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Preface

The ICMC-Summer Meeting on Differential Equations is a series of meetings that
takes place at the Instituto de Ci€ncias Matematicas e de Computagdo (ICMC) of
the Universidade de Sdo Paulo (USP) in Sdo Carlos. They happen every year, since
1996, in the southern hemisphere’s summer holidays, a few days before Carnival.

After the 2013 Chapter of the meeting, the local organizers decided to dedicate
the next meeting to the celebration of Djairo’s 80th birthday. With Djairo’s blessing,
the conference was arranged from the 3rd to the 7th of February, 2014, and
invitations were sent out. As anyone who has ever organized a meeting knows,
the hardest part is to be able to gather a large number of well-known specialists
in the area, and collaborators who will help with the organization. In the case of
this meeting, we must say that it was all very easy. We rapidly had a large number
of worldwide experts who happily agreed to participate and a large number of
collaborators who agreed to help with the several different committees. Of course,
that has to do with the fact that Djairo is so well cared for in the Differential
Equations community.

The 2014 Chapter was the largest edition ever of the meeting with over 300
participants from 23 different countries, 3 different continents, and from all regions
of Brazil. The celebration of Djairo’s 80th birthday was a very high level meeting
in a relaxed and friendly environment.

Just after the meeting, we decided to write this book to record this wonderful
conference. We approached Birkhduser as publishers and they were keen to accept.
In compiling this volume, we have again seen the same enthusiastic behavior that
we observed during the organization of the meeting: contributors were eager to pay
tribute to Djairo.

Djairo Guedes de Figueiredo was born in the small town of “Limoeiro do Norte,”
state of Ceard, Northeast Brazil, in 1934. He graduated in Civil Engineering from
the Universidade Federal do Rio de Janeiro, in 1956. In 1961, he obtained his Ph.D.
in Mathematics from the Courant Institute at NYU under the guidance of Louis
Nirenberg. His professional career started in 1961 at the Universidade de Brasilia,
in the newly built capital of Brazil. He went back to the US from 1965 to 1971,
successively at the University of Wisconsin in Madison, the University of Chicago,
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viii Preface

the University of Maryland, and the University of Illinois at Chicago Circle. In 1971,
he came back to Brazil at the Universidade de Brasilia and finally moved in 1988 to
UNICAMP, in Campinas, near Sao Paulo.

Djairo has a very active scientific life, publishing over a hundred research articles,
which has made him the most cited Brazilian mathematician with almost 2500
citations in MathSciNet. His scientific contribution would be already enough to
render him the dedication of a book like this one, but Djairo’s contribution to
Mathematics goes far beyond that. He published 29 monographs (many of them
in Portuguese) that were very influential to many younger generations of Brazilian
(and many other nationalities) mathematicians. His passion for mathematics has
influenced entire generations of mathematicians in Brazil, South America, and
throughout the world. His descendants, who include 26 Ph.D. students, are already
in the fourth generation, and in four years should number 120 Ph.D.s.

It is safe to say that Djairo’s influence in Brazilian mathematics made him one of
the pillars of the subject in that country. He had a major influence in the development
of the area of Analysis, especially in its applications to Nonlinear Elliptic Partial
Differential Equations and Systems, in Brazil and throughout the world.

On a personal level, Djairo is a kind, friendly person with a great sense of humor.
His natural leadership, kindness, uprightness of character, and family values are a
very important part of his legacy to the younger generations.

We happily thank Djairo for the opportunity to gather together so many world-
wide specialists, and for providing the bonds which brought us the family-like, high
level research environment seen throughout the meeting. We are proud to be part of
this small token of appreciation to Djairo’s influence in our lives.

Sao Carlos, SP, Brazil Alexandre N. Carvalho
Milano, Italy Bernhard Ruf
Sao Carlos, SP, Brazil Ederson Moreira dos Santos
Brussels, Belgium Jean-Pierre Gossez
Séao Carlos, SP, Brazil Sergio H.M. Soares
Paris, France Thierry Cazenave

March 2015
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Nonexistence of positive classical solutions
for the nonlinear Schrodinger equation
with unbounded or decaying weights

Francisco S.B. Albuquerque and Everaldo S. Medeiros

Mathematics Subject Classification (2010): 35A01, 35A23, 35A25, 35B09,
35J20, 35J60

1 Introduction and main result

In this note we are concerned with nonlinear Schrodinger equations of the form

Iy

9V
! ot

= 1Ay + WY - QWE(Y DY, (0 eR* xR, ()
or nonlinear Klein—-Gordon equations of the form

32
" a_;f =AY + (W) —w)y — QWE(YDY. (v eRP xR, ()

where i = +/—1, & is the Planck’s constant, m is a positive number, W (x), Q(x)
are real-valued potentials, and § : Rt — R is a suitable nonlinear term. Such
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2 F.S.B. Albuquerque and E.S. Medeiros

equations arise in various branches of mathematical-physics and mathematical-
biology and they have been subject of extensive study in the past years, among
others we refer to [5, 6, 11-15] and the references therein. Here our special interest
is in the nonexistence of standing wave solutions, that is, solutions of type

¥ (x, 1) = exp(—i&'t/h)u(x),

where & € R and u > 0 is a real function. It is known that  satisfies (1) or (2) if
and only if the function u solves the following elliptic equation

— Au+ V(x)u = 10x)f(u), xeR2 3)

where V : R? — R is the new potential, A is a positive parameter, and f : R — R
is a new nonlinearity. Precisely, the main purpose of the present work is to show
that, by using an average argument, it is possible to find sufficient conditions for
nonexistence of positive classical solutions for problem (3). We quote that this
method has been used, for instance, in the papers [3, 4, 7, 17] and this approach
proposed here is in the spirit of [3]. Throughout we will assume the following
assumptions on V and Q:

(V) V e C(R*R), V > 0 and there exists ¢ < —2 such that

V(x)

|x|—>+00 |)C|”Z

3

(Q) 0 € C(R*;R), Q0 > 0 and there exists b > —2 such that

O(x)

> 0.
|x]—>+o00 |x|b

Remark 1.1. Important classes of weights satisfying the above hypotheses are
V(x) = |x/f and Q(x) = |x|”, with B < —2 and y > —2, which includes the
Henon(y > 0) and singular weights type.

On the nonlinear term f(s), we shall assume that f : R — [0,400) is a
continuous function satisfying: there exists v > 2 and a positive constant Cy such
that for any p > v — 1 there holds

f(s) > CysP, forall s > 0. )

In the recent papers [2, 15], the authors studied the existence and multiplicity
of solutions for problem (3) under similar conditions on the weights. In [2] for
instance, the authors considered nonlinearity f(s) with exponential critical growth
as established in the paper by D. G. de Figueiredo et al, N. S. Trudinger, S. L.
Pohozhaev, and J. Moser (see [8-10, 16]), that is, there exists a constant oy > 0
such that
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0, VYo > Q,

O
1m 2
s—>+o00 %S

®)

+ 00, VYo <.

We point out that among other hypotheses on f and in order to use a variational
approach to study problem (3), the authors also assumed the following conditions:
(fi) there exists v > 2 such that lim iEf ]Ls)l > 0;

s—0 sV
() there exists 6 > 2 such that

0 < 0F(s) = Q/Sf(t)dt <sf(s), Vs>0.
0

It is worth mentioning that the main tool used in [2] by the authors to study
problem (3) concerned the existence and multiplicity of solutions was a Trudinger—
Moser type inequality in weighted Sobolev spaces, as well as an improvement of
it, which has been obtained via classical and singular Trudinger—Moser inequality
versions established in [9] and [1], respectively. For details, see [2, Theorem 1.1].

Remark 1.2. Using a straightforward computation, we can see that if f(s) satisfies
(5) with o < ag and the conditions (f;) — (f2) then (4) holds.

Our main result reads as follows:

Theorem 1.3. Assume that (V) — (Q) hold. If f satisfies condition (4), then
problem (3) has no positive C* solutions for A large.

Remark 1.4. We complement the multiplicity result obtained in [2, Theorem 1.5]
in the sense that we just have established new ranges for the numbers a,b (see
(V) — (Q)) for which we have given an additional information on the existence
or nonexistence of solutions for problem (3). We also point out that nonexistence
results involving exponential critical growth (situation covered by the condition (4)
as pointed out in the Remark 1.2), only a partial result is known, that is, one due to
D. G. de Figueiredo and B. Ruf [7], in which the nonexistence of a positive radial
solution is proved for the following problem

—Au = h(u)e‘"”’2 in 2,
u=20 on 442,
where 2 = B;(0) C R? and h € C*(R) satisfies some suitable conditions. The

proof of this result uses techniques of the theory of ordinary differential equations
which we shall use in the proof of Theorem 1.3.
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2 Proof of Theorem 1.3

In the proof we use an averaging process to reduce the problem to an ordinary dif-
ferential inequality in order to get a contradiction via some elementary arguments.
Before we need some technical lemmas. In the following, B, C R? denotes the open
ball in centered at the origin with radius » > 0. We denote the spherical average u
of a function u € C(R?) by

u(r) =

u(x)do,
|0B:| Jas,

where do is the standard volume element on dB,. It is standard to verify that if
u € C*(R?) then:

Lemma 2.1. The following assertions are hold:
(i) u+v=u+7;
(ii) %(ri/(r)) = rAu(r);
(iii) W' (r) + %it'(r) = Au(r) (Darboux’s equation);

(iv) Au(r) = Au(r);
(v) W <uwP, forallp > 1 (Jensen’s inequality).

Lemma 2.2. Assume that (V) — (Q) and (4) hold. Let u be a positive C* solution
of problem (3). Setting w(t) = r"u(r) withm = (b+2)/(p—1),p > v —1and
t = logr, there exist real numbers | and I, such that w satisfies

W+ hw 4+ (L= V(Ir)rH)w +wh <0, (6)

for t sufficiently large, where V(r) = maxy=, V(x).

Proof. Let u € C? a nontrivial positive solution of problem (3). From hypothesis
(Q) there exist Cy, Ry > 0 such that

0(x) > Cy|x|’, forall x| > Ry.
From this and condition (4), it follows for any p > v — 1 that
A0(x)f (1) = ACyCiC|x|’u?,  for all |x| > Ry.
Choosing A sufficiently large such that ACyC, > 1 we get
A0(X)f(u) > |x|PuP, for all |x| > Ry.

Hence, u satisfies
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Au—V(x)u+ |x’u” <0 inR*\ Bg,. @)

By taking the spherical average in (7) and invoking Lemma 2.1, we obtain
1
i’ (r) + —i (r) — V(r)i(r) + r’#’(r) <0, forr > Ry, (8)
r
where V(r) = maxy—, V(x). Setting w(r) = r""u(r) withm = (b +2)/(p — 1) and
t = log r, we see that
w (1) = mr™u(r) + " (),
w (1) = m?r"u(r) + mr" @ () + (m+ DT () 4+ 7P (),
LW (t) = =2m*r"u(r) — 2mr" Y (r),
(L = V(r)r*)w(t) = m*"u(r) — V()" 2a(r),

where /| = —2m and [, = m?. Thus, by using (8), we get (6) for ¢ sufficiently large.
The proof is completed. O

Proof (Proof of Theorem 1.3). We shall use similar arguments developed in [3].
Suppose by contradiction that u is a C> nontrivial positive solution of problem (3).
We have three cases to consider:

Case 1. w/(T) < 0 for some T sufficiently large. We set B(r) = I, — V(r)r*. We
claim that from the hypothesis (V), we have B + w?~! > 0 at infinity. In fact, it
just observes that

1%
V(x)|x]* = %r)|x|”+2 — 0, as|x| > 4o0.
X a

Thus,
V() x> < b, forall|x| > 1,

which implies that B(r) > 0 at infinity. On the other hand, integrating (6) over
[T, 1] for T large, we have

t
w(t) < e 1Dy/(T) — e_l”/ (B + wP Hwelt*ds < e Dy/(T).
T
Since /1 < 0, integrating the above inequality over [T, f], we obtain
1
0 <w() <w(T) + l—w’(T) (1—e") —» —co, ast— +oo,
1

which is a contradiction.
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Case 2. w is non-decreasing and bounded at infinity. Then there exists weo > 0
such that w(f) — we, as t — oo. Thus, there exists a real sequence (z,) with
lim, 00 f, = 00 such that w'(z,), w”(t,) — 0 as n — oo, which implies by
taking the inferior limit in (6)

0 < wl, <m’ + liminfw(z,)’ < liminf[(B(e") + w(t,)"~") w(t,)] <0,
n—oo n—oo

which is a contradiction.

1
Case 3. w is non-decreasing and unbounded at infinity. Setting v(¢) = et w(t),
we have

V(1) + D(t)v <0, )]

where D(t) = B(e') — I2/4 + w(#)’~!. Multiplying both sides of (9) by sin# and
integrating by parts twice over [2kmw, (2k + 1)7r] with integer k£ > 0, we obtain

k+1)7
/ (D(t) — D (r)sinrdt < —v(2kw) — v((2k + 1)) < 0. (10)
2km

Since D(t) — oo ast — 0o, we have in particular that D > 1 on [2kn, (2k+ 1) 7]
for k > 0 sufficiently large, which contradicts inequality (10) and this completes
the proof of Theorem 1.3. O
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1 Introduction

The Korteweg—de Vries equation (KdV) was first introduced by Boussinesq (1877)
and rediscovered by Diederik Korteweg and Gustav de Vries (1895). It is a model
of waves on shallow water surfaces (see, e.g., [12]).

Many different variations of the KdV equation have been studied. The most
common is the following one which is known as the generalized KdV equation
(gKdV):

du  u

d
EJ’_@_EW(M)_O (1)

where u = u(t,x), and W € C2(R). If W(s) = —s>, then (1) reduces to the usual
KdV equation
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ou  u ou
4 6u— =0 2
or T T @
Sk+2 .
It W(s) = I then (1) reduces to the equation

Ju n P u L ou _0 3)
o T o T

known as the modified KdV equation (mKdV).

In this paper we are interested to the existence of solitary waves and solitons
for the gKdV equation. Roughly speaking a solitary wave is a solution of a field
equation whose energy travels as a localized packet and which preserves this
localization in time. A solifon is a solitary wave which exhibits some form of
stability so that it has a particle-like behavior.

Using the inverse scattering transform, it is possible to prove that KdV admits
soliton solutions and to have an extremely powerful and precise information
on them. However the inverse scattering techniques cannot be applied to the
generalized KdV equation. In this paper, we shall use the method developed in [5] to
prove that equation (1) admits solitons and we will show that they are hylomorphic.
Following [2], a soliton is called hylomorphic if its stability is due to a particular
interplay between the energy E and the hylenic charge C := f u*dx which is another
integral of motion. More precisely, a soliton u, is hylomorphic if

E(up) = min {E(u) | /uzdx = C(uo)} .

We will show that eq. (1) admits solitons provided that W satisfies suitable
assumptions (see Theorem 4.6). In particular, if W(s) = —%, hylomorphic
solitons exist for k = 1, 2, 3. So, in this case, we get a different proof of well-known
results (see [11]) and we show that the “usual” solitons of mKdV can be considered
“hylomorphic”.

In Th. 4.6, we obtain the existence of hylomorphic solitons under a very general
set of assumptions on W; moreover, in contrast to other results on this topic, these

assumptions are easy to verify.

2 Solitary waves and solitons

In this section we construct an abstract functional framework which allows to define
solitary waves, solitons and hylomorphic solitons.
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2.1 Solitary waves

Solitary waves and solitons are particular states of a dynamical system described by
one or more partial differential equations. Thus, we assume that the states of this
system are described by one or more fields which mathematically are represented
by functions

u:R¥Y v

where V is a vector space with norm | - |, and which is called the internal parameters
space. We assume the system to be deterministic; this means that it can be described
as a dynamical system (X, y) where X is the set of the states and y : R x X — X is
the time evolution map. If uy(x) € X, the evolution of the system will be described
by the function

u (2,x) 1= yup(x). “)

We assume that the states of X have “finite energy” so that they decay at co
sufficiently fast and that

XcL, (R V). )

loc

Thus we are led to give the following definition:

Definition 2.1. A dynamical system (X, y) is called of FT type (field-theory-type)
if X is a Hilbert space of functions of type (5).

The dynamical systems we shall consider will be tacitly assumed to be of FT

type.
Let .7 be the group of translations in RY and U (V) the group of unitary
transformations on V; set

G=97xU()

Given (t,h) € G we will consider the representation of G on X C L} (R",V)
given by

[T(t,h)u] (X) = hu(x — ‘L')
For example, take X = 12 (RN, (C) h=¢? e U(1), then
[Temu] () = ®u(x — 1)

A solitary wave is a state of finite energy which evolves without changing its
shape. This informal description can be formalized by the following definition:
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Definition 2.2. A state uy € X\ {0} is called solitary wave if there is a continuous
trajectory

t— (t(t),h(t) € G
such that
yo(x) = h(t)uo(x — (1))
For example, consider a solution of a field equation having the following form:
u (7, x) = up(x — vt — x0)’ V¥ yy € L2(RV); (6)

X0, v € RN, w € R. Clearly u (7, x) is a solitary wave for every ¢ € R. The evolution
of a solitary wave is a translation plus a unitary change of the internal parameters
(in this case the phase).

2.2 Orbitally stable states and solitons

The solitons are solitary waves characterized by some form of stability. To define
them at this level of abstractness, we need to recall some well-known notions in the
theory of dynamical systems.

Definition 2.3. A set I' C X is called invariant it Va € IVt € R, yu e I

Definition 2.4. Let (X, y) be a dynamical system and let X be equipped with a
metric d (it is not necessary to assume that d(u, v) = ||u — v|y). An invariant set
I' C X is called stable (with respect to d), if Ve > 0,36 > 0, Yu € X,

du,I') <6,
implies that
Vt>0, d(yu,I') <e.

Definition 2.5. Let (X, d) be a metric space and let .7 be the group of translations.
A set I' C X is called 9 -compact if for any sequence u,(x) € I there is a
subsequence u,, and a sequence 7; € .7 such that u,, (x — t;) is convergent with
respect to the metric d.

Now we give the definition of orbitally stable state:

Definition 2.6. Let (X, y) be a dynamical system with X equipped with a metric d.
A state u € X is called orbitally stable (with respect to d) if u € I' C X where
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(1) I is an invariant stable set with respect to d,
(ii) I is 7 -compact (with respect to d).

This definition is usually present in the literature relative to the dynamics of
PDE’s (see, e.g., [6, 11], etc.).
Now we are able to give the definition of soliton:

Definition 2.7. Let (X, y) be a dynamical system with X equipped with a metric d.
A soliton is an orbitally stable solitary wave (with respect to d).

Remark 2.8. In our definition, since (X, y) is a dynamical system, the map
t— yu

is continuous with respect to ||-||. In the above definitions, we have introduced a
distance d, however we have not supposed that

d(u,v) = [lu—v|x

In fact, in some applications this is not true. As we will see in section 4, this is the
case for equation (1) where we have

d(u,v) < Mu—v|y

for a suitable constant M > 0.

2.3 Hylomorphic solitons

We now assume that the dynamical system (X, y) has two constants of motion: the
energy E and the hylenic charge C. At this level of abstraction, of course, the name
energy and hylenic charge are conventional.

Definition 2.9. Let (X, y) be a dynamical system where X is equipped with a metric
d. A soliton uy € X is called hylomorphic if the set I" (given by Def. 2.6) has the
following structure

r=r (60,60) = {ll eX | E(ll) = €y, |C(u)| = C(]} @)
where

e = min{E(u) | |[C(w)| = co} . ®)

Notice that, by (8), we have that a hylomorphic soliton uy minimizes the
energy on

My, ={ueX|[Cw)| = co}. ®)
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If 7M., is a manifold and E and C are differentiable, then uy satisfies the following
nonlinear eigenvalue problem:

E'(u) = AC'(up).

3 Hylomorphic solitons for the nonlinear Schrodinger
equation

The solitons for eq. (1), as we will see, are related to the solitons of the non-
linear Schrodinger equation. We recall that the orbital stability for the nonlinear
Schrodinger equation has been proved in [6] (see also [1] for the general case and
[9] with its references).

Here we shall use a method to prove the existence of hylomorphic solitons for
(1) similar to the one presented in [5] (see also [3] and [4]). In this section we will
resume this method.

The nonlinear Schrédinger equation is given by

oy 1Ry 1
B = e VW 1o

where ¢ : R x R — C and where W : C — R and

LW AW

We assume that W depends only on ||, namely

14

W) = F(|y) and so W'(y) = F’(IWI)M-

for some smooth function F : [0, c0) — R. In the following we shall identify, with
some abuse of notation, W with F.
The energy is given by

e [ (5

Moreover the Schrodinger equation has an other important integral of motion

2
+ W(‘(ﬁ)) dx (12)

C=/|w|2dx (13)

to which we will refer as charge.
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We make the following assumptions on the function W :

W(0) = W'(0) =0 (14)
W”(0) = 2E; > 0. (15)
If we set
W(s) = Eyps®> + N(s), (16)
then,
Iso € RT such that N(s¢) < 0. 17)

There exist ¢, rin (2, +00), s. t.
IN'(s)| < 15" + cp597! (18)
N(s) > —cs?, ¢ >0, 2 < p < 6 for s large (19)

We can apply the abstract theory of section 2 setting:

e X=H'R,C),u=vy;
e dY, @) =V — @l .

Theorem 3.1. Let W satisfy (14),...,(19). Then there exists 8o > 0 such that for
every 8 € (0,8s0) there exist cs > 0 and an orbitally stable state s € H' (R, C),
such that s minimizes the energy on the manifold

M, = {ueX| /|1/f|2dx=c,;% .

Moreover if §; < 8§, we have that cs, > cs,.
Proof. The proof is an immediate consequence of Th. 52 in [5] (see also [3]). ad

By the above theorem we have that every s is an orbitally stable state; the
following theorem shows that it is a soliton.

Theorem 3.2. Let us € H'(R, C) be a orbitally stable state as in Th. 3.1. Then ug

is a solution of the equation

Lo L = (20)
202 T T e
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and

Vs (,x) 1= ug(x)e "'

solves (10). Namely us is a (hylomorphic) soliton.

Proof. See Proposition 59 of [5] (see also [3]).

4 Hylomorphic solitons for the generalized KdV equation

1)

First of all let us show that the “good” solutions of equation (1) have two constants

of motion.

Proposition 4.1. Let W be a C? function and u be a smooth solution of equation
(1) and assume that u(t,.) € H'(R), %(t, ) € L*(R). Then u has two integrals of

motion: the energy

1Toul?
E:/(E [5} +W(u)) dx
C:%/uzdx

and the charge

Proof. Since %—’;(t, ) e L2(R) and

_83u+8W,()_8u
e ok W 0

the integral

9%u , ou
/ (—@ + W (u)) de

is well defined and it equals the time derivative of E(u(r)) :

d 02 el
EE(u(t)) = / (_B_xL; + W/(u)) a—’:dx

Moreover

(22)

(23)

(24)
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P , 3 (P u
=g e =5 (G- w)

Substituting (25) in (24), we get

0%u 0%u ,
[ (G- wa) o (55 - ww)ax
_ ! 9 Pu 4 2 dx=0
=3/ 5| (e -ww) |

Then E is constant along the solution u.
Let us now show that also C is constant along u. By (25) we have

—C(u) /u—dx— /u(—33—3 + — W’(u))

Let us compute each piece separately:

/ P u d_/au 32ud_1/8 8u2_0
“\Tae awx\a )Y T2 e \ax) ~

Moreover

S0

/u—(W ())dx = — /W(u)—dx— /%W(u)dx: 0

Substituting (28) and (27) in (26) we get 3 C(u) =0.
We will apply the abstract theory of section 2 setting:

© X=H®):
© dwv) =Y — ¢l -

17

(25)

(26)

27)

(28)

To this end, we need the following assumption which guarantees that also the

weak solutions in H?(IR) have the properties required by the theory.

Assumption 4.2 We assume that the equation (1) defines a dynamical system on
X = H?*(R), namely, for any initial data uy € H?*(R) there is a unique (weak)
solution in C(R, H*(R)) of the Cauchy problem. Moreover we assume that the

energy (22) and the charge (23) are conserved integrals.

