗| ≤ |s|. Moreover, since s is a shortest superstring of S, |s| ≥ |s∗| and,
therefore, |overlap(sj−1, si)| = |overlap(si, sj+1)| = 0. But then for the set
Z∗ constructed for s∗ in the same way as the set Z for s, we obtain that
|Z∗ \ S′| < |Z \ S′|; a contradiction.

Case 2. |overlap(si−1, si)| = 0 and |overlap(si, si+1)| > 0. Then si+1 ∈ X. Since
si /∈ S′, si /∈ Sp for xp = si+1 and |Sp| = 2h. As |Z| ≤ 2h and |Sp| = 2h, there
is sj ∈ Sp such that sj /∈ Z, i.e., |overlap(sj−1, sj)| = |overlap(sj , sj+1)| = 0.
By the definition of Sp, |overlap(sj , si+1)| ≥ |overlap(si, si+1)|. As in Case 1,
consider s∗ obtained by the exchange of si and sj in the sequence of strings
that is used for the concatenations with overlaps. In the same way, we obtain a
contradiction with the choice of Z, because for the set Z∗ constructed for s∗ in
the same way as the set Z for s, we obtain that |Z∗ \ S′| < |Z \ S′|.
Case 3. |overlap(si−1, si)| > 0 and |overlap(si, si+1)| = 0. To obtain contra-
diction in this case, we use the same arguments as in Case 2 using symmetry.
Notice that we should consider Tp instead of Sp.

Now let s′ = si1 ◦ . . . ◦ sip , where si1 , . . . , sip is the sequence of string of S′

obtained from s1, . . . , sn by the deletion of the strings of S \S′. Because we have
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that Z ⊆ S′, the overlap of each deleted string with its neighbors is empty and,
therefore, s′ has the same compression measure as s
To finish the construction of the kernel, we define �′ = �−∑

x∈S\S′ |x| and apply
the following rule that is safe by Claim (∗).

Rule 6. If �′ < 0, then return a no-answer and stop. Otherwise, return the
instance (S′, �′) and stop.

Since |X| = h ≤ 2(r − 1), |S′| ≤ h+h2 · 2h+h · 2h+h · 2h = 2h3 +4h2 +h =
O(h3) = O(r3). Because each string of S′ has length at most 2r, the kernel has
size O(r4).

It is easy to see that Rules 1-3 can be applied in polynomial time. Then graph
G and M can be constructed in polynomial time and, trivially, Rule 5 demands
O(1) time. The sets X, Y , R(i,j), Si and Ti can be constructed in polynomial
time. Hence, S′ and �′ can be constructed in polynomial time. Because Rule 6 can
be applied in time O(1), we conclude that the kernel is constructed in polynomial
time. 
�
Now we consider another upper bound for the length of the shortest super-
string. Let S be a collection of strings. We construct an auxiliary weighted
graph G(S) with the vertex set S by assigning the weight w({x, y}) =
max{|overlap(x, y)|, |overlap(y, x)|} for any two distinct x, y ∈ S. Let μ(S) be
the size of a maximum weighted matching in G. Clearly, G can be constructed
in polynomial time and the computation of μ(G) is well known to be polyno-
mial [6]. If M = {x1, y1}, . . . , {xh, yh} and |overlap(xi, yi)| = w({xi, yi}) for
i ∈ {1, . . . , h}, then the string s obtained by the consecutive concatenations
with overlaps of x1, y1, . . . , xh, yh and then (possibly) the remaining string of
S has the compression measure at least μ(G). Hence,

∑
x∈S |x| − μ(G) is the

upper bound for the length of the shortest superstring of G. We show that it is
NP-hard to find a superstring that is shorter than this bound.

Theorem 4. Shortest Superstring is NP-complete for � =
∑

x∈S |x| −
μ(S) − 1 even if restricted to the alphabet Σ = {0, 1}.
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Abstract. Haplotype assembly is the computational problem of recon-
structing the two parental copies, called haplotypes, of each chromosome
starting from sequencing reads, called fragments, possibly affected by
sequencing errors. Minimum Error Correction (MEC) is a prominent
computational problem for haplotype assembly and, given a set of frag-
ments, aims at reconstructing the two haplotypes by applying the mini-
mum number of base corrections.

By using novel combinatorial properties of MEC instances, we are able
to provide new results on the fixed-parameter tractability and approx-
imability of MEC. In particular, we show that MEC is in FPT when para-
meterized by the number of corrections, and, on “gapless” instances, it is
in FPT also when parameterized by the length of the fragments, whereas
the result known in literature forces the reconstruction of complementary
haplotypes. Then, we show that MEC cannot be approximated within
any constant factor while it is approximable within factor O(log nm)
where nm is the size of the input. Finally, we provide a practical
2-approximation algorithm for the Binary MEC, a variant of MEC that
has been applied in the framework of clustering binary data.

1 Introduction

The genome of diploid organisms, as humans, is composed of two parental copies,
called haplotypes, for each chromosome. The most frequent form of genetic
variations between the two haplotypes of the same chromosome are the Sin-
gle Nucleotide Polymorphisms (SNPs). Haplotype analysis is of fundamental
importance for a variety of applications including agricultural research, medical
diagnostic, and drug design [3,4,22].
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The task of the haplotyping problem is the reconstruction of each pair of
haplotypes. However, large scale direct experimental reconstruction from the
collected samples is not yet cost-effective. One of the computational approaches
that have been proposed, haplotype assembly, considers the high-throughput
sequencing reads (also called fragments) that have to be bipartitioned in order
to reconstruct the two haplotypes. Since for most of the SNP positions only
two nucleotides are seen, the haplotypes can be represented as binary vectors.
The fragments obtained from sequencing may not cover some positions of the
haplotypes. These uncovered positions are called holes, whereas a sequence of
holes within a fragment is called gap. However, the presence of sequencing and
(possible) mapping errors makes the haplotype assembly problem a challeng-
ing task. In literature, different combinatorial formulations of the problem have
been proposed [1,7,17,18]. Among them, Minimum Error Correction (MEC) [18]
has been proved particularly successful in the reconstruction of accurate hap-
lotypes [5,13,20]. However, MEC is a computationally hard problem. Indeed,
MEC is APX-hard even if the fragments have at least one gap [6] and remains
NP-hard even if the fragments do not contain gaps (Gapless MEC ) [6]. Instead,
the computational complexity of MEC on instances without holes – called Binary
MEC – is still unknown. Many successful approaches for coping with the com-
putational intractability of MEC are based on the parameterized complexity
framework. In particular, MEC is in FPT when parameterized by the “cover-
age” [20], that is the maximum number of fragments with non-hole values on
a SNP position. Moreover, MEC is in FPT also when parameterized by the
length of the fragments [13], but only under the all-heterozygous assumption,
that forces to reconstruct complementary haplotypes. In fact, this assumption
allows the dynamic programming algorithm of [13] to focus on the reconstruc-
tion of a single haplotype and, hence, to limit the possible combinations for each
SNP position.

Despite the significant amount of work present in the literature, some impor-
tant questions related to the fixed-parameter tractability and approximability
of MEC are still open. Two significant open problems are whether there exists
a constant approximation algorithm for MEC and whether MEC is in FPT
when parameterized by parameters of classical or practical interest, such as the
total number of corrections or the length of the fragments. Indeed, removing
the dependency on the all-heterozygous assumption from [13] does not appear
straightforward and, hence, fixed-parameter tractability of MEC when parame-
terized by the fragment length is still an open problem.

The binary restriction of MEC where the fragments do not contain holes is
particularly interesting from a mathematical point of view, and is the variant of
the well-known Hamming k-Median Clustering Problem [6,16], when k = 2. This
clustering problem asks for k representative “consensus” (also called “median”)
strings with the goal of minimizing the distance between each input string
and its closest consensus string. Hamming 2-Median Clustering is well stud-
ied from the approximation viewpoint, and a Polynomial Time Approximation
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Scheme (PTAS) has been proposed, both in a randomized [19] and deterministic
form [14].

In this work, we present advances in the characterization of the fixed-
parameter tractability and the approximability of MEC problem in the general,
gapless, and binary cases. We first show that MEC is not in APX, i.e., it is not
approximable within constant factor. However, we also show that a reduction
previously known [8] can be adapted to prove that MEC is approximable within
factor O(log nm) (where n is the number of fragments and m is the number of
SNPs) and that MEC is in FPT when parameterized by the total number of
corrections.

Furthermore, by inspecting novel combinatorial properties of gapless
instances, we show that Gapless MEC is in FPT when parameterized by the
length of the fragments and that Binary MEC can be approximated within
factor 2. Although Binary MEC is known to admit a PTAS, the 2-approximation
algorithm we give is more practical and intuitive than the previous approxima-
tion results.

2 Preliminary Definitions

In this section, we introduce some basic notions and the formal definition of the
MEC problem. In the rest of the work, we indicate, as usual, the value of a vector
s at position t as s[t].

A fragment matrix is a matrix M composed of n rows and m columns such
that each entry contains a value in {0, 1,−}. Each row of M represents a fragment
and, formally, is a vector belonging to {0, 1,−}m. Symmetrically, each column
of M corresponds to an SNP position and is a vector belonging to {0, 1,−}n.
We denote by fi the i-th row of M and by pj the j-th column of M. As a
consequence, the entry of M at the i-th row and j-th column is denoted by fi[j]
or pj [i]. The length �i of a fragment fi is defined as the number of elements in
fi between the rightmost and the leftmost non-hole elements (included) and we
denote by � the maximum length over all the fragments in M. Moreover, we
say that a column pj covers a row fi if pj [i] ∈ {0, 1} and we define the active
fragments of pj as the set active(pj) of all the covered rows, that is active(pj) =
{fi | pj [i] ∈ {0, 1}} (Notice that we denote by active(pj1 , pj2) the intersection
active(pj1)∩active(pj2) for two columns pj1 and pj2). A column pj is heterozygous
if it contains both 0’s and 1’s, otherwise is homozygous. A hole is an entry fi[j]
of M equal to the symbol −. A gap in a fragment fi is a maximal subvector of
holes in fi surrounded by non-hole entries (that is, there exist two positions j1
and j2 with j1 + 1 < j2 such that fi[j1], fi[j2] �= − and fi[t] = − for all t with
j1 < t < j2). A fragment matrix is gapless if no fragment contains a gap.

Two rows fi1 and fi2 are in conflict when there exists a position j, with
1 ≤ j ≤ m, such that fi1 [j] �= fi2 [j], and fi1 [j], fi2 [j] �= −. Otherwise, we say
that fi1 and fi2 are in agreement. A collection F of fragments is in agreement
if any pair of fragments f1, f2 in F are in agreement. A fragment matrix M is
conflict free if there exists a bipartition (F1,F2) of its fragments such that both
F1 and F2 are in agreement.
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When a fragment matrix M is conflict free, all the fragments in each part of
the bipartition can be merged in order to reconstruct a haplotype, intended as a
fragment without holes. Unfortunately, a fragment matrix M is not always con-
flict free. The Minimum Error Correction problem deals precisely with this issue
by asking for a minimum set of corrections that make a fragment matrix conflict
free, where a correction of a given fragment fi at position j, with fi[j] �= −, is
the flip of the value fi[j], replacing a 0 with a 1, or a 1 with a 0.

Problem 1 (Minimum Error Correction (MEC) problem).
Input: a fragment matrix M of n rows and m columns.
Output: a conflict free matrix M′ obtained from M with the minimum number
of corrections.

Gapless MEC is the restriction of MEC where the input fragment matrix M
is gapless, while Binary MEC is the restriction of (Gapless) MEC where the
matrix M does not contain holes (that is, when M is a binary matrix).

Given a conflict free fragment matrix M, any heterozygous column pj encodes
a bipartition of the fragments covered by pj indicating which one belongs to one
haplotype and which one belongs to other. Instead, any homozygous column pj

gives no information on how the covered fragments have to be partitioned, and
it is “in accordance” with any other bipartition or heterozygous column. More
formally, we say that two columns pj1 , pj2 of a fragment matrix are in accordance
if (1) at least one of pj1 , pj2 is homozygous, or (2) pj1 , pj2 are both heterozygous
and are identical or complementary on the fragments covered by both.

As stated in the following lemma, pairwise column accordance on gapless
matrices is a necessary and sufficient condition for being conflict free.

Lemma 2. Let M be a gapless fragment matrix. Then, M is conflict free if
and only if each pair of columns is in accordance.

Proof. By definition, if M is conflict free, each pair of columns is in accordance.
For this reason, we just prove by induction on the number m of columns in M
that if each pair of columns is in accordance, then M is conflict free.

If h = 1, the lemma obviously holds.
Assume by induction that the lemma holds for the first h columns in M,

we need to prove that the lemma still holds for the first h + 1 columns. The
submatrix on the first h columns is conflict free by induction and, for this reason,
a bipartition (P1, P2) of the corresponding fragments exists. By assumption, ph+1

and ph are in accordance. Hence, ph+1 and ph define the same bipartition on
the fragments in active(ph, ph+1). Since M is gapless, there is no column py in
{p1, . . . , ph−1} such that active(py, ph+1) \ active(ph) �= ∅, hence active(ph+1) \
active(ph) �⊆ active(py) for 1 ≤ y ≤ h−1. It follows that there exists a bipartition
(P1 ∪ P ′

1, P2 ∪ P ′
2) for all the fragments active on the first h + 1 columns, where

(P ′
1, P

′
2) is the bipartition induced by ph+1 on the fragments in active(ph+1) \

active(ph). As a consequence the submatrix on the first h+1 columns is conflict
free. 	
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Such a property is particularly important when designing exact algorithms for
Gapless MEC, as it allows to test only for pairwise column accordance in order
to ensure that the matrix is conflict free. In fact, the fixed-parameter algorithm
for Gapless MEC that we present in Sect. 4 is based on this property. Further-
more, notice that if we relax the requirement that M is gapless, then the property
does not hold. Consider, for example, the fragment matrix M composed of three
fragments f1 = 01−, f2 = −01, and f3 = 1 − 0. The three columns are pair-
wise in accordance, but the matrix is not conflict free (and, in fact, f3 contains
a gap).

Given two columns pj1 , pj2 of a fragment matrix M, we define their (gen-
eralized) Hamming distance dH(pj1 , pj2) as |{i | {pj1 [i], pj2 [i]} = {0, 1}}| while
their correction distance d(pj1 , pj2) as the minimum between dH(pj1 , pj2) and
dH(pj1 , pj2) (where p is the complement of p on non-hole entries). Notice that
the correction distance is non-negative and symmetric, but does not satisfy the
triangle inequality, hence, despite the name, is not a metric. We also define the
homozygous distance H(pj) as the minimum between the number of 0’s and 1’s
contained in pj . Intuitively, the correction distance is the cost of making a col-
umn equal or complementary to another column, while the homozygous distance
is the cost of making a column homozygous.

A solution of MEC over a fragment matrix M is a bipartition of its fragments,
that can be encoded as a binary vector O. It is easy to see that the cost of that
solution is: costM(O) =

∑m
j=1 min(d(O, pj),H(pj)).

3 Inapproximability of MEC

In this section, we show that MEC is not in APX, that is MEC cannot be
approximated within constant factor. We achieve this result by introducing an
L-reduction from the Edge Bipartization problem to MEC.

The Edge Bipartization problem is defined as follows.

Problem 3 (Edge Bipartization (EB) problem [9]).
Input: an undirected graph G = (V,E).
Output: E′ ⊆ E of minimum size such that G′ = (V,E \ E′) is bipartite.

Now, we present the details of the reduction. Given an undirected graph G =
(V,E), we build the associated fragment matrix M(G) (with |V | rows and |E|
columns) by setting, at each column pj associated with edge ej = {u, v} ∈ E,
fu[j] = 0, fv[j] = 1, and fz[j] = − for z �= u, v. Notice that, by construction,
there exists a conflict in M(G) between fragments fu and fv if and only if
{u, v} ∈ E.

Lemma 4. Let G = (V,E) be an undirected graph and M(G) be the associ-
ated fragment matrix. Given a solution E′ of EB over G, we can compute in
polynomial time a solution of MEC over M(G) with |E′| corrections. Symmet-
rically, given a solution of MEC over M(G) with h corrections, we can compute
in polynomial time a solution E′ of EB over G of size at most h.
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Proof. (⇒) Let E′ be a set of edges such that (V1�V2, E \E′) is bipartite, where
V1 and V2 are the parts of the bipartition. Build a matrix M′(G) from M(G) by
flipping, for each ej = {u, v} ∈ E′, the entry fu[j]. Clearly, M′(G) is obtained
from M(G) with |E′| corrections and it does not contain conflicts induced by
edges in E′. Let (F1,F2) be the bipartition of fragments of M′(G) such that
Fi := {fu | vu ∈ Vi} (for i ∈ {1, 2}). Each Fi is in agreement because it does not
contain a pair of fragments associated with the endpoints of an edge of E \ E′.
Hence, M′(G) is conflict free.

(⇐) Let M′(G) be a conflict free matrix obtained from M(G) with h cor-
rections and let C ′ be the subset of columns of M′(G) that contain exactly one
correction. Consider the set E′ := {ej ∈ E | pj ∈ C ′}. Clearly, |E′| ≤ h.
Since M′(G) is conflict free, there exists a bipartition (F1,F2) of the frag-
ments such that both F1,F2 are in agreement. Build sets V1, V2 such that
Vi := {vu | fu ∈ Fi} (with i ∈ {1, 2}). We claim that (V1 � V2, E \ E′) is
bipartite. Suppose to the contrary that there exists an edge ej = {u, v} ∈ E \E′

such that u, v ∈ Vi, i ∈ {1, 2}. Since fu[j] = fv[j] in M′(G), this implies that
exactly one of fu[j] and fv[j] has been corrected (since fu[j] �= fv[j] in M(G)).
As a consequence, we have that ej ∈ E′, contradicting the assumption. 	

Khot [15] proved that, under the Unique Games Conjecture, EB is not in APX.
Since Lemma 4 proves that MEC is L-reducible to EB, we have the following
result.

Theorem 5. Under the Unique Games Conjecture [15], MEC is not in APX.

The inapproximability result given in Theorem5 nicely complements an approx-
imation (and fixed-parameter tractable) result that can be easily inferred by a
reduction presented in [8]. In [8], MEC is reduced to the Maximum Bipartite
Induced Subgraph problem (MBIS). Given a vertex-weighted graph G, MBIS
asks for a maximum weight subset of vertices of G that induces a bipartite
graph. The reduction defines a graph, called fragment graph, whose set of nodes
is the union of two sets: a set of nodes, called fragment nodes, one for each frag-
ment, and a set of nodes, called entry nodes, one for each entry of the matrix. In
order to avoid the removal of fragments nodes, they are assigned a sufficiently
large weight.

The reduction can be easily reworked in order to prove approximation
and fixed-parameter tractability results for MEC. More precisely, MEC is now
reduced to the Graph Bipartization (GB) problem, a problem related to MBIS.
Given an unweighted graph G, GB asks for the minimum number of vertex
removals so that the resulting graph is bipartite. The reduction given in [8]
can be modified by defining a new version of the fragment graph (see Fig. 1),
where each (weighted) fragment node is substituted with a sufficiently large set
of fragment nodes. From the construction of the fragment graph, it follows that
a fragment matrix M is conflict free if and only if the corresponding fragment
graph is bipartite and that a solution of MEC with k corrections corresponds to
a solution of GB that removes k vertices.
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Fig. 1. A 3 × 4 fragment matrix (left) and the associated fragment graph (right).
Fragment-nodes are in black, while entry-nodes are in white.

Since GB can be approximated within factor O(log |V |) [10] and is in FPT
when parameterized by the number of removed vertices [11,23], we have that:

Theorem 6.

(1) MEC can be approximated in polynomial time within factor O(log nm) where
n is the number of fragments and m is the number of SNP positions.

(2) MEC is in FPT when parameterized by the total number of corrections.

4 Gapless MEC Is in FPT When Parameterized
by the Fragment Length

In this section, we introduce a fixed-parameter tractable algorithm for Gapless
MEC when parameterized by the maximum length � of the fragments. The algo-
rithm is based on a dynamic programming approach and aims at finding a specific
tripartition for the columns of a gapless fragment matrix M. In this section, we
assume w.l.o.g. that M is a gapless fragment matrix and the fragments of M
are sorted by starting position.

Lemma 2 provides a sufficient and necessary condition for the reconstruc-
tion of a solution for Gapless MEC, that is a conflict free fragment matrix. For
this reason, the gapless condition is required by this algorithm. In fact, if the
fragment matrix contains gaps, the accordance of the columns is not sufficient
to ensure that there are no conflicts. Therefore, we firstly show a result that
directly derives from Lemma 2. The following proposition stresses the relation-
ship between a bipartition of the fragments and a tripartition of the columns in
a gapless fragment matrix M that is conflict free.

Proposition 7. Given a gapless fragment matrix M, the following assertions
are equivalent:

1. M is conflict free.
2. There exists a bipartition (F1,F2) of the fragments, where both F1 and F2

are in agreement.
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3. There exists a tripartition T = (L,H,R) of the columns such that each column
in H is homozygous, each column in L ∪ R is heterozygous, dH(pj1 , pj2) = 0
for all the columns pj1 , pj2 ∈ L (pj1 , pj2 ∈ R, resp.) and dH(pj1 , pj2) = 0 for
each column pj1 ∈ L and each column pj2 ∈ R.

Based on Proposition 7, we introduce an algorithm for Gapless MEC that builds
a tripartition of the columns of M in order to find a conflict free matrix M′

obtained from M with the minimum number of corrections. Notice that in the
rest of this section we implicitly refer only to tripartitions built as reported in
the third assertion of Proposition 7.

The algorithm iteratively proceeds row-wise and, at each step, computes a
tripartition for the columns considered so far. In particular, the key observation
that allows to bound the exponential complexity of the algorithm to the parame-
ter � is that we can build any tripartition for all the columns in M by adding only
a subset of columns, called active columns, for each row. This subset contains
the columns covering the current fragment and the columns covering both pre-
vious and successive fragments. Indeed, we need to remember the tripartition
established by previous fragments for columns that are covered by successive
fragments. More formally, we define the set active columns for a fragment fi as:

A(i) = {pj | (pj [i] �= −) ∨ (∃x, y with x < i < y | pj [x], pj [y] �= −)}

Figure 2 represents the active columns A(i) of a fragment fi. The cardinality
of A(i) is bounded by �. In fact, considering a row fi, notice that �i ≤ � and
no column pk, to the left of fi, is in A(i). Recall that fragments are sorted by
starting position and assume that r is the number of columns pj to the right of
fi, such that there are fb, fq with b < i < q and pj [b], pj [q] �= −. Since the r
columns must be contained in A(b) for a fragment fb with a starting position
preceding the one of fi, it holds that �i + r ≤ �b ≤ �. It clearly follows that
|A(i)| = �i + r ≤ �.

Considering two rows fi1 and fi2 , with i1 < i2, a tripartition for all the
columns in A(i1) ∪ A(i2) can be computed by combining a tripartition T1 for
A(i1) and a tripartition T2 for A(i2), only if T1 and T2 are “in accordance”, that
is, they are partitioning the shared columns in the same way. For this reason, we
say that a tripartition T2 = (L2,H2, R2) for A(i2) extends another tripartition

Fig. 2. The set A(i) of active columns for a fragment fi.
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T1 = (L1,H1, R1) for A(i1) if and only if L1 ∩ A(i2) ⊆ L2, H1 ∩ A(i2) ⊆ H2,
and R1 ∩ A(i2) ⊆ R2.

At each step i, the algorithm computes a tripartition T for A(i) extending a
tripartition T ′ for A(i − 1). Since A(i − 1) also contains all the columns pj with
pj [i − 1] = − such that there exists y < i − 1 with pj [y] �= − and pj [i] �= −,
it follows that T even extends any tripartition computed at the previous steps
extended by T ′. As a consequence, we prove the following implication.

Lemma 8. If there exists a conflict free matrix M′′ obtained from M on the
first i − 1 rows that induces a tripartition T ′ for the columns in A(i − 1), and
if T is a tripartition for the columns in A(i) extending T ′, then there exists a
conflict free matrix M′ obtained from M on the first i rows that induces the
tripartition T for the columns in A(i).

Proof. By definition, pj [i] �= − and pj [y] = − for each column pj ∈ A(i)\A(i−1)
and for each y < i. By assumption T extends T ′, hence build M′ such that the
columns covered by the first i − 1 rows are tripartitioned as in M′′ and the
remaining columns only covered by fi are tripartitioned according to T . By
construction, M′ induces the tripartition T for A(i). Since M′′ is conflict free,
it follows that M′ is conflict free by Proposition 7. 	

At each step i and for each tripartition T = (L,H,R) for A(i), the algorithm
chooses the tripartition T ′ extended by T for A(i−1) that induces the minimum
cost (recursive step) and computes the minimum number of corrections to add on
the current fragment fi in order to tripartition all the columns in A(i) according
to T (local contribution). In particular, the algorithm considers the minimum
number of corrections on fi such that pj [i] = 1 or pj [i] = 0 for all pj in L and,
on the contrary, pj [i] = 0 or pj [i] = 1 for all pj in R. At the same time, the
minimum number of corrections on the fragment fi is computed for each column
pj in H such that pj on the first i rows can be optimally transformed into a
homozygous column. Therefore, we define D[i, T ] as the minimum number of
corrections to obtain a conflict free matrix M′ from M on the first i rows that
induces a tripartition T for A(i). The algorithm proceeds row-wise computing
the value D[i, T ] for each fragment fi and for each tripartition T for A(i) by the
following recursive equation:

D[i, T ] = Δ(i, T ) + min
T ′ extended by T

D[i − 1, T ′] (1)

where T ′ is a tripartition for A(i − 1). In the recursion, we consider only the
tripartitions T ′ extended by T , since the shared columns have to be partitioned
in the same way. In conclusion, the local contribution is defined as:

Δ(i, T ) = O(i,H) + min

{
E0(i, L) + E1(i, R)
E1(i, L) + E0(i, R)

where T = (L,H,R) (2)

such that Ex(i, F ) is the cost of correcting the columns in F for fragment fi

to value x, that is Ex(i, F ) = |{j | j ∈ F ∧ pj [i] /∈ {x,−}}|, and O(i,H)
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is the minimum number of corrections to apply on fragment fi such that the
columns in H, considered on the first i rows, can be turned into homozygous
columns with minimum cost. Denote by #x

i,j the number of values equal to x

in {pj [1], . . . , pj [i]}. The minimum between #0
i,j and #1

i,j states the minimum
number of corrections necessary to turn a column pj on the first i rows into a
homozygous column. Since O(i,H) refers only to the corrections on fragment fi,
we can compute O(i,H) as:

O(i,H) =
∑

j∈H

⎧
⎪⎨

⎪⎩

1 pj [i] = 0 and #0
i,j ≤ #1

i,j

1 pj [i] = 1 and #1
i,j ≤ #0

i,j

0 otherwise
(3)

Given a set of columns F , it is easy to see that
∑

i∈{1,...,n} O(i, F ) =
∑

pj∈F H(pj).
The base case of the recurrence is D[1, T ] = Δ(1, T ) for each tripartition

T for A(1). The algorithm returns the optimum corresponding to minT D[n, T ]
where T is a tripartition for A(n). Furthermore, an optimal tripartition for all
the columns can be computed by backtracking.

The algorithm computes all the values D[i, T ] for each tripartition T of the
columns in A(i) and for each i in {1, . . . , n}. It follows that there are O(3� ·
n) entries and, therefore, the space complexity is equal to O(3� · n). Given a
tripartition T , we need O(3�) time to enumerate all the tripartitions T ′ extended
by T because we have to tripartition all the columns in |A(i − 1) \ A(i)| with
A(i − 1) ≤ � and, consequently, |A(i − 1) \ A(i)| ≤ �. Since Δ(i, T ) can be
computed in O(�) time, each entry D[i, T ] can be computed in O(3� · �). It
follows that the total running time of the algorithm is O(32� · � · n). Notice that
storing partial information during the computation (using an approach similar
to the one presented in [20]) we can decrease the complexity to O(3� · � · n).

We now show the correctness of the algorithm.

Lemma 9. Consider a gapless fragment matrix M.

1. If D[i, T ] = h, then there exists a conflict free matrix M′ obtained from M
on the first i rows with h corrections that induces a tripartition T for the
columns in A(i).

2. If M′ is a conflict free matrix obtained from M on the first i rows with h
corrections that induces a tripartition T for the columns in A(i), D[i, T ] ≤ h.

Proof. We prove the lemma by induction on the number n of rows of M. Both
the statements obviously hold for i = 1. Assume that lemma holds for i − 1, we
show that both the statements hold for i.

(1) By Eq. (1), there exists a tripartition T ′ for A(i−1) such that T extends T ′

and D[i, T ] = h = Δ(i, T )+D[i−1, T ′]. Assuming D[i−1, T ′] = h′, by induction
there exists a conflict free matrix M′′ obtained from M on the first i − 1 rows
with h′ corrections that induces a tripartition T ′ for A(i − 1). By Proposition 8,
there exists a conflict free matrix M′ obtained from M on the first i rows that
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induces a tripartition T for A(i). Since T extends T ′, by construction we can
add Δ(i, T ) corrections on fragment fi in order to build M′ starting from M′′.
It follows that M′ is obtained from M with Δ(i, T ) + h′ = h corrections.

(2) Assume that M′′ is the submatrix of M′ obtained from M on the first
i−1 rows with h′ corrections that induces a tripartition T ′ for A(i−1). Clearly,
T ′ is extended by T due to the fact that M′′ is equal to M′ on the first i − 1
rows. Since M′ contains Δ(i, T ) corrections on the row fi by construction, it
follows that h = Δ(i, T ) + h′. Moreover, we know that D[i − 1, T ′] ≤ h′ by
induction and by Eq. (1) that D[i, T ] = Δ(i, T )+minT ′′ extended by T D[i−1, T ′′].
Hence, since minT ′′ extended by T D[i − 1, T ′′] ≤ D[i − 1, T ′], we conclude that
D[i, T ] ≤ Δ(i, T ) + h′ and, consequently, D[i, T ] ≤ h. 	

From the correctness of the algorithm, it directly follows that:

Theorem 10. Gapless MEC (without the all-heterozygous assumption) is in
FPT when parameterized by the length of the fragments and it can be solved in
O(3� · � · n) time.

5 A 2-Approximation Algorithm for Binary MEC

In this section we present a 2-approximation algorithm for Binary MEC, that is
the restriction of MEC where the fragment matrix does not contain holes. The
approximation algorithm is based on the observation that heterozygous columns
in binary matrices naturally encode bipartitions of the fragments and that, by
Lemma 2, if the columns of a gapless fragment matrix are pairwise in accordance
then the matrix is conflict free. In particular, Algorithm1 builds a feasible solu-
tion SOL[t] for each t in {1, . . . , m} assuming that pt is the closest column to an
(unknown) optimal bipartition O of the fragments. Each solution SOL[t] corrects
columns pj′ with cost H(pj′) ≤ d(pt, pj′) into homozygous columns (equal to 1
or 0 depending on best choice), whereas it corrects the remaining columns pj′′

with cost d(pt, pj′′) < H(pj′′) into heterozygous columns equal (or complemen-
tary, depending on the best choice) to pt. It is easy to see that SOL[t] for each
t in {1, . . . , m} is a feasible solution (by Lemma 2) and that its cost is exactly
costM(pt).

Algorithm 1. A 2-approximation algorithm for Binary MEC
Require: A n × m binary matrix M

for t = 1 to m do � Assume that pt is the column “closest” to O
for j = 1 to m do

if H(pj) ≤ d(pt, pj) then
Set pj homozygous in SOL[t]

else
Set pj equal/complementary to pt in SOL[t]

return arg minSOL[t]costM(pt)

Algorithm 1 is a 2-approximation algorithm for Binary MEC.
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Lemma 11. Given a fragment matrix M without holes, if OPT is the optimum
for Binary MEC on input M, then Algorithm1 returns in O(m2n) time a feasible
solution with cost OPT ′ such that OPT ′ ≤ 2 · OPT.

Proof. Assume that pO is the column of M closest to an optimal biparti-
tion O, that is d(O, pO) ≤ d(O, pj) for each j in {1, . . . , m} and assume that
dH(O, pO) ≤ dH(O, pO) (if dH(O, pO) < dH(O, pO) we can substitute O with
O since they encode the same bipartition). Clearly, one such a column exists
and dH(O, pO) ≤ d(O, pj) for each j in {1, . . . , m}. We show that, under this
assumption, d(pO, pj) ≤ 2d(O, pj). By the triangle inequality, dH(pO, pj) ≤
dH(pO, O)+dH(O, pj). Hence, since dH(pO, O) ≤ d(O, pj) ≤ dH(O, pj), we have
dH(pO, pj) ≤ 2dH(O, pj). Similarly, we can prove that dH(pO, pj) ≤ 2dH(O, pj).
As a consequence we have that d(pO, pj) ≤ 2dH(O, pj) and that d(pO, pj) ≤
2dH(O, pj), which then imply d(pO, pj) ≤ 2d(O, pj). Clearly, since d(pO, pj) ≤
2d(O, pj), we also have that min(d(pO, pj),H(pj)) ≤ 2min(d(O, pj),H(pj)).

Since Algorithm 1 iteratively assumes that each column pj is the closest col-
umn to the unknown optimal bipartition O, we have that the cost of the returned
solution is OPT ′ ≤ costM(pO) ≤ 2

∑m
j=1 min(d(O, pj),H(pj)) = 2OPT . Since

each iteration t of the algorithm computes SOL[t] in O(mn) time, the total run-
ning time is clearly equal to O(m2n). 	

Algorithm 1 runs in O(m2n) time and, due to its simplicity, it is a more direct
and practical approach than the PTAS algorithms known in literature [14,19].

6 Conclusions

Minimum Error Correction is a prominent combinatorial problem for haplotype
assembly. Investigating the approximation complexity and the fixed-parameter
tractability of MEC has proven useful to develop practical haplotype assembly
tools [2,13,20]. Despite in this paper we addressed some issues that were left
open, some other theoretical questions still need an answer.

In this work, we showed that, under the Unique Games Conjecture, MEC
is not approximable within any constant factor. However, the approximation
complexity of Gapless MEC and the computational complexity of Binary MEC
are still unknown. It would be interesting to explore whether Lemma 2, that we
used in this paper for achieving a direct 2-approximation algorithm for Binary
MEC and an FPT algorithm for Gapless MEC, is also useful for answering to
these open questions. Similarly, the design of practical FPT algorithms for the
general MEC parameterized by the fragment length is an interesting research
direction.

Recent advances in sequencing technologies are radically changing the char-
acteristics of the produced data. For example, long gapless reads with sequenc-
ing errors uniformly distributed will likely be common in the near future. The
design of FPT algorithms that exploit these characteristics is another important
research direction. Furthermore, the drop in sequencing costs allows large-scale
studies of rare diseases. In fact, they are usually caused by rare mutations that
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can only be reliably discovered by sequencing many related individuals. Hence,
we expect an increasing interest in the study of new formulations extending
MEC on structured populations (where additional constraints induced by the
Mendelian laws of inheritance improve the accuracy of the reconstructed haplo-
types [21]), as initially done in [12].
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Abstract. A set of strings, called a string dictionary, is a basic string
data structure. The most primitive query, where one seeks the existence
of a pattern in the dictionary, is called a lookup query. Approximate
lookup queries, i.e., to lookup the existence of a pattern with a bounded
number of errors, is a fundamental string problem. Several data struc-
tures have been proposed to do so efficiently. Almost all solutions consider
a single error, as will this result. Lately, Belazzougui and Venturini (CPM
2013) raised the question whether one can construct efficient indexes
that support lookup queries with one error in optimal query time, that
is, O(|p|/ω + occ), where p is the query, ω the machine word-size, and
occ the number of occurrences.

Specifically, for the problem of one mismatch and constant alphabet
size, we obtain optimal query time. For a dictionary of d strings our pro-
posed index uses O(ωd log1+ε d) additional bit space (beyond the space
required to access the dictionary data, which can be maintained in com-
pressed form). Our results are parameterized for a space-time tradeoff.

We propose more results for the case of lookup queries with one inser-
tion/deletion on dictionaries over a constant sized alphabet. These results
are especially effective for large patterns.

1 Introduction

Data mining, information retrieval, web search and database tasks are often
variants of string processing. Many of these tasks involve storing a set of strings,
also known as a string dictionary. These dictionaries may be very large, for
example such is the case for search engines, applications in bioinformatics, RDF
graphs, and meteorological data. Hence, it is desired to maintain the dictionaries
in some succinct format while still allowing quick access to the data at hand. One
basic primitive operation necessary on a dictionary is a lookup query. A lookup
query on a string dictionary is a string for which the answer is yes if it exists in
the dictionary, or more generally returns a pointer to the satellite data of that
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string in the dictionary. Maintaining the dictionaries in a compressed form while
allowing lookups has garnered much interest in the last decade.

While exact lookups are interesting, often one desires approximate lookups.
For example, if one queries a search engine and there is one or two typing errors
in the query, it is advantageous to find the correct answer nevertheless. In this
case, one actually needs to propose all answers that are within the criteria of the
number of errors. Clearly, in many applications one desires to find approximate
matches and not only matches.

Errors come in different forms. Three of the most common errors are substi-
tutions, insertions, and deletions of characters. Two widely considered distances
between strings are based on these errors. The former is Hamming distance,
which is the minimal number of substitutions necessary to transform one string
into another. The latter is edit distance [18], which is the minimal number of any
combination of the three operations needed to transform one string into another.

Approximate lookups for one error have received a lot of attention, e.g. [3,4,
7,8,24] and along this similar line also text indexing with one error [1], dictionary
matching with one error [1,14,16] and both with one wildcard [2,5,20]. Exten-
sions to k errors, even to 2 errors, is much more difficult. See [9,10,12,17,21,23]
for results of this form.

In numerous data structure papers over the last decade there has been a
separation between the encoding model and the indexing model. In the encoding
model we preprocess our input I (in our case the dictionary of strings) to create
a data structure enc and queries have to be answered using enc only, without
access to I. In the indexing model, we create an index idx and are able to refer to
I when answering queries. In the indexing model we measure the additional space
required. This model difference was already noted in [13]. For more discussion
on the modeling differences see [6].

Interestingly, Belazzougui and Venturini [4] proposed a data structure for
lookups with edit distance at most one that answers queries in O(|p|+occ) time,
where p is the query string and occ is the number of answers. The space required
is 2nHk + o(n) + 2d log d, where d is the number of strings in the dictionary,
n is the total length of the dictionary and Hk is the k-th order entropy of the
concatenated strings of the dictionary. While the model is set as an encoding
model result, it actually is an indexing result with nHk + o(n) dedicated to the
compressed dictionary and nHk + o(n) + 2d log d additional bits necessary for
the data structure.

They raised the question in [4] whether one can answer queries in optimal
O(|p|/ω + occ) time while maintaining succinct space. We answer this question
affirmatively. For the case of Hamming distance we propose a data structure that
requires O(ωd log1+ε d) additional bit space (beyond the dictionary which can be
maintained in compressed form). For the case of edit distance we can obtain δ|p|d,
for arbitrarily small constant δ > 0, additional bit space (|p|d is the size of the open
dictionary) and O((|p|/ log |p|) logε d + occ) query time. This is an improvement
over the times in [4] for |p| � log d. However, we do note that the alphabet size
in [4] is general, whereas the alphabet size here is constant. Our solution can be
generalized to an alphabet of size σ at a cost of a σ factor in time and space.
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2 Previous work

Yao and Yao [24] were the first to consider string dictionaries that support lookup
queries with one mismatch. The dictionary they suggested had, wlog, all strings
of equal size m. The alphabet was binary. They suggested an algorithm in the bit
probe model that uses O(md log m) bits and answers queries in O(m log log d) bit
probes. Brodal and Gasieniec [7] considered the standard unit-cost RAM model
in the same setting, i.e., one mismatch, all strings of length m and a binary
alphabet. They proposed a different solution using a trie for the lexicographically
ordered strings of D and a trie for the lexicographically ordered reversed strings
of D. The space they used was O(md) words. The query time was O(m). Later,
Brodal and Venkatesh [8] considered a perfect-hash solution in the cell-probe
model with word-size ω and string size m = ω. They proposed a data structure
that uses space O(d log ω). We elaborate on and generalize their solution in
Sect. 5.

Belazzougui [3] proposed the first O(|p| + occ) time algorithm. The space of
the solution is O(n) bits, where n is the total dictionary size. The solution used
Karp–Rabin fingerprinting and, hence, runs with high probability. As formerly
mentioned, in [4] a result was obtained for dictionary lookups with edit distance
one that answers queries in O(|p| + occ) time, and with 2nHk + o(n) + 2d log d,
where n is the total length of the dictionary and Hk is the k-th order entropy of
the concatenated strings of the dictionary.

3 Outline of Our Results

Our goal is to solve the dictionary matching with one error where the query
time is optimal O(|p|/ω+occ) and the space is succinct. Our method is based on
succinct bidirectional indexing structures and range searching data structures,
see [19]. The method of this search has been used numerous times before, and
was first used to solve a one-error problem in [1]. However, the unique feature
in this paper is a succinct code for each string which allows optimal query time
while maintaining very efficient space. The encoding of the string is a novel
folding of the string which turns out to do the trick. The idea is to take a string
s, partition it into equal length substrings, say of length b. Then we do a bitwise
exclusive-or among the substrings. This folding of strings reduces the space of
the string down to a small size and allows to obtain succinct representations of
the strings. The encoding, assisted by the range searching techniques, remains
powerful enough to deduce the answers required.

4 Preliminaries

Given a string S, |S| is the length of S. An integer i is a location or a position
in S if i = 1, . . . , |S|. The substring S[i . . . j] of S, for any two positions i ≤ j, is
the substring of S that begins at index i and ends at index j.
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A set of strings is called a dictionary and is denoted with D = {S1, . . . , Sd}.
That is the number of strings is d and we denote the total size n =

∑d
i=1 |Si|. We

may safely assume that all strings in the dictionary are of the same size. If this
is not the case then D can be partitioned into Dl = {s ∈ D | |s| = l}. For one
substitution one accesses D|p| and for insertion/deletion one accesses D|p|+1 and
D|p|−1.

Let D = {S1, S2, . . . , Sd} be a dictionary of strings. The problem of String
Dictionary with Distance One is the problem of indexing D to support lookup
queries at distance 1, that is, for a lookup query p find all strings in the dictionary
within distance 1 of p. The desired distance will be either Hamming distance or
edit distance, depending on the problem at hand. We will consider both. The
desire will be to maintain the dictionary in some compressed form and to answer
the lookup queries of distance 1 quickly.

5 The Brodal–Venkatesh Algorithm

The Brodal and Venkatesh [8] algorithm is defined on a dictionary in which all
strings are binary and have length exactly ω. However, this can be generalized.
We describe this now. We still assume, wlog, that all strings are of the same length.

The proposed scheme is a straightforward solution for the problem based
on hashing. Let Ham(s, x) denote the Hamming distance between two equal
length strings s and x. Let H(s) = {x ∈ {0, 1}|s| | Ham(s, x) = 1} and let
H = ∪s∈DH(s), i.e., all strings at Hamming distance 1 from a string s ∈ D.
Generate a perfect hash function for H ∪ D. Queries p, also of the same length
as the strings of the dictionary, are read. Applying the hash function on p yields
the answers. Recall that the strings are over a binary alphabet. So, by reading
ω bits at a time, that is, treating each ω bits as one ω-bit character, the hashing
can be implemented on strings with query time of O(|p|/ω + occ). The space
required is the size of the hash table, which is O(d|p| log d) bit-space1.

6 Algorithm for Dictionary Lookup with One Mismatch

We are interested in solving the one mismatch case with the same O(|p|/ω+occ)
time. We still consider a binary alphabet, but point out that a general alphabet
of size σ is reducible to the binary alphabet with σ blowup. Note that the size
of the dictionary is O(|p|d) bits. Hence, the Brodal and Venkatesh [8] algorithm
is unsatisfactory as it uses O(d|p| log d) bits. The dictionary is not even included
in this space, but it is not really necessary for their result.

We desire to obtain a result where the additional bit space is strictly sublinear
in the size of the dictionary. Our method will use range queries on strings.

1 The space attributed to this algorithm in [4] is O(d|p|2 log d) bits. However, this
is probably because it was assumed that the generated strings, which are of size
O(d|p|2 log d) bits, need to be maintained. However, this is not the case. It is sufficient
to maintain the hash function and not the fully generated strings.
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However, the encoding of the strings to maintain a small data structure is the
essence of our algorithm. We now describe the details of the solution.

Define for string s ∈ D a point (x(s), y(s)) on a 2D d × d geometric grid. Let
x(s) = the rank of s in the lexicographical sort of D and y(s) = the rank of sR,
s reversed, in the lexicographical sort of D after reversing all strings.

String Encodings: Fix a parameter b (think of b as polylogarithmic and
assume, wlog, that b divides s). Divide each of the strings s into b-bit words
s1, . . . , s|s|/b and let c(s) = ⊕|s|/b

i=1 si, where ⊕ denotes the bitwise exclusive-or of
the si’s. Note that c(s) itself is a b-bit word. Let C(s) be all b-bit words that
have Hamming distance 1 from c(s). Note that |C(s)| = b. We think of s as
a point (x(s), y(s)) in 2D, assigned multiple colors, one from each member of
C(s). See [22] for a string encoding along the same lines.

We are now ready to construct the data structure.

The Data Structure: We build an orthogonal range reporting structure for
each non-empty color class. There are 2b color classes, but each point is in b
color classes. Specifically, consider string s ∈ D and c(s) that is associated with
it. There are exactly b strings with one bit of c(s) flipped, which is the set C(s).
Now, visualize a 3D grid of d×d×2b where for every string s ∈ D we generate grid
points (x(s), y(s), c), where c ∈ C(s). However, we maintain separate orthogonal
range reporting structure for each possible c.

Overall there are db points, hence the number of non-empty color classes is
bounded by db, but will likely be a lot less. We will use a perfect hash function
on these non-empty color classes ⊆ [2b] so that we can access the, at most, db
orthogonal range reporting structures that exist in constant time.

The data structure supports dictionary lookup queries with one error as
follows.

Query: Given a pattern p, divide it into b-bit words p1, . . . , p|p|/b and let c(p) =
⊕|p|/b

i=1 pi. For each i, we want to search for all s in D such that:

1. s has prefix p1 . . . pi−1 and
2. s has suffix pi+1 . . . p|p|/b and
3. si and pi have Hamming distance 1.

Property (1) is equivalent to having x(s) lie in the interval of the lexicographical
sort of D that is associated with the prefix p1 . . . pi−1, and (2) is equivalent to
having y(s) lie in the interval of the lexicographical sort of the reversed strings
of D that is associated with the suffix pi+1 . . . p|p|/b.

To implement (1) and (2) one needs to find the above-described intervals.
This can be done using bidirectional tries, as has been done in some of the
previous results.

Specifically, divide s into ω-bit words s1, . . . , s|s|/ω. The b discussed previously
will be a multiple of ω. The current partition of words into |s|/ω is our choice
for the compacted tries construction, whereas the partition of words into |s|/b
words will be for the range searching structure.
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Construct a compacted trie T of all lexicographically sorted dictionary
strings, treating each as a string over alphabet = [2ω]. To allow constant time
traversal from each node in the trie we generate a hash on all first (ω-length)
characters emanating from a node. That is if edge e is labeled in the compacted
trie with l(e) then for the set {(v, a, u) | e = (v, u) ∈ T, l(e) = ax} we generate
a perfect hash function h where, in constant time, we can access u from h(v, a).
When, traversing with the pattern p, which we also partition into p1, . . . , p|p|/ω,
we only evaluate the appropriate (ω-length) character of p with the first
(ω-length) character on the edge. Once we reach a leaf, or cannot traverse fur-
ther in the trie - in which case we choose an arbitrary descendant leaf, we use
the dictionary string s represented by the leaf to evaluate how far p matches in
the trie, by comparing p and s, in comparisons of ω-length characters using the
compressed text. We construct a symmetric compacted trie TR over the reversed
strings of the dictionary.

Once we know the path know where p matches in T we traverse this path
to compute the boundaries of the range searches described above. That is, after
every b binary characters or, in other words, after every b/ω ω-length characters,
we need the range of the array of lexicographically ordered strings described by
this node. At each such node, we maintain two indices to describe the range.
This is the information needed for the range queries. In T we traverse the path
from top to bottom and in TR we traverse from bottom to top.

Now, assuming that (1) and (2) are true, we can show an appropriate condi-
tion for (3) to hold.

Lemma 1. Assume that s has prefix p1 . . . pi−1 and s has suffix pi+1 . . . p|p|/b.
Then c(s) and c(p) have Hamming distance 1, i.e., c(p) ∈ C(s), iff si and pi

have Hamming distance 1.

Proof. Since s has prefix p1 . . . pi−1 and suffix pi+1 . . . pd/b it follows that ∀j 	=
i and ∀l : s[jb + l] = p[jb + l]. Hence, s[ib + l] = p[ib + l] iff for the l-th bit
c(s)l = c(p)l. So we can conclude that c(s) and c(p) have Hamming distance 1
iff si and pi have Hamming distance 1. 
�

It follows from the lemma that it is sufficient to verify whether c(p) ∈ C(s)
for all dictionary strings s that have prefix p1 . . . pi−1 and suffix pi+1 . . . pd/b.
This translates into a single orthogonal 4-sided range reporting query with the 2
ranges defined by prefix p1 . . . pi−1 and suffix pi+1 . . . pd/b found using the bidi-
rectional tries. The query is asked in the orthogonal range searching structure
associated with the color class of c(p). We access this range searching structure,
in constant time, with the above-described hash function. Once we have accessed
the correct data structure it is a straightforward range query.

6.1 Time and Space

We note that the time and space have interdependencies which we will shortly
address. These are affected by the way the dictionary text is saved, by the
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implementation of the range searching data structures and by the choice of our
parameter b. We first explain the space and time and then offer a couple of
possible choices of parameters.

Space: Since we only save the skeleton of T , and TR, their size, including the
data saved on the edges and nodes, is O(d) words, or O(d log d) bits. The perfect
hash function table for the data on the edges is also of size O(d log d) bits.

Hence, the two main space factors are the dictionary size and the range
searching data structures. The dictionary itself is only accessed to read sub-
strings. Hence, it can be saved either in open format, in which case the space
used will be |p|d bits of space for the dictionary or it can be saved in accessible
compressed format. This allows one to analyze the results in either the encoding
or indexing model. We give a parameter allowing the user to insert the data
structure of their choice. One possible data structure is the following:

Lemma 2. [15] Given a text T of length t over constant-sized alphabet there
exists a compressed data structure that supports the access in constant time of
any substring of T of length O(log t) bits requiring tHk(T ) + o(t), where Hk(T )
denotes the kth empirical entropy of T and k = o(log t).

Finally the space required by the range searching data structures is dependent
on the implementation used which affects the query time as well. To summarize
the space: we maintain the dictionary itself in |DS(D)| bit space, where DS(T )
is the data structure of choice for maintaining T . The additional space required
is O(d log d + bSrs(d)) bits of space, where Srs(d) is the number of bits required
by the implementation of the range searching data structure on d values.

Query Time: First we read the pattern in O(|p|/ω) time. We also generate the
encoding c(p) in this time. Finally, we find all the ranges within the bidirectional
tries within O(|p|/ω) time. This is true because we make one pass on the trie
for each pattern using the hash functions on the nodes and access the dictionary
text in parallel which we assume can be done in O(1) for each machine word.
While walking down in the tree ω bits at a time, we stop on the nodes which are
at depths of multiples of b (bits), that is, after every b/ω characters (of ω-bits
each). There we learn the ranges by the data stored in the trie. Hence, all the
above is done in O(|p|/ω) time.

The next phase is the query on the orthogonal data structure. We need to
access the orthogonal range data structure maintaining the data for color class
c(p). This is accessed by hashing c(p). This is done in O(|p|/ω) time whilst gen-
erating c(p). Finally the query itself is a tradeoff based on the implementation of
the range searching data structure in use. Let us denote with Qrs(d)+occ Q′

rs(d)
the query cost of the 2D orthogonal range reporting of our choice. Hence, the
overall query time is:

O(|p|/ω + (|p|/b)Qrs(d) + occ Q′
rs(d)).

The current best results on 2D orthogonal range reporting in the word RAM
model are due to Chan, Larsen, and Pǎtraşcu [11]. One possible choice is Srs(d) =
O(d), Qrs(d) = O(logε d), and Q′

rs(d) = O(1). In this case we have a solution
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for lookups with 1 mismatch in the binary alphabet setting which requires
O(bd log d) additional bits of space and O(|p|/ω+(|p|/b) logε d+occ) query time.
Set b = ω logε d, and we have optimal query time with O(dω log1+ε d)-bit space.
We note that if the string lengths = |p| are ≤ ω logε d then one can use the data
structure of [8].

Another option is as follows. Assume that the additional bits of space is
bounded by c(bd log d), for some constant c. We can set b = δ|p|/c log d for
arbitrary small constant δ and get δ|p|d bits and O((1/δ) log1+ε d + |p|/ω + occ)
query time. This answers the open question of Belazzougui and Venturini [4] in
the uncompressed setting for sufficiently large |p| � ω log1+ε d.

Another range searching alternative [11] has Srs(d) = O(d log log d) and
Qrs(d) = Q′

rs(d) = O(log log d). This gives O(|p|d) bits and O(log d log2 log d +
|p|/w + occ log log d) time.

7 Dictionary Lookup with Edit Distance One

We would like to extend the previous idea of using the xor function to the case of
one insertion or deletion. However, an insertion or deletion can skew the entire b-
bit encoding and make the dictionary string encodings and the pattern encodings
incompatible. Hence, we do something slightly different. We still maintain the
idea of the xor encoding, and we generate range queries for them, but we do it
differently.

For every u ∈ {0, 1}b+1 and v ∈ {0, 1}b, define the subset:
D(u, v) = {s ∈ D : c(s) ⊕ v can be obtained by deleting 1 character from u}.
Now build a 2D orthogonal range searching structure for {(x(s), y(s)) | s ∈

D(u, v)}, where x(s) and y(s) are defined as before.
Note that each s ∈ D belongs to O(b2b) D(u, v)’s (because there are 2b

choices for v and O(b) ways to insert 1 character to c(s) ⊕ v). So, space blows
up by a factor O(b2b).

7.1 Query Algorithm for One Character Deletion from p

Once again we use a trie for the lexicographically sorted strings of D and a
trie for the sorted reversed strings of D. We traverse both similarly to the one
mismatch case.

At the i-th iteration, write p as αipiβi with |αi| = bi, |pi| = b + 1, |βi| =
b(|s|/b − i − 1). We are looking for all s ∈ D such that

1. s has prefix αi and
2. s has suffix βi and
3. si can be obtained by deleting 1 character from pi.

We make a claim here that is appropriate for the case of one deletion from the
pattern.
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Lemma 3. Given that s has prefix αi and suffix βi, si can be obtained by deleting
1 character from pi ⇐⇒ s ∈ D(pi, c(αi) ⊕ c(βi)).

Proof. Given that s has prefix αi and suffix βi, we have c(s) = si ⊕ c(αi)⊕ c(βi)
which directly implies that si = c(s) ⊕ c(αi) ⊕ c(βi). Set u = pi and v =
c(αi) ⊕ c(βi). Hence, si(= c(s) ⊕ v) can be obtained by deleting 1 character
from pi(= u) is equivalent by definition to s ∈ D(u, v) = D(pi, c(αi) ⊕ c(βi)). 
�

We use the same technique on the trie and reverse trie as for the one mismatch
case. That is, we have a range in the trie of the dictionary that is appropriate to
αi and a range defined by βi in the trie of reversed strings. During the traversal
of the query we compute c(αi) ⊕ c(βi) at every stage. Now we need to access the
orthogonal range reporting structure that is D(pi, c(αi)⊕c(βi)) which is accessible
in constant time by a hash based on u and v to D(u, v), which in our case is pi and
c(αi)⊕ c(βi) to D(pi, c(αi)⊕ c(βi)). Once in the right orthogonal range reporting
data structure we ask a 4-sided query based on the ranges we found.

Time and Space Analysis. By following an analysis similar to the mismatch
case, we can conclude the following.

The space and time analysis is: O(b2bd log d) additional bits of space (over
the compressed or uncompressed dictionary) and O(|p|/ω + (|p|/b) logε d + occ)
query time.

We can set b = log(δ|p|/ log d log(δ|p|)) for an arbitrary constant δ > 0 and
get δ|p|d bits and O(((δ|p|)/ log |p|) logε d+occ) query time for |p| � log d, which
is a speedup when |p| is large.

Alternatively, we can get O((|p|/ log |p|) log log d + occ log log d).

7.2 Query Algorithm for Inserting One Character to p

The case for insertion to p is symmetrical to the deletion case. Hence, we only
give the changed definition of D(u, v).

For every u ∈ {0, 1}b−1 and v ∈ {0, 1}b, redefine the subset D(u, v) = {s ∈
D | c(s) ⊕ v can be obtained by inserting 1 character to u}.

References

1. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein, N., Rodeh,
M.: Text indexing and dictionary matching with one error. J. Algorithms 37(2),
309–325 (2000)

2. Amir, A., Levy, A., Porat, E., Shalom, B.R.: Dictionary matching with one gap.
In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486,
pp. 11–20. Springer, Heidelberg (2014)

3. Belazzougui, D.: Faster and space-optimal edit distance “1” dictionary. In:
Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 154–167.
Springer, Heidelberg (2009)

4. Belazzougui, D., Venturini, R.: Compressed string dictionary look-up with edit
distance one. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354,
pp. 280–292. Springer, Heidelberg (2012)



Fast String Dictionary Lookup with One Error 123

5. Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns with
wildcards. Theory Comput. Syst. 55(1), 41–60 (2014)

6. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

7. Brodal, G.S., Gasieniec, L.: Approximate dictionary queries. In: Hirschberg, D.S.,
Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 65–74. Springer, Heidelberg
(1996)

8. Brodal, G.S., Venkatesh, S.: Improved bounds for dictionary look-up with one
error. Inf. Process. Lett. 75(1–2), 57–59 (2000)

9. Chan, H., Lam, T.W., Sung, W., Tam, S., Wong, S.: Compressed indexes for
approximate string matching. Algorithmica 58(2), 263–281 (2010)

10. Chan, H.-L., Lam, T.-W., Sung, W.-K., Tam, S.-L., Wong, S.-S.: A linear size index
for approximate pattern matching. J. Discrete Algorithms 9(4), 358–364 (2011)

11. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proceedings of the 27th ACM Symposium on Computational Geom-
etry, Paris, France, June 13–15, 2011, pp. 1–10 (2011)

12. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proceedings of Symposium on Theory of Computing
(STOC), pp. 91–100 (2004)
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Abstract. We introduce the graph parameter readability and study it
as a function of the number of vertices in a graph. Given a digraph D,
an injective overlap labeling assigns a unique string to each vertex such
that there is an arc from x to y if and only if x properly overlaps y. The
readability of D is the minimum string length for which an injective over-
lap labeling exists. In applications that utilize overlap digraphs (e.g., in
bioinformatics), readability reflects the length of the strings from which
the overlap digraph is constructed. We study the asymptotic behaviour
of readability by casting it in purely graph theoretic terms (without any
reference to strings). We prove upper and lower bounds on readability
for certain graph families and general graphs.

1 Introduction

In this paper, we introduce and study a graph parameter called readability,
motivated by applications of overlap graphs in bioinformatics. A string x overlaps
a string y if there is a suffix of x that is equal to a prefix of y. They overlap
properly if, in addition, the suffix and prefix are both proper. The overlap digraph
of a set of strings S is a digraph where each string is a vertex and there is an arc
from x to y (possibly with x = y) if and only if x properly overlaps y. Walks in
the overlap digraph of S represent strings that can be spelled by stitching strings
of S together, using the overlaps between them. Overlap digraphs have various
applications, e.g., they are used by approximation algorithms for the Shortest
Superstring Problem [Swe00]. Their most impactful application, however, has
been in bioinformatics. Their variants, such as de Bruijn graphs [IW95] and
string graphs [Mye05], have formed the basis of nearly all genome assemblers
used today (see [MKS10,NP13] for a survey), successful despite results showing
that assembly is a hard problem in theory [BBT13,NP09,MGMB07]. In this
context, the strings of S represent known fragments of the genome (called reads),
and the genome is represented by walks in the overlap digraph of S. However,
do the overlap digraphs generated in this way capture all possible digraphs, or
do they have any properties or structure that can be exploited?

Braga and Meidanis [BM02] showed that overlap digraphs capture all possible
digraphs, i.e., for every digraph D, there exists a set of strings S such that their
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 124–137, 2015.
DOI: 10.1007/978-3-319-19929-0 11
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overlap digraph is D. Their proof takes an arbitrary digraph and shows how
to construct an injective overlap labeling, that is, a function assigning a unique
string to each vertex, such that (x, y) is an arc if and only if the string assigned
to x properly overlaps the string assigned to y. However, the length of strings
produced by their method can be exponential in the number of vertices. In
the bioinformatics context, this is unrealistic, as the read size is typically much
smaller than the number of reads.

To investigate the relationship between the string length and the number of
vertices, we introduce a graph parameter called readability. The readability of a
digraph D, denoted r(D), is the smallest nonnegative integer r such that there
exists an injective overlap labeling of D with strings of length r. The result by
[BM02] shows that readability is well defined and is at most 2Δ+1 − 1, where Δ
is the maximum of the in- and out-degrees of vertices in D. However, nothing
else is known about the parameter, though there are papers that look at related
notions [BFK+02,BFKK02,BHKdW99,GP14,LZ07,LZ10,PSW03,TU88].

In this paper, we study the asymptotic behaviour of readability as a function
of the number of vertices in a graph. We define readability for undirected bipar-
tite graphs and show that the two definitions of readability are asymptotically
equivalent. We capture readability using purely graph theoretic parameters (i.e.,
without any reference to strings). For trees, we give a parameter that charac-
terizes readability exactly. For the larger family of bipartite C4-free graphs, we
give a parameter that approximates readability to within a factor of 2. Finally,
for general bipartite graphs, we give a parameter that is bounded on the same
sets of graphs as readability.

We apply our purely graph theoretic interpretation to prove readability upper
and lower bounds on several graph families. We show, using a counting argu-
ment, that almost all digraphs and bipartite graphs have readability of at least
Ω(n/ log n). Next, we construct a graph family inspired by Hadamard codes
and prove that it has readability Ω(n). Finally, we show that the readability of
trees is bounded from above by their radius, and there exist trees of arbitrary
readability that achieve this bound.

2 Preliminaries

General Definitions and Notation. Let x be a string. We denote the length
of x by |x|. We use x[i] to refer to the ith character of x, and denote by x[i..j] the
substring of x from the ith to the jth character, inclusive. We let prei(x) denote
the prefix x[1..i] of x, and we let sufi(x) denote the suffix x [|x| − i + 1..|x|].
Let y be another string. We denote by x · y the concatenation of x and y. We
say that x overlaps y if there exists an i with 1 ≤ i ≤ min{|x|, |y|} such that
sufi(x) = prei(y). In this case, we say that x overlaps y by i. If i < min{|x|, |y|},
then we call the overlap proper. Define ov(x, y) as the minimum i such that x
overlaps y by i, or 0 if x does not overlap y. For a positive integer n, we denote
by [n] the set {1, . . . , n}.

We refer to finite simple undirected graphs simply as graphs and to finite
directed graphs without parallel arcs in the same direction as digraphs. For a
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vertex v in a graph, we denote the set of neighbors of v by N(v). A biclique is
a complete bipartite graph. Note that the one-vertex graph is a biclique (with
one of the parts of its bipartition being empty). Two vertices u, v in a graph are
called twins if they have the same neighbors, i.e., if N(u) = N(v). If, in addition,
N(u) = N(v) �= ∅, vertices u, v are called non-isolated twins. A matching is a
graph of maximum degree at most 1, though we will sometimes slightly abuse the
terminology and not distinguish between matchings and their edge sets. A cycle
(respectively, path) on i vertices is denoted by Ci (respectively, Pi). For graph
terms not defined here, see, e.g., [BM08].

Readability of Digraphs. A labeling � of a graph or digraph is a function
assigning a string to each vertex such that all strings have the same length,
denoted by len(�). We define ov�(u, v) = ov(�(u), �(v)). An overlap labeling of
a digraph D = (V,A) is a labeling � such that (u, v) ∈ A if and only if 0 <
ov�(u, v)) < len(�). An overlap labeling is said to be injective if it does not
generate duplicate strings. Recall that the readability of a digraph D, denoted
r(D), is the smallest nonnegative integer r such that there exists an injective
overlap labeling of D of length r. We note that in our definition of readability we
do not place any restrictions on the alphabet size. Braga and Meidanis [BM02]
gave a reduction from an overlap labeling of length � over an arbitrary alphabet
Σ to an overlap labeling of length � log |Σ| over the binary alphabet.

Readability of Bipartite Graphs. We also define a modified notion of read-
ability that applies to balanced bipartite graphs as opposed to digraphs. We
found that readability on balanced bipartite graphs is simpler to study but is
asymptotically equivalent to readability on digraphs. Let G = (V,E) be a bipar-
tite graph with a given bipartition of its vertex set V (G) = Vs ∪ Vp. (We also
use the notation G = (Vs, Vp, E)). We say that G is balanced if |Vs| = |Vp|. An
overlap labeling of G is a labeling � of G such that for all u ∈ Vs and v ∈ Vp,
(u, v) ∈ E if and only if ov�(u, v) > 0. In other words, overlaps are exclusively
between the suffix of a string assigned to a vertex in Vs and the prefix of a string
assigned to a vertex in Vp. The readability of G is the smallest nonnegative inte-
ger r such that there exists an overlap labeling of G of length r. Note that we
do not require injectivity of the labeling, nor do we require the overlaps to be
proper. As before, we use r(G) to denote the readability of G.

We note that in our definition of readability we do not place any restrictions
on the alphabet size. Braga and Meidanis [BM02] gave a reduction from an
overlap labeling of length � over an arbitrary alphabet Σ to an overlap labeling
of length � log |Σ| over the binary alphabet.

For a labeling �, we define inner i(�(v)) = sufi(�(v)) if v ∈ Vs and
inner i(�(v)) = prei(�(v)) if v ∈ Vp. Similarly, we define outer i(�(v)) = prei(�(v))
if v ∈ Vs and outer i(�(v)) = sufi(�(v)) if v ∈ Vp.

Let Bn×n be the set of balanced bipartite graphs with nodes [n] in each part,
and let Dn be the set of all digraphs with nodes [n]. The readabilities of digraphs
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and of bipartite graphs are connected by the following theorem, which implies
that they are asymptotically equivalent.

Theorem 1. There exists a bijection ψ : Bn×n → Dn with the property that for
any G ∈ Bn×n and D ∈ Dn, such that D = ψ(G), we have that r(G) < r(D) ≤
2 · r(G) + 1.

As a result, we can study readability of balanced bipartite graphs, without
asymptotically affecting our bounds. For example, we show in Sect. 4.2 (in
Theorem 6) that there exists a family of balanced bipartite graphs with read-
ability Ω(n), which leads to the existence of digraphs with readability Ω(n).

3 Graph Theoretic Characterizations

In this section, we relate readability of balanced bipartite graphs to several purely
graph theoretic parameters, without reference to strings.

3.1 Trees and C4-free Graphs

For trees, we give an exact characterization of readability, while for C4-free
graphs, we give a parameter that is a 2-approximation to readability. A decom-
position of size k of a bipartite graph G = (Vs, Vp, E) is a function on the edges
of the form w : E → [k]. Note that a labeling � of G implies a decomposition
of G, defined by w(e) = ov�(e) for all e ∈ E. We call this the �-decomposition.
We say that a labeling � of G achieves w if it is an overlap labeling and w is the
�-decomposition. Note that we can express readability as

r(G) = min{k | w is a decomposition of size k ,∃ a labeling � that achieves w} .

Our goal is to characterize in graph theoretic terms the properties of w which are
satisfied if and only if w is the �-decomposition, for some �. While this proves
challenging in general, we can achieve this for trees using a condition which
we call the P4-rule. We say that w satisfies the P4-rule if for every induced
four-vertex path P = (e1, e2, e3) in G, the following condition holds: if w(e2) =
max{w(e1), w(e2), w(e3)}, then w(e2) ≥ w(e1) + w(e3). We will prove:

Theorem 2. Let T be a tree. Then r(T ) = min{k | w is a decomposition
of size k that satisfies the P4-rule}.
Note that for cycles, the equality does not hold. For example, consider the decom-
position w of C6 given by the weights 2, 4, 2, 2, 3, 1. This decomposition satisfies
the P4 rule but it can be shown using case analysis that there does not exist a
labeling � achieving w.

However, we can give a characterization of readability for C4-free graphs
in terms of a parameter that is asymptotically equivalent to readability, using
a condition which we call the strict P4-rule. The strict P4-rule is identical
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to the P4-rule accept that the inequality becomes strict. That is, w satis-
fies the strict P4-rule if for every induced four-vertex path P = (e1, e2, e3),
if w(e2) = max{w(e1), w(e2), w(e3)}, then w(e2) > w(e1) + w(e3). Note that a
decomposition that satisfies the strict P4-rule automatically satisfies the P4-rule,
but not vice-versa. We will prove:

Theorem 3. Let G be a C4-free bipartite graph. Let t = min{k | w is a decom-
position of size k that satisfies the strict P4-rule}. Then t/2 < r(G) ≤ t.

We note that this characterization cannot be extended to graphs with a C4.
The example in Fig. 1a shows a graph with a decomposition which satisfies the
strict P4-rule but it can be shown using case analysis that there does not exists
a labeling � achieving this decomposition.

In the remainder of this section, we will prove these two theorems. We first
show that an �-decomposition satisfies the P4-rule (proof in the full version).

Lemma 1. Let � be an overlap labeling of a bipartite graph G. Then the
�-decomposition satisfies the P4-rule.

Now, consider a C4-free bipartite graph G = (Vs, Vp, E) and let w be a decom-
position satisfying the P4-rule. We will prove both Theorems 2 and 3 by con-
structing the following labeling. Let us order the edges e1, . . . , e|E| in order of
non-decreasing weight. For 0 ≤ j ≤ |E|, we define the graph Gj =
(Vs, Vp, {ei ∈ E | i ≤ j}). For a vertex u, define lenj(u) = max{w(ei) | i ≤
j, ei is incident with u}, if the degree of u in Gj is positive, and 0 otherwise. We
will recursively define a labeling �j of Gj such that |�j(u)| = lenj(u) for all u.
The initial labeling �0 assigns ε to every vertex. Suppose we have a labeling �j

for Gj , and ej+1 = (u, v). Recall that because w satisfies the P4-rule and G is
C4-free, w(u, v) ≥ lenj(u)+ lenj(v) = |�j(u)|+ |�j(v)|. (Note that the inequality
holds also in the case when one of the two summands is 0.) Let A be a (possibly
empty) string of length w(u, v)−|�j(u)|−|�j(v)| composed of non-repeating char-
acters that do not exist in �j . Define �j+1 as �j+1(x) = �j(x) for all x /∈ {u, v},
and �j+1(u) = �j+1(v) = �j(v) ·A ·�j(u). We denote the labeling of G as � = �|E|.
We will slightly abuse notation in this section, ignoring the fact that a labeling
must have labels of the same length. This is inconsequential, because strings can
always be padded from the beginning or end with distinct characters without
affecting any overlaps.

First, we state a useful Lemma, that two vertices share a character in the
labeling only if they are connected by a path (proof in the full version).

Lemma 2. Let c be a character that is contained in �j(u) and in �j(v), for some
pair of distinct vertices. Then there exists a path between u and v in Gj.

We are now ready to show that � achieves w for trees, and, if w also satisfies the
strict P4-rule, for C4-free graphs.

Lemma 3. Let G be a C4-free bipartite graph and let w be a decomposition that
satisfies the P4-rule. Then the above defined labeling � achieves w if w satisfies
the strict P4-rule or if G is acyclic.
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Proof. We prove by induction on j that �j achieves w on Gj . Suppose that the
Lemma holds for �j and consider the effect of adding ej+1 = (u, v). Notice that
to obtain �j+1 we only change labels by adding outer characters, hence, any two
vertices that overlap by i in �j will also overlap by i in �j+1. Moreover, only the
labels of u and v are changed, and an overlap between u and v of length w(u, v)
is created. It remains to show that no shorter overlap is created between u and
v and that no new overlap is created involving u or v, except the one between u
and v.

First, consider the case when w(u, v) > |�j(u)| + |�j(v)| and so the middle
string (A) of the new labels is non-empty. Because the characters of A do not
appear in �j , we do not create any new overlaps except besides the one between
u and v and the only overlap between u and v must be of length w(u, v) since
the characters of A must align. Thus �j+1 achieves w on Gj+1.

Next, consider the case when w(u, v) = |�j(v)| (the case when w(u, v) =
|�j(u)| is symmetric). In this case, A = ε, �j(u) = ε, and |�j(v)| > 0 (since
w(u, v) > 0). Suppose for the sake of contradiction that there exists a vertex
v′ �= v such that (u, v′) is not an edge but innerk(�j+1(u)) = innerk(�j+1(v′)),
for some 0 < k ≤ w(u, v). We know, from the construction of �j , that there
exists a vertex u′ such that w(u′, v) = |�j(v)|. We then have innerk(�j(u′)) =
outerk(�j(v)) = innerk(�j+1(u)) = innerk(�j+1(v′)) = innerk(�j(v′)). By the
induction hypothesis, there is an edge (u′, v′) and w(u′, v′) ≤ k. The edges
(u, v), (v, u′), (u′, v′) form a P4, which is also induced because G is C4-free.
Because w(u, v) = w(u′, v) ≥ w(u′, v′) > 0, the P4-rule is violated, a contra-
diction. Therefore no new overlaps are created involving u. To show that there
are no overlaps from u to v smaller than w(u, v), observe that any such over-
lap would also be an overlap between u′ and v that is smaller than w(u′, v),
contradicting the induction hypothesis. Therefore, �j+1 achieves w on Gj+1.

It remains to consider the case when w(u, v) = |�j(u)| + |�j(v)| and �j(u) �=
ε �= �j(v). We first show that this case cannot arise if w satisfies the strict P4-rule.
There must exist edges in Gj of weights |�j(u)| and |�j(v)| incident with u and
v, respectively. These edges, together with (u, v) in the middle, form a P4, which
must be induced since G does not contain a C4. Furthermore, (u, v) achieves
the maximum weight. The strict P4-rule implies w(u, v) > |�j(u)| + |�j(v)|, a
contradiction.

Now, assume that G is acyclic, and suppose for the sake of contradiction
that the new labeling creates an overlap between v and a vertex u′ �= u (the case
of an overlap between u and v′ �= v is symmetric). Consider the character c at
position |�j(v)| + 1 of �j+1(v). The length of the overlap between �j+1(v) and
�j+1(u′) = �j(u′) must be greater than |�j(v)|, otherwise it would have been an
overlap in �j . Thus, �j(u′) must contain c. By construction of v’s new label, �j(u)
must also contain c. Applying Lemma 2, there must be a path between u′ and
u in Gj . On the other hand, the overlap between v and u′ spans (�j(v))[1], and
hence �j(v) and �j(u′) must share a character. Applying Lemma 2, there must
exist a path between u′ and v in Gj . Consequently, there exists a path from u to
v in Gj . Combining this path with ej+1 = (u, v), we get a cycle in Gj+1, which
is a contradiction.
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Finally suppose, for the sake of contradiction, that �j+1(u) overlaps �j+1(v)
by some k < w(u, v). By the induction hypothesis, k > |�j(v)|. Consider the last
character c of �j(v). It must also appear as the inner position i = k − |�j(v)| + 1
in �j+1(u). Since k ≤ w(u, v) − 1, we have i ≤ w(u, v) − |�j(v)| = |�j(u)|, and
the ith inner position in �j+1(u) is also the ith inner position in �j(u). Applying
Lemma 2 to c in �j(v) and �j(u), there must exist a path between u and v in
Gj . Combining this path with ej+1 = (u, v), we get a cycle in Gj+1, which is a
contradiction. 
�
We can now prove Theorems 2 and 3.

Proof of Theorem 2. Let t = min{k | w is a decomposition of size k that
satisfies the P4-rule}. First, let w be a decomposition of size t satisfying the
P4-rule. Lemma 3 states that the above defined labeling � achieves w and so
r(T ) ≤ maxe(we) = t. For the other direction, consider an overlap labeling b of
T of minimum length. By Lemma 1, the b-decomposition satisfies the P4-rule.
Hence, r(T ) = len(b) ≥ t. 
�
Proof of Theorem 3. Let w be a decomposition of size t satisfying the strict
P4-rule. By Lemma 3, the above defined labeling � achieves w and so r(G) ≤
maxe(we) = t. On the other hand, let b be an overlap labeling of length r(G).
Define w(e) = 2ovb(e) − 1, for all e ∈ E(G). We claim that w satisfies the
strict P4-rule, which will imply that t ≤ maxe w(e) = 2r(G) − 1. To see this,
let e1, e2, e3 be the edges of an arbitrary induced P4. Observe that w(e2) =
max{w(e1), w(e2), w(e3)} if and only if ovb(e2) = max{ovb(e1), ovb(e2), ovb(e3)}.
Furthermore, it can be algebraicly verified that if ovb(e2) ≥ ovb(e1) + ovb(e3)
then w(e2) > w(e1) + w(e3). By Lemma 1, the b-decomposition satisfies the
P4-rule and, therefore, w satisfies the strict P4-rule. 
�

3.2 General Graphs

In the previous subsection, we derived graph theoretic characterizations of read-
ability that are exact for trees and approximate for C4-free bipartite graphs.
Unfortunately, for a general graph, it is not clear how to construct an overlap
labeling from a decomposition satisfying the P4-rule (as we did in Lemma 3).
In this subsection, we will consider an alternate rule (HUB-rule), which we then
use to construct an overlap labeling.

Given G = (Vs, Vp, E) and a decomposition w of size k, we define Gw
i , for

i ∈ [k], as a graph with the same vertices as G and edges given by E(Gw
i ) =

{e ∈ E | w(e) = i}. When w is obvious from the context, we will write Gi

instead of Gw
i . Observe that the edge sets of Gw

1 , . . . , Gw
k form a partition of E.

We say that w satisfies the hierarchical-union-of-bicliques rule, abbreviated as
the HUB-rule, if the following conditions hold: (i) for all i ∈ [k], Gw

i is a disjoint
union of bicliques, and (ii) if two distinct vertices u and v are non-isolated twins
in Gw

i for some i ∈ {2, . . . , k} then, for all j ∈ [i − 1], u and v are (possibly
isolated) twins in Gw

j . An example of a decomposition satisfying the HUB-rule
is any w : E → [k] such that Gw

1 is an (arbitrary) disjoint union of bicliques and
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Gw
2 , . . . , Gw

k are matchings. We can show that the decomposition implied by any
overlap labeling must satisfy the HUB-rule (proof in the full version).

Lemma 4. Let � be an overlap labeling of a bipartite graph G. Then the
�-decomposition satisfies the HUB-rule.

We define the HUB number of G as the minimum size of a decomposition of G
that satisfies the HUB-rule, and denote it by hub(G). Observe that a decom-
position of a graph into matchings (i.e. each Gw

i is a matching) satisfies the
HUB-rule. By König’s Line Coloring Theorem, any bipartite graph G can be
decomposed into Δ(G) matchings, where Δ(G) is the maximum degree of G.
Thus, hub(G) ∈ [Δ(G)]. Clearly, a graph G has hub(G) = 1 if and only if G is a
disjoint union of bicliques. The HUB number captures readability in the sense
that the readability of a graph family is bounded (by a uniform constant inde-
pendent of the number of vertices) if and only if its HUB number is bounded.
This is captured by the following theorem:

Theorem 4. Let G be a bipartite graph. Then hub(G) ≤ r(G) ≤ 2hub(G) − 1.

In the remainder of this section, we will prove this theorem. The first inequality
directly follows from Lemma 4 because, by definition of readability, there exists
an overlap labeling � of length r(G). Then the �-decomposition of G is of size
r(G) and satisfies the HUB-rule, implying hub(G) ≤ r(G). To prove the second
inequality, we will need to show:

Lemma 5. Let w be a decomposition of size k satisfying the HUB-rule of a
bipartite graph G. Then there is an overlap labeling of G of length 2k − 1.

The second inequality of Theorem 4 follows directly by choosing a minimum
decomposition satisfying the HUB-rule, in which case k = hub(G). Thus, it only
remains to prove Lemma 5.

We now define the labeling t that is used to prove Lemma 5. Our con-
struction of the labeling applies the following operation due to Braga and
Meidanis [BM02]. Given two vertices u ∈ Vs and v ∈ Vp, a labeling t, and a
filler character a not used by t, the BM operation transforms t by relabeling
both u and v with t(v) · a · t(u).

We start by labeling G1 as follows: each biclique B in G1 gets assigned a
unique character aB , and each node v in a biclique B gets label t(v) = aB . Next,
for i ∈ [k − 1], we iteratively construct a labeling of G1 ∪ · · · ∪ Gi+1 from a
labeling t of G1 ∪ · · · ∪ Gi. We show by induction that the constructed labeling
has an additional property that all twins in G1 ∪ · · · ∪Gi+1 have the same labels
and that the length of the labeling is 2i+1 − 1. Observe that the labeling of G1

satisfies this property.
We choose a unique (not previously used) character aB for each biclique B

of Gi+1. If B consists of a single vertex v, then we assign to v the label aB · t(v)
if v ∈ Vs, and t(v) · aB if v ∈ Vp. Otherwise, since w satisfied the HUB-rule, all
vertices in B ∩ Vs are twins in G1 ∪ · · · ∪ Gi and, by the induction hypothesis,
are assigned the same labels in t. Analogously, t will assign the same labels to
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all nodes in B ∩ Vp. Consider an arbitrary edge (u, v) in B. We apply the BM
operation with character aB to (u, v) and assign the resulting label t(v) ·aB · t(u)
to all nodes in B. This completes the construction of labeling of G1 ∪ · · · ∪Gi+1.
Observe that it assigns the same labels to all twins in G1 ∪ · · · ∪ Gi+1, and that
the length is 2i+1 − 1. To complete the proof of Theorem 4, we show in the full
version that the final labeling is an overlap labeling of G.

Note that if w is a decomposition into matchings, then our labeling algorithm
behaves identically to the Braga-Meidanis (BM) algorithm [BM02]. However, in
the case that w is of size o(Δ(G)), our labeling algorithm gives a better bound
than BM. For example, for the n × n biclique, our algorithm gives a labeling of
length 1, while BM gives a labeling of length 2n − 1.

4 Lower and Upper Bounds on Readability

In this section, we prove several lower and upper bounds on readability, making
use of the characterizations of the previous section.

4.1 Almost All Graphs Have Readability Ω(n/ logn)

In this subsection, we show that, in both the bipartite and directed graph models,
there exist graphs with readability at least Ω(n/ log n), and that in fact almost
all graphs have at least this readability.

Theorem 5. Almost all graphs in Bn×n (and, respectively, Dn) have readability
Ω(n/ log n). When restricted to a constant sized alphabet, almost all graphs in
Bn×n (and, respectively, Dn) have readability Ω(n).

Proof (constant sized alphabet case). We prove the lemma by a counting argu-
ment. Since there are n2 pairs of nodes in [n]2 that can form edges in a graph in
Bn×n, the size of Bn×n is 2n2

. Let a be the size of the alphabet. The number of
labelings of 2n nodes with strings of length s is at most a2ns. In particular, label-
ings of length s = n/(3 log a) can generate no more than a2n2/(3 log a) = 22n2/3

bipartite graphs, which is in o(2n2
). Consequently, almost all graphs in Bn×n

have readability Ω(s) = Ω(n/ log a) = Ω(n). The proof for Dn is analogous and
is omitted. The proof for variable sized alphabets is given in the full version. 
�

4.2 Distinctness and a Graph Family with Readability Ω(n)

In this subsection, we will give a technique for proving lower bounds and use it
to show a family of graphs with readability Ω(n). For any two vertices u and v,
the distinctness of u and v is defined as DT (u, v) = max{|N(u) \ N(v)|, |N(v) \
N(u)|}. The distinctness of a bipartite graph G, denoted by DT (G), is defined as
the minimum distinctness of any pair of vertices that belong to the same part of
the bipartition. The following lemma relates the distinctness and the readability
of graphs that are not matchings (for a matching, the readability is 1, provided
that it has at least one edge, and 0 otherwise).
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Lemma 6. For every bipartite graph G that is not a matching, r(G) ≥
DT (G) + 1.

Proof. By Theorem 4, it suffices to show that DT (G) ≤ hub(G) − 1. Let h =
hub(G), let w : E(G) → [h] be a minimum decomposition of G satisfying the
HUB-rule, and consider the graphs Gi = Gw

i , for i ∈ [h]. We need to show that
DT (G) ≤ h − 1. Suppose first that each Gi is a matching. Then, since w is a
decomposition of G, we have Δ(G) ≤ h. Moreover, since G is not a matching,
it has a pair of distinct vertices, say u and v, with a common neighbor, which
implies DT (G) ≤ DT (u, v) ≤ Δ(G) − 1 ≤ h − 1.

Suppose now that there exists an index j ∈ [h] such that Gj is not a matching,
and let j be the maximum such index. Then, there exist two distinct vertices in
G, say u and v, that have a common neighbor in Gj , and therefore belong to
the same biclique of Gj . It follows that u and v are non-isolated twins in Gj .
Since w is satisfies the HUB-rule, this implies that u and v are twins in each Gi

with i ∈ [j − 1]. Consequently, for each vertex x in G adjacent to u but not to v,
the unique Gi with (u, x) ∈ E(Gi) satisfies i > j. By the choice of j, each such
Gi is a matching, and hence there can be at most h − j such vertices x. Thus
|N(u) \ N(v)| ≤ h − j and similarly |N(v) \ N(u)| ≤ h − j, which implies the
desired inequality DT (G) ≤ DT (u, v) ≤ h − j ≤ h − 1. 
�

While the distinctness is a much simpler graph parameter than the HUB num-
ber, simplicity comes with a price. Namely, the distinctness does not share the
nice feature of the HUB number, that of being bounded on exactly the same
sets of graphs as the readability. In Sect. 4.3, we show the existence of graphs
(specifically, trees) of distinctness 1 and of arbitrary large readability.

We now introduce a family of graphs, inspired by the Hadamard error cor-
recting code, and apply Lemma 6 to show that their readability is at least linear
in the number of nodes. We define Hk as the bipartite graph with vertex sets
Vs = {vs | v ∈ {0, 1}k \ {0k}} and Vp = {vp | v ∈ {0, 1}k \ {0k}} and edge set

E(Hk) =
{

(vs, vp) ∈ Vs × Vp |
k∑

i=1

vs[i]vp[i] ≡ 1 (mod 2)
}

.

In other words, each vertex has a non-zero k-bit codeword vector associated
with it and two vertices are adjacent if the inner product of their codewords is
odd. Let n = 2k. Graph Hk has 2(n − 1) vertices, all of degree n/2, and thus
(n − 1)n/2 edges. Figure 1b illustrates H3.

In the full version, we show that every pair of vertices in the same part of
the bipartition of Hk has exactly n/4 common neighbors. This implies that the
distinctness of Hk is n/4. Combining this with Lemma 6, we obtain the following
theorem.

Theorem 6. r(Hk) ≥ n/4+1.

This lower bound also translates to directed graphs: applying Theorem 1, there
exists digraphs of readability Ω(n). A major open question is: Do there exist
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Fig. 1. (a) Illustration that Theorem 3 cannot be extended to graphs with a C4. Exam-
ple of a graph and decomposition that satisfies the strict P4-rule, yet no overlap labeling
� exists that achieves it. (b) The graph H3. The strings on the vertices correspond to
the k-bit codeword vectors.

graphs that have exponential readability? We conjecture that they do, and that
the graph family Hk has exponential readability. However, since distinctness is
O(n), we note that Lemma 6 is insufficient for proving stronger than Ω(n) lower
bounds on the readability.

4.3 Trees

The purely graph theoretic characterization of readability given by Theorem 2
allows us to derive a sharp upper bound on the readability of trees. Recall that
the eccentricity of a vertex u in a connected graph G is defined as eccG(u) =
maxv∈V (G) distG(u, v), where distG(u, v) is the number of edges in a shortest
path from u to v. The radius of a graph G is defined as the minimum eccentricity
of a vertex in G, that is radius(G) = minu∈V (G) maxv∈V (G) distG(u, v).

Theorem 7. For every tree T , r(T ) ≤ radius(T ), and this bound is sharp. More
precisely, for every k ≥ 0 there exists a tree T such that r(T ) = radius(T ) = k.

Proof. Let T be a tree. If T = K1 (the one-vertex tree), then radius(T ) =
r(T ) = 0 (note that assigning the empty string to the unique vertex of v results
in an overlap labeling of T ). Now, let T be of radius r ≥ 1 and let v ∈ V (T )
be a vertex of T of minimum eccentricity (that is, eccT (v) = r). Consider the
distance levels of T from v, that is, Vi = {w ∈ V (T ) | distT (v, w) = i} for
i ∈ {0, 1, . . . , r}. Also, for all i ∈ [r], let Ei be the set of edges in T connecting
a vertex in Vi−1 with a vertex in Vi. Then {E1, . . . , Er} is a partition of E(T )
and the decomposition w : E(T ) → [r] given by w(e) = i if and only if e ∈ Ei

is well defined. We claim that w satisfies the P4-rule. Let P = (v1, v2, v3, v4) be
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an induced P4 in T , and let i = w(v1, v2), j = w(v2, v3), k = w(v3, v4). Suppose
that j = max{i, j, k}. We may assume without loss of generality that v2 ∈ Vj−1

and v3 ∈ Vj . Since T is a tree, v2 is the only neighbor of v3 in Vj−1, which
implies that v4 ∈ Vj+1 and consequently k = j + 1, contrary to the assumption
j = max{i, j, k}. Thus, the P4-rule is trivially satisfied for w. By Theorem 2, we
have r(T ) ≤ maxe∈E(T ) w(e) = r = radius(T ).

To show that for every k ≥ 0 there exists a tree T with r(T ) = radius(T ) = k,
we proceed by induction. We will construct a sequence {(Ti, vi)}i≥0 where Ti is
a tree, vi is a vertex in Ti with eccTi

(vi) ≤ i, the degree of vi in Ti is i, and
r(Ti) = radius(Ti) = i. For i = 0, take (T0, v0) = (K1, v0) where v0 is the
unique vertex of K1. This clearly has the desired properties. For i ≥ 1, take i
disjoint copies of (Ti−1, vi−1), say (T j

i−1, v
j
i−1) for j ∈ [i], add a new vertex vi,

and join vi by an edge to each vj
i−1 for j ∈ [i]. Let Ti be the so constructed

tree. Clearly, the degree of vi in Ti is i, and eccTi
(vi) ≤ 1 + eccTi

(vi−1) ≤
1 + (i − 1) = i, which implies that radius(Ti) ≤ i. On the other hand, we will
show that r(Ti) ≥ i, which together with inequality r(Ti) ≤ radius(Ti) will
imply the desired conclusion radius(Ti) = r(Ti) = i. Suppose for a contradiction
that r(Ti) < i. Then, by Lemma 1, there exists a decomposition w of Ti of
size i − 1 satisfying the P4-rule. In particular, this implies i ≥ 2. Since the
degree of vi in Ti is i, there exist two edges incident with vi, say (vi, v

j
i−1) and

(vi, v
k
i−1) for some j �= k such that w(vi, v

j
i−1) = w(vi, v

k
i−1). Let w1 denote

this common value. Let x be a neighbor of vj
i−1 in T j

i−1. (Note that x exists
since vj

i−1 is of degree i − 1 ≥ 1 in T j
i−1.) Then, (x, vj

i−1, vi, v
k
i−1) is an induced

P4 in Ti. We claim that w(x, vj
i−1) > w1. Indeed, if w(x, vj

i−1) ≤ w1 then we
have max{w(x, vj

i−1), w(vj
i−1, vi), w(vi, v

k
i−1)} = max{w(x, vj

i−1), w1, w1} = w1,
while w1 � w1 + w(x, vj

i−1), contrary to the P4-rule. Since x was an arbitrary
neighbor of vj

i−1 in T j
i−1, we infer that every edge e in T j

i−1 incident with vj
i−1

satisfies w(e) > w1. In particular, this leaves a set of at most i − 2 different
values that can appear on these i−1 edges (the value w1 is excluded), and hence
again there must be two edges of the same weight, say w2. Clearly, w2 > w1

and i > 2. Proceeding inductively, we construct a sequence of edges e1, e2, . . . , ei

forming a path in Ti from vi to a leaf and satisfying w1 < w2 < . . . < wi, where
wi = w(ei). This implies that all the weights w1, . . . , wi are distinct, contrary
to the fact that the range of w is contained in the set [i − 1]. This contradiction
shows that r(Ti) ≥ i and completes the proof. 
�
Note that for every k ≥ 2, the tree Tk of radius k constructed in the proof
of Theorem 2 has a pair of leaves in the same part of the bipartition and is
therefore of distinctness 1. This shows that the readability of a graph cannot be
upper-bounded by any function of its distinctness (cf. Lemma 6).

5 Conclusion

In this paper, we define a graph parameter called readability, and initiate a
study of its asymptotic behavior. We give purely graph theoretic parameters
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(i.e., without reference to strings) that are exactly (respectively, asymptotically)
equivalent to readability for trees (respectively, C4-free graphs); however, for
general graphs, the HUB number is equivalent to readability only in the sense
that it is bounded on the same set of graphs. While an �-decomposition always
satisfies the HUB-rule, the converse is not true. For example, a decomposition of
P4 with weights 4, 5, 3 satisfies the HUB-rule but cannot be achieved by an over-
lap labeling (by Lemma 1). For this reason, the upper bound given by Lemma 5
leaves a gap with the lower bound of Lemma 4. We are able to describe other
properties that an �-decomposition must satisfy (not included in the paper),
however, we are not able to exploit them to close the gap. It is a very interest-
ing direction to find other necessary rules that would lead to a graph theoretic
parameter that would more tightly match readability on general graphs than the
HUB number.

Consider r(n) = max{r(D) | D is a digraph on n vertices}. We have shown
r(n) = Ω(n) and know from [BM02] that r(n) = O(2n). Can this gap be closed?
Do there exist graphs with readability Θ(2n) (as we conjecture), or, for example,
is readability always bounded by a polynomial in n? Questions regarding com-
plexity are also unexplored, e.g., given a digraph, is it NP-hard to compute its
readability? For applications to bioinformatics, the length of reads can be said
to be poly-logarithmic in the number of vertices. It would thus be interesting to
further study the structure of graphs that have poly-logarithmic readability.
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Abstract. Recently, various types of permutation patterns such as mesh
patterns, boxed-mesh patterns, and consecutive patterns, have been stud-
ied where relative order between characters is considered rather than char-
acters themselves. Among these, we focus on boxed-mesh patterns and
study the problem of finding all boxed-subsequences of a text T of length
n whose relative order between characters is the same as that of a pat-
tern P of length m. Recently, it is known that this problem can be solved
in O(n3) time. In this paper, we first propose an O(n2m)-time algorithm
for the problem based on interesting properties of boxed subsequences.
Then, we give a further improved algorithm which runs in O(n2 log m)
time using preprocessed information on P and order-statistics trees.

Keywords: Permutation pattern matching · Order-isomorphism ·
Boxed-mesh pattern

1 Introduction

Given a text T and a pattern P over a numeric alphabet Σ, the permutation
pattern matching problem is to find every subsequence of T whose relative order
between all characters (numbers) is the same as that of P [1,2]. For example,
when P = (5, 3, 4, 8, 9, 6, 7) and T = (10, 6, 2, 7, 15, 16, 12, 19, 13, 11, 3) are given,
P has the same relative order as those of two subsequences of T , i.e., T ′ =
(10, 6, 7, 15, 16, 12, 13) and T ′′ = (10, 2, 7, 15, 16, 12, 13). The first character ‘10’
in T ′ (resp. in T ′′) is the 3rd smallest character as ‘5’ in P , the second character
‘6’ in T ′ (resp. ‘2’ in T ′′) is the smallest character as ‘3’ in P , and so on. Due to
their diverse applications in time series analysis, various types of permutation
patterns have been studied such as mesh patterns [3], boxed-mesh patterns [4],
and consecutive patterns [5–9].

Among the various types of permutation patterns, we focus on boxed-mesh
patterns. In boxed-mesh permutation pattern matching (BPPM for short), the
ith character c in a (numeric) string x can be represented as a point of coordinate
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(i, c) on a two-dimensional plane. Consider a rectangle R whose coordinates
of four apexes are (h1, v1), (h1, v2), (h2, v1) and (h2, v2). Assume R includes k
number of points each of which represents a character of x. Then we can construct
a subsequence x′ of x (|x′| = k) by concatenating all the characters represented as
points in R from left to right. In this case, we say R represents x′ and x′ is a boxed
subsequence of x. Note that not every subsequence of x is a boxed subsequence.
For the previous example, all characters of P and those of T can be represented
in two-dimensional planes, respectively, as shown in Fig. 1. All the points of
T ′ = (10, 6, 7, 15, 16, 12, 13) are included in the shaded rectangle of the right
plane and there are no other points in the shaded rectangle. Thus, T ′ is a boxed
subsequence of T . But for another subsequence T ′′ = (10, 2, 7, 15, 16, 12, 13), no
rectangle can include all the points of T ′′ without including any other points of
T . Thus, T ′′ is not a boxed subsequence of T .

Fig. 1. Representations of P = (5, 3, 4, 8, 9, 6, 7) and T = (10, 6, 2, 7, 15, 16, 12, 19,
13, 11, 3) in two-dimensional planes, where the x-axis is labeled with indexes of char-
acters and the y-axis is labeled with ranks of characters.

Given a text T (|T | = n) and a pattern P (|P | = m) over Σ, the boxed-mesh
permutation pattern matching problem (BPPM problem for short) is to find
every boxed subsequence of T whose relative order between characters is the
same as that of P . In the previous example shown in Fig. 1, T ′ is an occurrence
since T ′ is a boxed subsequence of T and its relative order between characters is
the same as that of P . Though the relative order between characters of T ′′ is the
same as that of P , T ′′ is not an occurrence since it is not a boxed subsequence of
T . Avgustinovich et al. [4] firstly introduced the concept of boxed-mesh patterns
and studied pattern avoidance, i.e., counting the number of permutations not
containing a given pattern. Bruner et al. [2] introduced the BPPM problem and
showed that it can be solved in O(n3) time as follows. First, they fix two charac-
ters c1 and c2 (c1 < c2) in T . Then, they check whether the boxed subsequence
including c1 and c2 as the smallest character and the largest character, respec-
tively, is an occurrence of P in T .
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Table 1. μP and π for P = (5, 3, 4, 8, 9, 6, 7).

i 1 2 3 4 5 6 7

P [i] 5 3 4 8 9 6 7

μP [i] 1 1 2 4 5 4 5

π[i] 0 1 2 3 4 4 5

In this paper, we first propose an O(n2m)-time algorithm for the BPPM
problem. Our algorithm fixes a position i and then finds all the occurrences of P
in T whose first character is ith character of T based on interesting properties
of boxed subsequences. Then using preprocessed information on P and order-
statistics trees, we give a further improved algorithm which runs in O(n2 log m)
time.

This paper is organized as follows. In Sect. 2, we describe the previous works
related to the BPPM problem. In Sect. 3, we present an O(n2m)-time algorithm
for the BPPM problem, and then we present an O(n2 log m)-time algorithm in
Sect. 4.

2 Preliminaries

We give some basic definitions and notations on strings. Let Σ denote the set
of characters such that a comparison of two characters can be done in constant
time. A string x over the alphabet Σ is a sequence of characters derived from the
alphabet Σ. For simplicity, we assume that the characters of x are all distinct.
We denote the length of x by |x| and the ith character by x[i] (1 ≤ i ≤ |x|).
A sequence (x[i1], x[i2], . . . , x[ik]) of characters in x is called a subsequence of x
when 1 ≤ i1 < i2 < · · · < ik ≤ |x|. A substring of x denoted by x[i..j] is a sub-
sequence of consecutive characters (x[i], x[i + 1], . . . , x[j]) in x. A prefix of x is a
substring of x starting at the first position. For a string x, we denote by min(x)
(resp. max(x)) the smallest (resp. largest) character in x. For a string x and a char-
acter c, we denote by x ⊕ c the concatenation of x and c. The rank of a character
c for a string x is defined as Rank(x, c) = 1 + |{i : x[i] < c, 1 ≤ i ≤ |x|}|.

We formally define the order-isomorphism [6]. Two strings x and y of the
same length over Σ are called order-isomorphic, written x ≈ y, if

x[i] ≤ x[j] ⇔ y[i] ≤ y[j] for all 1 ≤ i, j ≤ |x|.
If two strings x and y are not order-isomorphic, we write x �≈ y. For a string x,
the prefix representation μx is defined as μx[i] = Rank(x[1..i], x[i]) (1 ≤ i ≤ |x|),
which can be computed in O(|x| log |x|) time using order-statistics trees [10].

Lemma 1. [7] For two strings x and y over Σ, x ≈ y if and only if μx = μy.

In the lemma, it is assumed that there are no identical characters in each string [7]
but this assumption can be avoided by extending a character x[i] to the pair
(x[i], i) [11].
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Given a text T [1..n] and a pattern P [1..m], we say that P occurs at (i, j)
of T if there exists a boxed subsequence T ′ of T such that T ′ = (T [i], . . . , T [j])
and T ′ ≈ P . Also, we say T ′ is an occurrence of P at (i, j) in T . The following
lemma shows the uniqueness of an occurrence at (i, j)

Lemma 2. Given a pattern P and a text T , for fixed i and j (1 ≤ i < j ≤ n),
there exists at most one boxed subsequence T ′ of T such that T ′ = (T [i], . . . , T [j])
and T ′ ≈ P .

Proof. It can be proven by contradiction. Let x and y be two distinct boxed sub-
sequences whose first and last characters are T [i] and T [j], respectively. Assume
both x ≈ P and y ≈ P . Since x is a boxed subsequence whose first and last char-
acters are T [i] and T [j], respectively, x includes all the characters c in T [i..j]
such that min(x) ≤ c ≤ max(x). Similarly, y includes all the characters c in
T [i..j] such that min(y) ≤ c ≤ max(y).

Now, we show that min(x) = min(y) and max(x) = max(y). Let lx and ly be
the number of characters c in T [i..j] such that min(x) ≤ c < T [i] and min(y) ≤
c < T [i], respectively. Then, Rank(x, T [i]) = lx + 1 and Rank(y, T [i]) = ly + 1.
Since x ≈ P and y ≈ P , Rank(x, T [i]) = Rank(y, T [i]) and thus lx = ly,
which means min(x) = min(y). Similarly, it can be shown max(x) = max(y).
Since min(x) = min(y) and max(x) = max(y), the boxed subsequences x and y
consist of the same characters, which contradicts the assumption that x and y
are distinct. ��

3 O(n2m)-time Algorithm for the BPPM Problem

In this section, we present an O(n2m)-time algorithm for the BPPM problem.
Our algorithm consists of n−m+1 phases. In each Phase i (1 ≤ i ≤ n−m+1),
we find all the occurrences of P whose first character is T [i]. Since each phase is
completely independent of the other phases, we devote our attention to a fixed
phase (Phase i).

We first give some definitions and notations for description of Phase i.
A subsequence x′ of a string x is called a full-width boxed (for short, f-boxed)
subsequence of x if x′ includes only and all the characters c of x such that
min(x′) ≤ c ≤ max(x′). For example, a subsequence T ′ = (10, 6, 7, 12) of T
shown in Fig. 1 is an f-boxed subsequence of T [1..9]. However, T ′ is not an
f-boxed subsequence of T [1..10] since min(T ′) ≤ T [10] = 11 ≤ max(T ′) but ‘11’
is not a character in T ′. For an f-boxed subsequence x′ of a string x, we define
the lower bound lb(x, x′) and the upper bound ub(x, x′) as follows:

– lb(x, x′) is the largest character in x smaller than min(x′). If no such character
exists, lb(x, x′) is −∞.

– ub(x, x′) is the smallest character in x larger than max(x′). If no such character
exists, ub(x, x′) is ∞.
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For the f-boxed subsequence T ′ = (10, 6, 7, 12) of T [1..9] in the previous example,
lb(T [1..9], T ′) = 2 and ub(T [1..9], T ′) = 13. Notice that lb(T [1..9], T ′) �= 3 since
‘3’ (= T [11]) is not a character of T [1..9].

Next, we define a set Zj of f-boxed subsequences z of T [i..j] (1 ≤ i ≤ j ≤ n)
such that z includes the first character T [i] and z ≈ P [1..|z|]. Notice that the
last character T [j] may not be included in z. Moreover, Zj always contains the
subsequence (T [i]) of length one. The following lemma shows the strings in Zj

are of distinct lengths.

Lemma 3. For a fixed k (1 ≤ k ≤ m), there exists at most one string of length
k in Zj.

Proof. It can be proven by contradiction, similarly to the proof for Lemma 2.
We omit the details. ��
Lemma 4 shows the relation between Zj−1 and Zj .

Lemma 4. For z ∈ Zj (i+1 ≤ j ≤ n), if z does not include T [j], then z ∈ Zj−1;
otherwise (if z includes T [j]), z′ ∈ Zj−1 where z′ is the string obtained by
deleting T [j] from z, i.e., z = z′ ⊕ T [j].

Proof. First, consider the case when z does not include T [j]. Since z is an f-
boxed subsequence of T [i..j] and z does not include T [j], z is also an f-boxed
subsequence of T [i..j −1]. Since z ∈ Zj , z includes T [i] and z ≈ P [1..|z|]. Hence,
z ∈ Zj−1 by the definition of Zj−1.

Next, consider the case when z includes T [j]. Since z = z′⊕T [j] is an f-boxed
subsequence of T [i..j] and z′ does not include T [j], z′ is an f-boxed subsequence
of T [i..j − 1]. Since z′ ⊕ T [j] ∈ Zj , z′ includes T [i] and z′ ≈ P [1..|z′|]. Hence,
z′ ∈ Zj−1 by the definition of Zj−1. ��
By the definition of Zj , Zj includes the occurrence of P (if exists) whose first
and last characters are T [i] and T [j], respectively. Thus, we can get the following
corollary from Lemma 4.

Corollary 1. For an occurrence z of P at (i, j) in T , let z′ be the string obtained
by deleting T [j] from z, i.e., z = z′ ⊕ T [j]. Then, z′ ∈ Zj−1.

Now we explain Phase i in details for finding all the occurrences of P whose
first character is T [i]. Phase i consists of n − i steps, from Step i + 1 to Step n.
Let lzj (i ≤ j ≤ n) be the longest string in Zj such that |lzj | < m. (lzi is
simply T [i] since T [i] is the only string in Zi.) At each Step j (i + 1 ≤ j ≤ n)
of Phase i, we are given lzj−1, and then we compute lzj and decide whether P
occurs at (i, j) or not. To decide whether P occurs at (i, j) or not, we check only
whether lzj−1 ⊕ T [j] ≈ P (Corollary 1). To compute lzj , we make use of the
strings in Zj−1, which can be computed using lzj−1. (We will describe later how
to compute Zj−1 using lzj−1.) By Lemma 4, it is sufficient to consider z ∈ Zj−1

and z⊕T [j] to compute Zj . Furthermore, no two strings are of the same length in
Zj−1 by Lemma 3. Therefore, to compute lzj , for strings z ∈ Zj−1 in decreasing
order of their lengths, we check if z ⊕ T [j] ∈ Zj and z ∈ Zj . The following two
lemmas show conditions when z and z ⊕ T [j] will be elements in Zj .
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Lemma 5. For z ∈ Zj−1 (i + 1 ≤ j ≤ n), z ∈ Zj if and only if T [j] < min(z)
or T [j] > max(z).

Proof. If T [j] < min(z) or T [j] > max(z), z is an f-boxed subsequence in T [i..j].
Obviously, z includes T [i] and z ≈ P [1..|z|]. Thus, in this case, z ∈ Zj . If
min(z) ≤ T [j] ≤ max(z), z is not an f-boxed subsequence in T [i..j] and thus,
z �∈ Zj . ��
Lemma 6. For z ∈ Zj−1 (i + 1 ≤ j ≤ n), let Blb = lb(T [i..j − 1], z), Bub =
ub(T [i..j − 1], z), and r = Rank(z, T [j]). Then, z ⊕ T [j] ∈ Zj if and only if
Blb < T [j] < Bub and r = μP [|z| + 1].

Proof. We first prove z ⊕ T [j] ∈ Zj if Blb < T [j] < Bub and r = μP [|z| + 1]. Let
z′ = z ⊕ T [j], l = |z′|, and P ′ = P [1..l]. Obviously, z′ includes T [i]. Moreover,
z′ is an f-boxed subsequence of T [i..j] since z′ includes only and all characters
c of T [i..j] such that Blb < c < Bub. We show that μz′ = μP ′ and thus z′ ≈
P ′ (Lemma 1). By the definition of the prefix representation, μz′ [1..l − 1] =
μz[1..l − 1] and μP ′ [1..l − 1] = μP [1..l − 1]. Since z ∈ Zj−1, z ≈ P [1..l − 1],
i.e., μz[1..l − 1] = μP [1..l − 1] (by Lemma 1). Thus, μz′ [1..l − 1] = μP ′ [1..l − 1].
Furthermore, μz′ [l] = μP ′ [l] by the condition r = μP [l], and thus μz′ = μP ′ .
Hence, z ⊕ T [j] ∈ Zj .

Now, we prove z ⊕ T [j] �∈ Zj if T [j] ≤ Blb or T [j] ≥ Bub or r �= μP [|z| + 1].
First, consider the case when T [j] ≤ Blb or T [j] ≥ Bub. Without loss of generality,
assume T [j] ≥ Bub. Let T [k] be the character in T [i..j − 1] such that T [k] = Bub.
By definition of Bub = ub(T [i..j − 1], z), T [k] surely exists and T [k] > max(z).
Since max(z) < T [k] ≤ T [j] and T [k] is not in z ⊕ T [j], z ⊕ T [j] is not an f-boxed
subsequence of T [i..j]. Hence, z ⊕ T [j] /∈ Zj .

Next, consider the case when r �= μP [|z| + 1]. Let z′ = z ⊕ T [j], l = |z′|,
and P ′ = P [1..l]. We show z′ �≈ P ′. Since the characters in T are all distinct,
Rank(z′, T [j]) = Rank(z, T [j]), i.e., μz′ [l] = r. By the definition of the prefix
representation, μP ′ [l] = μP [l]. Thus, μz′ [l] �= μP ′ [l] by the condition r �= μP [l],
which means z′ �≈ P ′ by Lemma 1. Hence, z ⊕ T [j] /∈ Zj . ��
Algorithm 1 shows the pseudocode of our algorithm. The first for loop (line 2)
represents the phases and the second for loop (line 4) represents the steps in
each phase. While performing Phase i, we maintain a subsequence z and two
variables Blb and Bub so that, at the beginning of Step j (i + 1 ≤ j ≤ n),
z = lzj−1, Blb = lb(T [i..j − 1], z) and Bub = ub(T [i..j − 1], z). Initially, we set z
to lzi (i.e., T [i]) and Blb and Bub to −∞ and ∞, respectively (line 3). At Step j
of Phase i, we repeat the while loop of lines 5–14 until lzj is computed as follows.

1. First, we check whether z ⊕ T [j] ∈ Zj (line 7). Let r = Rank(z, T [j]). By
Lemma 5, if Blb < T [j] < Bub and r = μP [|z| + 1], then z ⊕ T [j] ∈ Zj .
If |z| < m − 1 (lines 8–9), then lzj = z ⊕ T [j]. Hence, we append T [j] to
z (the Append operation) and escape the while loop (break). In this case,
Blb and Bub do not change. If |z| = m − 1 (lines 10–11), then z ⊕ T [j] is an
occurrence at (i, j) but it is not lzj due to the length restriction. Hence, we
continue to compute lzj .
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Algorithm 1. Search for a boxed-mesh pattern
1: m ← |P |; n ← |T |;
2: for i ← 1 to n − m + 1 do
3: z ← (T [i]); Blb ← −∞; Bub ← ∞; � Initialization

4: for j ← i + 1 to n do

5: while true do

6: r ← Rank(z, T [j]);

7: if Blb < T [j] < Bub and r = μP [|z| + 1] then � if z ⊕ T [j] ∈ Zj

8: if |z| < m − 1 then
9: Append(z, T [j]); break; � z ← z ⊕ T [j]

10: else

11: print “P occurs at (i, j)”;
12: if r = 1 then Blb ← max(Blb, T [j]); break; � if T [j] < min(z)
13: else if r = |z| + 1 then Bub ← min(Bub, T [j]); break; � if T [j] > max(z)

14: else NextCandSeq(); � if min(z) < T [j] < max(z)

1: procedure NextCandSeq
2: do
3: if P [|z|] > P [1] then Bub ← ExtractMax(z); � delete &return max(z)
4: else Blb ← ExtractMin(z); � delete &return min(z)
5: while z �≈ P [1..|z|]
6: end procedure

2. Next, if lzj is not computed yet, we check whether z ∈ Zj (lines 12–14). If
r = 1 or r = |z| + 1, i.e., T [j] < min(z) or T [j] > max(z) (lines 12–13),
then z ∈ Zj by Lemma 5. In this case, lzj = z since |z| < m. Due to T [j],
Blb and Bub may change. Hence, we set Blb = max(Blb, T [j]) (if r = 1) and
Bub = min(Bub, T [j]) (if r = |z|+1), and escape the while loop. If 1 < r ≤ |z|,
i.e., min(z) < T [j] < max(z) (line 14), then z /∈ Zj by Lemma 5. Since, for
the current z, z �∈ Zj and z ⊕ T [j] �∈ Zj , we compute the longest string in
Zj−1 whose length is less than |z| by calling the NextCandSeq procedure
and repeat the while loop for the new string in Zj−1.

The NextCandSeq procedure, from the current string z in Zj−1 at Step j,
computes the longest string z′ in Zj−1 such that |z′| < |z|. We compute z′

by deleting characters one by one from z as follows. Let a (resp. b) be the
number of characters in P [1..|z|] larger (resp. smaller) than P [1]. Without loss
of generality, assume that P [|z|] > P [1]. Consider an f-boxed subsequence x of
T [i..j−1] such that x includes the first character T [i] and a−1 (resp. b) characters
larger (resp. smaller) than T [i]. Note that x is the unique f-boxed subsequence of
T [i..j−1] such that Rank(x, T [i]) = Rank(P [1..|z|−1], P [1]) and thus x can be
order-isomorphic to P [1..|z| − 1]. Thus, we repeat the following until z′ is com-
puted. We update Bub to max(z) and delete it from z (ExtractMax) if P [|z|] >
P [1] (line 3), or we update Blb to min(z) and delete if from z (ExtractMin)
if P [|z|] < P [1] (line 4). Then, we check whether z′ ≈ P [1..|z′| or not (line 5).

We analyze the time complexity of Algorithm 1. In the while loop in
Algorithm 1, all the statements excepts lines 6 and 14 run at most once in each step.
Moreover, the while loop is repeated only when the NextCandSeq
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procedure is called. Let us consider howmany timesExtractMax andExtract-
Min in NextCandSeq are called in each phase. Whenever ExtractMax or
ExtractMin is called, the length of z decreases by one. Moreover, the length
of z increases at most by one in each step (by Append) and thus it increases at
most by n in each phase. Therefore, all operations on z including Rank (line 6 of
Algorithm 1) and order-isomorphism check (line 5 of NextCandSeq) runs O(n)
times in each phase. Operations Rank, Append, ExtractMax, and Extract-
Min can be performed in O(m) time by maintaining z in an unsorted array. More-
over, we can check z ≈ P [1..|z|] (line 5 of NextCandSeq) in O(m) time after
preprocessing P in O(m log m) time [6–8]. The prefix representation for P can also
be computed in O(m log m) time as mentioned in Sect. 2. Therefore, each phase
takes O(nm) time and thus Algorithm 1 takes in O(n2m) time in total. Hence, we
get the following theorem.

Theorem 1. The BPPM problem can be solved in O(n2m) time.

4 O(n2 logm)-time Algorithm for the BPPM Problem

In this section, we improve Algorithm 1 to run in O(n2 log m) time. In the time
complexity of Algorithm 1, the factor m is due to the operations on string z,
i.e., Rank, Append, ExtractMax, ExtractMin, and the order-isomorphism
check with P (line 5 of NextCandSeq). First, we can easily reduce the time for
all the operations except the order-isomorphism check to O(log m) by maintain-
ing z in an order-statistics tree [10]. Second, we can avoid the order-isomorphism
check by using preprocessed information on P .

We present in details how to avoid the order-isomorphism check. Let ZP
q

be the set for P [1..q] defined equally to the set Zj for T [i..j]. Precisely, ZP
q

(1 ≤ q ≤ m) is the set of f-boxed subsequences x of P [1..q] such that x includes
the first character P [1] and x ≈ P [1..|x|]. Then, we define the function π[q]
(1 ≤ q ≤ m) as the length of the longest string x in ZP

q such that |x| < q.
See Table 1 in Sect. 2 for an example. Since P [1..q] is surely in ZP

q and it is the
longest string in ZP

q , π[q] is the length of the second longest string in ZP
q .

1: procedure ImprovedNextCandSeq
2: l ← π[|z|];
3: do
4: if P [|z|] > P [1] then Bub ← ExtractMax(z); � delete &return max(z)
5: else Blb ← ExtractMin(z); � delete &return min(z)
6: while |z| > l
7: end procedure

The ImprovedNextCandSeq procedure is an improved version of the
NextCandSeq procedure. By using the π-function, we can skip checking the
order-isomorphism between z and P [1..|z|]. The following lemma shows the cor-
rectness of ImprovedNextCandSeq.
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Algorithm 2. Compute the π-function
1: m ← |P |; π[1] ← 0;
2: for q ← 2 to m do
3: z ← P [1..q − 1]; Blb ← −∞; Bub ← ∞; � Initialization
4: while true do
5: r ← Rank(z, P [q]);
6: if Blb < P [q] < Bub and r = μP [|z| + 1] then � if z ⊕ P [q] ∈ ZP

q

7: if |z| < q − 1 then
8: Append(z, P [q]); break; � z ← z ⊕ P [q]
9: if r = 1 or r = |z| + 1 then break; � if z ∈ ZP

q

10: else ImprovedNextCandSeq(); � if z �∈ ZP
q

11: π[q] = |z|;

Lemma 7. For z ∈ Zj (i + 1 ≤ j ≤ n), let z′ be the longest string in Zj (if
exists) such that |z′| < |z|. Then, |z′| = π[|z|].
Proof. (Sketch) Let q = |z| and l = π[q]. We first prove that there exists a string
of length l in Zj . By the definition of π[q], there exists an f-boxed subsequence
P ′ of P [1..q] of length l such that P ′ includes P [1] and P ′ ≈ P [1..l]. Assume
P ′ = (P [p1], . . . , P [pl]). Consider a subsequence z′ = (z[p1], . . . , z[pl]) of z of
length l. We can show that z′[1] = T [i], z′ ≈ P [1..l], and z′ is an f-boxed
subsequence of T [i..j] using the condition z ∈ Zj , i.e., z[1] = T [i], z ≈ P [1..q],
and z is an f-boxed subsequence of T [i..j]. Therefore, z′ ∈ Zj .

Next, we prove by contradiction that there exists no string of length k (l <
k < q) in Zj . Suppose that there exists a string x of length k in Zj . We can show
that x consists of only the characters of z using conditions x ∈ Zj and z ∈ Zj .
Assume x = (z[p1], . . . , z[pk]). Consider a subsequence P ′ = (P [p1], . . . , P [pk])
of P [1..q] of length k. Similarly to the above, we can show that P ′ ∈ ZP

q . It
contradicts the definition of π[q] since |P ′| > l. Therefore, there is no such
string x. ��
Lemma 8. When the π-function is given, Algorithm 1 takes O(n2 log m) time.

Now we explain how to compute the π-function. Algorithm 2 shows the pseudocode
of our algorithm, which is similar to Phase 1 of Algorithm 1. Algorithm 2 consists
of m − 1 steps, from Step 2 to Step m. In Step q (2 ≤ q ≤ m), we compute π[q]
using the strings in ZP

q−1. (By definition, π[1] = 0.) That is, for strings z ∈ ZP
q−1

in decreasing order of their lengths, we check if z ⊕ P [q] ∈ ZP
q and z ∈ ZP

q .
Let lzq (1 ≤ q ≤ m) be the longest string in ZP

q and lz′
q be the longest string

in ZP
q such that |lz′

q| < q. Differently from Algorithm 1, we do not compute
lzq for the next step since lzq is simply P [1..q]. Thus, in Step q, we initially set
z = P [1..q − 1] (line 3) as lzq and repeat the while loop (lines 4–10) until we
compute lz′

q. Since the definition of ZP
q is the same as that of Zj in Sect. 3,

we can check whether z ⊕ P [q] and z are in ZP
q or not in the same way as in

Algorithm 1. Notice that Algorithm 2 computes lz′
q while Algorithm 1 computes

lzq, which makes a difference in checking the length of z (line 8 of Algorithm 1
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and line 7 of Algorithm 2). Moreover, we already know π[k] (1 ≤ k ≤ q − 1)
which is necessary to compute π[q].

We analyze the time complexity of Algorithm 2. Similarly to the analysis of
Algorithm 1, the running time of Algorithm 2 is bounded by the while loop in
ImprovedNextCandSeq. In Step q, initially |z| = q−1 and it decreases when-
ever ExtractMax or ExtractMin is called. Thus, each step takes O(m log m)
time when z is maintained in an order-statistics tree. Moreover, as mentioned
in Sect. 2, the prefix representation for P can be computed in O(m log m) time.
Since Algorithm 2 consists of m−1 steps, Algorithm 2 takes O(m2 log m) time.

Lemma 9. Theπ-function forP of lengthm can be computed inO(m2 log m) time.

From Lemmas 8 and 9 we can get the following theorem.

Theorem 2. The BPPM problem can be solved in O(n2 log m) time.
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Abstract. Range minimum queries (RMQs) are essential in many algo-
rithmic procedures. The problem is to prepare a data structure on an
array to allow for fast subsequent queries that find the minimum within
a range in the array. We study the problem of designing indexing RMQ
data structures which only require sub-linear space and access to the
input array while querying. The RMQ problem in one-dimensional arrays
is well understood with known indexing data structures achieving opti-
mal space and query time. The two-dimensional indexing RMQ data
structures have received the attention of researchers recently. There are
also several solutions for the RMQ problem in higher dimensions. Yuan
and Atallah [SODA’10] designed a brilliant data structure of size O(N)
which supports RMQs in a multi-dimensional array of size N in constant
time for a constant number of dimensions. In this paper we consider the
problem of designing indexing data structures for RMQs in higher dimen-
sions. We design a data structure of size O(N) bits that supports RMQs
in constant time for a constant number of dimensions. We also show how
to obtain trade-offs between the space of indexing data structures and
their query time.

1 Introduction

We consider the problem of preprocessing an array of elements into a data struc-
ture that supports range minimum queries (RMQs) asking for the position of
the minimum element within a given range in the array. More formally, the
d-dimensional range minimum query (d-RMQ) problem is:
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– Input: A d-dimensional array A over S with dimensions (n1 ×· · ·×nd) of size
N = n1n2 · · · nd, where S is a set of linearly ordered elements whose elements
can be compared (for ≤) in constant time.

– Output: A data structure over A supporting the following queries.
– Query: Return the position of the minimum element in a range q = [a1..b1]×

[a2..b2] × . . . × [ad..bd] of A, that is,

d-RMQ(A, q) = argmin[i1,i2,...,id]∈qA[i1, i2, . . . , id]

This problem, in various dimensions, finds applications in databases, infor-
mation retrieval, computational biology, etc. Also the well-known problem of
range searching on points in higher dimensions can be reduced to range queries
on arrays if the input point set is dense. In the realm of stringology its most well
known use has been in the LCP (Longest Common Prefix) data structure, but
many other uses have been made of this, e.g. [2].

Previous Work. The 1D-RMQ problem has been well studied. Initially, Gabow,
Bentley and Tarjan [9] introduced the problem. They reduced the problem to
the Lowest Common Ancestor (LCA) problem [11] on Cartesian Trees [13]. The
Cartesian Tree is a binary tree defined on top of an array of n elements from a
linear order. The root is the minimum element, say at location i of the array.
The left subtree is recursively defined as the Cartesian tree of the sub-array of
locations 1 to i − 1 and the right subtree is defined likewise on the sub-array
from i+1 to n. It is quite easy to see the connection between the RMQ problem
and the Cartesian tree, which is what was utilized in [9]. The LCA problem was
solved optimally in O(n) time and space allowing for O(1) time queries. This, in
turn, yielded the result of O(n) preprocessing time and space for the 1D-RMQ
problem with answers in O(1) time.

Fischer and Heun [8] showed that the space can be improved to 2n + o(n)
bits and preprocessed in O(n) time for subsequent O(1) time queries. This space
is close to the information-theoretic lower bound 2n−Θ(log n), which is derived
by counting the number of Cartesian trees. Later Brodal et al. [5] showed how
to reduce the size of the data structure to O(n/c) bits while supporting queries
in optimal time O(c), for any parameter c that 1 ≤ c ≤ n. This data structure
is called an indexing data structure as it needs to read a number of elements
from the input array of size O(n log n) bits during querying. Such a model for
designing data structures is called the indexing model, where we create an index
which refers to A when answering queries, as opposed to the encoding model,
where a data structure is able to answer queries without accessing A. Indexing
data structures find applications in massive datasets where we would like to store
the raw data in a slow memory and preprocess it into a small data structure
stored in a fast memory.

For the 2D-RMQ problem the nice properties of 1D-RMQs do not seem to
carry over. In Amir et al. [3] a solution for an N = n1 × n2 sized array, and a
parameter k ≥ 1, was shown in O(Nk) word-space, O(N log[k] N) construction
time with O(1) query time. Amir et al. [3] raised the question in what ways do
the 2D RMQ problem and 1D RMQ problem differ. This turned out to have a
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complex answer. In the indexing model, Yuan and Atallah [14] showed an index
of word-size O(N) with O(N) preprocessing time and O(1) query time. Brodal
et al. [5] showed that an index with O(N) bits can also be constructed with the
same preprocessing and query times. Furthermore, Brodal et al. [5] improved the
space to a sub-linear number of bits, showing that for any index of size O(N/c)
bits the query time will be Ω(c), for any parameter c that 1 ≤ c ≤ N . They
complemented this with an index of size O(N/c) bits that answers queries in
time O(c log2 c). This query time was later improved to O(c log c(log log c)2) [4].

For the encoding model, Demaine et al. [7] showed that o(N log N) encodings
are not possible in general for two dimensions. However, better solutions exist
when m << n [5] and when A is random [10].

For general dimension d, Chazelle and Rosenberg [6] proposed a solution
which has a near constant query time (dependent on the inverse Ackerman func-
tion) and efficient space and time. Yuan and Atallah [14] gave the first constant
query time RMQ algorithm for any constant sized dimension. Specifically, they
show that there is an algorithm to preprocess a d-dimensional array A of size N
using O((2.89)d(d + 1)!N) time and O(2dd!N) space with query time O(3d).
Notice that the size of this data structure is O(2dd!N log N) in terms of bits.
These results are in the indexing model as the input array A is needed by the
data structures during querying.

Our Results. We consider higher dimensional arrays in the indexing model, as
per the results of [6,14]. Our first result shows that for constant d we can create
an index of size O(N) bits that supports queries in O(1) time. This improves
the space usage of the data structure of [14] by a logarithmic factor. Our result
works by a careful choice of a recursive algorithm utilizing a reduction technique
that we define later. Our method makes a careful choice of use of certain calls
to the algorithm of [14]. More specifically, our result constructs an index of
size O((2.89)d(d + 1)!N) bits and answers queries in O(d!2((d+1

2 ))) time. For
constant d, this translates to space O(N) bits and query time O(1).

Our second result allows for a parameter c that is 1 ≤ c ≤ N . Here we
construct an index with space O(d(2.89)d(d + 1)!N/c) bits which allows query
time of O((d+1)!2(d+1

2 ) +2d2(d+1
2 )c(log c)2(d−1)). This result does not achieve the

state of the art 2D-RMQ indexes [4] which take space O(N/c) bits with query
time O(c log c(log log c)2) since it is not clear how to extend the ideas of [4] which
use properties of Fibonacci Lattices to higher dimensions. However it is the first
d-RMQ index that gives a time-space trade-off for sub-linear space in bits.

The first result appears in Sect. 5 and is used as a sub-structure in the data
structures of Sect. 6.

2 Preliminaries

The IndexEs that we present are recursive data structures that recurse on d,
where the base of the recursion is when d = 1. It is known that RMQs on 1D
arrays can be answered in constant time using a succinct representation of the
Cartesian tree of the array (notice that an RMQ can be also answered naively
in linear time with no preprocessing):
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Lemma 1 [8,12]. For a 1D array of size N , there exists an Index of size O(N)
bits which can answer 1D-RMQs on the array in O(1) time.

This method is classical and there are several ways to solve this problem. The
method most commonly known is a two-level partition with a tabulation scheme
based upon encodings of Cartesian trees.

The Index that we present in Sect. 5 is based on a partitioning of the input
array into blocks for two levels until the size of each block is small enough, and
then we use a tabulation technique to create a lookup table storing the answer
of queries within all possible blocks.

The tabulation technique that we use was introduced by Yuan and
Atallah [14]. They designed an algorithm that preprocesses the input array of
size N , using O(B(d)N) comparisons, into a data structure which then can be
used to answer d-RMQs by comparing O(2d) elements from the array, where
B(d) = O((2.89)d · (d + 1)!) (the function is precisely described in [14] and is
bounded using ordered Bell numbers). They used these comparisons to represent
the array with a bit-sequence of size O(B(d)N). Applying this method to arrays
of size G derives a lookup table that stores the answer of all G2 queries within
an array, for all possible arrays of size G which can be represented in O(B(d)G)
bits:

Lemma 2 [14]. For a d-dimensional array of size N which is partitioned into
disjoint blocks of size G, there exists an index of size O(2B(d)GG2 log G+B(d)N)
bits which can be used to answer RMQs within each block in time O(2d).

2.1 Terminologies

– Index: We refer to an indexing data structure as simply index.
– Rows and Directions: For a dimension k, all elements in A that have the

same coordinates in all dimensions except k form a row of A. More precisely,
for fixed ij for all j ∈ {1, . . . , d}−{k}, all A[i1] . . . [ik] . . . [id] form a row in A,
for ik = 1 · · · nk. We refer to this as a row that is in direction k. For example,
in a 2D array which consists of rows and columns in dimensions 1 and 2
respectively, every row is in direction 2 and every column is in direction 1.

– Block: A block within a d-dimensional array M [1..m1, . . . , 1..md] is defined
by M [i1..j1, . . . , id..jd] for any ik, jk ∈ {1, . . . , mk}, where ik ≤ jk and k ∈
{1, . . . , d}. This block has dimensions (or size) (j1 − i1 + 1× · · · × jd − id + 1).
The block is d′-dimensional if and only if the number of items jk − ik +1 that
are larger than 1 is d′.

– Range Queries Spanning a Dimension: We say a range (or a query) is
row-spanning if and only if the range spans over one or several rows which
means it only includes all the elements of the rows that are spanned by it.
If the rows are in direction k, then the range is row-spanning in direction k.
A block-spanning range is similarly a range that spans over a block.
Observe that if a range spans a row that is in direction k, then all the other
rows in direction k are either spanned by the range or do not have any element
in the range. This is implied by the fact that ranges are axis-aligned. Such a
range is also called a range that spans over dimension k.
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3 Overview

We now give an overview of our approach. In Sect. 4 we describe a reduction
technique which is a recursive partition of our d-dimensional input array. The
reduction partitions q-dimensional arrays into a collection of q − 1-dimensional
arrays for q = d, d − 1, . . . , 2.

Upon receiving a query, if we are very lucky, the perimeter of the query may
perfectly align with the partition of the d-dimensional array. In this case, we can
answer the query easily using the reduction technique.

However, if the query does not align with the partition then we cannot use
the result of the reduction technique directly and we need to handle our query
more carefully. In this case we treat the internal aligned parts with the reduction
technique. The leftover non-aligned parts of the query are now a collection of
pieces within the “macro-blocks” of the array, which are of size (log n1 × · · · ×
log nd). Each of these pieces is treated recursively for one more level down, which
contains “micro-blocks” which are blocks of size ( log log n1

(2B(d))1/d
× · · · × log log nd

(2B(d))1/d
)).

For leftover pieces within “micro-blocks” we use the tabulation technique of
Lemma 2.

In Sect. 5.1 we explain this Index which we denote by LBI(D). This Index
is a recursive data structure on d, where the base of the recursion is d = 1, and
we use the 1D-RMQ data structure of Lemma 1 at the base LBI(1). In Sect. 5.2
we show how to make appropriate queries upon these data structures.

4 Reduction Technique

We present a method that, for a given input array M with dimensions (m1 ×
· · · × md) which can be partitioned into disjoint blocks with given dimensions
b = (b1 ×· · ·× bd), generates an Index that supports d-RMQS spanning over the
disjoint blocks. This Index is based on another RMQ Index, denoted by I, which
is given as part of the input. We denote by RI(M, b) the RMQ Index generated
by this method. In other words, the method constructs RI(M, b) which is smaller
than a given Index I, but has less capability of supporting only block-spanning
queries on M , while I supports all d-RMQS on M . We refer to this method
as the reduction technique. This technique has been used in previous 2D-RMQ
indexing data structures to reduce the space [4,5]. Here we use this technique
for higher dimensions.

Now, we describe RI(M, b). We partition M into disjoint blocks with dimen-
sions b, and then we make an array D out of the minimum elements of
the blocks, that is, D[i1, . . . , id] contains the minimum element within the
block M [(i1 − 1)b1 + 1..i1b1, . . . , (id − 1)bd + 1..idbd]. So D has dimensions
(m1/b1 × · · · × md/bd). Then we construct I for D, and we store it in RI(M, b),
and then we delete D.

A block-spanning d-RMQ q on M is reduced to an RMQ on D. To answer q,
we first translate it to a query on D (by dividing the dimensions appropriately),
and then use I to answer the query on D. However, since we do not have access
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Fig. 1. Reduction technique for a 2D array: the two tiny squares denote the minimum
elements within the corresponding blocks.

to D, whenever I wants to read an element in D, we will need to compute that
element by reading the corresponding block from M and computing its minimum.
Therefore, the query time of RI(M, b) will be the query time of I multiplied by
b1b2 · · · bd (the size of each block). The size of RI(M, b) is obviously equal to the
size of I (notice that we avoid storing D in RI(M, b) to save space).

A block-spanning d-RMQ on M is reduced to a (d−1)-RMQ on D, if bk = mk

for some dimension k. In this case, we refer to the reduction technique as the
dimension reduction technique. We note that the dimension reduction is a com-
mon technique in designing data structures for higher dimensions [1] (Fig. 1).

5 Space-Efficient Higher Dimensional RMQ

We present a recursive Index into a D-dimensional array A of size N with dimen-
sions (n1 × · · · × nd) that supports d-RMQs on the array in time O(d!2(d+1

2 ))
using O(B(d)N) bits. Specifically, this gives an Index of size O(N) bits with
O(1) query time for d = O(1).

5.1 Data Structure

For each dimension k ∈ {1, . . . , d}, we partition A into disjoint blocks with
dimensions bk = (n1 ×· · ·× log nk ×· · ·×nd). We then make a full binary tree Tk

on the blocks that we made for each dimension k, where each leaf corresponds to
a block. We build a data structure for each of T1, . . . , Td, that supports finding
the lowest common ancestor (LCA) of two given query nodes in constant time
using linear space on the size of the tree [11]. In the following, we explain the
data structure that we store at Tk.

Let u be a left child at level h of Tk, where leaves are at level 0 (the number
of blocks of dimensions bk spanned by u is 2h). We store the following data
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Fig. 2. Data structure for a 2D input array; The gray node corresponds to 4 blocks;
The 3 gray blocks form suffix(3); suffix(3) consists of 3 blocks and is converted to a 1D
array by the dimension reduction technique and Rsuffix(3) is constructed and stored at
the gray node in the tree.

structure at u (we store no data structure at the root). Let suffix(i) denote i
consecutive blocks of dimensions bk in the sub-tree of u from right to left; that
is, suffix(i) is a d-dimensional block in A with dimensions (n1 × · · · × i log nk ×
· · · × nd). We use the dimension reduction technique on suffix(i) with blocks
of dimensions bk,i = (1 × · · · × 1 × i log nk × 1 × · · · × 1) that generates the
Index Rsuffix(i)(bk,i, LBI(d − 1)). This Index supports d-RMQS that span over
blocks of dimensions bk,i in suffix(i). We make Rsuffix(i)(bk,i, LBI(d − 1)) for all
i = 1, . . . , 2h, and we store all of them at u. If u is a right child, we do the
same thing symmetrically for consecutive blocks from left to right, and we make
Rprefix(i)(bk,i, LBI(d − 1)) for all i = 1, . . . , 2h similarly (Fig. 2).

The blocks with dimensions bk used in partitioning A, altogether for all
k = 1, . . . , d, also partition A into disjoint d-dimensional macro-blocks with
dimensions bmac = (log n1 × · · · × log nd). Then we partition each macro-block
into disjoint blocks with dimensions b′

k = (log n1×· · ·×( log log nk

(2B(d))1/d
)×· · ·× log nd)

for each dimension k, and we make T1 . . . , Td similarly for each macro-block.
Similarly the blocks with dimensions b′

k used in partitioning each macro-
block, altogether for all k = 1, . . . , d, also partition the macro-block into dis-
joint micro-blocks with dimensions bmic = ( log log n1

(2B(d))1/d
× · · · × log log nd

(2B(d))1/d
)). Now

micro-blocks are small enough so that we can utilize the tabulation technique of
Lemma 2 to support d-RMQs within micro-blocks (G = bmic).

For each dimension k = 1, . . . , d, we also store the 1D-RMQ Index of Lemma 1
built for each row in direction k of A. This data structure will be used to find
the position of the minimum element within a range on a row in direction k.

5.2 Query Algorithm

Let q = A[i1..j1 × · · ·× id..jd] be a query range. If q is so small that fits within a
micro-block, we use the tabulation technique of Lemma 2 to answer it. Otherwise,
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we partition q in two levels until sub-queries become small enough to fit within
a micro-block.

In the first level for each dimension k, we use the blocks with dimensions bk

to partition q. This partitioning generates a sub-query that spans over several
blocks of dimensions bk,1. We use Tk to divide this sub-query into two sub-
queries as follows: we find the LCA of the leaves, whose corresponding blocks
contain ik and jk. We then use Rsuffix(�1)(bk,�1 , LBI(d − 1)) in the left child
and Rprefix(�2)(bk,�2 , LBI(d − 1)) in the right child of the LCA for the largest
suffix(�1) and prefix(�2) that fit within q. These two IndexEs find the two rows in
direction k which contain the minimum in suffix(�1) and prefix(�2) respectively.
We then find the position of the minimum within each of these rows by answering
appropriate 1D-RMQs on the rows.

The partitionings of the first level in all dimensions k = 1, . . . , d, altogether
generate at most 2d sub-queries, where each sub-query is within a macro-block
and contains a corner of q (a corner is a cell with maximum or minimum coordi-
nates in all dimensions). We answer each of these sub-queries recursively using
the data structures that we have stored for the corresponding macro-blocks. The
partitionings of each macro-block similarly generate at most 2d new sub-queries,
where each new sub-query is within a micro-block and contains a corner of q.
Now that these new sub-queries are within micro-blocks, we use the Index of
Lemma 1 to answer them.

Theorem 1. There exists an Index of size O(B(d)N) bits that supports d-RMQs
on an array of size N in time O(d!2(d+1

2 )), for d = O(log log N/ log log log N).

Proof. We prove the space and query time by induction on d. The base of the
induction (d = 1) is clear due to Lemma 1. We first prove the space usage and
then the query time. Let (n1 × · · ·×nd) be the dimensions of the input array A.

The Index contains T1, . . . , Td in the first level of the partitioning. For
each dimension k, the depth of Tk is O(log(nk/ log nk)) = O(log nk). The
number of Rsuffix(·)(bk,·, LBI(d − 1)) and Rprefix(·)(bk,·, LBI(d − 1)) that we
store at each level is nk/ log nk. The size of each of these two IndexEs is
O(B(d−1)N/nk) bits by induction (due to the dimension reduction technique).
Thus, T1, . . . , Td of the first level altogether take O(dB(d − 1)N) = O(B(d)N)
bits, including the LCA data structure of each T1, . . . , Td [11]. There are
N/(log n1 · · · log nd) macro-blocks. Each macro-block contains its own T1, . . . , Td

which take O(B(d)(log n1 · · · log nd)) bits by similar argument. Thus, all the
macro-blocks take O(B(d)N) bits. The size of the Index of Lemma 2 is O(B(d)N)
bits for G = bmic if d = O(log log N/ log log log N). The number of rows in direc-
tion k is nk. Thus, the size of all the 1D-RMQ IndexEs that we make for each
row is O(dN) bits for all dimensions. Therefore, the total space of LBI(d) is
O(B(d)N) bits.

In the first level, d sub-queries of q are generated that span over blocks
of dimensions bk,� for each dimension k = 1, . . . , d. To answer the sub-
query in dimension k, an LCA query on Tk is performed in constant time
[11]. Then the sub-query is answered using Rsuffix(·)(bk,·, LBI(d − 1)) and
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Rprefix(·)(bk,·, LBI(d − 1)), which take time O((d−1)!2(d2)) (by induction) multi-
plied by the time to find the minimum in a block with dimensions bk,i (due to the
dimension reduction technique), which can be done in constant time using the
1D-RMQ IndexEs stored for rows. Thus, each sub-query can be answered in time
O((d − 1)!2(d2)), and all the sub-queries in time O(d(d − 1)!2(d2)) = O(d!2(d2)).
Then in the second level, q is reduced to at most 2d queries within macro-
blocks, which take time O(2dd!2(d2)) = O(d!2(d+1

2 )) by similar argument. Finally,
q is reduced to at most 2d queries within micro-blocks, where each one can be
answered in time O(2d) due to Lemma 2, and thus time O(22d) for all of them.
Therefore, the overall query time is O(d!2(d+1

2 )). ��

6 Succinct High Dimensional RMQ

We present IndexEs that support d-RMQs on d-dimensional arrays, providing a
trade-off between query time and the size of Index. The method that we use is
to reduce the problem from d-RMQS on an array of size N to small d-RMQs on
small arrays, and then create succinct IndexEs that support d-RMQs on small
arrays.

6.1 Reduction to Small Arrays

We present an algorithm that transforms a given Index supporting d-RMQS on
small arrays of size cd with dimensions (c × · · · × c), to an Index that supports
d-RMQS on an array of size N , where c is a parameter and 1 ≤ c ≤ N .

The transformation algorithm is an extension of the algorithm of
[4, Lemma 10] which was designed for two dimensions. Let A denote the input
array of size N , I(d, c) denote the Index of size S bits for (c × · · · × c) arrays,
and let LBI(d) denote the Index of Theorem 1 for d dimensions.

Data Structure. For each dimension k = 1, . . . , d, we use the reduction technique
on A for blocks with dimensions ck = (1×· · ·×1×c×1×· · ·×1) (c is in dimension
k), using the Index of Theorem 1. This provides an Index RLBI(d−1)(A, ck) that
supports d-RMQs that span over blocks with dimensions ck on A. The blocks in
all dimensions, altogether partition A into disjoint macro-blocks with dimensions
(c × · · · × c). We construct I(d, c) for each macro-block.

Thus, the Index generated by the transformation algorithm contains
RLBI(d−1)(A, ck) for each k = 1, . . . , d, plus I(d, c) for each macro-block. The
size of each RLBI(d−1)(A, ck) is O(B(d)N/c) bits due to Theorem 1 and the
reduction technique. The number of macro-blocks is N/cd. Therefore, the total
space is O(dB(d)N/c + N/cdS) bits.

Query Algorithm. If a given query is within a macro-block, it is answered using
I(d, c) of the macro-block. Otherwise, the query is partitioned by the blocks with
dimensions ck in each dimension k. This generates a block-spanning sub-query
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in each dimension k, which can be answered using RLBI(d−1)(A, ck). This can

be done in time O(d!2(d+1
2 )) multiplied by the time O(c) to find the minimum

in a block (required by the reduction technique). Thus, all the sub-queries can
be answered in time O(cdd!2(d+1

2 )). These partitionings also generate at most 2d

sub-queries, where each sub-query is within a macro-block, and contains a corner
of the query. Each of these sub-queries can be answered in time T using I(d, c)
of the corresponding macro-block. Thus, all the sub-queries can be answered in
time O(2dT ). Therefore, the total query time is O(c(d + 1)!2(d+1

2 ) + 2dT ).

Lemma 3. If there exists an Index of size S bits with query time T that supports
d-RMQS within an array of size cd with dimensions (c × · · · × c), then for a
d-dimensional array of size N , we can build an Index of size O(DB(d)N/c +
N/cdS) bits that supports d-RMQs in time O(c(d + 1)!2(d+1

2 ) + 2dT ), where c is
a parameter and 1 ≤ c ≤ N .

6.2 Indexes on Small Arrays

We obtain an Index that supports d-RMQS on arrays with dimensions (c×· · ·×c),
which then immediately implies IndexEs on general arrays using Lemma 3. In
the following, we let B denote an input array with dimensions (c × · · · × c).
The Index is a recursive data structure that recurses on d, and we denote it by
I(D, c).

The general idea is to partition B into disjoint small blocks several times,
each time with a different block size. These partitions divide a d-RMQ into block-
spanning sub-queries which are then answered using the reduction technique.
The full details of the data structure will appear in the journal version of this
paper. The result that follows from the construction is:

Theorem 2. There exists an Index of size O(DB(d)N/c) bits for a parameter c
that 1 ≤ c ≤ N , which supports d-RMQs on a d-dimensional array with N

elements in time O((d + 1)!2(d+1
2 )c + 2d2(d+1

2 )c(log c)2(d−1)).
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Abstract. We consider finding a pattern of length m in a compacted
(linear-size) trie storing strings over an alphabet of size σ. In static tries,
we achieve O(m + lg lg σ) deterministic time, whereas in dynamic tries

we achieve O(m + lg2 lg σ
lg lg lg σ

) deterministic time per query or update. One
particular application of the above bounds (static and dynamic) are suffix
trees, where we also show how to pre- or append letters in O(lg lg n +
lg2 lg σ
lg lg lg σ

) time. Our main technical contribution is a weighted variant of
exponential search trees, which might be of independent interest.

1 Introduction

Text indexing is a fundamental problem in computer science. It requires storing
a text of length n, composed of letters from an alphabet of size σ, such that
subsequent pattern matching queries can be answered quickly. Typical such pat-
tern matching queries are (1) existential queries (deciding whether or not the
pattern occurs in the text), (2) counting queries (determining the number of
occurrences), and (3) enumeration queries (listing all positions where the pat-
tern occurs). Task (3) usually follows (2), and takes O(occ) additional time for
enumerating the occ occurrences. In our model, the text is either static, or can
be modified by pre- or appending new letters [5].

Well-known static text indexes are suffix trees [12] and suffix arrays [11]. The
former admit, in their plain form, O(m lg σ) existential and counting queries for
a pattern of length m, while the latter achieve O(m + lg n) time. With perfect
hashing [8], suffix trees can achieve O(m) time, but then their O(n) preprocessing
time is only in expectation. Enjoying the best of both worlds, the suffix tray of
Cole et al. [6] achieves O(m + lg σ) searching time, with a linear space data
structure that can be constructed in O(n) deterministic time for a static text.
If superlinear construction time is allowed, then the proprocessing time rises to
deterministic O(n lg2 lg n) time, yielding deterministic worst-case O(m) search
time [14]. Summing up, all current text indexes have either non-linear pattern
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matching time, or super-linear size, or are randomized. In this paper, we focus
on speeding up the pattern matching time for deterministic linear-space indexes.

In the dynamic setting, suffix trees can be updated in amortized expected
constant time, where the amortization comes from the need to locate the node
which should be updated, and expectation from the hashing used to store out-
going edges. If we insist on getting worst-case time bounds, a recent result
of Kopelowitz [9] allows updates in O(lg lg n + lg lg σ) worst-case (but still
expected) time. The suffix trists of Cole et al. [6] achieve a deterministic bound
of O(m + lg σ) for searching, with a linear space data structure that can be
updated in O(f(n, σ) + lg σ) deterministic and worst-case time, where f(n, σ) is
the time required to locate the edge of the suffix tree which should be split, and
the best bound on f(n, σ) known so far for the general case is O(lg n) [1]. Also
worth mentioning is the very recent result of Kucherov and Nekrich [10], who
achieve deterministic worst-case constant update time and O(m+occ) reporting
time for constant size alphabets. It is not clear how to adapt their solution to
larger alphabets, and they do not maintain the whole suffix tree, though.

In all of the tree based structures mentioned in the previous paragraph, the
crucial point is how to implement the outgoing edges of the tree such that they
can be searched efficiently for a given query character. This is the general setting
of trie search, and in fact, we can and do formulate our results in terms of tries,
and view suffix trees as one particular application. In this setting, it is worth
mentioning that for static tries one can achieve O(m+lg n) query time after linear
preprocessing by storing the edges outgoing from each node in a weighted binary
search tree (see [13]; similar ideas are implicit in some other later papers). For
dynamic tries, Andersson and Thorup [2] show how to update or search the trie
in O(m+

√
lg n/ lg lg n) deterministic worst-case time, for n being the number of

stored strings. In this article, however, we focus on alphabet-dependent running
times, since the size of the alphabet is usually substantially smaller than the size
of the whole input data. For instance, one often considers the case where the
alphabet is of a polylogarithmic (in terms of, say, the input word) size.

1.1 Our Result and Outline

We formulate our results in the general setting of trie search (all our results
are in the word RAM model). There it is usual to support stronger forms of
existential queries, namely prefix queries (computing the longest prefix of the
pattern which is a prefix of one of the stored strings), and predecessor queries
(returning the largest string stored that is no larger than the query pattern):

Theorem 1. A compacted trie storing n static strings over an integer alphabet
of size σ can be stored in O(n) space (in addition to the stored strings them-
selves) such that subsequent prefix- or predecessor queries can be answered in
O(m+lg lg σ) deterministic worst-case time, for patterns of length m. This data
structure can be constructed in deterministic O(n) time, for σ = nO(1).
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This improves the previously best deterministic solutions, either with O(n)
preprocessing time and O(m + lg σ) search time [6], or with O(n lg2 lg n) pre-
processing time and O(m) search time [14].

Theorem 2. We can maintain a linear-size (in addition to the stored strings
themselves) structure for a compacted trie storing strings over an integer alphabet
of size σ under adding a new string in deterministic worst-case time O(m +
lg2 lg σ
lg lg lg σ ) so that subsequent on-line prefix- or predecessor queries can be answered

in O(m + lg2 lg σ
lg lg lg σ ) deterministic time, for strings of length m and σ = nO(1).

This simultaneously improves the previously best deterministic worst-case
O(m+

√
lg n/ lg lg n) bound by Andersson and Thorup [2], and the O(m+ lg σ)

bound by Cole et al. [6]. While these results are of mostly theoretical interest,
they are not just improvements of the lower order terms, as the dominating
part of O(m + lg σ) might actually be lg σ. Given that “trie search” is a rather
fundamental operation, we think that our improvements are substantial.

One particularly important application of Theorems 1 and 2 are suffix
trees [15]. There, Theorem 2 allows us to perform updates (appending letters
to the text) in O( lg2 lg σ

lg lg lg σ ) time, assuming that we are given the edge of the suffix
tree which should be split. It was already noted that the currently best bound
[1] for a deterministic worst-case suffix tree oracle providing such information
is f(n, σ) = O(lg n). Though not being the main goal of this article, in the full
version [7] we show a faster suffix tree oracle with f(n, σ) = O(lg lg n+ lg2 lg σ

lg lg lg σ ),
and thus we achieve truly superior times over [6].

1.2 Technical Contributions

Our main technical novelty is a weighted variant of exponential search trees [2],
which we term wexponential search trees. The original exponential search tree
achieves O(lg lg n· lg lg u

lg lg lg u ) search and update times for n elements over a universe
of size u. Our weighted variant generalizes this to O(lg lg W

lg w · lg lg u
lg lg lg u ), where w

is the weight of the searched element, and W is the sum of all weights. The
advantage of this is that in a sequence of t hierarchical accesses, where the old
“w” is always the new “W”, the sum telescopes to O(lg lg n · lg lg u

lg lg lg u ) instead
of O(t · lg lg n · lg lg u

lg lg lg u ). While this general idea is pervasive in data structures,
we are not aware of any previous application in the doubly-logarithmic setting.
We believe that this generalization might find other applications.

2 Preliminaries

We assume textbook knowledge of tries, suffix trees and suffix arrays.

Proposition 1 (Ružić, Theorem3 [14]). A static linear-size dictionary on a
set of k keys can be deterministically constructed in time O(k lg2 lg k), so that
lookups to the dictionary take worst-case time O(1).
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Proposition 2 A static linear-size data structure on a set of k sorted keys from
a universe of size u can be deterministically constructed in time O(k), so that
subsequent predecessor queries can be answered in O(lg lg u) worst-case time.

Proposition 3 (Beame and Fich, Theorem 4.5 [3]). A static data struc-
ture on a set S of k keys from a universe of size u can be deterministically
constructed in O(k1+ε) time and space, so that subsequent predecessor queries
can be answered in O( lg lg u

lg lg lg u ) time in the worst-case.

Proposition 4 ([2]). A dynamic linear-size data structure on a set S of k keys
from a universe of size u can be maintained, so that subsequent predecessor
queries can be answered in O( lg2 lg u

lg lg lg u ) time, and new keys can be inserted in

O( lg2 lg u
lg lg lg u ) time, where both bounds are deterministic worst-case.

3 New Static Data Structure

In this section we prove Theorem 1. We store edges of the trie as pairs of the form
(v, a), where v is a pointer to the source of the edge, and a ∈ Σ is the first char-
acter on the edge from v to its corresponding child w. As secondary information
we also attach a pointer to w with the pair (v, a). This way, matching a pattern
P [1,m] reduces to repeatedly finding correct edges: assuming inductively that
we have already matched P [1, i] and are currently at node v, we check if the
edge (v, P [i + 1]) exists, and move to that child if this is the case.

We now describe how the edges are stored. A naive storage with the data
structures from Sect. 2 would result in superlinear construction time. Hence, we
need to introduce several levels of indirection. Like in the suffix tray [6], we
divide nodes into heavy and light, but this time with parameter s := Θ(lg2 lg σ):
a node with at least s leaves below it is called heavy, otherwise it is called light.

To continue, we classify the outgoing edges of heavy nodes into two different
types: (heavy,heavy) and (heavy,light). Here, the first component of each tuple
refers to the type of the parent node, and the second one to that of the child. For
each branching heavy node (meaning it has more than 1 heavy child) we store
the outgoing edges of type (heavy,heavy) in a dictionary using Proposition 1,
with the key being the first character on the edge. Since there are at most n

s
heavy nodes with no heavy children, the total size of all dictionaries cannot
exceed the sum of degrees in a tree on 2n

s nodes, which is O(n
s ). Furthermore,

the number of elements in each dictionary is at most σ, so constructing all those
data structures takes O(n

s ·lg2 lg σ) = O(n) time. For nonbranching heavy nodes,
we only have at most one edge of type (heavy,heavy), so each such node simply
stores a special pointer to its only heavy child, which enables us to decide in O(1)
time if we need to continue matching there. Finally, for each (branching or not)
heavy node we store all the outgoing edges of type (heavy,light) using the data
structure from Proposition 2. Using the structure, we can locate the light child
we should descend to in O(lg lg σ) time. Then we are inside a small subtree of size
at most s and binary search the remaining nodes in additional O(m+lg s) time.
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The binary searching is very similar to the method used in pattern matching
with suffix arrays. Each light node having a heavy parent stores a sorted list of
all leaves in its subtree. We binary search over the list to locate the successor of
the remaining part of the query among all strings corresponding to the leaves in
O(lg s) time [11]. Summing up, the whole search takes O(m + lg lg σ) time.

We described the structure to support prefix queries. For predecessor queries,
we need to store additional predecessor data structures (again using Propo-
sition 2) with all edges outgoing from a node, which is used only once if we
terminate at a heavy node. Answering queries is straightforward.

4 New Dynamic Data Structure

In the full version [7] we prove that it is enough to maintain trees of size O(σ)
instead of O(n). Here we first develop our wexponential search trees, which might
be of independent interest. Then we show how to use it to build the new data
structure, first in the amortized setting, and then making the bounds worst-case.

4.1 Weighted Exponential Trees

Theorem 3. There is a linear-size data structure that allows us storing a collec-
tion of weighted sorted keys from an ordered universe of size u so that predecessor
search takes O(lg lg W

lg w
lg lg u

lg lg lg u ) time, where W is the current total weight of all
elements, and w is the weight of the predecessor found. Inserting a new element
of weight 1 takes O(lg lg W ) time, and increasing by one the weight of an ele-
ment of weight w (specified by a handle returned by the insertion procedure) takes
O(lg lg W

lg w ) time. All bounds are deterministic worst-case.

The proof of the theorem is based on the beautiful idea of Bender et al. [4],
who have shown how to significantly simplify the deamortization presented by
Andersson and Thorup [2]. We start with the amortized version of the theorem,
and later show how to make it worst-case efficient.

Let f(�) = �2( 3
2 )

��, so � = Θ(lg lg f(�)). We define a weighted multiway
search tree with the degrees increasing doubly-exponentially along any leaf-to-
root path, which we call a wexponential search tree of level �, in the following
recursive manner:

1. the (explicitly stored) current total weight W of all elements is less than
2f(� + 1) (2f(� + 1) + 1

2f(�) in the worst-case version), and if W ≥ 2f(�) the
tree is proper,

2. we store a static predecessor structure (implemented using Proposition 3)
containing a subset S = {e1, . . . , e|S|} of all elements (the “splitters”)

3. the remaining elements are split into X0, . . . , X|S| such that ei is between
Xi−1 and Xi,

4. the total weight of all elements in {ei} ∪ Xi ∪ {ei+1} exceeds f(�) − f(� − 1)
for all i = 1, . . . , |S| − 1,
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5. each Xi is stored in a wexponential search tree of level �− 1, which are called
the children,

6. for each i the predecessor structure stores a bidirectional link to the child
storing Xi, and additionally a link to the leftmost child storing X0 is kept.

Observe that if a weight of an element is at least 2f(�), it must belong to S. Note
also that the definition implies that some of the Xi’s may be empty. Furthermore,
we can bound the size of S as follows:

|S| ≤ 2
2f(� + 1)

f(�) − f(� − 1)
= O(2(

3
2 )

�+1−( 3
2 )

�

) = O(2
1
2 (

3
2 )

�

) = O(f
1
2 (�)). (1)

Updating the structure will be done in a bottom-up order. In other words, we
will assume that the children are valid wexponential search trees of level at most
�−1, and show how to ensure that their parent is a valid tree of level �. Inserting a
new element of weight one or increasing the weight of some element by one might
cause the total weight to become 2f(�+1). As soon as we detect such a situation,
we split the tree into two by choosing an element ei from S. To choose this
element we look at the sets of its predecessors Pi = X0∪{e1}∪. . .∪{ei−1}∪Xi−1

and successors Si = Xi∪{ei+1}∪. . .∪{e|S|}∪X|S|. As the total weight is 2f(�+1),
and the weight of any Xi is less than 2f(�) (by conditions 1 and 5), we can always
select an i so that the weight of both Pi and Si is less than f(� + 1) + f(�),
but the weight of both Pi ∪ {ei} and {ei} ∪ Si is at least f(� + 1) − f(�); see
Fig. 1. We construct two new wexponential search trees of level � containing
all elements in Pi and Si, which is possible as their total weights are at most
f(�+1)+f(�) < 2f(�+1). This requires constructing static predecessor structures
containing e1, e2, . . . , ei−1 and ei+1, ei+2, . . . , e|S|, respectively, and making each
wexponential search tree of level � − 1 a child of the former or the latter new
tree. Notice that we don’t have to rebuild the smaller trees, as simply redirecting
the pointers to already existing structures is enough. Then we look at the parent
of the structure that we are splitting. If there is none, we simply create a new
proper wexponential search tree of level �+1 with just one splitter ei. Otherwise
we add ei to its set of splitters, and store pointers to the two newly created trees
of level � in its predecessor structure, which needs to be rebuilt, or refreshed. The
whole splitting and refreshing process is a very local procedure, as it requires
rebuilding the static predecessors structures only for the tree and its parent,
while the descendants and further ancestors are kept intact.

Now we can describe how to query and update the wexponential search tree.

Fig. 1. Finding a suitable new splitter ei. The smaller of the two parts has size at least
f(� + 1) − f(�), and hence the larger one at most f(� + 1) + f(�).
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Predecessor Search: First we use the static predecessor structure, which takes
O( lg lg u

lg lg lg u ). If the query element belongs to S, we are done. Otherwise we
recurse in the smaller structure.

Insert: Using the static predecessor structure we locate the smaller structure
the new element belongs to, and insert it there recursively. Then we increase
W by one and split the tree, if necessary. For each new element we allocate
a record storing a link to the tree where we have used it as a splitter, and
return a pointer to this record. Whenever some static predecessor structure
is rebuilt, or an element is moved up to the parent, we update the record.

Increasing: We locate the tree where the element is a splitter using the record
in constant time. Then we increase the total weight by one and split the tree,
if necessary, and move to its parent.

Lemma 1. Consider a proper wexponential search tree of total weight W and
an element of weight w. The element is used as a splitter at depth O(lg lg W

lg w ).

Proof. As the tree is proper, its level is Θ(lg lg W ). On the other hand, if an
element of weight w belongs to a subtree of level �, but is not chosen as a
splitter there, then w < 2f(�), which is equivalent to � = Ω(lg lg w). Hence the
maximum possible difference between the level of the whole tree and the level
of the subtree where the element is used as a splitter is O(lg lg W

lg w ). �	
The above lemma shows that worst-case complexity of predecessor search in a
wexponential search tree is O(lg lg W

lg w
lg lg u

lg lg lg u ), where W is the total current weight
and w is the weight of the predecessor found. Indeed, consider this (unique)
predecessor: it must be stored at depth O(lg lg W

lg w ), and traversing each level
requires one query to the static predecessor structure. The complexity of both
insert and increase is more tricky to estimate, as we might need to repeat the
expensive splitting procedure a couple of times. Nevertheless, insert traverses all
O(lg lg W ) levels, and increase traverses just O(lg lg W

lg w ) levels. At each of those
levels we might need to split the tree, which takes a lot of time, but cannot
happen very often. We start with an amortized bound.

For each wexponential tree we maintain an invariant that we have at least
max(0,W − f(�+1)) credits allocated there, where W is the current total weight
and � is the level. As long as we don’t split, the invariant is easy to maintain:
whenever we move from a tree to its parent during an insert or increase and add
one to its total weight, we put an additional credit there. Now consider split-
ting a tree of total weight W = 2f(� + 1). We need to rebuild the static pre-
decessor structures at both the tree (or, more precisely, at the two new trees)
and its parent, hence we need to apply Proposition 3 to a set of size which we
bounded in (1) by f

1
2 (�+1), which takes O(f(�+1)) time. On the other hand, we

have W − f(� + 1) = f(� + 1) credits available, and for each of the two new trees
we need to keep just max(0, f(�+1)+f(�)−f(�+1)) = f(�) of them (recall that
the larger of the new trees has weight at most f(� + 1) + f(�)). Hence we can use
the remaining f(�+1)−2f(�) = Θ(f(�+1)) credits to pay for the reconstruction.

Deamortizing the running time requires more care. Fortunately, we can fairly
closely follow the method of Bender et al. [4]. Instead of immediately splitting
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a tree as soon as its weight becomes 2f(� + 1), we perform it incrementally
over 1

2f(�) updates concerning the tree or one of its descendants, starting when
the weight becomes 2f(� + 1). Furthermore, instead of refreshing the parent as
soon as we have two new trees, we use the bidirectional pointer to replace the
link to the old tree kept there by a record containing the element ei used for
partitioning and the links to the new two trees. As long as the parent is not
fully refreshed and the new trees are still linked from the same record, we call
them twins. Similarly, refreshing is performed incrementally over 1

2f(�) updates
concerning the tree or one of its descendants, starting whenever we notice that
the weight is a multiple of 1

2f(�) not exceeding 2f(� + 1) − 1
2f(�). This ensures

that we never need to split a twin, as between splitting a child and splitting one
of the two new children created as a result, the tree will be fully refreshed, hence
we avoid a situation where we already keep a record containing two links, and
now we would need to replace one of them by such a record again. As we never
try to refresh and split a tree at the same time, there is no interference there.

Splitting requires first choosing a good splitter ei, which can be done in a sin-
gle left-to-right sweep through the contents of the static predecessor structure,
and then building new static predecessor structures containing {e1, e2, . . . , ei−1}
and {ei+1, . . . , e|S|}. As this is done in the background, it might happen that
some updates concerning the already seen part occur. Hence we can only guar-
antee that the total weight of Pi and Si is at most f(� + 1) + 3

2f(�), as there
might be up to 1

2f(�) of such updates. An additional complication is that the
weight of Pi or Si might be so that we would expect the corresponding new tree
to be undergoing refreshing at the moment, which is the reason we have chosen
to refresh when the weight is a multiple of 1

2f(�) instead of simply taking a
multiple of f(�). We never skip two consecutive moments when we should start
refreshing, as the next split starts not sooner than after f(� + 1) − 3

2f(�) ≥ f(�)
updates, hence it still never happens that we try to split a twin.

Rebuilding the static predecessor structures in the background requires stor-
ing two versions at the same time. More precisely, we have the old version, which
we use for navigation and answering any query, and the new one that is being
built. The corresponding elements in both versions are linked to each other, and
any update is performed in both of them. When the new version is ready, we
simply discard the old one in constant time. Discarding can be done by storing
timestamps that can be used to determine which links are still valid, and which
should be actually null at the moment. The definition of a wexponential tree must
be relaxed so that the current total weight never exceeds 2f(� + 1) + 1

2f(�), so
the bounds on the complexity of search, and both insert and increase (excluding
the cost of splitting) still hold, and the theorem follows.

4.2 Amortized Version of Theorem2

For each node v we keep two separate structures. The first is a static dictionary
implemented using Proposition 1 that stores edges leading to all children vi of
size “similar” to the size of v. The second is a dynamic predecessor data structure
implemented using Theorem 3. To make the notion of “similar size” more precise,
define the weight of a node to be the number of leaves in its subtree, and its
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level to be � when the weight belongs to [f(�), 2f(� + 1)) ([f(�), 3f(� + 1)) in
the worst-case version presented in the next section), where f(�) =

⌊
2(

3
2 )

�
⌋
,

again. Clearly, the weights and hence the levels along any root-to-leaf path are
nonincreasing. We define the fragment of node v to be the maximal subtree
containing v and consisting of nodes of the same level. The root r of a fragment
containing v is its lowest ancestor of level �, but with parent of level at least
�+1. For each such fragment we store the root r and a list of bidirectional links
to all its nodes, and a counter with the number of leaves in the subtree rooted
at r. For each node v we store all edges leading to children of v of the same level
� in a static dictionary. All edges leading to children of smaller levels are kept
in a wexponential search tree. We would like the weights in this structure to be
the same as the weights of the corresponding nodes, but for technical reasons
we maintain a weaker condition, namely a node of weight w has weight from
[
√

w,w] in the wexponential search tree stored at its parent. First we show that
this relaxation is enough to guarantee good bounds on the search time.

Lemma 2. Traversing any path of length m takes O(m + lg2 lg σ
lg lg lg σ ) time.

Proof. At each node we first use the static dictionary to check if the next edge
we would like to traverse is stored there. If so, we continue. Otherwise we query
the wexponential search tree. In order to bound the complexity of the whole
procedure, we only have to bound the total time of the latter steps, as the former
sum to at most O(m). Observe that whenever we query the wexponential search
tree, we either terminate, or decrease the current level, which is already enough
to get a bound of O( lg3 lg σ

lg lg lg σ ). To get the claimed complexity, let W1,W2, . . . , Wk

be the weights of nodes where we query a wexponential search tree. Similarly, let
w1, w2, . . . , wk be the corresponding weights of nodes that we find there (note
that Wi is not necessarily stored in our implementation, but wi certainly is). Let
w′

i be the weight of the elements of the wexponential search tree corresponding
to wi, and W ′

i the total weight of this structure. Then we have the following
inequalities: w′

i ∈ [
√

wi, wi], W ′
i ≤ Wi, and Wi+1 ≤ wi. So the time of this part

is order of lg lg σ
lg lg lg σ

∑
i lg lg W ′

i

lg w′
i

≤ lg lg σ
lg lg lg σ (lg lg σ +

∑
i lg lg Wi

lg wi
) ≤ lg2 lg σ

lg lg lg σ . �	
Whenever we add a new leaf, the weights of all nodes on its path to the root
increase by one. We iterate over all fragments above the new leaf and increase
their counters. Iterating is done in O(lg lg σ) time by starting at the leaf and
repeatedly jumping to the root of the current fragment by following the bidirec-
tional link stored at each node. To maintain the invariant that the weights on
any path are nonincreasing, we actually first construct a list of all fragments,
and then update their counters one-by-one in a top-down order. For each root
that we consider we need to update its corresponding weight in the wexponential
search tree at its parent, which takes at most O(lg lg W

lg
√

w
) = O(1 + lg lg W

lg w ) time,
where w is the weight of this root, and W is at most the weight of its parent.
Summing up over all roots, as in the proof of Lemma 2, we get a telescoping
expression which is at most O(lg lg σ).

During this procedure it might happen that we increase the weight of some
root r to 2f(�+1), and hence need to increase its level. Maintaining the invariant
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in such situation is a very costly procedure, and we need to somehow amortize
this cost. We start at v := r and descend down to its (unique) child of weight
exceeding f(� + 1) as long as possible. Note that we don’t actually store the
weight of each node, but given the weight of v with exactly one child of level �,
we can compute the weight of this child by iterating through all other children,
which are roots of their fragments, and hence have up-to-date counters available.
Also, if there is more than one child of level �, there cannot be any child of weight
exceeding f(� + 1). We call the traversed path the tail, and increase the level of
all its nodes. Then maintaining the invariants requires four steps.

1. If the parent of r is of level � + 1, we must rebuild its static dictionary in
order to include a new element there.

2. We move all nodes on the tail from the list of the current fragment to either
the list of the fragment corresponding to the parent of r, if its level is � + 1,
or a new fragment.

3. If the last node on the tail has more than one child of level �, bumping its
level to � + 1 splits the current fragment into more than one. We need to
iterate through all nodes there, and partition them accordingly creating new
fragments. Note that creating a new fragment requires computing the weights
of their roots, which can be done by iterating through children of smaller levels
for all nodes in the current fragment.

4. For each child of level � of the last node on the tail we must add a new element
to the wexponential search tree. Note that at this point all those nodes are
roots of their fragments, hence have their weights computed.

Notice that all those steps are local in the sense that they modify only the nodes
in the current fragment. To bound the time taken by the whole procedure, we
allocate credits to fragments, making sure that a fragment of weight w and level
� has max(0, w−f(�+1)) credits available. Whenever we split an edge and create
a new leaf, we allocate one credit for each of the at most O(lg lg σ) fragments
above. Then when we are increasing the level of r, its weight is 2f(� + 1), so we
have f(� + 1) credits available, and because of the way we defined the tail, we
can spend all of them, as all new fragments of level � will be of weight at most
f(� + 1) after the update. We can bound the time required for maintaining the
invariants, which we call promoting at r, as follows.

1. Rebuilding the static dictionary takes O( f(�+2)
f(�+1) log2 log f(�+2

f(�+1) ) = O( f2(�+2)
f2(�+1) ).

We call this refreshing the parent of r.
2. There are at most 4f(� + 1) − 1 nodes in the subtree of r, hence traversing

the tail, including the time taken to compute the weight of all nodes there,
takes O(f(� + 1)).

3. There are at most 2f(� + 1) nodes in the current fragment, hence the nodes
in the current fragment can be partitioned into new fragments in O(f(�+1))
time. This includes the time to compute the weights of their roots, as in the
worst-case we iterate through 4f(� + 1) − 1 nodes in the subtree of r.

4. We must insert at most 2f(�+1)
f(�) elements into the wexponential tree stored at

the last node of the tail, and inserting an element of weight w is done by first
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adding a new element of weight one, and then increasing its weight repeatedly√
w times.

Thus, the total number of credits required by the promoting is order of
f2(�+2)
f2(�+1)+f(�+1)+ f(�+1)

f(�)

√
f(�) lg lg f(�+1) = f2(�+2)

f2(�+1)+f(�+1). We therefore only

need to ensure that f2(�+2)
f2(�+1) ≤ f(�+1), which is equivalent to f2(�+2) ≤ f3(�+1),

and then 2(32 )�+2 ≤ 3( 32 )�+1, hence by the choice of f we always have enough
credits to amortize the update.

4.3 Worst-Case Version of Theorem 2

The only non worst-case efficient part of the previous implementation is increas-
ing the level of a root r. Instead of traversing the tail and updating all the
structures as soon as its level reaches 2f(�+1), we will execute those operations
incrementally over the next f(� + 1) insertions in the subtree rooted at r, and
relax the condition on the weight of a node of level � by saying that it shouldn’t
exceed 3f(� + 1). As selecting the tail is done incrementally, we redefine it to be
the maximal sequence of nodes of weight at least s at the moment we started the
process, which requires storing at each edge a timestamp for its creation time.

First of all, we must make sure that there is at most one promoting process
per fragment. Even though we have already chosen the tail, future insertions
might increase the weight of some additional nodes to more than f(� + 1). Nev-
ertheless, as we execute the procedure over just f(� + 1) insertions, no node in
the current fragment (or in one of the new fragments) which doesn’t belong to
the tail can reach the weight of 2f(�+1) before we are done. Furthermore, there
is some interaction between different fragments. While we are still promoting
at r, new nodes might be added to the corresponding fragment. Also, different
children of a node might need to be refreshing it at overlapping periods of time.

We choose the speed of the simulation so that there is enough time to process
a fragment consisting of 3f(�+1) nodes over f(�+1) insertions. When splitting
the current fragment into more than one, we run a depth-first search to determine
the new fragments. As soon as we reach a node, we set the link to its (new)
fragment. Then when a new node appears, its parent is either already processed
and hence has the correct link set, or will be seen later, and we will notice the
new child then. The same reasoning works for inserting the new elements into
the wexponential tree stored at the last node of the tail. Refreshing a node is a
quite different issue, though, as we must somehow deal with the problem that
many children might need to refresh the same parent. Each node of level � stores
a list of all its children of weight at least f(�), where we simply append a child
as soon as its weight becomes large enough. As a part of our simulation we run
the refreshing process. In other words, each child of a node can be potentially
running a deferred process refreshing its parent. The first step of such process is
making a read-only copy of the current list. As this list only grows, instead of
making a physical copy we can simply store the current last element, which can
be done in constant time. Then we build a new static dictionary containing all
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elements on this read-only copy over the insertions in the subtree rooted at the
child. As soon as the construction finishes, we substitute the old dictionary in
constant time by replacing one pointer. There is just additional detail: we should
first check if we are really replacing an older version, i.e., we can simply look
at the number of elements stored there. This is because it might have happened
that there was a refreshing process which started later, yet finished earlier (as
there were more insertions to the corresponding subtree). This ensures that when
the weight of r reaches 3f(�+1), the static dictionary stored at its parent surely
contains its edge (and, potentially, also some more recent edges).
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Department of Computer Science, TU Dortmund, Dortmund, Germany
{johannes.fischer,tomohiro.i}@cs.tu-dortmund.de,

dominik.koeppl@tu-dortmund.de

Abstract. For both the Lempel Ziv 77- and 78-factorization we propose
factorization algorithms using (1 + ε)n lg n + O(n) bits (for any positive
constant ε ≤ 1) working space (including the space for the output) for
any text of size n over an integer alphabet in O(n/ε2

)
time.

1 Introduction

Two of the most important algorithms for text compression are the methods by
Lempel and Ziv, LZ77 [19] and LZ78 [20]. While there are naive algorithms that
take O(1) working space with quadratic running time (for both LZ77 and LZ78),
linear time algorithms with very restricted space emerged only in recent years.

For LZ77, the bound of 3n lg n bits set by [7] was very soon lowered to
2n lg n by [10]. For small alphabet size σ, the upper bound of n lg n + O(σ lg n)
bits by [8] is also very compelling. In [12], a practical variant having the worst
case performance guarantees of (1+ε)n lg n+n+O(σ lg n) bits of working space
and O(

n lg σ/ε2
)

time was proposed.
Wrt. LZ78, by using a naive trie implementation, the factorization is com-

putable with O(z lg z) bits of space and O(n lg σ) overall running time, where
z is the size of LZ78 factorization. More sophisticated trie implementations [6]
improve this to O(

n + zlg2 lg σ/lg lg lg σ
)

time using the same space. Jansson
et al. [9] proposed a compressed dynamic trie based on word packing, and showed
an application to LZ78 trie construction that runs in O(n(lg σ + lg lgσ n)/ lgσ n)
bits of working space and O(

n lg2 lg n/ (lgσ n lg lg lg n)
)

time, which is super-
linear in the worst case. For an integer alphabet, Nakashima et. al [15] recently
presented a linar time algorithm using O(n lg n) bits of space, but the use of the
(complicated) dynamic marked ancestor queries [1] seems to prevent them from
achieving a small constant factor.

2 Preliminaries

Let Σ denote an integer alphabet of size σ = |Σ| = nO(1). An element w in Σ∗

is called a string , and |w| denotes its length. The empty string of length 0 is
called ε. For any 1 ≤ i ≤ |w|, w[i] denotes the i-th character of w. When w is
c© Springer International Publishing Switzerland 2015
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represented by the concatenation of x, y, z ∈ Σ∗, i.e., w = xyz, then x, y and z are
called a prefix , substring and suffix of w, respectively. In particular, a suffix
starting at position i of w is called the i-th suffix of w. For any 1 ≤ j ≤ |w|,
let Sj(w) denote the set of substrings of w that start strictly before j.

In the rest of this paper, we take a string T of length n > 0, which is subject
to LZ77 or LZ78 factorization. For convenience, let T [n] be a special character
that appears nowhere else in T , so that no suffix of T is a prefix of another suffix
of T . Our computational model is the word RAM model with word size Ω(lg n).
Further, we assume that T is read-only; accessing a word costs O(1) time (e.g.,
T is stored in RAM using n lg σ bits).