Remark 4.3. Clearly, assumption 4.2 depends on W. By the existence theory of

Kato [7], the assumption

—w” (S)
4

lim sup
s>too S

<0

(29)
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implies the existence of a unique global solution of eq. (1) in C(R, H*(R)) and the
conservation of (22) and (23). For the well posedness of equation (1) see also [8, 10]
and their references.

Theorem 4.4. Let W satisfy the assumptions (14),...,(19). Then there exists 600 >
0 such that for every § € (0, 8o0) there exist cs > 0 and us € H*(R) which minimizes
the energy E on the manifold

ED?C&:{MGX| /uzdx:q}.

If 81 < 8, we have that c5; > cs,. Moreover, if also assumption 4.2 holds, then us is
an orbitally stable state.

Proof. The proof of this theorem is essentially the same as the proof of Th.3.1
which can be found in [5], Th. 52 (see also [3]). The reason for this relies on the fact
that the energy and the charge for eq. (10) given by (12) and (13) are formally the
same as the energy and the charge of eq. (1) given by (22) and (23). The fact that in
the first case ¥ is complex while in the second case u is real valued does not affect
the estimates.

Another difference concerns the space X which is H'(R, C) for eq. (10) and
H?(R) for eq. (1).

The proof of the theorem consists in minimizing a suitable functional K5 on X.
In the case of eq. (1), we minimize first the functional K5 on H'(R) and then we
can prove that the set I's of these minimizers is contained in H*(R). In fact the
minimizers satisfy the following eigenvalue equation

0%u ,
_ﬁ + "% (M) = A.gl/t

and hence, since W € C?, by the standard elliptic regularization, we have that I's C
H?(R). O

Remark 4.5. Assumption (15) is not necessary. It is not restrictive to assume that
E() >0

Proof. In fact consider the following equation

du  Pu 0y =0 (30)
- - - — u) =
d o ox ’

where W((0) = —2E, < 0. In this case it is convenient to consider the equation
W LB iy =0 31)
- PR —— V) =
o ox*  Ox
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where W(s) = Wy(s) + (Eo + 1) s*>. We have that
W' 0)=2>0
and to every solution v of eq. (31) corresponds a solution
u(t,x) =v(t,x+ ct) with c=2(Ey+ 1)

of eq. (30). In fact

%_‘_@_iw’()_a_v a_v 33_12_2W,(U)

o o O Ty T T T ax e
Jv Jv RERY d
WL TV 9 ey — 2 (B 4 1
5 T T V@) =2+ D]
o  Pv 9, ) v
29 L aE+ne
o Tae W teg 2B+ D
—0.

We shall prove that the minimizer us in Theorem 4.4 is a soliton (def. 2.7).

Theorem 4.6. Under the assumptions and the notations of Th. 4.4, the minimizer
us is a (hylomorphic) soliton. Moreover it is a solution of the equation

83u5 d au,g
—2 — — W (us) = c5— 32
x> ox (us) = cs ox 52)

and
Us(t,x) := us(x — cst)

solves (1).

Proof. By th. 4.4, the minimizer u; is an orbitally stable state. So, in order to show
that it is a soliton (def. 2.7), we need to prove that u; is a solitary wave (def. 2.2).

Since us is a minimizer of the energy E on the manifold 9., there exists a
Lagrange multiplier c; s.t.

E'(us) = —c5C (us).
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The above equality can be written as follows:

0%us
—WM; + W'(us) = —csus
So, if we take the derivative % on both sides, we get (32). Finally (32) implies that
the travelling wave u(t, x) = ug(x — cst) solves (1) and consequently u; is a solitary
wave. O

Corollary 4.7. Equation (3) admits hylomorphic solitons fork = 1,2, 3.
Proof. Take

k2

_ 2
W =Es — Gy ar

Ey > 0 (33)
For k = 1,2, 3 the function W satisfies (14,...19) and (29). So, by Remark 4.3

also the assumption (4.2) is satisfied. Then, by Theorem 4.6, equation (1) with W as
in (33), for k = 1, 2, 3, admits hylomorphic solitons. Then, by Remark 4.5, equation

(3) for k = 1,2, 3 admits hylomorphic solitons. O
Corollary 4.8. If W(s) = —|s|**2, then equation (1) admits hylomorphic solitons
fork e (0,4).

Proof. The proof is the same as for corollary 4.7. O

Results analogous to the above corollaries are contained in [11].
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A consequence of Djairo’s Lectures
on the Ekeland variational principle

Lucio Boccardo and Luigi Orsina

Dedicated to Djairo for his 40th birthday, twice

1 Introduction and statement of the result

In [1] we considered some properties of the minimizing sequences for integral
functionals J. Thanks to the Ekeland Lemma, the subject of the lectures given by
Djairo in Bangalore (see [3]), we proved the existence of a minimizing sequence
compact in L*(£2) or in C% for functionals which do not need to have a minimum,
without using the integral representation of the relaxed functional J*.

In this paper, we improve the study done in the paper [1], under the assumption
that the functional J has a minimum belonging to L*°(§2). Using again Ekeland’s
e-variational principle, we prove that there exists a minimizing sequence u, for J
which uniformly converges to a minimum u.

Let us now make the precise assumptions on the functional J. Let £2 be an open,
bounded subset of RY, N > 2, and let p be a real number, with 2 < p < N. We will
denote by p* the Sobolev exponent of p, i.e., p* = NN—fp

Letj: 2 x RY — R be a Carathéodory function (i.e., measurable with respect
to x for every £ € R", and continuous with respect to £ for almost every x € £2)
convex with respect to &, and such that

al§l" < jx &) < BIEI, (1)

for almost every x € £2, for every £ € R, where «, 8 are positive real numbers.
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Letf in L"(£2), with m > (p*)’, and let J : W,”(£2) — R be defined by
J(v) = /j(x, Vv)dx — / f(x) vdx, v e Wé’p(.Q).
Q Q

Under the assumptions on f and p, J is well defined on Wé P(£2).

We will further assume that there exists a(x,§) = je(x, §) which satisfies the
classical Leray-Lions assumptions (see [8]) and the standard strong monotonicity
assumption

[a(xvg)_a(x’ ’7)][5—'7] 205|§—'7|p stn ERN~ (2)

Examples of functions j such that (2) holds true are j(x,&) = a(x)|E]P, with a
a measurable function such that « < a(x) < B. Since the strong monotonicity
condition is simpler to handle if p > 2 (the above assumption (2)), and is a little bit
more involved if 1 < p < 2, we confine ourselves to the former case.

Since J is both weakly lower semicontinuous and coercive on Wé’p (£2), there
exists a minimum u of J; we have the following results on the summability of such
minima.

Theorem 1.1. Let u be a minimum of J on Wé'p([?). Then
(i) ifl <m< %’, then u belongs to L° (£2), 0 = ("I':’—,)* (see [2]);
(ii) If m > %’, then u belongs to L*(82) (see [7, 9]).

Let us now recall Ekeland’s e-variational principle (see [4—6]).

Lemma 1.2. Let (V,d) be a complete metric space, and let % : V — (—00, +00]
be a lower semicontinuous function such that infy % is finite. Let ¢ > 0 and u € V
be such that

F(u) < inf #(v) +¢.
vev

Then there exists v € V such that

(i) d(u,v) < /e
(ii) F(v) = F(u);
(iii) v minimizes the functional 9 (w) = F (w) + J/ed(v,w).

Our main result is the following.

Theorem 1.3. Let J be defined as above, with j satisfying (1). Let
N
fel™(2) m>—, 3
p

and let q be such that q* = m'; we also suppose that J' satisfies (2). Let u be a
minimum of J on Wé’p (£2), and let {u,} be any minimizing sequence for J. Then the
minimizing sequence {u,} built after {u,} using the g-variational principle satisfies
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iy = 1) = 0. o)
Jim =l o =0 5)
and
nl—l>nolo ”un - u“LOO(Q) =0 (6)

The plan of the paper is as follows: we will prove Theorem 1.3 in Section 2,
and in Section 3 we will show that adding a lower order term to J will allow us to
prove the same result under the assumption that f belongs to L?(£2), and not to the
possibly larger space L™ (£2), m > %

2 Proof of the main result

For k > 0 let us define
Ti(s) = max(—k, min(k, 5)) , Gi(s) = s —Ti(s).

Before proving Theorem 1.3, let us note that since we know (see Theorem 1.1) that
any minimum u belongs to L>°(£2), there exists M such that |u| < M. Since the
sequence {u,}, with u,, = Ty (u,), satisfies

/ 6, VT () d— / FO Tu@)dr < inf J(0)+ent / F6) Gaa (i) v,
2 2 2

L,
vew,”(2)

and since

lim /Q F) G i) dx = /9 £ Gurluw) dx = 0,

n—-+00

we have that

/ Jjx, Vu,) dx — / f@u,dx < inf J()+é&,.
Q Q

1,
vEWOp(.Q)

That is, the sequence {u,} is a minimizing sequence for J, and it is bounded in
L>(£2).

Theorem 1.3 says more than that: thanks to the e-variational principle, it is
possible to build a minimizing sequence not only bounded in L*°(§2) but also
strongly convergent to « in the same space.
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Proof (PROOF OF THEOREM 1.3). Note that if g is as in the statement, the
assumption m > 7 implies that

l<g< p. @)

—_— <
N—-p+1

Let &, be a sequence of positive real numbers, converging to zero, and let ,, be such
that, for every n € N,

J(,) < inf JW)+e,.
veEW ()

Let us now consider the complete metric space Wé’q (£2), endowed with the distance

1
1 q
d,(w,v) = /dw—dqux:| .

Thanks to Fatou Lemma, to the fact that j(x, £) > 0, and to the fact that f belongs
to W14 (2) being ¢* = m’, we have that J is strongly lower semicontinuous on

1,
W, 1(2).
Thus, in view of Lemma 1.2, there exists a sequence {u,} in Wé’q(.Q) such that

[/ |dun—dﬁ,,|‘1dx]q < Ve,
2

which proves (4), and

J(uy,) <J@,) < inf  J() + &, (8)
veW, " (2)
J(un) < J(W) + /2n [/ |du, — dw|qu}q , Vw e Wo(82). )
2

Using the growth properties of J we have that u, is bounded in Wé 7 (£2); indeed, by
(1), we have

oz/ |Vu,l|pdx§/j(x,Vu,,)dxf/f(x)undx—i— inf  J(v) + &,,
2 Q2 Q vEWR?(R2)

which implies that the sequence {u,} is bounded in WS"’ (£2) since f belongs to
w (£2). Thus, up to subsequences, still denoted by {u,}, there exists a function
uin Wy" (£2) such that
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Uy —>u weakly in W(;"" (£2) and almost everywhere in £2. (10)

By the weak lower semicontinuity of J on Wé ?(£2), and by (8), u is a minimum of
J on this space.

Moreover, choosing w = u, — ¢t in (9), where ¢ is a positive real number and
. . . 1p .
is a function in W (£2), we obtain

J(u,,—tlﬁ)—](u,,)+ 8”t|:/ |dw‘|qu:|q20
2

Dividing by #, and letting ¢ tend to zero, we get, since J is differentiable,

_<-,/(un)vW) —|— \/al:‘/g |d,(//|qui|q Z 0’

so that

(' (un). ) < «/8_[/!2 Idwlqu]q. (11)

Recalling that J’(«) = 0 since u is a minimum, we have

1

) =T ), ) < ﬁ[ / |dw|qu]“ |
for every ¥ in Wé P(£2). Observe that

). 0) = /Q a(x. duey)dy dx — /Q FOOY d. (12)

Choosing v = u, — u, it is easy to prove (5) using (2). In order to prove (6), let
k > 0, define Ay, = {|u, — u| > k}, and choose ¥ = Gy (u, — u); we obtain, by (2),
and by Holder inequality,

1

o /Qlde(un —u)Pdx < Js_[/g |d:;k(u,, —u)|qu:|q
< Ve |:(/ |Gy (1, — w) | dx)pmeas (Ak,n)l_g:|
Q

1

= ¢8_n|:/ |[dGy (u, — u)|? dx:|pmeas (Ak,n)i_% ,
I?)

1
q
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which in turn yields

( / |de<un—u)|"dx) < e meas (Ar,) 777 .

Using Sobolev inequality, and choosing 7 > k we arrive after straightforward
passages, to

7

P 7
(h — k)’ meas (Ah,n)ﬂL* < C; &2 meas (Ak.n)(é—ll’)” ,

which implies

p*
1 2
meas (A, ,) < C —meas Arn) P (3_17)”
(i) = Co G pmmens () ™
Note that (7) implies that
*r1 1
(-
pP\4 P
so that, by Lemma 4.1 of [9],
A
it =t e g = Cl

for some positive constant A depending only on p and N. Recalling that ¢, converges
to zero, we have the result. a

Remark 2.1. Assumption (3) was used only to ensure that the functional J is lower
semicontinuous on Wé’q (£2). Since the terms with f “cancel out” when calculating
J' (u,) — J'(u), the summability of f is not necessary to prove that u, — u belongs to
L>(£2).

Remark 2.2. 'We remark that from (11), choosing i and — it follows that u,
satisfies

o [ /Q |d1/f|qu} < )y < [ / |dw|qu} . (13)

Thus,

1

U ) =T ) ) < [ / |dw|wx] +¢a[ / |dw|wx]
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The choice of ¥ = Gy(u, — u,,), and the same steps in the proof of Theorem 1.3,
yield

<c(en+en)t. (14)

”“n - um”L‘X’(.Q) =

Note that we cannot say that {u,} is a Cauchy sequence in L°°(£2), since the
functions u, may not belong to L°°(£2), even if the difference of two of them is
bounded. However, passing to the limit in (14) as m tends to infinity, the almost
everywhere convergence (10) implies that

i =l g = €0 (15)

which implies that the functions u, belong to L*°(§2), since u € L°°(£2), and that
the sequence {u,} uniformly converges to u. In other words, Theorem 1.3 can also
be proved starting from (14).

3 The impact of a lower order term

Let the integral functional J be defined now by

1
Jw) = /j(x, Vv)dx + 5/ [f(x) —v]*dx, ve WS")(.Q) NL (), (16)
Q2 2
where
felLl*(). 17)
Note that Wy (2) N L*(£2) = W,”(£2) if p > ;5. Since both j(x, Vv) and [f(x) —
2 are positive, J is lower semicontinuous on Wé’q (£2), for every g > 1.
Note that any minimum « of J does not belong to L*>°(£2), if 2 < %, ie.,ifp < %

Then the minimizing sequence {u,} built after {i,} using the e-variational
principle satisfies (11) with g = 1:

v

(J'(un), V) < Jen / |dy | dx, Vwe W' (2).
Q
Observe that now

). ) = /Q a(x. duy)dy dx + /Q U ()Y dix — /Q fOvd.  (8)
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We can follow the same steps as in Remark 2.2 in order to prove inequalities (14)
and (15), but now the assumption on f does not imply that u € L°°(£2). Therefore,
in (15) the function u, and its limit # may not belong to L*>°(£2); nevertheless, their
difference belongs to L°°(£2) and tends to zero in that space.
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Waveguide solutions for a nonlinear Schrodinger
equation with mixed dispersion
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1 Introduction

The standard model for propagation of laser beams is the 2D Schrédinger equation
with Kerr nonlinearity

0y + Ay + [y 'Y =0, ¥(xy,0) = Po(x.).

It is well known that this equation can become singular at finite time, see, for
instance, [13] and the classical references therein. Karpman and Shagalov [16]
studied the regularization and stabilization effect of a small fourth-order dispersion,
namely they considered the equation

0y + Ay + [y |y — yA*y =0, (1)

for some y > 0, the equation being now considered in [0, co[xRY, N > 1. One of
their results shows, by help of some stability analysis and numerical computations,
that when No < 2, the waveguide solutions are stable for all ¥ and when 2 <
No < 4, they are stable for small values of y. This result shows that when adding
a small fourth-order dispersion term, a new critical exponent/dimension appears. In
particular, the Kerr nonlinearity becomes subcritical in dimension 2 and 3 which is
obviously an important feature of this extended model.
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In [13], Fibich et al. have motivated the study of (1) by recalling that NLS
(the nonlinear Schrodinger equation) arises from NLH (the nonlinear Helmholtz
equation) as a paraxial approximation. But since NLS can become singular at a
finite time, this suggests that some of the small terms, neglected in the paraxial
approximation, plays in fact an important role to prevent the blow up. The natural
question addressed by Fibich et al. is therefore whether nonparaxiality prevents the
collapse. The small fourth-order dispersion coefficient y is then shown to be part of
the nonparaxial correction to NLS.

In [13], Fibich et al. showed the role of the new critical exponent 0 = 4/N
in the global existence in time when applying the arguments of Weinstein [25].
The necessary Strichartz estimates follow from Ben-Artzi et al. [1]. A necessary
condition for existence of waveguide solutions is given in [13, Lemma 4.1], see also
the Derrick-Pohozahev identity in Section 6.

The purpose of this short note is to show that classical tools, available in the
literature, allow to state the existence and some qualitative properties of least
energy waveguide solutions. In particular, a small fourth-order dispersion coefficient
does not affect the symmetry, uniqueness and nondegeneracy of the least energy
waveguide solution at least for a Kerr nonlinearity in dimension N < 3.

From now on, we focus on standing wave solutions of (1), referred to as
waveguide solutions in nonlinear optics, namely on solutions of (1) of the form

Y(t,x) = exp(iot)u(x).
This ansatz yields the semilinear elliptic equation
YA2u(x) — Au(x) + au(x) = [u/*u(x), xeR". 2)

By scaling the solutions as v(x) = u(-%=), it is equivalent to consider the equation
y g 7y q q

A%v(x) — BAV(X) + av(x) = [v[Pv(x), xeRN. 3)

where = ﬁ

It is standard that least energy solutions can be obtained by considering the
minimization problem

may = EIAI’IIFRN Jev (1) €]
where
vt = [ (AP + BITul + al) d ©
and

Mgy = {u € H*(R") : / lul** T2 dx = 1.
RN
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Indeed, if u € My~ achieves the infimum m = mpw, then u weakly solves
A%u— BAu+ au = m|u)*u. (©6)
Henceforth, if m > 0, then v = (m)ﬁu solves (3). Moreover v is a least energy

solution in the sense that it minimizes the action functional E : H*(R¥) — R
defined by setting

1 1
E(u) := = Jgn(u) — g
() := —Jrn (u) 2a+2/RN|”| ¢

among the set of (H?> or smoother) solutions or equivalently within the Nehari
manifold

{u e H*RY) : E'(u)(u) = 0}.

We then prove the following results.

Theorem 1.1. Assume o > 0, B > —2/w and2 < 20 +2 < ZL ifN > 5.
Then problem (3) has a nontrivial least energy solution. If B > 2./a, then any least
energy solution does not change sign, is radially symmetric around some point and

strictly radially decreasing.

An existence statement (as well as the information on the sign of the minimizer) is
also given in Section 3 and Section 4 when the equation is considered in a bounded
domain with Navier boundary conditions. The symmetry properties of the solutions
that match the symmetries of the domain are discussed in Section 4.

When S is large, the Laplacian is the driven term in the differential operator in (3)
and we therefore expect to recover the uniqueness (up to translations) of the least
energy solution. By scaling, we can discuss this issue by looking at least energy
solutions of (2) for small y. As a preliminary observation, we prove the strong
convergence in H' to the unique least energy solution of NLS.

Theorem 1.2. Assume?2 <20 +2 < % if N > 3. If yr. = 0and uy is a sequence
of least energy solutions of (2), then (uy); converges (after possible translations) in
H' to ug, where uy is the unique positive (radially symmetric) solution of the limit
problem (2) with y = 0.

The positive solution of (2) with y = 0 is unique up to translations. To ensure
uniqueness, we have assumed that u, is the positive solution radially decreasing
around 0. For the physical model (2) with ¢ = 1 in dimension N < 3, we can
improve this convergence to strong convergence in H2. The nondegeneracy of the
least energy waveguide of NLS allows then to use the Implicit Function Theorem to
prove uniqueness for small y.
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Theorem 1.3. Assume N < 3 and 0 = 1. Then there exists yy > 0 such that if
0 < y < v, (2) has a unique least energy solution (up to translations). Fixing
its maximum at the origin, this solution is radially symmetric and strictly radially
decreasing.

An equivalent statement can be proved for the Navier boundary value problem in a
ball (and a weaker statement holds for other bounded domains), see Section 6.

In the H' critical or supercritical regime, the least energy solution should
disappear at the limit y — 0. In fact, if 2% <20 42 < 25, N > 5, the least
energy solutions are unbounded in H> when y — 0, see Section 6.

In contrast with Theorem 1.1, when B is small in (3), some of the usual properties
of the least energy solution of NLS cannot hold. Namely, if one can prove that any
least energy solution is radial in that case, then oscillations arise at infinity. These
oscillations were suggested in [13]. We focus again on the model equation (2) with
o = 1 in dimension N < 3. We prove that least energy solutions among radial

solutions do oscillate at infinity.

Theorem 1.4. Suppose that —2/a < B < 2./a and N < 3. Then every radial
least energy solution of (3) with o = 1 is sign-changing.

This statement shows that when 8 < 2./a, least energy solutions cannot be radial
and monotone in contrast with the case 8 > 2./a. We point out that on a bounded
domain, we are not aware of an equivalent statement.

The paper is organized as follows. Section 2 deals with the functional framework
and the formulation of the problem on a bounded domain. In Section 3, we prove
the existence of a least energy solution in the whole space as well as in bounded
domains. In Section 4, we consider the qualitative properties for large 5. Section 5
is dedicated to the proof of Theorem 1.2 and Theorem 1.3 while Section 6 contains
the proof of Theorem 1.4. In the last section, we give some concluding remarks.

Notes added in proofs: We thank Jean-Claude Saut for bringing to our attention
the reference [5] which deals with an anisotropic mixed dispersion NLS also
proposed in [13]. We believe that some arguments from [5] can be used to obtain
the exponential decay of the ground state at least in some particular cases.

We also mention the very recent preprint [6] where the first theoretical proof
of blow-up is obtained for the biharmonic NLS as well as a new Fourrier
rearrangement is proposed in the Appendix. This rearrangement decreases the L*-
norm of (—Au)*® for every s > 0 and is therefore adequate to deal with polyharmonic
as well as fractional equations. Applied to our problem, it completes Theorems 1.1
and 1.4 in the following way. Assuming B > 0 and ¢ € Ny (including therefore
the physical case 0 = 1), there is a ground state solution of (C) which is radially
symmetric. As a consequence of Theorem 1.4, assuming 0 € Npand 0 < 8 < 2./«
this ground state is radially oscillatory at infinity. When o is not an integer, the
radial symmetry remains an open question in the range 8 < 2./« though the natural
conjecture is that radial symmetry holds for every ¢ and every B in the range covered
by Theorem 1.1.
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2 Functional framework

In this section, we settle the functional setting. The natural space for (2) and (3)
is H*(RN) or H*(£2) N H}(£2) when we consider the boundary value problem in a
bounded domain £2 C RY with Navier boundary conditions, namely

A%u— BAu+ au = |u|*°u, in £2,

(Pp) u=Au=0, on 052.

We therefore set Hp := H*(£2) N Hj(£2) and Hgy := H*(RY). We introduce the
following conditions on « and 8:

A a > 0and B > —2./a;
A1) & > —BA1(£2) — A2(82) and —241(82) < B

where A;(£2) stands for the first eigenvalue of —A in H} (§2) when £2 is a bounded
domain. Observe that when |§2] is large, A;(£2) is small. If 8 is negative, (A1)
is then more restrictive than (A1). The following lemma follows from standard
computations.