The suffix trie of T is the trie of all suffixes of T . The suffix tree of T ,
denoted by ST, is the tree obtained by compacting the suffix trie of T . ST has
n leaves and at most n internal nodes. We denote by V the nodes and by E the
edges of ST. For any edge e ∈ E, the string stored in e is denoted by c(e) and
called the label of e. Further, the string depth of a node v ∈ V is defined as
the length of the concatenation of all edge labels on the path from the root to v.
The leaf corresponding to the i-th suffix is labeled with i. SA and ISA denote the
suffix array and the inverse suffix array of T , respectively [13]. For any 1 ≤ i ≤ n,
SA[i] is identical to the label of the lexicographically i-th leaf in ST. LCP and
RMQ are abbreviations for longest common prefix and range minimum query,
respectively. LCP is a DS (data structure) on SA such that LCP[i] is the LCP
of the lexicographically i-th smallest suffix with its lexicographic predecessor for
i = 2, . . . , n.

For any bit vector B with length |B|, B. rank1(i) counts the number of ‘1’-
bits in B[1..i], and B. select1(i) gives the position of the i-th ‘1’ in B. Given B, a
DS that uses additional o(|B|) bits of space and supports any rank/select query
on B in constant time can be built in O(|B|) time [3].

2.1 Lempel Ziv Factorization

A factorization partitions T into z substrings T = f1 · · · fz. These substrings
are called factors. In particular, we have:

Definition 1. A factorization f1 · · · fz = T is called the LZ77 factorization
of T iff fx = argmaxS∈Sj(T )∪Σ |S| for all 1 ≤ x ≤ z with j = |f1 · · · fx−1| + 1.

The classic LZ77 factorization involving the innovative character at the end is
treated similarly, and is part of the full version of this paper [4].

Definition 2. A factorization f1 · · · fz = T is called the LZ78 factorization of
T iff fx = f ′

x · c with f ′
x = argmaxS∈{fy:y<x}∪{ε} |S| and c ∈ Σ for all 1 ≤ x ≤ z.

We identify factors by text positions, i.e., we call a text position j the factor
position of fx (1 ≤ x ≤ z) iff factor fx starts at position j. A factor fx may
refer to either (LZ77) a previous text position j (called fx’s referred position),
or (LZ78) to a previous factor fy (called fx’s referred factor—in this case y
is also called the referred index of fx). If there is no suitable reference found
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for a given factor fx with factor position j, then fx consists of just the single
letter T [j]. We call such a factor a free letter . The other factors are called
referencing factors. Our final data structures allow us to access arbitrary
factors (factor position and referred position (LZ77)/referred index (LZ78)) in
constant time.

2.2 Data Structures

Common to both our algorithms is the construction of a succinct ST repre-
sentation. It consists of SA with n lg n bits, LCP with 2n + o(n) bits, and a
2|V | + o(|V |)-bit representation of the topology of ST, for which we choose the
DFUDS [3]. The latter is denoted by SucST. We make use of several construction
algorithms from the literature:

– SA can be constructed in O(
n/ε2

)
time and (1+ε)n lg n bits of space, including

the space for SA itself [11].
– Given SA, LCP can be computed in O(n) time with no extra space [18]. Note

that LCP can only answer LCP[i] in constant time if SA[i] is also available.
This is an important remark, because we will discard SA at several occasions
in order to free space, and this discarding causes additional difficulties.

– Given both SA and LCP, a space economical construction of SucST was dis-
cussed in [17, Alg. 1]. The authors showed that the DFUDS of ST can be built
in O(n) time with n + o(n) bits of working space.

We identify a node v ∈ V with its pre-order number, which is also the order in
which the opening parentheses occur in the DFUDS. So we implicitly identify
every node v ∈ V with its pre-order number (enumerated by 1, . . . , |V |).

Since our ST is static, we can perform various operations on the tree topology
in constant time (see, e.g., [16,17]). Among them, we especially use the following
operations (for any v ∈ V and i ∈ N): parent(v) returns the parent of v; and
level anc(v, i) returns the i-th ancestor of v. By building the min-max tree [16]
on the DFUDS of ST in O(n) time (using O(n) bits of space), we can get SucST
supporting these operations in constant time. Additionally, we are interested in
answering str depth(v) on ST; str depth(v) returns the string depth of v ∈ V . As
noted in [17], an RMQ data structure on LCP can be built in O(n) time and
n + o(n) bits of working space to support str depth in constant time. Note that
the operation str depth becomes unavailable when SA is discarded.

Our algorithms in Sects. 3 and 4 make use of two arrays: A1 of size n lg n
bits, and a small helper array A2 of size εn lg n bits. (We chose such generic
names since the contents of these arrays will change several times during the
LZ-computation.)

Node-Marking Vectors. In our algorithms, we sometimes deal with subsets
V ′ of V . Pre-order numbers enumerating only the nodes in V ′ can naturally be
used to map nodes in V ′ to the range [1.. |V ′|]. For this purpose, we use a node-
marking vector MV ′ , which is a bit vector of length |V |, such that MV ′ [v] = 1
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iff v ∈ V ′ for any 1 ≤ v ≤ |V |. We write ρV ′(v) := MV ′ . rank1(v) for any node
v ∈ V ′.

3 LZ77

The main idea is to perform leaf-to-top traversals accompanied by the marking
of visited nodes. The marked nodes are indicated by a ‘1’ in a bit vector of
size |V |. Starting from the situation where only the root is marked, in the j-th
leaf-to-top traversal for any 1 ≤ j ≤ n, we traverse ST from the leaf labeled with
j towards the root, while marking visited nodes until we encounter an already
marked node. Observe that right before the j-th leaf-to-top traversal, each string
of Sj(T ) can be obtained by following the path from the root to some marked
node. Hence, the LZ77 factorization can be determined during these leaf-to-top
traversals: If j is a factor position of a factor f , the last accessed node v during
the j-th leaf-to-top traversal reveals f ’s referred position. More precisely, v is
either the root, or a node that was already marked in a former traversal. If v is
the root, f is a free letter. Otherwise, we call v the referred node of f . Then,
the factor length is str depth(v), and the referred position is the minimum leaf
label in the subtree rooted at v (retrieved, e.g., by an RMQ on SA). Since every
visited node will be marked, and a marked node will never be unmarked, the
total number of parent(·)-operations is upper bounded by the number of nodes
in ST, i.e., O(n).

We start with SA stored in A1[1..n], and some O(n)-bit DS to provide
SucST, RMQs on SA, and RMQs on LCP. Note that the LZ77 computation
via leaf-to-top traversals, as explained above, accesses ISA n times to fetch suffix
leaves that are starting nodes of the traversals, and accesses SA O(z) times to
compute the factor lengths and the referred positions. Then, if we have both SA
and ISA, the LZ77 factorization can be easily done in O(n) time by the leaf-
to-top traversals. However, allowing only (1 + ε)n lg n + O(n) bits for the entire
working space, it is no longer possible to store both SA and ISA completely at
the same time.

With Extra Output Space. Let us first consider the easier case where the
result of the factorization can be output outside the working space. We can then
use the array+inverse DS of Munro et al. [14, Sect. 3.1], which allows us to access
inverse array’s values in O(1/ε) time by spending additional εn lg n bits (on top
of the array’s size). Since ISA is accessed more often than SA, we first convert
SA on A1 into ISA and then create its array+inverse DS so that accessing ISA
and SA can be done in O(1) and O(1/ε) time, respectively. Although it is not
explicitly mentioned in [14], the DS can be constructed in O(n) time. Then, the
leaf-to-top traversals can be smoothly conducted, leading to O(z/ε + n) = O(n)
running time.

Although this is already an improvement over the currently best linear-time
algorithm using 2n lg n bits [10], using Munro et al.’s DS as a black box would
prevent us from also storing the output of the LZ77 factorization in the working
space. Solving this is exactly what is explained in the remainder of this section.
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Without Extra Space – Outline. It is difficult to find space for writing the
referred positions; the former algorithm already uses (1+ε)n lg n bits of working
space for the array+inverse DS. Overwriting it would corrupt the DS and cause
a problem when accessing SA or ISA. We evade this problem by performing
several rounds of leaf-to-top traversals during which we build an array that
registers every visit of a referred node. (A minor remark is that this approach
does not even need RMQs on SA.) Our algorithm is divided into three rounds of
leaf-to-top traversals and a final matching phase, all of which will be discussed
in detail in the following:

First Round: Construct a bit vector Bf [1..n] marking all factor positions in
T , and a bit vector Br[1..z] marking the referencing factors. Determine the
set of referred nodes Vr ⊂ V , and mark them with a node-marking vector
MVr

.
Second Round: Construct a bit vector BD counting (in unary) the number of

referred nodes from Vr visited during each traversal.
Third Round: Construct an array D storing the pre-order numbers of all

referred nodes visited during each traversal (as counted in the second round).
Matching: Convert the pre-order numbers in D to referred positions.

Details. In the first round, we compute the factor lengths as before by leaf-
to-top traversals, which are used to construct Bf . Since the set of referred nodes
can be identified during the leaf-to-top traversals, MVr

can be easily constructed.
We also compute Br by setting Br[x] ← 1 for every referencing factor fx with
1 ≤ x ≤ z. For the rest of the algorithm, the information of SA is not needed
any longer.

We now aim at generating the array D storing a sequence of pre-order num-
bers of referred nodes, which will finally enable us to determine the referred posi-
tions of each referencing factor. D is formally defined as a sequence obtained by
outputting the pre-orders of referred nodes whenever they are marked or referred
to during the leaf-to-top traversals. Hence, each referred node appears in D for
the first time when it is marked, and after that it occurs whenever it is the last
accessed node of the j-th traversal, where 1 ≤ j ≤ n coincides with a factor posi-
tion. To see how D will be useful for obtaining the referred positions, consider
a node v ∈ V that was marked during the k-th traversal. If we stumble upon v
during the j-th traversal (for any factor position j > k) we know that k is the
referred position for the factor with factor position j (because v had not been
marked before the k-th traversal).

Alas, just D alone does not tell us which referred nodes are found during
which traversal. We want to partition D by the n text positions, s.t. we know
the traversal numbers which the referred nodes belong to. This is done by a
bit vector BD that stores a ‘1’ for each text position j, and intersperses these
‘1’s with ‘0’s counting the number of referred nodes written to D during the
j-th traversal. The size of the j-th partition (1 ≤ j ≤ n) is determined by the
number of referred nodes accessed during the j-th traversal. Hence the number
of ‘0’s between the (j − 1)-th and j-th ‘1’ represents the number of entries in
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D for the j-th suffix. Formally, BD is a bit vector such that D[jb..je] represents
the sequence of referred nodes that are written to D during the j-th leaf-to-top
traversal, where, for any 1 ≤ j ≤ n, jb := BD. rank0(BD. select1(j − 1)) + 1
and je := BD. rank0(BD. select1(j)). Note that for each factor position j of a
referencing factor f we encountered its referred node during the j-th traversal;
this node is the last accessed node during that traversal, and was stored in D[je],
which we call the referred entry of f . Note that we do not create a rank0 nor
a select1 DS on BD because we will get by with sequential scans over BD and D.

Finally, we show the actual computation of BD and D. Unfortunately, the
computation of D cannot be done in a single round of leaf-to-top traversals;
overwriting A1 naively with D would result in the loss of necessary information
to access the suffix tree’s leaves. This is solved by performing two more rounds
of leaf-to-top traversals, as already outlined above: In the second round, with
the aid of MVr

, BD is generated by counting the number of referred nodes
that are accessed during each leaf-to-top traversal. Next, according to BD, we
sparsify ISA by discarding values related to suffixes that will not contribute to
the construction of D (i.e., those values i for which there is no ’0’ between the
(i − 1)-th and the i-th ’1’ in BD). We align the resulting sparse ISA to the right
of A1. Afterwards, we overwrite A1 with D from left to right in a third round
using the sparse ISA. The fact that this is possible is proved by the following

Lemma 1. |D| ≤ n.

Proof. First note that the size of D is |Vr| + zr, where zr is the number of
referencing factors (number of ‘1’s in Br). Hence, we need to prove that |Vr|+zr ≤
n. Let z1

r (resp. z>1
r ) denote the number of referencing factors of length 1 (resp.

longer than 1), and let V 1
r (resp. V >1

r ) denote the referred nodes whose string
depth is 1 (resp. longer than 1). Also, zf denotes the number of free letters.
Clearly, |Vr| =

∣
∣V 1

r

∣
∣ +

∣
∣V >1

r

∣
∣, zr = z1

r + z>1
r ,

∣
∣V 1

r

∣
∣ ≤ zf , and

∣
∣V >1

r

∣
∣ ≤ z>1

r . Hence
|Vr| + zr =

∣
∣V 1

r

∣
∣ +

∣
∣V >1

r

∣
∣ + z1

r + z>1
r ≤ zf + z1

r + 2z>1
r ≤ n. The last inequality

follows from the fact that the factors are counted disjointly by zf , z1
r and z>1

r ,
and the sum over the lengths of all factors is bounded by n, and every factor
counted by z>1

r has length at least 2. ��
By Lemma 1, D fits in A1. Since each suffix having an entry in the sparse ISA
has at least one entry in D, overwriting the remaining ISA values before using
them will never happen. Once we have D on A1, we start matching referencing
factors with their referred positions. Recall that each referencing factor has one
referred entry, and its referred position is obtained by matching the leftmost
occurrence of its referred node in D.

Let us first consider the easy case with |Vr| ≤ �nε	 such that all referred
positions fit into A2 (the helper array of size εn lg n bits). By BD we know the
leaf-to-top traversal number (i.e., the leaf’s label) during which we wrote D[i]
(for any 1 ≤ i ≤ |D|). For 1 ≤ m ≤ |Vr|, the zero-initialized A2[m] will be used
to store the smallest suffix number at which we found the m-th referred node
(i.e., the m-th node of Vr identified by pre-order).
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Let us consider that we have set A2[m] = k, i.e., the m-th referred node was
discovered for the first time by the traversal of the suffix leaf labeled with k.

Whenever we read the referred entry D[i] of a factor f with factor position
larger than k and ρVr

(D[i]) = m, we know by A2[m] = k that the referred
position of f is k. Both the filling of A2 and the matching are done in one single,
sequential scan over D (stored in A1) from left to right: While tracking the suffix
leaf’s label with a counter 1 ≤ k ≤ n, we look at t := ρVr

(D[i]) and A2[t] for
each array position 1 ≤ i ≤ |D|: if A2[t] = 0, we set A2[t] ← k. Otherwise, D[i] is
a referred entry of the factor f with factor position k, for which A2[t] stores its
referred position. We set A1[i] ← A2[t]. By doing this, we overwrite the referred
entry of every referencing factor f in D with the referred position of f .

If |Vr| > �nε	, we run the same scan multiple times, i.e., we partition
{1, . . . , |Vr|} into 
|Vr| /(nε)� equi-distant intervals (pad the size of the last one)
of size �nε	, and perform 
|Vr| /(nε)� scans. Since each scan takes O(n) time,
the whole computation takes O(|Vr| /ε) = O(z/ε) time.

Now we have the complete information of the factorization: The length of the
factors can be obtained by a select-query on Bf , and A1 contains the referred
positions of all referencing factors. By a left shift we can restructure A1 such
that A1[x] tells us the referred position (if it exists, according to Br[x]) for each
factor 1 ≤ x ≤ z. Hence, looking up a factor can be done in O(1) time.

4 LZ78

Common implementations use a trie for storing the factors, which we call the
LZ78 trie . Recall that all trie implementations have a (log-)logarithmic depen-
dence on σ for top-down-traversals (see the Introduction); one of our tricks is
using level anc queries starting from the leaves in order to get rid of this depen-
dence. For this task we need ISA to fetch the correct suffix leaf; hence, we first
overwrite SA by its inverse.

4.1 Algorithm

The LZ78 trie structure can be represented by ST, with an additional DS storing
the number of LZ78 trie nodes that lie on each edge of ST. Each trie node v is
called explicit iff it is not discarded during the compactification of the suffix
trie towards ST; the other trie nodes are called implicit .

For every edge e of ST we use a counting variable 0 ≤ ne ≤ |c(e)| that keeps
track of how far e is explored. If ne = 0, then the factorization has not (yet)
explored this edge, whereas ne = |c(e)| tells us that we have already reached
the ending node v ∈ V of e =: (u, v). We defer the question how the ne- and
|c(e)|-values are stored in εn lg n bits to Sect. 4.2, as those technicalities might
not be of interest to the general audience.

Because we want to have a representative node in ST for every LZ78-factor,
we introduce the concept of witnesses: For any 1 ≤ x ≤ z, the witness of fx is
the ST node that is either the explicit representation of fx, or, if such an explicit
representation does not exist, the ending node in ST of the edge on which fx lies.
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Our next task is therefore the creation of an array W [1..z] s.t. W [x] stores
the pre-order number of fx’s witness. With W it will be easy to find the referred
index y of any referencing factor fx. That is because fy will either share the
witness with fx, or W [y] is the parent node of W [x]. Storing W will be done by
overwriting the first z positions of the array A1.

We start by computing W [x] for all 1 ≤ x ≤ z in increasing order. Suppose
that we have already processed x − 1 factors, and now want to determine the
witness of fx with factor position j. ISA[j] tells us where to find the ST leaf
labeled with j. Next, we traverse ST from the root towards this leaf (navigated
by level anc queries in deterministic constant time per edge) until we find the
first edge e with ne < |c(e)|, namely, e is the edge on which we would insert a new
LZ78 trie leaf. It is obvious that the ending node of e is fx’s witness, which we
store in W [x]. We let the LZ78 trie grow by incrementing ne. The length of fx is
easily computed by summing up the |c(·)|-values along the traversed path, plus
ne’s value. Having processed fx with factor position j ∈ [x..n], ISA’s values in
A1[1..j] are not needed anymore. Thus, it is eligible to overwrite A1[x] by W [x]
for 1 ≤ x ≤ z while computing fx. Finally, A1[1..z] stores W . Meanwhile, we
have marked the factor positions in a bit vector Bf [1..n]. Matching the factors
with their references can now be done in a top-down-manner by using W . Let
us consider a referencing factor fx with referred factor fy. We have two cases:
Whenever fy is explicitly represented by a node v (i.e., by fy’s witness), v is
the parent of fx’s witness. Otherwise, fy has an implicit representation and
hence has the same witness as fx. Hence, if W stores at position x the first
occurrence of W [x] in W , fy is determined by the largest position y < x for
which W [y] = parent(v); otherwise (W [x] is not the first occurrence of W [x]
in W ), then the referred factor of fx is determined by the largest y < x with
W [x] = W [y].

Now we hold W in A1[1..z], leaving us A1[z +1..n] as free working space that
will be used to store a new array R, storing for each witness w the index of the
most recently processed factor whose witness is w. However, reserving space in R
for every witness would be too much (there are potentially z many of them); we
will therefore have to restrict ourselves to a carefully chosen subset of witnesses.
This is explained next. First, let us consider a witness w that is witnessed by a
single factor fx whose LZ78 trie node is a leaf. Because no other factor will refer
to fx, we do not have to involve w in the matching. Therefore, we can neglect
all such witnesses during the matching. The other witnesses (i.e., those being
witnessed by at least one factor that is not an LZ78 trie leaf) are collected in a
set VΞ and marked by a bit vector MVΞ . |VΞ| is at most the number zi of internal
nodes of the LZ78 trie, which is bounded by n − z, due to the following

Lemma 2. z + zi ≤ n.

Proof. Let α (resp. β) be the number of free letters that are internal LZ78 trie
nodes (resp. LZ78 trie leaves). Also, let γ (resp. δ) be the number of referencing
factors that are internal LZ78 trie nodes (resp. LZ78 trie leaves). Obviously,
α + β + γ + δ = z. Wrt. the factor length, each referencing factor has length
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of at least 2, while each free letter is exactly one character long. Hence 2(γ +
δ) + α + β = z + γ + δ ≤ n. Since each LZ78 leaf that is counted by δ has an
LZ78 internal node of depth one as ancestor (counted by α), α ≤ δ holds. Hence,
z + zi ≤ z + α + γ ≤ z + γ + δ ≤ n. ��
By Lemma 2, if we let R store only the indices of factors whose witnesses are in
VΞ, it fits into A1[z + 1..n], and we can use MVΞ to address R.

We now describe how to convert W (stored in A1[1..z]) into the referred
indices, such that in the end A1[x] contains the referred index of fx for 1 ≤ x ≤ z.
We scan W = A1[1..z] from left to right while keeping track of the index of
the most recently visited factor that witnesses v, for each witness v ∈ VΞ at
R[ρVΞ(v)]. Suppose that we are now processing fx with witness v = W [x].

– If v /∈ VΞ or R[ρVΞ(v)] is empty, we are currently processing the first factor that
witnesses v. Further, if fx is not a free letter, its referred factor is explicitly
represented by the parent of v. We can find its referred index at position
ρVΞ(parent(v)) in R.

– Otherwise, v ∈ VΞ, and R[ρVΞ(v)] has already stored a factor index. Then
R[ρVΞ(v)] is the referred index of fx.

In either case, if v ∈ VΞ, we update R by writing the current factor index x to
R[ρVΞ(v)]. Note that after processing fx, the value A1[x] is not used anymore.
Hence we can write the referred index of fx to A1[x] (if it is a referring factor)
or set A1[x] ← 0 (if it is a free letter). In the end, A1[1..z] stores the referred
indices of every referring factor.

Now we have the complete information about the LZ78 factorization: For
any 1 ≤ x ≤ z, fx is formed by fyc, where y = A1[x] is the referred index
and c = T [Bf . select1(x + 1) − 1] the additional letter (free letters will refer to
f0 := ε). Hence, looking up a factor can be done in O(1) time.

4.2 Bookkeeping the LZ78 Trie Representation

Basically, we store both ne and |c(e)| for each edge e so as to represent the LZ78
trie construction in each step. A naive approach would spend 2 lg(maxe∈E |c(e)|)
bits for every edge, i.e., 4n lg n bits in the worst case. In order to reduce the
space consumption to εn lg n+o(n) bits, we will exploit two facts: (1) the super-
imposition of the LZ78 trie on ST takes place only in the upper part of ST, and
(2) most of the needed |c(e)|- and ne-values are actually small.

More precisely, we will introduce an upper bound for the ne values, which
shows that the necessary memory usage for managing the ne and |c(e)| values
is, without a priori knowledge of the LZ78 trie’s shape, actually very low.

Note that although we do not know the LZ78 trie’s shape, we will reason
about those nodes that might be created by the factorization. For a node v ∈ V ,
let height(v) denote the height of v in the LZ78 trie if v is the explicit represen-
tation of an LZ78 trie node; otherwise we set height(v) = 0.

For any node v ∈ V , let l(v) denote the number of descendant leaves of v.
The following lemma gives us a clue on how to find an appropriate upper bound:
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Lemma 3. Let u, v ∈ V with e := (u, v) ∈ E. Further assume that u is the
explicit representation of an LZ78 trie node. Then height(v) is upper bounded by
l(v) − |c(e)|.
Proof. Let π be a longest path from u to some descendant leaf of v, and
d := height(v)+ |c(e)| (i.e., the number of LZ78 trie edges along π). By construc-
tion of the LZ78 trie, the ST node v must have at least d leaves, for otherwise
the (explicit or implicit) LZ78 trie nodes on π will never get explored by the
factorization. So d ≤ l(v), and the statement holds. ��
Further, let root denote the root node of the suffix trie. In particular, root is an
explicit LZ78 trie node. Consider two arbitrary nodes u, v ∈ V with e := (u, v) ∈
E. Obviously, the suffix trie node of v is deeper than the suffix trie node of u by
|c(e)|. Putting this observation together with Lemma 3, we define h : V → N0,
which upper bounds height(·):

h(v) =

{
n if v = root,

max (0,min (h(u), l(v)) − |c(e)|) if there is an e := (u, v) ∈ E.

Since the number of LZ78 trie nodes on an edge below any v ∈ V is a lower
bound for height(v), we conclude with the following lemma:

Lemma 4. For any edge e = (v, w) ∈ E, ne ≤ min (|c(e)| , h(v)).

Let us remark that Lemma 4 does not yield a tight bound. For example, the
height of the LZ78 trie is indeed bounded by

√
2n (see, e.g., [2, Lemma 1]). But

we do not use this property to keep the analysis simple.
Instead, we classify the edges e ∈ E into two sets, depending on whether

ne ≤ Δ :=
⌊
nε/4

⌋
holds for sure or not. By Lemma 4, this classification separates

E into E≤Δ := {(u, v) ∈ E : min (|c((u, v))| , h(u)) ≤ Δ} and E>Δ := E \ E≤Δ.
Since 2 lg Δ bits are enough for bookkeeping any edge e ∈ E≤Δ, the space needed
for these edges fits in 2 |E≤Δ| lg Δ ≤ nε lg n bits. Thus, our focus lies now on the
edges in E>Δ; each of them costs us 2 lg n bits. Fortunately, we will show that
|E>Δ| is so small that the space of 2 |E>Δ| lg n bits needed by these edges is in
fact o(n) bits.

We call any e ∈ E>Δ a Δ-edge and its ending node a Δ-node . The set
of all Δ-nodes is denoted by VΔ. As a first task, let us estimate the number
of Δ-edges on a path from a node v ∈ VΔ to any of its descendant leaves;
because v is a Δ-node with height(v) ≤ h(v), this number is upper bounded
by

⌊
h(v)
Δ

⌋
≤

⌊
l(v)−Δ

Δ

⌋
=

⌊
l(v)
Δ

⌋
− 1. For the purpose of analysis, we introduce

ĥ : (VΔ ∪ {root}) → N0, which upper bounds the number of Δ-edges that occur
on a path from a node to any of its descendant leaves:

ĥ(v) =

{⌊
n
Δ

⌋
if v = root,

min
(
ĥ(p̂(v)) − 1,

⌊
l(v)
Δ

⌋
− 1

)
otherwise,
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where p̂ : VΔ → (VΔ ∪ {root}) returns for a node v either its deepest ancestor
that is a Δ-node, or the root if such an ancestor does not exist. Note that ĥ is
non-negative by the definition of VΔ.

For the actual analysis, α(v) shall count the number of Δ-edges in the subtree
rooted at v ∈ VΔ ∪ {root}.

Lemma 5. For any node v ∈ (VΔ ∪ {root}), α(v) ≤ l(v)
Δ

∑ĥ(v)
i=1

1
i .

Proof. We proceed by induction over the values of ĥ(v) for every v ∈ VΔ. For
ĥ(v) = 0 the subtree rooted at v has no Δ-edges; hence α(v) = 0. If ĥ(v) = 1,
any Δ-node w of the subtree rooted at v holds the property ĥ(w) = 0. Hence,
none of those Δ-nodes are in ancestor-descendant relationship to each other. By
the definition of Δ-nodes, for any Δ-node u, we have 0 ≤

⌊
l(u)
Δ

⌋
− 1, and hence,

Δ ≤ l(u). By Δα(v) ≤ ∑
u∈VΔ,p̂(u)=v l(u) ≤ l(v) we get α(v) ≤ l(v)

Δ .
For the induction step, let us assume that the induction hypothesis holds for

every u ∈ VΔ with ĥ(u) < k. Let us take a v ∈ VΔ with ĥ(v) = k. Further, let
Vk′ :=

{
u ∈ VΔ : p̂(u) = v and ĥ(u) = k′

}
for 0 ≤ k′ ≤ k − 1 denote the set of

Δ-nodes that have the same ĥ value and are descendants of v, without having a
Δ-node as ancestor that is a descendant of v. These constraints ensure that there
does not exist any u ∈ ⋃

0≤k′≤k−1 Vk′ =: V that is ancestor or descendant of some
node of V. Thus the sets of descendant leaves of the nodes of V are disjoint. So
it is eligible to denote by Lk′ :=

∑
u∈Vk′ l(u) the number of descendant leaves of

all nodes of Vk′ . It is easy to see that
∑k−1

k′=0 Lk′ ≤ l(v). Now, by the hypothesis,
and the fact that each u ∈ V is the highest Δ-node on every path from v to
any leaf below u, we get α(v) ≤ |V0| +

∑k−1
k′=1

(∑
u∈Vk′

l(u)
Δ

∑k′

i=1
1
i + |Vk′ |

)
=

|V0| +
∑k−1

k′=1

(
Lk′
Δ

∑k′

i=1
1
i + |Vk′ |

)
. By definition of Vk′ and ĥ, we have ĥ(u) =

k′ ≤
⌊

l(u)
Δ

⌋
−1 and hence (k′+1)Δ ≤ l(u) for any u ∈ Vk′ . This gives us Lk′

(k′+1)Δ =
∑

u∈Vk′
l(u)

(k′+1)Δ ≥ |Vk′ |. In sum, we get α(v) ≤ L0
Δ +

∑k−1
k′=1

Lk′
Δ

∑k′+1
i=1

1
i =

∑k−1
k′=0

Lk′
Δ

∑k′+1
i=1

1
i ≤ l(v)

Δ

∑k
i=1

1
i . ��

By Lemma 5, |E>Δ| = α(root) ≤ n
Δ

∑ n
Δ
i=1

1
i . Since

∑ n
Δ
i=1

1
i ≤ 1 + ln n

Δ , we have
α(root) ≤ n

Δ + n
Δ ln n

Δ = O(
n
Δ lg n

Δ

)
= O(

n lg n/
(
nε/4

))
. We conclude that the

space needed for E>Δ is 2 |E>Δ| lg n = O
(

n lg2 n
nε/4

)
= o(n) bits.

Finally, we explain how to implement the data structures for bookkeeping
the LZ78 trie representation. By an additional node-marking vector MVΔ that
marks the VΔ-nodes, we divide the edges into E≤Δ and E>Δ. rank / select on
MVΔ allows us to easily store, access and increment the ne values for all edges
in constant time. MVΔ can be computed in O(n) time when we have SA on A1:
since str depth allows us to compute every |c(e)| value in constant time, we can
traverse ST in a DFS manner while computing h(v) for each node v, and hence,
it is easy to judge whether the current edge belongs to E>Δ. In order to store
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the h values for all ancestors of the current node we use a stack. Observe that
the h values on the stack are monotonically increasing; hence we can implement
it using a DS with O(n) bits [5, Sect. 4.2].
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Abstract. Given a text T having n characters, we consider the non-
overlapping indexing problem defined as follows: pre-process T into a
data-structure, such that whenever a pattern P comes as input, we can
report a maximal set of non-overlapping occurrences of P in T. The best
known solution for this problem takes linear space, in which a suffix tree
of T is augmented with O(n)-word data structures. A query P can be
answered in optimal O(|P | + nocc) time, where nocc is the output size
[Cohen and Porat, ISAAC 2009]. We present the following new result:
let CSA (not necessarily a compressed suffix array) be an index of T
that can compute (i) the suffix range of P in search(P ) time, and (ii) a
suffix array or an inverse suffix array value in tSA time; then by using
CSA alone, we can answer a query P in O(search(P ) + nocc · tSA) time.
Additionally, we present an improved result for a generalized version of
this problem called range non-overlapping indexing.

1 Introduction and Related Work

Indexing a text, so as to facilitate efficient pattern matching queries in the future,
is a fundamental problem in the domain of information retrieval. The objective
is to pre-process a text T, such that whenever a pattern P comes as query, all
start positions (or simply, occurrences) of P in T can be reported efficiently. In
most of the earlier works [5,12,14], both text and pattern were provided at query
time. However, in most cases the text is static, and patterns come in as online
query. This motivated the development of full text indexes such as (compressed)
suffix arrays/trees.

Suffix tree [19,20] (resp. suffix array [16]) are the most well known full-text
indexes supporting O(|P | + occ) (resp. O(|P | + log n + occ)) query time; here,
|P | is the length of P , and occ is the output size (i.e., the number of occurrences
of P in T). The query time for suffix arrays can be reduced to O(|P | + occ) by
using a modified form of it, called enhanced suffix arrays [1]. Both suffix trees and
suffix arrays require Θ(n log n) bits of space, which is too large for most practical
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purposes. Grossi and Vitter [9], and Ferragina and Manzini [8] addressed this
by presenting space efficient indexes named compressed suffix arrays and FM-
Index respectively. Subsequently, an exciting field of compressed text indexing
was established; see [17] for an excellent survey.

In some applications [6] (such as data-compression, speech recognition, lin-
guistics), we are interested in only those occurrences of the pattern P that do
not overlap with each other. This problem is a variation of the pattern matching
problem, and can be formally stated as follows.

Problem 1 (Non-overlapping Indexing). Given a text T of n characters,
pre-process T into a data-structure, such that for any input pattern P , we can
report a set of maximal starting positions of P , such that any two distinct starting
positions are at least |P | characters apart.

Cohen and Porat [6] presented the first optimal time solution to this problem.
Their data structure consists of a suffix tree of T and additional O(n)-word data
structures. We show that Problem 1 can be solved efficiently using any index of
T alone. The result is summarized in the following theorem.

Theorem 1. Let CSA (not necessarily a compressed suffix array) be a full-text-
index of T, that can compute (i) the suffix range of a pattern P in search(P )
time and (ii) suffix array or an inverse suffix value in tSA time. Then, without
using any additional data structures, we can report a maximal set of nocc non-
overlapping occurrences of P in T in O(search(P ) + nocc · tSA) time.

By avoiding use of any additional data-structures, various space time trade-off
can be easily obtained. For example, if we use a suffix tree of T, optimal O(|P |+
nocc) query time can be obtained (same as the result by Cohen and Porat [6]).
On the other hand, an n log σ+o(n log σ) bits of space and O(|P |+nocc log1+ε n)
query time result can be obtained by using a recent version of compressed suffix
array by Belazzougui and Navarro [4]. Here σ is the size of the alphabet from
which the characters in T are drawn from and ε > 0 is an arbitrary small
constant. We remark that our solution is conceptually much simpler than the
previous solution.

The second problem addressed in this paper can be seen as a variation of
the well known position restricted substring searching problem of Makinen and
Navarro [15]. The problem can be stated as follows.

Problem 2 (Range Non-overlapping Indexing). Given a text T of n char-
acters, pre-process T into a data-structure, such that whenever a pattern P , and
a range [a, b], 1 ≤ a ≤ b ≤ n, are provided as input, a maximal set of starting
positions of P in the range [a, b] are reported such that any two distinct positions
are at least |P | characters apart.

For Problem 2, Keller et al. [13] presented an O(n log n) space and O(|P | +
nocca,b log log n) time data-structure, where nocca,b is the number of non-
overlapping occurrences of P in [a, b]. Iliopoulos et al. [7] presented an O(n1+ε)
space and O(|P | + nocca,b) time solution. Nekrich and Navarro [18] presented
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a linear space and O(|P | + nocca,b logε n) time solution. Cohen and Porat [6]
presented an O(n logε n) space and O(|P | + log log n + nocca,b) time solution.
The following theorem summarizes our solution to Problem 2.

Theorem 2. Given a text T of n characters, we can pre-process T to create
data-structures of total size O(n logε n) words, such that for any pattern P , and
range [a, b], 1 ≤ a ≤ b ≤ n, we can find a maximal set of non-overlapping
occurrences of P in [a, b] in optimal O(|P | + nocca,b) time, where nocca,b is the
output size.

Organization of the Paper. The rest of the paper is dedicated for proving
Theorem 1 and Theorem 2. In Sect. 2, we introduce notations and terminologies.
We prove Theorem 1 in Sect. 3 and Theorem 2 in Sect. 4. Finally, we conclude
the paper in Sect. 5.

2 Preliminaries and Notations

We refer the reader to [10] for standard definitions and terminologies. Through-
out this paper, T is a text having n characters, and P is a pattern having |P |
characters. We assume that T terminates in a special character that does not
appear at any other position in the document. We denote by T[t, t′], the sub-
string of T from t to t′ (both inclusive). Further, ε is any arbitrarily small positive
constant. A pattern P is said to occur at a position t in T if P starts at t. We
denote by nocc, the number of non-overlapping occurrences of P in T. Likewise,
nocca,b is the number of non-overlapping occurrences in the range [a, b] i.e., in
the substring T[a, b].

Suffix Tree. A suffix tree, denoted by ST, is a compact trie that stores all
the (non-empty) suffixes of T. Leaves in the suffix tree are numbered in the
lexicographic order of the suffix they represent. The locus of a pattern P is the
highest node u such that P is a prefix of the string formed by the concatenation
of the edge labels from the root to u. The suffix range of P is denoted by [sp, ep],
where sp (resp. ep) is the leftmost (resp. rightmost) leaf in the sub-tree of ST
rooted at the locus of P . Using suffix trees,the suffix range of any pattern P can
be determined in O(|P |) time.

Suffix Array. A suffix array, denoted by SA, is an array of size n that maintains
the lexicographic arrangement of all the suffixes of the text. More specifically, if
the ith smallest suffix of T starts at j, we let SA[i] = j and SA−1[j] = i. Using
suffix arrays, the locus node of any pattern P , or equivalently, the suffix range
of P , can be found in O(|P | + log n) time. Using enhanced suffix arrays [1], this
can be done in O(|P |) time. Moving forward, we use the term suffix array to
denote enhanced suffix arrays. The suffix value SA[·] and the inverse suffix value
SA−1[·] can be found in constant time.
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In general, suffix trees (arrays) require O(n) words for storage. Compressed
Suffix Arrays reduce this space to O(n log σ) bits (or close to the size of the
text) with a slowdown in query time. In what follows, we use CSA to denote a
full-text-index of T (not necessarily a compressed index) that can compute the
suffix range of P in search(P ) time, and can compute a suffix array or inverse
suffix array value in tSA time. In most cases, search(P ) is proportional to the
length of the pattern P .

Lemma 1. Given the suffix range [sp, ep] of pattern P , using CSA, we can verify
in time O(tSA) whether P appears at a text-position t, or not.

Proof. The lexicographic position � of the suffix T[t, n] (i.e., SA−1[t]) can be
found in O(tSA) time. By checking if � lies in the range [sp, ep], we can determine
whether P appears at t, or not. �

3 Non-overlapping Indexing

In this section, we present our solution to Problem 1. We start with a few
definitions.

Definition 1 (Period of a Pattern). The period of a pattern P is its shortest
prefix Q, such that P can be written as the concatenation of several (say α ≥ 0)
number of copies of Q and a prefix Q′ of Q. Specifically, P = QαQ′.
For e.g., if P = abcabcab, then Q = abc, Q′ = ab and α = 2.

Definition 2 (Critical Occurrence of a Pattern). A position tc in the text
T is called a critical occurrence of a pattern P = QαQ′ if and only if tc is an
occurrence of P but the position tc + |Q| is not. In continuation with our example
above, let the text T be xyzabcabcabcabxyz. Then tc = 7 is a critical occurrence
of P , but tc = 4 is not.

Observation 1. Every critical occurrence of P in T corresponds to at least one
non-overlapping occurrence of P in T.

Definition 3 (Range of a Critical Occurrence). Let tc be a critical occur-
rence of the pattern P in the text T. Let t′ ≤ tc be the maximal position such
that t′, t′ + |Q|, t′ + 2|Q|, · · · , tc are occurrences of P but the position t′ − |Q| is
not. The range of the critical occurrence tc is range(tc) = [t′, tc + |P | − 1].
Continuing with our example above, range(7) = [4,14].

Observation 2. Let tc be any critical occurrence of P in T. Then tc is the right-
most occurrence of P in range(tc). Furthermore, the ranges of any two distinct
critical occurrences are disjoint.

It follows from Observations 1 and 2 above that in order to find all non-
overlapping positions of P in the text T, it suffices to find the non-overlapping
occurrences of P in the range of every critical occurrence of P . We show how to
achieve this in the following lemma.
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Fig. 1. Illustration of Lemma 2. Bottom row shows the text-position of every character,
and the shaded text-positions mark the critical occurrences of the pattern P = aba for
which Q = ab and Q′ = a. Top row shows the text, and the shaded region shows the
range of the critical occurrences tc; t and t′ have the same meaning as in Lemma 2.

Lemma 2. Given a pattern P = QαQ′, the suffix range of P , and a critical
occurrence tc of P in T, we can find all maximal non-overlapping occurrences of
P in range(tc) in time O(nocc′ · tSA), where nocc′ is the output size.

Proof. First, we report tc as a non-overlapping occurrence of P . Now, we consider
the position t = tc − α|Q|. If t ≤ 0 or if P does not appear at t (which can be
verified in O(tSA) time using Lemma 1), then terminate. Otherwise, t belongs
to range(tc), and let t′ = t − |Q|. If t′ ≤ 0 or if P does not appear at t′, then
terminate. Otherwise t′ belongs to range(tc), and is another non-overlapping
occurrence of P . See Fig. 1 for an illustration. We repeat the process by letting
tc = t′. Clearly, the reported t′’s are the maximal non-overlapping occurrences
of P in range(tc), and reporting them takes O(nocc′ · tSA) time. �

From Lemma 2, we conclude that given the suffix range of P (which can be
found in search(P ) time), and every critical occurrence of P in T, we can find
all maximal non-overlapping occurrences of P in time search(P ) + O(nocc · tSA),
thereby proving Theorem 1. Therefore, our task is to find all critical occurrences
of P in T. The following lemma shows how to achieve this.

Lemma 3. Given a pattern P = QαQ′, we can find all critical occurrences of
P in T in time bounded by search(P ) + O(nocc · tSA).

Proof. The proof of the lemma relies on the following observation.

Observation 3. A critical occurrence of a pattern P is same as the text-position
of a leaf which belongs to the suffix range of P , but not of QP .

First observe that since Q′ is a prefix of Q, the suffix range of QP is contained
within that of P . Now, assume the contrary to Observation 3 above. Then, there
is a critical occurrence, say tc in text-order, of P in T, such that SA−1[tc] lies
in the suffix range of QP = Qα+1Q′. Clearly, there is an occurrence of P at the
position t = tc + |Q| which presents a contradiction. Therefore, our objective
translates to locating the suffix range of P , say [sp, ep], and of QP , say [sp′, ep′];
this can be done in time search(QP ) which can be bounded by search(P ). (We
assume that search(P ) is proportional to |P |.) See Fig. 2 for an illustration.

Note that for each leaf � in the suffix ranges [sp, sp′ − 1] and [ep′ + 1, ep]
(taken together), the text position SA[�] is a (distinct) critical occurrence of P .
Thus, the number of leaves in the suffix range of P but not QP is same as the
number of critical occurrences of P in T, and by Observation 1, the number of
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Fig. 2. Illustration of Lemma 3. Since, Q′ is a prefix of Q, the locus of P = QαQ′ lies
on the path from root to the locus of QP . For each leaf � in [sp, sp′ − 1] ∪ [ep′ + 1, ep],
the text position SA[�] is a critical occurrence of P in the text T.

critical occurrences is at most the output size nocc. For every leaf, we can find
the corresponding critical occurrence (i.e., its text-position) in time O(tSA) using
SA[·]. Therefore, once the suffix ranges of P and QP are located, all the critical
occurrences are found in time bounded by O(nocc · tSA). �

4 Range Non-overlapping Indexing

In the range non-overlapping indexing problem, a range [a, b] is provided as input
in addition to the pattern P , and we are required to report all non-overlapping
occurrences of P that start within the range [a, b]. For this problem, we use
suffix trees or (enhanced) suffix arrays as the full-text indexes for T. Therefore,
search(P ) = O(|P |) and tSA = O(1).

If |P | ≥ b − a, then by using Lemma 1, we first find all occurrences of P (in
sorted-order) in [a, b] in O(|P |) time. Then, we consider the first occurrence, skip
over all occurrences that occur within the next P characters, and then report the
next one, and so forth. Clearly, total time can be bounded by O(|P |). Moving
forward, we assume |P | < b−a. For our purposes, we will need a slightly modified
form of Lemma 2 presented below.

Lemma 4. Given a pattern P = QαQ′, the suffix range of P , an occurrence t
of P in T, and a range [t′, t], let tc be the critical occurrence such that t belongs
to range(tc). Then, we can find all maximal non-overlapping occurrences of P in
range(tc) within [t′, t] in time O(nocc′), where nocc′ is the output size.

Proof. First, we report t as a non-overlapping occurrence of P . Now, we consider
the position t′′ = t−α|Q|. If t′′ < t′ or if P does not appear at t′′, then terminate.
Otherwise, t′′ belongs to range(tc), and let t′′′ = t′′ − |Q|. If t′′′ < t′ or if P
does not appear at t′′′, then terminate. Otherwise, t′′′ belongs to range(tc), and
is another non-overlapping occurrence of P . We repeat the process by letting
t = t′′′. Clearly, the reported t′′′’s are the desired maximal non-overlapping
occurrences of P , and reporting them takes O(nocc′) time. �
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tc tc
tc

Fig. 3. Illustration of different cases for long patterns. Bottom row shows the text T in
light shade, and the substring T[a, b] in dark shade. Case 1 shows the range of critical
occurrences tc, where tc ∈ [a, b]. Case 2 shows range(tc) for a critical occurrence tc > b,
where range(tc) begins in [a, b].

Based on the length of the pattern P , we divide the proof of Theorem 2 into
two cases. We say that P is a long pattern if |P | > log log n, and short pattern,
otherwise. The following couple of lemmas summarize our result for the range
non-overlapping indexing problem. We arrive at Theorem 2 by combining them.

Lemma 5. There exists a data-structure that takes O(n logε n) space and finds
all non-overlapping occurrences of pattern P in the range [a, b] in time O(|P | +
nocca,b), where nocca,b is the output size and |P | > log log n.

Lemma 6. There exists a data-structure that takes O(n(log log n)2) space and
finds all non-overlapping occurrences of pattern P in the range [a, b] in time
O(|P | + nocca,b), where nocca,b is the output size and |P | ≤ log log n.

4.1 Proof of Lemma 5

For answering queries for a long pattern P = QαQ′, and a range [a, b], we start
by first finding the suffix range [sp, ep] of P , and the suffix range [sp′, ep′] of QP .
Since, Q′ is a prefix of Q, this can be achieved in O(|P |) time. We show how to
obtain all non-overlapping occurrences of P in [a, b] by considering the following
two cases. See Fig. 3 for an illustration.

Case 1. Consider those critical occurrences of P which lie in the range [a, b]. We
find them by using the data-structure of the following lemma.

Lemma 7. [2]. Given a set P of n two-dimensional points, we can pre-process
them to create a data-structure which takes O(n logε n) space, such that when a
rectangular box B = [x1, x2] × [y1, y2] comes as query, we can report all k points
of P that lie in B in O(log log n + k) time.

In addition to the full-text index over T, we maintain the above 2-dimensional
range reporting data-structure of Alstrup et al. [2] over the suffix array SA of the
text T. Specifically, the points for this data-structure are (i,SA[i]), 1 ≤ i ≤ n.
For the range [a, b], by using this data-structure, we first find all the points which
lie within the bounding box [sp, sp′ − 1] × [a, b], say P1, and those within the
bounding box [ep′ + 1, ep] × [a, b], say P2. Since, ranges of critical occurrences
do not overlap, any point (i,SA[i]) ∈ P1 ∪ P2 corresponds to a unique critical
occurrence that lies in the range [a, b], which in turn corresponds to at least
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one non-overlapping occurrence of P in [a, b] (refer to Observations 1, 2 and 3);
thus, we have |P1 ∪ P2| ≤ nocca,b. Time required for finding P1 and P2, in
addition to that for finding the suffix ranges of P and QP , can be bounded by
O(|P | + log log n + |P1 ∪ P2|) = O(|P | + nocca,b).

For finding the non-overlapping occurrences of P in the range of every critical
occurrence tc reported above, we follow the procedure described in Lemma 4 for
the range [a, tc]. Since, each non-overlapping occurrence of P in the range of a
critical occurrence can be found in constant time, total time required for finding
all non-overlapping occurrences of P can be bounded by O(|P |+nocca,b). Clearly,
the reported occurrences are those of P that start at or after a, and ends before
or at b, as desired.

Case 2. Apart from the non-overlapping occurrences reported in Case 1 above,
the other non-overlapping occurrences that we are interested in are those which
lie in [a, b] and also in the range of a critical occurrence tc, where tc > b. Note
that there is at most one such critical occurrence, and with abuse of notation, we
use tc to denote it. Consider the rightmost occurrence tr of P in range(tc) such
that tr ≤ b. Note that tr ∈ [b − |P |, b]. We can therefore verify the existence of
such a tc and tr pair, and also find tr (if any) in O(|P |) time (refer to Lemma 1).
(For our purposes, it is not necessary to locate the exact location tc but only
to verifying its existence.) Assume that there exists such a pair tr and tc. By
our assumption |P | < b − a; therefore, tr ∈ [a, b]. Now, for the range [a, tr],
and occurrence tr, we report all the desired non-overlapping occurrences of P as
described in Lemma 4. Total time can again be bounded by O(|P | + nocca,b).

4.2 Proof of Lemma 6

It is to be observed that the procedure described in the previous section will
report non-overlapping occurrences in [a, b] even for short patterns i.e., when
|P | ≤ log log n. In this case, however, the query complexity will incur an extra
log log n factor (because |P | does not necessarily cascade log log n). This log log n
factor is incurred due to the use of the 2-dimensional range reporting data-
structure of Alstrup et al. [2] for finding all critical occurrences in the range [a, b]
(refer to Lemma7) The motivation, therefore, is to find the critical occurrences,
once the suffix range of P is found, in time bounded by O(nocca,b). In light of
this, we present the following result of Alstrup et al. [3].

Lemma 8 [3]. Given a set P of n one-dimensional points that are drawn from
a set {0, 1, 2, · · · , 2w − 1}, where w ≥ log n is the word size, there exists a data-
structure of O(n) words, such that when a range R = [x1, x2] comes as query,
we can report all k points of P that lie in R in O(k) time.

Observation 4. Denote by leaf(u), the set of leaves in the sub-tree of ST rooted
at u, and by Uk, the set of all nodes at depth k. Since, the number of leaves in
ST is n, it follows that

∑
u∈Uk

|leaf(u)| ≤ n.
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Fig. 4. Illustration of different cases for short patterns. Bottom row shows the text
T in light shade, and the substring T[a, b] in dark shade. In Case 1, range(tc) for any
critical occurrence tc terminates in [a, b]. In Case 2, range(tc) for the unique critical
occurrence tc (if any) starts in [a, b] and terminates after b. Case 3 can occur only if
none of Case 1 and Case 2 occurs. For the relevant Case 3, the entire range of a critical
occurrence overlaps T[a, b].

Building the Index. Now we show how to create a data-structure that is
capable of answering queries for short patterns P in time O(|P | + nocca,b). Let
d be a parameter to be defined later. Consider a string Pd of length d formed
by concatenating edge-labels on any path from root. For every prefix P ′ of Pd,
we first find all the critical occurrences CP ′ of P ′ in T. We maintain two data-
structures, as described in Lemma 8, one each for the start and the end of the
range of every critical occurrence in CP ′ . Based on Observations 2 and 4, the total
space required for storing this structure for every prefix of every d length string
Pd can be bounded by O(nd) words. We do this for every d ∈ [1, �log log n�].
Total space can be bounded by O(n(log log n)2) words.

Querying the Index. For a short pattern P , we first retrieve the data-
structures maintaining the start and end of the range of every critical occurrence
in CP . This can be done in O(|P |) time. Depending on the critical occur-
rences, and the range [a, b], we have the following three cases. See Fig. 4 for
an illustration.

Case 1. Retrieve all critical occurrences tc in CP such that the end of range(tc)
lies in the interval [a, b]. By Lemma 8, this can be done in time O(nocc′), where
nocc′ is the number of such critical occurrences. By definition, if the range of
any critical occurrence tc is [t−, t+], then tc = t+ − |P | + 1. Given the range
of a critical occurrence tc, we first compute tc using this formula. Consider any
critical occurrence tc. If tc ≥ a, we report all non-overlapping occurrences of P
in the range [a, tc] for the occurrence tc as described in Lemma 4. If tc < a, we
ignore it. Note that there is at most one critical occurrence such that its range
starts before a and ends in [a, b]. Every other critical occurrence will result in at
least one non-overlapping occurrence of P . Therefore, nocc′ ≤ nocca,b + 1, and
total time for finding all occurrences can be bounded by O(nocca,b).

Case 2. Among the critical occurrences reported in Case 1 above, let tmax be
the critical occurrence that appears last in the text and let t+max be end of
range(tmax). If no critical occurrence was reported, then let t+max = a−1. Observe
that there is at most one critical occurrence, say tc, such that t+max < t− ≤ b,
where [t−, t+] = range(tc). Also, if tc exists, then t+ > b.
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To find tc (or verify if it does not exist), we use the data-structure which
contains the start of range(t′c) for every t′c in CP and query it with the range
[t+max+1, b]. Assume that tc exists. We find the last occurrence tr ∈ [t+max+1, b] of
P in range(tc). This can be done in O(|P |) time (refer to Case 2 in Sect. 4.1). We
retrieve all the non-overlapping occurrences in [t+max + 1, tr] for the occurrence
tr as described in Lemma 4. Total time can be bounded by O(nocca,b).

Case 3. Suppose there is no critical occurrence retrieved in the above two cases.
This may happen in the following scenarios.

– Range of critical occurrences in CP either terminate before a, or start after b,
or both. Clearly, these are of no interest, and can be safely ignored.

– There exists a single critical occurrence tc whose range starts before a and
terminates after b. By our assumption |P | < b − a, and if tc exists, there
must be an occurrence of P in [a, b]. We locate the last occurrence tr of P in
the range [a, b]. Note that tr must lie within |P | characters of b, and hence
can be located in O(|P |) time (refer to Lemma 1). If tr does not exist, then
neither does tc. Otherwise, as described in Lemma 4, we locate all other non-
overlapping occurrences of P in the range [a, tr] for the occurrence tr. Total
time is again bounded by O(nocca,b).

5 Conclusion

In this paper, we revisit the problem of reporting all maximal non-overlapping
occurrences of a pattern P in a text T. We show that by maintaining only a full-
text index on T, we can find all nocc occurrences in optimal time O(|P |+nocc).
Further, the space can be made succinct by maintaining a self index of T, and
the occurrences can be found in search(P ) + O(nocc · tSA), where search(P ) is
the time required to find the suffix range of T, and tSA is the time required to
find suffix value or inverse suffix value. For the range-reporting version of the
problem, where a range [a, b] is provided as input in addition to the pattern P ,
we present an O(n logε n) space index which can report all nocca,b occurrences
in this range in optimal time O(|P | + nocca,b). We remark that it is highly
unlikely to have an efficient succinct data-structure for this problem, based on
the hardness result of the position restricted substring searching problem [11].
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Abstract. Given an array A containing arbitrary (positive and nega-
tive) numbers, we consider the problem of supporting range maximum-
sum segment queries on A: i.e., given an arbitrary range [i, j], return

the subrange [i′, j′] ⊆ [i, j] such that the sum
∑j′

k=i′ A[k] is maximized.
(We use the terms segment and subrange interchangeably, but only use
segment when referring to the name of the problem, for consistency with
prior work.) Chen and Chao [Disc. App. Math. 2007] presented a data
structure for this problem that occupies Θ(n) words, can be constructed
in Θ(n) time, and supports queries in Θ(1) time. Our first result is that
if only the indices [i′, j′] are desired (rather than the maximum sum
achieved in that subrange), then it is possible to reduce the space to
Θ(n) bits, regardless the numbers stored in A, while retaining the same
construction and query time. Our second result is to improve the trivial
space lower bound for any encoding data structure that supports range
maximum-sum segment queries from n bits to 1.89113n − Θ(lg n), for
sufficiently large values of n. Finally, we also provide a new applica-
tion of this data structure which simplifies a previously known linear
time algorithm for finding k-covers: given an array A of n numbers and
a number k, find k disjoint subranges [i1, j1], ..., [ik, jk], such that the
total sum of all the numbers in the subranges is maximized. As observed
by Csürös [IEEE/ACM TCBB 2004], k-covers can be used to identify
regions in genomes.

1 Introduction

Many core data structure problems involve supporting range queries on arrays of
numbers: see the surveys of Navarro [14] and Skala [18] for numerous examples.
Likely the most heavily studied range query problem of this kind is that of sup-
porting range maximum queries (resp. range minimum queries): given an array
A of n numbers, preprocess the array such that, for any range [i, j] ⊆ [1, n] we can
return the index k ∈ [i, j] such that A[k] is maximum (resp. minimum). These
kinds of queries have a large number of applications in the area of text index-
ing [8, Sect. 3.3]. Solutions have been proposed to this problem that achieve Θ(n)
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space (in terms of number of machine words1), and constant query time [1,7]. At
first glance, one may think this to be optimal, since the array A itself requires
n words to be stored. However, if we only desire the index of the maximum ele-
ment, rather than the value of the element itself, it turns out that it is possible
to reduce the space [9].

By a counting argument, it is possible to show that 2n − o(n) bits are neces-
sary to answer range maximum queries on an array of n numbers [9, Sect. 1.1.2].
On the other hand, rather surprisingly, it is possible to achieve this space bound,
to within lower order terms, while still retaining constant query time [9]. That is,
regardless of the number of bits required to represent the individual numbers in
A, we can encode a data structure in such a way as to support range maximum
queries on A using 2n + o(n) bits. The key point is that we need not access A
during any part of the query algorithm. In a more broad sense, results of this
type are part of the area of succinct data structures [11], in which the aim is to
represent a data structure using space matching the information theoretic lower
bound, to within lower order terms.

In this paper, we consider range maximum-sum segment queries [5], where,
given a range [i, j], the goal is to return a subrange [i′, j′] ⊆ [i, j] such that
∑j′

k=i′ A[k] is maximized. Note that this problem only becomes non-trivial if the
array A contains negative numbers. With a bit of thought it is not difficult to see
that the well-studied problem of supporting range maximum queries in an array A
can be reduced to supporting range maximum-sum segment queries on a modified
version of A that we get by padding each element of A with a sufficiently large neg-
ative number (see [5] for the details of the reduction). However, Chen and Chao [5]
showed that a reduction holds in the other direction as well: range maximum-sum
segment queries can be answered using a combination of range minimum and max-
imum queries on several different arrays, easily constructible from A. Specifically,
they show that these queries can be answered in constant time with a data struc-
ture occupying Θ(n) words, that can be constructed in linear time.

A natural question one might ask is whether it is possible to improve the space
of their solution to Θ(n) bits rather than Θ(n) words, while still retaining the
constant query time. On one hand, we were aware of no information theoretic lower
bound that ruled out the possibility of achieving Θ(n) bits. On the other hand,
though Chen and Chao reduce the problem to several range maximum and range
minimum queries, they still require comparisons to be made between various word-
sized elements in arrays of size Θ(n) words in order to make a final determination
of the answer to the query; we review the details of their solution in Sect. 4.1.

Our first result is summarized in the following theorem:

Theorem 1. There is a data structure that occupies 12n+o(n) bits for support-
ing range maximum-sum segment queries. That is, the data structure returns
the indices [i′, j′] of the maximum-sum segment RMaxSSQ(A, i, j) for any
1 ≤ i ≤ j ≤ n in constant time, but not the sum of the numbers in the sub-
range [i′, j′]. Furthermore, the data structure is constructible in linear time.

1 In this paper we assume the word-RAM model with word size Θ(log n) bits.
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We present a high level overview of the steps of the proof of Theorem 1 in
Sect. 4.2. Proofs of technical lemmas are omitted due to lack of space, but can
be found in the in the full version of this paper [15]. The main idea is to sidestep
the need for explicitly storing the numeric arrays required by Chen and Chao
by storing two separate graphs that are judiciously defined so as to be embed-
dable in one page. By a well known theorem of Jacobson [11], combined with
later improvements [10,13], it is known that one-page graphs—also known as
outerplanar graphs—can be stored in a number of bits that is linear in the total
number of vertices and edges, while still supporting constant time navigation
operations. Navigating these graphs allows us to implicitly simulate compar-
isons between certain numeric array elements, thus avoiding the need to store
the arrays themselves.

In terms of lower bounds, in the full version of the paper [15] we have also
proved the following:

Theorem 2. For an array A of length n, any data structure that encodes the
solution to range maximum-sum segment queries must occupy at least 1.89113n−
Θ(lg n) bits, if n is sufficiently large.

We note that it is quite trivial to show that one requires n bits to support
range maximum-sum segment queries by observing that if an array contains only
numbers from the set {1,−1} we can recover them via Θ(n) queries. In contrast,
the main idea of the proof of Theorem 2 is to enumerate a combinatorial object
which we refer to as maximum-sum segment trees, and then bound the number
of trees of this type using generating functions.

Our final result, presented in Sect. 5, is a new application for maximum-sum
segment data structures. Given an array and a number k, we want to find a k-
cover: i.e., k disjoint subranges with the largest total sum. This problem was first
studied by Csurös [6], who was motivated by an application in bioinformatics,
and constructed an O(n log n) time algorithm. Later, an optimal O(n) time
solution was found by Bengtsson and Chen [3]. We provide an alternative O(n)
time solution, which is an almost immediate consequence of any constant time
maximum-sum segment data structure that can be constructed in linear time.
An advantage of our algorithm is that it can be also used to preprocess the
array just once, and then answer the question for any k ∈ [1, n] in O(k) time.
We remark that this is related, but not equivalent, to finding k non-overlapping
maximum-sum segments, and finding k maximum-sum segments. In the latter,
one considers all

(
n
2

)
+ n subranges ordered non-increasingly according to their

corresponding sums, and wants to select the k-th largest [12]. In the former, one
repeats the following operation k times: find a maximum-sum segment disjoint
from all that were previously chosen, and add it to the current set [17].

2 Notation and Definitions

We follow the notation of Chen and Chao [5] with a few minor changes. Let A
be an array of n numbers. Let S(i, j) denote the sum of the values in the range
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[i, j]: i.e., S(i, j) =
∑j

k=i A[k]. Let C be an array of length n such that C[i]
stores the cumulative sum S(1, i). Note that S(i, j) = C[j] − C[i − 1] if i > 1.

Given an arbitrary array B, a range maximum query RMaxQ(B, i, j) returns
the index of the rightmost maximum value in the subarray B[i, j]; the query
RMinQ(B, i, j) is defined analogously. A range maximum-sum segment query
RMaxSSQ(A, i, j) returns a subrange A[i′, j′] such that i ≤ i′ ≤ j′ ≤ j, and
S(i′, j′) is maximum. If there is a tie, then our data structure will return the
shortest range with the largest value of j′; i.e., the rightmost one.2 Note that the
answer is a range, specified by its endpoints, rather than the sum of the values in
the range. Also note that if the range A[i, j] contains only non-positive numbers,
we return an empty range as the solution (for a discussion of alternatives we
refer the reader to the full version of this paper [15]).

Fig. 1. Example array A and the values of the various definitions presented in this
section that are induced by A. The list of candidates for this array are: (1, 2), (3, 4),
(1, 6), (1, 8), (9, 10), (9, 11), (9, 12).

The left visible region Left-Vis(i) of array C at index i is defined to be the
maximum index 1 ≤ j < i such that C[j] ≥ C[i], or 0 if no such index exists. The
left minimum Left-Min(i) of array C is defined to be RMinQ(C,Left-Vis(i)+
1, i) for 1 < i ≤ n. See Fig. 1 for an illustration of these definitions. The pairs
(Left-Min(i), i) where Left-Min(i) < i are referred to as candidates. Thus,
candidates are such that the sum in A[Left-Min(i) + 1..i] is positive. One
issue is that the pair (Left-Min(1), 1) might have a positive sum, but not be
a candidate. Without loss of generality we can ignore this case by assuming
A[1] = 0, as in Fig. 1. Define the candidate score array D such that D[i] =
S(Left-Min(i)+1, i) if (Left-Min(i), i) is a candidate, and D[i] = 0 otherwise,
for all i ∈ [1, n]. Thus, for non-candidates, the candidate score is 0. Let x′ =
RMaxQ(D, 1, n) and t′ = Left-Min(x′). From the definitions it is not too
difficult to see that RMaxSSQ(A, 1, n) is [t′ + 1, x′] if t′ �= x′, and the empty
range otherwise.
2 Alternatively, we can return the leftmost such range by symmetry.
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3 Preliminary Data Structures

We make heavy use of the following result:

Lemma 1 [9]. Given an array B of n numbers, we can store a data structure of
size 2n+o(n) bits such thatRMaxQ(B, i, j) can be returned for any 1 ≤ i ≤ j ≤ n
in O(1) time. Similarly, we can also answer RMinQ(B, i, j) for 1 ≤ i ≤ j ≤ n
using the same space bound. These data structures can be constructed in linear time
so as to return the rightmost maximum (resp. minimum) in the case of a tie.

We also require the following succinct data structure result for representing one-
page graphs. A one-page (or outerplanar) graph G has the property that it can
be represented by a sequence of balanced parentheses [11]. Equivalently, there
exists a labelling 1, ..., n of the vertices in G in which there is no pair of edges
(u1, u2) and (u3, u4) in G such that 1 ≤ u1 < u3 < u2 < u4 ≤ n. That is, if we
refer to vertices by their labels, then we have that the set of ranges represented
by edges are either nested or disjoint: we refer to this as the nesting property.
Note that our definitions of the navigation operations differ (slightly) from the
original source so as to be convenient for our application.

Lemma 2 (Based on [10,13]). Let G be a one-page multigraph with no self-
loops: i.e., G has vertex labels 1, ..., n, and m edges with the nesting property.
There is a data structure that can represent G using 2(n + m) + o(n + m) bits,
and be constructed in Θ(n + m) time from the adjacency list representation of
G, such that the following operations can be performed in constant time:

1. Degree(G, u) returns the degree of vertex u.
2. Neighbour(G, u, i) returns the index of the vertex which is the endpoint of

the i-th edge incident to u, for 1 ≤ i ≤ Degree(u). The edges are sorted in
non-decreasing order of the indices of the endpoints: Neighbour(G, u, 1) ≤
Neighbour(G, u, 2) ≤ . . . ≤ Neighbour(G, u,Degree(G, u)).

3. Order(G, u, v) returns the order of the edge (u, v) among those incident to
u: i.e., return an i such that Neighbour(G, u, i) = v.3

In all of the operations above, a vertex is referred to by its label, which is an
integer in the range [1, n].

4 Supporting Range Maximum-Sum Segment Queries

In this section we present our solution to the range maximum-sum segment query
problem which occupies linear space in bits. First we begin by summarizing the
solution of Chen and Chao [5]. Then, in Sect. 4.2 we describe an alternative data
structure that occupies Θ(n) words of space. Finally, we reduce the space of our
alternative data structure to linear in bits.
3 Since G may be a multigraph the value of i may be arbitrary among all possible

values that satisfy the equation. This is more general than we require, as we will not
execute this type of query on a multigraph, so the answer will always be unique.
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4.1 Answering Queries using Θ(n) Words

In the solution of Chen and Chao the following data structures are stored: the
array C; a data structure to support RMinQ(C, i, j) queries; a data structure for
supporting RMaxQ(D, i, j) queries; and, finally, an array P of length n where
P [i] = Left-Min(i). Thus, the overall space is linear in words.

The main idea is to examine the candidate (P [x], x) whose right endpoint
achieves the maximum sum in the range [i, j]. If P [x] + 1 ∈ [i, j] then Chen and
Chao proved that [P [x] + 1, x] is the correct answer. However, if P [x] + 1 �∈ [i, j]
then they proved that there are two possible ranges which need to be examined to
determine the answer. In this case we check the sum for both ranges and return
the range with the larger sum. The pseudocode for their solution to answering
the query RMaxSSQ(A, i, j) is presented in Algorithm 1:

Algorithm 1. Computing RMaxSSQ(A, i, j).
1: x ← RMaxQ(D, i, j)
2: if P [x] = x then � In this case x is a non-candidate, so D[x] = 0
3: return the empty range
4: else if P [x] + 1 ≥ i then � In this case [P [x] + 1, x] ⊆ [i, j]
5: return [P [x] + 1, x]
6: else � In this case [P [x] + 1, x] �⊆ [i, j]
7: y ← RMaxQ(D, x + 1, j)
8: t ← RMinQ(C, i − 1, x − 1)
9: if S(t + 1, x) > S(P [y] + 1, y) then

10: return [t + 1, x]
11: else
12: return [P [y] + 1, y]
13: end if
14: end if

Items (1), (2) and (3) of the following collection of lemmas by Chen and
Chao imply that the query algorithm is correct. We use item (4) later.

Lemma 3 [5]. The following properties hold (using the notation from Algo-
rithm 1):

1. If [P [x] + 1, x] ⊆ [i, j] then RMaxSSQ(A, i, j) is [P [x] + 1, x].
2. The following inequalities hold: x < P [y] ≤ y.
3. If [P [x] + 1, x] �⊆ [i, j] then RMaxSSQ(A, i, j) is [P [y] + 1, y] or [t + 1, x].
4. If 1 ≤ i < j ≤ n then it cannot be the case that P [i] < P [j] ≤ i. That is, the

ranges [P [i], i] and [P [j], j] have the nesting property for all 1 ≤ i < j ≤ n.

On line 9 of Algorithm 1 the sums can be computed in constant time using
the array C. All other steps either defer to the range maximum or minimum
structures, or a constant number of array accesses. Thus, the query algorithm
takes constant time to execute.
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4.2 Reducing the Space to Θ(n) Bits

Observe that the data structure for answering RMaxQ (resp. RMinQ) queries
on D (resp. C) only requires 2n+o(n) bits by Lemma 1; 4n+o(n) bits in total for
both structures. Thus, if we can reduce the cost of the remaining data structures
to Θ(n) bits, while retaining the correctness of the query algorithm, then we are
done. There are two issues that must be overcome in order to reduce the overall
space to linear in bits:

1. The array P occupies n words, so we cannot store it explicitly.
2. In the case where [P [x] + 1, x] is not contained in [i, j], we must compare

S(t + 1, x) and S(P [y] + 1, y) without explicitly storing the array C.

The first issue turns out to be easy to deal with: we instead encode the graph
G = ([n], {(P [x], x)|1 ≤ x ≤ n, P [x] < x}), which we call the candidate graph
using Lemma 2 combined with item 4 of Lemma 3, which implies the following:

Lemma 4. The candidate graph G can be represented using 4n + o(n) bits of
space, such that given any x ∈ [1, n] we can return Left-Min(x) in O(1) time.

From here onward, we can assume that we have access to the array P , which
we simulate using Lemma 4. Unfortunately, the second issue turns out to be
far more problematic. We overcome this problem via a two step approach. In
the first step, we define another array Q which we will use to avoid directly
comparing the sums S(t + 1, x) and S(P [y] + 1, y). This eliminates the need to
store the array C. We then show how to encode the array Q using Θ(n) bits.

Left Siblings and the Q Array: Given candidate (P [x], x), we define the
left sibling Left-Sib((P [x], x)) to be the largest index � ∈ [1, P [x] − 1], such
that there exists an �′ ∈ [� + 1, P [x]] with S(� + 1, �′) > S(P [x] + 1, x), if
such an index exists. Moreover, when discussing �′ we assume that �′ is the
smallest such index. If no such index � exists, or if (P [x], x) is a non-candidate,
we say Left-Sib((P [x], x)) is undefined. We define the array Q such that Q[x] =
Left-Sib((P [x], x)) for all x ∈ [1, n]; if Q[x] is undefined, then we store the value
0 to denote this. By case analysis, we have proved the following lemma which
shows that we can compare S(t + 1, x) to S(P [y] + 1, y) using the Q array:

Lemma 5. If P [y] = y or Q[y] ≥ t then RMaxSSQ(A, i, j) = [t + 1, x]. Other-
wise, RMaxSSQ(A, i, j) = [P [y] + 1, y]

Note that in the previous lemma, we need not know the value of �′ in order to
make the comparison: only the value Q[y] is required.

Encoding the Q Array: Unfortunately, the graph defined by the set of
edges (Q[x], x) does not have the nesting property. Instead, we construct an
n-vertex graph H using the pairs (Q[x], P [x]) as edges, for each x ∈ [1, n] where
Left-Sib(x) is defined (i.e., Q[x] �= 0). We call H the left sibling graph. We
give an example illustrating both the graphs G and H in Fig. 2. Note in the
figure that each edge in G has a corresponding edge in H unless its left sibling is
undefined. We have proved that we can navigate G and H to find the left sibling
of a candidate, as summarized in the following lemma:
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Fig. 2. A graph of the cumulative sums C (thick middle line) for a randomly generated
instance with n = 45 and floating point numbers drawn uniformly from the range
[−20, 20]. The x-axis represents the number i, and the y-axis represents C[i]. The
edges drawn above the line for C represent the candidate graph G and the edges below
represent the left sibling graph H: note that H is a multigraph.

Lemma 6. Let (P [x], x) be a candidate, and suppose i = Degree(H,P [x]) −
Order(G,P [x], x) + 1. If i > 0 then it is the case that Left-Sib((P [x], x)) =
Neighbour(H,P [x], i). Otherwise, Left-Sib((P [x], x)) is undefined.

Finally, we have proved the property that can be observed in Fig. 2: namely, that
we can apply Lemma 2 to H, since the edges are nested.

Lemma 7. The left-sibling graph H can be represented using no more than 4n+
o(n) bits of space, such that given any x ∈ [1, n] we can return Q[x] in constant
time, assuming access to the data structure of Lemma 4.

Thus, to simulate the query algorithm of Chen and Chao we need: the range
maximum structure for the array D (Lemma 1); the range minimum structure
for the array C (Lemma 1); the representation of the graph G (Lemma 2); the
representation of the graph H (Lemma 2). Since the sum of the sizes of these data
structures is 12n + o(n) bits, we have completed the proof of Theorem 1, except
for the claim about the linear construction time. The details of the construction
can be found in the full version [15].

Remark 1. We note that the constant factor of 12 in Theorem 1 is suboptimal.
As Rajeev Raman [16] has pointed out, the space for Lemma 4 can be reduced to
2n+o(n) bits. Furthermore, we have also noted that an additional n bits can be
saved by combining the range maximum and minimum encodings for D and C.
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However, both of these improvements are quite technical and we suspect the
optimal constant factor is much lower than 9. As such, we leave determination
of this optimal constant as future work.

5 Application to Computing k-Covers

Given an array A of n numbers and a number k, we want to find k disjoint
subranges [i1, j1], . . . , [ik, jk], called a k-cover, such that the total sum of all
numbers inside, called the score, is maximized. For k = 1 (the RMaxSSQ
problem on the entire array) this is a classic exercise, often used to introduce
dynamic programming. For larger values of k, it is easy to design an O(nk)
time dynamic programming algorithm, but an interesting question is whether
we can do better. As shown by Csurös [6], one can achieve O(n log n) time
complexity. This was later improved to O(nα(n, n)) [2] (where α(n, n) is the
inverse Ackermann function), and finally to optimal O(n) time [3]. In this section
we show that, assuming a constant time range maximum-sum segment structure,
which can be constructed in linear time, we can preprocess the array in time
O(n), so that given any k, we can compute a maximum k-cover in O(k) time.
This improves the previous linear time algorithm, which needs O(n) time to
compute a maximum k-cover regardless of how small k is, so our algorithm is
more useful when there are multiple different values of k for which we want to
compute a maximum k-cover.

We iteratively construct a maximum score k-cover for k = 0, 1, 2, . . . , n. This
is possible due to the following property already observed by Csurös.

Lemma 8 [6]. A maximum score (k + 1)-cover can be constructed from any
maximum score k-cover consisting of intervals [i1, j1], . . . , [ik, jk] in one of the
two ways:

1. adding a new interval [ik+1, jk+1] disjoint with all [i1, j1], . . . , [ik, jk],
2. replacing some [i�, j�] with two intervals [i�, j′], [i′, j�].

As any such transformation results in a valid (k + 1)-cover, we can construct a
maximum score (k + 1)-cover by simply choosing the one increasing the score
the most. In other words, we can iteratively select the best transformation. Now
the question is how to do so efficiently.

We will first show that the best transformation of each type can be found in
O(1+k) time using the range maximum-sum queries. Assume that we have both
a range maximum-sum and a range minimum-sum query structure available.
Recall that out of all possible transformations of every type, we want the find
the one increasing the score the most.

1. To add a new interval [ik+1, jk+1] disjoint with all [i1, j1], . . . , [ik, jk] increas-
ing the score the most, we guess an index � such that the new interval is
between [i�, j�] and [i�+1, j�+1] (if � = 0 we ignore the former and if � = k
the latter condition). Then [ik+1, jk+1] can be found with RMaxSSQ(A, j� +
1, i�+1 − 1).
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2. To replace some [i�, j�] with two intervals [i�, j′], [i′, j�] increasing the score
the most, we observe that the score increases by −S(j′ + 1, i′ − 1), hence we
can guess � and then find (j′ + 1, i′ − 1) with RMinSSQ(A, i�, j�).

For every type, we need 1 + k calls to one of the structures. If each call takes
constant time, the claimed O(1 + k) complexity follows.

We will now show that, because we repeatedly apply the best transformation,
the situation is more structured and the best transformation of each type can
be found faster. To this end we define a transformation tree as follows. Its root
corresponds to the maximum-sum segment [i, j] of the whole A, meaning that
its weight is S(i, j), and has up to three children. If A is empty or consists of
only negative numbers, the transformation tree is empty.

1. The left child is the transformation tree recursively defined for A[1..i − 1].
2. The middle child is the transformation tree recursively defined for −A[i..j],

i.e., for a copy of A[i..j] with all the numbers multiplied by −1.
3. The right child is the transformation tree recursively defined for A[j + 1..n].

If any of these ranges is empty, we don’t create the corresponding child. Now
the transformation tree is closely related to the maximum score k-covers.

Lemma 9. For any k ≥ 1, a k-cover constructed by the iterative method corre-
sponds to a subtree of the transformation tree containing the root.

This suggests that a maximum k-cover can be found by computing a maximum
weight subtree of the transformation tree containing the root and consisting of
k nodes. Indeed, any such subtree corresponds to a k-cover, and by Lemma 9
a maximum k-cover corresponds to some subtree. To find a maximum weight
subtree efficiently, we observe the following property of the transformation tree.

Lemma 10. The transformation tree has the max-heap property, meaning that
the weight of every node is at least as large as the weight of its parent.

Therefore, to find a maximum weight subtree consisting of k nodes, we can simply
choose the k nodes with the largest weight in the whole tree (we assume that
the weights are pairwise distinct, and if not we break the ties by considering the
nodes closer to the root first). This can be done by first explicitly constructing the
transformation tree, which takes O(n) time assuming a constant time maximum
and minimum range-sum segment structures. Then we can use the linear time
selection algorithm [4] to find its k nodes with the largest weight. This is enough
to solve the problem for a single value of k in O(n) time.

If we are given multiple values of k, we can process each of them in O(k)
time assuming the following linear time and space preprocessing. For every i =
0, 1, 2, . . . , log n we select and store the 2i nodes of the transformation tree with
the largest weight. This takes O(n + n/2 + n/4 + ...) = O(n) total time and
space. Then, given k, we find i such that 2i ≤ k < 2i+1 and again use the linear
time selection algorithm to choose the k nodes with the largest weight out of the
stored 2i+1 nodes.
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Abstract. We design and engineer a self-index based retrieval system
capable of rank-safe evaluation of top-k queries. The framework gener-
alizes the GREEDY approach of Culpepper et al. (ESA 2010) to handle
multi-term queries, including over phrases. We propose two techniques
which significantly reduce the ranking time for a wide range of popu-
lar Information Retrieval (IR) relevance measures, such as TF × IDF and
BM25. First, we reorder elements in the document array according to doc-
ument weight. Second, we introduce the repetition array, which general-
izes Sadakane’s (JDA 2007) document frequency structure to document
subsets. Combining document and repetition array, we achieve attractive
functionality-space trade-offs. We provide an extensive evaluation of our
system on terabyte-sized IR collections.

1 Introduction

Calculating the k most relevant documents for a multi-term query Q against a
set of documents D is a fundamental problem – the top-k document retrieval
problem – in Information Retrieval (IR). The relevance of a document d to Q
is determined by evaluating a similarity function S such as BM25. Exhaustive
evaluation of S generates scores for all d in D. The top-k scored documents in
the list are then reported. Algorithms which guarantee production of the same
top-k results list as the exhaustive process are called rank-safe.

The inverted index is a highly-engineered data structure designed to solve
this problem. The index stores, for each unique term in D, the list of documents
containing that term. Queries are answered by processing the lists of all the
query terms. Advanced query processing schemes [2] process lists only partially
while remaining rank-safe. However, additional work during construction time
is required to avoid scoring non-relevant documents at query time. Techniques
used to speed up query processing include sorting lists in decreasing score order,
or pre-storing score upper bounds for sets of documents which can then safely be
skipped during query processing. These pre-processing steps introduce a depen-
dency between S and the stored index. Changing the S requires at least partial
reconstruction of the index, which in turn reduces the flexibility of the retrieval
system.

Another family of retrieval systems is based on self-indexes [16]. These
systems support functionality not easily provided by inverted indexes, such as
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-19929-0 18
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efficient phrase search, and text extraction. Systems capable of single-term top-k
queries have been proposed [17,20] and work well in practice [8,13].

Hon et al. [12] investigate top-k indexes which support different scoring
schemes such as term frequency or static document scores. They also extended
their framework to multi-term queries and term proximity. While the space of
the multi-term versions is still linear in the collection size the query time gets
dependent on the root of the collection size. At CPM 2014, Larson et al. [14]
showed that it is not expected to improve their result significantly by reducing
the boolean matrix multiplication problem to a relaxed version of Hon et al.’s
problem, i.e. just answering the question whether there is a document which
contains both of the query times. While the single-term version of Hon et al.’s
framework was implemented and studied by several authors [5,19] there is not
yet an implementation of a rank-safe multi-term version.

Our Contributions. We propose, to the best of our knowledge, the first flexible
self-index based retrieval framework capable of rank-safe evaluation of multi-
term top-k queries for complex IR relevance measures. It is based on a general-
ization of GREEDY [4]. We suggest two techniques to decrease the number of
evaluated nodes in the GREEDY approach. The first is reordering of documents
according to their length (or other suitable weight), the second is a new struc-
ture called the repetition array, R. The latter is derived from Sadakane’s [25]
document frequency structure, and is used to calculate the document frequency
for subsets of documents. We further show that it is sufficient to use only R
and a subset of the document array if query terms, which can also be phrases,
are length-restricted. Finally, we evaluate our proposal on two terabyte-scale IR
collections. This is, to our knowledge, three orders of magnitudes larger than
previous self-index based studies. Our source code and experimental setup is
publicly available.

2 Notation and Problem Definition

Let D′ = {d1, . . . , dN−1} be a collection of N − 1 documents. Each di is a
string over an alphabet (words or characters) Σ′ = [2, σ] and is terminated
by the sentinel symbol ‘1’, also represent as ‘#’. Adding the one-symbol doc-
ument d0 = 0 results in a collection D of N documents. The concatenation
C = dπ(0)dπ(1) . . . dπ(N−1) is a string over Σ = [0, σ], where π is a permutation
of [0, N −1] with π(N −1) = 0. We denote the length of a document di with
|di| = ndi

, and |C| = n. See Fig. 1 for a running example. In the “bag of words”
model a query Q = {q0, q1, . . . , qm−1} is an unordered set of length m. Each
element qi is either a term (chosen from Σ′) or a phrase (chosen from Σ′p for
p > 1).

Top-k Document Retrieval Problem. Given a collection D, a query Q of length m,
and a similarity measure S :D×P=m(Σ′) → R. Calculate the top-k documents
of D with regard to Q and S, i.e. a sorted list of document identifiers T =
{τ0, . . . , τk−1}, with S(dτi , Q) ≥ S(dτi+1 , Q) for i < k and S(dτk−1 , Q) ≥ S(dj , Q)
for j �∈ T.
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Fig. 1. C is the concatenation of a document collection D for π = [1, 3, 2, 0]. We use
both words (as in Cword) or integer identifiers (as in C) to refer to document tokens.

A basic similarity measure used in many self-index based document retrieval
systems (see [16]), is the frequency measure Sfreq. It scores d by accumulating
the term frequency of each term. Term frequency fd,q is defined as the number
of occurrences of term q in d; e.g. in Fig. 1. In IR, more complex
TF × IDF measures also include two additional factors. The first is the inverse of
the document frequency (df), which is the number of documents in D that contain
q, defined FD,q; e.g. The second is the length of the document nd.
Due to space limitations, we only present the popular Okapi BM25 function:

SBM25

Q,d =
∑

q∈Q

(k1 + 1)fd,q

k1

(
1 − b + b nd

navg

)
+ fd,q

︸ ︷︷ ︸
=wd,q

· fQ,q · ln
(

N − FD,q + 0.5

FD,q + 0.5

)

︸ ︷︷ ︸
=wQ,q

(1)

where navg is the mean document length, and wd,q and wQ,q refer to components
that we address shortly. Parameters k1 and b are commonly set to 1.2 and 0.75
respectively. Note that the wQ,q part is negative for FD,q > N

2 . To avoid negative
scores, real-world systems, such as Vigna’s MG4J [1] search engine, set wQ,q to
a small positive value (10−6), in this case. We refer to Zobel and Moffat [29] for
a survey on IR similarity measures including TF × IDF, BM25, and LMDS.

3 Data Structure Toolbox

We briefly describe the two most important building blocks of our systems, and
refer the reader to Navarro’s survey [16] for detailed information. A wavelet tree
(WT) [10] of a sequence X[0, n−1] over alphabet Σ[0, σ−1] is a perfectly balanced
binary tree of height h = �log σ�, referred to as WT-X. The i-th node of level
� ∈ [0, h−1] is associated with symbols c such that �c/2h−1−�� = i. Node v,
corresponding to symbols Σv = [cb, ce] ⊆ [0, σ − 1], represent the subsequence
Xv of X filtered by symbols in Σv. Only the bitvector which indicates if an
element will move to the left or right subtree is stored at each node; that is,
WT-X is stored in n�log σ� bits. Using only sub-linear extra space it is possible
to efficiently navigate the tree. Let v be the i-th node on level � < h−1, then
method expand(v) returns in constant time a node pair 〈u,w〉, where u is the
(2·i)-th and w the (2·i+1)-th node on level �+1. A range [l, r] ⊆ [0, n−1] in X can
be mapped to range [l, r]v in node v such that the sequence Xv[l, r]v represents
X[l, r] filtered by Σv. Operation expand(v, [l, r]v) then returns in constant time
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Fig. 2. Wavelet tree over document array D. Method expand(vroot, [4, 9]) maps range
[4, 9] (locus of ) to range [2, 3] in the left and range [2, 5] in the right child.

a pair of ranges 〈[l, r]u, [l, r]w〉 such that the sequence Xu[l, r]u (resp. Xw[l, r]w)
represents X[l, r] filtered by Σu (resp. Σw). Figure 2 provides an example.

The binary suffix tree (BST) of string X[0, n−1] is the compact binary trie
of all suffixes of X. For each path p from the root to a leaf, the concatenation of
the edge labels of p, corresponds to a suffix. The children of a node are ordered
lexicographically by their edge labels. Each leaf is labeled with the starting
position of its suffix in X. Read from left to right, the leaves form the suffix
array (SA), which is a permutation of [0, n − 1] such that X[SA[i], n−1] <lex

X[SA[i+1], n− 1] for all 0 ≤ i < n− 1. We refer to Fig. 3 for an example.
Compressed versions of SA and ST – the compressed SA (CSA) and compressed
ST (CST) – use space essentially equivalent to that of the compressed input,
while efficiently supporting the same operations [23,24]. For example, given a
pattern P of length m, the range [l, r] in SA containing all suffixes start with
P or the corresponding node, that is the locus of P , in the BST is calculated in
O(m log σ).

Fig. 3. Top: BST of the example in Fig. 1. The leaves form SA, the gray numbers
below form D. Bottom: Bitvector H[0, 2n− N− 1] and repetition array R.



Compact Indexes for Flexible Top-k Retrieval 211

4 Revisiting and Generalizing the GREEDY Framework

The GREEDY framework [4] consists of two parts: a CSA built over C, and a WT
over the document array D[0..N − 1]; with each D[i] specifying the document in
which suffix SA[i] starts. A top-k query using Sfreq with m = 1 is answered as
follows. For term q = q0 the CSA returns a range [l, r], such that all suffixes in
SA[l, r] are prefixed by q. The size of the range corresponds to fD,q, the number
of occurrences of q in D. In WT-D the alphabet Σv of each node represents a subset
Dv ⊆ D of documents of D; and the size of the mapped interval [l, r]v equals fDv,q,
the number of occurrences of q in the subset Dv. Each leaf v in WT-D corresponds
to a d ∈ D, such that the size of [l, r]v equals term frequency fd,q.

To calculate the documents with maximal fd,q, i.e. maximizing Sfreq
q,d , a max

priority queue stores 〈v, [l, r]v〉-tuples sorted by interval size. Initially, WT-D’s
root node and [l, r] is enqueued. The following process is repeated until k doc-
uments are reported or the queue is empty: dequeue the top element 〈v, [l, r]v〉.
If v is a leaf, the corresponding document is reported. Otherwise the interval is
expanded and the two tuples 〈u, [l, r]u〉 and 〈w, [l, r]w〉 containing the expanded
ranges are enqueued.

This process returns the correct result if fD,q at a parent is never smaller
than that of a child (fDu,q or fDw,q). The interval size fD,q is never smaller
than the maximum fd,q value in the subtree. Thus, in general the algorithm is
correct, if (1) the score estimate sv at any node v is larger than or equal to
the maximum document score in v’s subtree and (2) the score estimates su and
sw of the children of v are not larger than sv. For many similarity measures
(e.g. TF × IDF, BM25, and LMDS) theses conditions hold true if sv is computed
as follows: first, all document-independent parts, such as query weight wQ,q are
determined. Then nd is estimated with the smallest document length nmin in D
if v is an inner node. Last, the maximal term frequency fd,q of each term qi is
set to fD,qi , the size of interval [li, ri]v. Since each interval size is non-increasing
when traversing down WT-D the algorithm is correct, but not necessarily effi-
cient. Instead of processing only one range, wavelet tree based algorithms can be
process multiple ranges simultaneously [6]. In this case, the queue stores states
〈sv, v, {[l0, r0]v, . . . , [lm−1, rm−1]v}〉 sorted by sv. Processing a state takes O(m)
time as m intervals are expanded.

5 Improving Score Estimation

The runtime of GREEDY is dependent on the process time of a state and the
number of states evaluated, which is determined by the quality of the score
estimations.

Length Estimation by Document Relabelling. We improve document length esti-
mation in Dv by replacing the collection-wide value nmin by the smallest docu-
ment length nd̃ in the sub-collection Dv. The computation of nd̃ can be performed
in constant time if the document identifiers are assigned in documents length
order. Thus, the smallest document corresponds to smallest symbol in Dv which
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is Σv[0] which can be computed in constant time. Let v be the i-th node of level
� in WT-Dn then Σv[0] = i · 2�log N�−�−1. The document lengths are stored in
an array L[0, N − 1]. In Figs. 1 and 2 the documents are reordered using the
permutation π = [1, 3, 2, 0]. The additional space of N log N + N log nmax bits
is negligible compared to the size of the CSA and D.

Improved Term Frequency Estimation. Until now we use the range size fDv,q

of term q in v to estimate an upper bound for the maximal term frequency in
a document d ∈ Dv. Knowing the number of distinct documents in Dv, called
FDv,q, helps to improve the upper bound to the number of repetitions plus one:
δDv,q = fDv,q − FDv,q + 1. In this section, we present a method that computes
δDv,q in constant time during WT-D traversal. The solution is built on top of
Sadakane’s [25] document frequency structure (DF), which solves the problem
solely for Cv = C. We briefly revisit the structure: first, a BST is built over C,
see Fig. 3. The leaves are labeled with the corresponding documents, i.e. from
left to right D is formed. The inner nodes are numbered from 1 to n − 1 in-
order. Each node wi holds a list Ri, containing all documents which occur in
both subtrees of wi. We refer to elements in Ri as repetitions. Let wi be the
locus of a term q in the BST and let [l, r] be wi’s interval. Then the total
number of repetitions in D[l, r] can be calculated by accumulating the length
of all repetition lists in wi’s subtree. To achieve this, Sadakane generated a
bitvector H that concatenates the unary coding of the lengths of all Ri: H =
10|R0|10|R1|1 . . . 0|Rn−1|1. The subtree interval [l, r] can be mapped into H via
select operations: [l′, r′] = [select1(l,H), select1(r,H)], since the accumulation
of the list lengths equals the number of zeros in [l′, r′]. The following example
illustrates the process: interval [4, 9] corresponds to term q = and is mapped
to [l′, r′] = [select1(4,H), select1(9,H)] = [7, 15] in H. It follows that there are
zl = l′ − l = 3 zeros in H[0, l′] and zr = r′ −r = 6 in H[0, r′]; thus there are
6−3 = 3 repetitions in D[4, 9]. We can overestimate the maximal term frequency
by assuming that all repetitions belong to the same document dx and add one
for dx itself. So δDv,q = 4 in this case. This overestimates the maximal term
frequency, which is fd3,q = 3, by one. The interval size estimate would have
been 6.

We now extend Sadakane’s solution to work on all subsets Dv. First, we
concatenate all Ri and form the repetition array R[0, n−N−1] (again, see Fig. 3),
containing the actual repetition value for each zero in H. As above, using H and
select1, we can map [l, r] to the corresponding range [l′′, r′′] = [zl, zr − 1] in R.
To calculate δDv,q for Dv we represent R as a WT. Now, we can traverse WT-D
and WT-R simultaneously, mapping [l′′, r′′] to [l′′, r′′]v in WT-R. The size of
[l′′, r′′]v+1 equals δDv,q since node v contains only repetitions of Dv.

6 Space Reduction

The space of R can be reduced to array R̂ by omitting all elements belonging to
the root vST of the non-binary ST since we will never query the empty string.
In Fig. 3 all nodes with empty path labels correspond to vST , i.e. v1, v4, and v10.
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Hence R̂ = {3, 3, 1, 2} and we use a bitvector to map from the index domain of
R into R̂.

Second, we note that the space of WT-D and WT-R̂ can be reduced if the
length of query phrases is restricted to length �. In this case, we can sort ranges
in R̂ which belong to nodes vi, where vi are the loci of patterns of length �.
Since all query ranges are aligned at borders of sorted ranges, the interval sizes
during processing will not be affected. In our example, if � = 1, we sort the
elements of v9’s subtree, resulting in R̂1 = {1, 3, 3, 2}. The sorting will result in
H0(T )-compression of WT-R̂� for � = 1.

Third, we observe that when using WT-R̂� only a part of WT-D is necessary
to calculate δDv,q. If q occurs more than once in Dv, WT-R̂� can be used to
get δDv,q. Hence, WT-D is only used to determine the existence of q in Dv,
and we only need to store the unique values inside ranges corresponding to loci
of �-length patterns. In addition, values in these ranges can be sorted, since
this does not change the result of the existence queries. In our example we get
D1 = {3, 0, 1, 2, 0, 1, 2, 0, 1, 2}; one increasing sequence per symbol. A bitvector
is again used to map into D�.

7 Experimental Study

Indexes and Implementations. To evaluate our proposals we created the SUccinct
Retrieval Framework (surf) which implements document retrieval specific com-
ponents, like Sadakane’s DF structure. These components can be parametrized
by structures provided by the sdsl library [7]. We assembled three self-index
based systems, corresponding to different functionality-space trade-offs. All sys-
tems use the same CSA and DF structure. The CSA is a FM-index using a WT.
The WT as well as DF use RRR bitvectors [18,22] to minimize space.

Our first index (i-dn) adds WT-Dn, which uses plain bitvectors to allow fast
WT traversal. Our second structure adds WT-R̂n. A RRR bitvectors
compresses the increasing sequences in R̂n. A variant of the latter index is ,
which restricts the phrase length to one, and will show a functionality-space
trade-off. In this version WT-D1 is also compressed by using RRR vectors.

As a reference point we also implemented a competitive inverted index
(invidx) which stores block-based postings lists compressed using OptPFD [15,
28]. For each block, a representative is stored to allow efficient skipping. The top-
k documents are calculated using two processing schemes. The first scheme –
invidx-w – uses the efficient Wand list processing algorithm [2]. However,
Wand requires pre-computation specific to S at construction time. A more flex-
ible, but less efficient algorithm – invidx-e – exhaustively evaluates all postings
in document-at-a-time order without either the burden or benefit of score pre-
computation.

Data Sets and Environment. We use two standard IR test collections: (1) the
Gov2 test collection of the TREC 2004 Terabyte Track and (2) the ClueWeb09

collection consists of “Category B” subset of the ClueWeb09 dataset. To ensure
reproducibility we extract the integer token sequence C from Indri [26] using
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Fig. 4. Collection statistics for Gov2 and ClueWeb09.

default parameters. We selected 1000 randomly sampled queries from both the
TREC 2005 and 2006 Terabyte tracks efficiency queries, ensuring all query terms
are present in both collections. Statistics of our datasets (see Fig. 4) are in line
with other studies [27]. We support ranked disjunctive (Ranked-OR, at least one
term must occur) and ranked conjunctive (Ranked-AND, all terms must occur)
retrieval. All indexes were loaded into RAM prior to query processing. Our
machine was equipped with 256 GiB RAM and one Intel E5-2680 CPU.

Space Usage. The space usage of our indexes is summarized in Fig. 5 (right). All
indexes are much larger than our inverted index, which uses 7.3 GiB for Gov2

and 22.8 GiB for ClueWeb09. The space of the compressed docid and frequency
representations is 5.1 GiB and 17.6 GiB respectively which is comparable to other
recent studies [21]. However, an inverted index supporting phrase queries would
require additional positional information, which would significantly increase its
size. The size of our integer parsing of size n�log σ� is shown as a horizontal
line. The CSA for both collections compresses to roughly 30% of the size of
the integer parsing. The space for DF is negligible. The WT-Dn has the size of

Fig. 5. Left: Memory breakdown of our indexes. |Craw| denotes the original size of the
collection, while |Cword| denotes the size after parsing it. A more detailed space break-
down of the indexes is available at http://go.unimelb.edu.au/6a4n. Right: Percentage
of states evaluated for k = 10, 100, and 1000 during Ranked-OR retrieval using BM25 for
queries on Gov2.

http://go.unimelb.edu.au/6a4n
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the integer parsing plus 5% overhead for a rank structure. The size reduction
from R to R̂ is substantial. For example, storing R for ClueWeb09 requires
123 GiB, whereas R̂ requires only 74 GiB. Restricting the phrase length to one

, which makes it equivalent to a non-positional inverted index, shrinks
the structure below the original input size.

Processed States. First, we measure the quantitative effects of our improved score
estimation during GREEDY processing. We compare the range size (fDv,q)-only
estimation to (a) range size estimation including document length estimation and
(b) repeats estimation (δDv,q) including document length estimation. Figure 5
shows the percentage of processed states for all methods and k = {10, 100, 1000}
for both query sets on Gov2 using BM25 Ranked-OR processing. The percentage is
calculated as the fraction of states processed compared to the exhaustive process-
ing of each query (k = N). For all k, range size only estimation evaluates the
most states on average. For k = 10, the median percentage of evaluated states for
range size only estimation is 1.6%. Adding document length estimation reduces
the number of evaluated states to 0.8%. Using δDv,q instead of fDv,q to estimate
the frequency further improved the percentage of evaluated states to 0.06%.
Similar effects can be observed for k = 100 and k = 1000. For k = 1000, docu-
ment length estimation reduces the percentage from 5.1% to 3.2%. Frequency
estimation using δDv,q again marginally improves the number of evaluated nodes
to 2.8%. Overall, document length estimation has a larger impact on GREEDY
than better frequency estimation via δDv,q.

Disjunctive Ranked Retrieval. Next we evaluate the performance of i-d
n,

for BM25 Ranked-OR query processing. Figure 6 (left) shows run-
time on Gov2 and both query sets for k = {10, 100, 1000}. We additionally
included invidx-w as a reference point for an efficient inverted index. The latter
uses additional similarity measure dependent information and clearly outper-
forms all self-index based indexes. For k = 10, it achieves a median runtime
performance of less than 20 ms, and performs well for other test cases. How-
ever, if an additional k + 1-th item is to be retrieved with the inverted index,
the computation has to be restarted, whereas returning additional results using
GREEDY is efficient. Our fastest index, i-dn, is roughly 15 times slower, achiev-
ing a median runtime of 300 ms for k = 10. The indexes and are
approximately two times slower than i-d

n. This can be explained by the fact that
i-d

n uses an uncompressed WT, whereas the other indexes use compressed WTs
to save space. Also note that is faster than as ranges in R̂1 can be
sorted, which creates runs in the WT which in turn allows faster state processing.
The mean time per processed state – depicted in Fig. 6 (right) – highlights this
observation. For i-dn, the time linearly increases from 2 to 5 microseconds. While
there is a correlation to the number of query terms, rank operations occur in
close proximity – cache friendly – within WT-Dn, which increases performance.
For the other indexes, we simultaneously access two WTs to evaluate a single
state. This doubles the processing time per state.
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Fig. 6. Runtime (left) and WT state process time for k = 100 (right) for BM25

Ranked-OR.

Efficient Retrieval Using Multi-Word Expressions. Multi-word queries often con-
tain mutli word expressions (MWE), i.e. sequences of words which describe one
concept; e.g. the terms “saudi” and “arabia” are strongly associated [3] in our
collections and would be recognized as one concept “saudi arabia”. Using our
index we can efficiently parse a query into MWE [9] (the problem of parsing
MWE is also know as the query segmentation problem in IR; see e.g. [11]).
Figure 7 (left) explores the runtime of MWE queries generated from Trec2006

for Gov2 using i-d
n. The runtime is reduced by an order of magnitude. This

experiment shows how our system would support retrieval tasks where the vocab-
ulary does not consist of words but a large number of entities. Supporting MWE
does not increase the size of our index, but vastly increases the size of an inverted
index.

Flexible Document Retrieval. Our indexes efficiently support a wide range of
similarity measures, which can be changed and tuned after the index is built,
while optimized inverted indexes require pre-computation depending on S at
construction time [2]. If ranking functions are only chosen at query time, inverted
indexes require exhaustive list processing. Figure 7 (right) shows the benefits of
scoring flexibility. We compare our index structures to invidx-e using three
ranking formulas: TF × IDF, BM25, and LMDS on Gov2. Our index structures
significantly outperform the exhaustive inverted index for TF × IDF. This can
be attributed to the influence of the document length nd on STF×IDF. Unlike
BM25 or LMDS, the final document score is linearly proportional to the actual
size of the document, thus document length estimation significantly reduces the
number of evaluated states. For BM25, the document length contribution to the
final document score is normalized by the average document length, and thus
has a smaller effect on the overall score of each document.
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Fig. 7. BM25 runtime for MWE queries (left) Ranked-OR runtime for different S (right).

8 Conclusions

We presented a self-index based retrieval framework which allows rank-safe top-
k retrieval on multi-term queries using complex scoring functions. The proposed
estimation methods have improved the query speed compared to frequency-only
score estimation. We found that top-k document retrieval is still solved more
efficiently by inverted indexes, if augmented by similarity measure-dependent
pre-computations. However, self-index based systems provide can be used in
scenarios where the inverted index is not applicable or slower such as phrase
retrieval or query segmentation.
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Abstract. We propose a new variant of the LZ78 factorization which we
call the LZ Double-factor factorization (LZD factorization). Each factor
of the LZD factorization of a string is the concatenation of the two longest
previous factors, while each factor of the LZ78 factorization is that of
the longest previous factor and the following character. Interestingly, this
simple modification drastically improves the compression ratio in prac-
tice. We propose two online algorithms to compute the LZD factorization
in O(m(M + min(m, M) log σ)) time and O(m) space, or in O(N log σ)
time and O(N) space, where m is the number of factors to output, M is
the length of the longest factor(s), N is the length of the input string, and
σ is the alphabet size. We also show two versions of our LZD factorization
with variable-to-fixed encoding, and present online algorithms to com-
pute these versions in O(N +min(m, 2L)(M +min(m, M, 2L) log σ)) time
and O(min(2L, m)) space, where L is the bit-length of each fixed-length
code word. The LZD factorization and its versions with variable-to-
fixed encoding are actually grammar-based compression, and our exper-
iments show that our algorithms outperform the state-of-the-art online
grammar-based compression algorithms on several data sets.

1 Introduction

Large-scale, highly repetitive texts such as collections of genomes of the same
or similar species or the edit history of version controlled documents, have been
increasing. Grammar compression algorithms, which are compression algorithms
that output a compressed representation of the input text in the form of a con-
text free grammar (CFG), have recently been gaining renewed interest since
they are effective for such text collections [3], and also since CFGs are a con-
venient compressed representation that allows for various efficient processing on
the strings without explicit decompression, e.g. pattern matching [13], q-gram
frequencies [4], and edit-distance [5] computation.

While many previous grammar compression algorithms such as RE-PAIR [6]
or SEQUITUR [10] give good compression ratios and run in linear time and
working space, smaller working space is essential in order to compress large-
scale data that does not fit in main memory. Maruyama et al. [7] proposed
a fast and space efficient algorithm OLCA, which uses a simple strategy to
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 219–230, 2015.
DOI: 10.1007/978-3-319-19929-0 19
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determine the priority in selecting pairs of consecutive characters to form a
production rule. Their algorithm runs online, and the working space depends
only on the output, i.e., the compressed size of the input string. The working
space was further reduced to the information theoretic lower bound of the output
size in [9]. Maruyama and Tabei [8] proposed a variant that uses only constant
working space, at the cost of some degradation in the compression ratio. Sekine
et al. [12] proposed a modified version of RE-PAIR, called ADS, that splits the
input string into blocks and compresses each block. In order to maintain a good
compression ratio, they devised a technique to reuse non-terminal variables that
are created and used frequently in each block, to the next block. Each non-
terminal variable is encoded as a fixed-length code word, and since the length of
the decompressed string that a code represents may vary, it is a variable-to-fixed
code. The algorithm runs in O(N) time and O(B +2L) working space, where N
is the length of the input string, B is the block size, and L is the bit-length of
each fixed-length code word.

In this paper, we propose a new grammar-based compression based on the
LZ78 factorization, which we call the LZ Double-factor factorization (LZD fac-
torization). While each factor of the LZ78 factorization of a string is the longest
previous factor and the following character, each factor of the LZD factorization
is the concatenation of the two longest previous factors. We propose two online
algorithms to compute the LZD factorization in O(m(M + min(m,M) log σ))
time and O(m) space, or in O(N log σ) time and O(N) space, where m is the
number of factors to output, M is the length of the longest factor(s), N is the
length of the input string, and σ is the alphabet size. We also show two versions
of our LZD factorization with variable-to-fixed encoding, and present online algo-
rithms to compute these versions in O(N+min(m, 2L)(M+min(m,M, 2L) log σ))
time and O(min(2L,m)) space, where L is the bit-length of each fixed-length
code word. When L can bee seen as a constant, these algorithms run in O(N)
time and O(1) space. Computational experiments show that, in practice, our
algorithms run fast and compress well while requiring small working space, out-
performing the state-of-the-art online grammar-based compression algorithms
on several data sets.

2 Preliminaries

Let Σ be a finite alphabet, and let σ = |Σ|. An element of Σ∗ is called a string.
The length of a string T is denoted by |T |. The empty string ε is the string of
length 0, namely, |ε| = 0. For a string T = XY Z, X, Y and Z are called a prefix,
substring, and suffix of T , respectively. If a prefix X (resp. substring Y , suffix Z)
is of a string T is shorter than T , then it is called a proper prefix (resp. proper
substring, proper suffix ) of T . The set of suffixes of T is denoted by Suffix(T ).

The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |, and
the substring of T that begins at position i and ends at position j is denoted
by T [i..j] for 1 ≤ i ≤ j ≤ |T |. For convenience, let T [i..j] = ε if j < i. For
convenience, we assume that T [|T |] =$, where $ is a special delimiter character
that does not occur elsewhere in the string.
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The Patricia tree of a set S of k strings, denoted PTS , is a rooted tree
satisfying the following: (1) each edge is labeled with a non-empty substring of
a string in S, (2) the labels of any two distinct out-going edges of the same
node must begin with distinct characters; (3) for each string s ∈ S there exists
a node v such that str(v) = s, where str(v) represents the concatenation of the
edge labels from the root to v; (4) a string p is a non-empty prefix of a string
s ∈ S iff there are nodes u, v such that u is the parent of v, str(u) is a proper
prefix of p, and p is a prefix of str(v). Because of conditions (2)-(4), there are
at most k non-branching nodes (including leaves) and at most k − 1 branching
nodes in PTS . Also, if we represent each edge label � by a pair of the beginning
and ending positions of an occurrence of � in one of the strings in S, then PTS

can be stored in O(k) space (excluding the string S). For a node u of PTS , let
depth(u) = |str(u)|. If the string p of Condition (4) is str(v) itself, then we say
that p is represented by an explicit node of PTS . Otherwise (if p is a proper
prefix of str(v)), then we say that it is represented by an implicit node of PTS .

The suffix tree of a string T , denoted STT , is the Patricia tree of Suffix(T ),
namely STT = PTSuffix(T ). Since we have assumed T terminates with a special
character $, there is a one-to-one correspondence between the suffixes of T and
the leaves of STT . STT has at most 2N − 1 nodes, and can be stored in O(N)
space, where N = |T |. For a string T of length N over an alphabet of size σ, STT

can be constructed in O(N log σ) time and O(N) space in an online manner [14].

3 LZD Factorization

We propose a new greedy factorization of a string inspired by the LZ78 factoriza-
tion [16], which is able to achieve better compression ratios. We simply change
the definition of a factor fi, from the pair of the longest previously occurring
factor and the immediately following character, to the pair of the longest previ-
ously occurring factor fj1 and the longest previously occurring factor fj2 which
also appears at position |f1 · · · fi−1|+ |fj1 |+1. We call this new factorization the
LZ Double-factor factorization (LZD), and its formal definition is the following:

Definition 1 (LZD Factorization). The LZD factorization of a string T of
length N , denoted LZDT , is the factorization f1, . . . , fm of T such that f0 = ε,
and for 1 ≤ i ≤ m, fi = fi1fi2 where fi1 is the longest prefix of T [k..N ] with
fi1 ∈ {fj | 1 ≤ j < i} ∪ Σ, fi2 is the longest prefix of T [k + |fi1 |..N ] with
fi2 ∈ {fj | 0 ≤ j < i} ∪ Σ, and k = |f1 · · · fi−1| + 1.

Note that for any 1 ≤ i < m the length of fi is at least 2, while fm can be of
length 1. This happens only when |f1 · · · fm−1| = N − 1.

LZDT = f1, . . . , fm can be represented by a sequence of m integer pairs,
where each pair (i1, i2) represents the ith factor fi = fi1fi2 . For example, the
LZD factorization of string abaaabababaabbbbabab$ is f1 = ab, f2 = aa, f3 =
abab, f4 = abaa, f5 = bb, f6 = bbabab, f7 = $, and can be represented by
(a, b), (a, a), (1, 1), (1, 2), (b, b), (5, 3), and ($, 0).



222 K. Goto et al.

One can regard LZDT as a context-free grammar which only generates string
T , with m + 1 production rules S → f1 · · · fm, fi → fi1fi2 for 1 ≤ i ≤ m, where
the set of rules fi → fi1fi2 (1 ≤ i ≤ m) is called the dictionary.

Lemma 1. For any string T , all factors of LZDT are different.

Proof. Let LZDT = f1, . . . , fm. Since fm[|fm|] =$, fm is different from any other
factors. Assume on the contrary that fh = fi for some 1 ≤ h < i < m. Since
both fi1 and fi2 are of length at least 1, |fi1 | < |fi|. However, we have assumed
fh = fi, and this contradicts that fi1 is the longest prefix of T [|f1 · · · fi−1|+1..N ]
which belongs to {fj | 1 ≤ j < i} ∪ Σ. Hence each factor fi is distinct. ��
Using the idea of [16] and Lemma 1, we get the following lemma:

Lemma 2. For any string T of length N , the number of factors in LZDT is
O(N/ logσ N).

Fig. 1. The LZD tree for string
abaaabababaabbbbabab$. Each
node numbered i represents the
ith factor fi of the LZD factor-
ization of the string

Let F = {f0, . . . , fm} be the set of factors
of LZDT . In a similar way to the case of
LZ78 factorization, computing LZDT reduces
to computing PTF , the Patricia tree of F .
We call PTF the LZD tree of T . Figure 1
illustrates the LZD tree of the example string
abaaabababaabbbbabab$.

In what follows, we will propose two algo-
rithms to compute LZDT for a given string T
of length N in an online manner. The first one
is space-efficient, namely, its extra space usage
is linear in the number of factors in LZDT . The
second one is fast, namely, it runs in O(N log σ)
time.

3.1 Space-Efficient Online Algorithm for LZD Factorization

We present an online algorithm to compute LZDT for a string T of length N
in O(m(M +min{M,m} log σ)) time using O(m) working space, where m is the
number of factors in LZDT and M is the length of the longest factor in LZDT .

The LZD tree of a given string T can be computed incrementally, in quite
a similar way to the LZ78 trie [16], as follows: We first construct a tree only
with the root. To compute a factor fi = fi1fi2 starting at a position k =
|f1 · · · fi−1| + 1, we assume that the LZD tree contains nodes which represent
all previous factors f1 to fi−1, and these nodes are marked. We also assume
that the LZD tree contains nodes which represent all characters occurring in
T [1..|f1 · · · fi−1|], and these nodes are marked. Let T [k..q] be the longest prefix
of T [k..N ] that is represented by the LZD tree, where k ≤ q ≤ N . This string
T [k..q] can be computed by traversing the tree from the root. If k is the first
occurrence of character c = T [k] (namely q = 0), then we create a new child of
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the root representing c, and mark this node. The first element fi1 is c in this
case. Otherwise, since there are at most min(m − 1,M − 1) branching nodes in
any path of the LZD tree, and since depth(v) ≤ M for any leaf v, the number
of character comparisons to compute T [k..q] is O(M + min(m,M) log σ). Then,
the lowest marked node in the path which spells out T [k..q] is exactly the first
element fi1 of fi. The second element fi2 of fi can be computed analogously,
traversing the LZD tree with T [k + |fi1 |..N ] in O(M + min(m,M) log σ) time.
After computing fi, we update the LZD tree so that fi is represented by an
explicit marked node in the tree. Recall that in the LZD tree there always exists
a path spelling out fi1 from the root. We traverse fi2 from the end of this path,
to compute the longest prefix y of fi that is represented by the current LZD
tree. There are four cases to consider:

1. If y = fi and fi is represented by an explicit node u (i.e., str(u) = fi), then
we simply mark u. Note that, by Lemma 1, u was always unmarked before
computing fi.

2. If y = fi and fi is represented by an implicit node, then we create a new
internal non-branching node v such that str(v) = fi by splitting the edge on
which the path spelling out fi ends. We then mark v.

3. If |y| < |fi| and fi is represented by an explicit node u, then we create a new
leaf node v such that str(v) = fi, with a new edge from u to v. We then
mark v.

4. If |y| < |fi| and fi is represented by an implicit node, then we first create
a new internal node u such that str(u) = y, by splitting the edge on which
the path spelling out y ends. Next, we create a new leaf node v such that
str(v) = fi, with a new edge from u to v. We finally mark v.

Since we repeat the above procedure m times, it takes a total of O(m(M +
min(m,M) log σ)) time to compute the LZD tree for all the factors. Notice that
N ≤ mM , and hence N is hidden in the above time complexity. Since the LZD
tree is the Patricia tree for the set of m factors of LZDT , the size of the tree
(and hence the extra space requirement of this algorithm) is O(m).

Since LZDT is a kind of context-free grammar which only generates string
T , we can obtain the original string T in O(N) time from LZDT .

The following theorem summarizes this subsection.

Theorem 1 (Space-Efficient Online LZD Factorization). Given a string
T of length N , we can compute LZDT = f1 · · · fm in O(m(M+min(m,M) log σ))
time and O(m) space in an online manner, where M is the length of the longest
factor in LZDT .

Since m = O(N/ logσ N) and M = O(N)1, the space-efficient algorithm takes
O(N2/ logσ N) time. However, we have not found an instance which gives the
above bound. As we will see in Sect. 5, this algorithm runs fast in practice.
1 The bound M = O(N) can be achieved with string aN−1$ with N −1 = 2k for some

k. Observe that f1 = aa, f2 = f1f1 = aaaa, . . ., fm−1 = a
N−1

2 , and fm =$.
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3.2 Fast Online Algorithm for LZD Factorization

Here, we present a fast online algorithm to compute LZDT for a given string T
of length N . Our algorithm uses the suffix tree STT of a given string T . Since
every factor fi of LZDT = f1, . . . , fm is a substring of T , it is also represented
by either an implicit or explicit node of STT . Hence we have the following
observation: For any string T , the LZD tree for LZDT can be superimposed on
STT , by possibly introducing some non-branching internal nodes. Due to this
observation, we can compute LZDT in O(N) time and space in an offline manner
for integer alphabets, using the offline algorithm of [2] which computes the LZ78
factorization of T from the suffix tree of T . In what follows, we show how to
compute LZDT in O(N log σ) time using O(N) space in an online manner.

The basic strategy of our online algorithm is as follows. We first build the
suffix tree of T incrementally, using Ukkonen’s online suffix tree construction
algorithm [14]. Then, for each 1 ≤ i ≤ m, we find fi1 and fi2 on the suffix tree,
and then mark the node which represents fi (if there is no such node in the tree,
then we create a new node and mark it).

We modify Ukkonen’s algorithm as follows. As soon as we find the first
occurrence of each character c at some position r in the string, we create a
marked non-branching node v representing c, i.e., str(v) = c. A new leaf for the
suffix starting at position r is then created as a child of v. This permits us to
superimpose the children of the root of the LZD tree onto the suffix tree.

We construct the suffix tree of T [1..j] online, for increasing j = 1, . . . , N . For
each position 1 ≤ j ≤ N , Ukkonen’s algorithm maintains the following invariant:
the longest suffix T [sj ..j] of T [1..j] that has an occurrence in T [1..j − 1]. For
convenience, when the longest suffix is the empty string ε, then let sj = j + 1.
Also, let s0 = 0. We will use this suffix (and its location in the suffix tree) to
determine the first and second elements of each LZD factor.

Fig. 2. T [sj−1..j − 1] (resp. T [sj ..j]) is the longest suffix of T [1..j − 1] (resp. T [1..j])
that has an occurrence in T [1..j −2] (resp. T [1..j −1]). We have computed f1, . . . , fi−1

for the minimum i satisfying sj−1 ≤ |f1 · · · fi−1| + 1 < sj .

Assume that we have constructed the suffix tree for T [1..j] for some 1 ≤ j <
N such that sj−1 < sj . Also, assume that we have computed f1, . . . , fi−1 for the
minimum integer i satisfying sj−1 ≤ |f1 · · · fi−1| + 1 < sj (see also Fig. 2). For
any sj−1 ≤ k < sj , let Pk be the path spelling out T [k..j − 1] from the root.
While we update the suffix tree of T [1..j − 1] to that of T [1..j] by Ukkonen’s
algorithm, the ending position of path Pk in the tree can be found in amortized
constant time for each k, in increasing order. Let fi, . . . , fi′ be the consecutive
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LZD factors such that i′ is the minimum integer with |f1 · · · fi′ |+1 ≥ sj . Since a
node of the suffix tree is marked iff it represents one of the previous LZD factors
or a single character, for any k (sj−1 ≤ k < sj) the lowest marked node vk in the
path Pk represents the longest prefix T [k..k + depth(vk) − 1] of T [k..N ] which
is also a previous LZD factor or a single character. This allows us to efficiently
compute f� for each � = i, . . . , i′ − 1 in increasing order. As soon as we finish
computing each f�, we maintain the suffix tree so that it contains a marked
node which represents f�. Since we already know the location of the node which
represents f�1 , we can find the ending position of the path spelling out f� = f�1f�2

simply by traversing f�2 from the node representing f�1 . If f� is represented by
an explicit node in the current tree, we mark the node. Otherwise, we insert a
new marked node representing f� into the tree. Since

∑i′−1
�=i |f�2 | < |fi · · · fi′−1|,

this takes a total of O(|fi · · · fi′−1| log σ) time for all i ≤ � < i′.
In the sequel, we show how to compute the first element fi′

1
of fi′ . If sj = j+1

(i.e., j is the first occurrence of character T [j] in T [1..j]), then fi′
1

= T [j]. After
computing this, we mark the node representing T [j]. Otherwise, let z be the
lowest marked node in the path from the root which spells out T [|f1 . . . fi′−1| +
1..j]. By definition, it holds that |f1 . . . fi′−1| + depth(z) ≤ j. If |f1 . . . fi′−1| +
depth(z) < j, then fi′

1
is computed in the same way as above, namely fi′

1
=

str(z). If |f1 . . . fi′−1| + depth(z) = j, then we update the suffix tree of T [1..j]
to that of T [1..j′], where j′ > j is the minimum integer such that sj = sj′−1 ≤
|f1 . . . fi′−1| + 1 < sj′ . Then, we can compute fi′

1
in the same way as above, on

the suffix tree for T [1..j′]. The second element fi′
2

can be computed analogously,
and the node representing fi′ can be found and marked in O(|fi′ | log σ) time.
We repeat this procedure till we obtain all LZD factors for T (Fig. 3).

Fig. 3. When computing fi′1 , if |f1 . . . fi′−1|+depth(z) > j, then we update the suffix

tree of T [1..j] to that of T [1..j′] with the minimum j′ > j such that sj = sj′−1 ≤
|f1 . . . fi′−1| + 1 < sj′ . Then, fi′1 is represented by the lowest marked node in the path
P|f1...fi′−1|+1.

What remains is how to efficiently compute the lowest marked node in each
path Pk. We use the following result:

Lemma 3 ([1,15]). A semi-dynamic rooted tree can be maintained in linear
space in its size so that the following operations are supported in amortized O(1)
time: (1) find the nearest marked ancestor of any node; (2) insert an unmarked
node; (3) mark an unmarked node.
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By semi-dynamic we mean that insertions of new nodes to the tree are allowed,
while deletions of existing nodes from the tree are not allowed. Since Ukkonen’s
algorithm does not delete any existing nodes, we can use the above lemma in
our algorithm. If path Pk ends on an edge (i.e., if T [k..j − 1] is represented by
an implicit node), then we can use the lowest explicit node in the path Pk to
find the desired nearest marked ancestor.

After computing all LZD factors, we can discard the suffix tree. Ukkonen’s
algorithm constructs the suffix tree STT of string T in O(N log σ) time and O(N)
space. Since we can find all LZD factors in O(

∑m
i=1 |fi| log σ) = O(N log σ) time

and O(N) space, we obtain the following theorem:
Theorem 2 (Fast Online LZD Factorization). Given a string T of length
N , we can compute LZDT = f1, . . . , fm in O(N log σ) time and O(N) space in
an online manner, where σ is the alphabet size.

4 LZD Factorization with Variable-to-Fixed Encoding

This section proposes an extension of LZD factorization of Sect. 3 to a variable-
to-fixed encoding that runs in O(N + min(m, 2L)(M + min(m,M, 2L) log σ))
time and O(min(2L,m)) space, where L is the fixed bit-length of code words
representing factors, m is the number of factors, and M is the length of the
longest factor. We call this variant the LZDVF factorization.

Since we are allowed to use only 2L codes to represent the factors, we can
store at most 2L previous factors to compute new factors. A näıve solution
would be to compute and store the first 2L factors for the prefix T [1..|f1 . . . f2L |],
and then factorize the remaining suffix T [|f1 . . . f2L | + 1..N ] using the existing
dictionary, without introducing new factors to it. We store these factors in a
Patricia tree, and hence this algorithm uses O(min(2L,m)) space. Since there
are at most min(m,M, 2L)−1 branching nodes in the trie, this algorithm runs in
O(N + min(m, 2L)(M + min(m,M, 2L) log σ)) time. However, when the content
of the remainder T [|f1 . . . f2L | + 1..N ] is significantly different from that of the
prefix T [1..|f1 . . . f2L |], then the näıve algorithm would decompose the remainder
into many short factors, resulting in a poor compression ratio.

To overcome the above difficulties, our algorithms reuse limited encoding
space by deleting some factors, and store new factors there. We propose two
kinds of replacement strategies which we call LZDVF Count and LZDVF Pre
respectively. The first one counts the number of factors appearing in the deriva-
tion trees of the factors that are currently stored in the dictionary, and deletes
factors with low frequencies. This method is similar to the ones used in [8,12].
The second one deletes the least recently used factor in the dictionary in a similar
way to [11] which uses an LRU strategy for LZ78 factorization.

In both strategies, there are at most 2L entries in the dictionary and thus each
factor is encoded by an L-bit integer. Since code words are reused as new factors
are inserted and old factors are deleted from the dictionary, one may think that
this introduces difficulties in decompression. However, since the procedure is
deterministic, the change in assignment can be recreated during decompression,
and thus will not cause problems.
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4.1 Counter-Based Strategy

We define the derivation tree of each factor fi = fi1fi2 recursively, as follows.
The root of the tree is labeled with fi, with two children such that the subtree
rooted at the left child is the derivation tree of fi1 , and the subtree rooted at
the right child is the derivation tree of fi2 . If fi1 is a single character a, then its
derivation tree consists only of the root labeled with a. The same applies to fi2 .
Let vOcci(fj) denote the number of nodes in the derivation tree of fi which are
labeled with fj . For all factors fj that appear at least once in the derivation tree
of fi, we can compute vOcci(fj) in a total of O(|fi|) time by simply traversing
the derivation tree. Let count(fj) be the sum of vOccq(fj) for all factors fq

that are currently stored in the dictionary.
Assume that we have just computed a new factor fi = fi1fi2 . For each factor

fj with vOcci(fj) > 0, we first add vOcci(fj) to count(fj). If 2L factors are
already stored, then we do the following to delete factors from the dictionary.
Depending on whether fi1 and fi2 are single characters or not, at least one (just
fi), and at most 3 (fi and both fi1 , fi2) new factors are introduced. For all
factors fh that are currently stored in the dictionary, we decrease count(fh)
one by one, until for some factor fk, count(fk) = 0. We delete all such factors
and repeat the procedure until enough factors have been deleted.

As the number of nodes in the derivation tree of each factor fj is O(|fj |), the
sum of counter values for all factors is O(N). Hence, the total time required to
increase and decrease the counter values is O(N). Thus, the counter-based algo-
rithm takes O(N+min(m, 2L)(M+min(m,M, 2L) log σ)) time and O(min(2L,m))
space. When L can be seen as a constant, the algorithm runs in O(N+M+log σ) =
O(N) time and uses O(1) space.

4.2 Prefix-Based Strategy

Assume that we have computed the first i factors f1, . . . , fi. In the prefix-based
strategy, we consider a factor to be used at step i if it is a prefix of fi. If
fh1(= fi), fh2 , . . . , fhk

are the sequence of all k factors in the dictionary which
are prefixes of fi in decreasing order of their lengths, then we consider that these
factors are used in this chronological order. Hence, fhk

will be the most recently
used factor for step i. We use a doubly-linked list to maintain the factors, with
the most recently used factor at the front and the least recently used factor at
the back of the list. At each step i, we update the information for the factors
fh1 , . . . , fhk

. For any 1 ≤ j ≤ k, if fhj
is already in the list, we simply move it

to the front of the list. Since the list is doubly linked, this can be done in O(1)
time. Otherwise, we simply insert a new element for fhj

to the front of the list,
and delete the LRU factor at the back of the list if the size of the list exceeded
2L. This can also be done in O(1) time.

The factors fh1 , . . . , fhk
can easily be found by maintaining the existing fac-

tors in a trie. Note that in each step of the algorithm, the LRU factor to be
deleted is always a leaf of the trie since we have inserted the most recently used
factors in decreasing order of their lengths. Hence, it takes O(1) time to remove
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the LRU factor from the trie. Overall, the prefix-based algorithm also takes
O(N + min(m, 2L)(M + min(m,M, 2L) log σ)) time and O(min(2L,m)) space,
which are respectively O(N) and O(1) when L is a constant.

5 Computational Experiments

All computations were conducted on a Mac Xserve (Early 2009) (Mac OS X
10.6.8) with 2 x 2.93 GHz Quad Core Xeon processors and 24 GB Memory, but
only running a single process/thread at once. Each core has L2 cache of 256 KB
and L3 cache of 8 MB. The programs were compiled using LLVM C++ compiler
(clang++) 3.4.2 with the -Ofast option for optimization.

We implemented the space efficient on-line LZD algorithm described in
Sect. 3.1, and the algorithms LZDVF Count and Pre with variable-to-fixed encod-
ing described in Sect. 42, and compared them with the state-of-the art of gram-
mar compression algorithms OLCA [7] and FOLCA [9]. For LZD, the resulting
grammar is first transformed to a Straight line program (SLP) by transform-
ing the first rule S → f1 · · · fm; replacing consecutive factors with non-terminal
variables iteratively until the number of non-terminal variables equals to 1, and
then the SLP is encoded in the same way as [7]. The output of LZDVF is a
sequence of pairs of fixed-length code words that describes each LZD factor.

We evaluated the compression ratio, compression and decompression speed3

of each algorithm for data (non highly-repetitive4 and highly-repetitive5) taken
from the Pizza & Chili Corpus. The running times are measured in seconds, and
includes the time reading from and writing to the disk. The disk and memory
caches are purged before every run using the purge command. The average of
three runs is reported. The results are shown in Fig. 4 (a)-(d). We can see that
compared to LZ78, LZD improves the compression ratio for all cases, as well
as compression/decompression times in almost all most cases. The compression
ratio of LZD is roughly comparable to OLCA, but the compression time of LZD
slightly outperforms that of OLCA for highly repetitive texts, though not for
the non-highly repetitive texts.

We also evaluated the performance of our algorithms for large-scale highly
repetitive data, using 10 GB of English Wikipedia edit history data6 (See Fig. 4
(e) and (f)). In this experiment, we modified LZDVF Pre and Count so that
they do not read the whole input text into memory, and to explicitly store the
edge labels of the Patricia tree that represents the factors. This modification
increases the required working space from O(min(2L,m)) to O(min(2L,m)M),
but allows us to process large-scale data which does not fit in main memory. We
compared the modified version of LZDVF Pre and Count with Freq and Lossy
2 Source codes are available at https://github.com/kg86/lzd.
3 The number of characters the algorithm can process a second.
4 http://pizzachili.dcc.uchile.cl/texts.html.
5 http://pizzachili.dcc.uchile.cl/repcorpus.html.
6 The first 10 GB of enwiki-20150112-pages-meta-history1.xml-p000000010p00000

2983.7z, downloaded from http://dumps.wikimedia.org/backup-index.html.

https://github.com/kg86/lzd
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://dumps.wikimedia.org/backup-index.html
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Fig. 4. Compression and decompression speed wrt. compression ratios. Results for
LZD, LZDVF Pre and Count (VFPre and VFCount), OLCA [7] and FOLCA [9] on:
(a), (b) non highly repetitive texts (DNA, English, Proteins, Sources, XML) of size
200 MB and (c), (d) highly repetitive texts (einstein.en, Escherichia Coli, influenza,
kernel, para, world leaders). (e), (f): Results for LZDVF Pre and Count (VFPre and
VFCount), Freq and Lossy FOLCA [8] (FOFreq and FOLossy), and ADS [12], which
are grammar compression algorithms that do not store the whole input text in RAM, on
10 GB of English Wikipedia edit history. The parameters that determine the maximum
number of non-terminal variables that VFPre, VFCount, FOFreq, ADS can store are
varied between 212, 214, 216 respectively. The block size parameter is varied 100 MB
and 500 MB for ADS, and 100 MB, 500 MB, 1000 MB for FOLossy. Note that the points
out of the frame are not plotted for visibility.
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FOLCA [8], and ADS [12] which use constant space. In this experiment, LZDVF
Pre with bit-size of 16 shows the best performance. Surprisingly, it reduces the
compression time to about a seventh of that of FOLCA Freq, which is the fastest
of the previous grammar compression algorithms applicable to such large-scale
data, while achieving a better compression ratio.

Acknowledgements. We would like to thank Shirou Maruyama and Takuya Kida
for providing source codes of their compression programs FOLCA and ADS.
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dynamic dictionary matching. Inf. Comput. 119(2), 258–282 (1995)

2. Bannai, H., Inenaga, S., Takeda, M.: Efficient LZ78 factorization of grammar com-
pressed text. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani,
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Abstract. In this work, we consider the Combinatorial RNA Design
problem, a minimal instance of the RNA design problem in which one
must return an RNA sequence that admits a given secondary structure
as its unique base pair maximizing structure.

First, we fully characterize designable structures using restricted
alphabets. Then, under a classic four-letter alphabet, we provide a com-
plete characterization for designable structures without unpaired bases.
When unpaired bases are allowed, we characterize extensive classes of
(non-)designable structures, and prove the closure of the set of designable
structures under the stutter operation. Membership of a given structure
to any of the classes can be tested in Θ(n) time, including the gener-
ation of a solution sequence for positive instances. Finally, we consider
a structure-approximating version of the problem that allows to extend
bands (stems). We provide a Θ(n) algorithm which, given a structure
S avoiding two trivially non-designable motifs, transforms S into a des-
ignable structure by adding at most one base-pair to each of its stems,
and returns a solution sequence.

1 Introduction

RiboNucleic Acids (RNAs) are biomolecules which act in almost every aspect
of cellular life, and can be abstracted as a sequence of nucleotides, i.e., a string
over the alphabet {A,U,C,G}. Due to their versatility, and the specificity of their
interactions, they are increasingly being used as therapeutic agents [21], and as
building blocks for the emerging field of synthetic biology [16,18].
A substantial proportion of the functional roles played by RNA rely on inter-
actions with other molecules to activate/repress dynamical properties of some
biological system, and ultimately require the adoption of a specific conforma-
tion. Accordingly, RNA bioinformatics has dedicated much effort to developing
energy models [13,20] and algorithms [14,24] to predict the secondary structure of
RNA, a combinatorial description of the conformation adopted by an RNA which
only retains interacting positions, or base pairs. Historically, structure predic-
tion has been addressed as an optimization problem, whose expected output is
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 231–246, 2015.
DOI: 10.1007/978-3-319-19929-0 20
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a secondary structure which minimizes some notion of free-energy [14,24]. The
performances of the RNA folding prediction problem have now reached a point
where in silico predictions have become generally reliable [13], allowing for large
scale studies and fueling the discovery of an increasing number of functional
families [8].

Due to the existence of expressive, yet tractable, energy models, coupled
with promising applications in multiple fields (pharmaceutical research, natural
computing, biochemistry. . . ), a wide array of computational methods [1–5,7,9–
12,15,19,22,23] have been proposed to tackle the natural inverse version of the
structure prediction, the RNA design problem. In this problem, one attempts to
perform the in silico synthesis of artificial RNA sequences, performing a prede-
fined biological function in vitro or in vivo. Given the prevalence of structure
in the function of an RNA, one of the foremost goal of RNA design (sometimes
named inverse folding in the literature) is that the designed sequence should fold
into a predefined secondary structure. In other words, it should not be challenged
by alternative stable structures having similar or lower free-energy (Fig. 2).
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Fig. 1. Four equivalent representations for an RNA secondary structure of length 68,
consisting of 20 base pairs forming 7 bands: outer-planar graph (a.), arc-annotated
representation (b.), parenthesized expression (c.), and tree representation (d.)

Despite a rich, fast-growing, body of literature dedicated to the problem,
there is currently no exact polynomial-time algorithm for the problem. More-
over, the complexity of the problem remains open (see Sect. 5 for details). It can
be argued that this situation, quite exceptional in the field of computational
biology, partly stems from the intricacies of the Turner free-energy model [20]
which associates experimentally-determined energy contributions to ∼2.4 × 104

structure/sequence motifs. This motivates a reductionist approach, where one
studies an idealized version of the RNA design problem, lending itself to algorith-
mic intuitions, while hopefully retaining the presumed difficulty of the original
problem.

In this work, we introduce the Combinatorial RNA Design problem, a mini-
mal instance of the RNA design problem which aims at finding a sequence that
admits the target structure as its unique base pair maximizing structure. After
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this short introduction, Sect. 2 states definitions and problems. In Sect. 3, we
summarize our results, some of which are proven in Sect. 4. Finally, we conclude
in Sect. 5 with some remarks, open problems and future extensions of this work.

2 Definitions and Notations

RNA secondary structure. An RNA can be encoded as a sequence of nucleotides,
i.e., a string w = w1 · · · w|w| ∈ {A,U,C,G}�. The prefix of w of length i is denoted
as w[1,i] and |w|b denotes the number of occurrences of b in w. A (pseudoknot-
free) secondary structure S on an RNA of length n is a pair (n, P ), where P is a
set of base pairs {(li, ri)}p

i=1 ⊂ [1, n]2 such that:

– ∀i ∈ [1, p], li < ri;
– ∀i, j ∈ [1, p], li �= lj , li �= rj , ri �= rj (each position is involved in at most one

base pair);
– �i, j ∈ [1, p], li < lj < ri < rj (base pairs (li, ri) and (lj , rj) do not cross).

The set of all secondary structures is denoted by S, and its restriction to structures
of length n by Sn. The unpaired positions US in a secondary structure S = (n, P )
is the set of indices k ∈ [1, n] that are not involved in a base pair. A structure S is
saturated if US = ∅. Given a sequence w and a structure S = (|w|, P ), let ui = ε
if i ∈ US and ui = wi, otherwise, where ε is the empty sequence. Define the S-
paired restriction of w (paired restriction of S), denoted as Paired(w,S) (Paired(S)),
as u = u1 · · · u|w| (respectively, (|u|, {(|u1 · · · ui|, |u1 · · · uj |) | (i, j) ∈ P})). A
maximal subset B = {(i, j), (i+1, j − 1), . . . , (i+ �, j − �)} of P for some integer
i, j, � is called a band (sometimes referred to as helix or stem) of size � = |B|, of
S = (n, P ). Note that every base pair belongs to exactly one band.

Dot-parentheses notation. A well-parenthesized sequence s ∈ {(, ), .}∗ can be
used to represent a secondary structure. There is one-to-one correspondence
between secondary structures and such well-parenthesized sequences: any base
pair (l, r) ∈ P becomes a pair of corresponding opening and closing paren-
theses in s at position l and r respectively (sl = ( and sr = )), and any
unpaired position i corresponds to a dot (si = .). A concatenation of two
structures S and S′, denoted by SS′, is the structure corresponding to the
well-parenthesized sequence obtained by concatenating the well-parenthesized
sequences of S and S′.

k-stutter. The k-stutter of a sequence s, denoted by s[k] is the result of an inde-
pendent copy k-times of each of the characters in s. This operation can be applied
to both RNA sequences and structures in the dot-parentheses notation.

Tree representation. Alternatively, the tree representation, denoted by TS , for
S = (n, P ) is a rooted ordered tree whose vertex set VS consists of intervals [l, r]
for any base pair (l, r) ∈ P , and [k, k] for every k ∈ US . A virtual root [0, n+1] is
added for convenience. Each [k, k] node is called unpaired node, all other nodes
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(including the root) are called paired nodes. The children of an interval I ∈ VS

are the maximal proper subintervals I ′ ∈ VS of I ordered by the left points of
the intervals. The degree of a vertex I ∈ VS is the total number of its paired
neighbors, including its parent (if any). We denote by D(S) the maximal degree
of nodes in TS .

Proper, greedy and separated coloring of the tree representation. Consider the
tree representation TS of structure S. Color every paired node of TS different
from the root by black, white or grey color. This coloring is called proper if:

1. every node has at most one black, at most one white and at most two grey
children;

2. a node with color c has at most one child with color c;
3. a black node does not have a white child and a white node does not have a

black child.

A greedy coloring of TS is the coloring obtained by recursive application of the
following rule starting from the root and continuing towards leaves: if the node
is black, color the first paired child black and the remaining paired children grey,
if the node is white, color the first paired child white and the remaining paired
children grey, otherwise (the grey node or the root), color the first paired child
black, second white and the remaining paired children grey. It is easy to check
that if the degree of each node is at most four then the greedy coloring is a
proper coloring.

Given a proper coloring of TS , let the level of each node be the number of
black nodes minus the number of white nodes on the path from this node to the
root. A proper coloring is called separated if the two sets of levels, associated
with grey and unpaired nodes respectively, do not overlap.

2.1 Statement of the Generic RNA Design Problem

Consider an energy model M, which associates a free-energy EM(w,S) ∈ R− ∪
{+∞} to each secondary structure S ∈ S|w| for a given RNA sequence w. The
minimum free-energy (MFE) structure prediction problem is typically defined as
follows:

The existence of competing structures, having comparable or lower free-
energy for a given RNA, impacts the well-definedness of the folding process.
The detection of such situations is therefore of interest, and can be rephrased as
follows:
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( ( . ) ( . . ) ) G G A C A G G U C A C A G G U U C U

a. Target sec. str. S b. Invalid sequence for S c. Design for S

Fig. 2. The combinatorial RNA design problem: Starting from a secondary structure
S (a.), our goal is to design an RNA sequence which uniquely folds, with maximum
number of base pairs, into S. The sequence proposed in b. is invalid due to the existence
of an alternative structure (lower half-plane, red) having the same number of base pairs
as S. The right-most sequence (c.) is a design for S.

We can now define the combinatorial RNA Design problem as:

Structures for which there exists an (M, Σ,Δ)-design are called (M, Σ,Δ)-
designable. Let Designable(M, Σ,Δ) be the set of all such structures. If it is clear
from the context, we will usually drop M, Σ and/or Δ (Fig. 2).

2.2 Combinatorial Design in a Simple Base Pair Energy Model

In this work, we adopt a Watson-Crick energy model W, which only allows pairs
involving complementary letters, i.e., in {C,G} and {A,U}.

Definition 1 (Watson-Crick energy model W).

EW(w,S) =

{
−|S| if ∀(l, r) ∈ S,wl is complementary with wr,

+∞ otherwise.

We say that the structure is compatible with a sequence w, if EW(w,S) < +∞.
Minimizing EW(w,S) is equivalent to maximizing |S|, thus RNA − FOLDW is

a classic base pair maximization problem. It can be solved by dynamic program-
ming, historically in O(n3) complexity [14], or in O(n3/ log(n)) current best
time complexity [6]. A backtracking procedure reconstructs the MFE structure,
and can be easily adapted to assess the uniqueness of the MFE structure.

3 Statement of the Results

We consider the design problem in a base pairing energy model W restricted to
Watson-Crick base pairs {C,G} and {A,U}. We set Δ = 1, which forbids designed
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Ŝ: ( . . ) ( . . ) ( . . ) S̃: ( ( . . ) ) ( ( . . ) ) ( ( . . ) )
G G U U C C C C A A G G A A G G U U

Fig. 3. An example of undesignable (left) and designable structure (right).

sequence to adopt alternative structures having greater or equal number of base
pairs than the target structure. Let us first characterize the sets Designable(Σ)
of designable structures over partial alphabets Σ. Let Σc,u be an alphabet with
c pairs of complementary bases and u bases without a complementary base.

Designability over restricted alphabets.

R1: For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2: Designable(Σ1,0) = {S ∈ S | S is saturated and D(S) ≤ 2} ∪ {(n, ∅) | ∀n ∈

N};
R3: Designable(Σ1,1) = {S ∈ S | D(S) ≤ 2}.

Designability over the complete alphabet Σ2,0 = {A,U,C,G}.
R4: Designable(Σ2,0) ∩ {S ∈ S | S is saturated} = {S ∈ S | D(S) ≤ 4} ∩ {S ∈

S | S is saturated}.

When unpaired positions are allowed in the target structure, our characteri-
zation is only partial:

R5: Let m5 represent “a node having degree more than four”, and m3 ◦ be “a
node having one or more unpaired children, and degree greater than two”,
then

Designable(Σ2,0) ∩ {S ∈ S | S contains m5 or m3 ◦} = ∅ ;

R6: Let Sep be the set of structures for which there exists a separated (proper)
coloring of the tree representation, then Sep ⊂ Designable(Σ2,0);

R7: The set of Σ2,0-designable structures is closed under the k-stutter operations:

∀S ∈ S,∀k ∈ N+ : S ∈ Designable(Σ2,0) =⇒ S[k] ∈ Designable(Σ2,0) .

We note that S[k] ∈ Designable(Σ2,0) does not imply that S ∈ Designable()
Σ2,0. For instance in Fig. 3, it can be verified that Ŝ[2] is Σ2,0-designable, while
Ŝ is not. Membership to the classes described in R1-R5 can be tested by trivial
linear-time algorithms, which can also be adapted into linear-time algorithms
for the RNA − DESIGNM,Σ problem.

Structure-approximating algorithm. Unfortunately, the absence of m5 or m3 ◦,
while necessary, is generally not sufficient to ensure designability. For instance,
Ŝ in Fig. 3 clearly does not contain m5 or m3 ◦, yet cannot be designed. In such
cases, the unwanted interactions can be penalized by the duplication of some
base pairs. For instance, duplicating the base pairs in the above example yields
Σ2,0-designable structure S̃.
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( . . ) ( . . ) ( . . ) ( . . ) ( . . ) ( ( . . ) )
G U U C C U U G A G U U C U

Root RootGreedy
Coloring

Band
Inflation Design

→ GC
→ CG
→ AU|UA
→ U

Fig. 4. Application of the structure-approximating algorithm to the non-designable
structure Ŝ in Fig. 3: A base pair (circled black node) is inserted in the greedily colored
tree, offsetting the levels of white and unpaired nodes (crosses) to even and odd levels
respectively, so that the resulting tree is proper/separated, representing a designable
structure.

R8: Any structure S without m5 and m3 ◦ can be transformed in Θ(n) time into
a Σ2,0-designable structure S′, by inflating a subset of its base pairs (at most
one per band) so that the greedy coloring of the resulting structure is proper
and separated, as illustrated by Fig. 4.

4 Proofs

R1 is trivial since, in the absence of complementary letters, the structures with-
out base pairs are the only structures whose energy is not infinite.

Theorem 1 (Result R4). A saturated sec. str. S is Σc,0-designable if and only
if D(S) ≤ 2c.

Proof. First, we will show that the degree condition is necessary. Assume to
the contrary that D(S) > 2c and S has a design w. Let [a, b] be a vertex with
degree d ≥ 2c + 1 in TS . Let {[li, ri]}d

i=1 be the (paired) children of [a, b] and
the node [a, b] if [a, b] is not the root. Let Li = li and Ri = ri if [li, ri] is a child
of [a, b], and Li = ri and Ri = li if it is [a, b]. Then among bases wL1 , . . . , wLd

must be a pair of repeated letters. Let wLi
= wLj

be such a pair with Li < Lj .
It is easy to check that S \ {(li, ri), (lj , rj)} ∪ {(Li, Rj), (Ri, Lj)} is a structure
compatible with w with the same number of base pairs as S, a contradiction
with the assumption that w is a design for S.

To show that the degree condition is also sufficient, we need further definitions
and claims. First, we say that a sequence w ∈ Σ∗ is saturable if there is a satu-
rated structure compatible with w. Note that the concatenation of two saturable
sequences is also saturable. Then the following claim characterizes the cases when
a saturable sequence can be split into saturable sequences.

Claim 1.1. Let w = uv be a saturable sequence of length k. If u is saturable,
then so is v.

Proof. Consider a saturated structure S compatible with sequence w and satu-
rated structure Su compatible with u. We will construct a saturated structure
Sv compatible with v.



238 J. Haleš et al.

Consider a graph G with vertex set {1, . . . , k} and edge set defined by pairs
in S ∪ Su. Obviously, this graph is a collection of alternating paths (alternating
between pairs from S and from Su, starting and ending with positions in v) and
alternating cyclic paths, and it has a planar embedding such that all vertices lie
on a line in their order: pairs in S are drawn as non-crossing arcs above the line
and pairs in Su as non-crossing arcs below the line. Note that every position in
v is an end-point of exactly one path in the collection.

Define set of base pairs Sv by pairing the end-points of the paths in G, cf.
Fig. 5. We will show that Sv is a structure. Consider a graph G′ constructed by
adding pairs in Sv to G. This graph is a collection of cyclic paths. Consider an
embedding of G′ into plane that extends the planar embedding of G by adding
arcs corresponding to the pairs in Sv below the line containing all the vertices.
If two base pairs b, b′ ∈ Sv cross then the cyclic path containing b and the cyclic
path containing b′ intersect in exactly one point. By Jordan’s curve theorem,
this is a contradiction. It follows that Sv is a saturated structure, and hence v
is also saturable. ��

C A U A U G C C G A U A U G

Fig. 5. Construction the saturated structure compatible with the suffix v. The vertical
line splits the sequence into a prefix u and a suffix v. Blue and red arcs depict saturated
structures compatible with w and u respectively. Dashed red arcs represent the induced
saturated structure compatible with v.

We define w to be an atomic saturable sequence if no proper prefix of w is sat-
urable. Clearly, every saturated structure compatible with an atomic saturable
sequence w contains the base pair (1, |w|). On the other hand, by Claim 1.1, if
every saturated structure compatible with w contains the pair (1, |w|), then w
is an atomic saturable sequence. A design w that is also an atomic saturable
sequence will be called an atomic saturable design. A concatenation of two or
more atomic saturable designs is obviously not an atomic saturable sequence
and it is not necessarily a design. However, we have the following claims.

Claim 1.2. The concatenation of t atomic saturable designs w1, . . . , wt for struc-
tures S1, . . . , St, such that wi

1 �= wj
1,∀1 ≤ i < j ≤ t, is a design for the concate-

nated (saturated) structure S = S1 · · · St.

Proof. Assume that W := w1 · · · wt is not a design, then there exist a saturated
structure S′ �= S for W . We show that positing such an alternative structure
leads to a contradiction. Recall that each Si is saturated and contains a pair
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(1, |wi|). If S′ pairs the first and last letters in each wi, i ∈ [1, t], then S′ = S
since each wi is a design, a contradiction. Let wi be the leftmost sequence such
that wi

1 is not paired with wi
|wi| in S′. Since S′ must be also saturated, wi

1 must

be paired. Let wj
k, j ≥ i, be the partner of wi

1 in S′, and let u := wi · · · wj−1wj
[1,k].

If k = |wj |, then j > i and, by complementarity, wi
1 = wj

1 which contradicts the
preconditions. Hence, we can assume that k < |wj |. Since u and each of the
wi, . . . , wj−1 are saturable, by iterated application of Claim 1.1, we conclude
that v = wj

[1,k] is saturable as well. This contradicts the precondition that wj is
an atomic saturable design, since v is a proper prefix of wj . We conclude that
no alternative saturated folding exists for W , i.e., W is a design for S. ��
Claim 1.3. Consider t atomic saturable designs w1 = w1

1 · · · w1
|w1|, . . . , wt =

wt
1 · · · wt

|wt| and a pair a, b of complementary letters such that wi
1 �= b for every

1 ≤ i ≤ t and wi
1 �= wj

1 for every 1 ≤ i < j ≤ t. Then W = aw1 · · · wtb is an
atomic saturable design.

Proof. We will first show that W is an atomic saturable sequence. Assume to
the contrary that there is a proper prefix of W that is saturable. Consider the
shortest such prefix aw1 · · · wiwi+1

[1,j]. Obviously, a has to be paired with wi+1
j ,

otherwise we can find a shorter saturable prefix. This implies that b = wi+1
j and

that w1 · · · wiwi+1
[1,j−1] is saturable as well. By repeated application of Claim 1.1,

we have that wi+1
[1,j−1] is saturable. Since it is a prefix of atomic saturable sequence

wi+1, it must be the empty sequence, i.e., j = 1. Therefore, b = wi+1
1 , a con-

tradiction with the assumptions of the claim. Thus, W is an atomic saturable
sequence.

Now we will show that W is a design. Consider any MFE (saturated) struc-
ture S for W . Since W is atomic saturable, a is paired with b in S. By Claim 1.2,
w1 · · · wt is a design. It follows that W is a design as well. ��
To prove the sufficiency of the degree condition, consider the following algorithm,
which takes as input a saturated structure S with D(S) ≤ 2c, and returns a
design w for S:

– Let {[li, ri]}d
i=1 be the children of the root. Assign to each wli , wri

comple-
mentary bases such that ∀1 ≤ i < j ≤ d : wli �= wlj .

– While there exists an unprocessed internal node [a, b] whose parent has been
processed (if there is no such node, stop and return w). Let {[li, ri]}d

i=1 be
the children of [a, b]. Assign to each wli , wri

complementary bases such that
∀1 ≤ i ≤ d : wli �= wa and ∀1 ≤ i < j ≤ d : wli �= wlj .

Note that since the alphabet contains c pairs of complementary bases, the assign-
ment at each step of the algorithm is possible. We will show that the returned
sequence w is a design for S. We will show by tree induction on the size subtrees
that wi · · · wj is an atomic saturable design for every internal node [i, j]. It is
easy to check that this is satisfied at the leaves. Consider an internal node u.
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By the induction hypothesis, sequences for each child subtree of u are atomic
saturable designs. Furthermore, by the choice of bases at children nodes of u,
all assumptions of Claim 1.3 are satisfied, hence, the sequence for node u is also
an atomic saturable design. The claim holds. Finally, we can apply Claim 1.2 at
the root, which yields that w is a design. ��
Corollary 2 (Result R2). A structure S is Σ1,0-designable if and only if it
does not contain any base pairs, or it is saturated and D(S) ≤ 2.

Proof. If S contains a base pair and an unpaired position, then it can be easily
checked that S is not Σ1,0-designable. Hence, any Σ1,0-designable structure is
either empty, and trivially designable using a single letter, or saturated. In the
latter case, by Theorem 1, we know that designable structures are exactly those
that are saturated, and such that D(S) ≤ 2. The claim follows. ��
Corollary 3 (Result R3). A structure S is Σ1,1-designable if and only if
D(S) ≤ 2.

Proof. First, suppose S is Σ1,1-designable and let w be a design for S. Then
Paired(w,S) is a design for Paired(S). Since the paired restriction Paired(S) is
saturated, it is over alphabet Σ1,0 ⊂ Σ1,1, and by Theorem 1, D(Paired(S)) ≤ 2.
Hence, D(S) = D(Paired(S)) ≤ 2.

Conversely, suppose that D(S) ≤ 2. Construct a design for S as follows.
Since Paired(S) is saturated, by Theorem 1, there is a design w̄ for Paired(S)
over Σ1,0 ⊂ Σ1,1. Construct w from w̄ by inserting the base without a com-
plementary base at every unpaired position of S. Let S′ be an MFE structure
for w. Obviously, all unpaired positions in S are also unpaired in S′. We must
have Paired(S′) = Paired(S), otherwise we have an alternative structure for w̄, a
contradiction. Hence, S′ = S, i.e., w is a design for S. ��
Result R4 follows readily from Theorem 1 by taking c = 2.

Lemma 4 (Result R5). Any structure that contains m5 or m3 ◦ is not Σ2,0-
designable.

Proof. Assume that S is Σ2,0-designable and let w be a design for S. Then
Paired(w,S) is a design for Paired(S). Since Paired(S) is saturated, by Theorem 1,
D(S) = D(Paired(S)) ≤ 4, hence, S cannot contain motif m5. Now, assume
to the contrary that S contain motif m3 ◦ appearing at node [a, b] of TS . Let
{[li, ri]}3i=1 be some paired children of [a, b] and the node [a, b] if [a, b] is not the
root, and [u, u] an unpaired child of [a, b]. Let Li = li and Ri = ri if [li, ri] is a
child of [a, b], and Li = ri and Ri = li if it is [a, b]. If among bases wL1 , . . . , wL3

there is a pair of repeated letters, then we can construct an alternative MFE
structure for w (see the first paragraph in the proof of Theorem 1). Assume that
these three bases are different. Then for some i = 1, 2, 3, wu equals either wli or
wri

, say it equals wli . Then S \ {(li, ri)} ∪ {(u, ri)} is an MFE structure for S,
a contradiction with the assumption that w is a design for S. ��
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Theorem 5 (Result R6). If the tree representation of a structure S admits a
separated coloring then S is Σ2,0-designable.

Proof. Given a sequence w, we define the level L(i) of position i as L(i) =
|w[1,i]|G − |w[1,i]|C.

Claim 5.1. Consider any structure compatible with sequence w that contains
some A − U base pair between positions at different levels, then some G or C is
left unpaired.

Proof. Consider that the A − U base pair occurs at position (a, b), and note
that the bases of the substring w[a+1,b−1] can only base pair among themselves
without introducing crossings. We will show that G’s and C’s are not balanced
in this substring. Since wb ∈ {A,U}, L(b) = L(b − 1). Hence, by the definition
of L, we have that

|w[a+1,b−1]|G − |w[a+1,b−1]|C = L(b − 1) − L(a) = L(b) − L(a) �= 0 .

Therefore, at least one G or C in the substring remains unpaired in this structure.
��

Consider a separated coloring of the tree representation of S. We will use this
coloring to construct a design w for S, by specifying a nucleotide at each position
of w. First, for each unpaired position i, set wi = U. Second, apply a modified
version of the algorithm described in Theorem 1 to set the bases of paired posi-
tions in which black nodes are assigned to base pair G−C, white nodes to C−G
and grey nodes to A−U or U−A. The algorithm ignores unpaired nodes in the
tree representation of S. Since the coloring is proper such assignment is always
possible at every step of the algorithm. We claim that for any node [i, j] (paired
or unpaired), the level of position i is the same as the level of the node [i, j].
To verify this, observe that the substring of w corresponding to any subtree has
the same number of G’s and C’s. Hence, for any node [i, j], the level of position
i depends only on nodes on the path from this node to the root. It is easy to
check that the level of i is equal to the level the node. Note that if [i, j] is a grey
node then the level of position j is the same as the level of i, i.e., the same as
the level of [i, j].

We will show that the constructed w is a design for S. Since all C’s and A’s
of w are paired in S, S is an MFE structure for w. We need to show that it is the
only MFE structure for w. Consider an MFE structure S′ for w different from S.
Since w has the same number of G’s and C’s, S′ must pair all G’s, C’s and A’s of w.
We will show that all unpaired positions in S are also unpaired in S′. Assume
to the contrary that position i is unpaired in S, but it is paired to j in S′.
We must have wi = U and wj = A. Since the coloring is separated, the unpaired
node [i, i] has a different level than the grey node containing j, and hence, the
level of i is different from the level of j. It follows by Claim 5.1 that some
G or C is unpaired in S′, a contradiction. Consider paired restrictions of S,
S′ and w. Both Paired(S) and Paired(S′) are saturated and compatible with
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Paired(w,S) and they are different since S and S′ are different and agree on the
unpaired positions. Furthermore, Paired(w,S) can be produced by the algorithm
described in Theorem 1 for the input structure Paired(S), and hence, by Theo-
rem 1, Paired(w,S) is a design for Paired(S), which contradicts the existence of
Paired(S′). Hence, w is a design for S. ��
Theorem 6 (Result R7). If w is a design for a structure S, then for any
integer k ≥ 1, w[k] is a design for S[k]. In particular, if a structure S is Σ2,0-
designable, then so is S[k].

Proof. Consider a designable structure S and let w = w1 · · · wn be a design for
S. We will show that w[k] is a design for S[k]. Let the i-th k positions in S be
called the region i. Note that the positions in region i of S[k] correspond to the
i-th position in S.

First, we will show that S[k] is an MFE structure for w[k]. Consider an MFE
structure S′ of w[k]. Define an interaction graph of S′, denoted by I(S′) =
(VI(S′), EI(S′)), as follows: the vertex set VI(S′) is the set of positions in w, i.e.,
{1, . . . , n}, and there is an edge between i and j in I(S′) if there exists a pair
between a position in region i and a position in region j in S′. Note that I(S′)
is a bipartite graph: indeed, vertices of any cycle in I(S′) are positions in w
that alternate between A and U, or between C and G. Also note that I(S′) is
an outer-planar graph: base pairs are pairwise non-crossing and can therefore be
drawn without crossings on the upper half-plane, leaving the lower half-plane on
the outer face. Assign each edge e in EI(S′) a weight c(e) equal to the number
of pairs between regions i and j in S′. Note that the sum of all weights in I(S′),
denoted as ‖EI(S′)‖, equals |S′|. We have the following claim.

Claim 6.1. If M is a maximum matching in I(S′) then |S′| ≤ k|M |. Moreover,
if |S′| = k|M | then every minimum vertex cover of I(S′) covers every edge
exactly once.

Proof. Note that for any vertex i in VI(S′), the sum of the weights of edges
incident with i is at most k. Consider a smallest vertex cover C of I(S′), and
take the sum of these inequalities over all vertices i in the cover C:

∑

i∈C

∑

e incident with i

c(e) ≤ k|C| . (1)

Since C is a vertex cover, the weight of every edge in EI(S′) appears at least
once on the left side of (1), hence |S′| = ‖EI(S′)‖ ≤ k|C|. By König’s Theorem,
the maximum matching M in I(S′) has the same number of edges as C, i.e.,
|S′| ≤ k|M |. The equality implies that the weight of every edge in EI(S′) appears
exactly once on the left side of (1), i.e., that vertex cover C covers every edge
exactly once. ��

Given a matching M in I(S′), we can construct a structure SM for w with
|M | pairs as follows: for every edge {i, j} in M , add pair (i, j). This is a valid
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(pseudoknot-free) structure, since M is a subgraph of outer-planar graph I(S′).
It follows that |M | ≤ |S|. If M is a maximum matching on I(S′), we have by
Claim 6.1 that |S′| ≤ k|M | ≤ k|S| = |S[k]| i.e., S[k] is an MFE structure for
w[k]. It also follows that |S′| = k|M | and that |M | = |S|. Since S is a unique
structure for w and |SM | = |M | = |S|, we have that SM = S, i.e., there is only
one maximum matching in I(S′). We need the following claim to show that all
connected components in I(S′) have at most 2 vertices.

Claim 6.2. Let G be a connected bipartite graph on at least three vertices with
unique maximum matching M . Then there exists a minimum vertex cover of G
that covers some edge twice.

Proof. First, we will show that every vertex in G is incident to an edge in match-
ing M . Assume the contrary and consider all vertices in G which are incident to
only non-matching edges. If two of these vertices are incident then the matching
is not maximal. Otherwise, let u be such a vertex and v its neighbor. Vertex
v must be incident to a matching edge. We can construct a new matching by
removing this edge and adding edge uv, which contradicts the assumption that
M is a unique maximal matching.

Take a maximal path P alternating between matching and non-matching
edges in G. Let u be an endpoint of P and e the edge on P incident to u. If e
is a non-matching edge then u must be incident to a matching edge, say f . By
maximality of P , the other endpoint v of f must be on P . Since every internal
vertex of P is incident to a matching on P , v must be the other endpoint of P
and the edge incident to v on P must be a non-matching edge. Hence, we have
an alternating cycle P + f which contradicts the uniqueness of the maximal
matching. Thus, P starts and ends with matching edges. Next, we show that u
is a pendant vertex (has degree one). Assume to the contrary u is incident to
another (non-matching) edge f = uv. By maximality of P , v is on P , which yields
a cycle. If this cycle is even, we have an alternating cycle, which contradicts the
uniqueness of the matching, and if it is odd, we have a contradiction with the
fact that G is bipartite. Hence, both endpoints of P are pendant.

Consider a minimum vertex cover C of G. By well-known König’s theorem,
every minimum vertex cover in a bipartite graph uses exactly one endpoint of
every edge of a maximum matching and no other vertices. Since the endpoints
of P are pendant, and G is connected and has ≥ 3 vertices, P must have at least
three edges. Since endpoints of P are pendant and incident to matching edges,
we can assume that C does not contain endpoints of P , i.e., contains the second
and last by one vertex of P . It is easy to see that at least one non-matching edge
is covered twice by C. ��
Consider a connected component K of I(S′). Since I(S′) has a unique maximum
matching, so does K. If K has more than two vertices, it contains a minimum
vertex cover of K that covers some edge twice. It follows that there is a minimum
vertex cover of I(S′) that covers some edge twice. Hence, by Claim 6.1, |S′| ≤
k|M |, a contradiction. It follows that every connected component of I(S′) has
at most two vertices, hence, either S′ is not MFE or S′ = S[k]. ��
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Theorem 7 (Result R8). Each structure S without m5 and m3 ◦ can be trans-
formed into a Σ2,0-designable structure S′ by inflating a subset of its base pairs
(at most one per band). Furthermore, this transformation can be done in Θ(n)
time.

Proof. We start with the greedy coloring of TS . Since S does not contain
m5 and m3 ◦, it is a proper coloring and there is no node having both a grey
child and an unpaired child. We will insert base pairs within S so that the grey
nodes and any unpaired node end up at levels of different parities. If the root
has a grey child, assign even parity to the grey nodes, otherwise (if the root has
an unpaired child, or no grey and no unpaired children), assign even parity to
the unpaired nodes.

Now we proceed from the children of the root towards leaves adjusting parity
level for grey and unpaired nodes to keep one type even and the other one odd.
We repeatedly apply the following simple operation on TS : If the node N does
not match its intended parity level. Denote NP the parent of N (NP is not the
root as all children of the root already have the correct parity level) and NPP

the parent of NP . Insert a new paired node NN between NPP and NP , assign
it with the color of NP , and apply the greedy algorithm on NN . Observe that
NP always takes either black or white color changing the parity level of all its
descendants (including N). Note that the children of NP may get recolored, we
can even get one more grey child but after this operation the parity levels of all
children of N are correct and we do not change parity levels outside the subtree
rooted at N . After fixing all nodes, we get a separated proper coloring (which
is actually the greedy coloring) of TS′ . Hence, by Theorem 5, S′ is designable.
Figure 4 illustrates this process. ��

5 Conclusion, Discussion and Perspectives

In this work, we introduced the Combinatorial RNA Design problem, a minimal
instance of the RNA design problem which aims at finding a sequence that
admits the target structure as its unique base pair maximizing structure. First,
we provided complete characterizations for the structures that can be designed
using restricted alphabets. Then we considered the RNA design under a four-
letter alphabet, and provide a complete characterization of designable saturated
structures, i.e., free of unpaired positions. Turning to those target structures
that contain unpaired positions, we provided partial characterizations for classes
of designable/undesignable structures, and showed that the set of designable
structures is closed under the stutter operation. Finally, we introduced structure-
approximating version of the problem and, assuming that the input structure
avoids two motifs, provided a structure approximating algorithm of ratio 2 for
general structures.

An important question that is left open by this work is the computational
complexity of the RNA design problem. Schnall-Levin et al. [17] established the
NP-hardness of a more general problem, called the inverse Viterbi algorithm,
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which takes as input a stochastic grammar (representing the energy model)
and a targeted parse tree (representing the structure), and outputs a sequence
(design) whose most probable parsing should match the target. However this
result does not settle the complexity of the RNA design, essentially because the
proposed reduction relies critically on an encoding of 3-SAT instances within the
input grammar. While the hypothetical perfect grammar/energy model for RNA
folding probably differs from the currently accepted Turner model, it should
ultimately reflect the laws of physics and should certainly not depend on the
instance. As the reduction [17] requires a different grammar (i.e., energy model)
for each instance, it does not seem easily adaptable into a proof that holds for a
fixed energy model. Consequently, despite two decades of work on the subject,
the computational tractability of RNA design is still open, either in its general
instance and in our combinatorial version.

Besides complexity issues, natural extensions of this work may include the
consideration of more general base pairing models, more realistic energy models
(ideally, the Turner energy model [20]), or the design under other objectives,
such as the Boltzmann probability [22]. However, even the simplest of modifi-
cations, allowing G − U base pairs, would invalidate parity properties that are
critical to the proofs of some of our results and algorithms. More precise bounds
for the ratio of the structure-approximating could be established. Finally, bet-
ter algorithms could be designed for the problem, attempting to minimize the
number of modifications so that a given structure becomes designable (or, more
modestly, belongs to an identified class of designable structures).
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Abstract. A gap-pattern is a sequence of sub-patterns separated by
bounded sequences of don’t care characters (called gaps). A one-gap-
pattern is a pattern of the form P [α, β]Q, where P and Q are strings
drawn from alphabet Σ and [α, β] are lower and upper bounds on the
gap size g. The gap size g is the number of don’t care characters between
P and Q. The dictionary matching problem with one-gap is to index a
collection of one-gap-patterns, so as to identify all sub-strings of a query
text T that match with any one-gap-pattern in the collection. Let D be
such a collection of d patterns, where D = {Pi[αi, βi]Qi | 1 ≤ i ≤ d}. Let
n =

∑d
i=1 |Pi| + |Qi|. Let γ and λ be two parameters defined on D as

follows: γ = |{j | j ∈ [αi, βi], 1 ≤ i ≤ d}| and λ = |{αi, βi | 1 ≤ i ≤ d}|.
Specifically γ is the total number gap lengths possible over all patterns in
D and λ is the number of distinct gap boundaries across all the patterns.
We present a linear space solution (i.e., O(n) words) for answering a
dictionary matching query on D in time O(|T |γ log λ log d + occ), where
occ is the output size. The query time can be improved to O(|T |γ + occ)
using O(n + d1+ε) space, where ε > 0 is an arbitrarily small constant.
Additionally, we show a compact/succinct space index offering a space-
time trade-off. In the special case where parameters αi and βi’s for all
the patterns are same, our results improve upon the work by Amir et al.
[CPM, 2014]. We also explore several related cases where gaps can occur
at arbitrary locations and where gap can be induced in the text rather
than pattern.
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1 Introduction

Pattern Matching is a fundamental research field in Computer Science. In pat-
tern matching, we are given a text T and a pattern P both drawn from same
alphabet set Σ and the task is to find all occurrences of the pattern P in the
text T . In earlier times, the focus was to develop algorithms to achieve this goal
efficiently [8,22,24]. In many applications, the text would be known in advance
and queries in the form of pattern would arrive in online manner. This motivated
the development of data structures like suffix trees, suffix arrays and compressed
indexes [13,15,26,30]. There are also applications (like virus scanning, packet
routing etc.) where the patterns are known in advanced and are to be indexed
and then text T comes as an online stream. This variant is called dictionary
matching and solutions for this in many cases are based on suffix trees.

In many useful applications the pattern match may not be exact but we are
allowed few character mismatches. In some formulations, text and/or patterns
could have wild-cards or don’t care characters. We consider the variant where the
patterns have don’t care characters which are clustered in one location as one-
gap. Moreover, we allow this gap length to be variable but within some bounds.
Thus, our pattern would look like PφgQ where P and Q are strings and between
are g don’t care symbols φ. The gap length g has to be at least α characters long
and at most β characters long. We denote such one-gap-patterns by P [α, β]Q.
Thus, pattern abc[2, 4]cba will match with abcdedcba (with gap of size 3) but not
with abcdcba or abcdefedcba (because gap of 1 or 5 is not allowed).

More formally, let D = {Pi[αi, βi]Qi | 1 ≤ i ≤ d} be a collection of d one-
gap-patterns over an alphabet set Σ of size σ. Let the total number of characters
excluding any don’t care character be n =

∑d
i=1 |Pi| + |Qi|. We associate two

additional parameters with D, namely γ and λ, where γ is the size of the set
cover(D) = {j | j ∈ [αi, βi], 1 ≤ i ≤ d} and λ = |{αi, βi | 1 ≤ i ≤ d}|.
Specifically cover(D) is the set of all possible gap lengths over all patterns in D
and λ is number of distinct gap boundaries across all the patterns.

Problem 1. Our task is to index D, such that whenever a text T comes as a
query, we can report all sub-strings of T that match with any pattern in D.

As noted by Amir et al. [6], many problems in computational biology can be
modeled as above [14,16,27,28].

1.1 Previous Work

For the dictionary matching problem with exact pattern matching, [2] presented
a classic Aho-Corasick (AC) automata which requires linear space O(n), where
n is the total size of all patterns in number of characters. The AC automata
supports matching in the query text T in optimal O(|T | + occ) time, occ being
the number of matches produces as the output. Amir et al., [3,4] used a suffix
tree based approach to solve the dynamic version of this problem. The state
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transitions in AC automata can be viewed as following suffix links in a general-
ized suffix tree of all patterns. Recently, there has been interest in making the
index space succinct or compact [7,12,18–21].

Approximate dictionary matching has also had a long line of research. For
1-error matching, Amir et al. [5] presented a solution comprising of forward and
reverse suffix trees. This solution was later made succinct by using sparsifica-
tion (suffix sampling) techniques [17]. In this approach, the pattern is matched
in three parts. The prefix of pattern is matched in the reverse suffix tree, the
middle character (wild-card or gap or mismatching character) and the suffix of
the pattern which is matched in the forward suffix tree. Based on these matches,
a geometric range searching query is issued to find all matches. A framework
for approximate dictionary matching with k-errors (or wild cards) was pro-
vided by Cole et al. [11]. For further reading, we refer to the recent survey by
Lewenstein [25].

For the particular case of dictionary matching with one-gap, Amir et al. [6]
recently studied the case where all the patterns have same bounds on the gap
length allowed. Thus, in their case for all i, we have αi = α and βi = β. Our
model is generalization of theirs. Moreover, in their particular case, our results
directly improve theirs in space and time complexities.

We list the comparison next.

1.2 Our Results and Comparison

Our main results are summarized in the following theorems.

Theorem 1. The collection D can be indexed in O(n) space and can answer
any dictionary matching query T in O(|T |γ log λ log d + occ) time, where occ is
the output size.

Theorem 2. A dictionary matching query T on D can be answered in time
O(|T |γ + occ) using an index of space O(n + d1+ε), where ε > 0 is an arbitrarily
small constant.

Amir et al.’s work [6] focused on a special case where αi = α, βi = β,∀i (i.e.,
γ = β − α + 1 and λ = 2). Two solutions offered by them require either
(i) O(n + d logε d) space and O(|T |(β − α + 1) log2 n log log d + occ) time or
(ii) O(n + d2) space and O(|T |(β − α + 1) + occ) time. The first solution is
based on the ideas from the classical solutions for dictionary matching with one
error, where as the second result uses look up tables. In contrast, our results are
(i) O(n) space and O(|T |(β − α + 1) log d + occ) time or (ii) O(n + d1+ε) space
and O(|T |(β − α + 1) + occ) time, both using a one-shot framework. Thus, on
first count we get substantial improvement in times and some improvement in
space and on the second count we get some improvement in space. Clearly, our
results not only improve, but also generalize these result. Moreover, we obtain
the following succinct result.
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Theorem 3. There exists a n log σ+O(d log n)+o(n log σ) bits structure to solve
dictionary matching query T over the collection D, in time O(|T |γ log λ log2+ε n+
occ).

Apart from this main problem involving one-gap-patterns, we consider several
generalizations and variants. In particular, we consider the case where the gap
of an acceptable length can occur at more than one locations in the pattern.
We show that our framework can answer such queries easily. We also consider
an orthogonal variant called dictionary matching with one missing substring
problem. In this variant, a gap of acceptable length can be created in the text,
for matching puposes. More, precisely we denote missing substring pattern as
Pi[βi]Qi, the pattern can be interpreted as Pi followed by a suffix of Qi with
anywhere between 0 to βi characters missing from Qi. We give a O(n) space
index, taking O(|T | log n + occ) query time. In this case also, we further show
how to generalize it to the case of missing string occuring at arbitrary location
in the pattern.

2 Notation and Preliminaries

For a string X, we use |X| to denote its length, X[i], 1 ≤ i ≤ |X|, to denote
its ith character, X[i . . . j] to denote its sub-string starting from position i and
ending at position j. For simplicity, we may use X[i . . . ] to denote X[i . . . |X|]
and X[. . . i] to denote X[1 . . . i]. The reverse of X is denote by

←−
X . Specifically,

the ith character of
←−
X is the (|X| − i + 1)th character of X. Throughout this

paper, ε denotes an arbitrary small positive constant. For two strings (which
may consist of a single character) X and Y , XY represents the concatenation.
Always interpret log x as 1 for x < 2.

2.1 Suffix Tree and Loci

Let S = {S1, S2, . . . , Sd} be a collection of d strings and of total n characters.
The (generalized) suffix tree of S is a compact trie storing all the suffixes of each
Si in S [30]. For our purpose, we slightly change1 the definition of suffix tree:
first create a new set S ′ = {S1$, S1#, S2$, S2#, . . . , Sd$, Sd#} by duplicating
each Si ∈ S into Si$ and Si#, where $ and # are two special characters that
does not appear in Σ. We now create a compact trie of all suffixes (except $
and #) of all strings in S ′ and call it the suffix tree T of S. Following are the
characteristics of T .

1. T is a tree of exactly 2n leaves. There are no internal nodes with degree 1.
2. Edges are labeled with strings and for any node u, path(u) is the string

obtained by the concatenation of edge labels on the path from root u.
3. Corresponding to each Si$ (resp., Si#), there exists a unique leaf node in T

with its path equals Si$ (resp., Si#).
1 This is just for the ease ensuring some properties.
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4. For each i, there exists a unique node u in T , where path(u) = Si. Specifically,
u is the lowest common ancestor (lca) of the leaves corresponding to Si$ and
Si#. We mark node u with id i.

5. For any node u there always exists a node v such that path(v) is the string
obtained by deleting the first character from the string path(u). Node v is
called the suffix link of u, denoted slink(u).

6. Each node in T maintains its pre-order id, its suffix link, and a pointer to its
nearest marked ancestor.

7. The locus of a string T in T , denoted by locus(T ), is a node u, such that u is
the lowest (farthest from root) where path(u) is a prefix of T .

We now define a problem, which can be efficiently solved.

Problem 2 (Prefix Matching). Let S be collection of d strings of total length
n, where the characters are drawn from an alphabet set [σ]. Then, pre-process S
into a suffix tree data structure T , such that we can answer the following: given
a text T , take all the suffixes T [i . . . ] of this text and report all locus(T [i . . . ]) for
all possible starting locations i of the suffixes.

The following result is by Amir et al. [4].

Lemma 1 ([4]). There exists an O(n) space and O(|T |) query time data struc-
ture for Problem2.

This is obtained by following process, first we match T as much as we can and
find the locus then we follow suffix link and match further until we can (thus
finding locus for T [2 . . . ]) and so on. For more precise and detailed description,
see [4,21].

In the usual dictionary matching problem, once the locus node v is obtained,
every marked node on the path from v to root forms an output. This is done
by following marked ancestors pointers starting from the locus node v. This is
repeated for all the loci.

3 Forward and Reverse Suffix Trees

Based on the ideas used for 1-error dictionary matching [5] we show the frame-
work of using forward and reverse suffix trees for our problem. We define two
string collections

←−S and
−→S w.r.t. D as follows.

←−S = {←−Pi | Pi[αi, βi]Qi ∈ D, 1 ≤ i ≤ d}
−→S = {Qi | Pi[αi, βi]Qi ∈ D, 1 ≤ i ≤ d}

For the string collection
←−S , construct a suffix tree

←−T as described in Sect. 2.1.
Similarly, for

−→S , construct the corresponding trie
−→T . For the string

←−−−−
T [. . . i]

(reverse of the prefix of T ending at location i), let ui be the node corresponding
to its locus in

←−T . Similarly, let vi be the node corresponding to the locus of
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T [i . . . ] in
−→T . Both

←−T and
−→T can be maintained in O(n) space and whenever T

comes as a query, we can compute ui’s and vi’s for all values of i in O(|T |) time
(refer to Lemma 1). Following is a crucial observation.

Observation 1. Let j ∈ [1, |T |] and g be two integers. Then, a pattern Pi[αi, βi]Qi

match with a sub-string T [j − |Pi| + 1, j + g + |Qi|] if and only if

1.
←−
Pi is a prefix of path(uj) in

←−T .
2. Qi is a prefix of path(vj+g+1) in

−→T .
3. αi ≤ g ≤ βi.

Therefore, dictionary matching problem where αi = α, βi = β, for all i can be
reduced to the following problem.