Lemma 2.1. Assume 2 is a bounded smooth domain and (A1) or (A1") holds. Then
Hg, is a Hilbert space endowed with the inner product defined through

(u,v):/(AuAv—i—ﬁVqu—i—auv)dx Y u,v € Hg.
f7)

Proof. From H? elliptic regularity [14, 18], we know that if u € H*(2) N H}(£2),
then

lull < CllAulr2

for some C > 0 depending on 2, so that H, is a Hilbert space endowed with the
inner product

(U, V) u, =/ AulAvdx Yu,veHg.
2
It will be enough to show that there exists a constant C > 0 such that
/(IAu|2+/3|VuI2+a|u|2)dxzCIIMIIHQ VueHg. @)
2

Obviously the inequality (7) holds true if we have @ > 0 and 8 > 0. For u € Hp,,
we can apply Young’s inequality to obtain
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P = /Q (AuP + BIVul + alul) dx

= / (|Aul* — Budu + a|u|?) dx
o)

> (1 + ﬁ)/ | Aul? dx + (a + &)/ |u|* dx 8)
2 ) Jo 2 ) Ja

for every € > 0. We have to distinguish two cases. If we can choose € > 0 such that
both terms in the right-hand side of (8) are positive, then we are done. This ends the
proof if 8 > —2./«, namely if (A1) holds. If

1+2’%>0 and a+%<0,
we write
||u||22(1+£) [ [ 1aupar+ g [ |u|2dx]
2¢ Q Q
where
© o+ Be/2
€)= ———.
& 1+ B/2¢

Recalling Poincaré inequality

/ | Aul? dx > A%(:z)/ wdx YueHg,
2 2
we can complete the proof if
g(e) > —A7(82)
for some € > 0. When 8 > —21,(52), this condition can be fulfilled if
a > —pAi(R2) — A} (2)
while if B < —21,(£2), we recover the condition

—2Ja < B.
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In the case £2 = RY, the same arguments show that (A1) implies
(u,v) = / (Audv 4+ BVuVv + auv) dx
2

is a scalar product on Hyw. Elliptic regularity can be used here to ensure that

(l + 2’%) /]RN | Aul? dx + (oe + %) /RN |u|* dx

is a norm on H*(RM) as soon as 1 + 2’% > 0and @ + % > 0. This yields the
following lemma.

Lemma 2.2. Assume that (A1) holds. Then the bilinear form

(u,v) = / (Audv + BVuVv 4+ auv)dx V u,v € Hyw,
2

is an inner product on Hpx.

3 Existence of minimizers

In this section, we handle the minimization problem (4). We start with the simpler
case of a bounded domain. In this case, the minimization problem writes

mg = uélgg J_Q(I/l)
where
Ja) = [ (Au + BIVu + alu) ds
2
and

Mg = {uEHQ:/ lu** T2 dx = 1.
2

In the case of a bounded domain, it is standard to prove that my, is achieved when
20 + 2 is a subcritical exponent because Jg; is the square of a norm on Hp and we
can rely on the compactness of the embedding of Hg into L?°*2(£2). Moreover,
since my; is clearly positive, we deduce that v = (mg)iu solves (Pg). Moreover v
is a least energy solution in the sense that it minimizes the action functional Eg; :
Hg — R defined by
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1 1
Eqo(u) := EJQ(M) %12 /Q |u|>> 2 dx

among the set of (H?> or smoother) solutions or equivalently within the Nehari
manifold

{u € Hg : Eg(u)(u) = 0}.

Theorem 3.1. Assume §2 is a bounded smooth domain and (A1) or (A1) holds.
Suppose moreover that 2 <20 + 2 < 1% if N > 5. Then problem (Pg) has a
nontrivial least energy solution.

To handle the case of 2 = R, since we cannot use sign information, nor
symmetry, we follow the celebrated method of concentration-compactness of P.L.
Lions. We give a sketchy proof since classical arguments apply. All the details can
easily be reconstructed from Kavian [17, Chapitre 8 - Exemple 8.5] with minor and
obvious modifications with respect to the case treated therein.

Proof (Proof of the existence part in Theorem 1.1.). We introduce
M, = {u e H*R"): / lul*2dx = A}
RN

where A > 0 is fixed and we consider the minimization problem

my := inf JRN(M)
UEM)

where Jgv (1) is defined as in (5).

Let (u;)r C M; be such that Jgv () — m;. Then, (uz)x is bounded in H>(RY)
and [y [ue|*’ T2 = A. Thus, we can apply P.L. Lions’ concentration-compactness
lemma to the sequence (o) = ([fpv [kl )k, see [21, Lemma I 1]. Since
my = /\#ml, we have m; > 0 for all A > 0 and therefore, for all R > 0, the
sequence

O«(R) := sup/ | (x) |27 F2 dx
Br(y)

YERN

does not converge to zero. Namely, vanishing is ruled out.
Since 20 + 2 > 2, we have, for0 < 6 < A,

AT < 03T 4 (A — ),
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which yields
my < mg + my—gp, Vo G]O,A[. ©)]

Then dichotomy is ruled out using classical truncation arguments.

Therefore, the compactness holds for py, i.e., going to a subsequence of (i) if
necessary, there exists a sequence (y*) C R such that for every & > 0, there exists
R > 0 such that

/ e T2dx > A —e.
Br(¥%)

Setting wi(x) := wui(x 4+ y*), we have that (wy) is also a minimizing sequence for
m;.. Then, up to a subsequence, w; weakly converges in H>(R") to w € M, and
Jry (W) = my. This concludes the proof of the existence in Theorem 1.1. O

Remark 3.2. When B > 2./a, we can avoid the use of the concentration-
compactness lemma. Indeed, take a minimizing sequence (u;), C H*(RM) for
m. Then, let us set f; := —Au; + Buy/2 and define v, € H*(RY) to be the
strong solution of —Av; + Bu/2 = |fi|* in RY, where |f;|* denotes the Schwarz
symmetrization of |fi|. Thus for each k € N, we have v, € H2,(RY) which is

the space of H? functions that are radially symmetric around the origin. Then a
particular case of [3, Lemma 3.4] see also [4] implies

(ot)- [ aut puspias— @ s-a [ b

|vk|2a+2

|Uk|%a+2

/ (—Auy + Bug/2)* dx — (B?/4 — a)/ uidx
S RN RN )

|Mk|%a+2

Using the compact embedding of H?2,,(R") into L***2(RY), see, for instance, [20,
Théoréme I1.1], it follows that (v ), weakly converges in H? to some v € M and the
remaining arguments are standard.

4 Sign and symmetry

In order to investigate the symmetry properties of a fourth order equation with
Navier boundary conditions or in the whole space, it is natural to ask if the equation
may be rewritten as a cooperative system. If this is the case, then the moving plane
procedure applies, see the work of Troy [23] in the case of a bounded domain or
de Figueiredo-Yang [10] (if we assume exponential decay) and Busca-Sirakov [7]
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(without assuming exponential decay) when 2 = R". Observe that when o > 0
and |8| > 2+/a, we can indeed write the equation as a cooperative system

—Au + Eu— v=0 —-Av+ (x— —2)14 + Ev = [u|*u.
2 4 2

To prove that least energy solutions do not change sign, we use the minimality
combined to the classical maximum principle for a single equation. The argument

goes back to van der Vorst, see, for instance, [24]. We sketch it for completeness to
emphasize the role of the assumption |8| > 2./c.

Lemma 4.1. Assume that |B| > 2./a and —A,(2) < B/2 if 2 is bounded or
B > 0if 2 = RN, Ifu € Hg is a minimizer of (4), then

u>0 and —Au+Pu/2>0 inS2,
or else

u<0 and —Au+pPu/2<0 inS2.
Proof. Letw € Hg be such that

—Aw+ Bw/2 = | — Au+ Bu/2|, in £,
w=0, ondaSf2.

Then

—Awxu)+ Bwxu)/2>0.
Using the strong maximum principle we know that u has a fixed sign if —Au+8/2 u
does not change sign. We then argue by contradiction, suppose that —Au + Su/2

changes sign. Then | — Au + Bu/2| # 0 and the strong maximum principle implies
that w > |u|. For convenience denote by |- |2, 42 the L>**2 norm in £2. Therefore

JQ( w ): /Q(—Aw—i—ﬂw/2)2dx—(,32/4—05)/Qw2dx

|W|2a+2

|W|%0+2
/(—Au+ﬂu/2)2dx—(/32/4—oz)/ u? dx
< /e Q2

|”|§o+2

which contradicts the minimality of u. Observe that the last inequality holds because
the numerator is nonnegative. O
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Remark 4.2. In the case of a bounded domain 2 and 0 < a < A(£2)? we
then know the sign of the least energy solutions of (Pg) for values of 8 €
(—211(£2), —2+/a] U[24/a, o0). For £2 bounded, we do not know if the least energy
solutions change sign for 8 € (—2./a, 2./@). Section 6 deals with the case 2 = RV
under the assumption that the minimizer is radial.

Proof (Proof of Theorem 1.1 continued). Existence was proved in Section 3 while
we just proved in Lemma 4.1 that any least energy solution does not change sign.

Writing f(u, v) = (% —a)u— %v + |u|*u and g(u,v) = v — gu, the equation
is equivalent to the cooperative system

Au+ g(u,v) =0, Av+f(u,v) =0.

We are in the setting of Busca-Sirakov [7] and [7, Theorem 2] applies. Observe that
clearly u and v must be symmetric with respect to the same point. O

In the case of a bounded domain, we have proved so far the following result
for (Pg).

Theorem 4.3. Assume §2 is a bounded smooth domain and (A1) or (A1) holds.
Suppose moreover that 2 < 20 + 2 < % if N > 5. Then problem (Pg) has a
nontrivial least energy solution. If in addition |B| > 2/« and —A1(£2) < B/2, then
any least energy solution does not change sign. If §2 is a ball, then any least energy
solution is radially symmetric and strictly radially decreasing.

Proof. Existence has been achieved in Theorem 3.1 while the sign information
follows from Lemma 4.1. If £2 is a ball, the symmetry of the minimizer follows
from [23, Theorem 1]. O

We point out that the condition || > 2,/e is crucial to rewrite the problem (Pg)
as a cooperative system. In fact, we can deal more generally with smooth bounded or
unbounded domain £2 with some symmetries. Then the symmetry properties of the
solutions of constant sign can be deduced from the moving plane method adapted
to cooperative systems in [23].

5 The effect of a small fourth order dissipation

In this section, we study the behaviour of minimizers of (4) when the coefficient of
fourth order dissipation tends to zero. We assume throughout the section that o > 0
and we choose the norm on H'!(R") defined through

lull = /Q (V> + alul?) d.
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We recall that the problem

A2v(x) — BAV(x) + av(x) = [v|Pv(x), xeRY
is equivalent to

yA2u(x) — Au(x) + au(x) = [u/*u(x), xeR".

by scaling the solutions as u(x) = v(ﬁ) where y = 1/B2. As before we consider
the associated minimization problem

my = inf J; @)
where
M ={ueHg :/ [ul* 2 dx =1}
2
and

Iy () = /g W1 Aul + [VuP + aluP) dx.

When 2 = By or 2 = RV, the results of the previous sections imply that when
y < ﬁ, any minimizer is radially symmetric and strictly radially decreasing (after
a possible translation in the case 2 = RM). In the case 2 = R", we assume from
now on that the maximum of any minimizer has been translated to the origin.

For y = 0, the associated minimization problem is

my = uiergo Jo(u)
where
My = {u e H)(R): /Q ul**t2dx =1}
and
e = [ (u + aluf) dx.

Assume 2 < 20 +2 < I%ifN > 3,02 = Bpor 2 = RY and let u
be the unique minimizer of Jy in M,. We refer to [9, 15, 19] for the uniqueness
property (in the case £2 = RV, we fix the maximum of the solution at the origin

to achieve uniqueness). We first prove that if y;, — 0, then any sequence (uy); of
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minimizer of J,, converge strongly in H' to uy. A similar statement obviously holds
for other bounded domains except that uniqueness of the minimizer does not hold
in general so that in the conclusion, we can only state that we have convergence to
one minimizer, see Theorem 5.3.

Proposition 5.1. Assume 2 < 20 42 < 32 if N > 3, 2 = Bg or 2 = R". There
exists C > 0 such that for every y > 0, we have

my < m, < my+ Cy.
Moreover, if i, — 0 and (u) is a sequence such that J,, (uy) = my,, then uy — ug
strongly in H'.

Proof. The estimate of m,, is clear since by elliptic regularity, we easily infer that
uy € H*(2). Therefore, we have

my < Jy(uo) = J// | Auo|* dx + Jo(uo) < Cy + my,
7

whereas taking any minimizer u, for m,, we get
my =J,(u,) = y/Q |Au),|2dx—|— Jo(uy) = my.

Let ¥ — 0 and (u), be a sequence of minimizers for my := m,,. Then
/Q(|Vuk|2 + aju|?) dx < my < my + Cy — my.

Since we know that u; is a radial function, it follows that u; is bounded in Hrla 4(82) -
the space of H' functions that are radially symmetric around the origin—so that
up to a subsequence, u; converges weakly in H' to some u € M. The strong
convergence in L2 when 2 = RY follows from the compact embedding of
H! (RV) into L*2(RY), see [20, 22].

Now, by weak lower semi-continuity, we have

my < / (|Vul® + o|ul*) dx < liminf/ (V| + o|ug|?) dx
Q k—00 Q

< limsup/ (\Vur? + a|ug|?) dx = my.
2

k—00

Hence the convergence is strong in H' and u is a minimizer for mo. By uniqueness,
u = up and the whole sequence converges. O

In the model case with a Kerr nonlinearity in dimension N < 3, we can improve
this convergence.
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Proposition 5.2. Assume 2 = RV, 0 = land N < 3. If yv — 0 and () is a
sequence such that J,, (uy) = my,, then u, — ug strongly in H>.

Proof. To fix the ideas, we deal with the case N = 3, N = 2 being similar. The
starting point is an a priori bound in H' and the strategy is to end up with an a priori
H*-bound. We already know from Proposition 5.1 that u; converges to 1y strongly
in H'. To improve the convergence, we use the Euler-Lagrange equation

2 3
VA ug — Aug + ouy = myug,,

where my = m,,. We can assume y; < 1 and my € [mg, my + C].

C ol e . .
. ’
Bound in H'. Since u; is a minimizer, we can assume
||Ltk||Hl <my+ C.

This also provides an a priori bound in L9 for every ¢ € [2, 6].

Bound in H>. We denote v;, = —yxAuy. Then vy solves
1
— Avg + —vp = wy, (10)
143

where wy 1= mkui — ouuy.. Since Jy, (ux) < mo + C, we infer that v, — 0 strongly in
L?. In particular, (vi); is bounded in L?. Observe also that (wy); is a priori bounded
in L. Now, by elliptic regularity, we infer that v, € H>(R?) with a bound that does
not depend on k. Indeed, since % > 1, we get this a priori bound as in Krylov [18,

Chapter 1, Theorems 6.4 & 6.5]. Now, from this a priori H?*-bound on (vg); and the
Euler equation

— Auy + oy, = mkui + Avy, (11

we deduce that (i) is a priori bounded in H?(R?) as well.

Bound in H*. Tt is straightforward to check that the H?-bound on u; implies that
wi € L2(R?) and Awy € L*(R?). Then, elliptic regularity implies w; is bounded in
H? as well. Using again (10), we now infer that v, € H* with a bound independent
of k, arguing as in Krylov for H™*? regularity [18, Chapter 1, Theorem 7.5 &
Corollary 7.6]. Looking at (11) again, we have that the right-hand side is bounded
in H?, whence u; € H* with a bound independent of k.

Conclusion. Observe now that we can use the equation (11) to conclude. Since
—Av, = y A%u; — 0 strongly in L2, we conclude that

mkuz + Ay — moug
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strongly in L? and elliptic regularity applied to (11) implies that the convergence of
uy. to ug is actually strong in H>. i

Now that we have proved the strong convergence in H? to the unique minimizer
for y = 0, we can use its non degeneracy to apply the Implicit Function Theorem.
This yields Theorem 1.3.

Proof (Proof of Theorem 1.3). We start by setting X := H2,(R*) and Y :=
H72(R%).Let F : RT xX — Y be the operator defined (in the sense of distributions)
by

F(y,u) = yA%u — Au + au — |ul?u.

Namely, for every v € H*(R?), we have
F(y,u)(v) = / (yAuAv + VuVv + auv — |u>uv) dx.
R3

Obviously F(0, \/moug) = 0. Also, F is continuously differentiable in a neighbour-
hood of (0, \/mguy) with D, F(y,u) € £ (X, Y) defined by

D F(y,u)v = yA*v — Av 4+ av — 3luluv, Vv eX,
ie.
D, F(y,u)v[w] = / (yAvAw + VuVw + avw — 3|u|luvw)dx, VY v,w e X.
R3

We thus have in the distributional sense
L(v) := D,F(0, /moup)v = —Av + v — 3m0u5v.

It is well known that the kernel of L is of dimension 3 when considered in
H*(R?) and it is spanned by the partial derivatives of u. In particular, the kernel
of L restricted to H?;(R?) is trivial and L : X — Y is one-to-one. We refer, for
instance, to [8, 15, 19]. Moreover, it follows from the Open Mapping Theorem that
L~': Y — X is continuous.

Since the linear map L is a homeomorphism, we can apply the Implicit Function
Theorem. Namely, there exists ¥y > 0 and an open set Uy C X that contains ,/moug
such that for every y € [0, yo[, the equation F(y,u) = 0 has a unique solution
u, € Up and the curve

r:[0,y[— H®):yu,

is of class C!.
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Now suppose that the uniqueness of least energy solutions fails in every interval
(0, 7). We can then construct two sequences in M of least energy solutions along
a sequence ) converging to 0. We call them (uy); and (vy); whereas my is their
common energy. By assumption, u; 7# vg. Since y; — 0, we know that u; and vy
are radially symmetric. Since these two sequences converge in H? to ug as k — oo,
we have

N My, A/ MYV —> A/ Mol

where the convergence is strong in H?. Then, for k large enough, there exist two
solutions of the equation F(y,,u) = 0 in Uy with y; < yy. This is a contradiction
and ends the proof. O

We now state the counterpart of Theorem 1.3 for the boundary value problem in
a bounded domain 2 C R with Navier boundary conditions, namely

P.) YA?u — Au+ au = |u|*°u, in £2,
v u=Au=0, ondf.

We assume in the next statement that £2 is smooth. We have not searched to optimize
the required regularity of the boundary. At some point, we need to take two partial
derivatives into the equation. We assume enough regularity of the boundary so that
the solution belongs at least to H%(£2). One could work with interior regularity
which requires less regularity on the boundary but since our main motivation is
to cover the case of a ball, working with global regularity is fine for our purpose as
the ball has the regularity required.

Theorem 5.3. Assume 2 C RY is a smooth bounded domain of class Cland3 <
20 +2 < ﬁ if3 <N <5 Ifyy = 0and () is a sequence of least energy
solutions of (Py,), then, up to a subsequence, u; converges strongly in H? to some
minimizer ug for my. If, in addition, $2 is a ball, then there exists yy > 0 such that if
0 <y < yo, the problem (P,) has a unique least energy solution. This solution is

radially symmetric and strictly radially decreasing.

Proof. Step 1. Global regularity. Using elliptic regularity [14, Theorems 8.12 &
8.13], we easily infer that the solutions u; are smooth, namely at least H°(£2).
Indeed, one can write the equation as a double Dirichlet problem

—Auk = ¢k’ Up = 0 on 89,
—ViAdr + ¢y = mk|uk|2‘7uk —oaug, ¢r=0 on a52.

Here y; stays fixed and we can start with the fact that u; € H?($2), without
caring about the dependence on k. Then the term my|uy|*° uy — o, € L*(2) as
it can be easily checked from the assumption on o and the embedding of H?(£2)

into L4(82) for every g > 1if N < 4 and ¢q € [1, %] if N = 5. We therefore
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infer from [14, Theorems 8.12] that ¢, € H?(£2) which in turn implies that
u; € H*(£2) by [14, Theorems 8.13]. Now computing A (my |uy|*° uy — o), we
realize that it is an L? function and therefore my |u|?° u; — ctuy is an H? function.
Indeed, the condition on o ensures the required integrability of |u >~ |V |?
and |u|*° | Aui|. We then conclude that ¢ belongs in fact at least to H* and
therefore u; € H®(2).

Step 2. Strong convergence in H'. Arguing as in the proof of Proposition 5.1,
we infer that there exists a minimizer uy € M, and a subsequence that we still
denote (uy); such that uy — ug strongly in H L If £2 is a ball, then uy is the unique
minimizer and the whole sequence converge.

Step 3. Strong convergence in H?. To improve the convergence, we argue as in
the proof of Proposition 5.2. If 20 + 1 < %, then we can bootstrap using the
H™*?2 regularity theory. Due to the boundary condition, the argument of Krylov
[18, Chapter 1] cannot be applied directly to get higher regularity in general, see
[18, Chapter 8]. However, in our case, since we deal with Navier condition, we
have that uy = Au;, = 0 on the boundary and therefore the equation (Py,) tells
that A%u; = 0 on the boundary as well. By Step 1, we can take the Laplacian
inside the equation in (P,,) and use the fact that Au; solves a boundary problem

with Navier boundary conditions, namely

WA (Aug) — A(Awy) + a(Aug) = myf (), in £2,
A(Auk) = Auk = 0, on 39,

where
fu) = 20 + Dsign(uy) (20" V> + u® Awy) . (12)

Then we can use the H? regularity for the Dirichlet problem associated with the
systems

1
v = —Viluy  — Avg + y_Uk = wy, (13)
k

and
5 1
Vi = Avg = =y Ay — Ay + V_Yk = myf (uz), (14)
k

where wy = my|u|*’up — oy and f(uy) is defined in (12). Applying [18,
Chapter 8, Theorem 8.7 ] to the second equation of the first system (13), we
get an H? a priori bound of vy. Now turning to the Dirichlet problem

— Aug + au, = mk|uk|2”uk + Avg, ux =0o0nds2, (15)
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we deduce that u; is a priori bounded in H? which leads to an L? bound for
f(ur). Applying then [18, Chapter 8, Theorem 8.7 ] on the second equation of the
system (14) gives an H? a priori bound of Av,. Whence vy is a priori bounded
in H*. This allows to conclude that u; is a priori bounded in H* because the
right-hand side of A(15), namely

—A(Awy) + aAug = mif (uy) + A%y,

is a priori bounded in L?. The remaining steps are now as in the proof of
Proposition 5.2.

If 25 +1 <20 +2 < 2%, we can only start with a bound in L& 305 on
the right-hand side of

—Av + lvk = W,
Vi
where we still use the notations vy = —yiAu; and wy = my|ug|*up — uy.
We therefore need to improve this bound first. Arguing as above (still using [18,
Chapter 8, Theorem 8.7 ]), we deduce an a priori bound in W?? with ¢ =
%. Then Sobolev embeddings give a better integrability of w; and we can
bootstrap until we get an L? a priori bound on wy. The strong convergence in H>
is then achieved as in the proof of Proposition 5.2 taking into account the above
remark concerning the way to obtain the higher order elliptic regularity. Observe
that even if 1% + 1 < 20 + 2, no additional bootstrap is necessary to derive the
H* bound on u; since once we get an a priori H> bound on u, the assumption on o

implies that f(u;) is a priori bounded in L.

Uniqueness in the case §2 = Bg. When £2 is a ball, the arguments used in the proof
of Theorem 1.3 are available. The nondegeneracy of i allows to apply the Implicit
Function Theorem to conclude the local uniqueness (in an H? neighbourhood of u)
for y small. The remaining arguments are then as in the proof of Theorem 1.3. O

We end up the analysis of the asymptotics for y — 0 by showing that the least
energy solution blows up in H> when 20 + 2 is H! critical or supercritical. We focus
on the case of £2 = RY.

We first derive the Derrick-Pohozahev identity for minimizers. If u achieves m, in
M, then, defining vy by vy (x) = AZUNﬁu(/\x), we infer that f(1) := J, (v;) achieves
a local minimum at A = 1. This yields a Derrick-Pohozahev identity

y N — (20 + 2)(N — 4)) /RN | Aul? dx + (2N — (20 + 2)(N —2)) /RN \Vu|? dx

+a(2N — (20 + 2)N)/ lu|>dx = 0.
RN

If20+2 > 1%, then u must be zero which is obviously a contradiction. This shows
2N

that m,, is not achieved for 20 + 2 > i
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For 1% <20+2< 1%, the first coefficient in the Derrick-Pohozahev identity
is positive whereas the other two are nonpositive. We can then write

¥y @N — (20 + 2)(N — 4)) /RN |Aul|? dx > a(20N) /RN |u|? dx.