Problem 3. For all j ∈ [1, |T |] and g ∈ [α, β], find all tuples (j, g, i), where
←−
Pi is

a prefix of path(uj) in
←−T and Qi is a prefix of path(vj+g+1) in

−→T . A tuple (j, g, i)
can be interpreted as a match of Pi[αi, βi]Qi with T [j − |Pi| + 1, j + g + |Qi|].
Given j and g, the main task here is to find all i’s which go with them. For
finding such i’s, we can first find loci uj and vj+g+1. Then make the list of
marked nodes above uj in

←−T and the list of marked nodes above vj+g+1 in
−→T .

Now intersect these to list to find the common one-gap-patterns. However, here
lies the catch. These lists individually might be much bigger than the size of
their intersection. Thus, we are trying out many more things than what the final
output contains. Consequently, we cannot bound our query time in terms of the
size of the output.

To overcome this issue, Amir et al. [6] took the approach of heavy path
decomposition [29]. Both the forward and reverse trees are decomposed into
heavy paths. Now, any locus to root path (from which the marked nodes need
to be considered) will overlap with at most log n heavy paths. Between every
pair of heavy path – one from forward and one from reverse suffix tree – they
maintain a 2D range reporting data structure if their intersection is non-zero.
In this structure, pre-order ids are assigned in a such a manner that all the
ids on any heavy path form contiguous numbers. So, 2D range reporting data
structure will have points corresponding to intersection of both heavy paths
(one in forward and one in reverse). The coordinates of this point are its pre-
order id in forward tree and pre-order id in reverse tree. Now, when we query
based on uj and vj+g+1 we consider log n heavy paths in forward and log n in
reverse, and based their cross product, we look at log2 n 2D range reporting
data structures. In each structure, we issue an orthogonal range reporting query
which takes O(log log d + output). (The structure giving such query times take
super linear O(d logε d) space [9].) Based on this Amir et al. [6] got the O(|T |(β−
α + 1) log2 n log log d + occ) time bound.

4 Our Framework

Unlike the heavy path decomposition along with 2D orthogonal range searching
approach of Amir et al., we take an orthogonal approach to find the intersection
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of marked ancestors. We formulate this marked node intersection problem as
3D rectangular stabbing problem instead. In our framework, the bound of
gaps are not the same for all patterns. Then by combining the definition of
cover(D) with Observation 1, the dictionary matching problem can be reduced
to the following.

Problem 4. For all j ∈ [1, |T |] and g ∈ cover(D), find all tuples (j, g, i), where

1.
←−
Pi is a prefix of path(uj) in

←−T .
2. Qi is a prefix of path(vj+g+1) in

−→T .
3. αi ≤ g ≤ βi.

As described before, we interpret tuple (j, g, i) as a match of Pi[αi, βi]Qi with
T [j − |Pi| + 1, j + g + |Qi|]. We now present the way we handle a sub-query in
Problem 4. i.e., for a specific j and g. We map each pattern Pi[αi, βi]Qi to a
rectangular region Ri in 3D as follows: Ri = [x′

i, x
′′
i ] × [y′

i, y
′′
i ] × [αi, βi], where

– x′
i is the (pre-order rank of the) locus of

←−
Pi in

←−T
– x′′

i is the rightmost leaf node in the sub-tree of x′
i

– y′
i is the (pre-order rank of the) locus of Qi in

−→T
– y′′

i is the rightmost leaf node in the sub-tree of y′
i

Clearly the three conditions inProblem 4 are satisfied iff the rectangleRi is stabbed
by the point (uj , vj+g+1, g) as illustrated in Fig. 1. Therefore by maintaining struc-
tures for answering stabbing queries over the rectangles R1, R2, . . . , Rd, the dic-
tionary matching problem can be reduced to O(|T |γ) number of 3D rectangle
stabbing queries. Following lemma summarizes one of the best known space-time
trade-offs for rectangular stabbing problem.

Lemma 2 [1,10]. A set Rk of d k-dimensional rectangles (k ≥ 2 is a constant)
can be pre-processed into an O(d logk−2 d) space data structure and can answer
rectangle stabbing queries in time O(logk−1 d + output).

Therefore by using the result in Lemma 2 as a black box (with k = 3), we obtain
an O(n+d log d) space and O(|T |γ log2 d+occ) query time data structure for our
problem. The set of rectangles R1, R2, . . . , Rd in our case have bounded number
(specifically λ) of distinct corner points in the third dimension. Therefore by
using the result in Lemma 4, we obtain the following improved result.

Lemma 3. The collection D of d one-gap patterns can be indexed in O(n+d log λ)
space and can answer any dictionary matching query T in O(|T |γ log λ log d+occ)
time, where occ is the output size.

Lemma 4. Let R3 be a set of d rectangles in three-dimension with the number
of distinct corner points in the third dimension is at most λ, we can pre-process
R3 into an O(d log λ) space data structure and can answer stabbing queries in
O(log d log λ + output) time.
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Pi Qi

g

T
j

Fig. 1. Rectangle Stabbing

Proof. (sketch) The result follows from the proof of Lemma 2 in [1] for k ≥ 3.
Essentially, they showed that any k ≥ 3 dimensional rectangle stabbing query
can be decomposed into O(log λ) (k−1)-dimensional rectangle stabbing queries,
where λ is the number of distinct corner points in k-th dimension. The space of
the new structure will be O(log λ) times the space of the structure for (k − 1)th
dimensional stabbing queries. By using the structure by Chazelle [10] as the base
case (i.e., Lemma 2 with d = 2), we obtain the result. �

4.1 Achieving Linear Space

In Lemma 3, we achieve the desired query time as in Theorem 1. However the
space is not linear when d is large. In order to achieve linear space, we categorize
the patterns into long and short based on a threshold τ = log λ. Specifically, a
pattern Pi[αi, βi]Qi is long if |Pi| + |Qi| ≥ τ , and is short otherwise. We now
treat the collection of long patterns (Sl) and the collection of short patterns (Ss)
independently. Notice that the number of long patterns |Sl| ≤ n/ log λ. Therefore
using Lemma 3, we can maintain Sl in O(n + |Sl| log λ) = O(n) space and a
dictionary matching query on Sl can be answered in O(|T |γ log λ log d + occl)
time, where occl is the number of long patterns that appear as a sub-string of T .

We now show how to handle dictionary matching queries on Ss. As described
before, we create forward suffix tree

−→T and reverse suffix tree
←−T of Ss. Space

can be bounded by O(n) words. Now we associate a set R(w) of two-dimensional
rectangles with each node w in

←−T as follows:

R(w) = {[y′
i, y

′′
i ] × [αi, βi] | Pi[αi, βi]Qi ∈ D and path(w) = Pi}
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Recall that y′
i is the (pre-order rank of the) locus of Qi in

−→T and y′′
i is the

rightmost leaf node in the sub-tree of y′
i. Each R(w) is maintained as a data struc-

ture for answering two-dimensional stabbing queries (using Lemma2 with d = 2).
As each rectangle belongs to a unique set R(·), the total space can be bounded
by O(n). Now a specific instance (j, g, i) of Problem 4 can be answered by issu-
ing a two-dimensional stabbing query (vj+g+1, g) on R(w) over all ancestors w of
uj . Notice that the number of ancestor of any node in

←−T is at most τ (which is
log λ), and each two-dimensional range stabbing query require time O(log d) plus
the number of outputs. By combining all, the time for dictionary matching query
on Ss can also be bounded by O(|T |γ log λ log d+ occs), where occs is the number
of short patterns that appear as a sub-string of T .

Finally by combining both the short pattern and the long pattern cases, we
obtain Theorem 1.

5 More Space-Time Trade-Offs

We present two additional space-time trade-offs in this section.

5.1 Achieving Faster Query Time

In this section we present the details of Theorem 2. Similar to the solution in
Theorem 1, we have two phases (i) prefix matching phase and (ii) stabbing query
phase. For Phase (i), we use the result in Lemma 1, where as for Phase (ii), we
use the following structure for handling stabbing queries.

Lemma 5. A given set R3 of d rectangles in an [n]3 grid can be pre-processed
into an O(n + d1+ε) space data structure and stabbing queries can be answered
in optimal O(1 + output) time.

Proof. Using rank space reduction, each rectangle R, which is originally in an
[n]3 grid can be mapped to a rectangle in an [d]3 grid. Now, when a 3D point p
comes as a query, we can find the corresponding point p′ in [d]3 grid using three
n-word arrays in constant time, such that the set of rectangles stabbed by p is
equivalent to the set of rectangles in the rank-space reduced space stabbed by p′.
Next, the rectangle stabbing query on rectangles in [d]3 grid can be reduced to an
equivalent range reporting problem over points in an [d]6 grid. It is known that
the range reporting over a set of d points in any [d]r grid, for any constant r can
be answered in optimal time using O(d1+ε) words of space [23]. By combining
this result with rank-space reduction, the claim follows. �

Thus by combining the space time trade-offs from both phases, we obtain
Theorem 2.
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5.2 Achieving Succinct Space

We show how to achieve Theorem 3 in this section. We start with some notations:
for any node u in

←−T , let u∗ be its lowest marked ancestor (i.e., a node with its
path(·) equals to

←−
( Pi) for some i ∈ [1, d]). Similarly, for any node v in

−→T , let
v∗ be its lowest marked ancestor (i.e., a node with its path(·) equals to Qi for
some i ∈ [1, d]). Using the sparsifications techniques by Hon et al. [21], both

←−T
and

−→T can be replaced by an n log σ +O(d log n)+ o(n log σ) bits structure, and
whenever a text T comes as query, instead of reporting uj and vj for 1 ≤ j ≤ |T |,
we can report all u∗

j ’s and v∗
j ’s in O(|T | logε n) time. Now observe that the set

of marked nodes on the path to the root of
←−T from uj and u∗

j is the same.

Similarly, the set of marked nodes on the path to the root of
←−T from uj and u∗

j

is also same. Therefore, we can easily replace uj by u∗
j and vj+g+1 by v∗

j+g+1 in
the solution for Problem4.

In summary, Phase (i) can be handled using an n log σ+O(d log n)+o(n log σ)
bits structure in O(|T | logε n) time. Whereas Phase (ii) can be handled exactly
as before, however with a new threshold τ = log λ log1+ε n. This new threshold
makes sure that the space for the structures for Phase (ii) is o(n) + O(d log n)
bits. The time for long pattern case remains the same as O(|T |γ log λ log d+occl),
where as that of short patterns will be O(|T |γτ log d+occs). By combining every
thing, we obtain Theorem3.

6 Extensions and Variants

6.1 Gap Can Occur at Multiple Locations in the Pattern

First we consider a generalization where gap can be present at multiple loca-
tions in the pattern. Suppose that instead of Pi[αi, βi]Qi as a one-gap-pattern
(where gap location is fixed), we are given only P ′

i along with parameters
[αi, βi] and a list of positions listi. Thus, this pattern represents a collection
{P ′

i [1..p] [αi, βi]P ′
i [p+1..|P ′

i |] | p ∈ listi} of one-gap patterns. Then, our frame-
work can be generalized to handle such a case, so that the total space is bounded
by O (

∑
i |P ′

i |) + O(L log L), where L =
∑

i |listi| denotes the total number of
positions in the patterns that a gap may appear. For this, we do the following
modification in our framework. Instead of indexing

←−
Pi in

←−T , we use the whole
string

←−
P ′

i and index Pi in
−→T . Now, for each position p in listi, we create a

rectangle using locus u of
←−−−−
P ′

i [1..p] in
←−T and locus v of P ′

i [p + 1..|P ′
i |] in

−→T and
the gap bounds [αi, βi]. This increases the number of rectangle in our stabbing
structure to L, giving O(n + L log L) space data structure. In the worst case,
when L could be all n possible positions, this becomes O(n log n) data structure
answering queries in O(|T |γ log λ log n + occ).

6.2 Missing Substring: Induced Gap in the Text

Here, we discuss the dictionary matching with one missing string problem, in
which a pattern may match a text substring when there is a gap of an acceptable
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length appearing within the text substring. In this variant, a gap of acceptable
length can be created in the text, for matching puposes. More, precisely we
denote missing substring pattern as Pi[βi]Qi, the pattern can be interpreted as
Pi followed by a suffix of Qi with anywhere between 0 to βi beginning characters
missing from Qi.2

Again our framework of rectangle stabbing can be used here. For each pattern
Pi[βi]Qi, we create βi + 1 rectangles corresponding to loci of each valid suffix of
Qi. Now these, rectagles are 2D with no gap dimension. During the search, at
each point in T we no longer have to try out all possible gaps. We simply issue
one query by obtaining the stabbing point as the pair of locus of

←−−−
T [...j] in

←−T
and T [j + 1, ...] in

−→T .
Since there are no more than O(n) 2D rectangles, our data structures take

O(n) space. For query time, we get O(|T | log n + occ).

6.3 Missing Substring at Arbitrary Location

Here, we generalize the dictionary matching with one missing string problem to
allow the missing substring at any arbitrary location in the pattern. Again, here
we are no longer given the break up of the pattern into Pi and Qi. We are just
given a pattern Pi along with parameter ki. Any substring of length anywhere
between 0 and ki can go missing from any location in Pi. One way to solve it
would be to take Pi and create |Pi|ki number of distinct patterns, each of the
form Pi[1..j]Pi[j′ + 1...|Pi|] with j ∈ [1, |Pi|] and j′ − j ∈ [0, ki].

Now, when we create
←−T , we use patterns

←−
Pi. Notice that every suffix of

←−
Pi

finds a locus in
←−T . If seen in the reverse, it means every prefix of Pi is indexed.

Similarly, when we create
−→T we use the whole pattern Pi in forward sense. Again

each suffix of Pi finds locus in
−→T . Now, for the pattern π · ζ, where π is a prefix

of Pi and ζ is a suffix of Pi, let u be the node in
←−T with path(u) = ←−π , and v

be the node in
−→T with path(v) = ζ. Construct a 2D rectangle [x, x′] × [y, y′],

where [x, x′] is the preorder range of u in
←−T , and [y, y′] is the preorder range of

v in
−→T . Finally, maintain a rectangle stabbing (point enclosure) index for this

set of 2D rectangles constructed from all Pi’s. The number of such rectangles is
ρ =

∑
i |Pi|ki.

Given this, we first find loci of each suffix of T in
−→T and loci of the reverse

of each prefix of T in
←−T . This can be done in O(T ) time. Then, for a particular

� ∈ [1, |T |], we get the locus of the reverse of T [1..�] in
←−T , and the locus of

T [� + 1..|T |] in
−→T . Let x, y respectively denote the preorder ranks of there loci.

Then, all patterns that match a substring of T , with a gap inserted at position
�+1, can be found by a point enclosure query with (x, y) as input. Thus, we get
O(ρ) space index with query time O(|T | log ρ + occ).

2 The lower bound αi is redundant in this case and is set to zero. Otherwise, we can
always omit first αi characters from Qi obtaining Q′

i and work with Pi[βi − αi]Q
′
i.
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For small ki’s the space requirement ρ may be linear but in general it may be
higher. We briefly sketch a space saving alternative offering trade-off. For this,
note that for a particular pattern Pi all the loci corresponding to it in

−→T appear
in on a contiguous path if we consider the tree formed by following suffix links
of

−→T (i.e., the failure tree of AC automata). So now we number the nodes, in
terms of preorder numbering in failure tree. For this preorder numbering, we
first decompose the failure tree into centroid paths and then make sure all the
vertices in a particular centroid path have contiguous numbers. Now, any pattern
Pi’s path only overlaps with at most O(log n) centroid paths. Thus, all the loci
of suffixes of Pi form contiguous chunks of pre-order numbers, with number
of chunks being at most log n. Based on this idea, the number of rectangles
generated by Pi can be reduced to |Pi|+ ki log n. This gives us O(n log n) space.
However, time goes up by a multiplicative factor κ = maxi |Pi|. This gives us
query time of O(κ|T | log n + occ).

7 Conclusions

We have applied Amir et al.’s framework in [6], but taking a different view
to represent the dictionary, to solve a more general variant of the dictionary
matching with one gap problem, thereby answering one of the open problems
in [6]. We gave space-efficient and succinct space solutions for this problem. We
have also proposed a new variant of the dictionary problem, in which a gap may
appear in the text during a match, and showed that it can be solved using a
similar framework.

Two questions are open: 1. Can we extend the techniques to handle dictionary
matching with more than one gap? 2. Can we obtain succinct solutions for gap
in the text variant?
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1 Department of Computer Science, West University of Timişoara,
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Abstract. We investigate partitioning of integer sequences into hea-
pable subsequences (previously defined and established by Byers et al.).
We show that an extension of patience sorting computes the decomposi-
tion into a minimal number of heapable subsequences (MHS). We connect
this parameter to an interactive particle system, a multiset extension
of Hammersley’s process, and investigate its expected value on a ran-
dom permutation. In contrast with the (well studied) case of the longest
increasing subsequence, we bring experimental evidence that the correct

asymptotic scaling is 1+
√
5

2
· ln(n). Finally we give a heap-based exten-

sion of Young tableaux, prove a hook inequality and an extension of the
Robinson-Schensted correspondence.

Keywords: Heapable sequences · Hammersley process · Heap tableaux

1 Introduction

Patience sorting [16] and the longest increasing (LIS) sequence are well-studied
topics in combinatorics. The analysis of the expected length of the LIS of a
random permutation is a classical problem displaying interesting connections
with the theory of interacting particle systems [2] and that of combinatorial
Hopf algebras [9]. Recursive versions of patience sorting are involved (under the
name of Schensted procedure [19]) in the theory of Young tableaux. A wonderful
recent reference for the rich theory of the longest increasing sequences (and
substantially more) is [18].

Recently Byers et al. [4] introduced, under the name of heapable sequence,
an interesting variation on the concept of increasing sequences. Informally, a
sequence of integers is heapable if it can be successively inserted into a (not
necessarily complete) binary tree satisfying the heap property without having
to resort to node rearrangements. Byers et al. showed that the longest heapable
subsequence in a random permutation grows linearly (rather than asymptotically
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equal to 2
√

n as does LIS) and raised as an open question the issue of extending
the rich theory of LIS to the case of heapable sequences.

In this paper we partly answer this open question: we define a family
MHSk(X) of measures (based on decomposing the sequence into subsequences
heapable into a min-heap of arity at most k) and show that a variant of patience
sorting correctly computes the values of these parameters. We show that this fam-
ily of measures forms an infinite hierarchy, and investigate the expected value
of parameter MHS2[π], where π is a random permutation of order n. Unlike
the case k = 1 where E[MHS1[π]] = E[LDS[π]] ∼ 2

√
n, we argue that in

the case k ≥ 2 the correct scaling is logarithmic, bringing experimental evi-
dence that the precise scaling is E[MHS2[π]] ∼ φ ln n, where φ = 1+

√
5

2 is the
golden ratio. The analysis exploits the connection with a new, multiset exten-
sion of the Hammersley-Aldous-Diaconis process [1], an extension that may be of
independent interest. Finally, we introduce a heap-based generalization of Young
tableaux. We prove (Theorem 6 below) a hook inequality related to the hook for-
mula for Young tableaux [7] and Knuth’s hook formula for heap-ordered trees [13],
and (Theorem 8) an extension of the Robinson-Schensted (R-S) correspondence.

2 Preliminaries

For k ≥ 1 define alphabet Σk = {1, 2, . . . , k}. Define as well Σ∞ = ∪k≥1Σk.
Given words x, y over Σ∞ we will denote by x � y the fact that x is a prefix
of y. The set of (non-strict) prefixes of x will be denoted by Pref(x). Given
words x, y ∈ Σ∗

∞ define the prefix partial order x �ppo y as follows: If x � y then
x �ppo y. If x = za, y = zb, a, b ∈ Σ∞ and a < b then x �ppo y. �ppo is the
transitive closure of these two constraints. Similarly, the lexicographic partial
order �lex is defined as follows: If x � y then x �lex y. If x = za, y = zb,
a, b ∈ Σ∞ and a < b then x �lex y. �lex is the transitive closure of these two
constraints.

A k-ary tree is a finite, �ppo-closed set T of words over alphabet Σk =
{1, 2, . . . , k}. That is, we impose the condition that positions on the same level in
a tree are filled preferentially from left to right. The position pos(x) of node x in
a k-ary tree is the string over alphabet {1, 2, . . . , k} encoding the path from
the root to the node (e.g. the root has position λ, its children have positions
1, 2, . . . , k, and so on). A k-ary (min)-heap is a function f : T → N monotone
with respect to pos, i.e. (∀x, y ∈ T ), [pos(x) � pos(y)] ⇒ [f(x) ≤ f(y)].

A (binary min-)heap is a binary tree, not necessarily complete, such that
A[parent[x]] ≤ A[x] for every non-root node x. If instead of binary we require
the tree to be k-ary we get the concept of k-ary min-heap.

A sequence X = X0, . . . , Xn−1 is k-heapable if there exists some k-ary tree
T whose nodes are labeled with (exactly one of) the elements of X, such that
for every non-root node Xi and parent Xj , Xj ≤ Xi and j < i. In particular a
2-heapable sequence will simply be called heapable [4]. Given sequence of integer
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Fig. 1. HADk, the multiset Hammersley process with k lifelines.

numbers X, denote by MHSk(X) the smallest number of heapable (not neces-
sarily contiguous) subsequences one can decompose X into. MHS1(X) is equal
[14] to the shuffled up-sequences (SUS) measure in the theory of presortedness.

Example 1. Let X = [2, 4, 3, 1]. Via patience sorting MHS1(X) =SUS(X) = 3.
MHS2(X) = 2, since subsequences [2, 3, 4] and [1] are 2-heapable. On the other
hand, for every k ≥ 1, MHSk([k, k − 1, . . . , 1]) = k.

Analyzing the behavior of LIS relies on the correspondence between longest
increasing sequences and an interactive particle system [1] called the
Hammersley-Aldous-Diaconis (shortly, Hammersley or HAD) process. We give it
the multiset generalization displayed in Fig. 1. Technically, to recover the usual
definition of Hammersley’s process one should take Xa > Xt+1 (rather than
Xa < Xt+1). This small difference arises since we want to capture MHSk(π),
which generalizes LDS(π), rather than LIS(π) (captured by Hammersley’s
process). This slight difference is, of course, inconsequential: our definition is
simply the flipped around the midpoint of segment [0,1] version of such a gener-
alization, and has similar behavior).

3 A Greedy Approach to Computing MHSk

First we show that one can combine patience sorting and the greedy approach in [4]
to obtain an algorithm for computing MHSk(X). To do so, we must adapt to our
purposes some notation in that paper.

A binary tree with n nodes has n + 1 positions (that will be called slots)
where one can add a new number. We will identify a slot with the minimal value
of a number that can be added to that location. For heap-ordered trees it is the
value of the parent node. Slots easily generalize to forests. The number of slots
of a forest with d trees and n nodes is n + d.

Given a binary heap forest T , the signature of T denoted sig(T ), is the vector
of the (values of) free slots in T , in sorted (non-decreasing) order. Given two
binary heap forests T1, T2, T1 dominates T2 if |sigT1 | ≤ |sigT2 | and inequality
sigT1 [i] ≤ sigT2 [i] holds for all 1 ≤ i ≤ |sigT1 |.
Theorem 1. For every fixed k ≥ 1 there is a polynomial time algorithm that,
given sequence X = (X0, . . . , Xn−1) as input, computes MHSk(X).
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Proof. We use the greedy approach of Algorithm 3.1.

Proving correctness of the algorithm employs the following
Lemma 1. Let T1, T2 be two heap forests such that T1 dominates T2. Insert a new
element x in bothT1 and T2: greedily in T1 (i.e. at the largest slot with value less
or equal to x, or as the root of a new tree, if no such slot exists) and arbitrarily
in T2, obtaining forests T ′

1, T
′
2, respectively. Then T ′

1 dominates T ′
2.

Proof. First note that, by domination, if no slot of T1 can accomodate x (which,
thus, starts a new tree) then a similar property is true in T2 (and thus x starts
a new tree in T2 as well).


�
Let sigT1 = (a1, a2, . . .) and sigT2 = (b1, b2, . . .) be the two signatures. By dom-
ination ai ≤ bi for all i. The process of inserting x can be described as adding
two copies of x to the signature of T1(T2) and (perhaps) removing a label ≤ x
from the two signatures. The removed label is ai, the largest label ≤ x, in the
case of greedy insertion into T1. Let bj be the largest value (or possibly none) in

a1 a2 ... ak ... aj ... ai−1

ai≤x≤ai+1

ai

b1 b2 ... bk

bj←x

... bj

bj≤x≤bj+1

... bi−1 bi

a1 a2 ... ak ... aj ... ai−1

ai→

x x ai+1

b1 ... bk−1 bk+1

bk→

... bj x x ... bi−1 bi bi+1

Fig. 2. The argument of Lemma 1. Pictured vectors (both initial and resulting) have
equal lengths (which may not always be the case).
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T2 less or equal to x. Some bk less or equal to bj is replaced by two copies of x
in T2. The following are true:

– The length of sigT ′
1

is at most that of sigT ′
2
.

– The element bk (if any) deleted by x from T2 satisfies bk ≤ x. Its index in T2

is less or equal to i.
– The two x’s are inserted to the left of the deleted (if any) positions in both

T1 and T2.

Consider some position l in sigT ′
1
. Our goal is to show that a′

l ≤ b′
l. Several cases

are possible (Fig. 2):

– l < k. Then a′
l = al and b′

l = bl.
– k ≤ l < j. Then a′

l = al and b′
l = bl+1 ≥ al.

– j ≤ l ≤ i + k − 1. Then a′
l ≤ x and b′

l ≥ x.
– l > i + k − 1. Then a′

l = al−k+1 and b′
l = bl−k+1.

Let X be a sequence of integers, OPT be an optimal partition of X into
k-heapable sequences and Γ be the solution produced by GREEDY. Applying
Lemma 1 repeatedly we infer that whenever GREEDY adds a new heap the
same thing happens in OPT. Thus the number of heaps created by Greedy is
optimal, which means that the algorithm computes MHSk(X). 
�
Trivially MHSk(X) ≤ MHSk−1(X). On the other hand

Theorem 2. The following statements (proved in the full version [12]) are
true for every k ≥ 2: (a). there exists a sequence X such that MHSk(X) <
MHSk−1(X) < . . . < MHS1(X); (b). sup

X
[MHSk−1(X) − MHSk(X)] = ∞.

4 The Connection with the Multiset Hammersley Process

Denote by MinHADk(n) the random variable denoting the number of times i in
the evolution of process HADk up to time n when the newly inserted parti-
cle Xi has lower value than all the existing particles at time i. The observation
from [1,8] generalizes to:

Theorem 3. For every fixed k, n ≥ 1 Eπ∈Sn
[MHSk(π)] = E[MinHADk(n)].

Proof Sketch. W.h.p. all Xi’s are different. We will thus ignore in the sequel
the opposite alternative. Informally minima correspond to new heaps and live
particles to slots in these heaps (cf. also Lemma 1). 
�

5 The Asymptotic Behavior of E[MHS2[π]]

The asymptotic behavior of E[MHS1[π]] where π is a random permutation in
Sn is a classical problem in probability theory: results in [1,8,15,22] show that
it is asymptotically equal to 2

√
n.

A simple lower bound valid for all values of k ≥ 1 is
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Theorem 4. For every fixed k, n ≥ 1

Eπ∈Sn
[MHSk(π)] ≥ Hn, the n′th harmonic number. (1)

Proof. For π ∈ Sn the set of its minima is defined as Min(π) = {j ∈ [n] :
π[j] < π[i] for all 1 ≤ i < j} (and similarly for maxima). It is easy to see
that MHSk[π] ≥ |Min[π]|. Indeed, every minimum of π must determine the
starting of a new heap, no matter what k is. Now we use the well-known formula
Eπ∈Sn

[|Min[π]|] = Eπ∈Sn
[|Max[π]|] = Hn [13]. 
�

To gain insight in the behavior of process HAD2 we note that, rather than giv-
ing the precise values of X0,X1, . . . , Xt ∈ [0, 1], an equivalent random model
inserts Xt uniformly at random in any of the t+1 possible positions determined
by X0,X1, . . . , Xt−1. This model translates into the following equivalent combi-
natorial description of HADk: word wt over the alphabet {−1, 0, 1, 2} describes
the state of the process at time t. Each wt conventionally starts with a −1 and
continues with a sequence of 0, 1’s and 2’s, informally the “number of lifelines”
of particles at time t. For instance w0 = 0, w1 = 02, w2 is either 022 or 012,
depending on X0 <> X1, and so on. At each time t a random letter of wt is
chosen (corresponding to a position for Xt) and we apply one of the following
transformations, the appropriate one for the chosen position:

– Replacing −10r by −10r2: This is the case when Xt is the smallest particle
still alive, and to its right there are r ≥ 0 dead particles.

– Replacing 10r by 0r+12: Suppose that Xa is the largest live label less or equal
to Xt, that the corresponding particle Xa has one lifetime at time t, and that
there are r dead particles between Xa and Xt. Adding Xt (with multiplicity
two) decreases multiplicity of Xa to 0.

– Replacing 20r by 10r2: Suppose that Xa is the largest label less or equal to
Xt, its multiplicity is two, and there are r ≥ 0 dead particles between Xa and
Xt. Adding Xt removes one lifeline from particle Xa.

Simulating the (combinatorial version of the) Hammersley process with two
lifelines confirms the fact that E[MHS2(π)] grows significantly slower than
E[MHS1(π)]: The x-axis in the figure is logarithmic. The scaling is clearly
different, and is consistent (see inset) with logarithmic growth (displayed as
a straight line on a plot with log-scaling on the x-axis). Experimental results
(see the inset/caption of Fig. 3) suggest the following bold

Conjecture 1. We have limn→∞
E[MHS2[π]]

ln(n) = φ, with φ = 1+
√
5

2 the golden
ratio. More generally, for an arbitrary k ≥ 2 the relevant scaling is

lim
n→∞

E[MHSk[π]]
ln(n)

=
1
φk

, (2)

where φk is the unique root in (0, 1) of equation Xk + Xk−1 + . . . + X = 1.
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We plan to present the experimental evidence for the truth of equation (2)
and a nonrigorous, “physics-like” justification, together with further insights on
the so-called hydrodynamic behavior [10] of the HADk process in subsequent
work [11]. For now we limit ourselves to showing that one can (rigorously) per-
form a first step in the analysis of the HAD2 process: we prove convergence of
(some of) its structural characteristics. This will likely be useful in a full rigorous
proof of Conjecture 1.

Fig. 3. Scaling of expected value of MHSk[π] for k = 1, 2. The inset shows E[MHS2[π]]
(red) versus φ · ln(n) + 1 (blue). The fit is strikingly accurate (Color figure online).

Denote by Lt the number of digits 1+2, and by Ct the number of ones in wt.
Let l(t) = E[L(t)

t ], c(t) = E[C(t)
t ]. l(t), c(t) always belong to [0, 1].

Theorem 5. There exist constants l, c ∈ [0, 1] such that l(t) → l, c(t) → c.

Proof Sketch. We use a standard tool, subadditivity: if sequence an satisfies
am+n ≤ am + an for all m,n ≥ 1 then (by Fekete’s Lemma ([21] pp. 3, [20])
limn→∞ an/n exists. We show in the full version [12] that this is the case for two
independent linear combinations of l(t) and c(t). 
�
Experimentally (and nonrigorously) l = φ − 1 =

√
5−1
2 and c = 3−√

5
2 . “Physics-

like” nonrigorous arguments then imply the desired scaling. An additional ingre-
dient is that digits 0/1/2 are uniformly distributed (conditional on their density)
in a large wt. This is intuitively true since for large t the behavior of the HADk

process is described by a compound Poisson process. We defer more complete
explanations to [11].

6 Heap Tableaux, a Hook Inequality and a Generalization
of the Robinson-Schensted Correspondence

Finally, we present an extension of Young diagrams to heap-based tableaux.
All proofs are given in the full version [12]. A (k-)heap tableau T is k-ary
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min-heap of integer vectors, so that for every r ∈ Σ∗
k , the vector Vr at

address r is nondecreasing. We formally represent the tableau as a function
T : Σ∗

k × N → N ∪ {⊥} such that (a). T has finite support: the set dom(T ) =
{(r, a) : T (r, a) �=⊥} of nonempty positions is finite. (b). T is �-nondecreasing:
if T (r, a) �=⊥ and q � r then T (q, a) �=⊥ and T (q, a) ≤ T (r, a). In other words,
T (·, a) is a min-heap. (c). T is columnwise increasing: if T (r, a) �=⊥ and b < a
then T (r, b) �=⊥ and T (r, b) < T (r, a). That is, each column Vr is increasing.
The shape of T is the heap S(T ) where node with address r holds value |Vr|.

A tableau is standard if (e). for all 1 ≤ i ≤ n = |dom(T )|, |T−1(i)| = 1 and
(f). If x ≤lex y and T (y, 1) �=⊥ then ⊥�= T (x, 1) ≤ T (y, 1). I.e., labels in the first
heap H1 are increasing from left to right and top to bottom.

Example 2. A heap tableau T1 with 9 elements is presented in Fig. 4(a) and as
a Young-like diagram in Fig. 4(b). Note that: (i). Columns correspond to rows
of T1 (ii). Their labels are in Σ∗

2 , rather than N. (iii). Cells may contain ⊥. (iv).
Rows need not be increasing, only min-heap ordered.

One important drawback of our notion of heap tableaux above is that they do
not reflect the evolution of the process HADk the way ordinary Young tableaux
do (on their first line) for process HAD1 via the Schensted procedure [19]:
A generalization with this feature would seem to require that each cell contains
not an integer but a multiset of integers. Obtaining such a notion of tableau is
part of ongoing research.

However, we can motivate our definition of heap tableau by the first appli-
cation below, a hook inequality for such tableaux. To explain it, note that heap
tableaux generalize both heap-ordered trees and Young tableaux. In both cases
there exist hook formulas that count the number of ways to fill in a structure
with n cells by numbers from 1 to n: [7] for Young tableaux and [13] (Sect. 5.1.4,
Ex. 20) for heap-ordered trees. It is natural to wonder whether there exists a
hook formula for heap tableaux that provides a common generalization of both
these results.

Theorem 6 gives a partial answer: not a formula but a lower bound. To state
it, given (α, i) ∈ dom(T ), define the hook length Hα,i to be the cardinal of set
{(β, j) ∈ dom(T ) : [(j = i) ∧ (α � β)] ∨ [(j ≥ i) ∧ (α = β)]}. For example,
Fig. 4(c). displays the hook lengths of cells in T1.

Theorem 6. Given k ≥ 2 and a k-shape S with n free cells, the number of
ways to create a heap tableau T with shape S by filling its cells with numbers
{1, 2, . . . , n} is at least n!∏

(α,i)∈dom(T ) Hα,i
. The bound is tight for Young tableaux

[7], heap-ordered trees [13], and infinitely many other examples, but is also not
tight for infinitely many (counter)examples.

We leave open the issue whether one can tighten up the lower bound above to a
formula by modifying the definition of the hook length Hα,i.

We can create k-heap tableaux from integer sequences by a version of the
Schensted procedure [19]. Algorithm Schensted-HEAPk below performs column
insertions and gives to any bumped element k choices for insertion/bumping,
the children of vector Vr, with addresses r · Σk.
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2 4 8 [3]

11 12 13 [3] 6 14 [2]

10 [1]

λ 0 1 00 01 10 λ 0 1 00 01 10

1 2 11 6 ⊥ ⊥ 10 1 6 3 3 ⊥ ⊥ 1

2 4 12 14 2 4 2 1

3 8 13 3 2 1

Fig. 4. (a). Heap tableau T1 and its shape S(T1) (in brackets) (b). The equivalent
Young tableau-like representation of T1 and (c). The hook lengths.

Theorem 7. The result of applying the Schensted-HEAPk procedure to an arbi-
trary permutation X is indeed a k-ary heap tableau.

Example 3. Suppose we start with T1 from Fig. 4(a). Then (Fig. 5) 9 is appended
to vector Vλ. 7 arrives, bumping 8, which in turn bumps 11. Finally 11 starts a
new vector at position 00. Modified cells are grayed.

2 4 8 9

11 12 13 6 14

10

2 4 7 9

8 12 13 6 14

1011

Fig. 5. Inserting 9 and 7 into T1.
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Procedure Schensted-HEAPk does not help in computing the longest hea-
pable subsequence: The complexity of computing this parameter is open [4], and
we make no progress on this issue. On the other hand, we can give a k ≥ 2
version of the R-S correspondence:

Theorem 8. For every k ≥ 2 there exists a bijection between permutations
π ∈ Sn and pairs (P,Q) of k-heap tableaux with n elements and identical shape,
where Q is a standard tableau.

Condition “Q is standard” is specific to case k ≥ 2 where heaps simply have
“too many degrees of freedom” between siblings. Schensted-HEAPk solves this
problem by starting new vectors from left to right and top to bottom.

7 Conclusion and Acknowledgments

Our paper raises a large number of open issues. We briefly list a few of them:

– Rigorously justify Conjecture 1.
– Study process HADk and its variants [6,17].
– Reconnect the theory to the analysis of secretary problems [3,5].
– Determine the distribution of MHSk[π].
– Obtain a hook formula for heap tableaux.
– Define a version of Young tableaux related to process HADk.

We plan to address some of these in subsequent work. The most important open
problem, however, is the complexity of computing LHS.
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Abstract. The maximum rooted resolved triplets consistency problem
takes as input a set R of resolved triplets and asks for a rooted phylo-
genetic tree that is consistent with the maximum number of elements
in R. This paper studies the polynomial-time approximability of a gen-
eralization of the problem where in addition to resolved triplets, the
input may contain fan triplets and forbidden triplets. To begin with,
we observe that the generalized problem admits a 1/4-approximation
in polynomial time. Next, we present a polynomial-time approximation
scheme (PTAS) for dense instances based on smooth polynomial integer
programming. Finally, we generalize Wu’s exact exponential-time algo-
rithm in [19] for the original problem to also allow fan triplets, forbidden
resolved triplets, and forbidden fan triplets. Forcing the algorithm to
always output a k-ary phylogenetic tree for any specified k ≥ 2 then
leads to an exponential-time approximation scheme (ETAS) for the gen-
eralized, unrestricted problem.

Keywords: Bioinformatics · Approximation algorithms · Phylogenetic
tree · Rooted triplet · Smooth integer program

1 Introduction

Phylogenetic trees are used by scientists to describe treelike evolutionary his-
tory for various kinds of objects such as biological species, natural languages,
manuscripts, etc. [7]. Inferring an accurate phylogenetic tree from experimental
data can be a difficult task; for example, computationally expensive methods
like maximum likelihood that are known to yield good trees may be impractical
for large data sets [6]. One potential remedy is the divide-and-conquer approach:
first apply some expensive method to obtain a collection of highly reliable trees
for small, overlapping subsets of the leaf labels, and then use a computationally
cheaper method to merge these trees into a phylogenetic supertree [6,10,15].

JJ was funded by The Hakubi Project and KAKENHI grant number 26330014.

c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 272–283, 2015.
DOI: 10.1007/978-3-319-19929-0 23



The Approximability of Maximum Rooted Triplets Consistency 273

A concept that captures the combinatorial aspects of the smallest meaningful
building blocks of a phylogenetic supertree in the rooted case is rooted triplets
consistency. Given a set R of possibly contradicting rooted phylogenetic trees
with exactly three leaves each (so-called rooted triplets), the maximum rooted
triplets consistency problem asks for a tree that contains as many of the rooted
triplets in R as possible as embedded subtrees. Most previous work on the topic
(e.g., [1,4,5,8,16,18,19]) has focused on the case where all the given rooted
triplets are resolved triplets, meaning that they are binary. This paper considers
a more general problem variant where R may also contain non-binary triplets
(called fan triplets) that should preferably be included in the output tree as well
as forbidden triplets that should be avoided.

1.1 Definitions

A (rooted) phylogenetic tree is a rooted, unordered tree with no internal nodes of
degree 1 and whose leaves are distinctly labeled. To simplify the presentation, we
identify each leaf in a phylogenetic tree with the unique element that labels it.
The set of all leaf labels in a phylogenetic tree T is denoted by Λ(T ). For any
x, y ∈ Λ(T ), lcaT (x, y) is the lowest common ancestor in T of x and y.

Suppose that T is a phylogenetic tree. For any x, y, z ∈ Λ(T ), define the
following four types of constraints on T :

1. xy|z, specifying that lcaT (x, y) should be a proper descendant of lcaT (x, z)
(or equivalently, that lcaT (x, y) should be a proper descendant of lcaT (y, z)).

2. x|y|z, specifying that lcaT (x, y) = lcaT (x, z) = lcaT (y, z) should hold.
3. ¬xy|z, specifying that lcaT (x, y) should not be a not proper descendant of

lcaT (x, z) (or equivalently, that lcaT (x, y) should not be a proper descendant
of lcaT (y, z)).

4. ¬x|y|z, specifying that the same node should not be the lowest common
ancestor of a and b for all pairs a, b ∈ {x, y, z}.

The maximum rooted triplets consistency problem (MTC) is: given a set S of
leaf labels and a set R of constraints as defined above, output a phylogenetic
tree T with Λ(T ) = S that satisfies as many constraints from R as possible.
In this paper, the special case of MTC where all constraints in R are of type 1
is called the maximum rooted resolved triplets consistency problem (MRTC),
and the special case where all constraints are of type 1 or type 3 is called the
maximum mixed rooted resolved triplets consistency problem (MMRTC).1

To express the size of an instance of MTC, we write n = |S| and m = |R|. An
instance (S,R) of MTC is complete if, for every S′ ⊆ S with |S′| = 3, R contains
at least one constraint involving the three elements in S′ only. It is called dense
if it contains Ω(n3) constraints. Note that any complete instance is dense.

1 MRTC is called MAX-LEVEL-0 in [4], MaxRTC in [5], MILCT in [8,12], MaxCL-
0-Dense in [11], MTC in [16], and MCTT in [18,19]. MMRTC is called MMTT
in [9].
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Remark 1. Phylogenetic trees with exactly three leaves are commonly referred
to as rooted triplets in the literature. A rooted triplet t is either a binary or a
non-binary tree. In the former case, t is a resolved triplet and always satisfies a
constraint of type 1, and if this constraint is also satisfied in a phylogenetic tree T
then t and T are said to be consistent. Similarly, if t is non-binary then t is called
a fan triplet and always satisfies a constraint of type 2; if it is also satisfied in a
phylogenetic tree T then t and T are consistent. Thus, an equivalent formulation
of MTC is: given two sets C and F of rooted triplets, output a phylogenetic
tree T with Λ(T ) =

⋃
t∈C∪F Λ(t) maximizing |T (C)| − |T (F)|, where T (X ) for

any set X of rooted triplets is the subset of X consistent with T . In analogy with
this terminology, constraints of type 1, 2, 3, and 4 are called resolved triplets,
fan triplets, forbidden resolved triplets, and forbidden fan triplets from here on.

1.2 Previous Results

Aho et al. [1] presented a polynomial-time algorithm that determines if there
exists a phylogenetic tree consistent with all of the resolved triplets in a given
set, and if so, outputs such a tree. Its time complexity was improved from O(mn)
to min{O(n + mn1/2), O(m + n2 log n)} by Henzinger et al. [10]. He et al. [9]
extended Aho et al.’s algorithm to the case where the input also contains forbid-
den resolved triplets, and the resulting running time to determine if there exists
a phylogenetic tree that satisfies all the input constraints is O((m + n)n log n).

In comparison, the optimization versions of rooted triplets consistency turn
out to be harder. MRTC is NP-hard [3,12,19], even if restricted to dense problem
instances [11]. Furthermore, MRTC in the non-dense case is APX-complete [4].
The supplementary version of MRTC in which the objective is to remove as few
elements as possible from the input R so that there exists a phylogenetic tree con-
sistent with the resulting R is W [2]-hard and cannot be approximated within c ln n
for some constant c > 0 in polynomial time, unless P = NP [5]. As for positive
results for MRTC, Ga̧sieniec et al. [8] presented a top-down, polynomial-time 1/3-
approximation algorithm, and Wu [19] gave a bottom-up, polynomial-time heuris-
tic that was shown experimentally to perform well in practice. Byrka et al. [5]
later modified Wu’s heuristic to guarantee that it too achieves an approxima-
tion ratio of 1/3. Other heuristics for MRTC (with unknown approximation
ratios) have been published in [16,18]. An exact algorithm for MRTC running
in O(3n(m + n2)) time and O(2n) space was given by Wu in [19]. Finally, we
remark that the 1/3-approximation algorithm for MRTC in [8] was generalized
to a polynomial-time 1/3-approximation algorithm for MMRTC in [9].

The unrooted analogue of a resolved triplet, called a quartet [17], is an
unrooted tree with two internal nodes and four distinctly labeled leaves. The cor-
responding maximum quartets consistency problem is MAX SNP-hard [14,17],
but the complete version of the problem admits a PTAS [14]. In an unpublished
manuscript [13], we have outlined how to obtain a similar PTAS for dense MRTC.

See the survey in Sect. 2 in [5] for references to other rooted triplets
consistency-related problems in the literature involving enumeration, ordered
trees, phylogenetic networks, multi-labeled phylogenetic trees (MUL-trees), etc.
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1.3 Our Contributions

We first show how any known polynomial-time 1/3-approximation algorithm
for MRTC (e.g., [5,8]) can be applied to obtain a polynomial-time 1/4-
approximation algorithm for MTC (Sect. 2).

The APX-completeness of MRTC [4] (and hence, MTC) rules out the pos-
sibility of finding a PTAS for MTC in the general case. Nevertheless, we make
further progress on the approximation status of MTC by presenting a PTAS
for MTC restricted to dense instances based on smooth polynomial integer pro-
gramming, using some ideas from [14] and generalizing our unpublished work
in [13] (Sect. 3).

Next, we extend Wu’s exact exponential-time algorithm for MRTC [19] to
MTC (Sect. 4). We let the algorithm take an additional parameter k ≥ 2 as input
and force the output to be a phylogenetic tree in which every internal node has
at most k children. The resulting algorithm runs in O(2(n+1) log2(k+1)(m + n))
time. This may be Ω(nn) if k is unrestricted, but the running time is single-
exponential in n when k = O(1), and we use this fact to design an exponential-
time approximation scheme (ETAS) for MTC with no restrictions on k.

Finally, we describe how to adapt our algorithms to the weighted case, where
nonnegative weights are assigned to the triplet constraints and the objective is
to construct a phylogenetic tree that maximizes the sum of the weights of the
satisfied constraints (Sect. 5). In case of our PTAS and our ETAS, we have to
additionally assume that the ratio between the largest and the smallest con-
straint weights is bounded by a constant.

2 A 1/4-Approximation Algorithm for MTC

The maximum rooted resolved triplets consistency problem (MRTC) admits
a 1/3-approximation algorithm running in polynomial time [5,8]. The algo-
rithms in [5,8] always output a binary tree, so they also yield (at least) a 1/3-
approximation when in addition to resolved triplets, forbidden fan triplets are
included in the input. We use this fact to design a 1/4-approximation algorithm
for the maximum rooted triplets consistency problem (MTC) as follows.

Algorithm 1
Input: A set R of m triplet constraints over an n-element set S.
Output: A phylogenetic tree with n leaves distinctly leaf-labeled by S.

1. If R contains at least m/4 fan triplets and forbidden resolved triplets then
output a tree whose root has n children, each of them a leaf with a distinct
label in S, and stop.

2. Extract the set R′ of all resolved triplets and forbidden fan triplets from
R and apply any known polynomial-time 1/3-approximation algorithm for
MRTC (e.g., [5] or [8]) to R′. Output the tree produced by the latter.

Theorem 1. Algorithm 1 is a polynomial-time 1/4-approximation algorithm for
MTC.
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Proof. We need to show that the algorithm outputs a phylogenetic tree satisfying
at least 1/4 of the input triplet constraints. There are two cases:

If R contains at least m/4 fan triplets and forbidden resolved triplets then the
star phylogenetic tree output in the first step satisfying all the fan triplets and
all the forbidden resolved triplets satisfies at least m/4 input triplet constraints.

Otherwise, R contains at least 3m/4 resolved triplets and forbidden fan
triplets. The 1/3-approximation algorithm run on them in the second step yields
a phylogenetic tree satisfying at least 1

3 · 3m
4 = m/4 input triplet constraints. ��

3 A PTAS for Dense MTC

Analogously to [14] for the unrooted case, we first show that any rooted phylo-
genetic tree T with a leaf label set S = Λ(T ) can be represented approximately
by a decomposition tree consisting of:

1. a bounded-size subtree (termed kernel) K of T on non-leaf nodes, and
2. subsets of S (forming a partition of S) in one-to-one correspondence with the

leaves of K, where the elements of each subset are children of the correspond-
ing leaf of K.

In particular, an optimal tree Topt for a given instance of MTC can be approxi-
mately represented by such a decomposition tree which preserves enough of the
original triplet constraints to serve as a good approximation. More precisely, the
number of input triplet constraints satisfied by the approximate tree differs from
that of Topt by an arbitrarily small fraction, depending on the number of subsets
in the partition. We find an approximate solution by enumerating all possible
kernels, and for each one, finding the approximately best partition of S.

Recall that an instance of MTC is dense if the input set of triplet constraints
has Ω(n3) elements. The analysis of the accuracy of our approximate solution
relies on the fact that for a dense instance, the number of input triplet constraints
satisfied by Topt is Ω(n3), since it is at least 1/4 of the number of the constraints
by Theorem 1.

Let k be a fixed integer, and let S1, S2, ..., Sk be a partition of the set S.
A subset Si is termed a bin. For each bin Si, there is a non-leaf node of degree
|Si| + 1 in the decomposition tree, termed a bin root, connected by an edge to
each element in the bin. Algorithm 2, given below, transforms an input tree into
its decomposition tree by joining adjacent subtrees of T until the bin is large
enough, for some given maximum bin size b. If a bin is smaller than b/2, and
there is another bin also smaller than b/2 in an adjoining subtree, the two small
bins may be joined into one single bin. The resulting kernel K is the subtree of
the output decomposition tree induced by remaining non-leaf nodes, with the
subtrees defining the bins removed. The output decomposition tree Tk consists
of the kernel K, with the bin roots as leaves of K, and the elements in each bin
being children of its respective bin root.

Algorithm 2. k-bin decomposition(T )
Input: A phylogenetic tree T with n leaves.
Output: A decomposition tree Tk of T .
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– Traverse T , and for every node v visited, check if the size of the subtree T (v)
of T rooted at v is less or equal to 6n/k. If so, v is denoted a bin root (unless
v is a leaf), and all internal edges of T (v) except for edges incident to a leaf
are contracted, so that T (v) becomes a tree of height 1. If the size of T (v) is
larger than 6n/k, continue traversing T at a child of v.

– For a single leaf l that is not in a bin, the edge between l and its parent is
subdivided to create a new bin root associated with l.

– A bin of size ≤ 3n/k is small. Let b be a small bin, and let v be the parent
of b. If another small bin b′ exists as a child of a sibling of v, b and b′ are
combined to a single bin.

Lemma 1. Algorithm 2 for k-bin decomposition produces a decomposition tree
Tk having at most k bins, where each bin is of size less or equal to 6n/k.

Proof. In Lemma 1 in [14], a proof of an analogous lemma for quartets is given.
The reader is referred to this proof for more details.

As a consequence of the decomposition procedure, the number of bins will be
bounded by k since the merging of small bins in the third step guarantees that
there are not too many small bins. Lemma 1 in [14] shows that the number of
small bins is strictly smaller than twice the number of large bins. Since a large
bin has a size of at least 3n/k, the number of large bins is at most k/3. Let the
number of large bins be l, and the number of small bins be s. Then the total
number of bins is s + l < l + 2l = 3l < 3 · k/3 = k. So, Tk has less than k bins,
each of size at most 6n/k. ��
Let R be the input set of triplet constraints. For any phylogenetic tree T , let RT

denote the subset of triplet constraints in R that are satisfied by T .
Since the decomposition algorithm works by contracting some edges of Topt

and transferring leaves to neighboring bins, it follows that for any triplet {a, b, c}
where a, b and c are in different bins, ab|c ∈ RTk

if and only if ab|c ∈ RTopt
,

¬ab|c ∈ RTk
if and only if ¬ab|c ∈ RTopt

, and similarly, a|b|c ∈ RTk
if and only

if a|b|c ∈ RTopt
, and ¬a|b|c ∈ RTk

if and only if ¬a|b|c ∈ RTopt
.

Lemma 2. The tree Tk that is a k-bin decomposition of Topt satisfies |RTk
∩R| ≥

|RTopt
∩ R| − c

k · n3 input triplet constraints, for some constant c.

Proof. Any triplet topology in RTopt
\ RTk

must have two or more leaves in the
same bin. The number of such triplet topologies with three or two leaves in the
same bin is at most 1/6 (6n/k)3 k + 1/2 (6n/k)2 nk ≤ 24n3/k for k ≥ 6. Each
of the above triplet topologies may contribute to at most four triplet constraints
in R (one fan triplet and three forbidden resolved triplets in the worst case).
Hence, assuming that k ≥ 6, we have |RTk

∩ R| ≥ |RTopt
∩ R| − 96n3/k. ��

Label-to-bin Assignment: Suppose that we are given a kernel K with at
most k leaves of a hypothetical phylogenetic tree distinctly leaf-labeled by S.
The Label-to-Bin Assignment problem (LBA) for a set R of triplet constraints
asks for an assignment of labels in S to at most k bins of size ≤ 6n/k that
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completes K to Tk and maximizes |R ∩ RTk
|. The supertree of K induced by

such an assignment is called a completion of K.
Jiang et al. [14] showed that although the corresponding LBA problem for

unrooted quartets is NP-hard, it admits a PTAS relying on a modified PTAS for
smooth polynomial integer programs by Arora et al. [2]. We adapt this technique
to our problem. First, for every resolved triplet ab|c in R, define the polynomial:

pab|c(x) =
∑

ij|k∈RTk

xaixbjxck + xbixajxck

Here, the term xsb = 1 if label s is assigned to bin b, and 0 otherwise. Next, for
every fan triplet a|b|c in R, define the following polynomial, where Per(a, b, c)
stands for the set of all one-to-one mappings from {a, b, c} to {a, b, c}:

pa|b|c(x) =
∑

i|j|k∈RTk

∑

δ∈Per(a,b,c)

xδ(a)ixδ(b)jxδ(c)k

For every forbidden resolved triplet ¬ab|c in R, define the polynomial:

p¬ab|c(x) = pac|b(x) + pbc|a(x) + pa|b|c(x)

Similarly, for every forbidden fan triplet ¬a|b|c in R, define the polynomial:

p¬a|b|c(x) = pab|c(x) + pac|b(x) + pbc|a(x)

Finally, define:

p(x) =
∑

ab|c∈R

pab|c(x) +
∑

a|b|c∈R

pa|b|c(x) +
∑

¬ab|c∈R

p¬ab|c(x) +
∑

¬a|b|c∈R

p¬a|b|c(x)

The optimization problem becomes: Maximize p(x) subject to
∑k

i=1 xsi = 1 for
each leaf s, and

∑n
s=1 xsi ≤ 6n/k for each bin i. (The first condition ensures that

each label is assigned to exactly one bin and the second condition maintains the
k-bin property.) Our polynomial integer program is an O(1)-smooth degree-3 poly-
nomial integer program according to the following definition from [2]: An O(1) -
smooth degree-d polynomial integer program is to maximize p(x1, ..., xn) subject
to xi ∈ {0, 1}, ∀i ≤ n, where p(x1, ..., xn) is a degree- d polynomial in which the
coefficient of each degree-i monomial (term) is O(nd−i).

Lemma 3. (Arora et al.[2]) Let m be the maximum value of an O(1)-smooth
degree-d polynomial integer program p(x1, ..., xn). For each ε > 0, there is a
polynomial-time algorithm that finds a 0/1 assignment α for the xi satisfying
p(α(x1), ..., α(xn)) ≥ m − εnd.

The PTAS of Arora et al. first solves the fractional version of the problem. It then
rounds the obtained fractional value for each variable individually in order to
obtain an integer solution. However, this is not possible in our case because of
the condition

∑k
i=1 xsi = 1 for each leaf s. Instead, following [14], we set xsi = 1

and xsj = 0 for j 
= i with probability equal the fractional value for xsi. In effect,
exactly one of the variables xs1, ..., xsk is set to 1 and the rest to 0. In analogy
to Theorem 2.6 in [14], we obtain the next lemma.
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Lemma 4. For each ε > 0, there is a polynomial-time algorithm which, for each
instance of the LBA specified by a set R of triplet constraints for dense MTC and
a kernel K, produces a completion T ′ of K such that |RT ′ ∩R| ≥ |RT̂ ∩R|− εn3,
where T̂ is an optimal completion of K.

Topt can be decomposed into a kernel with at most k leaves and k bins of size
≤ 6n/k (i.e., the tree Tk) as shown in Lemmas 1 and 2. Given any input set
of triplet constraints, for each kernel with k leaves, an approximate optimal
assignment of leaves to bins of such size can be found in polynomial time by
Lemma 4. Hence, dense MTC can be approximated in the following way:

Theorem 2. For each ε > 0, there is a polynomial-time algorithm which, for
each instance R of dense MTC, produces a tree Tk that approximates Topt in
such a way that |RTk

∩ R| ≥ (1 − ε)|Ropt ∩ R|.
Proof. Let c be the constant specified in Lemma 2. By Lemmas 2 and 4, |RTk

∩
R| ≥ |RTopt

∩ R| − (c/k + ε′) · n3 ≥ (1 − c/(c′k) − ε′/c′)|RTopt
∩ R|, where c′ is a

constant satisfying |RTopt
∩ R| ≥ c′n3. We estimate this constant by the density

of R and Theorem 1. By picking k ≥ 2c
c′ε and ε′ ≤ c′ε

2 , we obtain the theorem. ��

4 An ETAS for MTC

The following additional notation will be used. For any node u in a phylogenetic
tree T with a leaf label set S = Λ(T ), let Su be the subset of S labeling the
leaves of the subtree rooted at u. For any node v of T , let Pv be the partition
of Sv into Sv1 , ..., Svl

, where v1, ..., vl are the children of v.
For a partition P of U ⊆ S into l subsets, let w2(P ) be the number of resolved

triplets ab|c such that a and b belong to two distinct subsets in P and c /∈ U.
Similarly, let w3(P ) be the number of fan triplets a|b|a such that a, b, c belong
to three different subsets in P. Next, let wf2(P ) be the number of forbidden
resolved triplets ¬ab|c such that a and c belong to two distinct subsets in P and
b /∈ U , or b and c belong to two distinct subsets in P and a /∈ U , or a, b, c belong
to three different subsets in P. Finally, let wf3(P ) be the number of forbidden fan
triplets ¬a|b|c such that two elements in {a, b, c} belong to two distinct subsets
in P and the remaining one does not belong to any of the subsets. We have:

Lemma 5. Given a partition P of U ⊆ S into l subsets, w2(P ), w3(P ), wf2(P )
and wf3(P ) can be computed in O(m + n) time, where m is the number of input
triplet constraints and n is the size of S.

Proof. We “color” the elements in U with l colors according to P and the ele-
ments in S\U with another color, and then examine each input triplet constraint
to check if it increases w2(P ), w3(P ), wf2(P ), or wf3(P ) by one. ��
Remark 2. When l = 2 in Lemma 5, w2(P ) is the same as w(V1, V2) in Wu’s exact
algorithm for MRTC [19]. Theorem 2 in [19] computes w(V1, V2) in O(m + n2)
time, so using our Lemma 5 instead slightly improves the running time of Wu’s
algorithm from O(3n(m + n2)) to O(3n(m + n)).
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Lemma 6. For a phylogenetic tree T with leaves labeled with elements in S, the
number of input triplet constraints consistent with T is equal to

∑
v∈T (w2(Pv)+

w3(Pv) + wf2(Pv) + wf3(Pv)).

We now analyze how much is lost by forcing the solution to an instance of MTC
to be a k-ary phylogenetic tree, defined as a phylogenetic tree in which every
internal node has degree at most k, where k is any integer such that k ≥ 2:

Theorem 3. For any phylogenetic tree T , there exists a k-ary phylogenetic
tree T ′ with Λ(T ′) = Λ(T ) that satisfies at least a fraction of (1 − 12/k) of
the input triplet constraints satisfied by T .

Proof. We shall replace each node v of T having more than k children by a
subtree in which all nodes have at most k children. Let v1,..., vl be the children
of v. Note that l > k. To start with, assign to each forbidden resolved triplet ¬ab|c
contributing to wf2(Pv), either the resolved triplet ac|b, where a and c belong to
distinct Svi

, Svj
and b /∈ Sv, or the resolved triplet bc|a, where a and c belong

to distinct Svi
, Svj

and a /∈ Sv, or the fan triplet a|b|c, where all a, b, c belong
to three distinct Svi

, Svj
, Svq

. Similarly, assign to each forbidden fan triplet
¬a|b|c contributing to wf3(Pv), either the resolved triplet ab|c, where a and b
belong to distinct Svi

, Svj
and c /∈ Sv, or the resolved triplet ac|b, where a and

c belong to distinct Svi
, Svj

and b /∈ Sv, or the resolved triplet bc|a, where a
and c belong to distinct Svi

, Svj
and a /∈ Sv. Let f2(Pv) be the cardinality of

the multiset of assigned resolved triplets and let f3(Pv) be the cardinality of the
multiset of assigned fan triplets. Then wf2(Pv) + wf3(Pv) = f2(Pv) + f3(Pv).

For the sake of the proof, partition the family of subsets Sv1 , ..., Svl
into

k groups uniformly at random. Consider any fan triplet a|b|c contributing to
w3(Pv) (i.e., having each of its elements in a distinct Svi

) or to f3(Pv) (i.e., being
assigned to a forbidden resolved triplet). The probability that any two elements
in {a, b, c} fall into the same group is bounded from above by 1/k + 2/k ≤ 3/k.
Hence, there exists a partition of the family of Sv1 , ..., Svl

into k groups such
that at least a (1 − 3/k) fraction of triples a|b|c contributing to w3(Pv) + f3(Pv)
will have all its elements in three different groups. For each group g in the latter
partition, first construct an arbitrary rooted resolved tree Fg whose leaves are
labeled by the children vi of v for which Svi

∈ g and then replace each leaf
labeled by vi in Fg by the subtree of T rooted at vi. Next, delete the edges in T
connecting v with its children and instead connect v to the roots of the trees Fg

by edges. Observe that the same fan triplet may contribute to w3(Pv) and it may
also contribute up to three times to f3(Pv), (i.e., it may be assigned to up to
three forbidden triplets contributing to wf2(Pv)). It follows that the sum of the
new value of w3(Pv) + f3(Pv) (provided that we keep the same assignments if
possible) is at least (1−4·3/k) of the sum of the previous value of w3(Pv)+f3(Pv).

In turn, consider any resolved triplet ab|c that contributes to w2(Pv) or to
f2(Pv) (i.e., is assigned to a forbidden resolved triplet contributing to wf2(Pv)
or a forbidden fan triplet contributing to wf3(Pv)). After the transformation of
T , the following holds: If the labels a and b belong to subsets in the same group
g then ab|c can neither contribute to w2(Pv) nor to f2(Pv) (i.e., to be assigned to



The Approximability of Maximum Rooted Triplets Consistency 281

a forbidden resolved triplet contributing to wf2(Pv) or to a forbidden fan triplet
contributing to wf3(Pv)). On the other hand, there must exist a non-leaf node
u of the binary tree Fg for which ab|c correspondingly contributes to w2(Pu), or
it can be assigned to the same forbidden resolved triplets now contributing to
wf2(Pu), or it can be assigned to the same forbidden fan triplets now contributing
to wf3(Pu). Thus, by extending the notation f2( ) to include f2(Pt), the sum of
w2(Pt)+f2(Pt) over the tree nodes t does not change. The theorem follows from
Lemma 6. ��
Motivated by Theorem 3, our new approximation algorithm in this section con-
structs a k-ary phylogenetic tree consistent with the maximum possible number
of input triplet constraints for some suitable value of k. For this purpose, we
generalize Wu’s algorithm [19] for MRTC which always outputs a binary phylo-
genetic tree, i.e., corresponding to the special case k = 2. We also need to extend
Wu’s algorithm to allow not only resolved triplets in the input.

Our new algorithm works as follows. For each non-singleton subset U of S,
define score(U) recursively by score(U) = maxk

l=2 scorel(U), where scorel(U) =

max
l−partition U1...,Ul of U

l∑

i=1

score(Ui) +
3∑

j=2

wj(U1, .., Ul) + wfj(U1, ..., Ul)

For a singleton U , score(U) is set to 0. As in Wu’s algorithm [19], score(U)
is evaluated in non-decreasing order of the sizes of subsets U of S. Then, the
output phylogenetic tree is constructed by a traceback, starting from score(S),
and picking an l-partition of the current subset U that yields the maximum value
of score(U). The corresponding node of the constructed tree gets l children in
one-to-one correspondence with the subsets of U forming the selected partition.

It follows by induction on |U | and Lemma 6 that score(U) equals the maxi-
mum number of input triplets that can be satisfied by a k-ary subtree leaf-labeled
by U . This yields the optimality of the tree constructed during the traceback.

There are
(
n
q

)
subsets U of S with q elements. The number of l-partitions of a

subset U with q elements is lq. Therefore, the total number of subsets partitions
processed by our algorithm is

∑n
q=1

(
n
q

) ∑k
�=2 �q ≤ ∑k

�=2(� + 1)n ≤ (k + 1)n+1

by binomial expansion. Finally, by Lemma5, for a given partition P of U ⊆ S
into l subsets, the weights w2(P ), w3(P ), wf2(P ) and wf3(P ) can be computed
in O(m + n) time, where m is the number of input triplet constraints and n is
the size of S. We conclude that our algorithm runs in O((k+1)n+1(m+n)) time,
i.e., in O(2(n+1) log2(k+1)(m + n)) time.

Theorem 4. Let S be a set of n distinct labels and let k be an integer greater
than 1. For any set R of m (resolved or forbidden resolved or fan or forbid-
den fan) triplet constraints on S, one can find a k-ary phylogenetic tree T with
Λ(T ) = S that maximizes the number of satisfied triplet constraints in R among
all k-ary phylogenetic trees in O(2(n+1) log2(k+1)(m + n)) time.

By combining Theorems 3 and 4, we obtain an exponential-time approximation
scheme (ETAS) for the maximum rooted triplets consistency problem:
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Theorem 5. Let S be a set of n distinct labels and let ε > 0 be a constant.
For any set R of m (resolved or forbidden resolved or fan or forbidden fan)
triplet constraints on S, one can find a phylogenetic tree T with Λ(T ) = S in
O(2(n+1) log2(�12/ε�+1)(m + n)) time satisfying at least (1 − ε) of the maximum
number of triplet constraints in R that can be satisfied in any phylogenetic tree.

5 Extensions to the Weighted Case

Having input triplet constraints in the form of rooted triplets and forbidden
rooted triplets, it is natural to assign nonnegative real weights to them. Note that
¬a|b|c is equivalent to the conjunction of ¬ab|c, ¬ac|b and ¬bc|a. Consequently,
MTC generalizes to the maximum weighted rooted triplet consistency problem
(MWTC), where the objective is to construct a phylogenetic tree that maximizes
the total weight of the satisfied input triplet constraints.

By Theorem 4 in [8], the 1/3-approximation algorithm for MRTC in [8] works
for the weighted version of MRTC as well. Hence, the 1/4-approximation algo-
rithm for MTC in Sect. 2 immediately generalizes to MWTC by considering
sums of weights of input triplet constraints belonging to the appropriate subsets
instead of just the cardinalities of the subsets. Our exact algorithm for MTC in
Sect. 4 similarly generalizes to MWTC by considering sums of the weights of the
respective triplet constraints instead of their numbers. However, the situation is
a bit more subtle for our PTAS for dense MTC in Sect. 3 and our ETAS for MTC
in Sect. 4. Because of Lemma 2 and Theorem 3, respectively, where in both cases
some fraction of the triplet constraints may be lost, we need to assume that the
maximum triplet constraint weight is at most O(1) times larger than the min-
imum one in order to generalize both approximation schemes to the weighted
case. Furthermore, in our PTAS, the polynomials in one-to-one correspondence
with the input triplet constraints in the definition of the integer program have
to be multiplied by the weight of the corresponding constraint.

6 Final Remarks

MTC is APX-complete by the APX-completeness of MRTC [4] and Theorem 1.
An open problem is to improve the polynomial-time approximation ratios 1/3
and 1/4 for MRTC and MTC; by applying the technique in Sect. 2, an f -
approximation for the former would give an f

1+f -approximation for the latter.
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Abstract. We investigate the asymptotic growth of the maximal num-
ber powersα(n) of different α-powers (strings w with a period |w|/α) in
an edge-labeled unrooted tree of size n. The number of different pow-
ers in trees behaves much unlike in strings. In a previous work (CPM,
2012) it was proved that the number of different squares in a tree is
powers2(n) = Θ(n4/3). We extend this result and analyze other powers.
We show that there are phase-transition thresholds:

1. powersα(n) = Θ(n2) for α < 2;
2. powersα(n) = Θ(n4/3) for 2 ≤ α < 3;
3. powersα(n) = O(n log n) for 3 ≤ α < 4;
4. powersα(n) = Θ(n) for 4 ≤ α.

The difficult case is the third point, which follows from the fact that the
number of different cubes in a rooted tree is linear (in this case, only
cubes passing through the root are counted).

1 Introduction

Repetitions are a fundamental notion in combinatorics on words. For the first
time they were studied more than a century ago by Thue [14] in the context of
square-free strings, that is, strings that do not contain substrings of the form
W 2 = WW . Since then, α-free strings, avoiding string powers of exponent α (of
the form Wα), have been studied in many different contexts; see [13]. Another
line of research is related to strings that are rich in string powers. It has been
shown that the number of different squares in a string of length n does not
exceed 2n − Θ(log n) (see [5,7,8]); stronger bounds are known for cubes [12].

Repetitions are also considered in labeled trees and graphs. In this model,
a repetition corresponds to a sequence of labels of edges (or nodes) on a sim-
ple path. The origin of this study comes from a generalization of square-free
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strings and α-free strings, called non-repetitive colorings of graphs. A survey by
Grytczuk [6] presents several results of this kind. In particular, non-repetitive
colorings of labeled trees were considered [2]. Strings related to paths in graphs
have also been studied in the context of hypertexts [1].

Enumeration of squares in labeled trees has already been considered from
both combinatorial [4] and algorithmic point of view [9]. Our study is a contin-
uation of the results of [4], where it has been proved that the maximum number
of different squares in a labeled tree with n nodes is of the order Θ(n4/3). As our
main result we show a phase transition property: for every exponent 2 < α < 3,
a tree of n nodes may contain Ω(n4/3) string α-powers, whereas it may only
have O(n log n) powers of exponent α ≥ 3.

b

a

a

a
b a

a

b a

a

b

bb

ab

a

b

a
a

Fig. 1. There are 5 different cubic substrings in this tree: a3, (ab)3, (ba)3, (aab)3,
(baa)3. Hence, powers3(T ) = 5. Note that the cube (ab)3 occurs twice; also a3 has
multiple occurrences. The most repetitive substring, a 3.5-power (ab)3.5, is marked in
the figure.

Let T be a tree whose edges are labeled with symbols from an alphabet Σ. We
denote the size of the tree, that is, the number of nodes, by |T |. A substring of T
is the sequence of labels of edges on any simple path in T . We define powersα(T )
as the number of different substrings of T which are powers of (possibly frac-
tional) exponent α; see Fig. 1. We denote powersα(n) = max|T |=n powersα(T ).
The bound powers2(n) = Θ(n4/3) has been shown in [4]. Here, we prove the
following asymptotic bounds:

α ∈ (1, 2) powersα(n) = Θ(n2)

α ∈ [2, 3) powersα(n) = Θ(n4/3)

α ∈ [3, 4) powersα(n) = O(n log n)

α ≥ 4 powersα(n) = Θ(n)

2 Preliminaries

2.1 Combinatorics of Strings

Let V be a string over an alphabet Σ. We denote its letters by V1, . . . , Vm

and its length m by |V |. By V R we denote the reverse string Vm . . . V1. For
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1 ≤ i ≤ j ≤ m a string V [i..j] = Vi . . . Vj is a substring of V . We say that a
positive integer q is a period of V if Vi = Vi+q holds for 1 ≤ i ≤ m − q. In this
case we also say that the prefix of V of length q is a period of V .

For an integer i, 1 ≤ i ≤ m, a substring V [1..i] is called a prefix of V , and
V [i..m] is called a suffix of V . A string U is a border of V if it is both a prefix
and a suffix of V . It is well known that a string of length m has a border of
length b if and only if it has a period m − b.

Fact 1 ([11]). Let B1, B2 be borders of a string V . If |B1| < |B2| ≤ 2|B1|, then
B1 and B2 have the same shortest period p, which is a divisor of |B2| − |B1|.
We say that a string V is an α-power (a power of exponent α) of a string U ,
denoted as V = Uα, if |V | = α|U | and U is a period of V . Here, α ≥ 1 may
otherwise be an arbitrary rational number. Powers of exponent α = 2 are called
squares, and powers of exponent α = 3 are called cubes. By U∗ we denote the
set of all integer powers of U . A string V is called non-primitive if V = Uk for
some string U and an integer k ≥ 2. Otherwise, V is called primitive. Primitive
strings enjoy several useful properties; see [3,13].

Fact 2 (Synchronization Property). If P is a primitive string, then it occurs
exactly twice as a substring of P 2.

Fact 3. Let p be a period of a string X and P be any substring of X of length p.
If p is the shortest period of X, then P is primitive. Conversely, if P is primitive
and p ≤ 1

2 |X|, then p is the shortest period of X.

Fact 4. Let X be a string. Suppose that an integer p is a period of a prefix Y
of X and of a suffix Z of X. If |X| ≤ |Y | + |Z| − p, then p is a period of X.

2.2 Labeled Trees

Let T be a labeled tree. If u and v are two nodes of T , then by val(u, v) we
denote the sequence of labels of edges on the path from u to v. We call val(u, v)
a substring of T and (u, v) an occurrence of the string val(u, v) in T . A rooted
tree is a tree T with one of its nodes r designated as a root. For any two nodes
u, v, by lca(u, v) we denote their lowest common ancestor in T . A substring of a
rooted tree is anchored at r if it corresponds to a path passing through r, i.e., if
it has an occurrence (u, v) such that lca(u, v) = r. A directed tree Tr is a rooted
tree with all its edges directed towards its root r. Every substring of a directed
tree corresponds to a directed path in the tree. The following fact is a simple
generalization of the upper bound of 2n on the number of squares in a string of
length n; see [5,7].

Lemma 5. A directed tree with n nodes contains at most 2n different square
substrings.

Proof. It suffices to note that there are at most two topmost occurrences of
different squares starting at each node of the tree; see [5,7,10]. ��
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3 Cubes in Rooted Trees

In this section, we show that a rooted tree T with n nodes contains O(n) different
cubes anchored at its root r.

3.1 Cube Decompositions

For a non-empty string X, (U, V ) is a cube decomposition of X3 if UV = X3

and there exist nodes u and v in T such that lca(u, v) = r, val(u, r) = U and
val(r, v) = V . A cube decomposition is called leftist if |U | ≥ |V | and rightist if
|U | ≤ |V |. Due to the following lemma, it suffices to consider cubes with a leftist
cube decomposition.

Lemma 6. In a rooted tree the numbers of different cubes with a leftist decom-
position and with a rightist decomposition are equal.

Proof. (U, V ) is a leftist cube decomposition of a cube X3 if and only if (V R, UR)
is a rightist cube decomposition of a cube Y 3 where Y = XR. ��
If |U |, |V | < 2|X|, then (U, V ) is called a balanced cube decomposition. Other-
wise, it is unbalanced. It turns out that the number of cubes with an unbalanced
decomposition is simpler to bound.

Lemma 7. A rooted tree with n nodes contains at most 2n different cubes with
a leftist unbalanced cube decomposition.

Proof. Let T be a tree rooted in r and let Tr be the corresponding directed tree.
If (U, V ) is an unbalanced leftist decomposition of a cube X3, then |U | ≥ 2|X|
and thus X2 occurs as a square substring in Tr. By Lemma 5 there are at most
2n such different squares. ��
A cube X3 is called a p-cube if X is primitive. Otherwise it is called an np-cube.
A bound on the number of np-cubes also follows from Lemma5.

Lemma 8. A rooted tree with n nodes contains at most 4n different np-cubes
with a leftist cube decomposition.

Proof. Let X3 be an np-cube with a leftist decomposition (U, V ) in a tree T
rooted at r. We have X = Y k for a primitive string Y and an integer k ≥ 2. Let
� =

⌊
3k
4

⌋
. Note that Y 2� is a proper prefix of U and thus a square in the directed

tree Tr. Consider an assignment Y 3k �→ Y 2�. Observe that a single square can be
assigned this way at most two cubes: Y 2� can be assigned to Y 4�, Y 4�+1, Y 4�+2,
or Y 4�+3, but no more than two of these exponents may be divisible by 3.

By Lemma 5 there are at most 2n different squares in the directed tree Tr.
Therefore the number of different np-cubes with a leftist cube decomposition is
bounded by 4n. ��
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3.2 Essential Cube Decompositions

Thanks to Lemmas 6–8, from now on we only consider p-cubes in T which have a
balanced leftist cube decomposition. We call such a decomposition an essential
cube decomposition. In this section, we classify such decompositions into two
types and provide a separate bound for either type.

Observation 9. Let (U, V ) be an essential cube decomposition of a p-cube X3.
Then U = XB for a non-empty string B which is a border of U (and a prefix of
X) and satisfies 1

3 |U | ≤ |B| < 1
2 |U |.

Motivated by the observation, for a string U we define

B(U) =
{
B : B is a border of U and 1

3 |U | ≤ |B| < 1
2 |U |}.

Moreover, by B′(U) we denote a set formed by the two longest strings in B(U)
(we assume B′(U) = B(U) if |B(U)| ≤ 2).

Definition 10. Let (U, V ) be an essential cube decomposition of X3 and let
U = XB. This decomposition is said to be of type 1 if B ∈ B′(U) and of type 2
otherwise.

Note that the string U and its border B uniquely determine the cube X3. Since
|B′(U)| ≤ 2, the following observation follows directly from the definition above.

Observation 11 (Type-1 Reconstruction). For every string U there are at
most two strings V such that (U, V ) is an essential decomposition of type 1 of
some cube X3 = UV .

Below we prove a similar property of type-2 decompositions. Before that, we need
to characterize them more carefully. The following lemma lists several properties
of type-2 decompositions; see also Fig. 2.

Lemma 12. Let (U, V ) be a type-2 essential decomposition of a p-cube X3. Then
there exists a primitive string P such that:

(a) |P | ≤ 1
6 |X|,

(b) X has a prefix of the form P ∗ of length at least 2|X| − |V | + |P |,
(c) X has P as a suffix, but does not have a suffix of the form P ∗ of length

|V | − |X| or more.

Proof. Let B(U) = {B0, . . . , B�} with |B0| < . . . < |B�|. Since (U, V ) is a type-2
decomposition of X, we have U = XBk for some k satisfying 0 ≤ k ≤ � − 2. In
particular, this implies � ≥ 2.

By Fact 1, all borders in B(U) share a common shortest period, whose length
in particular divides |Bi+1| − |Bi| for any i (0 ≤ i < �). We denote this period
by P . By Fact 3, P is primitive. Let p = |P | and let p′ = |B0| mod p. Moreover,
let P ′ be the prefix of P of length p′. Observe that B0 = P jP ′ for some integer
j, and in general Bi = P j+iP ′.
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X X X

P

VU

B B

2|X| − |V | + |P |

Fig. 2. Type 2 essential cube decomposition (U, V ) of a cube X. Here, B is a border
of U . Note that P is a period of B, but not a period of X or U .

(a) We have 1
3 |U | ≤ |B0| < |B�| < 1

2 |U | and |B�| − |B0| = � · p ≥ 2p. Thus,
p ≤ 1

2

(
1
2 − 1

3

) |U | = 1
12 |U |. Moreover, |U | ≤ 2|X|, and as a consequence we get

|P | = p ≤ 2
12 |X| = 1

6 |X|.
(b, c) Note that U = XBk has B� as a suffix, and B� = P �−kBk. Thus P �−k

and, in particular, P is a suffix of X. Moreover, B� is a prefix of U , so U has P j+�

as a prefix and, in particular, P is a prefix of X. Therefore, P is a border of X.
Observe that P is not a period of X. Otherwise, due to synchronization property
of primitive strings (Fact 2), X would be a power of P , which is a contradiction
with X3 being a p-cube.

Consequently, |P j+�| < |X|, so P j+� is a prefix X. Moreover, we have
|P j+�| ≥ |B�−1| ≥ |Bk| + |P | since k ≤ � − 2, and |Bk| = |U | − |X| =
3|X|−|V |−|X| = 2|X|−|V |. Thus, X indeed has a prefix Y of the form P ∗ whose
length is at least 2|X| − |V | + |P |. Now, suppose that X has a suffix Z of the
form P ∗ whose length is at least |V |− |X|. We would have |X| ≤ |Y |+ |Z|− |P |,
so Fact 4 would imply that P is a period of X, which we have already proved
impossible. ��
Lemma 13. (Type-2 Reconstruction). For every string V there is at most
one string U such that (U, V ) is an essential cube decomposition of type 2 of
some cube X3 = UV.

Proof. Suppose there is at least one string U which satisfies the assumption of
the lemma. We shall prove that U can be uniquely determined from V . Let
UV = X3 and let P be the primitive string obtained through Lemma12. Our
goal is to recover P and then X from V .

Recall that |X| < |V | ≤ 3
2 |X| by the definition of essential cube decompo-

sition. We have X = V [i..|V |] for i = |V | − |X| + 1. Additionally, let j = |X|.
Note that j − i + 1 = 2|X| − |V |, so Lemma 12(b) implies that V [i..j′] = P k for
a position j′ ≥ j and an integer exponent k. Observe that

i = |V | − |X| + 1 ≤ 1
3 |V | + 1 and j = |X| ≥ 2

3 |V |,
so p = |P | is a period of V ′ = V [

⌊
1
3 |V |⌋ + 1..

⌈
2
3 |V |⌉]. By Lemma 12(a), |P | ≤

1
6 |X| ≤ 1

6 |V | ≤ 1
2 |V ′| and P is primitive. Thus, by Fact 3, p can be uniquely

determined as the shortest period of V ′.
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Once we know p, we can easily determine P : by Lemma 12(c), P is a suffix
of X and thus a suffix of V . Hence, P = V [|V | − p + 1..|V |].

Next, we determine the smallest position i′ > 1
3 |V | where P occurs in V . This

occurrence must lie within V [i..j], so i ≡ i′ (mod p) by the synchronization
property of primitive strings (Fact 2). Let � be the largest integer such that
P � is a suffix of X. Then � is simultaneously the largest integer such that P �

is a suffix of V and the largest integer such that P � is a suffix of V [1..i − 1]
(since �p < |V | − |X| by Lemma 12(c)). The former lets us uniquely determine
�. The latter implies that �′ := � + i′−i

p is the largest integer such that P �′
is

a suffix of V [1..i′ − 1]. Since �′ is uniquely determined by V , so is i, and thus
also X = V [i..|V |]. This concludes the proof that the string U can be uniquely
determined from V . In particular, at most one such string exists. ��

3.3 The Upper Bound

Theorem 14. A rooted tree with n nodes contains O(n) cubes anchored at its
root.

Proof. Let T be a tree with n nodes rooted in r. The whole proof reduces to
proofs of the following two claims.

Claim. There are O(n) different cubes in T having a non-essential cube decom-
position.

Proof. A non-essential decomposition of a cube is rightist, leftist unbalanced or
a leftist decomposition of an np-cube. In each case, by Lemmas 6–8, there are
O(n) different cubes with such a decomposition. ��
Claim. There are O(n) different p-cubes in T having an essential cube decom-
position.

Proof. For each p-cube X3 with an essential decomposition let us fix a single such
decomposition UV and a single pair of nodes (u, v) that gives this decomposition.

If UV is a type-1 decomposition, we charge one token to the node u, otherwise
we charge one token to v. By Observation 11 and Lemma 13, each node receives
at most 3 tokens. ��
This concludes the proof of the theorem. ��

4 Powers in Trees

In this section we prove the announced bounds for powersα for α > 1.
Let Sm be a string ambam. Note that Sm can be seen as a tree with a

linear structure. Though the following fact can be treated as a folklore result,
we provide its proof for completeness.

Theorem 15. For every rational α ∈ (1, 2), we have powersα(Sm) = Ω(|Sm|2).
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Proof. Let α = 1+ x
y where x, y are coprime positive integers. For every positive

integer c ≤ m
y , we construct c(y − x) different powers of exponent α and length

cyα that occur in Sm:

aibacy−1−iacx for cx ≤ i < cy.

Note that i < cy ≤ m and cy − 1 − i + cx < cy ≤ m, so they indeed occur as
substrings of Sm. In total we obtain

∑

1≤c≤m
y

c(y − x) = Θ
(m2(y−x)

y2

)
= Θ(m2)

different α-powers. Moreover, |Sm| = Θ(m), so this implies powersα(Sm) =
Ω(|Sm|2). ��

Fig. 3. Lower bound example Tm for powers of exponent α ∈ (2, 3).

Recall that for α = 2, it has been shown that powers2(n) = Θ(n4/3) [4]. It
turns out that the same bound applies for any α ∈ (2, 3). Moreover, the lower
bound on powersα(n) is realized by the same family of trees called combs; see
Fig. 3. A comb Tm consists of a path of length m2 called the spine, with at most
one branch attached to each node of the spine. Branches are located at positions
{0, 1, 2, . . . ,m − 1,m, 2m, 3m, . . . ,m2} of the spine. All edges of the spine are
labeled with letters a. Each branch is a path starting with a letter b, followed
by m2 edges labeled with letters a.

Theorem 16. For every rational α∈(2, 3), we have powersα(Tm) = Ω(|Tm|4/3).

Proof. Let α = 2+ x
y where x, y are coprime positive integers. For every positive

integer c ≤ m2

y , we construct c(y−x) different α-powers of length cyα that occur
in Tm:

(aibacy−1−i)2acx for cx ≤ i < cy.
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Let us prove that these powers indeed occur in Tm. In [4] it was shown that for
every 0 < j < m2 there are two branches whose starting nodes (on the spine)
satisfy distance(u, v) = j. We apply this fact for j = cy − 1 and align letters b
at the edges incident to u and v. Each branch contains m2 edges labeled with a.
Since i < cy ≤ m2 and cy − 1 − i + cx < cy ≤ m2, this is enough to extend an
occurrence of bacy−1b to an occurrence of (aibacy−1−i)2acx. Altogether this gives
Θ(m4) different α-powers. Since |Tm| = Θ(m3), the number of the considered
powers in Tm is Ω(|Tm|4/3). ��
The upper bound for cubes and, consequently, for powers of rational exponent
α ∈ (3, 4), is a consequence of the main result of the previous section.

Theorem 17. For every rational α ≥ 3, we have powersα(n) = O(n log n).

Proof. Recall that a centroid of a tree T is a node r such that each connected
component of T \{r} is a tree with at most n

2 nodes. It is a well-known fact that
every tree has a centroid.

We have already shown (Theorem 14) that the number of cubes in the tree
T passing through a fixed node r is O(n). Now we need to count the remaining
cubes in T . After removing the node r, the tree is partitioned into components
T1, . . . , Tk. Hence, the number of cubes in T can be written as:

powers3(T ) ≤ O(|T |) +
∑

i

powers3(Ti).

The components satisfy
∑

i |Ti| = n − 1 and |Ti| ≤ n
2 , so a solution to this

recurrence yields powers3(n) = O(n log n). For every α ≥ 3, each power Uα of
exponent α induces a cube U3, so powersα(n) = O(n log n). ��
The final result related to the powers function may be interpreted as a general-
ization of the 2n upper bound on the number of different squares in a string.

Theorem 18. For every α ≥ 4, powersα(n) = Θ(n).

Proof. For a string an, we have Θ(n/α) = Θ(n) distinct α-powers. For the proof
of a linear upper bound, let T be a tree with n nodes and let r be any of its
nodes. Let Tr be a directed tree obtained from T by selecting r as its root. Then
any power Uα in T of exponent α ≥ 4 corresponds to square U2 or (UR)2 in Tr.
Thus, the conclusion follows from Lemma 5. ��

5 Final Remarks

We have presented an almost complete asymptotic characterization of the func-
tion powersα specifying the maximum number of different powers of exponent α
in a tree of given size. What remains is an exact asymptotic bound for powersα,
α ∈ [3, 4), for which we have shown an O(n log n) upper bound.

It can be shown (see Fact 19) that a tree with n nodes contains O(n) different
cubes of the form (aibaj)3. In comparison, the lower bound constructions for
α < 3 rely on counting powers of the form (aibaj)α.
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Fact 19. A tree with n nodes with edges labeled with {a, b} contains O(n) cubes
of the form (aibaj)3.

Proof. Let T be a tree with n nodes. Suppose that T is rooted at an arbitrary
node r. Nevertheless, we bound the number of all cubes of the form (aibaj)3 in
T , including those which are not anchored at r. We shall assign each such cube
to a single node of T so that each node of T is assigned at most two cubes. For a
particular occurrence of a cube X3 = (aibaj)3 which starts in node u and ends
in node v with q = lca(u, v), we define the assignment as follows:

(A) if the string val(u, q) contains at least two characters b, then the cube is
assigned to node u,

(B) otherwise (in that case val(q, v) contains at least two characters b) the cube
is assigned to node v.

Let us prove that such procedure assigns at most one cube of type (A) and
at most one cube of type (B) to a single node. If we fix the node and type
of the assignment, we shall be able to uniquely recover the cube X3 by going
towards the root until we encounter the second edge labeled with b. Indeed,
suppose u is a fixed node and consider the assignment of type (A). Let X1 be
the shortest prefix of val(u, r) that contains exactly one character b and let X2

be the shortest prefix of val(u, r) that contains exactly two characters b. Then
X = a|X1|−1ba|X2|−|X1|−1. For the assignment of type (B), we use a symmetric
procedure. ��
We conclude with the following conjectures.