Now, from Gagliardo-Nirenberg inequality, we infer that for some C > 0,

8 2N
420+2)—20N 4Q2o+2)—20N
1= (/ |u|?t2 dx) <C (/ |Au|2dx) / |u|? d,
RN RN RN

which implies

20N
) 1+ 4(2a+§)—2aN

¥y 2N — (206 +2)(N — 4)) (/RN | Au|? dx > a(20N)C.

This shows that Au blows up in L?(R?) when y — 0.

6 Sign-changing radial minimizer

In this section, we show that a radial least energy solution of (3) with o = 1 is sign-
changing when —2./o < B < 2./a. We assume N = 3 but the arguments apply in
dimension N = 2 also.

We will require the decay of the radial derivatives. Arguing as in de Figueiredo
etal [11, Theorem 2.2], one easily gets the following lemma.

Lemma 6.1. Let u € H",(R?) and let v :]0, oo[— R be the function defined by
v(r) := u(x) with r = |x|. Then, v € H"(]0, 0o, r*). Moreover; for a.e. |x| €10, oo[
we have

|Du(x)| = [0 (|x))

, VYj=0,1,...,m.

In order to prove the Theorem 1.4 we adapt some arguments of Bonheure et al
[2, Theorem 6].
Proof (Proof of Theorem 1.4). We suppose N = 3, the case N = 2 is similar.

Step 1. Classical regularity. We start by observing that by elliptic regularity,
we have u € H®(R?) which implies u € C*!/2(R?) and the solution can be
understood in the classical sense. Indeed, we know that the solution is HZ, so that
from the equation

—A(—Au) = |u*u — au + BAu,
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we infer that —A(—Au) € L*>(R?). This implies that —Au, —A(—Au) € L*(R?)
and henceforth —Au € H?*(R?). Since u € H?*(R?), we conclude that u €
H*(R?). Looking again at the equation, we can now use the fact that the right-
hand side is an H?-function. Then —Au, —A(—Au) € H*(R?) and therefore
—Au € H*(R?). At last, combining the fact that u € H*(R?) and —Au € H*(R?),
we deduce that u € H®(R?). Here above, the required elliptic regularity theory
can be found in [18, Chapter 1] and since we are in the whole space, this is just a
consequence of simple Fourier analysis.

Step 2. Equation in radial coordinates and decay at infinity. Writing now
the equation (3) in radial coordinates (the expression is especially simple in

dimension N = 3), we compute that v, defined by v(r) := u(x) for r = |x|,
solves
. 4 2
v’”+—v’”—,3v”——'3v’+ow = [v[>v, relo, o0l (16)
r r

The H>(R?) regularity yields

lim (u(x), Oy u(x), B)ZCX_XJ_u(x)

|x]—00

u(x)) = (0,0,0,0)

’ aiix.ka
whatever i, j, k € {1,2,3}. Then Lemma 6.1 implies that v satisfies
lim (v(r), v'(r), v"(r), v (r)) = (0,0,0,0). 17)
r—00

Step 3. Asymptotic analysis of the solution of the ordinary differential equation
(16).
Claim I : Given R > 0 we can find ¥ > R such that v(r) > 0.

Let R > 0 be fixed. Consider the following Cauchy problem

wb(r) — pwW'(r) + aw(r) = 0, r>0,

() (o) W' (o) W (ro) " (1)) = wo.

where ry > 0 and wy € R*. By using condition (A1) we have that all the roots of the
characteristic equation associated with (C1) are complex, let us say a =+ ib. We set
A := 27 /b. Then there exists ¢ > 0 such that any solution of (C1) satisfies

sup w, sup (—w) > c|wy. (18)
[ro.ro+4]  [ro.ro+A4]

Moreover, there exists M > 0 such that any solution of (C1) verifies

Wl 3 ro.ro+a7) < MIwol.
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Again, we can also find N > 0 such that the solutions of

Y = BY"(r) + oy (r) = h(r), >0,
(W (ro). ¥'(ro). ¥ (ro). ¥ (ro)) =: 0,

satisfy

1V 310047 = NIAl Lo (rg.r0+ 4) -

Letus set § > 0 so that ¢ — lﬁfi‘s > 0. Denote by v(r) = v(r; ro, vo) the solution of

NG
(16) with initial conditions
(v(ro), V' (r0), v" (r0), v (rp)) =: vy,  Where ry > 0.

Now, let us fix ry > R large enough so that |vg| is small enough to have

4 2
sup  |v(r)>, sup - and sup —'8 < é.
r€lro,ro+4] refro.ro+A4] ¥ refroro+4] T

We write
V=Y +w,
where ¥ solves

1//1'1) - By +ay = |U|2U + ?v/ _ ;v///’ F>0.
(¥ (ro), ¥/ (r0), ¥" (r0), ¥ (r0)) = 0,

and w is a solution of

wv(r) — Bw'(r) + aw(r) =0, r>0,
(w(ro), W' (ro), w” (ro), w" (o)) = vo.

Now, let us choose 7 € [ry, ro + A] such that
w(7) > c|vg]-
Thus,

19 |3 oo +a1) < NIV c3 om0+ a])»
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which implies that

MN$§
1—-N§

1V |3 oo 2 = Wl 3 oo+ 2y = [vo.

1—N§

Then we obtain

® = clvol — ¥l = (= 22 Y 1yl > 0
v(r) > clvg Ve > (¢ T—Ns Vo .

Claim 2 : Given R > 0 we can find r > R such that v(r) < 0.
The proof of this claim is similar to that of Claim 1.

Conclusion. We have proved in the last step that u changes sign. In fact, we have
even proved that u oscillate as |x| — +o0. O

7 Comments

This note provides some simple results for the model equation (3) with a Kerr
nonlinearity and aims to partially complete the discussion on waveguide solutions
in [13, Section 4.1]. The methods we used are standard. On the other hand, since
radial solutions present oscillations for —2/a < B < 2./a, we expect that one
needs new arguments to answer the question whether the least energy solutions are
radial or not in this case. Also uniqueness is a challenging question if we are not in
the asymptotic regime 8 — oo (or equivalently y — 0).

We also mention that the important question about the decay at infinity of the
least energy solutions will be addressed in a future work. We are only aware of [12]
for a result in that direction. The analysis therein relies on the computation of the
fundamental solution of the fourth-order operator in (3) with 8 = 0.

The analysis of the decay should also allow to extend the statement of Theo-
rem 1.3tothecase 2 < 20 + 2 < % and N > 3. Indeed, the arguments we
used are just fine for the Kerr nonlinearity whereas some technical adjustments are
needed for a general subcritical power. In fact, one checks easily that our arguments
apply in dimension N < 4 if we assume 2 < 20 + 1 < % The lower inequality
on o implies the required C"! regularity of the function s > |s|*°s whereas the
upper inequality is used to start the bootstrap with an L?-bound on |u|*°u (here u is
a solution).

The same remark holds for Theorem 1.4 which should be true with less restrictive
assumptions. In dimension N < 8, one can deal with2 <20 4+ 1 < %. The other
cases will require more care and will be treated in a forthcoming work.
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1 Introduction

When we teach the first courses in calculus and complex or real analysis, a
great emphasis is given to geometric issues: we plot graphs, enumerate conformal
mappings among special regions, identify homeomorphisms. Alas, this is far
from being enough: mappings become too complicated soon. Still, the geometric
approach, especially combined with numerical arguments, is very fruitful in some
nonlinear contexts.

It is rather surprising that some infinite dimensional maps can be studied in a
similar fashion—one may even think about their graphs! The examples which are
amenable to such approach are very few, and they elicit the same sense of wonder
that (the equally rare) completely integrable systems do: one is left with a feeling of
deep understanding. This text is dedicated to some such examples.

The interested reader could hardly do better than going through the review papers
by Church and Timourian [11, 12], which cover extremely well the material up to
the mid nineties. Their approach is strongly influenced by the original Ambrosetti-
Prodi view of the problem, which we describe in Section 2.2. In a nutshell, the global

M. Calanchi (D<)

Dipartimento di Matematica, Universita di Milano, Via Saldini 50,
20133 Milano, Italy

e-mail: marta.calanchi @unimi.it

C. Tomei * A. Zaccur

Departamento de Matematica, PUC-Rio, R. Mq. de S. Vicente 225,
Rio de Janeiro 22453-900, Brazil

e-mail: carlos.tomei@gmail.com; zaccur.andre @ gmail.com

© Springer International Publishing Switzerland 2015 55
A.N. Carvalho et al. (eds.), Contributions to Nonlinear Elliptic Equations and

Systems, Progress in Nonlinear Differential Equations and Their Applications 86,

DOI 10.1007/978-3-319-19902-3_5


mailto:marta.calanchi@unimi.it
mailto:carlos.tomei@gmail.com
mailto:zaccur.andre@gmail.com

56 M. Calanchi et al.

geometry of a proper function F is studied through certain properties of its critical
set C together with its image F(C), along with the stratification of C in terms of
singularities.

This much less ambitious text is mainly an enumeration of techniques and of
some recent developments, some of which have not been published. We mostly take
the Berger-Podolak route [6] which has been extended by Podolak in [27] and, we
believe, still allows for improvement. Instead of the critical set, we concentrate on
the restriction of F to appropriate low dimensional manifolds (one dimensional, in
the Ambrosetti-Prodi case), the so-called fibers.

Essentially, fibers are appropriate in the presence of finite spectral interaction,
which roughly states that the function F : X — Y splits into a sum of linear and
nonlinear terms, ' = L — N and N deforms L substantially only along a few eigen-
vectors spanning a subspace V C X. The domain splits into orthogonal subspaces,
X = H & V and the hypotheses on the nonlinearities are naturally anisotropic.
Different requests on H and V yield a global Lyapunov-Schmidt decomposition
of F: on affine subspaces obtained by translating H, F is a homeomorphism and
complications due to the nonlinear term manifest on fibers, which are graphs of
functions from V to H.

Fibers are also convenient for the verification of properness of F. In particular,
one may search for folds in nonlinear maps defined on functions with unbounded
domains, which are natural in physical situations. Fibers also provide the conceptual
starting point for algorithms that solve a class of partial differential equations, an
idea originally suggested by Smiley [31, 32] and later implemented for finite spectral
interaction of the Dirichlet Laplacian on rectangles in [7].

An abstract setup in the spirit of the characterization of folds as in [10, 11], or
like the one we present in Section 4, provides a better understanding of the role of
the hypotheses in the fundamental example of Ambrosetti and Prodi. Elliptic theory
seems to be less relevant than one might think, it is just that it provides a context in
which the required hypotheses are satisfied.

In Section 2, we present the seminal examples—the Dolph-Hammerstein home-
omorphisms and the Ambrosetti-Prodi fold—in a manner appropriate for our
arguments. Fibers and sheets are defined and constructed in Section 3. A global
change of coordinates in Section 4 gives rise to adapted coordinates, in which the
description of critical points is especially simple. A characterization of the critical
points strictly in terms of spectral properties of the Jacobian DF is given. Also, the
three natural steps to identify global folds become easy to identify. Further study of
how to implement each step is the content of Sections 5, 6 and 7. The last section is
dedicated to some examples.

The text is written as a guide: we try to convey the merits of a set of techniques,
without providing details. Complete proofs will be presented elsewhere [8, 9].

Alas, we stop at folds. There are scattered results in which local or global
cusps were identified: again, the excellent survey [12] covers the material up to
the mid-nineties. So far, the description of cusps seems rather ad hoc. There are
characterizations [12], but they are hard to verify and new ideas are needed. On the



Fibers and global geometry of functions 57

other hand, checking that maps are not global folds is rather simple, a matter of
showing, for example, that some points in the image have more than two preimages.
A numerical example is exhibited in Section 5.3.

2 The first examples in infinite dimension

Among the simplest continuous maps between Hilbert spaces are homeomorphisms,
in particular linear isomorphisms. A second class of examples are folds.

2.1 Homeomorphisms: Dolph and Hammerstein

Dolph and Hammerstein [15, 16] obtained a simple condition under which nonlinear
perturbation of linear isomorphisms are still homeomorphisms. A version of their
results is the following.

Start with a real Hilbert space Y and a self-adjoint operator L : X C Y — Y fora
dense subspace X of Y. Let o(L) be the spectrum of L.

Theorem 2.1. Let [—c,c] N o (L) = @ and suppose N : Y — Y is a Lipschitz map
with Lipschitz constant n < c. Equip X with the graph topology, ||x|x = x|y +
||Lx||y. Then the map F = L — N : X — Y is a Lipschitz homeomorphism.

Indeed, to solve F(x) = y, search for a fixed point of
C,: Y=Y, C()=NL'2)+y

which is a contraction because the operator L' : ¥ — Y has norm less than 1/c
by standard spectral theory and then the map N o L™! is Lipschitz with constant less
than n/c < 1. As usual, the fixed point varies continuously with y. Clearly, F is
Lipschitz. To show the same for F~!, keep track of the Banach iteration.

Notice that the statement allows for differential operators between Sobolev
spaces. Very little is required from the spectrum of L. Clearly, for symmetric
bounded operators one should take X = Y.

2.2 Breaking the barrier: the Ambrosetti-Prodi theorem

What about more complicated functions? Ambrosetti and Prodi [1] obtained an
exquisite example. After refinements by Micheletti and Manes [24], Berger and
Podolak [6] and Berger and Church [5], the result may be stated as follows. Let
£2 C R” be a connected, open, bounded set with smooth boundary (for nonsmooth
boundaries, see [34]). Let H*(§2) and H}(£2) be the usual Sobolev spaces and set
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X = H*(2) N H}(2) and Y = H°(§2) = L*(£2). The eigenvalues of the Dirichlet
Laplacian —A : X C Y — Y are

G(=A) =10 <Ay <Ay <...— oo

Denote by ¢, the (L?-normalized, positive) eigenvector associated with A; and
split X = Hx @& Vx,Y = Hy @ Vy in horizontal and vertical orthogonal subspaces,
where Vy = Vy = (¢;), the one dimensional (real) vector space spanned by ¢;.

Theorem 2.2. Let F: X — Ybe F = L— N, where L = —A, N(u) = f(u), for a
smooth, strictly convex function f : R — R satisfying

Ranf = (a,b), a<Al <b<2l,.

Then there are global homeomorphisms § : X — Hy @ Rand§ : Y — Hy ® R
for which F(z,t) = EoFot7 ! (z,1) = (z, —17).

Said differently, the following diagram commutes.

F
X — Y

el A
@—1)
Hy@]R —> Hy@R

Functions which admit such dramatic simplification are called global folds.
The vertical arrows in the diagram above are (global) changes of variables and
sometimes will be C' maps, but we will not emphasize this point.

The original approach by Ambrosetti and Prodi is very geometric [1]. In a
nutshell, they show that F' is a proper map whose critical set C (in the standard
sense of differential geometry, the set of points u € X for which the derivative
DF (u) is not invertible) is topologically a hyperplane, together with its image F(C).
They then show that F is proper, its restriction to C is injective and F~!(F(C)) = C.
Finally, they prove that both connected components of X — C are taken injectively
to the same component of ¥ — F(C). Their final result is a counting theorem: the
number of preimages under F can only be 0, 1 or 2.

Berger and Podolak [6], on the other hand, construct a global Lyapunov-Schmidt
decomposition for F. For Vx = Vy = (¢1), consider affine horizontal (resp.
vertical) subspaces of X (resp. Y), i.e., sets of the form Hx + 7¢;, for a fixed r € R
(resp. y + Vy, fory € Hy). Let P : Y — Hy be the orthogonal projection. The map
PF, : Hy — Hy, PF,(w) = PF(w + t¢), is a bi-Lipschitz homeomorphism, as we
shall see below. Thus, the inverse under F of vertical lines y 4+ Vy, for y € Hy are
curves oy : R ~ Vx C X — Hy, which we call fibers. Fibers stratify the domain
X. Thus, to show that F is a global fold, it suffices to verify that each restriction
F :a, — Vy ~ R, essentially a map from R to R, is a fold.
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After such a remarkable example, one is tempted to push forward. This is not
that simple: if the (generic) nonlinearity f is not convex, there are points in Y with
four preimages [8], so the associated map F : X — Y cannot be a global fold (for a
numerical example, see Section 5.3).

3 Fibers and height functions

Fibers come up in [6] and [32] for C ! maps associated with second order differential
operators and in [21] in the context of first order periodic ordinary differential
equations. Due to the lack of self-adjointness, the construction in [21] is of a very
different nature. We follow [27] and [34], which handle Lipschitz maps, allowing
the use of piecewise linear functions in the Ambrosetti-Prodi scenario, namely f
given by f'(x) = a or b, depending if x < 0 or x > 0 [14, 19].

Let X and Y be Hilbert spaces, X densely includedin Y. LetL: X CY — Ybea
self-adjoint operator with a simple, isolated, eigenvalue A,, with eigenvector ¢, € X
with ||¢,|ly = 1. Notice that A, may be located anywhere in the spectrum o (L) of
L. As before, consider horizontal and vertical orthogonal subspaces,

X=Hx®Vx,Y= Hy®Vy, for Vx = Vy = (¢p)

and the projection P : Y — Hy. Let PF; : Hy — Hy be the projection on Hy of the
restriction of F to the affine subspace Hx + t¢,, PF,(w) = PF(w+t¢),). In the same
fashion, the nonlinearity N : ¥ — Y gives rise to maps PN; : Hy — Hy, which we
require to be Lipschitz with constant n independent of ¢ € R so that

[-n.nlNo(L) = {A,}. (H)

The standard Ambrosetti-Prodi map fits these hypotheses. In this case, X C Y
are Sobolev spaces and the derivative f’ : R — R is bounded by a and b. Set

y=(@+b/2, L=-A-y, N@u) =f(u)—yu

and A, = A, the smallest eigenvalue of —A. Then the Lipschitz constant n of the
maps PN, satisfiesn <y —a=b—y <A, —y,sothat A; —y <n.

Theorem 3.1. Let F : X — Y satisfy (H) above. Then for each t € R, the map PF;
is a bi-Lipschitz homeomorphism, and a C* diffeomorphism if F is C*. The Lipschitz
constants for PF, and (PF,)™" are independent of t.

Proof. The proof follows Theorem 2.1 once the potentially nasty eigenvalue A, is
ruled out. Let ¢ be the absolute value of the point in o(L) \ {4,} closest to 0, so that
0 < n < c. The operator L : X — Y restricts to L : Hy — Hy, which is invertible
self-adjoint, and again L™! : Hy — Hy with ||[L™'|| < 1/c. The solutions w € Hy of
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PF;(w) = g € Hy solve PLu — PN(u) = Lw — PN,(w) = g foru = w + t¢,. The
solutions w correspond to the fixed points of C, : Hy — Hy, where

Ci(2) = PN,(L7'z) +g, for Lw =z € Hy.

The map C, is a contraction with constant bounded by n/c < 1 (independent of ¢).
Now follow the proof of Theorem 2.1. O

The attentive reader may have noticed that the effect of the nonlinearity N along
the vertical direction is irrelevant for the construction of fibers.

The same construction applies when the interval [—n, n] defined by the Lipschitz
constant n of PN, : Hy — Hy interacts with an isolated subset I of o (L) — more
precisely, I = [—n,n] N o (L) and there is an open neighborhood U of I C R for
which I = U N o(L). In this case P is the orthogonal projection on /, which takes
into account possible multiplicities. In the special situation when / consists of a
finite number of eigenvalues (accounting multiplicity), we refer to finite spectral
interaction between L and N.

We concentrate on the case when I = {A,} consists of a simple eigenvalue.
A more careful inspection of the constants in the Banach iteration in the proof above
yields the following result [7, 34]. The image under F' of horizontal affine subspaces
of X are sheets. The inverse under F of vertical lines of Y are fibers.

Proposition 3.2. If F is C', sheets are graphs of C' maps from Hy to (¢,) and
fibers are graphs of C' maps from (¢p) to Hx. Sheets are essentially flat, fibers are
essentially steep.

We define what we mean by essential flatness and steepness. Let v(y) be the
normal at a point y € Y of (the tangent space of) a sheet, and t(u) be the tangent
vector at # € X of a fiber. Then there is a constant € € (0, 7r/2) such that ¢, makes
an angle less than € (or greater than = — €, due to orientation) with both vectors.

4 Adapted coordinates and a plan

Suppose L and N interact at a simple eigenvalue A,. Write

F(u) = PF(u) + (F(u). ¢p)pp = PF(u) + h(u)¢,

where the map 4 : X — R is called the height function. In the diagram below,
invertible maps are bi-Lipschitz [34] or C* diffeomorphisms, depending if PF; is
Lipschitz or C*. The smoothness of 4 and h* = h o @ follow accordingly.

F

XZHx@Vx—>Y=Hy®Vy

o~ =(PF,.Id) "\ ' Fi=Fo®=(Id.h%)
Y
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The map F has been put in adapted coordinates by the change of variables @:
F':Y =Y, () (k1) .

Notice that fibers of F are taken to vertical lines in the domain of F* = F o &.
Explicitly, the vertical lines {(zo, ) : t € R} parameterized by zo € Hy correspond
to fibers u(zo, 1) = (PF) ™' (z0) + t¢hy = w(z0,1) + t¢h,. Thus F* is just a rank one
nonlinear perturbation:

Fi(z,t) = (2, h*(z. D) ~ z+ h*(z + t9,) P, .

In a very strict sense, this is also true of F. In order to make F similar to an
Ambrosetti-Prodi map, define G = F¢ o (—A) : X — Y-

u;ﬁwnpl »F—“>z+t¢1 + (W (z+ tp1) — P = —Au+ Y ()¢,

for some nonlinear functional {r. We generalize slightly.

Proposition 4.1. Let N be a C' map. Say L and N interact at a simple eigenvalue
Ap and L is invertible. Then, after a C ! change of variables, the C' function F =
L—N:X — Ybecomes G:X =Y, G=L+ Yy, for somey : X — R

For Ambrosetti-Prodi operators F (1) = —Au—f(u), the nonlinear perturbation is
given by a Nemitskii map u +— f(u). It is not surprising that once we enlarge the set
of nonlinearities new global folds arise. For a map F given in adapted coordinates by
F?(z,t) = (z,h%(z, 1)), appropriate choices of the adapted height function h* yields
all sorts of behavior.

The critical set of F : X — Y is compatible with fibers as follows [6, 9].

Proposition 4.2. Suppose the C' map F : X — Y admits fibers. Then uy is a critical
point of F if and only if it is a critical point of the height function h along its fiber,
or equivalently of the adapted height function h°.

Isolated local extrema have to alternate between maxima and minima. In
particular, given the appropriate behavior at infinity at each fiber and the fact that
all critical points are of the same type, we learn from a continuity argument that the
full critical set C is connected, with a single point on each fiber [13].

The study of a function F : X — Y reduces to three steps:

1. Stratify X into fibers.
2. Verify the asymptotic behavior of F along fibers.
3. Classity the critical points of the restriction of F along fibers.

The following result is natural from this point of view [9]. Let ' : X — Y satisfies
(H) of Section 3, so that, by Proposition 3.2, X stratifies in one dimensional fibers
{u(z,t) : t € R}, one for each z € Hy.
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Proposition 4.3. Suppose that, on each fiber,

lim (F(u(z,1)),¢p) = lim h(u(z,1)) = —oo.
t—+o0 t—+o00
Suppose also that each critical point of h restricted to each fiber is an isolated
local maximum. Then F : X — Y is a global fold, in the sense that there

are homeomorphisms on domain and image that give rise to a diagram as in
Theorem 2.2.

To verify that such limits exist, one might check hypotheses (V+£) in Section 6.1,
but there are alternatives. Similarly, there are ways of obtaining fibers which do
not fit the construction presented in Section 3 (this is the case for perturbations of
non-self-adjoint operators, Section 8.4). The upshot is that there is some loss in
formulating the three-step recipe into a clear-cut theorem.

As trivial examples, h(z,f) = —t* is a global fold, whereas h%(z,1) = > — ¢t
has a critical set consisting of two connected components having only (local) folds
(from Section 7.1). More complicated singularities require the dependence on z:
not every fiber of F (equivalently, vertical line in the domain of F“) has the same
number of critical points close to a cusp, for example. The reader is invited to check
that (z,7) — (2.2 — (z, ¢)1t) is a global cusp, for ¢ any fixed vector in Hy. Higher
order Morin singularities, considered in Section 7, are obtained in a similar fashion.
From the Proposition 4.1, changes of variables on such maps yield nonlinear rank
one perturbations of the Laplacian which are globally diffeomorphic to the standard
normal forms of Morin singularities.

We consider the standard Ambrosetti-Prodi scenario in the light of this strategy.
For the function F (1) = —Au—f(u) defined in Theorem 2.2, elliptic theory yields all
sort of benefits — the smallest eigenvalue of the Jacobian DF'(u) is always simple,
the ground state may be taken to be a positive function in X.

The hypotheses required for the construction of fibers in Theorem 3.1 do not
imply the simplicity of the relevant eigenvalue: there are examples for which there
is no naturally defined C! functional A, : X — R because two eigenvalues collide.
One might circumvent this difficulty by forcing the nonlinearity N to be smaller, but
it turns out that this is not necessary. The hypotheses instead imply the simplicity of
A, in an open neighborhood of the critical set C of F, and this is all we need, as we
shall see in Section 7.1.

The positivity of the ground state and the convexity of the nonlinearity f are used
in a combined fashion in the Ambrosetti-Prodi theorem to prove that along fibers
the height function only has local maxima. Clearly, this is a property only of critical
points. On the other hand, the nonlinearity N(u) = f(u) is so rigid that the standard
hypothesis of convexity of f is essentially necessary, as shown in [8]. More general
nonlinearities require a better understanding of the singularities.

We now provide more technical details on each of the three steps.
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5 Obtaining fibers in other contexts

For starters, what if L is not self-adjoint, or X is not Hilbert?

5.1 Podolak’s approach

Suppose momentarily that X and Y are Banach spaces. Let L : X — Y be a Fredholm
operator of index zero with kernel generated by a vector ¢x and let ¢y be a vector not
in RanL. Podolak [27] considered the following scenario, for which she obtained
a lower bound on the number of preimages for a region of Y of vectors with very
negative component along ¢y. Split X = Hy & Vy where Vy = (¢x) and Hy is
any complement. Also, split Y = Hy @ Vy where Hy = RanL and Vy = (¢y). In
particular L : Hy — Hy is an isomorphism. Also, define the associated projection
P:Y — Hy Writteu = w+ tdx, y = g + s¢y for w € Hy. The equation
F(u) = Lu — N(u) = y becomes

L(w + t¢x) — N(w + t¢x) = Lw — N(w + 1¢x) = g + sy,
and, as in Theorem 3.1, we are reduced to solving the map
Co:Hy — Hy, Co(z) =PN/(L'z)+g, for Lw=z€ Hy.

Her hypotheses imply that such maps are contractions.

5.2 Transplanting fibers

The estimates arising from spectral theorem in the Hilbert context are easy to obtain
and possibly more effective. Podolak’s hypotheses are harder to verify. There is a
possibility: getting fibers in Hilbert spaces and transplanting them to Banach spaces.
This happens, for example, when moving from the Ambrosetti-Prodi example as
a map between Sobolev spaces [6] to a map between Holder spaces [1]. The
classification of singularities is simpler with additional smoothness (Section 7).

Proposition 5.1. Let F = L — N : X — Y satisfy hypothesis (H) of Section 3.
Consider the densely included Banach spaces A C X and B C Y allowing for the
C! restriction F : A — B for which Vx = Vy C A. Suppose that DF(a) : A — B is
a Fredholm operator of index zero for each a € A. Then fibers of F : X — Y either
belong to A or do not intersect A.

Said differently, if a point u € X belongs to A then the whole fiber does.
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In the Ambrosetti-Prodi scenario, this proposition seems to be a consequence of
elliptic regularity, which may be used to prove it. Regularity of eigenfunctions is
irrelevant: fibers are the orbits of the vector field of their tangent vectors, which are
inverses of the vertical vector under DF(u), and necessarily lie in A [9]. Tangent
vectors are indeed eigenfunctions ¢, (u) of DF(u) at critical points u.

The fact that sheets and fibers are uniformly flat and steep (Proposition 3.2)
allows one to modify vertical spaces ever slightly and still obtain space decomposi-
tions for which the Lyapunov-Schmidt decomposition, and hence the construction
of fibers in Theorem 3.1, apply. In particular, transplants may be performed even
when the eigenvector ¢, originally used to define the vertical spaces Vy = Vy do
not have regularity, i.e., do not belong to A C X. We only have to require that A is
dense in X, so that ¢, can be well approximated by a new vertical direction.

5.3 Fibers and Numerics

Finite spectral interaction is a very convenient context for numerics. Any question
related to solving F(u) = g for some fixed g € Y reduces to a finite dimen-
sional problem in situations of finite spectral interaction, irrespective of additional
hypotheses. If the interaction involves a simple eigenvalue A,, one simply has to
look at the restriction of F to the (one dimensional) fiber associated with the affine
vertical line through g.

Smiley and Chun realized the implications of this fact for numerical analysis
[31,32]. An implementation for functions F(«) = —Au—f(u) defined on rectangles
2 C R? was presented in [7]. In the forecoming sections, we will require more
stringent hypotheses with the scope of obtaining very well-behaved functions F—
we will mostly be interested in global folds. Such additional restrictions might
improve on computations, but so far this has not seen to lead to substantial
improvements on the available algorithms.
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‘We present an example obtained from programs by José Cal Neto [7] and Otavio
Kaminski. For £2 = [0, 1] x [0,2], A; ~ 12.337 and A, ~ 19.739. Consider

—Uy— Uy —f) =g, (xy) €22, u=0in 082,

Al

- 2
f(x) = famh (arctan(lx—o) —Zxe W) L £(0) ~ 4712
T

5

glx,y) = —100(x(x — 1)y (y— 2)) — 35sin(mx) sin(?) .

On the left, we show the graphs of f’, which interacts only with A;. On the right,
the height function 4 associated with the fiber obtained by inverting the vertical line
through g. The height value —12.3 is reached by four preimages, displayed below.
Notice the cameo appearance of the maximum principle: the four graphs sit one on
top of the other as one goes up along the fiber (this is very specific of interactions
with A; of the Laplacian with Dirichlet conditions).

-12 |

6 Asymptotics of F on fibers and vertical lines

We stick to one dimensional fibers and consider two issues.

1. How does F behave at infinity along fibers?
2. How do fibers look like at infinity ?
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The first question, to say the very least, is tantamount to characterizing the image
of F. The second is not relevant for the theoretical study of the global geometry of F,
since a (global) coordinate system leading to a normal form (like (z, 1) > (z, —1*))
is insensitive to the shape of fibers. On the other hand, for numerical purposes, a
uniform behavior at infinity of the fibers is informative.

6.1 F along fibers

The inverse of a vertical line zo 4+ Vy, 29 € Hy is the fiber u(zo, t) = w(zo, t) + t¢:

F(u(z0,1) = 20 + h" (20, 1) ¢ . ()

For a fixed zo € Hy, the C! map t > h%(zo. 1) is the adapted height function of the
fiber associated with zy. Clearly,

h(z0,1) = (F(u(z0,1)), ¢p) = (LW (20, 1) + t¢,) — N(u(z0,1)), $p)
so that
h(z0,1) = Apt — (N(u(z0,1)), $p)-

In order to have

lim (F(u(zo,1)),¢p) = lim h%(z0,1) = —00
t—+o0 t—=+o00

and some uniformity convenient to obtain properness as discussed in Section 6.4,
we require an extra hypothesis:

For each zy € X, there is a ball U(zp) C X and €, T > 0, c+ such that, for z € U(zy),

(Nu(z. ), ¢p) > Ap+ )t +cy, foret> T, V+)
(N(u(z, D), ¢p) > (Ap —€)t+c—, fort<-T. (V=)

Notice that the asymptotic behavior on each fiber is the same.

6.2 Asymptotic geometry of fibers

Again, parameterize fibers as u(z,t) = w(z, t) + t¢,. Under mild hypotheses, the
vectors w(z,t)/t have a limit for ¥ — +o00, which is independent of z. A version of
this result was originally obtained by Podolak [27].
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Proposition 6.1. Suppose that F : X — Y, F = L — N satisfies hypothesis (H) of
Section 3. Suppose also that, for every u € X,

. PN(m)
lim

t—>~+00 t

= Neo(u) €Y.
Then there exist wy,w— € Hy such that, for every fiber u(z,t) = w(z, t) + t¢p,

) w(z, 1) ) w(z, 1)
lim || —willx=0, lim |
t—+00 t t——00 t

—w_[x =0

which are, respectively, the unique solutions of the equations
Lw —PNoo(W+ ¢p) =0, Lw+ PNoo(—w —¢,) = 0.

It turns out that N, = PNy satisfies the same Lipschitz bound that the functions
PN; in Theorem 3.1, which is why both equations are (uniquely) solvable.

Fibers are asymptotically vertical if and only if limj - w(z, 1)/t = 0, or
equivalently, PNoo(£¢,) = 0. Indeed, in this case, w = 0 is the unique solution
of both equations. This is what happens in the Ambrosetti-Prodi scenario, where
PNoo(u) = (b — y)Pu™ — (a— y)Pu~ (recallu = u™ —u™), since ¢, = ¢ > 0.

6.3 Comparing F on fibers and on vertical lines

One might wish to relate the heights of F along fibers and vertical lines, which are
easier to handle. In [27] Podolak presented a scenario in which this is possible. We
state a version of her result for the case t — +o0.

Theorem 6.2. Let X C Y be Hilbert spaces with X dense inY. Let L : X — Y
be a self-adjoint operator with 0 € o (L), a simple, isolated eigenvalue, associated
with the normalized kernel vector ¢,. Set Hy = (¢>p)l. Take N : Y — Y and
F=L—N:X — Y sothat

L |IN(u) = N(uo)|ly < €llu—uolly , Tim—4o0 N(tu)/t = Noo(u)
2. (Noo(d’p)vd)lp) = _]imt—>+oo<F(t¢p)s]¢p)/t >0
3o €el(Llay) I1<1/2. € (Llay) 1| <1/2 (Neo(dp). bp) -

Then, for each fiber (2o, t) in adapted coordinates,

. h*(zo, 1)
| lim ———— — <Noo(¢p)» ¢p)| < (N00(¢p)’ d)p)
t—>+00
The number (Noo (), ¢p) gives the asymptotic behavior of the height of F along
the vertical line through the origin. The theorem implies that F along the upper part

of each fiber converges to the same infinity that F' along {t¢,, t > 0}.
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A context in which these hypotheses apply is the Ambrosetti-Prodi operator with
a piecewise nonlinearity f(u) = (A, + c)u™ — (X, — c)u™ for a sufficiently small
number ¢ > 0. However, for pairs (A, —c1, A, +¢2), p # 1 in the Fucik spectrum of
the (Dirichlet) negative second derivative, for which necessarily c; # ¢, (near A,),
the condition involving €? does not hold and indeed the thesis is not true.

6.4 Fibers and the properness of F

From a more theoretical point of view, fibers circumvent the fundamental issue of
deciding if F is proper. For example [21], the map

F:C'(SY — cSY, uw o + arctan(u)

is a diffeomorphism from the domain to the open region between two parallel planes,

2
{yECO(Sl), —712</ y(9)d9<ﬂ2}.
0

Indeed, fibers in this case are simply lines parallel to the vertical line of constant
functions, and each is taken to such region.

Perhaps, it would be more appropriate to think of fibers as a tool to show
properness [9]. As far as we know, for the Ambrosetti-Prodi map F : X — Y in
unbounded domains, the properness has been proved only by making use of fibers
(see Section 8).

Proposition 6.3. The map F : X — Y satisfying hypotheses (H) of Section 3 and
(VL) above is proper if and only if the restriction of F to each fiber is proper.

Points in the Fucik spectrum of the (Dirichlet) second derivative give rise to maps
F which take the half-fiber {«(0, 1), t > 0} to a single point 0 [34], which shows that
F is not proper, although the image of every vertical line has its vertical component
taken to infinity.

A possible definition of a topological degree for F becomes innocuous — the
relevant information is essentially the asymptotic behavior of F along each fiber.

7 Singularities

Generic singularities both of F' and of each height function are very special — they
are Morin singularities. Morin classified generic singularities of functions from R”
to R" whose derivative at the singularity has one dimensional kernel [26]. This is
sufficient for the study of critical points of height functions on one dimensional
fibers, by Proposition 4.2. In order to do the same for the critical points of the
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whole function F : X — Y, we need an equivalent classification for singularities
of functions between infinite-dimensional spaces, which is very similar [13, 21, 29]
— this is how we proceed next.

7.1 Morin theory in adapted coordinates

The first step in Morin’s proof makes use of the implicit function theorem to write
such a singularity at a point (2, tp) in adapted coordinates, as in Section 4:

FaZYZHyﬂ}V)/—)Y:Hy@Vy, (Z,I)H(Z,hll(Z,t))

Say F?is C**!. The point (20, to) is a Morin singularity of order k if and only if

1. Dh%(z0,19) = -+ = D¥h(zo, 1) = 0, DT he(z9, 1) # 0.
2. The Jacobian D(h¢, D,;h?, . .., D¥"'h®)(zo, tp) has maximum rank.

Then, in a neighborhood of (zo, #y) there is an additional change of variables which
converts F“ to the normal form

Gx.)— Gx, T x4 )

Here the coordinates (Z, x) correspond to an appropriate splitting of ¥ = ¥ @ R¢!.

Morin singularities of order 1, 2, 3, and 4 are called, respectively, folds, cusps,
swallowtails and butterflies.

Thus, the classification of critical points of F boils down to the study of a
family of one dimensional maps, the height functions restricted on fibers. The
first requirement is specific to each fiber (i.e., one checks it for every fixed z near
20), whereas the second relates nearby fibers, i.e., one has to change z. Folds are
structurally simpler than deeper singularities: the behavior along fibers near a fold
point is always the same — essentially like ¢t —> —¢2, whereas this is not the case for
cusps, where close to ¢ > > one finds ¢ > 3 & et.

There is something unsatisfying in the fact that the relevant properties of the
critical points of F requires knowledge of some version of the height function. This
is circumvented by the next result [9].

Proposition 7.1. Suppose F : X — Y is C**! and admits one dimensional fibers.
Then there is an open neighborhood U of the critical set C with the properties below.

1. There is a unique C* map A, : U — R for which A, = 0 on C and is an
eigenvalue of DF elsewhere.
2. There is a strictly positive C* function p : U — RT such that

Ap(u(z, 1)) = p(u(z, 1)) Dih(u(z, 1)), u(z,t) € U.
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A point uy = u(zo, to) is a Morin singularity of order k of F if and only if

1 Ap(uo) = -+ = D{' Ay (ug) = 0, DfA,p (o) # 0,
2. The image of D(A,, ..., D¥"2),)(uo) together with D, A, (ug) span R™.

There is an analogous characterization in adapted coordinates.

7.2 Critical points of the height function

Consider a critical point uy € C C X and the fiber u(zo, t) through it, u(zg, to) = up.
From Proposition 7.1, ug is a (topological) fold of the height function 4 restricted to
the fiber if and only if u is a topologically simple root of A,(u) along the fiber, i.e.,
A, is strictly negative on one side of u and strictly positive on the other.

Once we reduce the issue to checking an eigenvalue along a fiber, derivatives are
irrelevant: just study the quadratic form of the Jacobian. Clearly, this only handles
topological equivalence between the function and a fold.

More explicitly, in standard Ambrosetti-Prodi contexts, A; (i) is the minimum
value of the quadratic form (DF(ug)v, v). The derivative D,u(zo, to) of the (C') fiber
is the eigenfunction ¢; (19) > 0, and it is easy to check that A, increases with ¢ by
the convexity of the nonlinearity f. This should be compared with differentiability
arguments, which require some estimate on ¢ (i) (say, boundedness).

The fact that all critical points are local maxima for height functions on fibers, as
required in Proposition 4.3, suggests hypotheses to be checked only on the critical
set of F. This is not the case in the original Ambrosetti-Prodi theorem: the statement
of the theorem has the merit that it makes no reference to the critical set at all,
an object which in principle is hard to identify. The convexity of the nonlinearity
handles the difficulty and, rather surprisingly, is essentially necessary [8]. Further
examples yielding local maximality are somewhat contrived.

8 Some examples

8.1 The non-autonomous case

The geometric formulation F = L — N is not sufficient to accommodate situations
of the form F(u(x)) = —Au(x) + f(x,u(x)), the so-called non-autonomous
case. Hammerstein [16] had already considered homeomorphisms of that form.
A possibility is requiring that X and Y are function spaces defined on a domain
§2, so that the variable x makes sense. The formalism above carries over to this
scenario without surprises.
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More precisely, as usual X and Y are Hilbert spaces, X dense in Y. The linear
operator L : X C Y — Y is self-adjoint with a simple eigenvalue A, associated
with a normalized eigenvector ¢,. Let P : ¥ — Hy = (¢>p)l be the orthogonal
projection.

From the nonlinear term N : £2 x Y — Y, define as before PN, : Hy — Hy,t € R
and require a Lipschitz estimate,

||PNI(-X7 Wl) _PNf(xv WO)”Y =< n”WI _w()”Yv for wo, W1 € HY’

so that [-n,n] N o (L) = {A,}, which is the same hypothesis (H) in Section 3. This
obtains fibers for F : X — Y as in Theorem 3.1, which satisfy the same properties
as those in the autonomous case, in particular, Proposition 3.2.

The hypothesis which obtain appropriate asymptotic behavior of F along fibers
are the obvious counterparts of (V+) and (V—) in Section 6.1. For the classification
of critical points, we simply do not distinguish between the autonomous and non-
autonomous case: the subject has become a geometric issue.

8.2 Schrodinger operators on R"

As was surely known by Ambrosetti and Prodi (and [2] is an interesting example),
the Laplacian with Dirichlet conditions might be replaced by more general self-
adjoint operators. The approach in this text is flexible enough to handle nonlinear
perturbations of Schrodinger operators on unbounded domains yielding global
folds. In our knowledge there are no similar results in the literature. Tehrani [33]
obtained counting results for Schrodinger operators in R" in the spirit of those
obtained by Podolak [27], indicated in Section 5.1 .
We state the by now natural hypotheses. Here Y = L*(R").

1. The free operator T = —A + v(x) : X C Y — Y is self-adjoint, with simple,
isolated, smallest eigenvalue A; and positive ground state ¢;.

2. F:XCY—Y,F(u) = Tu—f(u) is a C' map.

3. The function f € C2(R) satisfies f(0) = 0, M > f” > 0, f(R) = (a,b) and
a<t <b<min{o(T)\ {A1}}.

4. The Jacobians DF(u) : X — Y are self-adjoint operators with eigenpair
(A1 (), ¢1(n)) sharing the properties of (A1, @y).

Theorem 8.1. Under these hypotheses, the map F : X — Y is a global fold.

Such hypotheses are satisfied for v(x) = x?/2, the one dimensional quantum har-
monic oscillator, as well as for the hydrogen atom in R?, for which v(x) = —1/|x|.

Hypotheses on the potential of a Schrodinger operator in order to obtain such
properties are commonly studied in mathematical physics. The interested reader
might consider [4, 18, 20, 28]. More about this in [9].
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8.3 Perturbations of compact operators

We recall Mandhyan’s second example of a global fold [22, 23], or better, a special
case of the extension given by Church and Timourian [11].
For £2 C R" a compact subset, let X = C°(£2) and define the compact operator

K:X—>X, Kukx = /Qk(x, Yu(y)dy

where the kernel k € C%(£2 x £2) is symmetric and positive. Let u; > p, be the
largest eigenvalues of K. Now let f : R — IR be a strictly convex C? function
satisfying

0< lim f(x) <1/u < lim f'(x) < 1/|uz] .
xX—>—00 X—>00
Theorem 8.2. Under these hypotheses for K and f, the map
G: X=X, Guk) =ukx)—Kf(u®y))

is a global fold.

This is the kind of nonlinear map obtained if one started from the Ambrosetti-
Prodi original operator F(u) = —Au — f(u) and inverted the Laplacian. Actually,
one could take another track: instead of inverting the linear part, one might consider
the inversion of the nonlinear map u — f(u), since f” is bounded away from zero.
For maps G(u) = Ku — f(u) obtained this way, we handle the case when K is a
general compact symmetric operator K.

More precisely, let 2 C R", B = C°(2) and Y = L*(£2). Let K : B — B and
K : Y — Y be compact operators which preserve the cone of positive functions.
Also, K : Y — Y has simple largest eigenvalue A, = ||K| and second largest
eigenvalue A, . Let f : R — R be a strictly convex C? function, with f(0) = 0 if
is unbounded. Suppose

Ay<a= lim f'() <X, <b= tlimf’(t) .
t—>—00 —>00

Theorem 8.3. The map F : B — B, F(u) = Ku — f(u) is a global fold.

The reader should notice that F is Lipschitz but not differentiable as a map from
L*(£2) to itself. Still, the direct construction of fibers in C?(£2) is not a simple matter,
because properness of F' is not immediate. Transplanting fibers in this example is
convenient, and was also used in Mandhyan’s context.
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8.4 Folds as perturbations of non-self-adjoint operators

McKean and Scovel [11, 25] studied the Riccati-like map on functions
ue L2([0.1]) = u+ (D) "'f(w) € L*([0.1]).  f(x) =x*/2,

where (D,)”! is the inverse of the second derivative acting on W'?([0, 1]) and
showed that the critical set consists of a countable union of (topological) hyper-
planes. Church and Timourian [7] showed that the restriction of such map to a
neighborhood of one specific critical component is (after global homeomorphic
change of variables) a fold. The techniques employed are in the spirit of the original
Ambrosetti-Prodi paper.

Fibers were relevant in [21], where perturbations of first order differential
equations (clearly, non-self-adjoint operators) were shown to be global folds. An
example is the map on periodic functions with (generic) convex nonlinearities f,

F:C'SY — SY, u—u +fu).

McKean and Scovel [25] and Kappeler and Topalov [17] considered the same map
among Sobolev spaces, the celebrated Miura map, used as a change of variables
between the Korteweg-deVries equation and its so called modified version.

More recently, a perturbation of a non-self-adjoint elliptic operator (as in [3], but
with Lipschitz boundary) has been shown to yield a global fold [30].
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singular polytropes with gain-loss function
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1 Introduction

We consider the existence of radial singular polytropes, i.e. singular positive radial
singular solutions to

Au+ AW —u?) =0, |x| <1,
ulx) =1, for ||x|| =1,

)]

forA >0,N/(N—2) <p<(N+2)/(N—2),N > 2,and g < p. A radial singular
solution to (1) is a radially symmetric function u : B := {x € R;|lx|| < 1} - R
such that u € I7(B) N H"'(B), u(x) = 1 for ||x|| = 1, lim,—q u(x) = +0c0, and

/ Vu(x) - Vo (x) — A (x) — u? (x))p(x)dx = 0, 2
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for any function ¢ : B — R of class C°° and compact support in B. In particular, u
is a solution to (1) in the sense of distributions.

The reader is referred to [2] for a derivation of (1) in the modeling of a
static configuration in which the transfer of energy takes place entirely by thermal
conduction. The heat diffusion coefficient, heat generation, and heat radiation are
modeled, respectively, by

kK =kov*, I'=Typ", A= A", (3)

where kg, k, I, m, Ay, and n are given constants, and v denotes the temperature.
The singular radial solutions to (1) are the functions u : (0, 1] — R that satisfy
(2), u(1) = 1, and lim,—o+ u(r) = -+oo. By elliptic regularity, singular radial
solutions u(r) are regular solution of (1) in 0 < r < 1.
Motivated by the results in [1] we have the following extensions of the classifi-
cation of regular solutions to (1) obtained in [2].

Theorem 1.1. Letp € (N/(N—2),(N+2)/(N—2)) and q < —1. For each positive
integer k there exists a two-parameter family of singular solutions u(-, a, b, A(a, b))
to (1) such that u(-, a, b, A(a, b)) — 1 has exactly k zeroes in (0, 1].

Theorem 1.2. Letp € (N/(N—2),(N+2)/(N—2)) and q > —1. For each positive
integer k there exists a three-parameter family of singular solutions u(-, ug, uy, ro)
to (1) such that u(-, ug, ug, ro, A(uo, uy, ro)) — 1 has exactly k zeroes in (0, 1].