Conjecture 20 (Weak conjecture). powersα(n) = Θ(n) for every α > 3.

Conjecture 21 (Strong conjecture). powers3(n) = Θ(n).
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with Backtracking
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Abstract. In this paper we present two algorithms for the following
problem: given a string and a rational e > 1, detect in the online fashion
the earliest occurrence of a repetition of exponent ≥ e in the string.

1. The first algorithm supports the backtrack operation removing the
last letter of the input string. This solution runs in O(n log m) time and
O(m) space, where m is the maximal length of a string generated during
the execution of a given sequence of n read and backtrack operations.
2. The second algorithm works in O(n log σ) time and O(n) space, where
n is the length of the input string and σ is the number of distinct letters.
This algorithm is relatively simple and requires much less memory than
the previously known solution with the same working time and space.

Keywords: Repetition-free · Square-free · Online algorithm · Back-
tracking

1 Introduction

The study of algorithms analyzing different kinds of string periodicities forms
an important branch of stringology. Repetitions of a given fixed order often play
a central role in such investigations. We say that an integer p is a period of w if
w = (uv)ku for some integer k ≥ 1 and strings u and v such that |uv| = p. Given
a rational e > 1, a string w such that |w| ≥ pe for a period p of w is called an
e-repetition. A string is e-repetition-free if it does not contain an e-repetition as
a substring. We consider algorithms recognizing e-repetition-free strings for any
fixed e > 1. To be more precise, we say that an algorithm detects e-repetitions if
it decides whether the input string is e-repetition-free. Further, we say that this
algorithm detects e-repetitions online if it processes the input string sequentially
from left to right and decides whether each prefix is e-repetition-free after reading
the rightmost letter of that prefix.

In this paper we give two algorithms that detect e-repetitions online for a
given fixed e > 1. The first one, which uses the ideas of the Apostolico-Breslauer
algorithm [1], works on unordered alphabet and supports backtracking, the oper-
ation removing the last letter of the processed string. This solution requires
O(n log m) time and O(m) space, where m is the maximal length of a string gen-
erated during the execution of n given backtrack and read operations. Slightly
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 295–306, 2015.
DOI: 10.1007/978-3-319-19929-0 25
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modifying the proof from [10], one can show that this time is the best possible in
the case of unordered alphabet. The second algorithm works on ordered alpha-
bet and requires O(n log σ) time and linear space, where σ is the number of
distinct letters in the input string and n is the length of this string. Although
this result does not theoretically outperform the previously known solution [6],
it is significantly less complicated and can be used in practice. Both algorithms
report the position of the leftmost e-repetition.

Let us point out some previous results on the problem. Recall that a repeti-
tion of the form xx is called a square. A string is square-free if it is 2-repetition-
free. Squares are, perhaps, the most extensively studied repetitions. The classical
result of Thue [12] states that on a three-letter alphabet there are infinitely many
square-free strings. How fast can one decide whether a string is square-free? It
turns out that the orderedness of alphabet plays a crucial role here: while any
algorithm detecting squares on unordered alphabet requires Ω(n log n) time [10],
it is unlikely that any superlinear lower bound exists in the case of ordered
alphabet, in view of the recent result of the author [8]. So, we always emphasize
whether an algorithm under discussion relies on order or not.

The best known offline (not online) results are the algorithm of Main and
Lorentz [10] detecting e-repetitions in O(n log n) time and linear space on
unordered alphabet, and Crochemore’s algorithm [4] detecting e-repetitions in
O(n log σ) time and linear space on ordered alphabets. Our interest in online
algorithms detecting repetitions was partially motivated by problems in the arti-
ficial intelligence research (see [9]), where some algorithms use the online square
detection. Apostolico and Breslauer [1] presented a parallel algorithm for this
problem on an unordered alphabet. As a by-product, they obtained an online
algorithm detecting squares in O(n log n) time and linear space, the best pos-
sible bounds as it was noted above. Later, online algorithms detecting squares
in O(n log2 n) [9] and O(n(log n+σ)) [7] time were proposed. Apparently, their
authors were unaware of the result of [1]. For ordered alphabet, Jansson and
Peng [7] found an online algorithm detecting squares in O(n log n) time and Hong
and Chen [6] presented an online algorithm detecting e-repetitions in O(n log σ)
time and linear space.

An online algorithm for square detection with backtracking is in the core of
the generator of random square-free strings described in [11]. Using our algorithm
with backtracking, one can in a similar way construct a generator of random
e-repetition-free strings for any fixed e > 1. This result might be useful in further
studies in combinatorics on words.

The paper is organized as follows. In Sect. 2 we present some basic defini-
tions and the key data structure, called catcher, which helps to detect repeti-
tions. Section 3 contains an algorithm with backtracking. In Sect. 4 we describe
a simpler solution without backtracking.

2 Catcher

A string of length n over the alphabet Σ is a map {1, 2, . . . , n} �→ Σ, where n is
referred to as the length of w, denoted by |w|. We write w[i] for the ith letter of
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w and w[i..j] for w[i]w[i+1] . . . w[j]. Let w[i..j] be the empty string for any i > j.
A string u is a substring of w if u = w[i..j] for some i and j. The pair (i, j) is not
necessarily unique; we say that i specifies an occurrence of u in w. A string can
have many occurrences in another string. A substring w[1..j] [resp., w[i..n]] is a
prefix [resp. suffix ] of w. For any i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty)
is denoted by [i..j]; (i..j] and [i..j) denote [i..j] \ {i} and [i..j] \ {j} respectively.

We fix a rational constant e > 1 and use it throughout the paper. The input
string is denoted by text and n = |text|. Initially, text is the empty string.
We refer to the operation appending a letter to the right of text as read operation
and to the operation that cuts off the last letter of text as backtrack operation.

Let us briefly outline the ideas behind our results. Both our algorithms uti-
lize an auxiliary data structure based on a scheme proposed by Apostolico and
Breslauer [1]. This data structure is called a catcher. Once a letter is appended to
the end of text, the catcher checks whether text has a suffix that is an e-repetition
of length k such that k ∈ [l..r] for some segment [l..r] specific for this catcher. The
segment [l..r] cannot be arbitrary, so we cannot, for example, create a catcher
with l = 1 and r = n. But, as it is shown in Sect. 3, we can maintain O(log n)
catchers such that the union of their segments [l..r] covers the whole range from 1
to n and hence these catchers “catch” each e-repetition in text. This construction
leads to an algorithm with backtracking. In Sect. 4 we further reduce the number
of catchers to a constant but this solution does not support backtracking.

In what follows we first describe an inefficient version of the read opera-
tion for catcher and show how to implement the backtrack operation; then, we
improve the read operation and provide time and space bounds for the con-
structed catcher.

Let i and j be integers such that 1 ≤ i ≤ j < n. Observe that if for some k ≤ i,
the string text[k..n] is an e-repetition and e(n − j) ≥ n − k + 1, then the string
text[i..j] occurs in text[i+1..n] (see Fig. 1). Given this fact, the read operation
works as follows. The catcher searches online occurrences of the string text[i..j] in
text[i+1..n]. If we have text[i..j] = text[n−(j−i)..n], then the number p = n− j
is a period of text[i..n]. The catcher “extends” the repetition text[i..n] to the
left with the same period p. Then, the catcher online “extends” the repetition
to the right with the same period p until an e-repetition is found. We say that
the catcher is defined by i and j.

Fig. 1. An e-repetition text[k..n], where k = 5, n = 16. Here i = 6, j = 7, and
text[i..j] = text[14..15].
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Example 1. Consider text = xxxxaceorsuv. Denote n = |text|. Suppose e = 1.5.
Let a catcher be defined by i = 6 and j = 7 (see Fig. 1). We consecutively
perform the read operations that append the letters a, c, e, o to the right of
text. The catcher online searches occurrences of the string text[i..j] = ce (e.g.,
using the standard Boyer-Moore or Knuth-Morris-Pratt algorithm). Once we
have text = xxxxaceorsuvace, the catcher has found an occurrence of text[i..j]:
text[n−1..n] = ce. Hence, the string text[i..n] = ceorsuvace has a period
p = n − j = 8. The catcher “extends” this repetition to the left and thus
obtains the repetition text[i−1..n] = aceorsuvace with period p. Then the
catcher online “extends” the found repetition to the right: after the next read
operation, the catcher obtains the repetition text[i−1..n] = aceorsuvaceo that
is an e-repetition.

To support the backtrack operation, we store the states of the catcher in an
array of states and when the backtracking is performed, we restore the previous
state. For the described read operation, this approach has two drawbacks. First,
the state does not necessarily require a fixed space, so the array of states may
take a large amount of memory. Second, the catcher can spend a lot of time at
some text locations (alternating backtracking with reading) and therefore the
complexity of the whole algorithm can greatly increase. To solve these problems,
our improved read operation performs the “extensions” of found repetitions and
the searching of text[i..j] simultaneously.

This approach relies on a real-time constant-space string matching algorithm,
i.e., a constant-space algorithm that processes the input string online, spending
constant time per letter; once the searched pattern occurs, the algorithm reports
this occurrence. For unordered alphabet, we can use the algorithm of Galil and
Seiferas [5] though in the case of ordered alphabet, it is more practical to use
the algorithm of Breslauer, Grossi, and Mignosi [2].

The improved read operation works as follows. Denote h = (j − i + 1)/2.
The real-time string matching algorithm searches for text[i..i+�h�−1]. It is easy
to see that if we have text[n−�h�+1..n] = text[i..i+�h�−1], then the number
p = (n − �h� + 1) − i is a period of text[i..n]. The catcher maintains a linked
list P of pairs (p, lp), where p is found in the described way and lp is such that
p is a period of text[lp+1..n] (initially lp = i − 1). Each read operation tries
to extend text[lp+1..n] with the same period p to the right and to the left. If
text[n] 	= text[n−p], then the catcher removes (p, lp) from P . To extend to the
left, we could assign lp ← min{l : text[l+1..n] has a period p} but the calculation
of this value requires O(n) time while we want to keep within the constant time
on each read operation.

In order to achieve this goal, we will extend r symbols to the left after reading
a letter. We choose r = �(e − 1)p/�h��. Then one of two situations occurs at
the moment when text[i..j] = text[i+p..n] (i.e., an occurrence of text[i..j] is
found). Either we have text[lp] 	= text[lp+p] (lp cannot be “extended” to the
left) or text[lp+1..n] is an e-repetition. Suppose text[i..j] = text[i+p..n] and
text[lp] = text[lp+p]. Since at this moment we have performed �h� operations
decreasing lp by r, we have lp = i − 1 − �h�r and hence n − lp ≥ p + �h�r.
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Thus, if we put r = �(e− 1)p/�h��, then n− lp ≥ ep and therefore, text[lp+1..n]
is an e-repetition. The following pseudocode clarifies this description.
1: read a letter and append it to text (thereby incrementing n)
2: feed the letter to the algorithm searching for text[i..i+�h�−1]
3: if text[n−�h�+1..n] = text[i..i+�h�−1] then � found an occurrence
4: p ← (n − �h� + 1) − i; lp ← i − 1; � p is a period of text[lp+1..n]
5: P ← P ∪ {(p, lp)};
6: for all (p, lp) in P do
7: if text[n] 	= text[n−p] then
8: P ← P \ {(p, lp)}; � text[lp+1..n] cannot be “extended” to the right
9: else

10: r ← �(e − 1)p/�h��; � maximal number of left “extensions”
11: while lp > 0 and r > 0 and text[lp] = text[lp+p] do
12: lp ← lp − 1; r ← r − 1; � “extend” text[lp+1..n] to the left
13: if n − lp ≥ ep then � if text[lp+1..n] is an e-repetition
14: detected e-repetition text[lp+1..n]
A state of the catcher consists of the list P and the state of the string matching
algorithm, O(|P | + 1) integers in total. To support the backtracking, we simply
store the states of the catcher in an array of states.

Lemma 1. Suppose that i and j define a catcher on text, n is the current length
of text, and c > 0. If the conditions (i) text[1..n − 1] is e-repetition-free and (ii)
c(j − i + 1) ≥ n − i hold, then each read or backtrack operation takes O(c + 1)
time and the catcher occupies O((c + 1)(n − i)) space.

Proof. Clearly, at any time of the work, the array of states contains n− i states.
Each state occupies O(|P | + 1) integers. Hence, to estimate the required space,
it suffices to show that |P | = O(c). Denote v = text[i..i+�h�−1]. It follows from
the pseudocode that each (p, lp) ∈ P corresponds to a unique occurrence of v in
text[i+1..n]. Thus, to prove that |P | = O(c), it suffices to show that the string
v has at most O(c) occurrences in text[i+1..n] at any time of the work of the
catcher. Suppose v occurs at positions k1 and k2 such that i < k1 < k2 < k1+|v|.
Hence, the number k2 −k1 is a period of v. Since text[1..n−1] is e-repetition-free
during the work of the catcher, we have k2 − k1 > 1

e |v|. Therefore the string v
always has at most (n − i)/(1e |v|) occurrences in the string text[i+1..n]. Finally,
the inequalities |v| ≥ 1

2 (j−i+1) and n−i
j−i+1 ≤ c imply (n−i)/(1e |v|) ≤ 2ec = O(c).

Obviously, each backtrack operation takes O(c) time. Any read operation
takes at least constant time for each (p, lp) ∈ P . But for some (p, lp) ∈ P ,
the algorithm can perform O((e − 1)p/h) = O(p/h) iterations of the loop in
lines 11–12 (see the value of r in line 10). Since p ≤ n− i for each (p, lp) ∈ P , we
have p/h ≤ 2(n − i)/(j − i + 1) ≤ 2c and therefore, the loop performs at most
O(c) iterations. The loop is executed iff text[lp] = text[lp+p]. But since for each
(p, lp) ∈ P , the value of r is chosen in such a way that text[lp] = text[lp+p] only
if text[i+p..n] is a proper prefix of text[i..j] (see the discussion above), there are
at most (j − i + 1)/(1e |v|) ≤ 2e periods p for which the algorithm executes the
loop. Finally, we have O(|P | + 2ec) = O(c) time for each read operation. ��
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Lemma 2. If for some k, the string text[n−k+1..n] is an e-repetition and
n − i < k ≤ e(n − j), then a catcher defined by i and j detects this repetition.

Proof. Let p be the minimal period of text[n−k+1..n]. Since text[i..j] is a sub-
string of text[n−k+1..n] and p ≤ k

e ≤ n−j, the string text[i..j] occurs at position
i + p. Thus, the catcher detects this e-repetition when processes this occurrence
(see Fig. 1). ��
We say that a catcher covers [l..r] if the catcher is defined by integers i and j
such that n − i < n − r + 1 ≤ n − l + 1 ≤ e(n − j); by Lemma 2, this condition
implies that if for some k ∈ [l..r], the suffix text[k..n] is an e-repetition, then the
catcher detects this repetition. We also say that the catcher covers a segment of
length r−l+1. Note that if we append a letter to the end of text, the catcher still
covers [l..r]. We say that a set S of catchers covers [l..r] if

⋃
C∈S [lC ..rC ] ⊃ [l..r],

where [lC ..rC ] is a segment covered by catcher C.

3 Unordered Alphabet and Backtracking

Theorem 1. For unordered alphabet, there is an online algorithm with back-
tracking that detects e-repetitions in O(n log m) time and O(m) space, where m
is the length of a longest string generated during the execution of a given sequence
of n backtrack and read operations.

Proof. As above, denote n = |text|. If text is not e-repetition-free, our algorithm
skips all read operations until backtrack operations make text e-repetition-free.
Therefore, in what follows we can assume that text[1..n−1] is e-repetition-free
and thus, all e-repetitions of text are suffixes. In our proof we first give an
algorithm without backtracking and then improve it to support the backtrack
operation.

The Algorithm Without Backtracking. Our algorithm maintains O(log n)
catchers that cover [1..n−O(1)] and therefore “catch” almost all e-repetitions.
For each k ∈ [0.. log n], we have a constant number of catchers covering adjacent
segments of length 2k. These segments are of the form (l2k..(l+1)2k] for some
integers l ≥ 0 precisely defined below. Let us fix an integer constant s for which
it is possible to create a catcher covering (n−s2k..n−(s−1)2k]. To show that
such s exists, consider a catcher defined by i = j = n − (s − 1)2k. By Lemma 2,
this catcher covers (n−s2k..n−(s−1)2k] iff e(n − j) = e(s − 1)2k ≥ s2k or,
equivalently, s ≥ � e

e−1�. As it will be clear below, to make our catchers fast, we
must assume that s > e

e−1 . Note that s ≥ 2 since e > 1, and s = 2 implies e > 2.
Now we precisely describe the segments covered by our catchers. Denote tr =

max{0, n− ((s−1)2r +(n mod 2r))}. For any integer r ≥ 0, tr is a nonnegative
multiple of 2r. Let k ∈ [0.. log n]. The algorithm maintains catchers covering the
following segments: (tk+1..tk+1+2k], (tk+1+2k..tk+1+2 ·2k], (tk+1+2 ·2k..tk+1+
3 · 2k], . . . , (tk − 2k..tk] (see Fig. 2). Thus, there are at most 1

2k
(tk − tk+1) ≤ s

catchers for each such k. Obviously, the constructed segments cover [1..n−s+1].
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Fig. 2. A system of catchers covering [1..n−s+1].

To maintain this system of catchers, the algorithm loops through all k ∈
[0.. log n] such that s2k ≤ n and, if n is a multiple of 2k, creates a new catcher
covering (n − s2k..n − (s − 1)2k]; if, in addition, n is a multiple of 2k+1, the
algorithm removes two catchers covering (n − s2k+1..n − s2k+1 + 2k] and (n −
s2k+1+2k..n−(s−1)2k+1]. To prove that the derived system covers [1..n−s+1],
it suffices to note that if an iteration of the loop removes two catchers covering
(b1..b2] and (b2..b3], for some b1, b2, b3, then the next iteration creates a catcher
covering (b1..b3]. We detect e-repetitions of lengths 2, 3, . . . , s−1 by a simple
naive algorithm. In the following pseudocode we use the three-operand for loop
like in the C language.

1: read a letter and append it to text (thereby incrementing n)
2: check for e-repetitions of length 2, 3, . . . , s−1
3: for (k ← 0; s2k ≤ n and n mod 2k = 0; k ← k + 1) do
4: create a catcher covering (n − s2k..n − (s − 1)2k]
5: if n mod 2k+1 = 0 and n − s2k+1 ≥ 0 then
6: remove the catcher covering (n − s2k+1..n − s2k+1 + 2k]
7: remove the catcher covering (n − s2k+1 + 2k..n − (s − 1)2k+1]

When the algorithm creates a catcher covering (n−s2k..n−(s−1)2k], it has some
freedom choosing integers i and j that define this catcher. We put i = n−(s−1)2k

and j = max{i, n−� s
e2k�}. Indeed, in the case j 	= i we have e(n−j) = e� s

e2k� ≥
s2k and, by Lemma 2, the catcher covers (n − s2k..n − (s − 1)2k]; the case j = i
was considered above when we discussed the value of s.

Clearly, the proposed algorithm is correct. Now it remains to estimate the
consumed time and space. Consider a catcher defined by integers i and j and
covering a segment of length 2k. Let us show that j − i + 1 > α2k for a constant
α > 0 depending only on e and s. We have j − i + 1 = (s − 1)2k − � s

e2k� + 1 >
((s − 1) − s

e )2k. The inequality s > e
e−1 implies (s − 1) − s

e > 0 (here we use the
fact that s is strictly greater than e

e−1 ). Hence, we can put α = (s − 1) − s
e .

Denote by n′ the value of n at the moment of creation of the catcher. The
algorithm removes this catcher when either n′ = n − s2k or n′ = n − (s − 1)2k.
Thus, since j − i + 1 > α2k for some α > 0, it follows from Lemma 1 that
the catcher requires O(1) time at each read operation and occupies O(2k) space.
Hence, all catchers take O(s

∑log m
k=0 2k) = O(m) space and the algorithm requires

O(log m) time at each read operation if we don’t count the time for creation of
catchers. We don’t estimate this time in this first version of our algorithm.
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The Algorithm With Backtracking. Now we modify the proposed algorithm
to support the backtracking. Denote n′ = n + 1. The backtrack operation is
simply a reversed read operation: we loop through all k ∈ [0.. log n′] such that
s2k ≤ n′ and, if n′ is a multiple of 2k, remove the catcher covering (n′ −s2k..n′ −
(s − 1)2k]; if, in addition, n′ is a multiple of 2k+1, the algorithm creates two
catchers covering (n−s2k+1..n−s2k+1+2k] and (n−s2k+1+2k..n−(s−1)2k+1].
Clearly, this solution is slow: if n = 2p for some integer p, then n consecutive
backtrack and read operations require O(n2) time.

To solve this problem, we make the life of catchers longer. In the modified
algorithm, the read and backtrack operations don’t remove catchers but mark
them as “removed” and the marked catchers still work some number of steps. If
a backtrack or read operation tries to create a catcher that already exists but is
marked as “removed”, the algorithm just deletes the mark.

How long is the life of marked catcher? Consider a catcher defined by i =
n′−(s−1)2k and j = max{i, n′−� s

e2k�}, where n′ is the value of n at the moment
of creation of the catcher in the corresponding read operation. The read operation
marks the catcher as “removed” when either n′ = n − s2k or n′ = n − (s − 1)2k;
our modified algorithm removes this marked catcher when n′ = n − (s + 1)2k

or n′ = n − s2k respectively, i.e., the catcher “lives” additional 2k steps. The
backtrack operation marks the catcher as “removed” when n′ = n+1; we remove
this catcher when n′ = n + min{2k, n′ − j} (recall that the catcher cannot exist
if n < j), i.e., the catcher “lives” additional min{2k, � s

e2k�} = Θ(2k) steps.
Let us analyze the time and space consumed by the algorithm. It is easy to

see that for any k ∈ [0.. log n], there are at most s+2 catchers covering segments
of length 2k. The worst case is achieved when we have s working catchers and two
marked catchers. Now it is obvious that the modified algorithm, as the original
one, takes O(m) space and requires O(log m) time in each read or backtrack
operation if we don’t count the time for creation of catchers. The key property
that helps us to estimate this time is that once a catcher covering a segment
of length 2k is created, it cannot be removed during any sequence of Θ(2k)
backtrack and read operations. To create this catcher, the algorithm requires
Θ(2k) time and hence, this time for creation is amortized over the sequence
of Θ(2k) backtrack and read operations. Thus, the algorithm takes O(n log m)
overall time, where n is the number of read and backtrack operations. ��

4 Ordered Alphabet

It turns out that in some natural cases we can narrow the area of e-repetition
search. More precisely, if text[1..n−1] is e-repetition-free, then the length of any
e-repetition of text is close to the length of the shortest suffix v of text such that
v does not occur in text[1..n−1]. In the sequel, v is referred to as the shortest
unioccurrent suffix of text. Denote t = |v|. Suppose u is a suffix of text such
that u is an e-repetition. Let us first consider some specific values of e.

Example 2. Let e = 5. We prove that t ≤ |u| < 5
4 t. Denote by p a period of

u such that 5p ≤ |u|. Since the suffix of length t−1 occurs in text[1..n−1] and
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text[1..n−1] is 5-repetition-free, we have |u| ≥ t. Suppose, to the contrary, |u| ≥
t + 1

4 t. Then t + p ≤ t + 1
5 |u| ≤ |u| and text[n−t+1..n] = text[n−t−p+1..n−p]

by periodicity of u (see Fig. 3a), a contradiction to the definition of t.

Example 3. Let e = 1.5. We show that t ≤ |u| < 1.5
0.5 t. As above, we have |u| ≥ t.

Denote by p a period of u such that 1.5p ≤ |u|. Suppose |u| ≥ t + 1
0.5 t (or

t ≤ 0.5
1.5 |u|); then t + p ≤ t + 1

1.5 |u| ≤ 0.5
1.5 |u| + 1

1.5 |u| = |u| and text[n−t+1..n] =
text[n−t−p+1..n−p] (see Fig. 3b), which contradicts to the definition of t.

a

b

Fig. 3. (a) n = 16, u = text[2..n], t = 13, t′ = 11, text[n−t′+1..n]=text[n−t′−2..n−3];
(b) n = 15, u = text[4..n], t = 5, t′ = 3, text[n−t′+1..n] = text[n−t′−7..n−8].

Lemma 3. Let t be the length of the shortest unioccurrent suffix of text, and u
be an e-repetition of text. If text[1..n−1] is e-repetition-free, then t ≤ |u| < e

e−1 t.

Proof. Clearly, u is a suffix. We have t ≤ |u| since the suffix of length t−1 occurs
in text[1..n−1] and text[1..n−1] is e-repetition-free. Suppose, to the contrary,
|u| ≥ e

e−1 t (or t ≤ e−1
e |u|). Denote by p the minimal period of u. We have

p ≤ 1
e |u|. Further, we obtain t+p ≤ t+ 1

e |u| ≤ e−1
e |u|+ 1

e |u| = |u|, i.e., t+p ≤ |u|.
Finally, since p is a period of u, we have text[n−t+1..n] = text[n−t−p+1..n−p]
(see Fig. 3a,b). This contradicts to the definition of t. ��

Lemma 3 describes the segment in which our algorithm must search e-repeti-
tions. To cover this segment by catchers, we use the following technical lemma.

Lemma 4. Let l and r be integers such that 0 ≤ l ≤ r < n and c(n − r) > n − l
for a constant c > 0. Then there is a set of catchers {ck}m

k=0 covering (l..r] such
that m is a constant depending on c and each ck is defined by integers ik and jk

such that jk − ik + 1 ≥ e−1
2e (n − r).
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Proof. Let us choose a number α such that 0 < α < 1. Denote n−r = s. Consider
the following set of catchers {ck}m

k=0: ck is defined by integers ik = n − �(eα)ks�
and jk = n−�α(eα)ks� (see Fig. 4). Denote i′k = n−(eα)ks and j′

k = n−α(eα)ks.
By Lemma 2, ck covers (n − e(n − j′

k)..i′k] = (n − (eα)k+1s..i′k]. Thus, for any
k ∈ [0..m−1], the catcher ck covers (i′k+1..i

′
k] and therefore, the set {ck}m

k=0

covers the following segment:

(n− (eα)m+1s..i′m]∪ (i′m..i′m−1]∪ (i′m−1..i
′
m−2]∪ . . .∪ (i′1..i

′
0] = (n− (eα)m+1s..r].

Hence, if eα > 1 and (eα)m+1s ≥ cs, the set {ck}m
k=0 covers (n − cs..r] ⊃ (l..r].

Thus to cover (l..r], we can, for example, put α = e+1
2e and m + 1 = � log c

log(eα)� =

� log c
log(e+1)−1�. Finally for k ∈ [0..m], we have jk − ik +1 = �(eα)ks�−�α(eα)ks�+

1 ≥ (eα)ks − (α(eα)ks + 1) + 1 = (eα)k(1 − α)s ≥ (1 − α)s = e−1
2e (n − r). ��

Fig. 4. The system {ck}m
k=0 with m = 2 (c3 is depicted for clarity), e ≈ 1.5, α ≈ 5

6
.

For each integer i > 0, denote by ti the length of the shortest unioccurrent
suffix of text[1..i]. We say that there is an online access to the sequence {ti} if
any algorithm that reads the string text sequentially from left to right can read
ti immediately after reading text[i]. The following lemma describes an online
algorithm for e-repetition detection based on an online access to {ti}. Note that
the alphabet is not necessarily ordered.

Lemma 5. If there is an online access to the sequence {ti}, then there exists an
algorithm that online detects e-repetitions in linear time and space.

Proof. Our algorithm online reads the string text while text is e-repetition-free.
Let n = |text|. Denote ln = max{0, n− e

e−1 tn} and rn = n−tn +1. By Lemma 3,
to detect e-repetitions, it suffices to have a set of catchers covering (ln..rn]. But
if the set covers only (ln..rn], then we will have to update the catchers in each
step i such that ri−1 < ri or li−1 > li. To reduce the number of updates, we
cover (ln..rn] with significantly long left and right margins. Thus, some changes
of ln and rn can be made without rebuilding of catchers.

We maintain two variables l and r such that l ≤ ln ≤ rn ≤ r. Initially
l = r = 0. To achieve linear time, we also require n − r ≤ 2(r − l). The following
pseudocode explains how we choose l and r:
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1: read a letter and append it to text (thereby we increment n and read tn)
2: ln ← max{0, n − e

e−1 tn}; rn ← n − tn + 1;
3: if ln < l or rn > r or n − r > 2(r − l) then
4: l ← max{0, n − 2e

e−1 tn}; r ← n − 1
2 tn;

5: update catchers to cover (l..r]

The correctness is clear. Consider the space requirements. Since n − r = 1
2 tn

and n − l = min{n, 2e
e−1 tn}, it follows that c(n − r) > n − l for any c > 4 e

e−1 .
Therefore, by Lemma 4, the algorithm uses a constant number of catchers and
hence requires at most linear space. Denote by m the number of catchers.

Let us estimate the running time. Observe that rn never decreases. In our
analysis, we assume that to increase rn, the algorithm performs rn − rn−1 incre-
ments. Obviously, our assumption does not affect the overall running time: to
process any string of length k, the algorithm executes at most k increments. Also
the algorithm performs k increments of n. We prove that the time required to
maintain catchers is amortized over the sequence of increments of rn and n.

Suppose the algorithm creates a set of catchers {ck}m
k=1 at some point. Denote

by n′ the value of n at this moment. Let us prove that it takes O(tn′) time to
create this set. For k ∈ [1..m], let ck be defined by ik and jk. By Lemma 4, for
each k ∈ [1..m], we have jk − ik + 1 ≥ e−1

2e (n′ − r). Since n′ − r ≥ e−1
4e (n′ − l) ≥

e−1
4e (n′ − ik), we obtain c(jk − ik + 1) ≥ n′ − ik for any c ≥ 8e2/(e − 1)2.

Hence, by Lemma 1, it takes O(n′ − ik) time to create the catcher ck. Note that
n′ − ik ≤ n′ − l ≤ 2e

e−1 tn′ and 1
2 tn′ ≤ n′ − ik, i.e., n′ − ik = Θ(tn′). Therefore, to

build the set {ck}m
k=1, the algorithm requires O(

∑m
k=1(n

′ − ik)) = O(tn′) time.
Let us prove that to update the set {ck}m

k=1, the algorithm must execute
Θ(tn′) increments of n or rn. Consider the conditions of line 3:

1. To satisfy ln < l (clearly l > 0 in this case), since we have ln−1 − ln ≤ e
e−1

for any n, we must perform at least (ln′ − l)/ e
e−1 = tn′ increments of n.

2. To satisfy rn > r, we must execute �r − rn′� = �tn/2� increments of rn.
3. To satisfy n − r > 2(r − l), since n − r = 1

2 tn′ + (n − n′) and 2(r − l) ≥ tn′ ,
we must increase n by at least � 1

2 tn′�.
The third condition forces us to update catchers after � 4e

e−1 tn′� increments of n.
Indeed, we have n− r = � 4e

e−1 tn′�+n′ − r ≥ 4e
e−1 tn′ = 2(n′ − l) > 2(r − l). Recall

that for each k ∈ [1..m], we have n′ − ik = Θ(tn′) and jk − ik + 1 = Θ(tn′).
Hence, by Lemma 1, the catchers {ck}m

k=1 take O(tn′) overall time. Thus the time
required to maintain all catchers is amortized over the sequence of increments
of n and rn. ��
Theorem 2. For ordered alphabet, there exists an algorithm that online detects
e-repetitions in O(n log σ) time and linear space, where σ is the number of dis-
tinct letters in the input string.

Proof. To compute the sequence {ti}, we can use, for example, Weiner’s online
algorithm [13] (or its slightly optimized version [3]), which works in O(n log σ)
time and linear space. Thus, the theorem follows from Lemma 5. ��
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Corollary. For constant alphabet, there exists an algorithm that online detects
e-repetitions in linear time and space.
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Abstract. In this short note, we prove that the greedy conjecture for
the shortest common superstring problem is true for strings of length 4.

1 Introduction

In the shortest common superstring (SCS) problem one is given a set S =
{s1, . . . , sn} of n strings and the goal is to find a shortest string s such that
each si is a substring of s. This is a well-known problem having applications in
such areas as genome assembly and data compression.

The problem is known to be NP-hard [10] (even if the input strings have
length 3 or if the alphabet is binary [2]) and APX-hard [12]. The fastest known
exact solutions just reduce the problem to the Travelling salesman problem and
have running time (

∑n
i=1 |si|)O(1)2n [1,6–8]. The currently best known approx-

imation ratio is 211
23 [11]. Better upper bounds are known for special cases when

input strings have bounded length [4,5]. A recent survey of known results (both
practical and theoretical) is given in [3].

The well known greedy conjecture states that the following extremely simple
greedy algorithm has approximation ratio 2 [14]: find two strings with longest
mutual overlap and merge them into one string, repeat the process till only one
string is left. This intriguing conjecture is open for more than 25 years already.
There is a partial progress however: it is known that the conjecture is true for
some orders in which the input strings are merged by the greedy algorithm [9,15].

In this short note, we consider another special case. We prove that the
greedy conjecture is true if the input strings have length 4. (While for strings of
length 3 the conjecture follows from the fact that the greedy algorithm achieves
2-approximation of the compression measure [13].) We do this by a careful analy-
sis of possible overlaps produced by the greedy algorithm.

2 Preliminaries

An overlap ov(a, b) of two strings a and b is defined as the longest suffix of a
which is also a prefix of b.

Let S = {s1, . . . , sn} be a set of pairwise different 4-strings where by an
r-string we denote just a string of length exactly r. Denote by sopt and sgr an
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 307–315, 2015.
DOI: 10.1007/978-3-319-19929-0 26



308 A.S. Kulikov et al.

optimal solution and a greedy solution for S, respectively. Our goal is thus to
show that

|sgr| ≤ 2 · |sopt| . (1)

For technical reasons, we assume in this paper that in case of ties the greedy
algorithm prefers strings of the form aaaa for a ∈ Σ.

Let π = (π1, . . . , πn) be a permutation of {1, . . . , n}. By overlapping n input
strings in this particular order one gets a superstring of length

n∑

i=1

|si| −
n−1∑

i=1

| ov(sπi
, sπi+1)| . (2)

The second term in the expression above is called a compression of S with
respect to π. Thus, an equivalent reformulation of SCS is the following: find an
order of n input strings that maximizes the compression. By copt and cgr we
denote the compression of the optimal solution sopt and the greedy solution sgr,
respectively. By combining (1) with (2) we get an equivalent reformulation of
what we need to prove:

4n − cgr ≤ 2 · (4n − copt) . (3)

For a string t of length at most 3, let #opt(t) and #gr(t) be the number of
overlaps that are equal to t in sopt and sgr, respectively. Similarly, let #opt

i and
#gr

i be the number of overlaps of length exactly i. Then (3) is equivalent to

4n − #gr
1 − 2#gr

2 − 3#gr
3 ≤ 2 · (4n − #opt

1 − 2#opt
2 − 3#opt

3 ) (4)

or
2#opt

1 + 4#opt
2 + 6#opt

3 ≤ 4n + #gr
1 + 2#gr

2 + 3#gr
3 . (5)

Since #opt
1 + #opt

2 + #opt
3 ≤ n it suffices to prove that

2#opt
3 ≤ 3#gr

3 + 2#gr
2 + #gr

1 . (6)

Let Sgr
3 be the set of strings at the point of time when the greedy algorithm

already merged all pairs of strings whose overlap is 3 and there is no more
overlaps of length 3 left. In the following lemma we show that the number of
overlaps equal to a 3-string t in the greedy solution cannot be much smaller than
that of the optimal solution.

Lemma 1. For any 3-string t, #gr(t) ≥ #opt(t) − 1. Moreover, if #gr(t) =
#opt(t) − 1 then Sgr

3 contains a string with prefix t and suffix t.

Proof. Assume, for the sake of contradiction, that #gr(t) ≤ #opt(t) − 2. The
optimal solution contains #opt(t) overlaps equal to t and hence among the input
n strings there are at least #opt(t) strings whose prefix is t and at least #opt(t)
strings whose suffix is t. Now consider the set Sgr

3 . Since #gr(t) ≤ #opt(t)−2, we
conclude that Sgr

3 contains at least two strings whose suffix is t and at least two
strings whose prefix is t. Hence there are two different strings in this set whose
overlap is t which contradicts to the fact that there are no more 3-overlaps. ��
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In the following the strings from Sgr
3 are called blocks. For a 3-string t, we say

that a block is t-bad if its suffix and its prefix are equal to t and moreover
#gr(t) = #opt(t) − 1. We call a block bad if it is t-bad for a 3-string t and
good otherwise. Let #bad and #good be the number of overlaps in all bad and
good blocks, respectively. Then clearly #bad + #good = #gr

3 (recall that all the
overlaps inside the blocks have length 3).

Note that if there are no bad blocks then already Lemma 1 is sufficient to
prove (6): in this case, #gr(t) ≥ #opt(t) and therefore #gr

3 ≥ #opt
3 .

Next, we consider bad blocks of fixed length: for a 3-string t, let

χ=i(t) = [Sgr
3 contains a t−bad block of length exactly i].

(throughout the paper, we use the standard Iverson brackets: [P ] is equal to 1
if P is true and is equal to 0 otherwise). Further, let

χ=i =
∑

|t|=3

χ=i(t) .

Functions χ>i(t), χ≥i(t), χ>i, and χ≥i are defined in a similar fashion.
Note that χ=4 = 0. Indeed a bad block of length 4 must have a form aaaa.

Also, #opt(aaaa) > 0 and hence S contains another string starting or ending
with aaa. But then the greedy algorithm must merge these two strings (as it
prefers strings of the form aaaa). Hence for any 3-string t, χ≥5(t) is exactly the
number of t-bad blocks.

Lemma 2. For any 3-string t,

min{#gr(t),#opt(t)} + χ≥5(t) = #opt(t) .

Proof. Consider the following two cases:

1. #gr(t) ≥ #opt(t), then min{#gr(t),#opt(t)} = #opt(t) and χ≥5(t) = 0.
2. #gr(t) < #opt(t), then by Lemma 1, min{#gr(t), #opt(t)} = #opt(t) − 1.

There is at least one block starting with t and ending with t. Moreover there
cannot be two different such blocks as otherwise the greedy algorithm would
merge them. Therefore, there is exactly one t-bad block, i.e., χ≥5(t) = 1. ��

By summing up the equality from Lemma 2 over all strings t of length 3 we get
the following corollary.

Corollary 1. ∑

|t|=3

min{#gr(t),#opt(t)} + χ≥5 = #opt
3 .

Assume now that χ=5 = 0. Then due to the fact that a bad block of length
exactly i contains i − 4 overlaps we have that 2χ>5 ≤ #gr

3 . By adding twice the∑

|t|=3

min{#gr(t),#opt(t)} to both sides of this inequality and applying

Corollary 1 we get
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2#opt
3 ≤ #gr

3 + 2
∑

|t|=3

min{#gr(t),#opt(t)} ≤ 3#gr
3 ,

which implies (6).
Hence the most tricky case is when there are bad blocks of length 5. The rest

of the paper is devoted to the analysis of this case. Note that such blocks have
the form ababa (for different letters a, b ∈ Σ) and therefore these are aba-bad
blocks. To analyze such blocks carefully we introduce the following definitions.
For a 3-string t and 1 ≤ i ≤ 5, Bi(t) = 0 if either t is not of the form aba, or t
is of the form aba and there is no block ababa. In the remaining case (i.e., t is
of the form aba and there is a block ababa) Bi’s are defined as follows:

B1(aba) = [#gr(bab) > #opt(bab)],
B2(aba) = [there exists a block with prefix ba or suffix ab],
B3(aba) = [there exists a block except ababa with prefix ab or suffix ba],
B4(aba) = [there exists a good block of length at least 5

containing aba or bab as a proper substring],
B5(aba) = [B2(aba) = 0 and B3(aba) = 0 and there exists a bad block of

length at least 7 containing aba or bab as substring].

Further, let for 1 ≤ i ≤ 5, Bi =
∑

|t|=3

Bi(t).

Now we show Bi’s provide an upper bound for the number of bad blocks of
length exactly 5.

Lemma 3. χ=5 ≤
5∑

i=1

Bi.

Proof. Note that if 3-string t is not of the form aba then χ=5(t) = 0 so the string
t contributes nothing to the left-hand side of the inequality. We now focus on
3-strings t of the form aba. It is sufficient to prove the following inequality:

χ=5(aba) ≤
5∑

i=1

Bi(aba) (7)

Assume that χ=5(aba) = 1 and B1(aba) = 0 as otherwise the inequality holds
for trivial reasons. From B1(aba) = 0 and Lemma 1 we have that #opt(bab)−1 ≤
#gr(bab) ≤ #opt(bab). Since #gr(bab) > 0 (because Sgr

3 contains the block
ababa by definition of χ=5(aba)) we have that #opt(bab) > 0, i.e. the optimal
solution has at least one overlap of the form bab. Depending of the location of
this overlap in the optimal string we consider the following cases:

1. The overlap bab in the optimal solution is contained as a substring of ababa.
Since #opt(aba) > 0, S contains at least one string except abab and baba
containing aba as substring.

2. The overlap bab in the optimal solution is not in ababa. Hence S contains at
least one string except abab and baba containing bab.
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So in both cases there exists a string in S except abab and baba that contains
t′ = aba or t′ = bab. This string is contained by some block r ∈ Sgr

3 and besides
r �= ababa and r �= babab. Consider the following cases:

1. r is a good block. Then B4(aba) > 0 if t′ is a proper substring of r and
B2(aba) + B3(aba) > 0 otherwise. Therefore (7) holds.

2. r is a bad block of length 5. Then this block has a form ababa or babab,
a contradiction.

3. r is a bad block of length 6. If t′ is a prefix or a suffix of r then B2(aba) +
B3(aba) > 0. Otherwise either r = r1t′

1t
′
2t

′
1r5r6 or r = r1r2t′

1t
′
2t

′
1r6 where

t′ = t′
1t

′
2t

′
3. Since r is a bad block either t′

1t
′
1t

′
2t

′
1t

′
1t

′
2 or t′

2t
′
1t

′
1t

′
2t

′
1t

′
1.

Finally, since either t′ = aba or t′ = bab in both these cases r has a prefix or
a suffix ab or ba. Then B2(aba) + B3(aba) > 0 and (7) holds.

4. r is a bad block of length at least 7. Then B5(aba) > 0 and (7) holds. ��

3 The Proof of the Main Theorem

In this section we prove the main result of this note: we first state auxiliary
lemmas providing upper bounds on Bi’s, then show how these lemmas imply the
main result of the paper, and then provide the proofs of all the lemmas.

Lemma 4. B1 +
∑

|t|=3

min{#gr(t),#opt(t)} ≤ #gr
3 .

Lemma 5. B2 ≤ #gr
2 .

Lemma 6. B3 ≤ #gr
1 + #gr

2 .

Lemma 7. B4 ≤ #good.

Lemma 8. B5 + 2χ>5 + χ=5 ≤ #bad.

Theorem 1. The greedy algorithm for strings of length 4 that prefers strings of
the form aaaa in case of ties is 2-approximate.

Proof. By adding the inequalities from Lemmas 5–8 to twice the inequality from
Lemma 4 and applying equality #bad + #good = #gr

3 one gets

2B1 + B2 + B3 + B4 + B5 + 2χ>5 + χ=5 + 2
∑

|t|=3

min{#gr(t), #opt(t)} ≤

3#gr
3 + 2#gr

2 + #gr
1 .

By further adding the inequality from Lemma3 we get

2
∑

|t|=3

min{#gr(t),#opt(t)} + 2χ>5 + 2χ=5 + B1 ≤ 3#gr
3 + 2#gr

2 + #gr
1 .

Finally, applying Corollary 1 we get

2#opt
3 + B1 ≤ 3#gr

3 + 2#gr
2 + #gr

1

which implies (6). ��
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Proof (of Lemma 4). We have

B1 +
∑

|t|=3

min{#gr(t),#opt(t)} =
∑

|t|=3

(B1(t) + min{#gr(t), #opt(t)})

=
∑

t�=aba

(B1(t) + min{#gr(t),#opt(t)}) +
∑

a,b∈Σ

(B1(aba) + B1(bab)

+ min{#gr(aba),#opt(aba)} + min{#gr(bab), #opt(bab)})

To prove this lemma, we consider the following cases:

Case 1. If t �= aba then B1(t) = 0 and hence

B1(t) + min{#gr(t),#opt(t)} ≤ #gr(t) .

Case 2. If t = aba and B1(aba) + B1(bab) = 0 then

B1(aba) + B1(bab)+ min{#gr(aba),#opt(aba)}
+ min{#gr(bab),#opt(bab))} ≤ #gr(aba) + #gr(bab)

Case 3. If t = aba and B1(aba) = 1 then B1(bab) = 0 and, by definition of B1,
#gr(bab) > #opt(bab). Hence

B1(aba) + B1(bab) + min{#gr(aba),#opt(aba)} + min{#gr(bab), #opt(bab)}
= 1 + min{#gr(aba),#opt(aba)} + min{#gr(bab), #opt(bab)}

≤ 1 + #gr(aba) + #opt(bab)
≤ 1 + #gr(aba) + #gr(bab) − 1 = #gr(aba) + #gr(bab)

Case 4. If t = aba and B1(bab) = 1. This case is similar to Case 3. ��
Proof (of Lemma 5). We show that B2 ≤ #gr

2 . If B2(t) > 0 then t is of the form
aba and there exists a block with prefix ba or suffix ab. Since B2(t) > 0 there
exists a pair of blocks: ababa and a block with a 2-prefix ba or a 2-suffix ab. Note
that for different strings t these pairs of blocks do not intersect and cannot be
merged with 2-overlaps because the sets {a, b} are different. Note that at least
one block in this pair must be merged with 2-overlap with some block otherwise
this pair of blocks must be merged by the greedy algorithm. Thus

∑

t
B2(t) < #gr

2

��
For Lemma 6 we need the following auxiliary definitions. Let Pref(a, b) = ∅ if
there is no block ababa and the set of blocks with prefix ab otherwise. Similarly,
let Suff(a, b) = ∅ if there is no block ababa and the set of blocks with suffix ba
otherwise. Then it is easy to see that:

(a �= a′ ∨ b �= b′) ⇒ (Pref(a, b) ∩ Pref(a′, b′) = ∅ ∧ Suff(a, b) ∩ Suff(a′, b′) = ∅)

Let
Pref(a) =

⋃

b∈Σ

Pref(a, b) and Suff(a) =
⋃

b∈Σ

Suff(a, b) .
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Lemma 9. If a �= c then the set of 1- and 2-suffixes of strings from Suff(a) does
not intersect the set of 1- and 2-prefixes of strings from Pref(c).

Proof. All 1-suffixes of strings from Suff(a) are equal to a while all 1-prefixes of
strings from Pref(c) are equal to c, hence they do not intersect.

Assume that 2-suffix of b1 ∈ Suff(a) equals to 2-prefix of block b2 ∈ Pref(c).
2-suffix of block b1 has the form xa and 2-prefix of b2 has the form cy so x =
c, y = a. Hence b1 has form acaca and b2 has form cacac, a contradiction. ��
Proof (of Lemma 6). B3(t) > 0 only for t = aba: B3 =

∑

t
B3(t) =

∑

a

∑

b

B3(aba).

By Lemma 9 one can form sets Xa
1 of 1-overlaps of strings from Suff(a) and

Pref(a) counted in #gr
1 . The lemma guarantees that these sets are disjoint. Sim-

ilarly we can form sets Xa
2 from 2-overlaps of strings from Suff(a) and Pref(a).

Hence ∑

a

|Xa
1 | ≤ #gr

1 and
∑

a

|Xa
2 | ≤ #gr

2 . (8)

Since for each nonzero χ=5(aba) there exists a block ababa we have, for each a,
∑

b

B3(aba) ≤ min{|Pref(a)|, | Suff(a)|} . (9)

Since for each block ababa with B3(aba) > 0 there exists by definition a string
with prefix ab or suffix ba, we have:

∑

b

B3(aba) < max{|Pref(a)|, | Suff(a)|} . (10)

Assume that |Pref(a)| ≤ |Suff(a)| (the opposite case is symmetric). Let us
show that

|Xa
1 | + |Xa

2 | ≥
∑

b

B3(aba) . (11)

For this, assume the contrary. It follows from (9) and (10) that

|Xa
1 | + |Xa

2 | ≤ |Pref(a)| − 1 and |Xa
1 | + |Xa

2 | ≤ |Suff(a)| − 2 .

Hence there exists at least one block from Pref(a) whose prefix is not used
in overlaps and there exist at least two blocks from Suff(a) whose suffixes are
not used in overlaps. But this prefix can be merged with one of these suffixes,
a contradiction establishing (11).

Finally, by summing (11) for all a and applying (8) we get the required
inequality:

∑

a∈Σ

∑

b∈Σ

B3(aba) ≤
∑

a

(|Xa
1 | + |Xa

2 |) ≤ #gr
1 + #gr

2 . ��
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Proof (of Lemma 7). If for some a, b ∈ Σ, B4(aba) + B4(bab) = 1, then either
aba or bab is contained by a good block as a proper substring, so there exists at
least one overlap by t in a good block. Hence

B4 =
∑

|t|=3

B4(t) ≤ #good . ��
Proof (of Lemma 8). Let #i

bad be the number of overlaps in bad blocks of
length i.

Let Bi
5(t) = [i ≥ 7 ∧ t = aba ∧ B2(t) = B3(t) = 0 ∧ there exists a block ababa

and a bad-block of length i which contains aba or bab as a proper substring]
By definition,

B5(t) ≤
∑

i≥7

Bi
5(t)

Since there are two 3-overlaps in bad blocks of length 6, 2χ=6 = #6
bad.

Consider bad blocks of length i ≥ 7. Each such block contains i − 4
3-overlaps. Note that overlaps aba or bab that are counted in Bi

5(aba) cannot
be neighbouring as otherwise Bi

5 would contain blocks ababa and babab (while
this is only possible if the initial set S contains equal strings).

Let aba be the first overlap in a block. Then this block has prefix cab for
c ∈ Σ. Its suffix also equals cab since this is a bad block. But in this case
B2(aba) > 0 and then B5(aba) = 0, a contradiction. A similar contradiction
arises if aba is the last overlap in a block. Thus, for i ≥ 7 we have:

Bi
5 =

∑

s

Bi
5(s) ≤ χ>5 ·

⌈
i − 6

2

⌉

≤ χ>5 · (i − 6) .

Then
2χi

>5 + Bi
5 ≤ 2χ>5 + χ>5 · (i − 6) = χ>5 · (i − 4) ≤ #i

bad .

Finally, we have:

2χ>5 + χ=5 + B5 ≤ χ=5 + 2χ=6 +
∑

i≥7

(2χ=i + Bi
5)

≤ #5
bad + #6

bad +
∑

i≥7

#i
bad = #bad .

��

4 Conclusion

We have proved that the greedy conjecture for the shortest common super-
string problem is true for strings of length 4. Extending the proof to the case of
5-strings seems to be even more tedious. At the same time resolving such special
cases does not seem to help to resolve the general case.
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Abstract. The suffix array is frequently augmented with the longest-
common-prefix (LCP) array that stores the lengths of the longest com-
mon prefixes between lexicographically adjacent suffixes of a text. While
the sum of the values in the LCP array can be Ω(n2) for a text of length
n, the sum of so-called irreducible LCP values was shown to be O(n lg n)
just a few years ago. In this paper, we improve the bound to O(n lg r),
where r ≤ n is the number of runs in the Burrows-Wheeler transform of
the text. We also show that our bound is tight up to lower order terms
(unlike the previous bound). Our results and the techniques used in prov-
ing them provide new insights into the combinatorics of text indexing and
compression, and have immediate applications to LCP array construc-
tion algorithms.

1 Introduction

The suffix array [8], a lexicographically sorted array of the suffixes of a text, is the
most important data structure in modern string processing. Modern text books
spend dozens of pages in describing applications of suffix arrays, see e.g. [12].
In many of those applications, the suffix array needs to be augmented with
the longest-common-prefix (LCP) array, which stores the lengths of the longest
common prefixes between lexicographically adjacent suffixes (see e.g. [1,12]).

A closely related array is the Burrows–Wheeler transform (BWT) [2], which
stores the characters preceding each suffix in the lexicographical order of the
suffixes. The BWT was designed for text compression and is at the heart of
many compressed text indexes [11]. If a text is highly repetitive (and thus highly
compressible), its BWT tends to contain long runs of the same character. For
example, for any string x and positive integer k, x and xk have the same number
of BWT runs [7]. Thus the number of BWT runs is a rough measure of the
(in)compressibility of the text.

Partially supported by the project “Enhancing Educational Potential of Nicolaus
Copernicus University” (project no. POKL.04.01.01-00-081/10).

c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 316–328, 2015.
DOI: 10.1007/978-3-319-19929-0 27
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An entry LCP[i] in the LCP array is called reducible if BWT[i] = BWT[i−1],
and irreducible otherwise. Given all the irreducible LCP values, the reducible
values are easy to compute, which has been utilized in several LCP array con-
struction algorithms [5,6,10,14]. There is also a compressed representation of
the LCP array based on the fact that the number of irreducible values is one
less than the number of BWT runs and thus small for repetitive texts [14].

The sum of irreducible LCP values was shown to be O(n lg n) for a text of
length n in [6], and there are LCP array construction algorithms relying on this
bound [5,6,14]. In this paper, we improve the bound to n lg r + O(n), where r
is the number of BWT runs.1 This immediately gives better time complexities
for the algorithms in [6,14]. The tightness of our bound is shown by an infinite
family of strings with the irreducible LCP sum of n lg r − O(n).

Our proofs are derived in a setting where the suffix array, LCP array
and BWT are defined for an arbitrary multiset of strings, closely related
to the extended BWT introduced in [9]. This general setting offers cleaner
combinatorics — for example, our upper and lower bounds match exactly in this
setting — and could be useful for studying other topics in the combinatorics of
text indexes.

2 Preliminaries

By A we denote a finite ordered set, called the alphabet. Elements of the
alphabet are called letters. A finite word over A is a finite sequence of letters
w = a0a1 . . . an−1. The length of a word w is defined as the number of its letters
and denoted by |w|. An empty sequence of letters, called the empty word, is
denoted by ε. The set of all finite words over A is denoted by A∗ and the set of
all non-empty words over A by A+ = A∗ \ {ε}.

For two words x = a0a1 . . . am−1 and y = b0b1 . . . bn−1, their concatenation
is xy = x · y = a0a1 . . . am−1b0b1 . . . bn−1. For a word w and an integer k ≥ 1, we
use wk to denote the concatenation of k copies of w, also called a power of w.
A word w is primitive if w is not a power of some other word. The root of a
word w is defined as the shortest word u = root(w) such that w = uk for some
k ≥ 1.

A word u is a factor of a word w if there exist words x and y such that
w = xuy. Moreover, u is a prefix (resp. a suffix ) of w if x = ε (resp. y = ε). By
lcp(u, v) we denote the length of the longest common prefix of u and v. For a
word w = a0 . . . an−1 and i, j ∈ [0..n) by w[i..j] we denote its factor of the form
aiai+1 . . . aj . A factor/prefix/suffix u of w is proper if u �= w. A (multi)set of
words W is prefix-free if no word in W is a proper prefix of another word in W .

The order on letters of A can be extended in a natural way into the lexico-
graphical order of words. For any two words x and y we have x < y if x is a
proper prefix of y or we have x = uav1 and y = ubv2, where a, b ∈ A and a < b.

Let a ∈ A and x ∈ A∗. We define a rotation operator σ : A+ → A+ as
σ(a · x) �→ x · a, a first-letter operator τ : A+ → A as τ(a · x) �→ a and a reverse
1 Throughout the paper we use lg as a shorthand for log2.
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operator : A∗ → A∗ as ε �→ ε and a · x �→ x · a. We say that a word w1 is a
conjugate of a word w2 if w1 = σk(w2) for some k.

The set of infinite periodic words is defined as (A+)ω = {wω : w ∈ A+},
where wω = w · w · . . . is the infinite power of w. We extend several of the above
operators to infinite periodic words: root(wω) = root(w), σ(wω) =

(
σ(w)

)ω,
τ
(
(a · w)ω

)
= a and (wω) =

(
w

)ω. Some key properties are given below:

– The operators are well defined: If uω = vω for two words u and v, then
root(u) = root(v), σ(u)ω = σ(v)ω, τ(u) = τ(v), and uω = vω.

– The rotation operator σ is in fact a suffix operator for infinite periodic words:
wω = τ(wω)σ(wω) for all w ∈ A+. However, unlike a suffix operator for finite
words, σ has a well defined inverse σ−1.

– The lexicographical ordering of infinite periodic words is not necessarily the
same as their roots. For example, with alphabet {a < b}, ab < aba but
(ab)ω > (aba)ω. However, for two infinite periodic words with the roots u and
v, either uω = vω (and lcp(uω, vω) = ω) or lcp(uω, vω) ≤ |u|+ |v|−gcd(|u|, |v|)
due to properties of periodicity [3].

A rooted tree T is a directed graph that contains no undirected cycles and where
every vertex is reachable from a single vertex called the root. If (u, v) is an edge
in T , u is the parent of v and v is a child of u. If there is a directed path from a
vertex u to vertex v, u is an ancestor of v and v is a descendant of u. A subgraph
of T induced by the set of vertices that are reachable from a vertex u is called
the subtree rooted at u.

A compact trie is a rooted tree, where the edges are labelled by non-empty
words so that, for any vertex u with two outgoing edges (u, v1) and (u, v2),
lcp(label(u, v1), label(u, v2)) = 0. The edge labelling induces a vertex labelling:
the label of a vertex u is the concatenation of edge labels on the path from
the root to u. The compact trie CTrie(W ) for a set W of words is the smallest
compact trie that contains a vertex labelled by w for every w ∈ W . If W is
prefix-free, a vertex v in CTrie(W ) is labelled by a word in W if and only if v is
a leaf. For W ⊆ (A+)ω, the leafs and the leaf edges in CTrie(W ) are labelled by
infinite periodic words, but other edges and vertices have finite labels.

3 Cyclic Suffixes

In this section, we define a generalization of the suffix array and related data
structures based on the concept of cyclic suffixes.

Let W = {{wi}}s
i=1 be a multiset2 of words and n =

∑s
i=1 |wi|. The set of

positions of W is defined as the set of integer pairs pos(W ) :=
{〈i, p〉 : i ∈

[1..s], p ∈ [0..|wi|)
}
. For a position 〈i, p〉 ∈ pos(W ) we define a cyclic suffix

W〈i,p〉 :=
(
σp(wi)

)ω ∈ (A+)ω. The multiset of all cyclic suffixes of W is defined
as suf(W ) := {{W〈i,p〉 : 〈i, p〉 ∈ pos(W )}}.

2 We use the double brace notation {{·}} to denote a multiset as opposed to a set.
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We define two multisets V and W to be cyclically equivalent if suf(V ) =
suf(W ). It is easy to see that the corresponding equivalence classes are closed
under conjugation of words in the multiset. Indeed, the restriction of cyclic
equivalency to multisets of primitive words is the multiset conjugacy relation
defined in [9]. The following lemma illustrates some further properties of our
extension.

Lemma 1. For any multiset of words W = {{wi}}s
i=1 there exists a multiset of

primitive words V = {{vi}}t
i=1, t ≥ s, such that suf(W ) = suf(V ), and a set (not

a multiset) of words U = {ui}q
i=1, q ≤ s, such that suf(W ) = suf(U).

Proof. To obtain V we replace each non-primitive word w = vk ∈ W , where
v = root(w), with k occurrences of the primitive word v. To obtain U we replace
each word w having k occurrences in W with a single word u = wk. ��
Over the multiset pos(W ), we define a total order 
W . We say that 〈i, p〉 
W

〈i′, p′〉 if W〈i,p〉 < W〈i′,p′〉, or W〈i,p〉 = W〈i′,p′〉 and 〈i, p〉 ≤ 〈i′, p′〉, where the last
comparison is the usual integer pair comparison, i.e. (i1, j1) < (i2, j2) if i1 < i2
or i1 = i2 and j1 < j2.

The (cyclic) suffix array of a multiset of words W is defined as an array
SAW [j] = 〈ij , pj〉, where 〈ij , pj〉 ∈ pos(W ) for all j ∈ [0..n) and 〈ij−1, pj−1〉 ≺W

〈ij , pj〉 for all j ∈ [1..n). Note that for two cyclically equivalent multisets V and
W , we may have SAV �= SAW but always VSAV [j] = WSAW [j] for all j.

The longest-common-prefix array LCPW [1..n) is defined as LCPW [j] =
lcp

(
WSA[j−1],WSA[j]

)
. The distinguishing prefix array DPW [1..n) is defined as

DPW [i] = LCPW [i] + 1. Note that we can have LCPW [i] = ω = DPW [i].
The Burrows-Wheeler transform BWTW [0..n) (also denoted BWT(W )) is

defined as BWTW [j] = τ
(
σ−1(WSA[j])

)
. This definition is a natural generaliza-

tion of the original one [2] defined for a single (not necessarily primitive) word
and the one in [9] defined for a multiset of primitive words. It is easy to see that if
multisets V and W are cyclically equivalent, then LCPV = LCPW , DPV = DPW

and BWTV = BWTW .
Let v be a word of length n and v̂ be obtained from v by sorting its letters.

The standard permutation [4] of v is the permutation corresponding to the stable
sorting of the letters, i.e., it is the mapping Ψv : [0..n) → [0..n) such that: for
each i ∈ [0..n) we have v̂[i] = v[Ψv(i)] and for v̂[i] = v̂[j] the relation i < j
implies Ψv(i) < Ψv(j). Let IBWT be the mapping that maps a word v into a
multiset of (primitive) words W as follows. Let Ψv be a standard permutation
of v and C = {ci}s

i=1 its disjoint cycle decomposition. Then W = {{wi}}s
i=1 and

for each i ∈ [1..s] and j ∈ [0..|ci|) we define wi[j] = v[Ψv(ci[j])]. The mapping
IBWT is the inverse of BWT in the sense that BWT(IBWT(v)) = v for every
word v. Thus the mapping from a word v to the cyclical equivalence class of
IBWT(v) is a bijection (see [9]).

Example 1. Let W = {{ab, abaaba}}. We have v = BWT(W ) = bbaabaaa (having
r = 4 runs) and Ψv = (0, 2, 5)(1, 3, 6)(4, 7). Then IBWT(v) = {{aab, aab, ab}},
which is cyclically equivalent to W .
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The suffix tree of W , denoted by STree(W ), is the compact trie of suffixes
CTrie(suf(W )). If suf(W ) is a multiset, a single vertex in STree(W ) represents
all copies of a suffix, and the number of leaves in STree(W ) is the number of
distinct words in suf(W ).

4 Irreducible Sums

For a multiset of words W , we say that a value LCPW [i] is reducible if
BWTW [i−1] = BWTW [i] and irreducible otherwise. Observe that if LCPW [i] =
ω, then this value is obviously reducible. We say that a value DPW [i] is irre-
ducible if the corresponding value LCPW [i] is irreducible. Let Σlcp(W ) denote
the sum of all LCPW values, Σilcp(W ) the sum of all irreducible LCPW val-
ues, and Σidp(W ) the sum of irreducible DPW values. Note, that Σidp =
Σilcp + r − 1, where r is the number of runs in the BWT. For technical reasons
we analyze Σidp rather than Σilcp.

We define a lexicographically adjacent repeat (LAR) in a multiset W as a
tuple (〈i, p〉, 〈j, q〉, �) such that 〈i, p〉, 〈j, q〉 ∈ pos(W ), � is a non-negative integer,
lcp(W〈i,p〉,W〈j,q〉) ≥ �, 〈i, p〉 ≺W 〈j, q〉 and there exists no 〈i′, p′〉 such that
〈i, p〉 ≺W 〈i′, p′〉 ≺W 〈j, q〉 i.e., W〈i,p〉 and W〈j,q〉 are lexicographically adjacent
suffixes with a common prefix of length (at least) �. A LAR (〈i, p〉, 〈j, q〉, �) is
left-maximal if (〈i, p − 1〉, 〈j, q − 1〉, � + 1) is not a LAR.

Lemma 2. The number of left-maximal LARs in W equals Σidp(W ).

Proof. Clearly, the set of all LARs is exactly {(SA[i−1],SA[i], �) : i ∈ [1..n), � ∈
[0..DP[i])}, and a LAR (SA[i − 1],SA[i], �) is left-maximal if and only if DP[i] is
irreducible. ��
Let T be a rooted tree and ≤ a total order over the leaves of T . Let u and v
be leaves of T , and let x be the nearest common ancestor of u and v. The pair
(u, v) is called a dispersal pair if u < v and the subtree rooted at x contains no
leaf w such that u < w < v. Let Dx(T,≤) denote the set of dispersal pairs with
x as the nearest common ancestor. The dispersal value of T with respect to ≤,
denoted by d(T,≤), is the number of dispersal pairs in T .

Let suf(W ) = {{w : w ∈ suf(W )}} be the multiset of reverse suffixes of a
multiset W . The reverse suffix tree STree(W ) of W is CTrie(suf(W )). Define a
total order ≤W over the leaves of STree(W ) by u ≤W v ⇐⇒ 〈i, p〉 
W 〈j, q〉,
where W〈i,p〉 is the label of u and W〈j,q〉 is the label of v. If suf(W ) contains
duplicates, any of the identical reverse suffixes can be used as the representative
of a vertex.

Lemma 3. d(STree(W ),≤W ) = Σidp(W ).

Proof. Let (SA[i − 1],SA[i], �) be a left-maximal LAR, i.e., DP[i] > � is irre-
ducible. Let x be the length � prefix of WSA[i], and let y and y′ be infinite
periodic words such that xy = WSA[i−1] and xy′ = WSA[i]. Then x is the longest
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common prefix of y and y′. Let u, v and v′ be the vertices of STree(W ) that are
labelled by x, y and y′, respectively. Then v <W v′ and we will show that (v, v′)
is a dispersal pair. Suppose (v, v′) is not a dispersal pair. Then there exists a
leaf v′′ descendant to u such that v <W v′′ <W v′. If y′′ is the label of v′′, then
xy′′ ∈ suf(W ) and xy < xy′′ < xy′, which contradicts xy and xy′ being adjacent
in SA. Thus (v, v′) is a dispersal pair. This mapping from left-maximal LARs to
dispersal pairs is clearly injective, and thus d(STree(W ),≤W ) ≥ Σidp(W ).

Let (v, v′) be a dispersal pair in STree(W ), and let u be the nearest com-
mon ancestor of v and v′. Let y, y′ and x be words such that x, y and y′ are
the labels of u, v and v′, respectively. Then xy, xy′ ∈ suf(W ), xy < xy′ and
τ(σ−1(xy)) �= τ(σ−1(xy′)). Let i be the largest integer such that WSA[i] = xy
and i′ the smallest integer such that WSA[i′] = xy′. Then i < i′ and we will
show that i = i′ − 1. Suppose i < i′ − 1 and let i′′ = i′ − 1. Then we must
have WSA[i] < WSA[i′′] < WSA[i′] and x is a prefix of WSA[i′′]. If y′′ is the word
such that xy′′ = WSA[i′′], then y′′ ∈ suf(W ) has x as a prefix. If v′′ is the leaf in
STree(W ) labelled by y′′, then v <W v′′ <W v′, which contradicts (v, v′) being
a dispersal pair. Thus i = i′ −1 and (SA[i−1],SA[i], |x|) is a left-maximal LAR.
This mapping from dispersal pairs to left-maximal LARs is clearly injective and
thus d(STree(W ),≤W ) ≤ Σidp(W ). ��

5 n lgn Upper Bound

We will now derive upper bounds on the maximum dispersal value of any tree
with n leaves. By Lemma 3, these bounds are upper bounds for Σidp, too.

Define, for n > 0 and k ∈ [1..�n/2�],
d(1) = 0
d(n) = max

i∈[1..�n/2	]
d(n, i) when n > 1

d(n, k) = d(k) + d(n − k) + min{2k, n − 1}
Lemma 4. d(n) = max{d(T,≤)}, where the maximum is taken over any rooted
tree T with n leaves and any total order ≤ on the leaves of T .

Proof. We will first prove that we can restrict ourselves to proper binary trees,
where every non-leaf vertex has exactly two children. Let T be a tree with a leaf
order ≤, and let u be a vertex with at least three children v1, v2 and v3. Let
T ′ be the tree obtained from T by adding a vertex u′ and replacing the edges
(u, v1) and (u, v2) with (u, u′), (u′, v1) and (u′, v2). Let w1, w2 and w3 be leaves
in the subtrees rooted at v1, v2 and v3, respectively. Then, (w1, w2) could be a
dispersal pair in T ′ but not in T if w1 < w3 < w2. However, any dispersal pair
in T is a dispersal pair in T ′ too. Thus d(T,≤) ≤ d(T ′,≤). The above procedure
can be repeated as long as the tree contains vertices with more than two children
to obtain a binary tree. Furthermore, one can similarly show that unary vertices
can be removed without removing any dispersal pairs to obtain a proper binary
tree.
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Let then T be a proper binary tree of size (number of leaves) n ≥ 2 with a
leaf order ≤. Let TL and TR be the left and right subtree of T of sizes k and n−k,
respectively. W.l.o.g., assume that k ≤ n − k. Let ≤L (≤R) be the leaf order ≤
restricted to the left (right) subtree. Let Droot(T,≤) be the set of dispersal pairs
with the root of T as the nearest common ancestor. Then, clearly,

d(T,≤) = d(TL,≤L) + d(TR,≤R) + |Droot(T,≤)| .
If (u, v) ∈ Droot(T,≤), then u and v are adjacent in the order ≤, and one of u
and v is in TL and the other is in TR. A leaf u can be involved with at most two
pairs in Droot(T,≤), once with its immediate predecessor in ≤ and once with
its immediate successor. Thus |Droot(T,≤)| ≤ 2k. Furthermore, if k = n − k,
at least one of the leaves in TL is the first in ≤, the last in ≤ or adjacent to
another leaf in TL, and thus involved in at most one pair in Droot(T,≤). Then
|Droot(T,≤)| ≤ 2k −1 = n−1. It is now easy to see that d(n) is an upper bound
on the dispersal value over trees of size n, by induction on n:

d(T,≤) = d(TL,≤L) + d(TR,≤R) + |Droot(T,≤)|
≤ d(k) + d(n − k) + min{2k, n − 1} = d(n, k) ≤ d(n) .

We still need to show that, for every n, there exists a tree Tn and its leaf order
≤n such that d(Tn,≤n) = d(n). The case n = 1 is trivial. For n > 1 and k ∈
[1..�n/2�], let Tn,k be a tree with Tk and Tn−k as the two subtrees. Define the leaf
order ≤n,k so that the leaves at positions 2, 4, 6, . . . , 2k come from Tk consistent
with the order ≤k and the leaves at positions 1, 3, 5, . . . , 2k−1, 2k+1, 2k+2, . . . , n
come from Tn−k consistent with the order ≤n−k. Then, it is easy to see that

d(Tn,k,≤n,k) = d(Tk,≤k) + d(Tn−k,≤n−k) + |Droot(Tn,k,≤n,k)|
= d(k) + d(n − k) + min{2k, n − 1} = d(n, k)

Finally, set Tn = Tn,k and ≤n=≤n,k, for k = argmaxi d(n, i). Then d(Tn,≤n) =
d(n). ��
Basic properties and closed form equations for d(n) are given in the following
lemmas. The proofs are omitted due to lack of space.

Lemma 5. For any 2 ≤ 2k ≤ n,

(i) d(n, k) ≤ d(n, �n/2�)
(ii) d(n) − d(n − 1) = �lg n� .

Lemma 6. d(n) = n�lg n� − 2
lg n� + 1.

Lemma 7. d(n) = n lg n − (1 − α(n))n + 1, where
0 ≤ α(n) := 1 − 2
lg n�/n + lg(2
lg n�/n) < (1 − lg e + lg lg e) < 0.0861.

Thus we obtain an n lg n bound on the irreducible sums.

Theorem 1. For any multiset W of words of total length n > 0, we have

Σilcp(W ) ≤ Σidp(W ) ≤ d(n) ≤ n lg n .
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6 n lg r Upper Bound

We will now use the above machinery to improve the upper bound on Σidp(W )
when the number r of runs in BWT(W ) is given.

Lemma 8. If BWT(W ) has r runs, then |Du(STree(W ),≤W )| < r for every
vertex u in STree(W ).

Proof. Let u be a vertex in STree(W ) labelled by x. The bijection defined in the
proof of Lemma 3 maps Du(STree(W ),≤W ) into

{(SA[i−1],SA[i], |x|) :x is prefix of WSA[i−1]and WSA[i], and DP[i] is irreducible}.

Since the total number of irreducible distinguishing prefixes is r − 1, the size of
this set cannot be more than r − 1, and thus |Du(STree(W ),≤W )| < r. ��

Define, for r > 0, n > 0 and k ∈ [1..�n/2�],

dr(1) = 0
dr(n) = max

i∈[1..�n/2	]
dr(n, i) when n > 1

dr(n, k) = dr(k) + dr(n − k) + min{2k, n − 1, r − 1}

Lemma 9. dr(n) = max{d(T,≤)}, where the maximum is taken over any
rooted tree T with n leaves and any total order ≤ on the leaves of T such that
|Du(T,≤)| < r for every vertex u in T .

Proof. We will prove the claim by modifying the construction utilized in the
proof of Lemma 4. First note that in the transformation from a non-binary tree
to a binary tree, the new vertex u′ might have |Du′(T ′,≤)| ≥ r. However, we
can then replace ≤ with ≤′ such that |Du′(T ′,≤′)| = r − 1 and no other vertex
dispersal value is changed. Then we must have |Du(T ′,≤′)| + |Du′(T ′,≤′)| ≥
|Du(T,≤)| and thus d(T,≤) ≤ d(T ′ ≤′).

The inequality d(T,≤) ≤ dr(n) follows immediately from using the bound
|Droot(T,≤)| ≤ min{2k, n − 1, r − 1} in place of |Droot(T,≤)| ≤ min{2k, n − 1}.
In the construction of Tn and ≤n, the only difference is in constructing ≤n,k

when r − 1 < min{2k, n − 1}. In that case, the interleaving of ≤k and ≤n−k to
obtain ≤n,k is then chosen so that |Droot(Tn,k,≤n,k)| = r − 1. With this change,
the construction shows that d(Tn,≤n) = dr(n). ��
Basic properties and closed form equations for dr(n) are given in the following
lemmas. Again, the proofs are omitted due to lack of space.

Lemma 10. For any r ≥ 2,

(i) dr(n) = d(n) if n ≤ r
(ii) dr(n, k) ≤ dr(n, �r/2�) if n ≥ r and k ≤ n/2
(iii) for n > �r/2�,



324 J. Kärkkäinen et al.

dr(n) − dr(n − 1) =
{ �lg r� if n − �r/2� − 1 mod �r/2� ∈ [0..q)

�lg r� if n − �r/2� − 1 mod �r/2� ∈ [q..�r/2�)

where q = 2
lg r�−1 − �r/2�.
Lemma 11. For any 2 ≤ r ≤ n,

dr(n) = n�lg r� − 2
lg r� + 1 − q(n − r − p)/�r/2� − min{q, p}
≤ n�lg r� − 2
lg r� + 1

where q = 2
lg r�−1 − �r/2� and p = (n − r) mod �r/2�.
Lemma 12. For any 2 ≤ r ≤ n,

dr(n) = n lg r + n(α(r) + β(r)) − r(1 + β(r)) − γ(p, q) + 1

≤ n lg r + nα(r) − r +
{

1 if r is even
n
r if r is odd ,

where p and q are as in Lemma 11, α(r) ∈ [0, 0.0861) is as in Lemma 7,

β(r) =

{
0 if r is even
2r−2�lg r�

r(r−1) if r is odd
∈ [0, 1/r]

and γ(p, q) = min{p, q} − pq/�r/2� ∈ [0, r/8).

Thus we obtain the following upper bound on the irreducible sums.

Theorem 2. For any multiset W of words of total length n > 0 such that
BWT(W ) has r runs, we have

Σilcp(W )+r−1 = Σidp(W ) ≤ dr(n) < n lg r+0.0861·n+n/r−r = n lg r+O(n) .

7 n lgn Lower Bound

In this and the next section, we will show the tightness of the above upper bounds
by constructing words and sets of words with matching irreducible sums. We will
deal only with sets (not multisets) over the binary alphabet {a, b}, which allows
a useful characterization of the LCP array.

Lemma 13. For any set of words W of total length least two, such that suf(W )
contains no duplicates, the sequence of the depths of internal (non-leaf) vertices
in STree(W ) listed in inorder is exactly LCPW .

Proof. Consider constructing STree(W ) by inserting the suffixes into a compact
trie one at a time in the lexicographical order. When inserting WSA[i], i > 0,
we add exactly two vertices, the leaf vi labelled WSA[i] and the parent ui of vi.
Note that ui could not have existed (or was the root and unary) before, since
the tree is binary. Since the depth of ui must be LCP[i], and the internal vertices
are inserted in inorder, the claim follows. ��
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A word set W ⊆ {a, b}∗ is a de Bruijn set [4] of order k ≥ 1 if every v ∈ {a, b}k

is a prefix of exactly one word in suf(W ) (and thus suf(W ) is a set).

Lemma 14. For any de Bruijn set W of order k, Σlcp(W ) = k2k − 2k+1 + 2.

Proof. STree(W ) has 2i vertices at depth i ∈ [0..k − 1] and no internal vertices
at levels i ≥ k. By Lemma 13, Σlcp(W ) =

∑k−1
i=1 i2i = k2k − 2k+1 + 2. ��

Higgins [4] showed the following characterization of the de Bruijn sets.

Lemma 15 ([4]). For k ≥ 1, and any u ∈ Uk = {ab, ba}2k−1
, W = IBWT(u)

is a de Bruijn set.

In particular, Wk = IBWT((ab)2
k−1

) is a de Bruijn set. Since every entry in
LCPWk

is irreducible, we obtain the following result.

Theorem 3. For any k ≥ 1, Σilcp(Wk) = k2k − 2k+1 + 2 = n lg n − 2n + 2 and
Σidp(Wk) = Σilcp(Wk)+n−1 = n lg n−n+1, where n = 2k is the total length
of the words in Wk.

Thus Σidp(Wk) matches the upper bound from Sect. 5 exactly. We still want to
show that, for any k ≥ 1, there exist a de Bruijn word, i.e., a de Bruijn set of
size one, that matches the upper bound within O(n). First we need a bound on
the size of Wk.

Lemma 16. |Wk| ≤ (2k + (k − 1)2k/2)/k.

Proof. From [4, Theorem 3.8], the size of Wk is equal to the number of Lyndon
words of length dividing k. Thus the claim follows by combining Eqs. (7.10) and
(7.13) from [13].

Lemma 17. Starting with u = uk = (ab)2
k−1

, there exists a sequence of |Wk|−1
swaps of the form u[2i] ↔ u[2i+1] resulting in u ∈ Uk such that |IBWT(u)| = 1.

Proof. We will show that the following invariant is maintained during the
sequence of swaps until |IBWT(u)| = 1: there exists i such that every value in
[0..2i] belongs to the same cycle in Ψu, 2i+1 belongs to a different cycle, and there
has been no swaps affecting u[2i..2k). Then the next swap is u[2i] ↔ u[2i + 1].
The invariant is clearly true when u = uk.

Let j = Ψ−1
u (2i) and j′ = Ψ−1

u (2i + 1). Since u[2i] = a and u[2i + 1] = b,
after the swap we have Ψu(j) = 2i + 1 and Ψu(j′) = 2i, i.e., the two cycles were
merged. The values of Ψu are not affected elsewhere. Now consider the smallest
j ∈ [2i + 2..2k) that is not in the same cycle as 0. We must have u[j] = b, since
otherwise Ψ−1

u (j) < j and j would be in the same cycle. Thus j is odd, and we
can choose i = (j − 1)/2 to satisfy the invariant. ��
Theorem 4. For any k ≥ 1, there exists a word w of length n = 2k such that
Σidp(w) = n lg n − O(n).

Proof. Let u ∈ Uk be the result of Lemma 17 and w = IBWT(u). From the proof
of Lemma 14, max LCPw = k − 1. Each swap reduces the number of irreducible
LCP values by at most two, thus the initial Σidp(Wk) = n lg n−O(n) is reduced
by at most (max LCPw + 1)|Wk| ≤ k(2k + (k − 1)2k/2)/k = O(n). ��
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8 n lg r Lower Bound

We will now extend the above lower bound results to cases where r � n. The
following lemma shows the key idea of the construction.

Lemma 18. Let u ∈ {a, b}2k, k ≥ 1 be a word containing exactly k a’s and k b’s.
Then, for any w = uajk, j ≥ 0, it holds |IBWT(w)| = |IBWT(u)|. Furthermore,
IBWT(w) can be obtained by replacing every occurrence of b in all IBWT(u)
with ajb.

Proof. The standard permutation of w can be expressed by the following formula:

Ψw(i) =

⎧
⎨

⎩

Ψu(i) 0 ≤ i < k
i + k k ≤ i < |w| − k
Ψu(i − jk) |w| − k ≤ i < |w|

Let j > 0 (since the case j = 0 is trivial), and compare the reconstructions of
IBWT(u) and IBWT(w) by following Ψu and Ψw. Whenever we visit i ∈ [0..k),
Ψw(i) = Ψu(i) and we append letter a to the currently decoded word in both
cycles. When visiting i ∈ [k..2k) we append b to IBWT(u) but a to IBWT(w) and
Ψw(i) �= Ψu(i). However, for any such i, and any p ∈ [1..j], we have Ψp

w(i) = i+pk,
and thus Ψ j+1

w (i) = Ψw(i+jk) = Ψu(i). Therefore, after a detour of j extra steps
in Ψw the cycles meet again, and where a single b was appended IBWT(u), ajb
was appended to IBWT(w). ��
Define Uk,j = {ab, ba}2k−1

aj2k−1
for k ≥ 1 and j ≥ 0. Consider arbitrary u ∈ Uk,j

for some k and j, and let W = IBWT(u). Let Sk,j = S0,k,j ∪S1,k,j ∪. . .∪Sj+1,k,j ,
where

Si,k,j =
{

aibaj{a, baj}k−1 if i ≤ j
aj+1{a, baj}k−1 if i > j

.

Lemma 19. Every word in Sk,j is a prefix of exactly one word in suf(W ).

Proof. First observe that, since Sk,j is prefix-free and |Sk,j | = (j + 2)2k−1 =
|suf(W )|, it is sufficient to show that every w ∈ Sk,j is a prefix of at least one
word in suf(W ).

Let u′ ∈ {ab, ba}2k−1
be the word such that u = u′aj2k−1

, and let W ′ =
IBWT(u′). Since W ′ is a de Bruijn set, for every v′ ∈ {a, b}k either v′aj or v′ahb
for some h < j is a prefix of a word in suf(W ′). Thus, by Lemma 18, every
v ∈ {a, ajb}kaj = aj{a, baj}k is a prefix of a word in suf(W ). Since every word
w ∈ Sk,j is a factor of a word v ∈ aj{a, baj}k, w must be a prefix of a word in
suf(W ) too. ��
It is easy to see from the definition of Si,k,j , that CTrie(Si,k,j), consists of a full
binary tree of height k − 1 connected to the root with a single edge, and that
CTrie(Sk,j) consists of j + 2 such full binary subtrees connected to the main
branch labelled aj , see Fig. 1 for examples.

Define uk,j = (ab)2
k−1

aj2k−1 ∈ Uk,j and let Wk,j = IBWT(uk,j). Since uk,j ,
j ≥ 1 has 2k + 1 runs, Σidp(Wk,j) = Σilcp(Wk,j) + 2k.
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Fig. 1. Left: CTrie(S2,4,j). Right: CTrie(S2,3). Dark vertices correspond to irreducible
LCP values of W2,3.

Lemma 20. For j ≥ 1, Σilcp(Wk,j) = (j + 2)k2k−1 − 2k+1 + j + 1.

Proof. By Lemma 19, STree(Wk,j) is the same as CTrie(Sk,j) except leaf
labels have been extended to infinite words. Clearly, all LCP values in
LCPWk,j

[1..2k] (and only these) are irreducible, and by Lemma 13, they cor-
respond to the depths of the first 2k internal vertices in CTrie(Sk,j) by
inorder. These are exactly the 2k − 1 vertices in the subtree CTrie({a, baj}k)
rooted in the vertex labelled aj plus one more vertex labelled aj−1 (see
Fig. 1). The sum of internal vertex depths of CTrie({a, baj}k) is (j + 2)(2k−1

(k − 2) + 1), thus Σilcp(Wk,j) = (j + 2)(2k−1(k − 2) + 1) + j(2k − 1) + j − 1 =
(j + 2)k2k−1 − 2k+1 + j + 1. ��
Thus we obtain the following bounds for a set of words (with the proof omitted
due to lack of space) and for a single word.

Theorem 5. For any k ≥ 1 and j ≥ 1, Σidp(Wk,j) = dr(n) matching the upper
bound in Sect. 6, where n = (j + 2)2k−1 is the total length of the words in Wk,j

and r = 2k + 1 is the number of runs in BWT(Wk,j).

Theorem 6. For any r = 2k+1, k ≥ 1, and n ≥ r such that 2k−1|n, there exists
a word w of length n such that BWT(w) contains r − o(r) runs and Σidp(w) =
n lg r − O(n).

Proof. Let u = uk,j , where j = n/2k−1−2 ≥ 1. From definition, u has 2k +1 = r
runs. Lemmas 16 and 18 give |IBWT(u)| = |Wk,j | = |Wk| = O(r/ lg r). Note,
that Lemma 17 applies also for u ∈ Uk,j . Let u′ ∈ Uk,j be the result and
w = IBWT(u′). From Lemma 19, LCPw = LCPWk,j

. Furthermore, max LCPw

corresponds to the deepest internal vertex in CTrie(Sk,j), i.e., max LCPw =
k(j + 1) − 1 = O((n lg r)/r). Each swap in Lemma 17 reduces the number
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of irreducible LCP values by at most two, thus u′ = BWT(w) contains r −
O(r/ lg r) = r − o(r) runs. Altogether, the initial Σidp is reduced by at most
|Wk,j |(max LCPw + 1) = O(n), which gives Σidp(w) = Σidp(Wk,j) − O(n) =
n lg r − O(n) (see Theorem 5). ��
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5. Kärkkäinen, J., Kempa, D.: LCP array construction in external memory.
In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 412–
423. Springer, Heidelberg (2014)
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11. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1), 1–61 (2007)

12. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phy-
logenetic Reconstruction. Oldenbusch Verlag, Bremen, Germany (2013)

13. Ruskey, F.: Combinatorial generation, working version (1j-CSC 425/520) (2003)
14. Sirén, J.: Sampled longest common prefix array. In: Amir, A., Parida, L. (eds.)

CPM 2010. LNCS, vol. 6129, pp. 227–237. Springer, Heidelberg (2010)



Parallel External Memory Suffix Sorting
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Abstract. Suffix sorting (or suffix array construction) is one of the most
important tasks in string processing, with dozens of applications, partic-
ularly in text indexing and data compression. Some of these applications
require the suffix array to be built for large inputs that greatly exceed the
size of RAM and so external memory must be used. However, existing
approaches for external memory suffix sorting either use debilitatingly
large amounts of disk space, or become too slow when the size of the
input data is more than a few times bigger than the size of RAM. In this
paper we address the latter problem via a non-trivial parallelization of
computation. In our experiments, the resulting algorithm is much faster
than the best prior external memory algorithms while using very little
disk space in addition to what is needed for the input and output. On
the way to this result we provide the current fastest (parallel) internal
memory algorithm for suffix sorting, which is usually around twice as
fast as previous methods, while using around one quarter of the working
space.

1 Introduction

Suffix sorting (or suffix array construction) is one of the most important tasks
in string processing. It is fundamental to building index data structures such
as suffix trees [10,32], (compressed) suffix arrays [14,24], and FM-indexes [11],
which in turn have dozens of applications in bioinformatics, including pattern
matching (i.e. read alignment [21,22]), genome assembly [30], and discovery of
repetitive structures [1]. Suffix sorting is also key to several major lossless com-
pression transforms, such as the Burrows-Wheeler transform, Lempel-Ziv (LZ77)
parsing [16,17,34], and several grammar compressors (e.g. [4,26]). Many of these
applications deal with massive data and often suffix sorting is the computation-
ally most demanding task.

Suffix sorting is also one of the most studied tasks in string processing [29],
but the majority of the work has focused on sequential, internal memory algo-
rithms, which do not really scale for massive data and do not fully utilize the
resources on modern computers. There has been some research on speeding up
suffix sorting by parallel computation and on external memory suffix sorting
algorithms that escape the limits of RAM, but no really effective combination of
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the two approaches. This is not very surprising since external memory computa-
tion is often I/O-bound and would not benefit greatly from (internal memory)
parallelism. Nevertheless, in this paper we show that the two computational
paradigms can be fruitfully combined in a suffix sorting algorithm.

Our contribution. Our starting point is the recent external memory suffix sort-
ing algorithm SAscan [15], the basic idea of which is to divide the text into
blocks, construct suffix arrays for the blocks and then merge these partial suffix
arrays. In this paper, we describe a parallelization of the central procedure that
merges two partial suffix arrays. Using this procedure, we first design an internal
memory suffix sorting algorithm that constructs several partial suffix arrays in
parallel (using any sequential suffix sorter) and then merges them together. The
result is the fastest internal memory algorithm that we are aware of. This inter-
nal memory suffix sorter and the parallel merging procedure are then used in
designing a parallelized version of SAscan which we call pSAscan. On a machine
with 12 physical cores (24 with hyper-threading), pSAscan is over four times
faster than SAscan and much faster than any other external memory algorithm
in all of our experiments.