We note that while the singular solutions obtained in Theorem 1.1 are derived
from solutions with large energy near zero for A = 1, the solutions obtained in
Theorem 1.2 come from solutions with negative energy near zero also for A = 1.
See Lemmas 2.5 and 2.7 and Figure 1 where numerical calculations have been used
to infer the oscillations and singularity for the case g > —1.

The reader is referred to [3] for the role of (1) in radiative equilibrium of stars.
See also [5]. For recent studies on related quasilinear equations, see [4].

2 Existence of a two parameter family of singular solutions

Forp € (N/(N—-2),(N+2)/(N—2)), N > 2,and g < p we consider the existence
of solutions to

N-—1
W4+ —u+w—ul=0, 0<r<l1,
r
4)

u(ro) = uo,

M/(I‘()) = M(/)»

forO0 <ry < 1,up > 0,and u; € R.
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t <t

u(®)
—Nwh OO N
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12t
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€ 11f
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0.95

0 5 10 15 20 25
t

Fig. 1 Numerical simulation of a singular solution to (4) with N = 3,p = 4,q = 1,
o = 0.2, up = .1786, and u, = —0.3462

From now on we write
tp-H tq+1

p+1 g+1

f@®)=¢—1, and F(t) = (5)

forg+1 # 0.If ¢ + 1 = 0, we replace the corresponding fraction by In(#). For any
solution u(r) of (4) we define

(u'(r)?
2

E(r) = + F(u(r)), (6)

a straightforward calculation shows that

—N

Ly, o

r

E(r)=

Lemma 2.1. For each (ug,up), there exists a unique function u : (0,1] — R
satisfying (4). Such a solution depends continuously on (ug,u;,), and u(x) =
u(||x]) € LP(B) N H“(B) and satisfies the partial differential equation in (1) in
the sense of distribution.

Proof. See Lemma 1 in [1]. O

We base our analysis of singular solutions to (1) on the existence and energy
properties of singular solutions to (4), which are presented in the following lemmas.
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/(1=p), AP =0 +N—-2) =2(N-2)(p—1)—2)/(p— 1),
®)

), and 1) € (6, 12). Since p > N/(N — 2), there exists ¢ > 0 such that

Letf =2
T € 9, %
(BA + 120)? N (A + cyrt! N N—2(A+ YOA + 120) = 0
c 7c) = 0.
2 p+1 2 z
Let I = [a1,a;] C (0, 00) be a compact interval, and by := agz_e)/(”_e).
For a € I and b > by we denote by u(-, a, b) the solution of (4) such that
u(b,a,b) = (A + c)b? + ab™
~ . ~ )]
W' (b,a,b) = (A + 1,0)b™" + rjab™ 7!,
with
b=p"0m), (10)
For future reference we note if b > by and a € I then
ab™ < b’ (11)
For now on we denote
—1 -2 /
o(r) =" rE(r) + 7 u(ryu (r) |,
N N-2 (12)
2 b

and I'(u) = yjuP ' — poud™!

Let 0 < r; < r, < 1. Multiplying (4) by ¥¥~'4/ and integrating on [ry, r;], then
multiplying (4) by #V~'u and integrating on [ry, r,], and finally combining common
terms one has the following Pohozaev identity

(13)

0(r2) = O(r1) + /rz sV (u(s)) ds.

"

Lemma 2.2. There exists by > by such that, for b > b, liH(l) u(r,b,a) = +oo and

u— 1 has no zero in (0, b).
(14)

Proof. See Lemma 2 in [1]. Let m € (0, 1) such that
Om'™m—1)<1 and ©n+2?A—m)(A+c+ 1)y <0.
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Suppose that there exists r € [mb, b) such that ' (r) > 0. Since ' (b) < 0, there
exists r € (mb, b) such that «’(r1) = 0 and u/(s) < O for s € (ry,b].
Let by > by such that #” — u? > 0. For s € [ry, D],
u(s) < u(b) + ' (t)(s — b) < u(b) —u' (1)(1 — m)b (15)

Multiplying (4) by ¥¥~! and integrating one obtain

B N—1
_M/(l) < — <;) u/(l;) < _ml —N /(b)

This, (14), (15), and the fact that bu’(b) > Ou(b), implies
u(s) < 2u(b) forall se[r,b]. (16)

Therefore

2Pu (b)

0=r""u'(r) <"1/ (b) + " =)

< -1 ’(b) + 2 “N(b)( mN)BN

< BN"2u(h u'(b) 2P (b
<b (b)[ ) + (1 =m)2"b7ut (b)}

<" 2ub) [+ A -m2P@A+c+ D] <o0.
This contradiction proves that u’ < 0 on [mb, b] and, hence, u(r) > wu(b) for all

t € [mb,b).
Also

ooy [ b (B w@B) N-2
Q(b) =b |:”(b) +b(p+1 ) +— u(b)u'(b) | .

It follows that

(6A + 120)* 5
2

b, - 5
Eu/(b)Z — + 0(b9+‘[1*2)’

; (u(g)'ﬂ_l B M(B)‘H_l) _ A+ c)ypt! P14 o2y,

p+1 q+1 p+1

-2 - - ) ~ 3
u(b)u' (b) = NT(A + ¢)(0A + 1) + 0BT 7).
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This and (8) imply
0(b) = OB+ H172). (17)
Therefore
b
Q(mb) = Q(b) — /NsN_lf'(u(s)) ds < Q(b) — Cu(b)’t'b"
mb
— QBN _ (V202 = V202 [1+ O(Eﬂ_@)] <o.

It follows from this and (13) that Q(r) < 0 for r € (0, mb]. This implies that i/ (1) <
0 for all ¢ € (0, mb]. Hence lim,¢ u(r, b,a) = 400, which proves the lemma. 0O

Lemma 2.3. Let K be a positive real number. Let ¢ satisfy

" (1) + NT_lqﬁ’(t) +a()p(t) = 0, t>1 >0, ¢(to) > 0. (18)

If ¢’ (t0) < 0and a(t) = K while ¢ (t) = 0, then ¢(t) = 0 for some t € [ty, 1o + f;—%]
Proof. See Lemma 1 in [2]. O

Lemma 2.4. There exists r| > b such that
u(ry,a,b) =1,

and u(r,a,b) > 1 for0 <r <ry.

Proof. Letd > 1 be such that F(d) = E (b). 1t follows from (7) that u(r,a,b) < d
for r > b. LetI; = [1,d].
Since f'(1) = p — g > 0, there exists €; > 0 and §; > 0 such that

f(x) > 8 19)

forx € [1,1 + €;]. Hence, if x € (1,1 4 €;] — {1}, then by the mean value theorem
we have

flx
D _ ey > 8. o)
x—1
where € € (1,1 + €). ‘
On the other hand, by compactness, % is bounded away from zero on I; —

(1,1 + €;1). This and (20) imply that there exists § > 0 such that
f(—x)l > § forall xely, 21
X —

where the function f(x)/(x — 1) is extended to 1 as f’(1) = p — q.
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Letting ¢ = u — 1 it follows that ¢ (r) satisfies the following equation

fu(r)) >
¢

"0+ 20 + g = 0. 1> b,

and ¢/ (D) = u/(b) < 0, and for r > b with ¢ > 1,

@>8.
¢

It follows from Lemma 2.3 that ¢ (r;) = 0 for some r, € [b,b + %] This proves
the lemma. 0

Lemma 2.5. [If g < —1, then there exist positive numbers
si(a,b) < sy(a,b) < --- < sila,b) < -+ — 00

such that u(s;(a,b),a,b) =1, fori = 1,2,..., and u(-,a,b) # 1 on (s;, si+1), for
i=0,1,...wheresy=0.

Proof. Let ¥ > 0 such that u(r,a,b) > 1, and d > 1 such that F(d) = E(r). From
the definition of F it follows that there exists &’ < 1 such that F(d') = F(d), and
F(t) < F(d)ifand only if t € I; := [d’, d]. By (7), for r > F, we have

Fut) = 20 -8 < p,
Thus
u(r) € I; forany r>r. (22)
Since f'(1) = p — g > 0, there exists €; > 0 and §; > 0 such that
f'(x) > 8 (23)

forx € [1 — €1, 1 + €]. Hence, if x € [1 — €, 1 + €;] — {1} then by the mean value
theorem we have

IO _ ey > 5, 24)
x—1

where £ € (1 — €1, 1 4 €)).
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fx)

On the other hand, by compactness, <= is bounded away from zero on I, — (1 —
€1, 1 + €1). This and (24) imply that there exists § > 0 such that
Lx)l > ¢ forall x el (25)
X —

where the function f(x)/(x — 1) is extended to 1 as f'(1) = p — g.
From (22) and (25) letting w(r) = u(r) — 1 we see that

fu(r))
w(r)
Let uy < pp < +++ < -+ — oo be the radial eigenvalues of the negative

Laplacian operator with zero Dirichlet boundary data on the unit ball in R". Thus,
h(r) := J(\/gr) vanishes at

> ¢, forall r>r. (26)

Lol
/\/S’ \/g?
Therefore, by (26) and the Sturm Comparison Theorem, w(r) has a zero in

[ﬂ Hit1 . This establishes the existence of infinitely many zeroes for u(r) — 1.

V& /8
Since d # 1 and f(1) = 0 by uniqueness of solutions to initial value problems
if u(r) = 1 then /(r) # 0. Thus the zeroes of u(r) — 1 form a discrete set
{s1 < s < ...}. Since u > 1 on (0,s1) then &'(s;) < 0. Since f(1) = 0 by
uniqueness of solutions to initial value problems u'(s;) # 0. Thus «'(s;) < 0.
Hence there exists a > 0 such that u < 0 on the interval (s;,s; + a). Hence u < 0
on (sq, s2). This in turn implies that «’(s) > 0. Using again uniqueness of solutions
for initial value problems we see that u’(s) > 0. Inductively it follows that u < 1
on (s;, si+1) for i odd and u > 1 on (s;, s;41) for i even. O

Lemma 2.6. If g > —1 there exists by = by(a) such that for b > by, u(-,a,b) — 1
has only one zero.

Proof. Suppose by contradiction that, for large b, u(:, a, b) — 1 has more than one
zero. We can assume, without loss of generality, that there exists r; > b such that
0<u(r) <1,d(ry)=0,and v/ (r) <0for0 < r < ry.

By the Pohozaev’s identity

AF@u(r) = o) + /b " VP (u(s)) ds.

Since both F(«) and I" () are bounded below, this implies that there exists a constant
C such that

Q(b) < C.

This is a contradiction, since by (17), limp—, o Q(E) = o0. |
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Lemma 2.6 shows that there is no oscillatory singular solutions to (4) of the type
u(-, a, b), these solutions decrease towards zero with unbounded energy as b — co.
In the next lemma we will show the existence of oscillatory singular solutions to (4)
with initial negative energy.

If ¢ > —1, there exists u € (1, +00) such that F(z) = 0, F(u) < 0 foru € (0, u),
and F(u) > 0O for u > u. In addition, I" is bounded from below. Thus we let I,;, =
min{I" (u);u € (0, +00)}.

Lemma 2.7. Let g > —1. Ifup € (1, 1), uy < 0, and ro > 0 are such that

2

U N —
— + F <0, ——
> + F(uo) 7

min

N o< 0, and ugy + f(w)ro <0, 27

oty —

and u is the solution to (4) such that u(ry) = uo, u'(ro) = uy, then there exist positive
numbers

s1(uo, ug, ro) < s2(ug, ugy, ro) < -+ < s(uo, ugy, ro) < +++ — 00

such that lim,_ou(r) = oo, u(s;)) = 1, fori = 1,2, ..., and u(-) # 1 on (s;, si+1),
fori=0,1,... where sy = 0.

Proof. By (27), and (13) we have

e

0(iin) = Q(ro) — / "L us)) ds

o

-2 / Fmin
Uolly — ———

N
< E(ro) + 15! v

- e

N-2 Enin
-1 M()M6 — Ti{)\/ < 0.

<ry

By (27), for r; € (0, rp) with u(r) € (ug, u) for all r € [ry, ry] we have

7

AN () = P g + / " F(u(s))ds < r) = (u) + rof (i) < 0. (29)

1

From (29) we see that u is strictly decreasing on [u~'(it), ro], and from (28)
we conclude that u cannot have critical points on (0,x~!(i)]. Thus u is strictly
decreasing on (0, ro). Also from (28) we infer that limsup,_,,, O(r) < 0. Hence
lim, 04 u(r) = +o0. That is, u is a singular solution to (4).

Arguing as the proof of Lemma 2.5, the existence of the sequence {s;} follows
from the fact that E(r) < E(ry) < 0 for all r € [rg, +00). O
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3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1

Proof. Leta € I, and b > b; be as in Lemma 2.2. Taking A = (s¢(a, b))? as in
Lemma 2.5 and v (r) = u(A'?r,a,b), it is readily verified that v, is a singular
solution to (1) with exactly k nodal sets in B. O

Proof of Theorem 1.2

Proof. Let ug, uy, ro be as in (27). Let sy (uo, uy., ro) be as in Lemma 2.7. Taking
A = (s¢(a,b))? as in Lemma 2.5 and v (r) = u(A'/?r,a, b), it is readily verified
that v, is a singular solution to (1) with exactly k nodal sets in B. O
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Branches of positive solutions for subcritical
elliptic equations

Alfonso Castro and Rosa Pardo

1 Introduction

In this paper we prove the existence of positive solutions to the boundary-value
problem:

—Au = Au+ g(u), in £2, )

u=0, on 452,
where 2 C RY, N > 2. is a bounded C? domain, g is a subcritical nonlinearity, and
A is a real parameter. For simplicity we assume N > 2, but our techniques fit well
to the case N = 2.

Let A, ¢; stand for the first eigenvalue, first eigenfunction of the eigenvalue
problem —A¢p; = A1¢; in §2, ¢ = 0 on 9£2. In Theorem 2.1, we provide sufficient
conditions guarantying that either for any A < A; there exists at least a positive
solution to (1), or for any continuum (A, 1, ) of positive solution to (1), there exists
al* <Osuchthat A* <A < A; and

Vi |12y — o0, as A — A"
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In case §2 is convex, we provide sufficient conditions guarantying that for any
A < A there exists at least a positive solution to (1), see [2, Theorem 2.4].

In [3, Theorem 1.1], we provide a-priori L°°(£2) bounds for a classical positive
solutions to the boundary-value problem:

—Au = f(u), in £2,

2
u=0, on 052, @
where £2 is a bounded C? domain, and [ is a subcritical nonlinearity. Our main result
in [3] is:

Theorem 1.1. Assume that 2 C RV is a bounded domain with C* boundary.
Assume that the nonlinearity f is locally Lipschitzian and satisfies the following
conditions

Js) . : N

(H1) Py is nonincreasing for any s > 0, where 2* = =5,
max f
(H2) There exists a constant C; > 0 such that lim sup (0. < (C
§—>00 S)

(H3) There exists a constant C, > 0 two constant C,, C3 > 0 and a non-increasing
function H : RT™ — RT such that

2NF(s) — (N — 2)sf(s)

H3.1 li f > C 0
(3.1 i ind SSVH () ==
where F(s) = [, f(t)dt, and
f(s)
(H3.2) limy_s oo —S5—o = 0,
[H(x)] N—2

(H4) lim mf& > A1, where Ay is the first eigenvalue of —A acting on H}(2).

§—>00

Then, there exists a uniform constant C, depending only on 2 and f, such that
for every u > 0, classical solution to (2),

lullzee 2y = C.

Theorem 1.1 widens the known ranges of subcritical nonlinearities for which
positive solutions to (2) are a priori bounded, see [5] and [6]. We prove that functions
such as fi(s) = s> ~'/In(s + 2)* satisfy our hypotheses for « > 2/(N — 2) with
H(s) = 1/In(s + 2) see [3, Corollary 2.2], but not those of [5] neither of [6].
Moreover, g(s) = s*> ~!/In(s + 2)* can be considered as a subcritical nonlinearity
in (1), see Corollary 2.3.
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2 On the a-priori bounds for any regular domain

In this section we state our main result on the existence of positive solutions for the
nonlinear eigenvalue problem (1). We prove that there exists a branch of positive
solutions bifurcating from the trivial solution.

Theorem 2.1. Assume that 2 C RV is a bounded domain with C* boundary.
Assume that the nonlinearity g is locally Lipschitzian and satisfies the conditions
(H1)—(H3). Assume also that g : RY — R satisfies the following conditions

(H5) lim 86) _ 0.

s—>0 5
TR e
(H7) lim

[E—
s—>00 s2H(s)
Then, the following holds:

(i) If there exists one positive solution to (1), then A < Aj.
(ii) If 0 < A < Ay, then there exists at least a positive solution to (1).
(iii) Either there exists at least a positive solution to (1) for any A < Ay, or for
any continuum (A, uy) of positive solution to (1), there exists a A* < 0 such
that A* < A < Ay and ||Vu, || 20y — 00, as A — A*.

Remark 2.2. From hypothesis, H : Rt — R is a non-increasing function, then
0 < limy—00 H(s) < 00 or equivalently co > lim,_, ]ﬁ > 0.

Proof (Proof of Theorem 2.1).

(1) Assume there exists a positive solution (A, ) to (1). Multiplying (1) by ¢; > 0,
integrating by parts on £2, and due to g : R™ — R™ we deduce

(i —2) /Q ugt = /Q 21 > 0. 3)

and consequently, A < A, which concludes this part of the proof.

(i) From the Crandall-Rabinowitz’s Theorem, and thanks to hypothesis (HY),
(A1, 0) is a bifurcation point of positive solutions, and there exists a continuum
of positive solutions € = {(A,uy) € R x C'*(2)} emanating from (1, 0)
and solving (1), see [4]. From the Maximum Principle and the Hopf Maximum
Principle, if u > 0, u # 0, is a solution to (1), and thanks to A < Ay, thenu > 0
in 2, and 2 < 0 on in 952. Consequently, € C {(A.u) € R x C'“(R2) : u >
0in 2, % < 0 on 0£2}. From Rabinowitz’s global bifurcation theorem, the
continuum of solutions emanating from (A, 0) is either unbounded or goes to
another bifurcation point from the trivial solution set, see [7]. Due to A < Ay,
the continuum cannot meet another bifurcation point from the trivial solution
and therefore % is unbounded.
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In order to apply Theorem 1.1 to (1) we verify that the nonlinearity
f(s) = As + g(s) satisfy hypotheses (H1)-(H4) for A > 0, assuming that g satisfy
(H1)—(H3) and (H5)-(H7).

(H1) Obviously, hypothesis (H1) holds for f(s) = As + g(s) with A > 0.

(H2) From Remark 2.2, and by (H6) we conclude that lim,_, $ = 0. Now,
from definition of f, dividing it by g(s) up and down, due to lim,_, $
and thanks to hypothesis (H2) on g(s) we can write

lim sup —max[o,s]f < limsup —WS + lim sup MaXps) &
s>+o0 (s T iotoo As +g(s) s—>+o0 AS + g(s)
o maxo,s
= limsup¢ +limsupM <C;>0.

sotoo Ay 1 sotoo Agig +1
(H3.1) Let G(s) = fos g(1) dt, then from definition, dividing by sg(s)H(s) up and
down, thanks to hypothesis (H6) and due to lim,_, o ﬁ = 0, we can write

limint 2NF(s) — (N = 2)sf(s) liminf 2NG(s) — (N — 2)sg(s) + 2As?
oo Sf (5)H(s) N T A2H(s) + se()H(s)

2NG(s)—(N — 2)sg(s) 2As

minf SOHE " gOHE)
s—>—+00 ﬂ—i—l
g(s)
L NG(s)~(N — )sg(s)
- 15111)1_:25 sg(s)H(s) =6>0

From definition of f, by hypothesis (H7) and (H3.2)

f(s) g(s)
lim S il = lim A 527

T HOIT T (afg) A0 [H0]T

=0.

(H4) By (H6) lim,— + o g(ﬂsﬂ = +o00. From Remark 2.2 and (H6) we conclude
that lim;_, o @ = 00, and consequently

liminf ) = lmine 289 5

s—>00 § 5—>00 Ky

1.

Therefore, hypotheses (H1)—(H4) hold for f(s) = As + g(s) with A > 0.
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From Theorem 1.1, whenever A € [0, ), the positive solutions are a-priori
bounded. Consequently, the projection of % in the parameter space must contain
the whole interval [0, A;), which proves part (ii).

(iii) From the proof of part (ii), we can assert that the continuum of solutions
€ C R x C'*(£2) is an unbounded set. We conclude that either for any 1 < A,
there exists a positive solution to (1), or the projection of % in the parameter space
is bounded, and therefore, € is unbounded in C'*(£2). From elliptic regularity, in
particular ||u; [|foo(2) — 00, as A — A*.

We reason by contradiction, assuming that ||Vuy[|2o) < C,as A — A* < 0.
From Poincaré inequality, [lus||;2(o) < C, as A — A*. Multiplying (1) by u and
integrating by parts on §2 we can write

/wW+m/ﬁ=/%@§a )
2 2 2

for some constant C independent of u.
Moreover, from hypothesis (H3.3), and Remark 2.2, for any ¢ > 0 there exists a
constant C, such that

g(s)ﬁ <es+ C,, forany s> 0,

therefore
/ g(u)1+2'17—1 dx < 8/ ug(u)dx + C, < Ce + Cg, 5)
2 2

and consequently,

JJsCeo)” e = [ fafut)] = Js(uco) 717 a
£2 2

— -
< (Ce+Co) [g(uO)|s, =, (6)
for some ¢ > N/2. Assuming for a while that g is non-decreasing, then
q—1—5
[ ls(u)|” dv = (e + € [e(lul) |7 )
2
Therefore, from elliptic regularity,

T S
lellwzaie) = CllAuliae) = (Ce + € [g(lulloo) |77, ®)

Let us restrict ¢ € (N/2, N). From Sobolev embeddings

=l 1 _
”u”WI,q*(Q) < Cllullw2q(2) < (Ce + Cy) [g(||u||oo)] R ©)



92 A. Castro and R. Pardo

where 1/¢* = 1/¢—1/N and g* > N.
Moreover, from Morrey’s Theorem, see [1, Theorem 9.12]

lu(x)) — u(xy)| < Clxy — x|V IVull o ) ae. x,x € £2.
Therefore, for any xi, x, such that |x; — x| < R,

1___ 1
(2*—1)q

o) = u(e2)| = (Ce o+ €I R [g(lud)] T (10)

From now on, we shall argue by contradiction. Let {u}; be a sequence of
classical positive solutions to (2) and assume that

k1_1)rrolo luk]| = 400, where  |ug|| := ||ux]loo- (11)
Let C,8 > 0 be as in [3, Theorem 2.10]. Let x; € £2; be such that

ui(x;) = max u; = max uy.
25 I7)

By taking a subsequence if needed, we may assume that there exists xo € £2s
such that

Jim e = x € 25, and dy := dist(xo, 02) > § > 0. (12)
—>00
Then, for any x € £2 such that |x — x| < Ry,
-2 =i~
) = e (x)| = (Ce + C R, (el . (13)
Let us choose Ry such that B, = B(x;, R;) C £2, and
1
up(x) > 3 [tk || for any x € B(xg, Ry).

and there exists y; € dB(x;, R;) such that

1
u(yx) = 3 (ot (14)

Particularizing x = y; in (14)

1

2N 1= -l 1
(Ce+Co)R, ° [g(||uk||)] e Euk(xk) = §||uk||, (15)
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or equivalently

/(%)
1 [ |
Ce+ C -1t
( ¢) [g(||uk||)] ¢~ 2 —Iq

(16)

We define

1/(2-%)
Re — o | an

oL
Lol

Let us choose a constant C such that B(x;, CR;) C B(xg,dy) C $2, see (12). Let us
denote it again by B(x;, Ry) by redefining Ry if necessary. Therefore,

1
up(x) > 3 [ || forany x € B(xy, Ry). (18)

Consequently, and taking into account that g is non-decreasing

1 1 1
/ ueg () dx = ~ gl gl dr > g (£ el ) RY.
o 2 2 2

B(xk,Ri)

At this moment, let us observe that, from hypothesis (H1),

5(59)
1 2*—1 (1 2*—1 2*—1
g;(zss) _ (%) % > (%) , forall s> s, (19)
21

consequently, for g > N/2,

gLl

8 (lugll) ™

2
<=

>C, for all k  big enough. (20)

1
q

=

Substituting RY, rearranging terms twice, using (20), and finally using hypothesis
(H3.2) and Remark 2.2 to observe that g(s)/s> ~! — 0 as s — 0o, we obtain
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N
I i
k
ety v = e (31 ml
Q g(||uk||) ¢ 2*=I)yq
~ N7l ’
= |t (%5 o
Y
2 1 LN
i+ 2y
Ju] H5 g (L) S T A T
= >
__ 1 — __1
) G ()

— 00 ask — oo

21 ("'ﬁ‘i)ﬁ(ﬁ)
el ;
-¢ [ g () }

which contradicts (4), ending this part of the proof, achieved assuming that g is

non-decreasing.
Next, we shall discuss the general case. Let us denote by y(s) := g(s)/s> 7!,
from hypothesis (H1), ¥ (s) is non-increasing. Therefore, whenever % lue]l <

up(x) < |lugll, we obtain

) = )l < v (VY =22 g(120).

and

stu) = wlan) (1) = gy (120) = (2) s

(22)
Choosing Ry such that B(x;, R;) C 2, and (18) is satisfied, from (6) we obtain

1
—l=z

1 q
/ lg(u(0)|” dx < (Ce + C.) |:g<§||uk||>i| : 23)
B(xx.Ry)

and from elliptic regularity

1 e T
o = (€2 +C) o5 . o4)
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Defining
[l

=~y
q —1I)g
g(4 el )

R =

Redefining Ry if necessary, we can assert that B(xx, Ry) C B(xp,dyp) C 2.