The algorithms are not theoretically optimal. The internal memory algorithm
needs Ω(n log p) work on p processors, and the external memory pSAscan needs
Ω̃(n2/M) work, where M is the size of the RAM. However, low constant factors
and, crucially, space efficiency make them more scalable in practice than their
competitors. The internal memory algorithm needs less than 10n bytes of RAM,
and pSAscan needs just 7.5n bytes of disk space, which is nearly optimal. The
best competitors use about four times as much RAM/disk space, which is likely
to be a more serious limitation to their scalability than the time complexity is
to our algorithms. To demonstrate the scalability, we have constructed the suffix
array of a 1 TiB text in a little over 8 days.

Related work. The idea of external memory suffix sorting by merging separately
constructed partial suffix arrays goes back over 20 years [13], and there has been
several improvements over the years [7,12] (see also [31]). The recent incarna-
tion SAscan [15] is one of the fastest external memory suffix sorters in practice.
A different approach to merging suffix arrays in [23] is limited to merging sep-
arate files rather than blocks of the same file. The main competitor of SAscan
is the eSAIS algorithm by Bingmann, Fischer and Osipov [5]. eSAIS is theoreti-
cally optimal but suffers from a large disk space usage (roughly 28n bytes, for an
input of n symbols). SAscan needs just 7.5n bytes of disk space but because of
its Õ(n2/M) time complexity, it is competitive with eSAIS only when the input
is less than about five times the size of RAM. The new pSAscan extends the
advantage over eSAIS to much bigger inputs. Another recent external memory
suffix sorter EM-SA-DS [27] appears to be slightly worse than eSAIS in practice,
although a direct comparison is missing.

In contrast to the large number of algorithms for serial suffix sorting [29], results
on parallel algorithms for suffix sorting are reasonably sparse. Earlier research
focused on suffix tree construction (see, e.g., [3]) and was mostly of theoretical
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interest. More recently, research into practical algorithms has focused on either
distributed [20] or GPU platforms [9,28]. Most relevant to this paper is a paral-
lel version of DC3, a work optimal EREW-PRAM algorithm due to Kärkkäinen,
Sanders and Burkhardt [19] that has been subsequently implemented by Blelloch
and Shun [6]. We use their implementation as a baseline in experiments with our
internal memory algorithm.

2 Preliminaries

Let X = X[0..m) be a string over an integer alphabet [0..σ). Here and elsewhere
we use [i..j) as a shorthand for [i..j − 1]. For i ∈ [0..m) we write X[i..m) to
denote the suffix of X of length m − i, that is X[i..m) = X[i]X[i + 1] . . .X[m − 1].
Similarly, we write X[0..i) to denote the prefix of X of length i and X[i..j) to
denote the substring X[i]X[i+1] . . .X[j −1] of length j − i. If i = j, the substring
X[i..j) is the empty string, also denoted by ε.

The suffix array SAX of a string X contains the starting positions of the non-
empty suffixes of X in the lexicographical order, i.e., it is an array SAX[0..m)
which contains a permutation of the integers [0..m) such that X[SAX[0]..m) <
X[SAX[1]..m) < · · · < X[SAX[m − 1]..m). In other words, SAX[j] = i iff X[i..m) is
the (j + 1)th suffix of X in ascending lexicographical order.

The Burrows-Wheeler transform BWTX[0..m) of a string X contains the char-
acters preceding each suffix in lexicographical order: BWTX[i] = X[SAX[i] − 1] if
SAX[i] > 0 and otherwise $, a special symbol that does not appear in the text.

Partial suffix arrays. The partial suffix array SAX:Y is the lexicographical order-
ing of the suffixes of XY with a starting position in X, i.e., it is an array
SAX:Y[0..m) that contains a permutation of the integers [0..m) such that X[SAX:Y

[0]..m)Y < X[SAX:Y[1]..m)Y < · · · < X[SAX:Y[m − 1]..m)Y. Note that SAX:ε =
SAX and that SAX:Y is usually similar but not identical to SAX. Also note that
SAX:Y can be obtained from SAXY by removing all entries that are larger or equal
to m. The definition of the Burrows–Wheeler transform extends naturally to the
partial version BWTX:Y[0..m).

When comparing two suffixes of XY starting in X, in most cases we only need
to access characters in X, but sometimes the comparison continues beyond the
end of X and may, in an extreme case, continue all the way to the end of Y. To
avoid such long comparisons, we store additional information about the order of
the suffixes in the form of bitvectors gtSX:Y[0..m) defined as follows:

gtSX:Y[i] =
{

1 if X[i..m)Y > S
0 if X[i..m)Y ≤ S

.

For example, for 0 ≤ i < j < m, the following are equivalent:

1. X[i..m)Y < X[j..m)Y
2. X[i..m) < X[j..m)Y[0..j−i) or X[i..m) = X[j..m)Y[0..j−i) and gtYY:ε[j−i] = 1
3. X[i..m− j + i) < X[j..m) or X[i..m− j + i) = X[j..m) and gtYX:Y[m− j + i] = 0.
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3 Merging of Partial SAs

The basic building block of pSAscan is a procedure for merging two adjacent
partial suffix arrays. In this section, we describe a sequential algorithm for per-
forming the merging and then, in the next section, show how to parallelize it.

Given the partial suffix arrays SAX:YZ and SAY:Z, for some strings X, Y and Z,
the task is to construct the partial suffix array SAXY:Z. The suffixes in each input
array stay in the same relative order in the output, and thus we just need to
know how to interleave the input arrays. For this purpose, we compute the gap
array gapX:Y:Z[0..|X|], where gapX:Y:Z[i] is the number of suffixes in SAY:Z that
are lexicographically between the suffixes SAX:YZ[i − 1] and SAX:YZ[i]. Formally,
denoting m = |X| and n = |Y|,

gapX:Y:Z[0] =
∣
∣{j ∈ [0..n) : Y[j..n)Z < X[SAX:YZ[0]..m)YZ}∣∣

gapX:Y:Z[m] =
∣
∣{j ∈ [0..n) : X[SAX:YZ[m − 1]..m)YZ < Y[j..n)Z}∣∣

and, for i ∈ [1..m),

gapX:Y:Z[i] =
∣
∣{j ∈ [0..n) :

X[SAX:YZ[i − 1]..m)YZ < Y[j..n)Z < X[SAX:YZ[i]..m)YZ}∣∣.

Given the gap array, the actual merging is easy; the difficult part is computing
the gap array.

For a string S, let sufrankX:YZ(S) be the number of suffixes in SAX:YZ that
are lexicographically smaller than S. In other words, if sufrankX:YZ(S) = k (and
0 < k < m), then X[SAX:YZ[k−1]..m)YZ < S ≤ X[SAX:YZ[k]..m)YZ. Thus we can
compute the gap array gapX:Y:Z by initializing all entries to zeros, and then, for
all j ∈ [0..n), computing k = sufrankX:YZ(Y[j..n)Z) and incrementing gapX:Y:Z[k].
The values sufrankX:YZ(Y[j..n)Z) are computed starting from the end of Y using
a procedure called backward search [11].

Backward search is based on rank operations on the Burrows–Wheeler trans-
form BWTX:YZ. For a character c and an integer i ∈ [0..m], the answer to the
rank query rankBWTX:YZ(c, i) is the number of occurrences of c in BWTX:YZ[0..i).
We preprocess BWTX:YZ[0..m) so that arbitrary rank queries can be answered
quickly; see [15] for details. Let C[0..σ) be an array, where C[c] is the number of
positions i ∈ [0..m) such that X[i] < c. The following lemma shows one step of
backward search.

Lemma 1. [11,15]. Let k = sufrankX:YZ(S) for a string S. For any symbol c,

sufrankX:YZ(cS) = C[c] + rankBWTX:YZ(c, k) +
{

1 if X[m − 1] = c and YZ < S
0 otherwise .

Note that when S = Y[j..n)Z, we can replace the comparison YZ < S with
gtYZY:Z[j] = 1. Thus, given sufrankX:YZ(Y[j..n)Z), we can easily compute sufrankX:YZ
(Y[j −1..n)Z) using the lemma, and we only need to access Y[j −1] and gtYZY:Z[j].
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Hence the whole computation of gapX:Y:Z can be done with a single sequential
pass over Y and gtYZY:Z.

Improvements to SAscan. The procedure described above is identical to the one
in the original SAscan [15], but the rest of this section describes details that
differ from (and improve) the original.

First, we need BWTX:YZ and gtYZY:Z for the gap array computation. In SAscan,
these are computed from the strings and the partial suffix arrays as needed. This
is easy and takes only linear time but is relatively expensive in practice because
of frequent cache misses. We compute them differently based on the assumption
that both the BWT and the bitvector are available for every partial suffix array.
That is, we assume that we are given BWTX:YZ, BWTY:Z, gtXYZX:YZ and gtYZY:Z as
input, and we need to compute BWTXY:Z and gtXYZXY:Z as output. Each BWT is
stored interleaved with the corresponding SA so that the merging of the SAs
produces the output BWT at almost no additional cost. The output bitvector
gtXYZXY:Z is constructed by concatenating the two bitvectors gtXYZX:YZ and gtXYZY:Z . The
former was given as an input and the latter is computed (as in SAscan) during the
backward search using the fact that gtXYZY:Z [j] = 1 iff sufrankX:YZ(Y[j..n)Z) > iXYZ,
where iXYZ is the position of XYZ in SAX:YZ, i.e., SAX:YZ[iXYZ] = 0.

Second, we need to know sufrankX:YZ(Z) as the starting position of the back-
ward search. We replace the O(m + n) time string range matching [18] used
in SAscan by a binary search over SAX:YZ with Z as the query. A plain binary
search needs O(� log m) time, where � is the length of the longest common prefix
between Z and any suffix in SAX:YZ. This is fast enough in most cases as � is
typically small and the constant factors are small. However, we employ several
techniques to ensure a good performance even in pathological cases. We use a
string binary search algorithm with O(�+log m) average case time (see [24]) and
O(� log� m) worst case time (see [2] for an even better complexity); we utilize the
gt-bitvectors to resolve comparisons early; and, in the full algorithm with many
binary searches, we utilize the fact that all the strings are suffixes of the same
text. We omit the details here due to lack of space, and because most of the
advanced binary searching techniques are only used in pathological cases and
have little effect on the experimental results.

The final difference to SAscan is the actual merging of SAs. In SAscan, the
merging is delayed (and the gap array is stored on disk) but here we often need
to perform the merging immediately. This is easily done if given a separate
array for the output, but we want to do the merging almost in-place to reduce
space usage. The basic idea, following [19, Appendix B], is to divide the SAs
into small blocks, which we call pages, and maintain pointers to the pages in an
additional array, called the page index. Any random access has to go through
the page index, which allows us to relocate the pages independently. We assume
that both the input SAs and the output SA are stored in this form. As merging
proceeds and elements are moved from input to output, input pages that become
empty are reused as output pages. This way merging can be performed using
only a constant number of extra pages.
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4 Parallel Merging of Partial SAs

In this section, we describe a parallelized implementation for the merging pro-
cedure. We assume a multicore architecture capable of running p threads simul-
taneously and a shared memory large enough to hold all the data structures.

The first task during merging is the construction of the rank data structure,
which is easily parallelized since the data structure is naturally divided into
(almost) independent blocks (see [15]).

The most expensive part of merging is the backward search, mainly because
the rank queries are relatively expensive (see [15]). We parallelize it by starting
the backward search in p places simultaneously. That is, we divide Y into p
blocks of equal size and perform a separate backward search for each block in
parallel. Each thread computes its own starting sufrank value by a binary search,
and then the repeated computation of the sufrank values parallelizes trivially.

For each sufrank value computed during the backward search, we need to
increment the corresponding entry in the gap array, but we cannot allow multiple
threads to increment the same entry simultaneously, and guarding the gap array
by locks would make the updates too expensive. Instead, each thread collects
the sufrank values into a buffer. When the buffer is full, it is sorted and stored
onto a queue. A separate thread takes the full buffers from the queue one at a
time, divides the buffer into up to p parts and starts a thread for each part to
do the corresponding gap array updates. Since the buffer is sorted, two threads
can never try to increment the same gap array entry.

Once the gap array has been constructed, we still need to perform the actual
merging. Recall that we assume the paged storage for the SA. We divide the out-
put SA into p blocks, with the block boundaries always at the page boundaries,
and assign a thread for each block. Each thread then finds the corresponding
ranges in the input SAs using the gap array. The gap array has been preprocessed
by computing cumulative sums at p equally spaced positions, so that the input
ranges can be determined by scans of length O(n/p) over the gap array. Next
each thread performs the merging using the sequential almost-in-place procedure
described in the previous section. The pages containing the beginning and the
end of each input range might be shared with another thread and those pages
are treated as read-only. Other input pages and all output pages are exclusive
to a single thread. Thus each thread needs only four extra pages to do its part
of the merging. Once all threads have finished, the extra pages can be relocated
to the input boundary pages.

The whole merging procedure can be performed in O((m + trankn)/p) time,
where trank is the time for performing one rank query. The input is overwritten by
the output, and significant additional space is needed only for the rank structure,
the gap array, the extra 4p pages and the page indexes. Using the representations
from [15], the first two need about (4.125 + 1)m bytes. If we choose page size
Θ(

√
n/p), the space needed for the latter two is Θ(

√
np), which is negligible.

Assuming one byte characters and five byte SA entries, the input/output itself
needs about 7.125(m + n) bytes (text, SA, BWT and gt bitvectors). The total is
12.25m + 7.125n bytes (plus the Θ(

√
np) bytes).
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5 Parallel SA Construction

In this section, we extend the parallel merging procedure into a full parallel suffix
array construction algorithm. As before, we assume a multicore architecture with
p threads and a shared memory large enough for all the data structures.

The basic idea is simple: divide the input string of length n into p blocks
of size m = �n/p�, construct the partial SAs for the blocks in parallel using a
sequential suffix array construction algorithm, and then keep merging the partial
SAs using the parallel merging procedure until the full SA is obtained.

We construct the block SAs using Yuta Mori’s divsufsort [25], possibly the
fastest sequential suffix sorting algorithm in practice, but we could use any other
algorithm too. Let X be a block, Y the following block, and Z the full suffix start-
ing after Y. To obtain the partial suffix array SAX:YZ instead of the full suffix array
SAX, we construct a string X̂ such that SAX̂ = SAX:YZ, and for this we need the
bitvector gtYZX:YZ, which we denote by gtX for brevity. For further details of the con-
struction, we refer to [15], but the computation of gtX is different. We first compute
g̃tX = gtYX:Y in O(m) time. During the computation, we identify and mark the posi-
tions i, where X[i..m)Y[0..m− i) = Y; we call these undecided positions. It is easy
to see that if g̃tX[i] �= gtX[i], then i must be an undecided position. Furthermore,
in that case gtX[i] = gtY[i]. Thus, if i is an undecided position in g̃tX, it depends on
g̃tY[i]. If that too is undecided, it depends on the position i in the next block and
so on. Thus, given the g̃t-bitvectors for all blocks, we can decide all the undecided
i-positions in them in O(p) time. Deciding all undecided positions requires O(pm)
work and O(m + p) time using p threads.

Let X be a block and Z the suffix starting after the block. Given SAX:Z, we can
easily compute BWTX:Z and gtXZX:Z as well as the page index for SAX:Z in O(m)
time in preparation for the merging phase. Furthermore, we compute O(p2)
sufrank values by binary searches (the suffixes starting at the block boundaries
against the block SAs); these are used to ensure fast binary searches later during
the merging. The worst case complexity of these binary searches is O(np) work
and O(n) time, i.e., it does not scale with p. We have designed theoretically
better ways of computing the sufrank values, but binary searching is better in
practice because of small constant factors and because it is almost always much
faster than the worst case. In all our experiments in Sect. 7, the binary searches
never took more than 1.5% of the total time, and even in the very worst case
(a unary string) it takes less than 25 % of the total time.

To obtain the final SA from the p initial block SAs, we have to do p−1 pairwise
merges. If we do the merges in a balanced manner, each element is involved in
about log p merges, and the total time complexity is O((trankn log p)/p) for a
string of length n. Surprisingly, doing the merges in a balanced manner is not
necessarily the optimal way. The time for a single merge can be approximated by
a� + br, where � is the size of the left-hand block, r is the size of the right-hand
block, and a and b are some constants. Because the merging time is dominated
by the backward search phase, b is much larger than a both in theory as well
as in practice. We have implemented a dynamic programming algorithm for
computing the optimal merging schedule given p and the value b/a. For example,
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in a balanced merging with p = 8, a single element is involved in three merges,
1.5 times on the left-hand side and 1.5 times on the right-hand side on average.
However, in an optimal merging schedule for b/a = 4, the averages are 2.25
times on the left-hand side and 1.125 times on the right-hand side. The optimal
schedule is about 10 % faster than the balanced schedule in this case. The actual
value of b/a in our experiments is about 7.

The space requirement of the algorithm is maximized during the last merge
when it is about 12.25� + 7.125r bytes (see Sect. 4). The space usage can be
controlled to an extent by skewing the merging to favor larger right-hand block.
Thus there is a space-time tradeoff, but only for the largest merges. Smaller
merges can be optimized for time only. Our dynamic program can compute a
time-optimal merging schedule under a constraint on the maximal space usage.

6 Parallel SA Construction in External Memory

In this section, we combine the parallel SA construction described above and
the external memory construction described in [15] to obtain a faster external
memory algorithm.

The basic idea of the algorithm in [15] is:

1. Divide the text into blocks of size m that are small enough to handle in
internal memory.

2. For each block X (from last to first), construct the partial suffix array SAX:Z

and the gap array gapX:Z:ε, where Z is the suffix starting after X.
3. After constructing all the partial SA and gap arrays, merge the SAs in one

multiway merge.

The last step is dominated by I/O and does not benefit much from parallelism,
but we will describe how the SA and gap array construction are parallelized.

For constructing SAX:Z, we can use the algorithm of the previous section with
minor changes required because we are constructing a partial SA and the tail Z
is stored on disk. There are two phases affected by this: the construction of the
gt bitvectors in the beginning and the computation of sufrank values before the
merging phase. We assume that the bitvector gtZZ:ε is stored on disk too, which
allows us to limit the access to a prefix of Z (and gtZZ:ε) of length at most m.

The construction of gapX:Z:ε is done by backward searching Z over the rank
data structure on BWTX:Z as described in previous sections. The only difference
is that Z and gtZZ:ε are now on disk, but this is not a problem as only a sequential
access is needed. For large files (n � m), this is by far the most time consuming
part because the total number of backward search steps is Θ(n2/m). Even with
parallelism, the time is dominated by internal memory computation rather than
I/O, because rank queries and gap array updates are expensive and the I/O
volume per step is low. Thus the parallelism achieves a great speed-up compared
to the sequential version.
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Table 1. The memory usage of internal memory
parallel suffix-sorting algorithms (in bytes). The
merging schedule of pSAscan (see Sect. 5) was con-
figured to use 10n bytes of RAM in all experiments.

Algor. pDC3 divsufsort pSAscan

32-bit 64-bit 32-bit 64-bit 32-bit 40-bit

RAM 21n 41n 5n 9n 10n 10n

Table 2. Dataset statistics

Name |X| σ

hg.reads 1024 GiB 6

kernel 200 GiB 229

wiki 2 GiB 210

countries 2 GiB 205

skyline 2 GiB 32

random 2 GiB 255

The block size m is chosen to fit necessary data structures in RAM. However,
the gap array construction needs only about 5.2m bytes but the SA construc-
tion needs nearly 10m bytes. Therefore we add one more stage to the compu-
tation. We choose m so that 5.2m bytes fits in RAM, but each block X of size
m is split into two halfblocks X1 and X2. We first compute the halfblock suffix
arrays SAX1:X2Z and SAX2:Z separately and write them to disk. Next we compute
gapX1:X2:Z and use it to merge BWTX1:X2Z and BWTX2:Z into BWTX:Z, which is
then used for computing gapX:Z:ε. This approach minimizes the total number of
backward search steps. To reduce I/O, SAX1:X2Z and SAX2:Z are never merged
into SAX:Z, but all halfblock SAs are merged simultaneously in the final multiway
merging stage. For the final merging, we need gapX1:X2Z:ε and gapX2:Z:ε, which
can be computed quickly and easily from gapX1:X2:Z and gapX:Z:ε.

The disk usage is less than 7.5n bytes consisting of the text (n bytes), SAs
(5n), gap arrays (about n using vbyte-encoding [33]), and a gt-bitvector (n bits).

7 Experimental Results

Setup. We performed experiments on two different machines referred to as Plat-
form S (small) and Platform L (large). Platform S was equipped with a 4-core
3.40 GHz Intel i7-3770 CPU with 8 MiB L2 cache and 16 GiB of DDR3 RAM. Plat-
form L was equipped with two 6-core 1.9 GHz Intel Xeon E5-2420 CPUs (capable,
via hyper-threading, of running 24 threads) with 15 MiB L2 cache and 120 GiB of
DDR3 RAM. The machine had 7.2 TiB of disk space striped with RAID0 across
four identical local disks (achieving a (combined) transfer rate of about 480 MiB/s),
and an additional two-disk RAID0 which was used only for the experiment on 1TiB
input. The OS was Linux (Ubuntu 12.04, 64 bit). All programs were compiled using
g++ (Cilk Plus branch) version 4.8.1 with -O2 -DNDEBUG options.

Datasets. For the experiments we used the following files varying in the number
of repetitions and alphabet size (see Table 2 for some statistics):

– hg.reads: a collection of DNA reads (short fragments produced by a sequenc-
ing machine) from 40 human genomes1 filtered from symbols other than
{A, C, G, T, N} and newline;

1 http://www.1000genomes.org/.

http://www.1000genomes.org/
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– wiki: a prefix of English Wikipedia dump2 (dated 20140707) in the XML
format;

– kernel: a concatenation of ∼16.8 million source files from 510 recent versions
of Linux kernel3;

– countries: a concatenation of all versions (edit history) of four Wikipedia arti-
cles about countries in the XML format. It contains a large number of 1–5 KiB
repetitions;

– skyline: an artificial, highly repetitive sequence (see [5] for details);
– random: a randomly generated sequence of bytes.

Experiments. We implemented the pSAscan algorithm in C++ using STL threads
for parallelism4. In the first experiment we study the performance of pSAscan as
a standalone internal-memory suffix sorting algorithm and compare it with the
parallel implementation of DC3 algorithm [6], the fastest parallel suffix-sorter in
previous studies, and the parallel version of divsufsort [25]. The latter has a paral-
lel mode that (slightly) improves the runtime, but is mostly known as the fastest
sequential suffix array construction algorithm. For each algorithm, we included
two versions, one using 32-bit integers and limited to 2 GiB or 4 GiB files, and the
other capable of processing larger files. The algorithms and their memory usage
are summarized in Table 1. For fair comparison pSAscan produces the suffix array
as a plain array (rather than in a paged form). This requires an additional per-
muting step and slightly slows down our algorithm. The results for Platform L
are given in Fig. 1. pSAscan is clearly the fastest algorithm when using full paral-
lelism and at least competitive when using less threads. The exception is the ran-
dom input with a large alphabet (where DC3 excels due to very shallow recursion)
and skyline. The poor performance of pSAscan on the skyline testfile is, however,
inherited from divsufsort for which it is the worst case input. The relative perfor-
mance of pDC3 and pSAscan on Platform S (see Fig. 2 for two sample graphs) is
similar to Platform L.

In the second experiment we compare the EM version of pSAscan to the
best EM algorithms for suffix array construction: eSAIS [5] (with the STXXL
library [8] compiled in parallel mode) and SAscan [15] (sequential), using a
moderate amount of RAM (3.5 GiB). Results are given in Fig. 3. For smaller
files, pSAscan is several times faster than the competitors. For larger files,
eSAIS approaches pSAscan and would probably overtake it somewhere around
250–300 GiB files, which coincidentally is about the size for which eSAIS would
run out of disk space on the test machine. Using the full 120 GiB RAM moves
the crossover point to several terabytes and allowed us to process the full 1TiB
instance of hg.reads (see Table 3).

Finally, Table 4 shows that, particularly for large files, the running time of
pSAscan is dominated by the gap array construction, which involves Θ(n2/m)
steps of backward searching.

2 http://dumps.wikimedia.org/.
3 http://www.kernel.org/.
4 The implementation is available at http://www.cs.helsinki.fi/group/pads/.

http://dumps.wikimedia.org/
http://www.kernel.org/
http://www.cs.helsinki.fi/group/pads/
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Fig. 1. Internal memory parallel suffix array construction on Platform L. All input files
are of size 2 GiB (Color Figure Online).
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Fig. 3. Scalability of EM version of pSAscan compared to eSAIS and SAscan. All
algorithms were allowed to use only 3.5 GiB of RAM for computation. pSAscan and
eSAIS were allowed to use the maximum number of threads (24) (Color Figure Online).

Table 3. A performance comparison of eSAIS and pSAscan on prefixes of hg.reads
testfile with varying amount of memory available to algorithms. The peak disk space
usage includes input and output (which is five times the size of input).

Algorithm Input size RAM usage Runtime Peak disk usage I/O volume

eSAIS 200 GiB 3.5 GiB 8.3 days 4.6 TiB 52.0 TiB

200 GiB 120 GiB 4.1 days 4.6 TiB 36.1 TiB

pSAscan 200 GiB 3.5 GiB 7.0 days 1.4 TiB 43.8 TiB

200 GiB 120 GiB 0.5 days 1.4 TiB 4.9 TiB

1024 GiB 120 GiB 8.1 days 7.3 TiB 48.3 TiB

Table 4. A detailed runtime breakdown of external memory pSAscan on the 200GiB
instance of hg.reads. The times are given in hours.

RAM usage Internal memory suffix sort Gap array construction Final merge Other

I/O divsufsort Other

3.5 GiB 0.4 0.7 2.2 132.4 29.2 1.2

120 GiB 0.6 1.1 2.6 4.3 2.4 0.9

8 Concluding Remarks

When deciding whether an algorithm scales to deal with large inputs, we are
principally concerned with three values: RAM, time, and disk usage. The main
advantage of pSAscan is that it measures up well on all three of these dimensions.
The algorithm is also fairly versatile: for example, it would add little overhead
to have it output the BWT in addition to (or instead of) the SA in order to, say,
speed up construction of an FM-index.

There are many avenues for future work. Most obviously, one wonders if
similar techniques for suffix sorting can be successfully applied to other parallel
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architectures, such as GPUs and distributed systems. We also believe our merg-
ing procedure can find other uses, such as supporting the efficient update of the
suffix array when new text is appended to the underlying string.
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Abstract. Given a string S of length n, its maximal unbordered factor
is the longest factor which does not have a border. In this work we
investigate the relationship between n and the length of the maximal
unbordered factor of S. We prove that for the alphabet of size σ ≥ 5 the
expected length of the maximal unbordered factor of a string of length n
is at least 0.99n (for sufficiently large values of n). As an application
of this result, we propose a new algorithm for computing the maximal
unbordered factor of a string.

1 Introduction

If a proper prefix of a string is simultaneously its suffix, then it is called a border
of the string. Given a string S of length n, its maximal unbordered factor is the
longest factor which does not have a border. The relationship between n and the
length of the maximal unbordered factor of S has been a subject of interest in
the literature for a long time, starting from the 1979 paper of Ehrenfeucht and
Silberger [7].

Let b(S) be the length of the maximal unbordered factor of S and π(S) be
the minimal period of S. Ehrenfeucht and Silberger showed that if the minimal
period of S is smaller than 1

2n, then b(S) = π(S). Following this, they raised
a natural question: How small b(S) must be to guarantee b(S) = π(S)? Their
conjecture was that b(S) must be smaller than 1

2n. However, this conjecture was
proven false two years later by Assous and Pouzet [1]. As a counterexample they
gave a string

S = ambam+1bambam+2bambam+1bam

of length n = 7m+10. The length of the maximal unbordered factor of this string
is b(S) = 3m + 6 ≤ 3

7n + 2 < 1
2n (with bam+1bambam+2 and am+2bambam+1b

being unbordered), and the minimal period π(S) = 4m + 7 �= b(S).
The next attempt to answer the question was undertaken by Duval [3]: He

improved the bound to 1
4n+ 3

2 . But the final answer to the question of Ehrefeucht
and Silberger was given just recently by Holub and Nowotka [10]. They showed
that b(S) ≤ 3

7n implies b(S) = π(S), and, as follows from the example of Assous
and Pouzet, this bound is tight.
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 343–354, 2015.
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Therefore, when either b(S) or π(S) is small, b(S) = π(S). Exploiting this
fact, one can even compute the maximal unbordered factor itself in linear time.
The key idea is that in this case the maximal unbordered factor is an unbordered
conjugate of the minimal period of S, and both the minimal period and its
unbordered conjugate can be found in linear time [6,15].

The interesting cases are those where b(S) (and, consequently, π(S)) is big.
Yet, it is generally believed that they are the most common ones. This is sup-
ported by experimental results shown in Fig. 1 that plots the average difference
between the length n of a string and the length of its maximal unbordered factor.
Guided by the experimental results, we state the following conjecture:

Conjecture 1. Expected length of the maximal unbordered factor of a string of
length n is n − O(1).

Fig. 1. Average difference between the length n of a string and the length of its maximal
unbordered factor for 1 ≤ n ≤ 100 and alphabets of size 2 ≤ σ ≤ 5.

To the best of our knowledge, there have been no attempts to prove the
conjecture or any lower bound at all in the literature. In Sect. 4 we address this
gap and make the very first step towards proving the conjecture. We show that
the expected length of the maximal unbordered factor of a string of length n
over the alphabet A of size σ ≥ 2 is at least n(1 − ξ(σ) · σ−4) + O(1), where
ξ(σ) is a function that converges to 2 quickly with the growth of σ. In partic-
ular, this theorem implies that for alphabets of size σ ≥ 5 the expected length
of the maximal unbordered factor of a string is at least 0.99n (for sufficiently
large values of n). To prove the theorem we developed a method of generating
strings with large unbordered factors which we find to be interesting on its own
(see Sect. 3).
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It follows that the algorithm for computing maximal unbordered factors we
sketched earlier cannot be used in a majority of cases. Instead, one can consider
the following algorithm. A border array of a string is an array containing the
maximal length of a border of each prefix of this string. Note that a prefix of a
string is unbordered exactly when the corresponding entry in the border array
is zero. Therefore, to compute the maximal unbordered factor of a string S it
suffices to build border arrays of all suffixes of a string. It is well-known that
a single border array can be constructed in linear time, which gives quadratic
time bound for the algorithm. In Sect. 5 we show how to modify this algorithm
to make use of the fact that the expected length of the maximal unbordered
factor is big. We give O(n2

σ4 ) time bound for the modified algorithm, as well as
confirm its efficiency experimentally.

Related work. Apart from the aforementioned results, we consider our work to
be related to three areas of research.

As we have already mentioned, the maximal unbordered factor can be found
by locating the rightmost zeros in the border arrays of suffixes of a string and
better understanding of structure of border arrays would give more efficient
algorithms for the problem. Structure of border arrays has been studied in [2,4,
5,8,9,14].

In contrast to the problem we consider in this work, one can be interested
in the problem of preprocessing a string to answer online factor queries related
to its borders. This problem has been considered by Kociumaka et al. [12,13].
They proposed a series of data structures which, in particular, can be used to
determine if a factor is unbordered in logarithmic time.

Finally, repeating fragments in a string (borders of factors is one example of
such fragments) were studied in connection with the Longest Common Extension
problem which asks, given a pair of positions i, j in a string, to return the longest
fragment that occurs both at i and j. This problem has many solutions, yet
recently Ilie et al. [11] showed that the simplest solution, i.e. simply scanning
the string and comparing pairs of letters starting at positions i and j, is the
fastest on average. The authors also proved that the longest common extension
has expected length smaller than 1

σ−1 , where σ is the size of the alphabet.

2 Preliminaries

We start by introducing some standard notation and definitions.

Power sums. We will need the following identities.

Fact 1. S(x) =
∑k

i=1 i xi−1 = k xk+1−(k+1) xk+1
(x−1)2 for all x �= 1.

Proof.

S(x) =
( k∑

i=1

xi
)′ =

(xk+1 − x

x − 1
)′ =

((k + 1)xk − 1)(x − 1) − (xk+1 − x)
(x − 1)2
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Simplifying, we obtain

S(x) =
k∑

i=1

i xi−1 =
k xk+1 − (k + 1) xk + 1

(x − 1)2
��

Corollary 1. S(x) =
∑k

i=1 i xi−1 = k xk

x−1 + O(xk−2) for x ≥ 1.5.

Strings. The alphabet A is a finite set of size σ. We refer to the elements of A as
letters. A string over A is a finite ordered sequence of letters (possibly empty).
Letters in a string are numbered starting from 1, that is, a string S of length n
consists of letters S[1], S[2], . . . , S[n]. The length n of S is denoted by |S|. A set
of all strings of length n is denoted An.

For 1 ≤ i ≤ j ≤ n, S[i..j] is a factor of S with endpoints i and j. The factor
S[1..j] is called a prefix of S, and the factor S[i..n] is called a suffix of S. A prefix
(or a suffix) different from S and the empty string is called proper.

If a proper prefix of a string is simultaneously its suffix, then it is called a
border. For example, borders of a string ababa are a and aba. The maximal border
of a string is its longest border. For S we define its border array B (also known
as the failure function) to contain the lengths of the maximal borders of all its
prefixes, i.e. B[i] is the length of the maximal border of S[1..i], i = 1..n. The
last entry in the border array, B[n], contains the length of the maximal border
of S. It is well-known that the border array and therefore the maximal border
of S can be found in O(n) time and space [15].

A period of S is an integer π such that for all i, 1 ≤ i ≤ n−π, S[i] = S[i+π].
The minimal period of a string has length n−B[n], and hence can be computed
in linear time as well.

Unbordered strings. A string is called unbordered if it has no border. Let b(i, σ)
be the number of unbordered strings in Ai. Nielsen [16] showed that unbor-
dered strings can be constructed in a recursive manner, starting from unbor-
dered strings of length 2 and inserting new letters in the “middle”. The following
theorem is a corollary of the proposed construction method:

Theorem 1 ([16]). The sequence
{

b(i,σ)
σi

}∞

i=1
is monotonically nonincreasing

and it converges to a constant α, which satisfies α ≥ 1 − σ−1 − σ−2.

Corollary 2 ([16]). b(i, σ) ≥ σi − σi−1 − σi−2 for all i.

This corollary immediately implies that the expected length of the maximal
unbordered factor of a string of length n is at least n(1−σ−1−σ−2). We improve
this lower bound in the subsequent sections. We will make use of a lower bound
on the number bj(i, σ) of unbordered strings such that its first letter differs from
the subsequent j letters. An example of such string for j = 2 is abcacbb.

Lemma 1. bj(i, σ) ≥ (σ − 1)j+1σi−j−1 − σi−2 for all i ≥ j + 1.
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Proof. The number of such strings is equal to b(i, σ) minus the number b−
j (i, σ)

of unbordered strings of length i that do not have the property. We estimate the
latter from above by the number of such strings in the set of all strings with
their first letter not equal to the last letter. Hence, b−

j (i, σ) ≤ (σ − 1)σi−1 −
(σ − 1)j+1σi−j−1. Recall that b(i, σ) ≥ σi − σi−1 − σi−2 by Theorem 1. The
claim follows. ��
Remark. The right-hand side of the inequality of Lemma 1 is often negative for
σ = 2. We will not use it for this case.

The maximal unbordered factor of a string (MUF) is naturally defined to be
the longest factor of the string which is unbordered.

3 Generating Strings with Large MUF

In this section we explain how to generate strings of some fixed length n with
large maximal unbordered factors. To show the lower bounds we announced, we
will need many of such strings. The idea is to generate them from unbordered
strings.

Let S be an unbordered string of length i ≥ �n
2 �. Consider a string SP1 . . . Pk

of length n, where P1, . . . , Pk are prefixes of S. It is not difficult to see that the
maximal unbordered factor of any string of this form has length at least i.
(Because S is one of its unbordered factors.) The number of such strings that
can be generated from S is 2n−i−1, because each of them corresponds to a
composition of n− i, i.e. representation of n− i as a sum of a sequence of strictly
positive integers. But, some of these strings can be equal. Consider, for example,
an unbordered string S = aaabab. Then the two strings aaababaaa (S appended
with its prefix aaa) and aaababaaa (S appended with its prefixes a and aa) will
be equal. However, we can show the following lemma.

Lemma 2. Let S1 �= S2 be two unbordered strings. Any two strings of the form
above generated from S1 and S2 are distinct.

Proof. Suppose that the produced strings are equal. If |S1| = |S2|, we immedi-
ately obtain S1 = S2, a contradiction. Otherwise, w.l.o.g. assume |S1| < |S2|.
Then S2 is equal to a concatenation of S1 and some of its prefixes. The last of
these prefixes is simultaneously a suffix and a prefix of S2, i.e. S2 is not unbor-
dered. A contradiction. ��
Our idea is to produce as many strings of the form SP1 . . . Pk as possible, taking
extra care to ensure that all strings produced from a fixed string S are distinct.
From unbordered strings of length i = n and i = n − 1 we produce just one
string of length n. (For i = n it is the string itself and for i = n − 1 it is the
string appended with its first letter.) For unbordered strings of length i ≤ n − 2
we propose a different method based on the lemma below.

Lemma 3. Each unbordered string S of length i such that its first letter differs
from the subsequent j letters, where �n/2� ≤ i < n − j, gives at least 2j distinct
strings of the form SP1 . . . Pk.
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Proof. We choose the last prefix Pk to be the prefix of S of length at least
n − i − j. We place no restrictions on the first k − 1 prefixes.

Let us start by showing that all generated strings are distinct. Suppose there
are two equal strings SP1 . . . P� and SP ′

1 . . . P ′
�′ . Let Pd, P

′
d be the first pair of

prefixes that have different lengths. W.l.o.g. assume that |Pd| < |P ′
d|. Then d �= �

and hence |Pd| ≤ j = n − i − (n − i − j). It follows that P ′
d (which is a prefix

of S) contains at least two occurrences of S[1], one at the position 1 and one at
the position |Pd| + 1 ≤ j + 1. In other words, we have S[1] = S[|Pd| + 1] and
|Pd| + 1 ≤ j + 1, which contradicts our choice of S.

If the length of the last prefix is fixed to some integer m ≥ n−i−j, then each
of the generated strings SP1 . . . Pk is defined by the lengths of the first k−1 of the
appended prefixes. In other words, there is one-to-one correspondence between
the generated strings and compositions of n − i − m. (Here we use i ≥ �n/2�
to ensure that every composition corresponds to a sequence of prefixes of S.)
The number of compositions of n − i − m is 1 when m = n − i and 2n−i−m−1

otherwise. Summing up for all m from n − i − j to n − i we obtain that the
number of the generated strings is 2j . ��
Let us estimate the total amount of strings produced by this method. We produce
one string from each unbordered string of length i. Then, from each unbordered
string of length i such that its first letter differs from the second letter, we
produce 1 = 2 − 1 more string. If the first letter differs both from the second
and the third letters, we produce 2 = 22 − 1 − 1 more strings. And finally, if the
first letter differs from the subsequent j letters, we produce 2j−1 = 2j − (

1 +
1 + 2 + . . . + 2j−2

)
strings. It follows that the number of strings we can produce

from unbordered strings of length i ≤ n − 2 is

b(i, σ) +
n−i−1∑

j=1

2j−1 · bj(i, σ)

Recall that the maximal unbordered factor of each of the generated strings has
length at least i and that none of them can be equal to a string generated from
an unbordered string of different length.

4 Expected Length of MUF

In this section we prove the main result of this paper.

Theorem 2. Expected length of the maximal unbordered factor of a string of
length n over an alphabet A of size σ ≥ 2 is at least

n · (1 − ξ(σ) · σ−4) + O(1) (1)

where ξ(2) = 8 and ξ(σ) = 2σ3−2σ2

(σ−2)(σ2−2σ+2) for σ > 2.
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Before we give a proof of the theorem, let us say a few words about ξ(σ). This
function is monotonically decreasing for σ ≥ 2 and quickly converges to 2. We
give the first four values for ξ(σ) (rounded up to 3 s.f.) and 1−ξ(σ)·σ−4 (rounded
down to 3 s.f.) in the table below.

σ = 2 σ = 3 σ = 4 σ = 5

ξ(σ) 8.000 7.200 4.800 3.922

1 − ξ(σ) · σ−4 0.500 0.911 0.981 0.993

Corollary 3. Expected length of the maximal unbordered factor of a string of
length n over the alphabet A of size σ ≥ 5 is at least 0.99n (for sufficiently large
values of n).

Proof of Theorem 2. Let βn
i (σ) be the number of strings in An such that the

length of their maximal unbordered factor is i. Expected length of the maximal
unbordered factor is then equal to

1
σn

n∑

i=1

i · βn
i (σ)

For the sake of simplicity, we temporarily omit 1
σn , and only in the very end we

will add it back. Recall that in the previous section we showed how to generate
a set of distinct strings of length n with maximal unbordered factors of length
at least i which contains

b(i, σ) +
n−i−1∑

j=1

2j−1 · bj(i, σ)

strings for all �n
2 � ≤ i ≤ n − 2 and b(i, σ) strings for i = {n − 1, n}. Then

n∑

i=1

i · βn
i (σ) ≥

n∑

i=�n/2�
i · b(i, σ)

︸ ︷︷ ︸
(S1)

+
n−2∑

i=�n/2�

n−i−1∑

j=1

2j−1 · i · bj(i, σ)

︸ ︷︷ ︸
(S2)

(2)

We start by computing (S1). Applying Corollary 2 and replacing b(i, σ) with
b(n,σ)
σn−i in (S1), we obtain:

(S1) ≥
n∑

i=�n
2 �

i
b(n, σ)
σn−i

=
b(n, σ)
σn−1

( n∑

i=�n
2 �

i σi−1
)

Note that the lower limit in inner sum of (S1) can be replaced by one because
the correcting term is small:
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b(n, σ)
σn−1

�n/2�−1∑

i=1

iσi−1 ≤ n2 · b(n, σ)
4σn/2

= O(σn)

We finally use Corollary 1 for x = σ and k = n to compute the right-hand side
of the inequality:

(S1) ≥ nσ

σ − 1
· b(n, σ) + O(σn) (3)

We note that for σ = 2 the right-hand side is at least 2n ·(2n −2n−1−2n−2)+
O(2n) = n · 2n−1 + O(2n) by Corollary 2 and (S2) ≥ 0. Hence,

∑n
i=1 i · βn

i (2) ≥
n · 2n−1 + O(2n). Dividing both sides by 2n, we obtain the theorem.

Below we assume σ > 2 and for these values of σ give a better lower bound
on (S2). Recall that bj(i, σ) ≥ (σ −1)j+1σi−j−1 −σi−2 (see Lemma 1). It follows
that

(S2) ≥
n−2∑

i=�n/2�

n−i−1∑

j=1

2j−1 · i · (
(σ − 1)j+1σi−j−1 − σi−2

)

Let us change the order of summation:

(S2) ≥
�n/2�−1∑

j=1

2j−1 · (
(σ − 1)j+1σ−j − σ−1

) n−j−1∑

i=�n/2�
i · σi−1

We can replace the lower limit in the inner sum of (S2) by one as it will only
change the sum by O(σn). After replacing the lower limit, we apply Corollary 1
to compute the inner sum:

(S2) ≥
�n/2�−1∑

j=1

2j−1 · (
(σ − 1)j+1σ−j − σ−1

) · (n − j − 1)
σn−j−1

σ − 1
+ O(σn)

We divide the sum above into positive and negative parts:

�n/2�−1∑

j=1

(n − j − 1) 2j−1(σ − 1)jσn−2j−1

︸ ︷︷ ︸
(P )

−
�n/2�−1∑

j=1

(n − j − 1)2j−1 σn−j−2

σ − 1
︸ ︷︷ ︸

(N)

We start by computing (N). We again apply the trick with the lower limit and
Fact 1, and replace (n − j − 1) with k.

(N) =
2n−3

σ − 1

n−2∑

k=�n
2 �

k
(σ

2
)k−1=

(n − 2)σn−2

(σ − 1)(σ − 2)
+ O(σn)

Computing (P ) is a bit more involved. We divide it into two parts:

(P ) =
(n − 1)σn−1

2
·

�n/2�−1∑

j=1

(2(σ − 1)
σ2

)j

︸ ︷︷ ︸
R1

−σn−1

�n/2�−1∑

j=1

j 2j−1(σ − 1)jσ−2j

︸ ︷︷ ︸
R2
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(R1) is a sum of a geometric progression and it is equal to

(n − 1)σn−1

2
·
( 2(σ−1)

σ2

)�n/2� − 2(σ−1)
σ2

2(σ−1)
σ2 − 1

=
(n − 1)σn−1

2
· 2(σ − 1)
σ2 − 2σ + 2

+ O(σn)

Lemma 4. (R2) = O(σn).

Proof. We start our proof by rewriting (R2):

(R2) = σn−3(σ − 1) ·
�n/2�−1∑

j=1

j
(2(σ − 1)

σ2
)j−1

We apply Fact 1 for x = 2(σ−1)
σ2 and k = 	n/2
 − 1 to compute the inner sum.

(R2) = σn−3(σ − 1) · (	n/2
 − 1) · (2(σ−1)
σ2 )�n/2� − 	n/2
 · ( 2(σ−1)

σ2 )�n/2�−1 + 1

( 2(σ−1)
σ2 − 1)2

The claim follows. ��
We now summarize our findings. From equations for (P ), (N), (R1), and (R2)
we obtain (after simplification):

(S2) ≥ (P ) − (N) = n · ( σn − σn−1

σ2 − 2σ + 2
− σn−2

(σ − 1)(σ − 2)
)

+ O(σn) (4)

We now return back to Eq. (2) and use our lower bounds for (S1) and (S2)
together with Corollary 2 for b(n, σ):

n∑

i=1

i · βn
i (σ) ≥ n · (σn+1 − σn − σn−1

σ − 1
+

σn − σn−1

σ2 − 2σ + 2
− σn−2

(σ − 1)(σ − 2)
)
+ O(σn)

We now simplify the expression above and return back 1
σn as we promised in

the very beginning of the proof to obtain:

1
σn

n∑

i=1

i · βn
i (σ) ≥ n · (1 − ξ(σ) · σ−4) + O(1) (5)

where ξ(σ) = 2σ3−2σ2

(σ−2)(σ2−2σ+2) . This completes the proof of Theorem 2. ��
Remark. Theorem 2 actually provides a lower bound on the expected length of the
maximal unbordered prefix (rather than that of the maximal unbordered factor),
which suggests that this bound could be improved.
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5 Computing MUF

Based on our findings we propose an algorithm for computing the maximal
unbordered factor of a string S of length n and give an upper bound on its
expected running time. A basic algorithm would be to compute the border arrays
(see Sect. 2 for the definition) of all suffixes of S. The border arrays contain the
lengths of the maximal borders of all prefixes of all suffixes of S, i.e., of all
factors of S. It remains to scan the border arrays and to select the longest factor
such that the length of its maximal border is zero. Since a border array can be
computed in linear time, the running time of this algorithm is O(n2).

The algorithm we propose is a minor modification of the basic algorithm.
We build border arrays for suffixes of S starting from the longest one. After
building an array Bi for S[i..n] we scan it and locate the longest factor S[i..j]
such that the length of its maximal border stored in Bi[j] is zero. We then
compare S[i..j] and the current maximal unbordered factor (initialized with an
empty string). If S[i..j] is longer, we update the maximal unbordered factor and
proceed. At the moment we reach a suffix shorter than the current maximal
unbordered factor, we stop.

Theorem 3. The maximal unbordered factor of a string of length n over an
alphabet A of size σ can be found in O(n2

σ4 ) expected time.

Proof. Let b(S) be the length of the maximal unbordered factor of S. Then the
running time of the algorithm is O((n − b(S)) · n), because b(S) will be a prefix
of one of the first n − b(S) + 1 suffixes of S (starting from the longest one).
Averaging this bound over all strings of length n, we obtain that the expected
running time is

O(
1
σn

∑

S∈An

(n − b(S)) · n) = O(n · (
1
σn

∑

S∈An

(n − b(S))))

and 1
σn

∑
S∈An(n − b(S)) = O( n

σ4 ) as it follows from Theorem 2 and properties
of ξ(σ). ��

We performed a series of experiments to confirm that the expected running
time of the proposed algorithm is much smaller than that of the basic algorithm.
We compared the time required by the algorithms for strings of length 1 ≤ n ≤
100 over alphabets of size σ = {2, 3, 4, 5, 10}. The time required by the algorithms
was computed as the average time on a set of size N = 106 of randomly generated
strings of given length. The experiments were performed on a PC equipped
with one 2.6 GHz Intel Core i5 processor. As it can be seen in Fig. 2, the minor
modification we proposed decreases the expected running time dramatically.
Obtained results were similar for all considered alphabet sizes. All source files,
results, and plots can be found in a repository http://github.com/avlonger/
unbordered.

We note that the data structures [12,13] can be used to compute the maxi-
mal unbordered factor in a straightforward way by querying all factors in order

http://github.com/avlonger/unbordered
http://github.com/avlonger/unbordered


On Maximal Unbordered Factors 353

Fig. 2. Average running times of the proposed algorithm (dashed line) and the basic
algorithm (solid line) for strings over the alphabet of size σ = 2.

of decreasing length. This idea seems to be very promising since these data
structures need to be built just once, for the string S itself. However, the data
structures are rather complex and both the theoretical bound for the expected
running time, which is O(n2

σ4 log n), and our experiments show that this solution
is slower than the one described above.

6 Conclusion

We consider the contributions of this work to be three-fold. We started with an
explicit method of generating strings with large unbordered factors. We then
used it to show that the expected length of the maximal unbordered factor and
the minimal period of a string of length n is Ω(n), leaving the question raised
in Conjecture 1 open. As an immediate application of our result, we gave a new
algorithm for computing maximal unbordered factors and proved its efficiency
both theoretically and experimentally.

Acknowledgements. The authors would like to thank the anonymous reviewers
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Abstract. We present a compact semi-dynamic text index which allows
us to find short patterns efficiently. For parameters k ≤ q ≤ logσ n −
logσ logσ n and alphabet size σ = O(polylog(n)), all occ occurrences of a
pattern of length at most q−k+1 can be obtained in O(k×occ+logσ n)
time, where n is the length of the text. Adding characters to the end of
the text is supported in amortized constant time. Our index requires
(n/k) log(n/k) + n log σ + o(n) bits of space, which is compact (i.e.,
O(n log σ)) when k = Θ(logσ n). As a byproduct, we present a succinct
van Emde Boas tree which supports insertion, deletion, predecessor, and
successor on a dynamic set of integers over the universe [0, m − 1] in
O(log log m) time and requires only m + o(m) bits of space.

1 Introduction

A full-text index of a string T is a data structure which allows us to efficiently
find all occurrences of a given pattern in T . A large number of indices have been
proposed, e.g. suffix trees [15], suffix arrays [9] and FM-index [4]. An index is
said to be compact if it occupies O(n log σ) bits of space, where n is the length
of T and σ is the alphabet size. Suffix trees and suffix arrays are not compact
since they require O(n log n) bits, while FM-index is (actually, compressed).

On the other hand, a suffix tree has an advantage that it can be constructed
semi-dynamically (online), that is, a suffix tree can be modified efficiently when
a character is appended to the end of the text [14]. Salson et al. [13] addressed
how to modify an FM-index when the text is edited1, rather than rebuilding
it from scratch. Although their approach works well in practice, its worst-case
time complexity for modification is O(n log n). There are some other related
results [3,6], however, as far as we know there are no practical implementations.

In this paper, we propose a new compact full-text index for short patterns
which can be constructed in linear time in an online manner. We restrict the
length of patterns that can be searched for to at most around logσ n, and develop

1 Note that they addressed more general edit operations such as insertion of a string
to an arbitrary position and deletion/substitution of a substring of the text.
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novel techniques that exploit this assumption in order to achieve fast online
construction using small space. More precisely, for parameters k ≤ q ≤ logσ n −
logσ logσ n and alphabet size σ = O(polylog(n)), all occ occurrences of a pattern
of length at most q − k + 1 can be obtained in O(k × occ + logσ n) time, where
n is the length of the text. Our index requires (n/k) log(n/k) + n log σ + o(n)
bits of space, which is compact when k = Θ(logσ n). It is also semi-dynamic, in
that adding characters to the end of the text is supported in constant amortized
time. Finding short patterns is useful for filtering algorithms to find exact and
approximate occurrences of longer patterns [1,12]. Since our index does not need
the original text T to search for pattern occurrences, we can discard it once the
index is constructed. If needed, we can rebuild T from our index in O(n) time.

Computational experiments on DNA sequences show that our index is prac-
tical and can be constructed much faster than suffix arrays or FM-indices.
Although the query time is slower than suffix arrays, it is much faster than
FM-indices. While the space requirement is larger than the static FM-index, it
can be smaller than the Dynamic FM-index [13].

As a byproduct of our compact semi-dynamic index, we propose a succinct
variant of the van Emde Boas tree [2], which we believe is of independent interest
and useful for many other applications. We show that for a fully-dynamic set of
integers over the universe [0,m− 1], we can support look-up, insertion, deletion,
predecessor, and successor operations in O(log log m) time using only m + o(m)
bits of space (Corollary 1). This result is valid for the Transdichotomous word
RAM model with word size Θ(log m). To our knowledge, this is the fastest
succinct dynamic predecessor/successor data structure to date.

Observe that a predecessor/successor query in a dynamic set of integers over
the universe [0,m − 1] can be replaced by a constant number of rank/select
queries on a dynamic bit array B of length m. Gupta et al. [5] proposed a data
structure for B which supports rank/select in O((1/ε) log log m) time for any
0 < ε < 1 and requires m+o(m) bits of space, but it takes O((1/ε)mε) amortized
time for insertion/deletion. Navarro and Nekrich [11] proposed a data structure
for B which supports rank/select and insertion/deletion in O(log m/ log log m)
time, with m+o(m) bits of space. Although rank/select are more powerful than
predecessor/successor, predecessor/successor are sufficient for our needs. Hence
our data structure achieves O(k ×occ +logσ n) pattern matching time and O(n)
online construction time, using our succinct van Emde boas tree.

2 Preliminaries

Let Σ = {0, . . . , σ − 1} be an integer alphabet of size σ. An element of Σ∗ is
called a string. The length of a string w is denoted by |w|. The empty string ε is
a string of length 0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ −{ε}.
For a string w = x · y · z, x, y and z are called a prefix, substring, and suffix of
w, respectively. The position of a string starts from 0. The i-th character of a
string w is denoted by w[i], where 0 ≤ i < |w|. For a string w and two integers
0 ≤ i ≤ j < |w|, let w[i..j] denote the substring of w that begins at position i
and ends at position j. For convenience, let w[i..j] = ε when i > j.
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1011 0010 1001 1111 0000 0000 0000 1000 0000 0000 0000 0000 0111 0000 0101 1010

1  1  1  1 0  0  0  1 0  0  0  0 1  0  1  1

1    1    0    1

Fig. 1. Example of a complete b-ary tree where m = 64 and b = 4. The concatenation
of the sequences in the leaves is equal to the bit array B maintained by the complete
b-ary tree.

Throughout this paper, T ∈ Σ∗ denotes a string to be indexed. For conve-
nience, we assume that we know |T | = n. For online processing, this restriction
can be removed by adapting the standard doubling technique. The default base
of logarithm is 2. We assume the unit cost Transdichotomous word RAM with
the machine word size Θ(log n) bits.

3 Semi-dynamic Bit Arrays Supporting
Successor Queries

Here we present a data structure to maintain a semi-dynamic set S of integers
over the universe [0,m− 1] on the Transdichotomous RAM model with machine
word size Θ(log n), where m ≤ n. By semi-dynamic, we mean that a new element
can be inserted to the set, but no existing elements are deleted from it. Let B be
an array of length m such that B[i] = 1 iff i ∈ S. We propose a data structure for
B which efficiently supports: lookup(x) which returns B[x], successor(x) which
returns min{y | B[y] = 1, y > x} if it exists or nil otherwise, and insert(x) which
sets B[x] to 1. This data structure will be used in Subsect. 4.1 as a component
of our compact full-text index for short patterns.

3.1 Simple O(logb m)-Time Data Structure

We begin with a simple data structure using a complete b-ary tree which supports
each operation in O(logb m) time using m + O(m

b + b log b) bits of space, where
b is a positive integer which is not greater than the machine word size. For
convenience, assume B[i] = 0 for any i ≥ m. We consider a complete b-ary tree
with height h = �logb m�. Each node v maintains a bit array Bv[0..b − 1] that
satisfies the following conditions: (1) If v is a leaf, Bv[0..b − 1] is a subarray of
B. More precisely, Bv[0..b − 1] = B[jb..(j + 1)b − 1] if v is the j-th leaf, and (2)
If v is an internal node, for any 0 ≤ j < b, Bv[j] = 1 iff Bvj

contains 1, where vj

is the j-th child of v. Or equivalently, Bv[j] = 1 iff there exists a leaf v′ in the
complete subtree rooted at vj s.t. Bv′ contains 1. Figure 1 shows an example of
a complete b-ary tree where m = 64 and b = 4.

Since the tree is complete, we can arrange all the nodes of the tree in a single
array so that given an index of any node, the index of its parent or arbitrary
child can be obtained in constant time without the use of pointers. In addition,
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since Bv never contains 1 if it does not correspond to any region in [0,m − 1],
we do not have to allocate memory for such out-of-bounds bit arrays. Since our
tree is a complete b-ary tree, the total space is m+

∑logb m
i=1

m
bi = m+O(m

b ) bits.
For any 0 ≤ x < m, lookup(x) can be computed in constant time, by looking

up the (x mod b)-th bit of the �x/b�-th leaf.
For any node v and given integer j with 0 ≤ j < b, let successorv(j) =

min{j′ | Bv[j′] = 1, j′ > j}, if it exists. This value can be calculated in con-
stant time with the method in [7] by using a total of O(b log b) bits of space.
We compute successor(x) as follows. Starting from the leaf node containing x,
we climb up the tree until successorv(xv) exists at node v, where xv is the index
of the child at node v that contains x in its subtree. Then we climb down the
(successorv(xv))-th child at node v. Finally, we climb down the (successorv(−1))-
th child at each node v, until we reach the leaf node which gives us the answer.
Therefore, successor(x) can be computed in a total of O(h) time.

For insert(x), let (v0, . . . , vh) be the sequence of nodes in the path from the
root to the leaf representing B[x], namely, v0 is the root, vl−1 is the parent
of vl for each 1 ≤ l ≤ h, and vh is the leaf representing B[x]. Also, let il =
�x/bh−l�mod b for each 0 ≤ l ≤ h. To insert x, we climb up the path from the
leaf setting Bvl

[il] = 1 from l = h down to 0. Clearly, it takes O(h) time.
Since h = O(logb m), we get the following result.

Lemma 1. There exists a data structure which requires m + O(m
b + b log b)

bits of space and supports lookup(x) in O(1) worst-case time, and successor(x),
insert(x) in O(logb m) worst-case time.

3.2 O(log logm)-Time Data Structure

In this subsection, we show the O(logb m) time complexity for successor and
insert operations can be improved to O(log log m) by combining the b-ary trees
of Lemma 1 with the van Emde Boas tree [2]. The van Emde Boas tree supports
successor and insert in O(log log m) worst-case time but requires Θ(m log n) bits
of space (i.e., Θ(m) words of space). Our underlying idea is similar to that used
in the y-fast trie [16], namely, we maintain B by a top tree (a van Emde Boas
tree) and bottom trees (complete b-ary trees).

Let h′ be any positive constant integer and m′ = �m/bh′+1�. The bottom trees
consist of m′ complete b-ary trees of height h′ such that for any 0 ≤ i < m′ − 1,
the i-th complete b-ary tree maintains the subarray B[ibh′+1..(i + 1)bh′+1 − 1],
and the (m′ − 1)-th one maintains the subarray B[(m′ − 1)bh′+1..m − 1]. The
top tree will be a van Emde Boas tree that maintains the set R = {�i/bh′+1� |
0 ≤ i < m,B[i] = 1}, i.e., j ∈ R iff there exists a set bit in the subarray of B
which is maintained by the j-th bottom tree. We call this data structure the vEBb
tree. Figure 2 shows an illustration for a vEBb tree. In this example, the top van
Emde Boas tree maintains R = {0, 2, 3} since each of the subarrays B[0..bh′+1−1],
[2bh′+1..3bh′+1−1], and [3bh′+1..4bh′+1−1] contains at least a 1, while the subarray
[bh′+1..2bh′+1 − 1] contains no 1’s.
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010110………01 000000………00 010000………00 111111………11

h'

van Emde Boas tree

m bits

bh'+1 bits

complete b-ary trees

Fig. 2. Illustration for a vEBb tree.

For any 0 ≤ x < m, lookup(x) can be computed in constant time, by looking
up the (x mod b)-th bit of the �(x mod bh′+1)/b�-th leaf of the �x/bh′+1�-th
bottom tree.

For successor(x), let i = �x/bh′+1�. If successor(x) is in the i-th bottom tree,
we can compute successor(x) as described previously. Otherwise, let i′ be the
successor of i in R. We can compute it by the top tree in O(log log m′) time.
If i′ exists, successor(x) is the minimum position that is maintained in the i′-th
bottom tree.

For insert(x), let i = �x/bh′+1�. We update the i-th bottom tree as described
previously. Moreover, if i 	∈ R then we add i to R, i.e., the van Emde Boas tree.

Lemma 2. When b = Θ(log n), the vEBb tree takes m+O( m
log n +log n log log n)

bits of space and supports lookup(x) in O(1) worst-case time, and successor(x),
insert(x) in O(log log m) worst-case time.

Proof. Since the total space for complete b-ary trees does not exceed that of
Lemma 1, it is bounded by m+O( m

log n +log n log log n) bits. The van Emde Boas
tree for R needs O(m′) words because R is a set of integers over the universe
[0,m′ − 1]. Since b = Θ(log n), it occupies O(m′ log n) = O(� m

bh′+1 � log n) =
O( m

log n ) bits of space. Hence, the total space is m+O( m
log n +log n log log n) bits.

Since insert and successor operations on the top tree take O(log log m′) time
and those operations on the bottom trees takeO(h′) time, it takesO(log log m′+h′)
= O(log log m) time for each operation. 
�

The following lemma holds for the semi-dynamic setting.

Lemma 3. Let b = Θ(log n). If we conduct insert operations f times on the
vEBb tree of Lemma 2 in the semi-dynamic setting, then it takes O(m+ f) time
in total.

It is not difficult to extend the bottom b-ary trees so that deletion and predecessor
operations are supported in the same time complexity using the same space.
Hence, the next corollary follows from Lemma 2.

Corollary 1. Let m = n and b = Θ(log m). Then, the vEBb tree requires m +
o(m) bits of space and supports lookup in O(1) worst-case time, and insert,
delete, predecessor, and successor in O(log log m) worst-case time.
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Additionaly, we can hold a doubly linked list which represents R in ascending
order. Then, for any i, we can compute the predecessor or successor of i in R in
constant time if i ∈ R.

4 A Semi-dynamic Compact Index for Short Patterns

Let q ≤ logσ n − logσ logσ n and u = σq. Note that u log n ≤ n log σ. We assume
that σ = O(polylog(n)), thus u ≤ n/ logσ n = o(n). We take an integer k with
k ≤ q as a parameter, and sample the positions of q-grams of T beginning at
position jk for every 0 ≤ j ≤ �(n − q)/k�. These q-grams are called sampled
q-grams. Let plast denote the beginning position of the last sampled q-gram, i.e.,
plast = k�(n−q)/k�. We design our data structure for patterns of length at most
q−k+1. Given a pattern P of length at most q−k+1, an occurrence of P in T is
completely contained in some sampled q-gram (except for the ones beginning at
one of the last O(q) positions of T ). We can employ any linear-time string search
algorithm, to compute in O(q) time the occurrences of P beginning in range
[plast + k, n − 1]. Hence, in what follows we only consider range [0, plast + k − 1].
For any position i < plast + k, i is an occurrence of P iff i = p + d where p is a
starting position of a sampled q-gram w and w[d..d + |P | − 1] = P with d < k.
Notice such sampled position p is unique for each occurrence i of P . We find the
occurrences of P as follows: First, enumerate sampled q-grams w and offsets d
such that w[d..d + |P | − 1] = P (Task 1). Then, for each pair of w and d, output
p + d for every sampled position p of w (Task2).

Our data structure consists of the following two components (A) and (B)
which respectively realize the above tasks: (A) to enumerate all occurrences of P
in sampled q-grams; (B) to enumerate all sampled positions of a given q-gram.

We define 〈w〉 =
∑|w|−1

i=0 w[i]σ|w|−1−i for any string w such that |w| ≤ q.
We call 〈w〉 as the integer encoding of w. For any string w and w′ such that
w′ = w[i..j] for some 0 ≤ i ≤ j < |w|, 〈w′〉 = �〈w〉 /σ|w|−1−j�mod σj−i+1. Also,
for a string w = x · y, 〈w〉 = 〈x〉σ|y| + 〈y〉. Since the number of distinct values of
j − i for all 0 ≤ i ≤ j < |w| is |w| − 1, and since we only consider concatenating
substrings of w of resulting length at most q, we can precompute the powers of σ
to be used in the above formulae in a total of O(q) time. After this preprocessing,
we can compute the integer encodings of any substring and a concatenation of
two substrings in O(1) time.

4.1 Data structure (A) for Task 1

Let Q be the set of q-grams occurring in T , which contains not only the sampled
q-grams but all q-grams in T . For any integer d, let Q(P, d) = {w ∈ Q | w[d..d+
|P | − 1] = P}. Our data structure (A) consists of the following two parts: (A1)
a vEBb tree to compute Q(P, 0), i.e., enumerate w ∈ Q s.t. P is a prefix of w;
(A2) a directed graph to update Q(P, d) to Q(P, d + 1) for each 0 ≤ d ≤ k − 2.
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1001100110

0110100100 10010 01001 10100 11010

Fig. 3. Example of 5-gram transition graph where Σ = {0, 1}, T = 0110100100110.

Data Structure (A1). Let 〈Q〉 = {〈w〉 |w ∈ Q} ⊆ [0, u − 1]. For a given
pattern P , let sp(P ) = 〈P 〉σq−|P | and ep(P ) = sp(P ) + σq−|P | − 1. We can
compute sp(P ) and ep(P ) from P in O(|P |) time. Here, w ∈ Q(P, 0) iff
sp(P ) ≤ 〈w〉 ≤ ep(P ) and 〈w〉 ∈ 〈Q〉. That is, computing Q(P, 0) is equiva-
lent to computing 〈Q〉 ∩ [sp(P ), ep(P )]. Using a vEBb tree that represents 〈Q〉,
we can enumerate all elements of 〈Q〉 ∩ [sp(P ), ep(P )] in ascending order by
repeating the successor operation starting from sp(P ) until we surpass ep(P )
or get nil . Note that finding the first element takes O(log log n) time, but sub-
sequent elements can be obtained in O(1) time by using the doubly linked list.
This algorithm runs in O(log log n+occ+ |P |) = O(occ+logσ n) time, where occ
is the total number of occurrences of P in T . By Lemma 2 we get the following
lemma.

Lemma 4. Data structure (A1) requires u+O( u
log n +log n log log n) = o(n) bits

of space.

Data Structure (A2): q-gram transition graph. We introduce a directed
graph G = (V,E) with V = Σq and E ⊆ Q×Q, called a q-gram transition graph
of T , which satisfies the following two conditions: (1) For any v ∈ V , the indegree
of v is exactly 1 iff v ∈ Q and there exists v′ ∈ Q s.t. v[1..q − 1] = v′[0..q − 2],
and otherwise 0, and (2) For any (v′, v) ∈ E, v[1..q − 1] = v′[0..q − 2].

If T [n − q..n − 1] ∈ Q does not occur in T [0..n − 2], then the indegree of
T [n − q..n − 1] is 0, and this is the only case where the indegree of a node in Q
is 0. Figure 3 shows an example of a q-gram transition graph where Σ = {0, 1},
T = 0110100100110 and q = 5. All q-grams which do not appear in T (namely,
those not in Q) are omitted for simplicity. Note that (10011, 01001) 	∈ E because
the indegree of 01001 must not exceed 1.

We remark that a q-gram transition graph of T has a similar structure to
a de Bruijn graph for T used in de novo assemblies. Indeed, both of them are
subgraphs of the complete de Bruijn graph. An important feature of q-gram
transition graphs is that the indegree of every node is at most 1. Also, for any
(v′, v) ∈ E, v′ and v are not necessarily neighbors in T . Note that the q-gram
transition graph is not necessarily unique for a given string T . Our search algo-
rithm works fine with any graph satisfying the above conditions (see Subsect. 4.3
for the details on how to use it).

Now, we describe a space-efficient representation of the q-gram transition
graph. For each w ∈ V , let (v0, . . . , vm) be the list of q-grams in an arbitrary
order, such that (w, vi) ∈ E for any 0 ≤ i ≤ m. We use two arrays on Σ ∪ {−1}:
efirst[0..u − 1] and enext[0..u − 1] such that efirst[〈w〉] represents (w, v0) ∈ E and



362 Y. Matsuoka et al.

enext[〈vi〉] represents (w, vi+1) ∈ E for any 0 ≤ i < m. By the definition of the
q-gram transition graph, vi = vi[0] · w[0..q − 2] for any 0 ≤ i ≤ m. Thus, it
suffices to store vi[0] to represent the edge. Precisely, if the list is empty, let
efirst[〈w〉] = −1. Otherwise, let efirst[〈w〉] = v0[0], enext[〈vi〉] = vi+1[0] for any
0 ≤ i < m, and enext[〈vm〉] = −1. We note that in our application sequential
access to the children of v in an arbitrary order is enough as will be described in
Subsect. 4.3. Hence, when a new edge (w, v) is added to E, updating the graph
representation takes O(1) time because at most two elements of these arrays are
changed by adding the new edge at the beginning of the children’s list.

Lemma 5. The q-gram transition graph requires o(n) bits of space.

Proof. Since each element of efirst and enext needs log(σ + 1) bits, these arrays
use 2u log(σ + 1) = O(n log2 σ/ log n) = O(n(log log n)2/ log n) = o(n) bits. 
�

4.2 Data structure (B) for Task 2

We use two arrays on {−1, 0, . . . , plast/k}: lfirst[0..u − 1] and lnext[0..plast/k].
For each q-gram w, let (p0, p1, . . . , pm) be the list of all sampled positions of
sampled q-gram w in an arbitrary order. Note that each pi (0 ≤ i ≤ m) is divisi-
ble by k. If the list is empty, let lfirst[〈w〉] = −1. Otherwise, let lfirst[〈w〉] = p0/k,
lnext[pi/k] = pi+1/k for any 0 ≤ i < m, and lnext[pm/k] = −1. For exam-
ple, if Σ = {0, 1}, T = 0110100100110, q = 5 and k = 3, the sampled q-
grams are 01101 at position {0} and 01001 at positions {3, 6}. Hence, we can
set lfirst[〈01101〉], lfirst[〈01001〉] and lnext[2] to 0, 2 and 1, respectively. All other
elements of lfirst and lnext are −1. We can regard these arrays as singly linked
lists. A new starting position of a sampled q-gram w can be inserted to this list
in O(1) time, since we insert this edge at the beginning of this list and at most
two elements of these arrays are changed.

Lemma 6. lfirst and lnext require at most (n/k) log(n/k) + n log σ bits of space.

Proof. Since each element of these arrays needs log(n/k) bits, these arrays need
(u + n/k) log(n/k) ≤ (n/k) log(n/k) + n log σ bits in total. 
�

4.3 Searching Text T for Occurrences of Pattern P

Let G = (V,E) be a q-gram transition graph of T . For any v ∈ Q and integer
d ≥ 0 we define a labeled rooted tree TG(v, d) as follows: TG(v, 0) consists only
of the root labeled with v. The root of TG(v, d) is labeled with v and the root
connects to the root of TG(v′, d−1) for every (v, v′) ∈ E. The height of TG(v, d) is
at most d. Given G, v, and d, we can simulate a depth-first traversal on TG(v, d)
in time linear in its size, without building the tree.

Lemma 7. Algorithm 1 enumerates all pairs of sampled q-gram w and offset d
such that w[d..d + |P | − 1] = P in O(k × occ + logσ n) time and O(k) words of
working space, where occ is the number of occurrences of P in T .
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Algorithm 1. Algorithm for Task 1.
Input: Pattern P of length at most q − k + 1.
Output: All pairs of sampled q-gram w and offset d s.t. w[d..d + |P | − 1] = P .

1 foreach v ∈ Q(P, 0) do
2 traverse TG(v, k − 1), and when we find a sampled q-gram w at depth d

output the pair w and d;

3 if indegree of v′ = T [n − q..n − 1] is 0 then
4 foreach occurrence d′ of P in v′ with 0 < d′ < k do
5 traverse TG(v, k − 1 − d′), and when we find a sampled q-gram w at

depth d′′ output the pair w and d′ + d′′;

Proof. Firstly we show the correctness. Take any pair of sampled q-gram w and
offset d s.t. w[d..d+|P |−1] = P . It follows from the definition of G = (V,E) that
for any (w′, w) ∈ E if p > 0 is an occurrence of P in w, p − 1 is an occurrence of
P in w′. Then, when the indegree of any w ∈ Q is 1, by traversing reversely the
edges of G from w with d steps we must find v ∈ Q s.t. TG(v, k − 1) contains a
node labeled with w at depth d, and hence, it must be output at Line 2. When
the indegree of v′ = T [n−q..n−1] is 0, the reverse traversal may stop at v′ with
0 ≤ d′′ < d steps. In this case, since d′ = d − d′′ is an occurrence of P in v′, it
must be output at Line 5. Therefore, all pairs of w and offset d are enumerated.
Also, it is easy to see that there are no duplicates.

Let us analyze the time complexity. As in Subsect. 4.1 Line 1 takes a total of
O(occ + logσ n) time. Also Line 4 takes O(q) time. What remains is the cost for
Lines 2 and 5. Observe that, during the whole traversal in Lines 2 and 5, we visit
only the nodes that contains P with offset 0 ≤ d < k, namely, the set of nodes
we visit is

⋃k−1
d=0 Q(P, d). Also, we never visit a node several times with the same

offset due to the definition of a q-gram transition graph. Hence the total cost
for the traversal is bounded by O(

∑k−1
d=0 |Q(P, d)|). Since |Q(P, d)| ≤ occ for any

integer d, O(
∑k−1

d=0 |Q(P, d)|) = O(k × occ). Also, we use O(k) words of working
space for traversing TG(v, k − 1) because its depth is at most k − 1. 
�
Theorem 1. Using data structures (A) and (B), for a given pattern P of length
at most q − k + 1, all occurrences of P in T can be found in O(k × occ + logσ n)
time.

Proof. By Lemma 7, Q(P, d) for all 0 ≤ d < k can be computed in a total
of O(k × occ + logσ n) time. Moreover, all sampled positions of a sampled
q-gram including P can be computed in O(occ) time, and all occurrences of
P beginning in range [plast + k, n − 1] in O(q) = O(logσ n) time. Hence we can
find all occurrences of P in T in O(k × occ + logσ n) time. 
�

Unlike suffix arrays, in this algorithm, we can find all occurrences of P in
T without T except for T [n − q..n − 1], and hence, we do not have to hold
T [0..n − q − 1]. If needed, we can retrieve whole T by data structure (B) and
T [n− q..n− 1] in O(n) time since T [0..n− q − 1] is covered by sampled q-grams.
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4.4 Building Data Structures Online

We show that data structures (A) and (B) can be built in an online manner.
Let wi = T [i..i + q − 1] (0 ≤ i ≤ n − q). First, we initialize Q = ∅, E = ∅ and
all elements of efirst, enext, lfirst, lnext to −1. For each 0 ≤ i ≤ n − q, we update
data structures (A1), (A2) and (B) as follows: (A1) Add wi to Q by calling
insert(〈wi〉). (A2) If i > 0 and indegree of wi−1 is 0, then add edge (wi, wi−1) to
E, i.e., let enext[〈wi−1〉] = efirst[〈wi〉] and efirst[〈wi〉] = T [i−1]. Note that indegree
of wi−1 is 0 iff wi−1 first appears at i−1, and we can know it when adding wi−1

to Q at position i−1. (B) If i is divisible by k, then add a new sampled position
of sampled q-gram wi, i.e., let lnext[i/k] = lfirst[〈wi〉] and lfirst[〈wi〉] = i/k.

Each q-gram is represented by its integer encoding. Since 〈wi〉 =
(〈wi−1〉 mod σq−1)σ+T [i+q−1], we can calculate 〈wi〉 from 〈wi−1〉 and T [i+q−1]
in O(1) time if i > 0.

Theorem 2. Data structures (A) and (B) for a string T of length n can be built
in O(n) time in an online manner.

Proof. It is easy to see that for all 0 ≤ i ≤ n − q, 〈wi〉 can be computed in O(n)
time in total. Updating data structures (A2) and (B) takes O(n) time. It follows
from Lemma 3 that data structure (A1) can be updated in a total of O(n) time.
Hence data structures (A) and (B) can built in O(n) time. 
�
Theorem 3. Data structures (A) and (B) for a string T of length n require a
total of (n/k) log(n/k) + n log σ + o(n) bits of space.

Theorem 3 immediately follows from Lemmas 4, 5 and 6. When k = Θ(logσ n),
our index occupies O(n log σ) bits, and is thus compact.

5 Computational Experiments

We implemented our algorithm in the C++ language (available at https://
github.com/ymatsuoka663/semidynamic-compact-index). For simplicity, we
used a complete b-ary tree (Lemma 1) with b = 64 as data structure (A1), rather
than the vEBb tree. We compared our algorithm with Suffix Array [9] imple-
mented by Yuta Mori (http://code.google.com/p/libdivsufsort/), implementa-
tions of Succinct Suffix Array [8], FM-index [4] version 2, and LZ-index [10]
available at the Pizza & Chili corpus web site (http://pizzachili.dcc.uchile.
cl/), Dynamic FM-index [13] (http://dfmi.sourceforge.net/), Compressed q-gram
index 1 (Rice, Re-Pair using blocks of 8KB in [1]) and Compressed q-gram index
2 (Rice, Plain using blocks of 8KB in [1]).

All computational experiments were conducted on a MacPro (Early 2008).
For the text, we used the first n characters of DNA data taken from the Pizza
& Chili corpus but removing all characters other than A,C,G,T so σ = 4. For
patterns, we randomly chose 100 substrings of length 6 from the text.

Table 1 shows the construction times, average time for searching 100 patterns,
and the memory usage. Our indices can be built at least 7 times faster than other

https://github.com/ymatsuoka663/semidynamic-compact-index
https://github.com/ymatsuoka663/semidynamic-compact-index
http://code.google.com/p/libdivsufsort/
http://pizzachili.dcc.uchile.cl/
http://pizzachili.dcc.uchile.cl/
http://dfmi.sourceforge.net/
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Table 1. Result of computational experiments.

indices when n = 200×220. Our indices can find pattern occurrences 3.5–7 times
faster than LZ-index and at least 30 times faster than Compressed q-gram index
2. Our indices use less memory than Succinct Suffix Array when q = 11, k = 6
and n = 200 × 220. On the other hand, when q = 11, k = 6 and n = 12.5 × 220,
our indices use more memory than other indices. This is partly because we have
chosen parameter q suitable for n = 200 × 220 in this experiment, which is not
suitable for a smaller n. As n grows, we can choose larger q in which our indices
stay compact and search longer patterns. In other words, if we fix the maximum
length of patterns to be searched for, as n grows our indices could be more
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and more space efficient by choosing a larger q and larger k properly since the
(n/k) log(n/k) bits of space for data structure (B) is a major factor dominating
the memory usage. Thus our algorithm is effective when the text is long.
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Abstract. We study the problem of indexing a text T [1 . . . n] such that
whenever a pattern P [1 . . . p] and an interval [α, β] comes as a query,
we can report all pairs (i, j) of consecutive occurrences of P in T with
α ≤ j − i ≤ β. We present an O(n log n) space data structure with
optimal O(p + k) query time, where k is the output size.

1 Introduction

Detecting consecutive occurrences of a pattern in a text is a problem that arises,
in various forms, in computational biology applications [1–3]. For example, a
tandem repeat is an occurrence of the form PP of a given string P [1 . . . p] inside
a sequence T [1 . . . n]. Due to mutations and experimental errors, one may relax
the condition that the occurrences appear exactly one after the other, and allow
for a small range of distances between the two occurrences of P [1, Sect. 9.2].
Other variants of the problem are to find P closely followed by its reverse com-
plemented version in tRNA sequences, which is useful to identify the positions
where the tRNA molecule folds into a cloverleaf structure defined by stems (the
two occurrences of P ) and loops (the string between them) [1, Sect. 11.9, Exam-
ple 42]; this process is also called RNA interference [2, Sect. 6.4].

Several related combinatorial problems stem from these motivations. For
example, Iliopoulos and Rahman [4] consider the problem of finding all the
k occurrences of two patterns P1 and P2 (of total length p) separated by a
fixed distance α known at indexing time. They gave a data structure using
O(n logε n) space and query time O(p + log log n + k), for any constant ε > 0.
Bille and Gørtz [5] retained the same space and improved the time to the optimal
O(p+k).1 The problem becomes, however, much messier when we allow the dis-
tance between P1 and P2 to be in a range [α, β], even if these are still known at
indexing time. Bille et al. [6] obtained various tradeoffs, for example O(n) space
and O(p + σβ log log n + k) time, where σ is the alphabet size; O(n log n logβ n)

G. Navarro—Funded with Basal Funds FB0001, Conicyt, Chile.
1 This is optimal in the RAM model if we assume a general alphabet of size O(n).
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space and O(p + (1 + ε)β log log n + k) time; and O(σβ2
n logβ log n) space and

O((p + β)(β − α) + k) time.
These problems, however, are more general than necessary for the applica-

tions we described, where P1 = P2 = P (or P2 is the reverse complement of
P1, a case that can be handled in the solution we will give). For this case, some
related problems have been studied. Keller et al. [7] considered the problem of,
given an occurrence of P in T , find the next one to the right. They obtained
an index using O(n logε n) space and O(log log n) time. Another related prob-
lem they studied was to find a maximal set of nonoverlapping occurrences of
P . They obtained the same space and O(log log n + k) time. Muthukrishnan [8]
considered a document-based version of the problem: T is divided into docu-
ments, and we want to report all the k documents where two occurrences of P
appear at distance at most β. For β fixed at indexing time, he obtained O(n)
space and optimal O(p + k) time; the space raises to O(n log n) when β is given
as a part of the query. Finally, Brodal et al. [9] considered the related pattern
mining problem: find all the z maximal patterns P that appear at least twice
in T , separated by a distance in [α, β]. They obtain O(n log n + z) time, within
O(n) space.

In this paper we focus on what is perhaps the cleanest variant of the problem,
which (somewhat surprisingly) has not been considered before: find the positions
in T where two occurrences of P appear, separated by a distance in the range
[α, β]. It is formally stated as follows.

Problem 1. Index a text T [1 . . . n], such that whenever a pattern P [1 . . . p] and
a range [α, β] comes as a query, we can report all pairs (i, j) of consecutive
occurrences of P in T with α ≤ j − i ≤ β.

We obtain the following result.

Theorem 1. There exists an O(n log n) space data structure with query time
O(p + k) for Problem 1, where k is the output size.

Our solution makes use of heavy-path decompositions on suffix trees and geo-
metric data structures. In the Conclusions we comment on the implications of
this result on related problems.

2 Notation and Preliminaries

The ith leftmost character of T is denoted by T [i], where 1 ≤ i ≤ n. The sub-
string starting at location i and ending at location j is denoted by T [i . . . j].
A suffix is a substring that ends at location n and a prefix is a string that starts
at location 1.

The suffix tree (ST) of T is a compact representation of all suffixes of T ◦ $ ,
except $, in the form of a compact trie [10]. Here $ a special symbol that does not
appear anywhere in T and T◦ $ is the concatenation of T and $. The number
of leaves in ST is exactly n. The degree of an internal node is at least two.
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We use �i to represent the ith leftmost leaf in ST. The edges are labeled with
characters and the concatenation of edge labels on the path from root to a node
u is denoted by path(u). Then, path(�i) corresponds to the ith lexicographically
smallest suffix of T , and its starting position is denoted by SA[i]. The locus of a
pattern P in T , denoted by locus(P ), is the highest node u in ST, such that P is
a prefix of path(u). The set of occurrences of P in T is given by SA[i] over all i’s,
where �i is in the subtree of locus(P ). The space occupied by ST is O(n) words
and the time for finding the locus of an input pattern P is O(|P |). Additionally,
for two nodes u and v, we shall use lca(u, v) to denote their lowest common
ancestor.

We now describe the concept of heavy path and heavy path decomposition. The
heavy path of ST is the path starting from the root, where each node u on the
path is the child with the largest subtree size (ties broken arbitrary). The heavy
path decomposition is the operation where we decompose each off-path subtree
of the heavy path recursively. As a result, any path(·) in ST will be partitioned
into disjoint heavy paths. Sleator and Tarjan [11] proved the following property;
we will use log n to denote logarithm in base 2.

Lemma 1. The number of heavy paths intersected by any root to leaf path is at
most log n, where n is the number of leaves in the tree.

Each node belongs to exactly one heavy path and each heavy path contains
exactly one leaf node. The heavy path containing �i will be called the i-th heavy
path (and identified simply by the number i). For an internal node u, let hp(u)
be the unique heavy path that contains u.

Definition 1. The set Hi is defined as the set of all leaf identifiers j, where
the path from root to �j intersects with the i-th heavy path. That is, Hi = {j |
hp(lca(�j , �i)) = i}.
Lemma 2.

∑n
i=i |Hi| ≤ n log n.

Proof. For any particular j, path from root to �j can intersect at most log n
heavy paths, by Lemma 1. Therefore, j cannot be a part of more than log n sets.

�

3 The Data Structure

The key idea is to reduce our pattern matching problem to an equivalent geo-
metric problem. Specifically, to the orthogonal segment intersection problem.

Definition 2 (Orthogonal Segment Intersection). A horizontal segment
(xi, x

′
i, yi) is a line connecting the 2D points (xi, yi) and (x′

i, yi). A segment
intersection problem asks to pre-process a given set S of horizontal segments
into a data structure, such that whenever a vertical segment (x′′, y′, y′′) comes
as a query, we can efficiently report all the horizontal segments in S that
intersect with the query segment. Specifically, we can output the following set:
{(xi, x

′
i, yi) ∈ S | xi ≤ x′′ ≤ x′

i, y
′ ≤ yi ≤ y′′}.
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There exists an O(|S|) space and O(log |S|+ k) time solution for segment inter-
section problem using a persistent binary tree, where k is the output size [12].
We now proceed to describe the reduction.

3.1 Reduction

One of the main components of our data structure is the suffix tree ST of T , and
is used only for finding the locus of P . Based on the heavy path on which the
locus node is, we categorize the queries in different types.

Definition 3. A query with input pattern P is type-h if h = hp(locus(P )).

Let Gh be the data structure handling type-h queries, where Gh is a structure
over a set Ih of horizontal segments, that can efficiently answer segment inter-
section queries. The set Ih is generated from Hh using the following steps for
each j ∈ Hh:

1. Let Pj = path(lca(�h, �j)).
2. Let suc(j) be the first occurrence of Pj after the position SA[j] in T and let

pre(j) be the last occurrence of Pj before the position SA[j] in T . Clearly,
neither in [(pre(j) + 1) . . . (SA[j] − 1)], nor in [(SA[j] + 1) . . . (suc(j) − 1)], Pj

has an occurrence.
3. Now, obtain two segments w.r.t. j as follows:

(a) Let P ′
j be the shortest prefix of Pj without any occurrence in [(pre(j) +

1) . . . (SA[j] − 1)]. Then, create segment (xi, x
′
i, yi) = (|P ′

j |, |Pj |,SA[j] −
pre(j)) and associate the pair (pre(j),SA[j]) of consecutive occurrences
of Pj as satellite information.

(b) Similarly, let P ′′
j be the shortest prefix of Pj without any occurrence

in [(SA[j] + 1) . . . (suc(j) − 1)]. Then, create segment (xi, x
′
i, yi) =

(|P ′′
j |, |Pj |, suc(j) − SA[j]) and associate it to the pair (SA[j], suc(j)) of

consecutive occurrences of Pj as satellite information.

Clearly, |Ih| = 2|Hh|. The central idea of our solution is summarized below.
Figure 1 illustrates the idea.

Lemma 3. Let P and [α, β] be the input parameters of a query in problem 1 and
let h = hp(locus(P )). Then, the set of satellite information associated with all
those horizontal segments in Ih, which are stabbed by a vertical segment (p, α, β)
(i.e., the segment connecting the points (p, α) and (p, β)) forms the output to
Problem 1.

Proof. First we prove that any satellite information (a, b) reported by the geo-
metric query on Gh is an answer to the original query. Let [s, e] be the x-interval
corresponding to the reported satellite information (a, b). Then, s ≤ p ≤ e and
α ≤ b − a ≤ β. Here the condition e ≥ p ensures that both �SA−1[a] and �SA−1[b]

are leaves in the subtree of locus(P ). Therefore a and b are occurrences of P .
The condition s ≤ p ensures that there exists no occurrence of P in any location
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Fig. 1. Illustration of the main concepts of our data structure.

which is after a, but before b (i.e., a and b are consecutive occurrences of P ).
Finally the y-coordinate ensures that α ≤ b − a ≤ β.

Now we prove that for every output (a, b) of Problem 1, there exists a segment
(s, e, b− a) in Ih with s ≤ p ≤ e and satellite information (a, b). Without loss of
generality, let lca(�h, �SA−1[a]) be either lca(�h, �SA−1[b]) or an ancestor of it. Then,
let j = SA−1[a]. Since P occurs at position a, the leaf j descends from the sub-
tree of locus(P ), and since this node belongs to the heavy path h, we have that
lca(�h, �j) descends from locus(P ), thus e ≥ p. Since there is no occurrence of
P between a and b, it holds s ≤ p. Then, a segment of the form (s, e, b − a)
will indeed be created while processing j ∈ Hh during the construction
of Ih. �

In the light of Lemma 3, we have the following result.

Lemma 4. There exists an O(n log n) space and O(p + log n + k) query time
solution for Problem 1, where k is the output size.

Proof. The space of ST is O(n) and the space required for maintaining the
segment intersection structure over Ih, for all values of h, is O(

∑
h |Ih|) =

O(
∑

h |Hh|) = O(n log n). Thus, the total space is O(n log n) words. To answer
a query, we first find the locus of P in ST in O(p) time, and then query Gh,
where h = hp(locus(P )), in O(log n + k) time. Therefore, the query time is
O(p + log n + k). �

The query time in Lemma 4 is optimal if p ≥ log n. To handle queries where p
is shorter than log n, we use a different approach.

3.2 Achieving Optimal Query Time

We present an optimal query time data structure for p < log n. Essentially, we
associate a data structure D(u) with each node u in ST, whose string depth
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(i.e., |path(u)|) is at most log n. Observe that the number of occurrences of
path(u) in T is equal to size(u), where size(u) is the number of leaves in the
subtree of u. Therefore, the number of consecutive occurrences (i, j) of path(u)
is size(u) − 1. Each such pair (i, j) can be mapped to a point (j − i) in one
dimension along with the pair (i, j) as an associated satellite data. We then
create a one-dimensional range reporting data structure over these (size(u) − 1)
points and call it D(u). Whenever the locus of P is u, the answer can be obtained
by issuing a one dimensional range reporting query on D(u) with [α, β] as the
input range. The satellite data associated with each reported corresponds to an
answer to Problem 1.

We use the data structure summarized in Lemma 5, by which queries can be
answered in optimal time and the space of D(u) can be bounded by O(size(u))
words.

Lemma 5 ([13]). One dimensional range reporting queries over a set of m
points in {0, 1, 2, . . . , 2w} can be answered in optimal time using an O(m) space
data structure, where w is the word size.

Note that the sum of all the size(u) terms for all the nodes u with the same
string depth is n, and added over all the nodes with string depth up to log n is
n log n. Thus the space for the D(·) structures of all the nodes with string depth
up to log n is O(n log n) words. This completes the proof of Theorem 1.

4 Conclusions

We have addressed what seems to be the cleanest variant of the problem related
to finding close occurrences of a pattern P [1 . . . p] in a text T [1 . . . n]: find pairs
of occurrences that are within a distance range [α, β] (given at query time). Our
data structure uses O(n log n) space and optimal O(p + k) query time.

It is not hard to extend our result to the case where we look for the occur-
rence of P followed (or preceded) by some function of P , such as its reverse
complemented string (as motivated in the Introduction). We can build the geo-
metric structure at each suffix tree node v considering the function of the string
represented by v, instead of the string itself. However, extending our solution to
the general case of two patterns [6] seems not possible.

Our result opens several interesting questions. A first one is whether this
problem is strictly harder than the restricted variant where α = β. For this case,
the same optimal query time has been obtained within less space, O(n logε n) [5],
even when generalizing the problem to two patterns P1 and P2. The significantly
messier results obtained for the general case α ≤ β [6] suggest that this general
problem is indeed harder. Still, it is not clear whether our optimal-time result
can also be obtained within o(n log n) space.

A second interesting question is whether our result can be used for pattern
mining, that is, finding those P that appear twice in T separated by a distance
in [α, β]. A direct application of our result, which builds our structure and then
traverses the suffix tree, requires Ω(n log n + z) time, which is not better than
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the current result [9]. Yet, there could be harder pattern mining problems for
which our result is a useful tool.

Yet a third interesting question is how our results can be extended to the docu-
ment retrieval scenario, that is, listing the documents where P appears twice and
separated by a distance in [α, β]. The current result [8] is similar to ours in space
and time, but it is restricted to the case α = 0. It is not clear if is the problem is
harder, and by how much, for an arbitrary value of α.
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Abstract. We show that there are asymptotically γn LMS-factors in a
random word of length n, for some explicit γ that depends on the model
of randomness under consideration. Our results hold for uniform distri-
butions, memoryless sources and Markovian sources. From this analysis,
we give new insight on the typical behavior of the IS-algorithm [9], which
is one of the most efficient algorithms available for computing the suffix
array.

1 Introduction

The suffix array of a word, is a permutation of its suffixes that orders them for
the lexicographic order. Since their introduction by Manber and Meyers [7,8]
in 1990, suffix arrays have been intensively studied in the literature. Nowadays,
they are a fundamental, space efficient, alternative to suffix trees. They are
used in many applications such as pattern matching, plagiarism detection, data
compression, etc.

The first linear suffix array algorithms that do not use the suffix tree con-
struction were proposed by Ko and Aluru [5], Kim et al. [4] and Kärkkäinen
and Sanders [3] in 2003. Since then, a lot of variations or heuristics have been
developed [12], motivated by the various practical uses of this fundamental data
structure.

A few years ago, Ge Nong, Sen Zhang and Wai Hong Chan proposed such a
linear suffix array algorithm [9], which is particularly efficient in practice. This
algorithm, called the IS-algorithm, is a recursive algorithm, where the suffix array
of a word u is deduced from the suffix array of a shorter word v. This shorter
word is built using the LMS-factors of u: an LMS-position i in u is an integer
such that the suffix of u that starts at position i is smaller, for the lexicographic
order, than both the one that starts at position i − 1 and the one that starts
at position i + 1; LMS-factors are the factors of u delimited by two consecutive
LMS-positions. Once the suffix array of v is recursively calculated, the suffix
array of u can be computed in linear time.

In this article we are interested in the typical reduction ratio |v|
|u| obtained

when making this recursive call. We propose a probabilistic analysis of the num-
ber of LMS-factors in a random word of length n, for classical models of random
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 374–384, 2015.
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words: uniform distributions, memoryless sources and Markovian sources. We
prove that the reduction ratio is concentrated around a constant γ, which can
be explicitly computed from the parameters that describe the source.

In this extended abstract, we chose to focus on memoryless sources. After
recalling the basics on words and suffix arrays in Sect. 2, we explain in Sect. 3
the steps that lead to our main statement (Theorem 2). In Sect. 4, we briefly
explain how this result can be generalized to Markovian sources, and give the
explicit formula for the typical reduction ratio under this model (Theorem 3). We
conclude this article with some experiments, that are just intended to illustrate
our theoretical results, and with a short discussion in Sect. 5.

2 Preliminaries

2.1 Definitions and Notations

Let A be a non-empty totally ordered finite alphabet. For given n ≥ 0, we denote
by An the set of words of length n on A. Let A∗ be the set of all words on A.

If u ∈ An is a word of length n ≥ 1, let u0 be its first letter, let u1 be its second
letter, . . . and let un−1 be its last letter. The reverse of a word u = u0 · · · un−1 is
the word u = un−1 · · · u0. For given i and j such that 0 ≤ i ≤ j ≤ n−1, let u[i, j]
be the factor of u that starts at position i and ends at position j: it is the unique
word w of length j − i + 1 such that there exists a word v of length i such that
vw is a prefix of u. For given i such that 0 ≤ i ≤ n−1, let suff(u, i) = u[i, n−1]
be the suffix of u that starts at position i.

Recall that the suffix array of a word u of length n ≥ 1 is the unique permu-
tation σ of {0, . . . , n − 1} such that, for the lexicographic order, we have

suff(u, σ(0)) < suff(u, σ(1)) < . . . < suff(u, σ(n − 1)).

See [12] for a more detailed account on suffix arrays and their applications.

2.2 LMS-factors of a Word

The first step of the IS-algorithm [9] consists in marking every position in v =
u$, where $/∈ A is an added letter that is smaller than every letter of A. The
mark of each position in v is either the letter S or the letter L. A position
i ∈ {0, . . . , n− 1} is marked by an S or by an L when suff(v, i) < suff(v, i+1)
or suff(v, i) > suff(v, i + 1), respectively. We also say that the position is of
type S or L. By convention, the last position n of v always is of type S.

A leftmost type S position in v = u$ (LMS-position for short) is a position
i ∈ {1, . . . , n} such that i is of type S and i − 1 is of type L. Note that with this
definition, the last position of v is always an LMS-position, for a non-empty u.
An LMS-factor of v is a factor v[i, j] where i < j are both LMS-positions and
such that there is no LMS-position between i and j. By convention, the factor
v[n, n] =$ is also an LMS-factor of v.

The following notations and definitions will be used throughout this article.
They are reformulations of what we just defined.
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Definition 1. Let A be a finite totally ordered non-empty alphabet. The alphabet
LS(A) is defined by LS(A) = (A×{L, S})∪{($, S)}. For simplification, elements
of LS(A) are written αX instead of (α,X). A letter αS of LS(A) is said to be
of type S, and a letter αL is said to be of type L.

Definition 2. Let u ∈ An for some n ≥ 1. The LS-extension Ext(u) of u, is
the word v ∈ LS(A)n+1 that ends with the letter $S and such that for every
i ∈ {0, . . . , n − 1}, vi = uiXi with Xi = S if and only if ui < ui+1 or (ui = ui+1

and Xi+1 = S), with the convention that un =$.

Observe that from its definition, Ext(u) is exactly the word u with an added
$ at its end, and whose positions have been marked. Thus, an LMS-position in
v = Ext(u) is a position i ≥ 1 such that vi = αS and vi−1 = βL, for some
α, β ∈ A ∪ {$}. We extend this definition to all words of LS(A)∗.

Definition 3. For any u ∈ LS(A)n, an LMS-position of u is a position i ∈
{1, . . . , n − 1} such that ui is of type S and ui−1 is of type L.

Example. Consider the word u = bacbcaab on A = {a, b, c}. We have:

letter b a c b c a a b $
type L S L S L S S L S

Ext(u) = bL aS cL bS cLaS aS bL $S,

where the LMS-positions have been underlined.

2.3 Brief Overview of the IS-algorithm

The IS-algorithm [9] first computes the type of each position. This can be done
in linear time, by scanning the word once from right to left. From this, the
LMS-positions can be directly computed.

The LMS-factors are then numbered in increasing order using a radix sort
(the types are kept and used for the lexicographic comparisons of these factors).
This yields an array of numbers, the numbers associated with the LMS-factors,
which is viewed as a word and whose suffix array σ′ is recursively calculated.

The key observation is that once σ′ is known, the suffixes of type L can be
sorted by scanning the word once from left to right, then the suffixes of type
S can be sorted by a scan from right to left. Therefore, the suffix array can be
computed in linear time, once σ′ is given.

For the running time analysis, if T (n) is the worst case cost of the algorithm
applied to a word of length n, then we have the inequality T (n) ≤ T (m)+Θ(n),
where m denote the number of LMS-factors. Since we always have m ≤ n

2 ,
the running time of the IS-algorithm is Θ(n). The quotient m/n is called the
reduction ratio and it is the main focus of this article.

2.4 Distributions on Words

The uniform distribution on a finite set E is the probability p defined for all
e ∈ E by p(e) = 1

|E| . By a slight abuse of notation, we will speak of the uniform
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distribution on A∗ to denote the sequence (pn)n≥0 of uniform distributions on
An. For instance, if A = {a, b, c}, then each element of An has probability 3−n

under this distribution.
An element u ∈ An taken uniformly at random can also be seen as built

letter by letter, from left to right or from right to left, by choosing each letter
uniformly and independently in A. This is a suitable way to consider random
words, which can easily be generalized to more interesting distributions. Indeed,
if p is a probability on A, one can extend p to An by generating each letter inde-
pendently following the probability p. This is called a memoryless distribution of
probability p, and the probability of an element u = u0 · · · un−1 ∈ An is defined
by Pp(u) = p(u0)p(u1) · · · p(un−1).

A further classical generalization consists in allowing some (limited) depen-
dency from the past when generating the word. This leads to the notion of
Markov chain, which we describe now. Let Q be a non-empty finite set, called
the set of states. A sequence of Q-valued random variables (Xn)n≥0 is a homo-
geneous Markov chain (or just Markov chain for short in this article) when for
every n, every α, β ∈ Q and every q0, . . . qn−1 ∈ Q,

P(Xn+1 = α | Xn = β,Xn−1 = qn−1, . . . , X0 = q0) = P(X1 = α | X0 = β).

In the sequel, we will use the classical representation of a Markov chain by
its initial probability (row) vector π0 ∈ [0, 1]Q and its transition matrix M ∈
[0, 1]Q×Q, defined for every i, j ∈ Q by M(i, j) = P(X1 = j | X0 = i). In this
settings, the probability of a word u = u0 · · · un−1 on A = Q is

PM,π0(u) = π0(u0)M(u0, u1)M(u1, u2) · · · M(un−2, un−1).

Such a Markov chain for generating words of A∗ is also called a first order Markov
chain, since the probability of a new letter only depends on the last letter. One
can easily use Markov chains to allow larger dependencies from the past. For
instance, a second order Markov chain can be defined by setting Q = A × A.
The probability of a word u = u0 · · · un−1, with n ≥ 2, is now defined, for an
initial probability vector π0 ∈ [0, 1]Q, by

PM,π0(u) = π0(u0u1)M(u0u1, u1u2)M(u1u2, u2u3) · · · M(un−3un−2, un−2un−1).

Higher order Markov chain are defined similarly. More general sources, such as
dynamical sources [13], are also considered in the literature, but they are beyond
the scope of this article.

2.5 About the Probabilistic Analysis of the Original Article

In their article [9], the authors proposed a brief analysis of the expected reduction
ratio. This analysis is done under the simplistic assumption that the marks of
the positions are independent and of type S or L with probability 1

2 each.
We first observe that if A = {a, b} consists of exactly two letters and if we

consider the uniform distribution on An, then, up to the very end of the word,
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every a is of type S and every b is of type L. Hence, we are mostly in the model
proposed in [9]. Unfortunately, if there are three or more letters, then uniform
distributions, memoryless distributions and Markovian distributions failed to
produce types that are i.i.d. in {L, S}. It is also the case for a binary alphabet,
when the distribution under consideration is not the uniform distribution.

Their result, Theorem 3.15 page 1477, also contains a miscalculation. The
average reduction ratio when the types are i.i.d. S and L with probability 1

2
tends to 1

4 and not to 1
3 as stated. This can easily be obtained the following way:

in this model, a position i ≥ 1 is such that i is of type S and i − 1 is of type L
with probability 1

4 . The result follows by linearity of the expectation.1

In the sequel we give formulas for the reduction ratio for alphabets of any
size, and for uniform, memoryless and Markovian distributions.

3 Probabilistic Analysis for Memoryless Sources

If instead of generating a word letter by letter from left to right, we choose to
perform the generation from right to left, then it is easy to compute, on the
fly, the type of each position. This is a direct consequence of Definition 1. In
probabilistic terms, we just defined a Markov chain, built as an extension of our
random source. This is the idea developed in this section, and we will use it to
compute the typical reduction ratio of the IS-algorithm.

3.1 A Markov Chain for the LS-extension

Let A be a totally ordered alphabet, with at least two letters, and let p be a
probability on A such that for every a ∈ A, p(a) > 0. In this section we consider
the memoryless distributions on A∗ of probability p, as defined in Sect. 2.4. To
simplify the writing, we will use pa instead of p(a) in the sequel.

Recall that if P is a property, then [[P ]] is equal to 1 if P is true and to 0 if it
is false. Let π0 be the row vector of [0, 1]LS(A) defined by π0(αX) = [[αX =$ S]].
Let Mp be the matrix of [0, 1]LS(A)×LS(A) defined for every α, β ∈ A by

Mp(αS, $S) = Mp(αL, $S) = Mp($S, βS) = 0; Mp($S, βL) = pβ ;
Mp(αS, βS) = pβ · [[β ≤ α]]; Mp(αS, βL) = pβ · [[β > α]];
Mp(αL, βS) = pβ · [[β < α]]; Mp(αL, βL) = pβ · [[β ≥ α]].

We first establish that the reverse of the LS-extension of a random word gener-
ated by a memoryless source is Markov (Mp, π0) (Fig. 1):

Proposition 1. Let A be a totally ordered alphabet, with at least two letters,
and let p be a probability on A such that for every a ∈ A, pa > 0. If u is a word
on LS(A) such that PMp,π0(u) �= 0, then the reverse of u is the LS-extension of
a word v of A∗ and PMp,π0(u) = Pp(v).
1 In their proof, they compute the mean length of an LMS-factor. The types of such

a factor form a word of SS∗LL∗S. For the considered model, the mean length of an
element of S∗ (and of L∗) is one. Hence, the average length of an LMS-factor is 5
(and not the announced 4).
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In other words, generating v using a memoryless source of probability p is the
same as generating the reverse of LS(v) using the Markov chain (Mp, π0) (Fig. 1).

Proposition 1 is the key observation of this article. It described a purely
probabilistic way to work on LS-extensions of random words: the deterministic
algorithm used to mark each position with its type is encoded into the Markov
chain (Mp, π0). We now aim at using the classical results on Markov chains to
obtain some information on the number of LMS-factors.

aS dL

bL bS

cL cS

$SaL

aS bS bL cS cL dL

aS pa 0 pb 0 pc pd
bS pa pb 0 0 pc pd
bL pa 0 pb 0 pc pd
cS pa pb 0 pc 0 pd
cL pa pb 0 0 pc pd
dL pa pb 0 pc 0 pd

The matrix Mp

Fig. 1. On the left, the underlying graph of the Markov chain for A = {a, b, c, d}. The
state dS is not depicted, as it is not reachable. Every state but $S also has a loop on
itself, which is not depicted for readability. The thin states are the transient states,
and the bold states are the recurrent states. For the memoryless source of probability
p, the probability of each edge αX → βY is pβ . If we start on $S with probability 1,
then this chain generates the marked words from right to left. On the right is presented
the matrix Mp, which is the restriction of Mp to its recurrent part.

3.2 Properties of the Markov Chain

From now on, except for the examples, we fix A = {a1, . . . , ak}, with k ≥ 2, and
we consider the total strict order < on A defined by a1 < a2 . . . < ak.

The underlying graph GM of a Markov chain (M,π0) of set of states Q is
the directed graph whose vertices are the elements of Q and with an edge s → t
whenever M(s, t) > 0. A state q ∈ Q is transient when it is not in a terminal
strongly connected component of GM : if we start in state q, there is a non-zero
probability that we will never return to q. Transient states play a minor role in
our settings as with high probability they are only used during the generation
of the very first letters. A state that is not transient is called recurrent.

Lemma 1. The Markov chain (Mp, π0) has three transient states: $S, a1L and
akS. All other states are in the same terminal strongly connected component of
its underlying graph.

Remark 1. From the definition of Mp and π0, a path of positive probability
in the chain always starts on the state $S, may pass through the state a1L,
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but never reaches the state akS. This property is obvious if one remember that
a word generated by the chain is the reverse of the LS-extension of a word on A.

Recall that a Markov chain is irreducible when its underlying graph is strongly
connected, and that it is aperiodic when the gcd of its cycles is equal to 1.
Most useful theorems are stated for Markov chains that are either irreducible,
or both irreducible and aperiodic. Since the chain (Mp, π0) is not irreducible,
we propose to “approximate” it with an irreducible and aperiodic one. This new
Markov chain produces reversed LS-extensions where some of the types can be
wrong, for a limited number of positions at the beginning. However, we will see
that it does not change significantly the number of LMS-factors, the statistic we
are interested in.

3.3 An Irreducible and Aperiodic Markov Chain

Let LS(A) denote the alphabet LS(A) restricted to the recurrent states of Mp:
LS(A) = LS(A) \ {$S, a1L, akS}. We first formalize the notion of LS-extension
with errors.

Definition 4. Let u be a word of An, with n ≥ 1, and let w = Ext(u) be the
LS-extension of u. The pseudo LS-extension Ext(u) of u is the word v ∈ LS(A)n

defined by vi = a1S if wj = a1L for all j ∈ {i, . . . n − 1}, and vi = wi otherwise.

The pseudo LS-extension of u is therefore obtained from the LS-extension w of
u by first removing the last character $S, and then by changing the (possibly
empty) sequence of a1L’s at the end into a sequence of a1S. For instance, if
u = a3a1a2a1a1a1, then we have Ext(u) = a3La1S a2La1La1La1L $S and
Ext(u) = a3La1S a2La1S a1S a1S.

Lemma 2. Let u ∈ An, with n ≥ 1. If u contains at least two different letters
and ends with the letter a1, then Ext(u) and Ext(u) have the same number of
LMS-positions. Otherwise, there is exactly one more LMS-position in Ext(u).

Let Mp denote the restriction of the matrix Mp to [0, 1]LS(A)×LS(A). This defines
a stochastic matrix, since by Lemma 1, the states of LS(A) form a stable subset.
By construction, Mp is irreducible. It is also aperiodic, as there is a loop on
every vertex of Mp. Let π0 be the probability row vector on LS(A) defined for
every α ∈ A \ {a1} by π(αL) = pα and π(αS) = 0, and by π(a1S) = pa1 . We
now restate Proposition 1 using the Markov chain (Mp, π0).

Proposition 2. Let A be a totally ordered alphabet, with at least two letters,
and let p be a probability on A such that for every a ∈ A, pa > 0. If u is a
non-empty word on LS(A) such that PMp,π0

(u) �= 0, then the reverse of u is the
pseudo LS-extension of a word v of A∗ and PMp,π0

(u) = Pp(v).

Recall that a stationary vector of a Markov chain (M,π0) is a probability row
vector π that satisfies the equation π × M = π. If the chain is irreducible and
aperiodic, a classical theorem [10] states that there exists a unique stationary
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vector. Moreover, after t steps, the probability that we are on a given state q is
π(q) + O(λt), for some λ ∈ (0, 1) and for any choice of π0.

For every a ∈ A, let p<a =
∑

α<a pα et p>a =
∑

α>a pα. The following
theorem gives an explicit expression for the stationary vector of Mp.

Theorem 1. Let A be a totally ordered alphabet, with at least two letters, and let
p be a probability on A such that for every a ∈ A, pa > 0. The unique stationary
vector of Mp is the vector π defined on LS(A) by

π(αS) =
pα p>α

1 − pα
and π(αL) =

pα p<α

1 − pα
.

3.4 Main Statements

Using Theorem 1 and the classical Ergodic Theorem for Markov chains (Theorem
4.16 page 58 of [6]), we get a precise estimation of the number of LMS-factors,
which is also the number of LMS-positions, in a random word for the memoryless
distribution of probability p. It is obtained by analyzing the number of LMS-
positions in Ext(u). Indeed, by Lemma 2, counting the number of LMS-positions
in u is almost the same as counting the number of LMS-positions in Ext(u).

Theorem 2. Let A be a totally ordered alphabet, with at least two letters, and
let p be a probability on A such that for every a ∈ A, pa > 0. Let Fn be the
random variable that counts the number of LMS-factors in a random word of
length n, generated by the memoryless source of probability p. There exists a
sequence (εn)n≥0 that tends to 0 such that:

Pp

(∣
∣
∣
∣
1
n

Fn − γp

∣
∣
∣
∣ > εn

)

−−−−→
n→∞ 0, with γp =

∑

a∈A

pa

1 − pa
p2>a. (1)

Corollary 1. When the input of the IS-algorithm is a random word of length n
generated by the memoryless source of probability p, the expected reduction ratio
tends to γp.

Remark 2. The statement of Theorem 2 is more precise than a result for the
expectation of Fn (as in Corollary 1). For instance, Eq. (1) also implies that the
random variable 1

nFn is concentrated around its mean.

Remark 3. It is not completely obvious from its definition, but one can rewrite γp

as
∑

a∈A
pa

1−pa
p2<a. As a consequence, if p′ is the reverse of p, that is, p′

ai
= pak+1−i

for every 1 ≤ i ≤ k, then γp = γp′ .

We conclude this section by the analysis of some specific cases. First, we simplify
the formula of γp for uniform distributions.

Lemma 3. If p is the uniform probability on A, i.e., pa = 1
k for every a ∈ A,

then γp = 2k−1
6k . In particular, γp → 1

3 as the size of the alphabet tends to infinity.

Observe also that if p is not uniform, then γp may change when one reorders the
probabilities values. For instance, if A = {a, b, c}, we obtain that γp = 13

48 for
(pa, pb, pc) = (14 , 1

4 , 1
2 ) and γp′ = 1

4 for (p′
a, p′

b, p
′
c) = (14 , 1

2 , 1
4 ).

For a binary alphabet A = {a, b}, we have pb = 1 − pa and γp = pa(1 − pa).
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4 Markovian Sources

Let (N, ν0) be a Markov chain on A. We say that it is a complete Markov chain
when for every α, β ∈ A, N(α, β) > 0. A complete Markov chain is always
irreducible and aperiodic. The construction of Sect. 3 can readily be extended
to words that are generated backward, i.e., from right to left, using a complete
Markov chain (N, ν0). Let π0 be the probabilistic vector of [0, 1]LS(A) such that
π0(a1S) = ν0(a1) and for every α �= a1, π0(αL) = ν0(α) and π(αS) = 0. Let
MN be the matrix of [0, 1]LS(A)×LS(A) defined for every α, β ∈ A by2

MN (αS, βS) = N(α, β) · [[β ≤ α]]; MN (αS, βL) = N(α, β) · [[β > α]];
MN (αL, βS) = N(α, β) · [[β < α]]; MN (αL, βL) = N(α, β) · [[β ≥ α]].

Proposition 2 can be generalized to first order complete Markov chains the fol-
lowing way:

Proposition 3. Let A be a totally ordered alphabet, with at least two letters,
and let (N, ν0) be a complete Markov chain on A. If u is a word on LS(A) such
that PMN ,π0(u) �= 0, then the reverse of u is the pseudo LS-extension of a word
v of A∗ and PMN ,π0

(u) = PN,ν0(v).

Though more complicated than in the memoryless case, the stationary vector
of MN can be calculated explicitly. This yields a computable formula for the
typical number of LMS-factors:

Theorem 3. Let A be a totally ordered alphabet, with at least two letters, and
let (N, ν0) be a complete Markov chain on A of stationary vector ν. Let Fn be
the random variable that counts the number of LMS-factors in a random word
of length n generated backward by (N, ν0). There exists a sequence (εn)n≥0 that
tends to 0 such that

PN,ν0

(∣
∣
∣
∣
1
n

Fn − γN

∣
∣
∣
∣ > εn

)

−−−−→
n→∞ 0, with γN =

∑

a∈A

π(aS)
∑

b>a

N(a, b),

where π is the stationary vector of MN , which satisfies

π(αS) =

∑
β>α ν(β)N(β, α)
1 − N(α, α)

and π(αL) =

∑
β<α ν(β)N(β, α)
1 − N(α, α)

.

As a consequence, the expected reduction ratio in the first recursive call of the
IS-algorithm tends to γN , as n tends to infinity.

Remark 4. This can be generalized to Markov chains that are not complete
Markov chains, but by lack of place, we cannot describe how it works in this
extended abstract. The fact that the word is generated backward is usually not
an issue: if the initial distribution is equal to the stationary distribution, then
there exists a Markov chain that generates the words from left to right with the
same probability (see [10]). It is natural to start with the stationary distribution,
as it often coincides with the empirical frequencies of the letters.
2 The formulas below hold when the extended letters are in LS(A) only. For instance,

αL = a1L is not part of the definition, since it is not in LS(A).
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5 Experiments and Conclusions

Though we provide a theoretical analysis of the IS-algorithm for classical distri-
butions on words in this article, we thought it would be interesting to include
some experiments on real data, even if we are not pretending to demonstrate
anything with these few tests. These results are depicted in Fig. 2. It is also not
our purpose to provide a statistical analysis of this information here, but we can-
not help noticing that for the human chromosome 22, a Markov chain of order 1
seems to be an accurate model for analyzing the behavior of the IS-algorithm.3

File |A| size red. ratio uniform memoryless Markov

bible.txt 63 4047392 0.3113 0.3307 0.3230 0.3251

world192.txt 93 2408281 0.2838 0.3315 0.3256 0.2997

Chr 22.fa 4 35033745 0.2717 0.2917 0.2928 0.2715

Fig. 2. In these experiments we compare the real reduction ratio with the theoretical
ratios obtained when approximating the distributions by one of the models proposed in
this article. The first two files are from the Canterbury corpus [11], the last one is the
human chromosome 22 [2]. The real reduction ratio of the first recursive call is indicated
in the column “red. ratio”. The three last columns were obtained after computing a
model (either uniform, memoryless or Markovian) from the file. The different values
are the γ’s given by Lemma 3, Theorems 2 and 3. The Markov chains of the first two
files are not complete, but our results still hold, as Theorem 3 can be generalized to
irreducible and aperiodic chains (see Sect. 5).

The methodology presented in Sect. 4 can be extended to Markov chains
(N, ν) that are only irreducible and aperiodic; the set of recurrent states may
just be strictly included in LS(A). It can also be extended to Markov chains
of higher order, but the formulas become more and more complicated. Lets
consider, say, a Markov chain of order 3 on A = {a, b, c, d}. Observe that in
the recurrent part, a state adb is necessarily of type S since b > d. In fact, we
always know the type of the last letter, except when the state is of the form ααα.
We need two different states for such words, one of type S and one of type L.
Furthermore, aaaL is transient and dddS is not reachable. There are therefore
|A|t + |A| − 2 recurrent states in the Markov chain MN , where t is the order.

A continuation this work would be to analyze the whole behavior of the
algorithm, when the reduction ratios of all the successive recursive calls are taken
into account. This is technically challenging, as the letters of a given recursive
call are the LMS-factors of the word at the previous stage. The precise analysis
of other algorithms that compute suffix arrays is another natural direction for
further investigations.
3 This may be a consequence of the well-known fact that in a vertebrate genome, a C

is very rarely followed by a G. This property is well captured by a Markov chain of
order 1, but invisible to a memoryless model.
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Abstract. In nearest larger value (NLV) problems, we are given an
array A[1..n] of numbers, and need to preprocess A to answer queries
of the following form: given any index i ∈ [1, n], return a “nearest” index
j such that A[j] > A[i]. We consider the variant where the values in
A are distinct, and we wish to return an index j such that A[j] > A[i]
and |j − i| is minimized, the nondirectional NLV (NNLV) problem. We
consider NNLV in the encoding model, where the array A is deleted after
preprocessing, and note that NNLV encoding problem has an unexpect-
edly rich structure: the effective entropy (optimal space usage) of the
problem depends crucially on details in the definition of the problem.
Using a new path-compressed representation of binary trees, that may
have other applications, we encode NNLV in 1.9n+o(n) bits, and answer
queries in O(1) time.

1 Introduction

Nearest Larger Value (NLV) problems have had a long and storied history. Given
an array A[1..n] of values, the objective is to preprocess A to answer queries of
the general form: given an index i, report the index or indices nearest to i that
contain values strictly larger that A[i]. Berkman et al. [3] studied the parallel
pre-processing for this problem and noted a number of applications, such as
parenthesis matching and triangulating monotone polygons. The connection to
string algorithms for both the data structuring and the pre-processing variants
of this problem is since well-established.

Since the definition of “nearest” is a bit ambiguous, we propose replacing it
by one of the following options in order to fully specify the problem:

– Unidirectionally nearest : the solution is the index j ∈ [1, i − 1] such that
A[j] > A[i] and i − j is minimized.

– Bidirectionally nearest : the solution consists of indices j1 ∈ [1, i − 1] and
j2 ∈ [i + 1, n] such that A[jk] > A[i] and |i − jk| is minimized for k ∈ {1, 2}.

– Nondirectionally nearest : the solution is the index j such that A[j] > A[i] and
|i − j| is minimized. As far as we are aware, this formulation has not been
considered before.

Furthermore, the data structuring problem has different characteristics depend-
ing on whether we consider the elements of A to be distinct (Berkman et al.
considered the undirectional variant when all elements in A are distinct).
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 385–395, 2015.
DOI: 10.1007/978-3-319-19929-0 33
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We consider the problem in the encoding model, where once the data struc-
ture to answer queries has been created, the array A is deleted. Since it is not
possible to reconstruct A from NLV queries on A, the effective entropy of NLV
queries [9], the log of the number of distinguishable NLV configurations, is very
low and an NLV encoding of A can be much smaller than A itself. The encod-
ing variant has several applications in space-efficient data structures for string
processing, in situations where the values in A are intrinsically uninteresting:

– The bidirectional NLV when A contains distinct values boils down essentially
to encoding a Cartesian tree, through which route 2n+o(n)-bit and O(1)-time
data structures exist [4,7].

– The unidirectional NLV when A contains non-distinct values can be encoded
in 2n + o(n) bits and queries answered in O(1) time [8,10].

– The bidirectional NLV for the case where elements in A need not be distinct
was first studied by Fischer [6]. His data structure occupies log2(3 + 2

√
2)n +

o(n) ≈ 2.544n + o(n) bits of space, and supports queries in O(1) query time.

All of the above space bounds are tight to within lower-order terms.1

In this paper, we consider the nondirectionally nearest larger value (NNLV)
problem, in the case that all elements in A are distinct. The above results already
hint at the combinatorial complexity of NLV problems. However, the NNLV
problem appears to be even richer, and the space bound appears not only to
depend upon whether A is distinct or not, but also upon the specific tie-breaking
rule to use if there are two equidistant nearest values to the query index i.

For instance, given a location i where there is a tie, we might always select
the larger value to the right of location i to be its nearest larger value. We call
this rule I. We give an illustration in the middle panel of Fig. 1 (on page 4).
Alternative tie breaking rules might be: to select the smallest of the two larger
values (rule II ), or to select the larger of the two larger values (rule III ). Inter-
estingly, it turns out that the tie breaking rule is important for the space bound.
That is, if we count the number of distinguishable configurations of the NNLV
problem for the various tie breaking rules, then we get significantly different
answers. We counted the number of distinguishable configurations, for problem
instances of size n ∈ [1, 12], and got the sequences presented in Table 1.

Table 1. Number of distinguishable configurations of nearest larger value problems
with the three tiebreaking rules discussed.

n 1 2 3 4 5 6 7 8 9 10 11 12

rule I 1 2 5 14 40 116 341 1010 3009 9012 27087 81658

rule II 1 2 5 14 42 126 383 1178 3640 11316 35263 110376

rule III 1 2 5 12 32 88 248 702 1998 5696 16304 46718

1 For the unidirectional NLV the bound is tight even when all values are distinct.
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Unfortunately, none of the above sequences appears in the Online Encyclo-
pedia of Integer Sequences2. Consider the sequence generated by some arbitrary
tie breaking rule. If zi is the i-th term in this sequence, then limn→∞ lg(zn)/n
is the constant factor in the asymptotic space bound required to store all the
answers to the NNLV problem subject to that tiebreaking rule.

Our Contributions. Our main result is the following:

Theorem 1. Let A[1..n] be an array containing distinct numbers. The array A
can be processed to obtain an encoding data structure that occupies 1.9n+o(n) bits
of space, that can answer the query NNLV(A, i) in O(1) time for any i ∈ [1, n].
Ties are resolved using rule I. At no point after preprocessing does the data
structure require access to the array A.

As mentioned before, the Cartesian tree (defined later) occupies 2n + o(n)
bits and can solve NNLV queries. In Sect. 3 we describe a novel path-compressed
representation of a binary tree that uses 2n + O(lg n) bits (but supports no
operations). To get the improved space bound of Theorem1 we prove combina-
torial properties of the NNLV problem relating to long chains in the Cartesian
tree. These properties allow us to compress the Cartesian tree using the rep-
resentation of Sect. 3, losing some information, but still retaining the ability to
answer NNLV queries. The constant factor (1.9) comes from a numeric calcula-
tion bounding the worst case structure of chains in the Cartesian tree for our
compression scheme (Sect. 4). In Sect. 4.1 we show how to support operations on
the “lossy” Cartesian tree, thereby proving Theorem1.

Finally, in Sect. 5, we prove a lower bound, via exhaustive search:

Theorem 2. Any encoding data structure that can answer the query NNLV(A, i)
for any i ∈ [1, n] (breaking ties according to rule I) must occupy at least 1.3173n−
Θ(1) bits, for sufficiently large values of n.

Other Related Work: Asano et al. [1] studied the time complexity of computing
all nearest larger values in an array as well as higher dimensions, and mention
applications to communication protocols. Asano and Kirkpatrick [2] considered
sequential time-space tradeoffs for computing the nearest larger values of all
elements in the array. Finally, Jo et al. [11] and Jayapaul et al. recently studied
the nearest larger value problem in two dimensional arrays.

2 Cartesian Tree Review

Given a binary tree T , let d(v) denote the degree (i.e., number of children) of
node v, and p(v) denote the parent of v. We define the rank r(v) to be the
inorder rank of the node v in the binary tree T . Define the range of a node v to
be the range [e1(v), e2(v)], where e1(v) (resp. e2(v)) is the inorder rank of the
leftmost (resp. rightmost) descendant of v.

2 https://oeis.org/.

https://oeis.org/.
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Fig. 1. Top: an array containing a permutation of {1, . . . , 30}. Middle: The tree struc-
ture of the NNLV problem. Here the parent of a node represents its NNLV, breaking
ties by selecting the element on the right (rule I). Bottom: The Cartesian tree.

Suppose we are given an array A[1..n] which stores an n element permutation
π, i.e., A[i] = π(i). The Cartesian tree of A[1..n] is the n node binary tree T
such that the root v of T has rank r(v) = arg maxi A[i]. If r(v) > 1, then the
left child of v is the Cartesian tree of A[1..r(v) − 1], otherwise it has no left
child. If r(v) < n then the right child of v is the Cartesian tree of A[r(v) + 1..n],
otherwise it has no right child. We give an example of these definitions in Fig. 1.

We require the following technical lemma about Cartesian trees:

Lemma 1. Consider a node v in a Cartesian tree having range [e1(v), e2(v)].
If e1(v) − 1 ≥ 1 then A[e1(v) − 1] > A[r(v)]. Similarly, if e2(v) + 1 ≤ n then
A[e2(v) + 1] > A[r(v)].

3 A Path Compressed Tree Representation

Consider an arbitrary binary tree T with n nodes. All binary trees we discuss
are rooted. We next describe a path compressed encoding of such a tree that
occupies no more than 2n + Θ(lg n) bits.

We identify all maximal chains v1, ..., v�, v�+1 such that:

1. Either v1 is the root of T , or d(p(v1)) = 2;
2. d(vi) = 1 for i ∈ [1, �], and;
3. d(v�+1) ∈ {0, 2}.
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We refer to v�+1 as the terminal of the chain. Iteratively, we remove each
such maximal chain: i.e., the nodes v1, ..., v� are removed from the tree. If v1
was the root, then v�+1 is set to be the new root. Otherwise, v�+1 is set to be
the left (resp. right) child of p(v1) iff v1 was the left (resp. right) child of p(v1).
We call the chain left hanging if p(v1) had v1 as a left child, and right hanging
otherwise. After removing all such maximal chains, the tree T ′ that remains is a
full binary tree and has n′ ≤ n nodes. Suppose that we have removed k nodes,
for some k ∈ [0, n − 1], and so n = n′ + k.

Suppose there are m maximal chains removed during the process just
described. We now describe the representation of the original tree T .

– We store the tree T ′, which is a full binary tree and requires n′ +O(1) bits to
represent.

– We store a bitvector B of length n′. Bit B[i] = 1 iff the node v, corresponding
to the i-th node in an inorder traversal of T ′, is the terminal of a removed
chain. This requires �lg (

n′

m

)� bits.
– Suppose we order the subset of nodes that are terminals by their inorder rank,

and that v is the terminal ordered i-th. We refer to the chain having v as its
terminal as Ci, and its length as ci. We store a bitvector L of length k, which
represents the lengths of each removed chain; i.e., the values c1, ..., cm. Let
pi =

∑i
j=1 cj for i ∈ [1,m]. Then L[pi] = 1 for i ∈ [1,m], and all other entries

of L are 0. As L is a bit sequence of length k with m one bits, it can be stored
using �lg (

k
m

)� bits.
– For each chain Ci = {v1, ..., vci

} having terminal node vci+1, we store a bitvec-
tor Zi of length ci, in which Zi[j] = 0 if vj+1 is the left child of vj , and Zi[j] = 1
otherwise. Let Z be the concatenation of each Zi, i ∈ [1,m] and is of length
k. We store Z naively using k bits.

We call the above data structures, bitvectors B, L, Z and the tree T ′ the path
compressed representation of T . Note that to decode this and recover the tree
T , we require the value of n and n′. These can be stored using an additional
Θ(lg n) bits. By summing the above space costs, we get the following lemma.

Lemma 2. The path compressed representation of T completely describes the
combinatorial structure of T , and can be stored using n′ + lg

(
n′

m

)
+ lg

(
k
m

)
+ k +

Θ(lg n) ≤ 2n′ + 2k + Θ(lg n) = 2n + Θ(lg n) bits.

4 Encoding Nearest Larger Values

In this section we show how to use the path compressed tree representation
to compress Cartesian trees—losing some information in the process—but still
retaining the ability to answer NNLV queries. Our key observation is that chains
in the Cartesian tree can be compressed to save space, as illustrated by the
following lemma:
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Lemma 3. Consider the set of all possible chains with ci deleted nodes in a path
compressed representation of a Cartesian tree, excluding chains having nodes
representing array elements A[1] or A[n]. There are exactly ci+1 combinatorially
distinct chains with respect to answering nearest larger value queries, breaking
ties according to rule I.

Proof. Consider a chain with ci deleted nodes, {v1, ..., vci
}, where vci+1 is the

terminal. Clearly, v1 represents the maximum element in the chain, and either
r(vj) = e1(vj) or r(vj) = e2(vj) for each j ∈ [1, ci]. This follows because since vj

is in a chain it is either the left or right endpoint of the range [e1(vj), e2(vj)]. In
turn, this implies that the range [e1(v1), e2(v1)] has a deleted prefix and deleted
suffix which in total contain the inorder ranks of the ci deleted nodes.

The deleted nodes corresponding to this prefix (resp. suffix) appear contigu-
ously in the array A, and form a decreasing (resp. increasing) run of values in A.
Furthermore, by Lemma 1, and since 1, n 	∈ [e1(v1), e2(v1)] (by the assertion in
the statement of the lemma), we can assert that both A[e1(v1) − 1] > A[e1(v1)]
and A[e2(v1) + 1] > A[e2(v1)]. Thus, for each k such that vk is in the prefix
we have that A[e1(vk) − 1] > A[e1(vk)], and we can return the nearest larger
value of r(vk) = e1(vk) to be e1(vk) − 1. Similarly, for each k such that vk is in
the suffix we have that A[e2(vk) + 1] > A[e2(vk)], and return the nearest larger
value of r(vk) = e2(vk) to be e2(vk) + 1.

This implies that, if we know the value ci, then we additionally need only
know how many nodes are in the prefix in order to determine the answer to a
nearest larger value query for any index represented by a deleted node. There
are at most ci + 1 possible options: {0, ..., ci}. Moreover, for an arbitrary index
i ∈ [1, n] \ [e1(v1), e2(v1)] the answer to a nearest larger value query cannot
be in [e1(v1), e2(v2)], since this range is sandwiched between larger values by
Lemma 1. Finally, consider indices in the range [e1(vci+1), e2(vci+1)]. Using the
fact that A[e1(vci+1) − 1] and A[e2(vci+1) + 1] by are larger than all elements
in A[e1(vci+1), e2(vci+1)] by Lemma 1, we can correctly answer queries for a
position i in the subtree. First, we find the solution j within the subtree, and
then return the nearest position to i of either j, e1(vci+1) − 1, or e2(vci+1) + 1,
breaking ties according to rule I.

Recall that to recover a chain of ci deleted nodes exactly required ci bits in the
path compressed tree representation. The previous lemma allows us to get away
with lg(ci +1) bits: an exponential improvement. Using the above lemma, we get
the following upper bound for the NNLV problem (note that it does not allow
queries to be performed efficiently).

Lemma 4. The solutions to all nearest larger value queries can be encoded using
n′ + lg

(
n′

m

)
+ lg

(
k
m

)
+ m lg( k

m + 1) + Θ(lg n) ≤ 1.9198n + Θ(lg n) bits.

Proof (Sketch). We store the path compressed version of T , the Cartesian tree of
A. However, we replace index Z, by an index Z ′ consisting of �lg ∏m

i=1(ci + 1)�
bits. Z ′ represents, for each deleted chain—including those that contain nodes
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representing A[1] and A[n]—the length of its deleted prefix. We explicitly store
the answers to nearest larger value queries for A[1] and A[n].

The space bound for storing the data structures described is n′ + lg
(
n′

m

)
+

lg
(

k
m

)
+ lg

∏m
i=1(ci +1)+O(lg n) bits. This is bounded by n′ + lg

(
n′

m

)
+ lg

(
k
m

)
+

m lg( k
m + 1) + O(lg n) bits using Jensen’s inequality. Finally, a numerical calcu-

lation reveals that this expression is upper bounded by 1.9198n + Θ(lg n) bits.
Using a slightly more complicated analysis that bounds the space required to

store L in terms of the zeroth-order empirical entropy of the sequence of chain
lengths, we can improve the space bound (slightly) to 1.9n + o(n), resulting in
Theorem 1. We defer details to the full version.

4.1 Supporting Queries

Until now we have only discussed space bounds for encoding NNLV queries, and
have made no effort to actually answer them efficiently. In this section we discuss
how to support NNLV queries in O(1) time.

In the previous section we showed how to encode a Cartesian tree in a lossy
way (losing information about the structure of chains in the tree). Thus, we can
view the encoding algorithm, given an input Cartesian tree T , as mapping it to
a new tree T0, in which chains follow a path through a descending run in the
prefix, then an ascending run in the suffix, and finally end at a terminal. We call
T0 the lossy Cartesian tree in this section. We wish to support the following tree
operations on the lossy Cartesian tree T0:

1. is chain prefix(i) (resp. is chain suffix(i)): given i, return whether
the node with inorder number i in T0 is within the prefix (resp. suffix) of a
chain. To clarify what we mean by prefix or suffix, refer to Lemma 3.

2. select inorder(i): return the node u in T0 having inorder number i.
3. subtree size(u): Return the size of the subtree rooted at node u in T0.
4. left(u) (resp. right(u)): return the left (resp. right) child of node u in T0.

Given the above operations on T0, we can answer NNLV queries as in
Algorithm 1. Correctness of the algorithm follows from the fact that the root
of a subtree in T0 is the largest value in a Cartesian tree, and Lemma 1.

Mini-micro Decomposition. All that remains is to show that we can support
the operations listed above on the tree T0. The problem is that we only have
space available to store a path compressed version of T0. Thus, we require a
technical modification of the mini-micro tree decomposition presented by Farzan
and Munro [5] which can be stated as follows:

Lemma 5 (Theorem1 [5]). For any parameter α > 1, a tree with n nodes can
be decomposed into Θ(n

α ) subtrees of size at most 2α, which are pairwise disjoint
aside from their roots. With the exception of edges branching from the root of a
subtree, there is at most one edge from a non-root node in a subtree to a node
outside the subtree.
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Algorithm 1. Computing NNLV(A, i).
1: if i = 1 or i = n then
2: return explicitly stored answer for A[1] or A[n].
3: else if is chain prefix(i) then
4: return i − 1
5: else if is chain suffix(i) then
6: return i + 1
7: else
8: � ← subtree size(left(select inorder(i)))
9: r ← subtree size(right(select inorder(i)))

10: if � < r and i − � − 1 ≥ 1 then
11: return i − � − 1
12: else if i + r + 1 ≤ n then
13: return i + r + 1
14: else
15: return A[i] is the maximum (it has no NNLV)
16: end if
17: end if

The binary tree structure of Davoodi et al. [4] essentially applies Lemma 5
twice to the input tree, getting a set of O( n

lg2 n
) mini-trees of size O(lg2 n) and

O( n
lg n ) micro-trees of size � lg n

γ �, for some γ ≥ 8. Since a rooted binary tree
with g nodes can be represented using 2g bits, we can store a fingerprint of size
at most � 2 lg n

γ � bits for each micro-tree. We can then perform tree operations
by using these fingerprints to index into using a universal table of size o(n).
Overall, the space is bounded by the sum of the sizes of the fingerprints, and
totals 2n + o(n). Their representation supports a large number of operations,
which includes select inorder, subtree size, left, right.

The main idea of our approach is to take the lossy Cartesian tree T0, and
to decompose it using Lemma 5. We then adjust the decomposition to, roughly
speaking, ensure that chains do not cross subtree boundaries. The following
technical lemma captures this intution:

Lemma 6. For any parameter α > 1, a tree with n nodes can be decomposed into
Θ(n

α ) subtrees which are pairwise disjoint aside from their roots. Furthermore,
we have the following properties for the subtrees:

1. All nodes in a chain, except possibly the terminal, are contained in the same
subtree.

2. If a subtree contains a node of degree two, then it has size at most 2α.
3. Excepting edges branching from the root of a subtree, there is at most one

edge from a non-root node in a subtree to a node outside the subtree.

We apply the Lemma 6 twice to T0. The first application has parameter
α = �lg2 n�, which gives us a set of subtrees. We change and extend the defin-
itions of mini-trees and micro-trees slightly from the previous papers. Subtrees
which have at least one degree two node are referred to as mini-trees, and are
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otherwise referred to as mini-chains. The second application of the lemma is
done to each mini-tree separately with α = � lg n

β �, for β ≥ 16. Similarly, the
resultant subtrees are called micro-trees if they contain a degree two node, and
micro-chains otherwise.

Next, we apply path compression to each micro-tree, micro-chain, and mini-
chain. We note that micro-chains and mini-chains end up as a single node after
path compression, and have degree 1. Furthermore, prior to path compression,
micro-chains were chains of length at least � lg n

β � and at most Θ(lg2 n), and
mini-chains were chains of length at least Θ(lg2 n). For micro-trees, each node
(after path compression) has either degree two or zero. Each micro-tree which
contains g degree two nodes can therefore be represented using g bits, rather
than 2g bits. Recall that we used n′ to represent the number of nodes in the
path compressed lossy Cartesian tree. If we sum over all the micro-trees there
are n′−1

2 degree two nodes in total after path compression. This means the sum
of the sizes of the fingerprints for all of the micro-trees can be stored in n′ +o(n)
bits. One technical issue is that we must mark the branching edge of each micro-
tree, which can be done using an additional Θ(lg lg n) bits per micro-tree. Thus,
this additional cost is O(n lg lg n

lg n ) when summed over all micro-trees. Note that
the number of micro- and mini-chains is bounded by Θ( n

lg n ), so we can also
afford to mark these using a bit vector, indicating whether they are a micro-
chain or a mini-chain. Recalling the encoding from the previous section, this
path compressed tree we have constructed here is almost (but not quite) the
path compressed version of the lossy Cartesian tree T0: it has Θ( n

lg n ) additional
degree one nodes, but nonetheless occupies n′ + o(n) bits.

We call the fingerprints of the micro-trees the path compressed fingerprints.
In the full version, we show that for an arbitrary micro-tree M we can use the
path compressed fingerprint to recover the fingerprint corresponding to M the
original (not path compressed) tree T0. We have the following lemma:

Lemma 7. We can recover the fingerprint of any micro-tree in T0 in O(1) time,
using space:

n′ + lg
(

n′

m

)

+
σ∑

i=1

(

mi lg
m(i + 1)

mi

)

+ O

(
n lg lg n

lg n

)

bits.

Using the previous lemma, it is not hard to prove Theorem1. The main idea
is to construct the data structure of Davoodi et al. [4] using Lemma 7 as an ora-
cle to access the fingerprints of micro-trees. This allows us to support nearly all
the required query operations, except is chain prefix and is chain suffix.
These two operations can be supported by considering the cases of micro-trees,
micro-chains, and mini-chains separately.

5 Lower Bound

The main idea of the lower bound is to show that for a given n, there are many
configurations of A that can be distinguished by NNLV queries. To do this, we
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define a restricted NNLV problem (RNNLV). The restricted problem is like the
original NNLV problem on an array A[1..n], except we pretend that the array
has entries A[0] = ∞ and A[n+1] = ∞. Thus, an answer to the restricted NNLV
query (RNNLV(A, i)) is either NNLV(A, i), 0, or n + 1: we choose the nearest of
these three possibilities, breaking ties using rule I. This restricts the solution
space, but will allow us to lower bound the unrestricted problem.

For an n element array, we use Rn to denote the number of different solutions
to RNNLV, and Sn to denote the number of solutions to NNLV, both subject to
tie breaking rule I. We computed the following sequences:

Table 2. Number of solutions to RNNLV problem (rule I).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rn 1 2 4 9 22 55 142 378 1015 2768 7662 21340 59962 169961

Sn 1 2 5 14 40 116 341 1010 3009 9012 27087 81658 246841 747728

Next we discuss how to use Table 2 to derive a lower bound. Consider an
array of length n, for n sufficiently large. Without loss of generality, we assume
that a parameter β ≥ 1 divides n − 2 and that n−2

β is odd. Let Di denote
the i-th odd block, and Ei denote the i-th even block. Locations A[1] and A[n]
are assigned values n − 1 and n, respectively. Odd block Di is assigned values
[(i − 1)β + 1, iβ], and can be arranged in one of Rβ configurations, to form an
instance of the RNNLV problem. Suppose there are Δ odd blocks. Even block
Ei will be assigned values from [(Δ + i − 1)β + 1, (Δ + i)β], and arranged in one
of the Sβ configurations of the NNLV problem.

Our claim is that each even (resp. odd) block can be assigned any of the Sβ

(resp. Rβ) possible configurations, without interference from other blocks. To
see this, consider that for each even block we have assigned values so that—with
the exception of the maximum element—the nearest larger value to all elements
must be within the same block. This follows since the adjacent odd blocks contain
strictly smaller values than those in any even block. Moreover, for odd blocks,
the values immediately to the left and right of the block are strictly larger than
any values in the block. Thus, we can force the global solution to the NNLV
problem on the entire array into at least (SβRβ)

n−2
2β distinct structures. This

implies that lg Sn is at least (n−2)
2β lg(SβRβ): selecting β = 14 yields the lower

bound of Theorem2.

6 Conclusions

We have introduced the encoding NNLV problem, and have noted its combina-
torial richness. Using a novel path-compressed representation of Cartesian trees,
we gave a space-efficient NNLV encoding that supports queries in O(1) time.
Determining the effective entropy of NNLV, and to consider the other NNLV
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variants, is an open problem, as is extending the path-compressed Cartesian
tree representation of Sect. 4.1 to general binary trees. Finding ways to apply
NNLV encodings to compressed suffix trees, as Fischer [6] did for his bidirectional
NLV encoding, would also be interesting.
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Abstract. Genome rearrangement problems have been extensively stud-
ied due to their importance in biology. Most studied models assumed a
single copy per gene. However, in reality duplicated genes are common,
most notably in cancer. Here we make a step towards handling dupli-
cated genes by considering a model that allows the atomic operations of
cut, join and whole chromosome duplication. Given two linear genomes,
Γ with one copy per gene, and Δ with two copies per gene, we give a
linear time algorithm for computing a shortest sequence of operations
transforming Γ into Δ such that all intermediate genomes are linear. We
also show that computing an optimal sequence with fewest duplications
is NP-hard.

Keywords: SCJ · Genome rearrangements · Computational genomics

1 Introduction

Genome organization evolves over time by undergoing rearrangement operations.
Finding a shortest sequence of operations (also called a sorting scenario) between
two genomes is the focus of the field of genome rearrangements. Such problems
were studied extensively over the last two decades, due to their importance in
evolution [13].

The combinatorial problems in genome rearrangements depend on the allowed
operations. Hannenhalli and Pevzner showed in their seminal work that finding
the minimal number of inversions that transform one signed genome into another
is polynomial [15]. Many other models were studied later, allowing one or several
types of operations [7–9,11,14,15,17,18].

The double cut and join (DCJ ) operation [27] models reversals, transposi-
tions, translocations, fusions, fissions and block-interchanges as variations of one
basic operation. A DCJ operation cuts the genome in two places, producing
four open ends, and rejoins them in two new pairs. Finding the DCJ distance
between two gene permutations can be done in linear time [4]. The single cut
or join (SCJ ) model [12] further simplifies the model and allows polynomial
solutions to some rearrangement problems that are NP-hard under most formu-
lations. An SCJ operation either cuts a chromosome or joins two chromosome
ends. This simple model gives good results in real biological applications [5].
c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 396–409, 2015.
DOI: 10.1007/978-3-319-19929-0 34
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Models of genomes that assume a single copy of each gene are too restrictive
for many real biological problems. Duplications are frequent in cancer genomes,
especially in oncogenic regions [3]. Most plant genomes contain large duplicated
segments [6]. A major evolutionary event is whole genome duplication, wherein
all chromosomes are duplicated [21].

In spite of their importance, models that allow duplications as rearrangement
operations have not been the subject of extensive research to date. Ozery-Flato
and Shamir [19] considered a model that includes certain duplications, dele-
tions and SCJ operations. Under some simplifying assumptions, they provided
a 3-approximation algorithm that performed well on cancer genomes. Bader
[1,2] provided a heuristic for sorting by DCJs, duplications and deletions. Shao
et al. [23] studied sorting genomes using DCJs and segmental duplications and
provided an algorithm to improve an initial sorting scenario. The majority of
extant models for genomes with multiple gene copies result in NP-hard prob-
lems [21,22,24,25].

In this paper, we present a model that allows the operations cut, join and
whole chromosome duplication. We call it the SCJD model. Given two linear
genomes, Γ with one copy per gene, and Δ with two copies per gene, we give a
linear time algorithm for computing a shortest sequence of operations transform-
ing Γ into Δ, where all intermediate genomes must be linear too. We provide a
closed form formula for that sequence length. In addition, we show that there is
an optimal sequence in which all duplications are consecutive.

While cuts or joins are local events, a duplication of an entire chromosome
is a more “drastic” event. We show that our algorithm actually gives an optimal
scenario with a maximum number of duplications. On the other hand, we prove
that finding a “conservative” optimal SCJD scenario with fewest duplications is
NP-hard.

The structure of this paper is as follows. We give computational background
in Sect. 2. In Sect. 3 we present the SCJD model. Section 4 gives the algorithm
for the SCJD sorting problem and Sect. 5 shows the NP-hardness result. Finally,
in Sect. 6, we present a brief discussion and suggest future directions. Due to
lack of space, some proofs were omitted.

2 Preliminaries

Genome Representation. We use the following standard terminology in
genome rearrangements [4]. The basic entities are genes, denoted a, b, c etc. Gene
a has extremities: a head ah and a tail at. Gene a is assumed oriented from its tail
to its head and is positively oriented if at is to the left of ah. A negatively oriented
gene a is denoted by −a. A chromosome is a sequence of oriented genes, e.g.,
C = ab−c−d. An adjacency in a chromosome is a consecutive pair of extremities
from distinct neighboring genes. e.g., the adjacencies in C above are: {ah, bt},
{bh, ch},{ct, dh}. A telomere is an extremity that is not adjacent to any other
gene, corresponding to the end of a chromosome, e.g., {at},{dt} in C. Hence, a
chromosome can be equivalently represented by its set of adjacencies, where the
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telomeres are implicit. Note that the set of adjacencies defining a chromosome
is identical to that of the reverse chromosome, where order and orientation of
genes are inverted (the reverse of C is −C = dc−b−a). Hence, a chromosome
and its reverse are equivalent.

A genome over gene set G is a collection of chromosomes. We assume for
now that each gene appears once, e.g. Γ = {ab, c−d}. Equivalently, it can be
defined by a set of adjacencies such that for each gene in G, each extremity
appears at most once. Hence Γ =

{{ah, bt}, {ch, dh}}
. The size of a genome Π,

denoted |Π|, is the number of adjacencies in it. A chromosome is called linear if it
starts and ends with a telomere, and circular if it does not contain any telomere,
e.g. D =

{{ah, bt}, {bh, at}
}
. For a sequence of genes S, denote by S and (S)

the corresponding linear and circular chromosome respectively. For example, the
linear chromosome a−b is defined by the set of adjacencies

{{ah, bh}}
and the

circular chromosome (a−b) is defined by the set
{{ah, bh}, {bt, at}

}
. A genome

is called linear if all its chromosomes are linear.
A gene that has several copies in the genome is called duplicated. We label

different copies of the same gene by superscripts, e.g., copies a1 and a2 of gene
a. A duplicated genome has exactly two copies of each gene. A genome with
a single copy of each gene is called ordinary. The duplication of an ordinary
genome Π creates a special kind of genome [26]: Each gene and each adjacency
in Π is doubled, producing the genome Π

⊕
Π. Note that in Π

⊕
Π the two

copies of each gene are unlabeled. The set of all possible labeled genomes cor-
responding to Π

⊕
Π is denoted by 2Π. A genome Σ ∈ 2Π is called a per-

fectly duplicated genome. Hence for Γ above, Γ
⊕

Γ = {ab, ab, c−d, c−d} and
Σ =

{{a2
h, b2

t }, {c2
h, d1

h}, {a1
h, b1

t }, {c1
h, d2

h}} ∈ 2Γ .

SCJ distance. A cut operation takes an adjacency {x, y} and breaks it into
two telomeres {x} and {y}. The reverse operation, called a join, combines two
telomeres {x} and {y} into an adjacency {x, y}. A single-cut-or-join (SCJ ) oper-
ation is either a cut or a join [12]. Given two ordinary genomes Π and Σ on the
same gene set, a sequence of SCJ operations that transforms Π into Σ is called
a sorting scenario. The SCJ distance, denoted by dSCJ(Π,Σ), is the length of a
shortest sorting scenario between Π and Σ. Feijão and Meidanis give the follow-
ing solution for the SCJ distance:

Theorem 1. [12] dSCJ(Π,Σ) = |Π \ Σ| + |Σ \ Π| = |Π| + |Σ| − 2|Π ∩ Σ|. Π \ Σ
defines the set of cuts and Σ \ Π defines the set of joins in an optimal sorting
scenario.

Double Distance. The SCJ double distance between an ordinary genome Γ
and a duplicated genome Δ is defined as

ddSCJ(Γ,Δ) ≡ min
Σ∈2Γ

dSCJ(Σ,Δ) (1)

Hence, in the double distance problem one seeks a labeling of each gene copy in
a perfectly duplicated genome Σ ∈ 2Γ that minimizes the SCJ distance to Δ.
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For a genome Σ and an adjacency α = {x, y}, let Σα be the set of all adja-
cencies of the form {xi, yj} in Σ. Hence |Σα| can be 0, 1 or 2 if Σ is duplicated,
and 0 or 1 if Σ is ordinary. Let A = {α = {x, y}|x �= y} be the set of all pos-
sible adjacencies with extremities belonging to distinct genes. A solution to the
double distance problem is given by the following theorem:

Theorem 2. [12] The SCJ double distance between an ordinary genome Γ and
a duplicated genome Δ is

ddSCJ(Γ,Δ) = |Δ| + 2
∑

α∈A

|Γα|(1 − |Δα|).

A perfectly duplicated genome Σ ∈ 2Γ realizing the distance is obtained by taking,
for each adjacency α = {x, y} ∈ Γ : (1) the labeled adjacencies of Δα, and (2)
adjacencies {xi, yj} with arbitrary labeling that do not conflict with (1) or among
themselves.

3 The SCJD Model

In this section we generalize the SCJ model to allow duplications.
A duplication operation on a genome Π takes a linear chromosome C in Π

and produces a new genome Π′ with an additional copy of the chromosome. For
example, if Π = {abcd, efg} then a duplication of the first chromosome will give
Π′ = {abcd, abcd, efg}. An SCJD operation is either an SCJ or a duplication.

Given two linear genomes on the same gene set of size n, an ordinary one
Γ and a duplicated one Δ, a sequence of SCJD operations that transforms Γ
into Δ is called an SCJD sorting scenario. The SCJD distance, denoted by
dSCJD(Γ,Δ), is the number of operations in a shortest SCJD sorting scenario
between Γ and Δ.

Since we focus on linear genomes we will assume from now on that all chro-
mosomes, including intermediate ones, are linear unless specified otherwise. The
following simple lemma shows that this can be satisfied when using only SCJ
operations:

Lemma 1. A sequence of SCJ operations transforming one linear genome into
another linear genome can be reordered, producing another sequence with the
same length, such that all intermediate genomes are linear.

The examples below demonstrate SCJ double distances and SCJD sorting sce-
narios. For simplicity, we drop the braces around genomes from now on.

Example 1. Γ = a, Δ = a−a; ddSCJ(Γ,Δ) = 1; dSCJD(Γ,Δ) = 2:

Γ−→
dup

a, a−→
join

Δ

Example 2. Γ = ab, Δ = ab, ab; ddSCJ(Γ,Δ) = 0; dSCJD(Γ,Δ) = 1:

Γ−→
dup

Δ



400 R. Zeira and R. Shamir

Example 3. Γ = a, bc, Δ = ab, abcc; ddSCJ(Γ,Δ) = 4; dSCJD(Γ,Δ) ≤ 4:

Γ−→
join

abc−→
dup

abc, abc−→
cut

abc, ab, c−→
join

Δ

Example 4. Γ = acb, Δ = abab, cc; ddSCJ(Γ,Δ) = 8; dSCJD(Γ,Δ) ≤ 7:

Γ−→
cut

a, cb−→
cut

a, b, c−→
join

ab, c−→
dup

ab, ab, c−→
dup

ab, ab, c, c−→
join

abab, c, c−→
join

Δ

Let #cΠ be the number of linear chromosomes in genome Π. Let Γ be an ordinary
linear genome and let Δ be a duplicated linear genome on the same gene set.
A trivial upper bound for the SCJD distance between Γ and Δ is given by solving
the double distance between Δ and Γ . This corresponds to first duplicating each
chromosome in Γ and then computing the SCJ distance between Δ and Γ

⊕
Γ .

We get dSCJD(Γ,Δ) ≤ ddSCJ(Γ,Δ) + #cΓ . However, Example 3 shows that
this bound is not tight. It is tempting to guess that ddSCJ(Γ,Δ) ≤ dSCJD(Γ,Δ).
Alas, Example 4 shows this conjecture is incorrect.

4 Computing the SCJD Distance

In this section we will solve the SCJD distance problem. The key idea is to
show that there is an optimal scenario in which all the duplication operations
are performed in sequence, one after the other. Having shown that, the sorting
scenario between Γ and Δ can be presented as follows:

1. Transform Γ into another ordinary linear genome Γ ′ using only SCJ
operations.

2. Duplicate all the chromosomes of Γ ′ resulting in a duplicated genome Γ ′ ⊕ Γ ′.
3. Solve the SCJ double distance problem between Γ ′ and Δ.

Let O∗ = o1, . . . , od be an optimal SCJD sorting scenario. Let Γ0 ≡ Γ and for
every 1 ≤ i ≤ d let Γi = oi(Γi−1) be the genome resulting from performing oi

on Γi−1. By definition, Γd ≡ Δ. Let Di be the set of duplicated genes in Γi.
We have D0 = ∅ and Dd = G. Given a gene set H, denote its extremity set by
EH = {at|a ∈ H} ∪ {ah|a ∈ H}.

Proposition 1. In an optimal sorting scenario O∗, if oi is a join operation
acting on the telomeres x and y, then either x, y ∈ EDi

or x, y /∈ EDi
.

Proof. Since oi is not a duplication, we have Di−1 = Di. Suppose by contra-
diction that x ∈ EDi

but y /∈ EDi
. Let oj (i < j) be the first duplication such

that y ∈ EDj
. The duplication operation must act on a chromosome in which all

genes are not yet duplicated. Therefore, there is a cut operation ok (i < k < j)
that breaks the adjacency {x, y} created by oi.

Let O′ = o′
1, . . . , o

′
d−2 = o1, . . . , oi−1, oi+1, . . . , ok−1, ok+1, . . . , od be an alter-

native sorting sequence that results from removing oi and ok from O∗. Let
Γ ′

0 ≡ Γ , and denote Γ ′
l = o′

l(Γ
′
l−1). For every l with 1 ≤ l ≤ i − 1, by defi-

nition, o′
l = ol and therefore Γ ′

l = Γl.
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We first show that for every l with i ≤ l ≤ k − 2, Γ ′
l = Γl+1 \ {{x, y}}. Since

oi creates the adjacency {x, y} we have that Γi = Γi−1 ∪ {{x, y}}. For every
such l, o′

l = ol+1 and since none of these operations creates a new copy of y we
have that Γ ′

l = Γl+1 \ {{x, y}}.
Next, we show that for every l with k − 1 ≤ l ≤ d − 2, Γ ′

l = Γl+2. From the
previous result, and the fact that Γk = Γk−1 \ {{x, y}}, we have Γ ′

k−2 = Γk.
Now, for every such l, o′

l = ol+2 and therefore Γ ′
l = Γl+2.

We have established that O′ is an SCJD sorting sequence of length d − 2,
contradicting the optimality of O∗. 
�
Proposition 2. In an optimal sorting scenario O∗, if oi is a cut operation act-
ing on the adjacency {x, y}, then either x, y ∈ EDi

or x, y /∈ EDi
.

Corollary 1. In an optimal sequence of SCJD operations, at the time of a cut
or a join operation on the two extremities x and y, either the genes corresponding
to both x and y have both already been duplicated or none of them have. 
�
Observe that a join operation in a sorting scenario is valid only if the two extrem-
ities it joins are not already part of any other adjacency. Similarly, a cut oper-
ation is valid only if the adjacency it breaks exists. A duplication operation is
valid only if it duplicates a linear chromosome such that all its genes were not
previously duplicated. A sorting scenario is valid if all its operations are valid.

Let S = s1, . . . , sm be a valid SCJD sorting scenario between Γ and Δ.
We say the operation si+1 can preempt the operation si if the sequence S′ =
s1, . . . , si+1, si, . . . , sm is also a valid SCJD sorting scenario between Γ and Δ.

Proposition 3. In a valid SCJD scenario S transforming Γ into Δ, if si+1 is
an SCJ operation acting on two extremities x, y that were not duplicated and si

is a duplication, then si+1 can preempt si.

Proof. Suppose si duplicates the linear chromosome C and produces another
copy of it C ′. Since si+1 operates on genes that are not duplicated yet, none of
those genes belong to C or C ′. Therefore, the sequence s1, . . . , si−1, si+1 is valid.
Any operation that creates an adjacency or a telomere of C must precede si.
Hence, s1, . . . , si−1, si+1, si is valid. Finally, any sj for j > i+1 that requires the
results of si or si+1 is still valid. Thus, S′ = s1, . . . , si−1, si+1, si, si+2, . . . , sm is
a valid sequence.

To conclude the proof, we need to show that Γi+1 ≡ Γ ′
i+1. Indeed, si+1

does not alter any of the adjacencies or telomeres of C or C ′, and therefore,
Γi+1 = si+1(Γi−1 ∪ C ′) ≡ si+1(Γi−1) ∪ C ′ = Γ ′

i+1. 
�
Proposition 4. In a valid SCJD scenario S transforming Γ into Δ, if si+1 is
a duplication and si is a cut or join acting on two duplicated extremities, then
si+1 can preempt si.

Proposition 5. In a valid SCJD scenario S transforming Γ into Δ, if si+1 is
an SCJ acting on two extremities that were not duplicated yet and si is an SCJ
acting on two duplicated extremities, then si+1 can preempt si.
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For a sequence of SCJ operations S, let SD (S
D

, respectively) be the subsequence
of operations that act on two extremities of genes that have (have not, respec-
tively) already been duplicated at the time of the operation. By Corollary 1, for
optimal S, S

D
is indeed the complement of SD.

Proposition 6. There exists an optimal sorting scenario in which all duplica-
tion events are consecutive.

Proof. Let oi1 , . . . , oip be the duplication events in an optimal sorting scenario.
Denote by Sij the sequence of SCJ operations occurring between the duplications
oij and oij+1 . Also, denote by Si0 and Sip the sequence of SCJ operations before
the first duplication and after the last duplication, respectively.

Given an optimal scenario O∗ = Si0 , oi1 , Si1 , oi2 , Si2 , . . . , Sip−1 , oip , Sip we
modify it into a new sorting scenario O′ as follows: Using Propositions 3 and 5,
preempt SCJ operations acting on un-duplicated genes. Using Proposition 4, pre-
empt duplication events. These steps are iterated until no preemption is possible.
We get that O′ = Si0 , S

D

i1 , . . . , S
D

ip , oi1 , . . . , oip , S
D
i1

, . . . , SD
ip−1

, Sip is a valid SCJD
optimal sequence in which all duplications are consecutive. 
�
Corollary 2. There exists an optimal SCJD sorting scenario, consisting, in
this order, of (1) SCJ operations on single-copy genes, (2) duplications, (3) SCJ
operations acting on duplicated genes. 
�
Denote by Γ ′ the intermediate (ordinary) genome after step (1). Then we can
conclude:

Theorem 3. dSCJD(Γ,Δ) = minΓ ′
(
dSCJ(Γ, Γ ′) + #cΓ

′ + ddSCJ(Γ ′,Δ)
)


�

Recall that n is the number of genes in Γ . Using Theorems 1 and 2 and the fact
that #cΠ = n − |Π|, the distance formula can be simplified:

dSCJD = min
Γ ′

(
|Γ | + |Γ ′| − 2|Γ ∩ Γ ′| + n − |Γ ′| + |Δ| + 2

∑

α∈A

|Γ ′
α|(1 − |Δα|)

)

= n + |Δ| + |Γ | − 2max
Γ ′

(
|Γ ∩ Γ ′| +

∑

α∈A

|Γ ′
α|(|Δα| − 1)

)

= n + |Δ| + |Γ | − 2max
Γ ′

∑

α∈Γ ′
(|Γα| + |Δα| − 1)

= n + |Δ| + |Γ | − 2max
Γ ′

∑

α∈Γ ′
η(α) = n + |Δ| + |Γ | − 2max

Γ ′
H(Γ ′) (2)

where η(α) = η(α, Γ,Δ) = |Γα| + |Δα| − 1 and H(Γ ′) =
∑

α∈Γ ′ η(α). Since we
want to maximize H(Γ ′), we will focus on adjacencies with positive contribution
in Eq. 2.

Lemma 2. Let α = {x, y} be an adjacency such that η(α) > 0. Then, for every
extremity z �= y, the conflicting adjacency α′ = {x, z} has η(α′) ≤ 0.
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Combining Lemma 2 and Theorem 3 we get a closed formula for the SCJD
distance:

Theorem 4. The genome Γ ′ = {α = {x, y}|η(α) > 0} minimizes Equation 2.
If Γ ′ is a linear genome, then the SCJD distance is given by dSCJD(Γ,Δ) =
n + |Δ| + |Γ | − 2H(Γ ′). 
�
Let us return to the examples in Sect. 3:

– Example 1: n = 1, |Δ| = 1, |Γ | = 0, Γ ′ = ∅, H(Γ ′) = 0 → d = 1+1+0−2∗0 =
2

– Example 2: n = 2, |Δ| = 2, |Γ | = 1, Γ ′ =
{{ah, bt}

}
, H(Γ ′) = 2 → d =

2 + 2 + 1 − 2 ∗ 2 = 1
– Example 3: n = 3, |Δ| = 4, |Γ | = 1, Γ ′ =

{{ah, bt}, {bh, ct}
}
, H(Γ ′) = 1+1 →

d = 3 + 4 + 1 − 2 ∗ 2 = 4
– Example 4: n = 3, |Δ| = 4, |Γ | = 2, Γ ′ =

{{ah, bt}
}
, H(Γ ′) = 1 → d =

3 + 4 + 2 − 2 ∗ 1 = 7

Example 5. Γ = abc and Δ = cab, bca. According to Theorem4, we get Γ ′ =
(abc) because η({ah, bt}) = η({bh, ct}) = η({ch, at}) = 1. The corresponding
distance is d = 3, providing the following invalid sorting scenario:

Γ−→
join

(abc)−→
dup∗

(abc), (abc)−→
cut

cab, (abc)−→
cut

Δ

dup∗ indicates a duplication of a circular chromosome, an operation that is not
allowed in the SCJD model (and has no cost). It is not difficult to verify that
there is no valid sorting scenario with d ≤ 3.

The reason for the discrepancy in Example 5 is that #c(Γ ′) = n−|Γ ′| = 0 is not
equal to the number of duplications if there are circular chromosomes. Therefore,
in order to minimize the SCJD distance given by Eq. 2, we need to maximize
H(Γ ′) under the constraint that Γ ′ is a linear genome, i.e., H(Γ ′) ≥ H(Γ̃ ) for
every linear genome Γ̃ . Lemma 3 shows that we can do so simply by removing
one adjacency with η = 1 from each circular chromosome in Γ ′ and that such
adjacency must exist.

Lemma 3. Let Γ ′ = {α = {x, y}|η(α) > 0} and let Γ ′′ be a genome obtained
by removing one adjacency α with η(α) = 1 from each circular chromosome in
Γ ′. Then, Γ ′′ is a linear genome that maximizes H(·) and the SCJD distance is
given by dSCJD(Δ,Γ ) = n + |Δ| + |Γ | − 2H(Γ ′′).

Applying Lemma 3 to Example 5 we get Γ ′′ = abc and d = 5:

Γ−→
dup

abc, abc−→
cut

a, bc, abc−→
join

bca, abc−→
cut

bca, ab, c−→
join

Δ

We can choose instead Γ ′′ = cab, which gives a different optimal sorting scenario:

Γ−→
cut

ab, c−→
join

cab−→
dup

cab, cab−→
cut

cab, a, bc−→
join

Δ
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Algorithm 1. SCJD distance.
Input: An ordinary genome Γ and a duplicated genome Δ (both linear) on the
same gene set.
Output: The SCJD distance dSCJD(Γ,Δ) and an optimal sorting scenario
o1, . . . , od in which all intermediate genomes are linear.
1: Γ ′ ← {α = {x, y}|η(α) > 0} (Theorem 4)
2: Create a linear genome Γ ′′ by removing one adjacency α with η(α) = 1 from each

circular chromosome in Γ ′ (Lemma 3)
3: dSCJD(Γ, Δ) ← n + |Δ| + |Γ | − 2H(Γ ′′) (Theorem 4, Lemma 3)
4: o1, . . . , oi ← Sort Γ into Γ ′′ (Theorem 1, Lemma 1)
5: oi+1, . . . , oj ← Duplicate all chromosomes in Γ ′′.
6: oj+1, . . . , od ← Sort 2Γ ′′ into Δ (Theorem 2, Lemma 1).
7: return d, −→o

Algorithm 1 gives the full procedure for solving the SCJD distance and sort-
ing problems. Each step of the algorithm takes O(|Γ |+ |Δ|) time. In conclusion:

Theorem 5. Algorithm 1 computes the SCJD distance in linear time. 
�

5 Controlling the Number of Duplications

In this section we discuss how to control the number of duplications in an optimal
SCJD sequence. Since the number of duplications is n − |Γ ′′|, selecting different
intermediate genomes Γ ′′ that preserve the SCJD distance can produce scenarios
with different number of duplications.

An optimal SCJD scenario with fewer duplications can be viewed as more
conservative. The assumption behind this is that duplications are more “radical”
events than breakage (cut) or fusion (join), which are local events.

Lemma 4. Algorithm1 gives an optimal sorting scenario with a maximum num-
ber of duplications.

Proof. Observe first that for any sorting scenario (optimal or suboptimal) trans-
forming Γ into Δ, we can assume w.l.o.g. that all duplications are consecutive
without affecting the number of operations (Corollary 2). Call the genome right
before the duplications the last ordinary genome. Denote by d(Γ,Π,Δ) the short-
est scenario transforming Γ into Δ given that the last ordinary genome is Π.
The proof of Theorem3 implies that d(Γ,Π,Δ) = n + |Δ| + |Γ | − 2H(Π).

Let Γ ′ be the last ordinary genome produced by the algorithm. Consider an
optimal scenario O with a maximum number of duplications and let Γ̃ be the
last ordinary linear genome in O. Since O is optimal, H(Γ̃ ) must be maximal.
Hence, Γ̃ cannot contain adjacencies with η < 0. Moreover, it cannot contain
adjacencies with η = 0, as such adjacencies increase |Γ̃ | and thus decrease the
number of duplications in O. Therefore, Γ̃ ⊆ Γ ′.
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We now show that ∀α ∈ Γ ′\Γ̃ , η(α) = 1. Suppose by contradiction that there
is an adjacency α ∈ Γ ′ \ Γ̃ with η(α) > 1 and let Π = Γ̃ ∪ {α}. If Π is a linear
genome, d(Γ,Π,Δ) < d(Γ, Γ̃ ,Δ) contradicting the optimality of O. Otherwise,
Π contains a circular chromosome and by Lemma 3, there is an adjacency β ∈ Γ̃
with η(β) = 1 such that Π\{β} is a linear genome with H(Π\{β}) > H(Γ̃ ), again
contradicting the optimality of O. Thus, |Γ ′ \ Γ̃ | = |Γ ′| − |Γ̃ | = H(Γ ′) − H(Γ̃ ).

Γ ′ may contain circular chromosomes. By Lemma 3, Γ ′′ is produced by
removing one adjacency with η = 1 from each circular chromosome in Γ ′. Hence
|Γ ′ \ Γ ′′| = |Γ ′| − |Γ ′′| = H(Γ ′) − H(Γ ′′).

Since both Γ̃ and Γ ′′ are last ordinary genomes in optimal SCJD scenarios,
H(Γ̃ ) = H(Γ ′′). Thus, |Γ ′|−|Γ̃ | = H(Γ ′)−H(Γ̃ ) = H(Γ ′)−H(Γ ′′) = |Γ ′|−|Γ ′′|,
which implies that |Γ̃ | = |Γ ′′|. 
�
One can decrease the number of duplications in an optimal SCJD scenario by
adding adjacencies with η(α) = 0 to Γ ′′. However, we need to make sure that
the resulting genome is still linear. Consider the following example:

Example 6. Γ = a, b, c, Δ = abccba. From Theorem 4 we have that Γ ′ = Γ
and so the SCJD distance is 8. The scenario produced by Algorithm1 will first
duplicate the three chromosomes of Γ and then perform five joins to create Δ.
An alternative optimal sorting scenario is:

Γ−→
JJ

abc−→
D

abc, abc−→
CC

abc, a, b, c−→
JJJ

Δ

Here, since each adjacency α ∈ Δ has η(α) = 0, we chose Γ ′′ = abc and obtained
an optimal scenario with a single duplication. In contrast, if we add to Γ ′′ the
adjacencies {bh, ct} and {ch, bt} (which also have η = 0) we create a circular
chromosome and an invalid SCJD sorting scenario.

In order to minimize the number of duplications we must add to Γ ′′ a maximum
set of adjacencies with η = 0 such that the resulting genome is still linear. Here
we show that this problem is NP-hard using a reduction similar to [16].

Theorem 6. Given an ordinary linear genome Γ , a duplicated linear genome
Δ on the same gene set, and an integer k, the problem of finding an optimal
SCJD scenario with at most k duplications is NP-hard.

Proof. Call a directed graph in which all in- and out-degrees are 2 a 2-digraph.
Deciding if a 2-digraph contains a Hamiltonian cycle is NP-hard [16,20]. This
implies that the following variant is also NP-hard: Given a 2-digraph G with an
edge (x, y), decide if there is a Hamiltonian path from y to x in G.

Let G = (V,E) be a 2-digraph with an edge (x, y) as above. We may assume
w.l.o.g. that G is strongly connected, since otherwise it would not contain a
Hamiltonian path from y to x. Notice that G \ (x, y) contains an Eulerian path
from y to x [10]. Denote it by P = e1, e2, . . . , em.

We construct a duplicated genome Σ as follows: for each eq = (u, v) ∈ P

add the adjacency {ui
h, vj

t } where i = 2 if there is an edge el = (u, v′) with
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l < q, and i = 1 otherwise. Similarly, j = 2 if there is an edge em = (u′, v)
with m < q and j = 1 otherwise. The result is a linear chromosome created
by traversing P and numbering the first occurrence of each vertex v in P as
the gene copy v1 and the second occurrence as v2. Denote by P� the sequence of
genes along the path P . In addition, we add two new genes w, z and the adjacen-
cies {w1

h, y1
t }, {x2

h, z1
t }. Thus, Σ has three linear chromosomes: w1y1 P�x2z1, w2

and z2. Let Π =
{{wh, yt}, {xh, zt}

}
be an ordinary genome with n chromosomes

over the same set of genes. (Note that every vertex in V \ {x, y} corresponds to
a separate chromosome in Π.)

Let Σ(i) and Π(i) be genomes in which every gene v ∈ V is renamed v(i). We
define Δ =

⋃k
i=1 Σ(i) and Γ =

⋃k
i=1 Π(i) to be the disjoint union of k different

copies of Σ and Π respectively. This completes the reduction, which is clearly
polynomial. We will show that there is an optimal SCJD scenario between Γ
and Δ with at most k duplications iff G admits a Hamiltonian path from y to
x.

For each edge e = (u, v) ∈ E and every i, the corresponding adjacency
α = {(u(i))

j
h, (v(i))l

t} has η(α) = 1 if there are two parallel edges from u
to v, and η(α) = 0 otherwise. In addition, for every i, η({(w(i))h, (y(i))t}) =
η({(x(i))h, (z(i))t}) = 1, and every other adjacencies of w(i), z(i) have η < 0.

Suppose G contains a Hamiltonian path S from y to x. Let Γ ′ be the genome
formed by the set of adjacencies

{{(w(i))h, (y(i))t}, {(x(i))h, (z(i))t}|i = 1 . . . k
}

∪{{(u(i))h, (v(i))t}|(u, v) ∈ S, i = 1 . . . k
}
. Since S is a Hamiltonian path, Γ ′ is a

valid ordinary linear genome with k chromosomes of the form w(i)y(i)
S�x(i)z(i).

To prove that Γ ′ maximizes H(·) we need to show it contains every adjacency
with η = 1 and no adjacency with η < 0. Indeed, (suppressing the copy index i
for clarity) the only adjacencies α with η(α) = 1 are {wh, yt}, {xh, zt} (|Δα| =
|Γα| = 1) and parallel edges in G (|Δα| = 2, |Γα| = 0), one copy of which must be
included in S. All other adjacencies in Γ ′ have |Δα| = 1, |Γα| = 0 and η(α) = 0.
We conclude that Γ ′ is part of an optimal scenario with k duplications.

Conversely, suppose there is an optimal scenario O∗ with at most k dupli-
cations and let Γ̃ be the last ordinary genome in O∗. Let Γ ′ = {α|η(α) > 0}
be a genome that minimizes the SCJD distance according to Theorem 4. First,
notice that Γ ′ is indeed a linear genome. Otherwise, a circular chromosome of
adjacencies with η(α) = 1 would imply a strongly connected component with-
out the vertices x, y, contradicting the strong connectivity of G. It follows that
Γ ′ ⊆ Γ̃ , H(Γ ′) = H(Γ̃ ) and #cΓ̃ ≤ k.

Since Σ(i) and Σ(j) for i �= j contain different genes, an adjacency between
a gene in Σ(i) and a gene Σ(j) has negative η. Therefore, Γ̃ contains no such
adjacencies. Since Γ̃ has at most k linear chromosomes, it must contain exactly
k linear chromosomes, each containing all the genes of Σ(i) for one i.

Let C = w(1)y(1) . . . x(1)z(1) be the linear chromosome in Γ̃ that contains
all the genes of Σ(1). Define an edge set S in G by taking for each adjacency
{(u(1))h, (v(1))t} ∈ C\{{(w(1))h, (y(1))t}, {(x(1))h, (z(1))t}

}
the edge (u, v). Since
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C is an ordinary linear chromosome containing all the genes of Σ(1), S is a
Hamiltonian path in G from y to x. 
�

6 Discussion

In this paper, we presented the SCJD rearrangement model, which allows the
operations cut, join and whole chromosome duplication. We analyzed the prob-
lem of finding the minimum number of SCJD operations that transform an
ordinary linear genome into a duplicated linear genome and provided a linear
time algorithm for it. Furthermore, we showed that this algorithm gives an opti-
mal scenario with a maximum number of duplications and that finding one with
fewest duplications is NP-hard.

In the analysis, we focused on the SCJD sorting problem, which restricts
the target genome to have exactly two copies of each gene. However, it is not
difficult to generalize our algorithm to address the more general situation where
each gene in the target genome has at most two copies. One can show that in
this case too, an optimal solution in which all duplications are consecutive exists.
In addition, each adjacency in the original genome between a gene that has two
copies and a gene that has one copy in the target genome, must first be cut.
This is true because duplications are defined over linear chromosomes in which
every gene is unduplicated.

Our algorithm relies on the property that all duplications in the optimal
solution can be clustered (Corollary 2). In this sense, the problem we study is
similar to the SCJ Guided Genome Halving problem [12]. In that model the
whole genome is duplicated at once, while in ours there is one duplication per
chromosome, and accounting for these duplications is part of the optimization
challenge.

Many aspects in the analysis of the SCJD mode require further research: How
can we address the problem if there are more than two copies of each gene? Can
we find the SCJD distance between two arbitrary genomes - each containing
single copy and multiple copy genes? How does removing the requirement of
linearity affect various SCJD problems? Moreover, duplications may be defined
differently, e.g. tandem duplications [1] and segmental duplications [23]. Finally,
developing a rigorous model that will allow both duplications and deletions is
needed in order to analyze the full complexity of real biological data such as
cancer samples.
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