Consequently, taking into account (22),
[ sty v = € el !

95

Substituting RY, and rearranging terms we obtain
NN
N
q
[l
[ mswdr = € g () —
1 q (2*—D)q
gl
N
T
N q Uy
= | [ttt | C—
1 qg (2*—1)q
g( )
2 1 %_é ﬁ
1+%-1
574 )]
=C e —
1 q (2*—D)q
g( )
From hypothesis (H2),
s
g(l) >C—e, for alls > s,,
2(39)

consequently, for g > N/2,
2.1

q
slla)™

BT
<=

g($luel)

for all k£ big enough.

(25)

(26)
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Hence, by (H2), (H3.2), and Remark 2.2, and argiiing as before, we can assert
that

21
[
wg(uy) dx > C > -
Q | =V~
8 §||Mk||
1+2-1 Z—Lﬂ
llue] " !
>C P — — 00
8(Iluel) V@
as k — oo, which contradicts (4), ending the proof. O

Corollary 2.3. Assume that 2 C RY is a bounded domain with C*> boundary. Let
us consider any u > 0, classical solution to

u2‘—1

—Au=u+ ———, in £2,
u u—+ 2+ 1)° n
u=0, on 052,

27)

with @« > 2/(N — 2). Then, the conclusions of Theorem 2.1 hold: if there exists
one positive solution to (27), then A < A If 0 < A < Ay, then there exists at
least a positive solution to (27). Moreover, either (27) has a positive solution for
any A < Ay, or for any continuum (A, uy) of positive solution to (27), there exists a
A* < Osuch that A* < A < Ay and ||Vu, || 20y — 00, as A — A*.

Proof. We prove that g(s) = s> ~'/In(s + 2)* with @ > 2/(N — 2) satisfy our
hypotheses for H(s) = 1/1In(s + 2). Hypotheses (H1)—-(H2) and (H4)—(H8) hold
trivially. To prove (H3), see [2, proof of Corollary 2]. O
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Multiple solutions to anisotropic critical
and supercritical problems in symmetric
domains

Mbonica Clapp and Jorge Faya

Para Djairo, em seu aniversdrio, com grande afeto e admiragdo.

1 Introduction and statement of results

Consider the anisotropic critical or supercritical problem

() —div(a(x)Vu) + b(x)u = c(x)|ul’"u in £2,
B u=0 on 952,

where £2 is a bounded smooth domainin RV, N > 3, a € €'%(R2), b, c € €**(R2),
a and c are strictly positive functions on £ and p > 2*, with 2* := 2% the critical
Sobolev exponent.

The remarkable results of Brezis and Nirenberg [5] and Bahri and Coron [2]
in the 1980s triggered numerous investigations on the critical problem, and many
results are available nowadays for (g,+) with constant coefficients a = ¢ = 1,
b € R. Yet, still little is known on the anisotropic case.

Substantially less is known for the supercritical problem p > 2*. A fruitful
approach which has been applied in recent years to treat this problem consists
in reducing it to a critical or subcritical problem of the form (g€,), either by
considering rotational symmetries, or by means of maps which preserve the Laplace
operator, or by a combination of both. This approach has allowed to obtain existence
and multiplicity results in some domains for supercritical problems with constant
coefficients. We refer the reader to the survey [9], and the references therein.
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Bahri and Coron [2] established the existence of at least one positive solution to
the critical problem (g,+) with @ = ¢ = 1, b = 0, in every domain §2 having
nontrivial reduced homology with Z/2-coefficients. Moreover, if §2 is invariant
under the action of a group G of linear isometries of RV and every G-orbit in
£2 is infinite, the critical problem is known to have infinitely many solutions [6].
Neither of these conditions is enough to guarantee existence in the supercritical
case. Passaseo exhibited an example of a domain §2 having the homotopy type of
a k-dimensional sphere and infinite O(k + 1)-orbits, in which (g,) has no solution
forp > 2%, = IZVU_V k__k; [17, 18]. Examples with richer cohomology were exhibited
in [10]. The exponent 2y, is called the (k + 1)-st critical exponent in dimension N.
Note that 25, = 2*.

Here we shall obtain some multiplicity results for the anisotropic problem (g,)
with p = 2%, under some symmetry assumptions.

As usual, we write O(N) for the group of linear isometries of RY. We denote by
Gx := {gx : g € G} the G-orbit of x and by #Gx its cardinality. If G is a closed
subgroup of O(N), a subset X of RY is said to be G-invariant if Gx C X for every
x € X and a function u : X — R is called G-invariant if it is constant on every Gx
with x € X.

If 2, a and b are G-invariant, we set

2
pSy(£2) == inf Je (a(x) |Vul” + b(x)u2>

ueH (2)¢ [o |Vul?
u#0

. ey

where H)(£2)° := {u € H}(£2) : u is G-invariant}.

1.1 The critical problem

Anisotropic critical problems of the form (go,) have been studied by Egnell [12] and,
more recently, by Hadiji et al. [13, 14]. They obtained existence and multiplicity
results under some assumptions which involve flatness of the coefficient functions
at some local maximum or minimum point in the interior of £2. Our results involve
only some symmetry assumptions. We shall prove the following results.

Theorem 1.1. If £2,a,b and c are G-invariant and if #Gx = oo for every x € §2,
then the critical problem (g,+) has infinitely many G-invariant solutions.

Next, we fix a closed subgroup I" of O(N) and a nonempty I"-invariant bounded
smooth domain D in R" such that #I"x = oo for every x € D. We assume that the
functions a, b and ¢ are I"-invariant and that uar »(D) > 0. We prove the following
multiplicity result.

Theorem 1.2. There exists an increasing sequence (£,,) of positive real numbers,
depending only on I', D, a, b and c, with the following property: If 2 is a bounded
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smooth domain which contains D and if it is invariant under the action of a closed
subgroup G of I for which /Lgb(.Q) > 0 and the inequality

i a(x)%#Gx
min ——y——
XEN C(X)T

> £,

holds true, then the critical problem (gpy+) has at least m pairs of G-invariant
solutions ‘uy, ..., xu, such that uy is positive, u,, . . . , u,, change sign, and

/ c(x)|uk|2* < £, SN? foreveryk=1,...,m,
2

where S is the best Sobolev constant for the embedding D'*(RN) — L*" (RV).

For example, we may fix a bounded smooth domain D, whose closure is
contained in the half-space (0, 0o) x RVY~2 and set

D:={(y,2) e CxR"%:(]y|.z) € Dy}.

Then D is invariant under the action of the group I" := S! of unit complex numbers
on C x RVN=2 given by ¢ (y,z) 1= (¢'%y,2). f G, := {e¥™*/" : k =0,...,n— 1} is
the cyclic subgroup of I' of order n, then #G,x = n for every x € (C ~ {0}) x RV 72,
Therefore, for every G,-invariant bounded smooth domain §2 in C x RY~2 with

N—2

N
DC R cC(C~{0})xR"2? and (min a(x)? n> 4y,
XER c(x)T

Theorem 1.2 yields at least m pairs of solutions to problem (g,*) in £2.

Theorem 1.2 extends a similar result obtained in [7] fora = ¢ = 1 and b = 0. As
in that paper, the proof relies on the fact that symmetries provide an energy threshold
below which the symmetric Palais-Smale condition holds true. We shall prove a
representation theorem for symmetric Palais-Smale sequences of the functional
associated with problem (g,+), which extends Struwe’s global compactness result
[20] and relates the symmetries of the concentration points to those of the solution
to the limit problem concentrating at those points.

1.2 The supercritical case

Next, we consider problem (g,) with p = 2 in a domain §2 of the following form:
we write k = k; + -+ - + kg with ky, ..., k; € Nand assume that N > k+d + 2. We
consider domains

Q2 :={(x" .. x) e RO s RMFC RN (X)L

) € O},
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where @ is a bounded smooth domain in RV* whose closure is contained in
(0,00)? x RN %4 We assume that a,b and c are radial in x', i.e. they can be
written as

alx', ... xx) = ot(|xl

bx', ... x ) =8 (|x]

e ey

xd\,x/),
d ’x/) ,

X
,x’).

Passaseo showed that if d = 1, ® is a ball centered on (0, 00) x {0}, b = 0 anda =
¢ = 1, problem (502;.1{) does not have a nontrivial solution. Examples of domains
® where (92;7,,) has multiple or even infinitely many solutions in £2 have been
exhibited by Wei and Yan [22] and Kim and Pistoia [15].

We consider O(N — k — d) as a subgroup of O(N — k) by making it act on the
second factor of R? x RN=%=4 = RN je. g(x”,x) := (", gx') for all (x",x) €
R x RV7%=d ¢ € O(N — k — d). We shall prove the following results.

Theorem 1.3. Let G be a closed subgroup of ON — k — d). If ©®,«a, B and

9o e ey

e, ... x4 X)) = y(’xl|,..., |xd

y are G-invariant and #Gx = oo for every x € O, then the supercritical
problem (pzl»ck) has infinitely many solutions in 2 of the form u(x', ..., x4, x) =
v (!xl R P ,x/) , where v is G-invariant.

Next, we fix a closed subgroup I" of O(N — k — d) and a nonempty I -invariant
bounded smooth domain D contained in (0, 00)? x RN~ such that #I'y = oo
for every y € D. We assume that the functions «, § and y are I"-invariant and that
,uf;_ﬁ (@) > 0. Let ¢ : (0,00)? x RV =*=¢ _ R be the function given by

o1, ya,Y) = y’f‘ ---y];", yi € (0,00), y € RV, 2)

Under these assumptions, we obtain the following result.

Theorem 1.4. There exists an increasing sequence ({,,) of positive real numbers,
depending only on I', D, a, b and c, with the following property: If ® is a bounded
smooth domain in RN such that D € @ C (0, 00)? xRN %4 and if © is invariant
under the action of a closed subgroup G of I' for which MS_ 8 (®) > 0and

min > Lo,

o()a(y) T #Gy
o y()”

2
—k—2
2

then the supercritical problem (502761() has at least m pairs of solutions
tuy, ..., Lu, in 2 of the form '

uj(xl,...,xd,x') = ui(|x1| ,...,‘xd

x),
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where uy is positive, ua, . . ., uy, change sign, and v; is G-invariant (in the variable xX)
and satisfies

/ oMy () |v,}2* <4SV? foreveryj=1,....m.
e

Theorem 1.4 is similar to a result obtained in [10] fora = 1 and b = 0 in
domains of a different kind, arising from the Hopf fibrations.

The last two theorems will follow immediately from the former two. We shall
prove these four theorems in the next section. The last section is devoted to the
proof a symmetric global compactness result.

2 Proofs of the main results

2.1 The proof of Theorems 1.1 and 1.2

By the principle of symmetric criticality [16] the G-invariant solutions to problem
(g2+) are the critical points of the functional

Jupe) = % /Q [a(x) IVul? +b(x)u2] - 2i /Q ) uf**

on the subspace H| (£2)¢ of G-invariant functions in H} (£2).

Definition 2.1. A G-invariant Palais-Smale sequence for J, ;. at the level t is a
sequence (u,) such that

u, € HY(£22)°, Jape(y) = T, Jopo(y) — 0in H'(R).

We shall say that J, . satisfies condition (PS)¢ in H]($2) if every G-invariant
Palais-Smale sequence for J,,. at the level t contains a subsequence which
converges in H} (£2).

In the following section we shall prove that J,, . satisfies condition (PS)¢ below
a certain level, see Corollary 3.2.

Proof (Proof of Theorem 1.1). Corollary 3.2 asserts that J, ;. satisfies condition
(PS)¢ for every T € R whenever #Gx = oo for all x € £2. Arguing as in [19,
Theorem 9.38], it is easy to check that the functional J, ;. satisfies all hypotheses
of the symmetric mountain pass theorem [19, Theorem 9.12]. Consequently, it has
an unbounded sequence of critical values. O
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To prove Theorem 1.2 we need the following result. Note that, if MaG,;,(-Q) > 0,
then

= | a1V + b

is a norm in H(l) (£2)° which is equivalent to the standard one.

Theorem 2.2. Let W be a finite dimensional subspace of H}(§2)°. Ifugb(.Q) >0
and Jg . satisfies condition (PS)IG in Hé (£2) for every T < supy Jape, then Jopc
has at least dimW — 1 pairs of sign changing critical points u € Hé (82)° such that
Ja,h,c(u) S SupW Ja,b,c~

Proof. The proof, up to minor modifications, may be found in [8, section 3]. m]

Now the same argument used to prove the main result in [7] yields Theorem 1.2.
We include the proof for the reader’s convenience.

Proof (Proof of Theorem 1.2). We divide the proof into four steps.

STEP 1: We define £,, and show that the sequence ({,,) is strictly increasing.
Let &21(D) be the collection of all nonempty [ -invariant bounded smooth
domains contained in D, and define

Pu(D) :={(D1,....Dy) : D; € Z1(D), DiND; =0ifi #j}.

Note that &,,(D) # @ for each m € N. Since #'x = oo for all x € D;,
Corollary 3.2 asserts that J, ;. satisfies condition (PS)!" in Hé (D) for every
© € R. Hence, the mountain pass theorem [1] yields a nontrivial least energy
I"-invariant solution wp, to problem (g»+) in D; which satisfies.

Ja.h,c(a)D,-) = rfljg( Ja,b,C(t wD,-)' (3)
Extending wp, by zero outside D; we have that wp, € Hé (2)°. Set 7o i= li\,SN/2

and define

Ty = 1inf{ > Jupe(wp,) : (Dy,...,Dy) € Zy(D) and £, 1= 1) 7.
i=1
Note that J, 5 -(wp,) = Jap.(wp) = ©1 > 0. Therefore, for any (Dy,...,D,,) €
Z,,(D) with m > 2 we have that

m m—1

Zja,b.c(a)D,-) = ZJa.h,c(wD,-) +Jabe(®p,) = Tn—1 + T1 > Tn—1.

i=1 i=1
It follows that t,, > 1,,—; > 0 for all m > 2. Hence, (£,,) is strictly increasing.
The following steps are devoted to showing that (£,,) has the desired property.
So let us fix m € N, a closed subgroup G of I" and a bounded smooth domain 2,
such that D C £2, u&,(£2) > 0 and

. aN#Gx ‘ 4
K = ?;%IW > Ly 4)
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STEP 2: We show that, for any given ¢ > 0, J, . has m pairs of critical points
vy, ..., kv, in H(]) (82)€ such that v, is positive, va, . .., Uy, change sign,

Joveop) <ty if k=1,....m—1, and JabeWm) < T + &

Inequality (4) implies that 7,, < K 7. Hence, we may assume that ¢ € (0, 7})
and 1, + &€ < K Too. We choose (D, ..., D,) € £, (D) such that

m
T = ZJa,b.c(wDi) <Ty+e
i=1

and, for each k = 1,...,m, we consider the subspace W; of Hé (£2)¢ generated
by {wp,,...,wp,}. Since D; N D; = @ for i # j, the functions wp, and wp, are
orthogonal in H}(£2). Therefore, dim Wy, = k, and identity (3) implies that

k

Ok = supJape < D Japc(®p;) < K Too.
Wi i=1

By Corollary 3.2, J, . satisfies (PS)¢ in Hé(ﬂ) for all T < oy. Hence, the
mountain pass theorem [1] yields a positive critical point v; € H(£2)% of J, .
such that J, , .(v;) < o] and, applying Theorem 2.2 to each Wy with k > 2, we

obtain k — 1 pairs of sign changing critical points £vg s, ..., Vi € Hé (2)°
such that

Jabe(Wri) < oy forevery i=2,...,m.
Now, for each k > 2, we inductively choose vy € {vi2,..., Urx} such that vy #

v forall 1 <j < k. Note that

k m
o+ m—kt <Y Jape(op) + D Jape(wp) < Ty +&.

i=1 i=k+1
Since ¢ € (0, 71), this implies that
Jabe(Ur) <0 < 7y if k< m, and Jobe(Om) <0 < Ty + &,
as claimed.
STEP 3: We show that J,p . has m pairs of critical points £vy, ..., xv, in
Hé (.Q)G such that vy is positive, v, . .., v, change sign, and
Jabe(Wp) <ty forall k=1,...,m.

Let ¢, > 0 be such that ¢, — 0. By Step 2, for each n € N, there are m
pairs of critical points £wy 1, ..., W, of Jup. in Hy(£2) such that w, is
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positive, wy,2, ..., Wy, are sign changing, J,p - (Wni) < T if k=1,...,m—1,
and J,pc(Wnm) < Tm + &,. Now, if for some ng we have that J, 5 (Wygm) <
T, then the functions vy := w,, verify the statement. If, on the other hand,
JapcWnm) > Ty for all n, then Jop(Wpm) — Ty Since J, , .(Wyn) = 0 and
Jubc satisfies (PS)fm, there exists a v,, € Hé (£2)¢ such that, after passing to
a subsequence, w,,, — v, as n — oo. It follows that v,, is a critical point

of Jyp with J,p(v,) = . Note that v, is positive if m = 1 and it is sign

changing if m > 2. Moreover, since J,p(Wix) < typforallk = 1,...,m—1,
setting vy = wyy for k = 1,...,m — 1, we have that v,, # Zv; for every
k=1,...,m—1 and the statement is proved.
STEP 4: We show that J,p. has m pairs of critical points £uy,...,xu, in
Hé (82)C such that u, is positive, ua, . . ., uy, change sign, and

Jape(uy) <7 foreach k=1,...,m.

Since k > £, we have that k > £, fork = 1, ..., m. Applying Step 3 to each k =
1,...,m, we obtain k pairs of critical points £v 1, ..., £k of Jop in HY(£2)C
such that vg; is positive, vk, ..., Ugx change sign, and J,p (Vi) < 7% for all
i=1,...,k Setu; := v and, for 2 < k < m, choose uy € {vra, ..., Vkx}
inductively, such that u; # u; for every i = 2,...,k — 1. These u;’s have the
desired properties.

Finally, note that
/ c(0) > = Ndape(ux) < Nt = Nlitoo = LeSV? forallk = 1,....m.
2

This concludes the proof of Theorem 1.2. O

2.2 The proof of Theorems 1.3 and 1.4

If ux',....x4,x) = v(|xl|,...,|x‘1

computation shows that

,x') with v € €*(®), a straightforward

div(a(x)Vu) = Ldiv(g(y)a(y)Vv)
o(y)

where x = (x',.... x4 x), y = (}x1 xd| ,x') and g is the function defined

in (2). Consequently, u satisfies

e e ey

—div(a(x)Vu) + b(x)u = c(x)|ul"*u in 2
if and only if v satisfies

—div(e(a(»)Vv) +eMBMv = oMy Ivl v in 6. ©)
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Note that p = 2, := [2\/(]_\’,(—_]2 is the critical exponent in dimension N — k = dim ©.

With these remarks, Theorems 1.3 and 1.4 follow immediately from Theorem 1.1
and 1.2, respectively.

Note that, in the special case when a, b, ¢ are constant, the functions p«, 088, 0y
do not have local maxima nor minima in 2 : their extrema are attained on the
boundary of §2. Hence, Egnell’s results [12] do not yield solutions to problem
(502;&*) in this case.

3 Representation of G-invariant Palais-Smale sequences

Throughout this section we assume that £2 is a G-invariant bounded smooth domain
in RY, N > 3, and that a, b, c € €°(£2) are G-invariant functions, such that a and ¢
are positive on §2. We consider the functional

Junew)i= 5 [ [at 1V + 0] = 52 [ o’
2 0 2% 2
defined in H} (£2)°.
When G is the trivial group and a = b = ¢ = 1, Struwe [20] gave a complete
description of the Palais-Smale sequences for J,, ;. in terms of the solutions to the
limit problem

(P)  —Au=u*2u,  ueD"HRY).

Roughly speaking, he showed that the Palais-Smale sequences which do not
converge approach a sum of a (possibly trivial) solution to problem (g;*) plus
nontrivial solutions to the limit problem (go,) Which concentrate at certain points
of the domain. In the symmetric case the concentration will occur at G-orbits of 2.
The aim of this section is to give a precise description of the relation between the
symmetries of the concentration points and those of the corresponding solution to
the limit problem.
Recall that the G-isotropy subgroup of a point x € R" is defined as

G, ={geG:gx=x}

The G-orbit Gx of x is G-homeomorphic to the homogeneous space G/G,
see [3, 11]. In particular, if we denote by |G/Gy| the index of G, in G, then
|G/G,| = #Gx.

We write Joo : D'2(RY) — R for the energy functional associated with problem
($0), given by

1 1 *
Joou) = 5 [lull* = 5 luf3e



108 M. Clapp and J. Faya

where

2. 2% *
[zl .:/ |Vul? and |2t| 55 .:/ ul*".
RV RN

We shall prove the following result.

Theorem 3.1. Let (u,) be a G-invariant Palais-Smale sequence for J, ;. at the
level t©. Then, after passing to a subsequence, there exist a (possibly trivial)
G-invariant solution u to problem (g2+), an integer m > 0, m closed subgroups
G, ..., G, of finite index in G, m sequences (¥1,), ..., Ymn) in §2, m sequences
(&10)s ..., (emn) in (0, 00), and m nontrivial solutions iy, . . . , it,, to problem (o),
with the following properties:

(i) Gy, = Giforalln € N, andy;, — yi in§2 asn — oo foreachi=1,...,m.
(”) 8znldist(yi,n7 a.Q) — o0 and 8i_,111|gyi,n — g/yi.n| — 00 asn — oo for all
[¢'l # gl inG/Giandi=1,....m.

(iii) w; is Gi-invariant for eachi = 1...m.
N—2

; ; L a(yi) E = —1 ( - =8Yin _
(iv) i o —u=2 2 (s03) " e (gt (<522))) = 0.

m a(y)N/2 R
(V) Jane@) + 32 1G/Gil ( 299557 ) Joolit) = .
i=1

. . N N

Since J, (1) > 0 for every solution u to problem (=) and Joo (it) > ﬁS 2 for
every nontrivial solution & to problem (), the next statement is an immediate
consequence of Theorem 3.1.

Corollary 3.2. The functional J, . satisfies condition (PS)S for every

N
24# 1
I < (min a(x)2—Gx) —s7. (6)

2 c(x)'z ) N

In particular, if #Gx = oo for all x € 2, then J, . satisfies condition (PS)¢ for
everyt € R

Theorem 1 in [6] is a special case of Theorem 3.1, but there is a gap in the proof
of Proposition 4 in [6]. The argument given here fills that gap. The key to do this is
given by Lemma 3.3 below.

We recall some basic facts about G-actions, which may be found, for instance, in
[3, 11], and introduce some notation. Isotropy groups satisfy G,, = gG.g~'. Thus,
every subgroup K of G which is conjugate to the isotropy group of a point x € RV
satisfies that K = G, for some g € G. The conjugacy class (G,) of an isotropy
group G, is called a G-isotropy class of RY. The set of G-isotropy classes of RY is
finite. Conjugacy classes of subgroups of G are partially ordered as follows:

(K1) < (K») <= thereexists g € G such that gK;g~! C K. @)



Anisotropic critical and supercritical problems 109

We write
RMX .= {x e RV : gx =x forall g K}
for the K-fixed point set of RV,

Lemma 3.3. Given sequences (s,) in (0, 00) and (§,) in RN, there exist a sequence
(y,) in RN and a closed subgroup K of G such that, after passing to a subsequence,
the following statements hold true:

(s1) The sequence (g, 'dist(GE,,y,)) is bounded.
(s2) Gy, =K forallneN.
(s3) If|G/K| < oo, then &, |gy, — g'ya| — 0o forany g, g € Gwithg'g™! ¢ K.
(s4) If |G/K| = oo, then there is a closed subgroup K' of G such that K C K/,

|G/K'| = oo and ;' |gy, — g'ya| — oo forany g, g’ € Gwithg'g™' ¢ K.
Proof. Set

Vi={x e R": #Gx < co}.

Note that V is a G-invariant linear subspace of RY. There are two cases:

CASE 1: The sequence (¢, 'dist(§,, V)) is unbounded.

Passing to a subsequence we may assume that ¢, 'dist(,, V) — oo. Since the
set of G-isotropy classes of RY is finite, we may also assume that there exists a
subgroup K of G and an element y, € G§, such that G,, = K for every n € N. So,
clearly, (s1) and (s2) are satisfied. Since &, ¢ V, we have that |G/K| = #G§, = oo.
Thus, it remains to prove (s4).

To this end, let V+ the orthogonal complement of V in RY and yj- be the
orthogonal projection of y, onto V1. Since y, ¢ V we have that yj- # 0 and,
after passing to a subsequence,

Define K’ := G,. Since V and V- are G-invariant, we have that K C K’ and, since
o €V, we have that |G/K'| = #Go = oo. Now, let g, g’ € G be such that [g] # [¢']
in G/K’. Then |go — g'o| > 0, and may choose ng € N such that

1
lon—ol < 7 [go—ge|  ¥n=zno.

It follows that

g0 —g'o| <180 — gonl + |g0n — &'0n| + |¢'0n — &'0|

1
= |gon — g'on| +2lon — 0l < |g0n—&'0n| + zlg0— g0l  Vn=nq.
2
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Therefore

1
5 lse =<'l | < |eve — &y | < |gyn — & Vn > ng.

Multiplying this inequality by &, ! we obtain

1
5 |ee = glof &y dist(vn, V) < & |eya = gwa| V= no

and, since &, 'dist(y,, V) = &, 'dist(€,, V) — oo, statement (s4) follows.
CASE 2: The sequence (g, 'dist(§,, V)) is bounded.

Let § be the set of G-isotropy classes (G,) with x € V such that the sequence
(¢, 1dist(GE,, (RV)%")) contains a bounded subsequence.

We claim that § # @. To prove this, let x,, € V be the orthogonal projection of
&, onto V. Since the set of G-isotropy classes in V is finite and every G-orbit in V
is finite, after passing to a subsequence, we may assume that there exists a closed
subgroup L of G such that G,, = L for every n € N. Observe that (RV)L C V,
because L C G, for every x € (RY)! and #Gx = |G/G,| < |G/L| = #G,, < co. It
follows that

sn_ldist(én, (RN)L) < 8;1 |, — x| = e;'dist(é,,, V)

and, since the right-hand side is bounded, we conclude that (L) € §.

Since § is finite and nonempty, we may choose an element (K) € § which
is maximal with respect to the partial order defined in (7). After passing to a
subsequence, there exist ¢, € G§, and ¢ > 0 such that

e Mdist(¢,, RM)*) <c  VneN.

We define y, to be the orthogonal projection of ¢, onto (RY)X. Then (s1) is trivially
satisfied, because

s;ldist(Gén,yn) < 8;1|§n -] = a;ldist(én, RBHYEY < ¢ Vn e N. )

To prove (s2) note that y, € (RV)X C V. Hence, K C G,,. The previous inequality
implies that (G,,) € § and, since (K) is maximal, we conclude that G,, = K.

Since |G/K| < oo, we are left with proving (s3). Arguing by contradiction,
assume there exist g, g’ € K such that [g] # [¢'] in G/K and (g, !|gy, — g'ya]) is
bounded. Let g := g~ '¢’, L be the subgroup of G generated by KU{g}, W, := (RV)X
and W, be the orthogonal complement of W; in (RY)X. Write

y,,:y,ll—i—yi with yilEW,-, i=1,2.
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Since § € K = G,,, we have that gy, # y, for all n € N. Therefore y, ¢ W, and,
hence, y2 # 0 for all n € N. After passing to a subsequence we have that
Ya
lyal

—ye W, ~W,.

If the sequence (&), 'y2) were unbounded, since we are assuming that (¢, !|gy, —

g'yn|) is bounded, we would have—after passing to a subsequence—that

&y

2l 2

_ & Byl _ ey — gl

&,y &,y

and, hence, that gy = y. This means that y € (RV)X = W, which is not true.
Therefore, (g, 'y?) must be bounded. After passing to a subsequence, we may
assume that there exists a closed subgroup L; of G such that G, = L, foralln € N.

Since y! € Wy we have that K C L C L;. Moreover, inequality (8) yields that
&, dist(GE,, RM)M) < 67 |8 =y, < &, 18—yl + 6, yi| < e,

for some constant ¢; > 0. This shows that (L;) € §. Using again that (K) is a
maximal element in §, we conclude that K = L = L;, which contradicts the fact
that g & K. This proves (s3) and concludes the proof of the lemma. O

The proof of the following result is similar to that of the Brezis-Lieb lemma [4].

Lemma 3.4. Letp € [1,00), (c,) be a bounded sequence in L (RN) and (u,) be a
bounded sequence in L’ (RN), such that ¢, (x) — ¢(x) and u,(x) — u(x) a.e. in RV,
Then u € [P (RY) and

lim (/ Cn lual” — cn |u,,—u|”) =/ clulf.
n—>0o0 RN RN

Proof. By Fatou’s lemma, u € L”(R"). Let ¢ > 0. Then there exists C > 0 such
that

ta ()" — |t (6) = u(O)”| = & | () —u@)|” < Clux)P Vx € RY.
Set M := sup{||calloo s 1€l oo : 1 € N}. It follows that

Vp(x) © = |cn(x) |”n(x)|p — cn(X) Jun (x) — u(x)|[7 —¢(x) u(x) |[7| —&|en(0)] |un(x) — u(x)|.17
= len@)| (un () = |un(x) — u@)P| — & [un(x) — u(x)|?) + [e(x)] [ux)|”

< M(C + Dux)| ae. inRY.
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Hence, v} := max{v,, 0} satisfies |v;f (x)] < M(C + 1)|u(x)]” a.e. in R and

n
Lebesque’s dominated convergence theorem yields

lim [ vf=0.
n—oo ]RN

Since (u,) is bounded in L7 (RV), we have that

/ |cu [unlP — ¢ |ty — ul’ — € |ul’| éMe/ |u,1—u|p+/ v;réC/e—i—/ vF
RN RN RN RN

for some positive constant C’. Letting n — oo we conclude that

lim |ca |ualP — cn lttg —ul’ —Cluf’| = C'e for every € > 0.
n—>oo RN
Hence,
lim '/ o |un|” — e luty — ul’ — < ul’| = 0,
n—>oo RN
as claimed. |

Lemma 3.5. Let (a,) be a bounded sequence in L (RY) and a € L®(RY) be such

that a, — @ in L2 (RY), and let (u,) be a sequence in D"*(RN) such that u, — u

weakly in D'2(RN). Then

lim (/ an|Vun|2—an|V(un—u)|2) =/ a|Vul?.
n—>oo RN RN

Proof. We write

an |Viun|* = a, |V (uy — w)|> = a@|Vul® = @,V Quy — 1) Vu—a|Vul’ ©)
= (a, —a)V Qu, — u) Vu + 2aV (u, — u) Vu.

Fix R > 0. Then, there is a positive constant C such that

=

‘/ (an —a)V Qu,, — u) Vu
RN

/ (an —a)V Qu,, — u) Vu
Bg(0)

+ / (a, —a)V Qu, — u) Vu
RN~Bg(0)
S C |an —alLoo(BR(o)) + C/ |VM|2 .
RN~Bg(0)
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It follows that

lim sup
n—oo

/ (an —a)V Quy, —u) Vu
RN

<c / IVa?
RN~Bg(0)

and, letting R — oco, we conclude that

n—>o0

lim (an —a)V Qu, —u) Vu = 0. (10)
RN
On the other hand, since u, — u — 0 weakly in DI'Z(RN ), we have that

lim [ @V (4, —u)Vu=0. (11)

n—>00 JpN

Equations (9), (10) and (11) yield

n—>oo

lim (a,, Vit = a |V (g — )2 — @ |Vu|2)
RN

= lim (a, —a)V Qu, —u) Vu + lim / aV (u, —u) Vu = 0,
]RN n—>oo RN

n—>oo

as claimed. O

Lemma 3.6. Let (c,) be a bounded sequence in L°(RN) and ¢ € L®(RY) be such
that ¢, — ¢ in L (RY). Let (u,) be a sequence in D'"?(RN) such that u, — u
weakly in D'*(RN) with u € L2 (RY). Then

2% =2 2% -2 — . 12%=2 .
Cn |un| Up — Cp |un - M| (un - u) —C |M| u mn (DI'Z(RN)),‘

Proof. The proof is similar to that of Lemma 8.9 in [23]. O

If b = 0, to simplify notation we write
J() = Ja,O,c-

We use the previous lemmas to prove the following result.

Proposition 3.7. Let (u,) be a G-invariant Palais-Smale sequence for Jy at the level
Tt > 0 such that u, — 0 weakly in H(l) (£2)°. Then, after passing to a subsequence,
there exist a closed subgroup K of finite index in G, a sequence (y,) in §2, a sequence
(g,) in (0, 00), a nontrivial solution it to the limit problem (p) and a G-invariant
Palais-Smale sequence (v,) for Jy with the following properties:

(i) Gy, =K foralln € N, andy, — yo in 2 asn — oo.
(ii) &, 'dist(y,, 382) — oo and €, gy, — g'yn| — o0 asn — oo if [¢'] # [g] in
G/K .
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(iii) uis K-invariant.
N—2

0D\ F S 1 —en
(1) i (52)] =0

. . N/2 R
(v) Tim Jo(,) = lim Jo(v,) + [G/K]| (199557 ) Joo @),

(iv) lim |u, —v, —
oo lsleG/K

Proof. Let (u,) be a G-invariant Palais-Smale sequence for J, at the level T > 0.
As usual, we consider H}(£2) as a subspace of D'*(R") by defining u € H}(£2) as
cero outside £2. We subdivide the proof into three steps.

STEP 1: We define sequences (&,) in (0, 00) and (v,) in RN, and a subgroup K of
finite index in G such that G,, = K.

Since (u,) is a Palais-Smale sequence, (u,) is bounded in H}(£2) and

* 1
/ clua)> =N (Jo(u,,) — EJ(')(un)un) — Nt > 0.
2
Set

N Smin &
§ := min —T, Miheg a(x)u . (12)
2 2 (maxxe§ c(x)) N

Since § < %, there are bounded sequences (g,) in (0, o0) and (£,) in RY such that,
after passing to a subsequence,

sp [l = [ " =8
x€RN J B, (x) By, (§n)

For these sequences we choose K and (y,) as in Lemma 3.3. Then, G,, = K and
there exists a positive constant C such that

8,,_' dist(G§,,, y,) < C)

for all n € N. Therefore, (y,) is bounded and there exists g, € G such that
B:, (gn&n) C Bes, (yn) With C := C; + 1. Since ¢ and u, are G-invariant, we conclude

that
§ =/ clun " =/ clu 5/ clun ). (13)
B, (&n) Be, (gnén) Bcy, (Vn)

Next, we will show that |G/K| < oo. Arguing by contradiction, if we assume that
|G/K| = oo, then property (s4) of Lemma 3.3 asserts that there exists a closed
subgroup K’ of G such that K C K', |G/K'| = oo and &, '|gy, — g'ya| — o0
for any [g], [¢'] € G/K’ with [g] # [¢']. Hence, for each m € N, we may choose
8i.-...8m € G such that [g;] # [g;] in G/K’ and

Bcs, (8iyn) N Bee, (gjyn) =@ for i # j and n sufficiently large.
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Using again that the functions ¢ and u, are G-invariant, from inequality (13) we
obtain that

m

mé < Z/ C|Mn|2=‘< < / C|I,£n|2* =Nt —|—0(1)’
i=1 Bcey, (8iyn) 2

for every m € N. This is a contradiction. We conclude that |G/K| < oo.
STEP 2: We show that &, 'dist(y,, 32) — oo and that y, € 2, and we define a

nontrivial K-invariant solution it € D"*(R") to problem (poo).
Forze 2,:={zeRV:g,z+y, € 2} set

N—2
ﬁn(z) =g, un(gnz + yn)v an(Z) = a(SnZ + yn)s Cn(Z) = C(Enz + YH)~

Since G,, = K and u,,a and c are G-invariant, we have that i,,a, and ¢, are
K-invariant. Note also that

~ >k ~ *
/ o[V, |? = / a|Vin?  and / clua?* = / ol
Q 2, 2 2,

Hence, (it,) is bounded in D'?(RM) and, therefore, a subsequence satisfies that
i, — & weakly in D"2(RV), &1, — i strongly in L2 (RY), and &, — @ a.e.
in RY. It follows that & is K-invariant. A standard argument, using definition (12)
and inequality (13), shows that &z # 0, see, e.g., [6, 20, 21, 23].

Since (y,) and (g,) are bounded, passing to a subsequence, we have that y, — yg
in RY and &, — ¢ in [0, 00). If we suppose that & # 0 then, since u, — 0 weakly
in H(l)(.Q), we would have that # = 0, which is a contradiction. Therefore, ¢ = 0. It
follows that

a, — ag := a(yg) and cp — co = c(yp) in L° (RY).

Let ¢ € €>°(RY) be such that supp(¢) C £2, for all n sufficiently large. Then,
setting ¢, (x) := @(&, ' (x — y,)), we have that

/ a,Vit, - Vo —/ cn|ﬁn|2*_2ﬁn<p = J\(un)pn = o(1),

n n

because (¢, ) is bounded in Hé (£2). Since

/ a,Viu, - Vo — / aoVii - V(p'
RV RV

/ (an — ao) Vi, - V(P' + ‘/ ao(Vity -V — Vit - Vﬁﬂ)‘
RN RN

=

= C |an - aO|L°°(Supp(<p)) + ap \/]RN (Vljtn . V(p —Viu- Vgﬂ)‘ = 0(1)
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and, similarly,

= o(1),

~ *__ o ~ 0% _n o
/ alinl? it — / ol 2
RN RN

we conclude that

/ aoVii- Vo —/ colit) 2 =0
RN RN

for every ¢ € € (RY) such that supp(¢) C £2, for n sufficiently large. Arguing as
in [20, 21, 23] one shows that, if the sequence (e,jldist(y,,, £2)) were bounded, then
u would be a solution to problem

C
—Au= 1 2u,  ueD)H).
ap

in some half-space H contained in R", contradicting the fact that this problem does
not have a nontrivial solution in a strictly starshaped proper subdomain of R", see
[21, Theorem 1.3]. Hence s;ldist(yn, d§2) — oo. This implies that y, € £2, for
otherwise Bc;, (v,) C RY ~ £2, contradicting (13). It also implies that i is a solution
to problem

—Au=L 2, e DRY). (14)
ao

Therefore,
N=2
N (Co) .
u=\— u
ap
is a nontrivial, K-invariant solution to problem (goo).

STEP 3: We define a sequence (v,) which satisfies (iv) and (v) and is a
G-invariant Palais-Smale sequence for Jp.

Let G/K := {[gi1] ..., [gm]} Set

1
Iy = 1 min{dist(y,, 0§2),

gim) — g tij=1,....m, i #j}.

Choose a radially symmetric function y € €>°(RY) such that0 < y < 1, y(x) =1
if x| < 1 and y(x) = 0 if |x| > 2 and define

n

0a) = () — ;s i (g;‘ (x_gi)) G = g,
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Since # is K-invariant and G,, = K for all n € N, we have that v, is G-invariant and
v, € H)(£2). Similarly, the functions

i u N X 8&n .
Wl = Uuy - 8;2 ‘1 - s =1»"'7 )
0 = - (e (). m

i=j

—1

are G-invariant functions in D'?(R"). Note that r,é&,

easy computation shows that

u,l—v,l—Z&sz?i(gi_l (ﬂ))” = |wy —va| =0, (15)
n

i=1

— oo. Using this fact, an

i.e. (v,) satisfies (iv).
Next, we rescale w/, and use the G-invariance of u, to obtain

. N—2 |
W(z) 1= en® W, (a2 + giyn)

N—2 m v — o
=60 Uy(enz+gya)— Y @ (g,-_ : (z + B0 E0n g’y")) — (g '2)
i=j+1 En
- gjVn — 8iY.
=g ') - Y ﬁ(g,-_l (z+ — )) —ii(g;'2).
n

i=j+1

Since it, — it weakly in D'"*(R") and &, |gjys — giya| — oo forevery i # j , we
have that

m
inog = 3 @ (g,.—l (z + M)) —~iiog weaklyin D'2(R).
i=j+1 "

Without loss of generality we may assume that a,c € €°(R") N L>®(R"). Using
Lemma 3.5 we obtain that

/a|w{1|2=/ a,| Vi |
RN RN

m
~ -1 Z ~( —1 8iYn — 8iYn
:/]RNan V{tes - u(gi ( A ))

i=j+1

— /RN ag |V (i ogj_1)|2 + o(1)
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2

M 2=N . — o
:/ alV\u,— Z en’ li(gi1 (ﬂ)) —/ ao |Vii)* + o(1)
RN Py En RN

=/ a|vw,;+1|2—/ a0 |Vii]® + o(1).
RN RN

These identities for j = 1, ..., m, together with (15), yield

/a|an|2=/ a|Vw,lZ|2=/a|Vu,,|2—m/ ao |Vit]* 4 o(1).
2 RN 2 RN

Similarly, using Lemma 3.4, we conclude that

/c|vn|2* :/c|un|2* —m/ co lil*" + o(1).
2 2 RN

These last two identities yield

Joln) = Jo(vn) + m (% /R Vil 5 / o |ﬁ|2*) +o(l)

N/2
= Jo(0) + 6/KI s oo@ + o).

This proves (v).
Since J/, (1) = 0, a similar argument using Lemma 3.6 shows that

o(1) = Jy(ua) = Jo(v,) +o(1) in (D'*(R"Y))".

This proves that (v,) is a G-invariant Palais-Smale sequence for Jy and concludes
the proof of Proposition 3.7. O

Proof (Proof of Theorem 3.1). Let (u,) be a G-invariant Palais-Smale sequence for
Jap.c at the level t. Since a and ¢ are continuous and positive on §2,

||14||§:=/a(x)|vu|2 and  [u*5e :=/c(x)|u|2*
2 2

are norms in H} (£2) and LY (£2), respectively, which are equivalent to the standard
ones. So, for some positive constants C;,

2 * *
Cu+ o(1) lltnlly = 2ape(n) = T o(n)tn = (1= 22) lualC 5 = Collnl3)* 2

and, hence,

2 *
il = 2l = [ B+ 5 i = €t o)
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This proves that the sequence (u,) is bounded in H}(£2)C. After passing to a
subsequence, we have that u, — u weakly in H}(£2)°, u, — u strongly in L*(£2),
and u, — u ae.in . Set u) := u, — u. A standard argument shows that u is a
solution to problem (g,+) and that

Ja,b,c(”n) = Ja.b,c(u) + JO(uyll) + 0(1) and
Tope(un) = T () 4+ Jy() + 0(1) = Jo(uy) + o(1).

Therefore, (u!) is a G-invariant Palais-Smale sequence for Jj at the level T —J, .- (1)
and u} — u weakly in H}(£2)€. So, we may apply Proposition 3.7 to (u}). As in
[20], the conclusion of Theorem 3.1 follows after applying that proposition a finite
number of times, because 0 is the smallest level at which there is a G-invariant
Palais-Smale sequence. O

Acknowledgements M. Clapp was partially supported by CONACYT grant 237661 and PAPIIT-
DGAPA-UNAM grant IN104315 (Mexico). J. Faya was partially supported by FONDECYT
postdoctoral grant 3150172 (Chile).

References

1. Ambrosetti, A., Rabinowitz, PH.: Dual variational methods in critical point theory and
applications. J. Funct. Anal. 14, 349-381 (1973)

2. Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent:
the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253-294 (1988)

3. Bredon, G.E.: Introduction to Compact Transformation Groups. Pure and Applied Mathemat-
ics, vol. 46. Academic, New York/London (1972)

4. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence
of functionals. Proc. Am. Math. Soc. 88, 486-490 (1983)

5. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical
Sobolev exponents. Commun. Pure Appl. Math. 36, 437-477 (1983)

6. Clapp, M.: A global compactness result for elliptic problems with critical nonlinearity on
symmetric domains. In: Lupo, D., Pagani, C.D., Ruf, B. (eds.) Nonlinear Equations: Methods,
Models and Applications. Progress in Nonlinear Diferential Equations and Their Applications,
vol. 54, pp. 117-126. Birkhauser, Boston (2003)

7. Clapp, M., Faya, J.: Multiple solutions to the Bahri-Coron problem in some domains with
nontrivial topology. Proc. Am. Math. Soc. 141, 43394344 (2013)

8. Clapp, M., Pacella, F.: Multiple solutions to the pure critical exponent problem in domains with
a hole of arbitrary size. Math. Z. 259, 575-589 (2008)

9. Clapp, M., Pistoia, A.: Symmetries, Hopf fibrations and supercritical elliptic problems.
Contemp. Math. (to appear)

10. Clapp, M., Faya, J., Pistoia, A.: Nonexistence and multiplicity of solutions to elliptic problems
with supercritical exponents. Calc. Var. Partial Differ. Equat. 48, 611-623 (2013)

11. tom Dieck, T.: Transformation Groups. De Gruyter Studies in Mathematics, vol. 8. Walter de
Gruyter, Berlin/New York (1987)

12. Egnell, H.: Semilinear elliptic equations involving critical Sobolev exponents. Arch. Ration.
Mech. Anal. 104, 27-56 (1988)



120 M. Clapp and J. Faya

13. Hadiji, R., Yazidi, H.: Problem with critical Sobolev exponent and with weight. Chin. Ann.
Math. Ser. B 28, 327-352 (2007)

14. Hadiji, R., Molle, R., Passaseo, D., Yazidi, H.: Localization of solutions for nonlinear elliptic
problems with critical growth. C. R. Math. Acad. Sci. Paris 343, 725-730 (2006)

15. Kim, S., Pistoia, A.: Supercritical problems in domains with thin toroidal holes Discrete
Contin. Dyn. Syst. 34, 4671-4688 (2014)

16. Palais, R.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19-30 (1979)

17. Passaseo, D.: Nonexistence results for elliptic problems with supercritical nonlinearity in
nontrivial domains. J. Funct. Anal. 114, 97-105 (1993)

18. Passaseo, D.: New nonexistence results for elliptic equations with supercritical nonlinearity.
Differ. Integr. Equat. 8, 577-586 (1995)

19. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential
Equations. CBMS Regional Conference Series in Mathematics, vol 65. American Mathemati-
cal Society, Providence, RI (1986)

20. Struwe, M.: A global compactness result for elliptic boundary value problems involving
limiting nonlinearities. Math. Z. 187, 511-517 (1984)

21. Struwe, M.: Variational Methods. Springer, Berlin/Heidelberg (1996)

22. Wei, J., Yan, S.: Infinitely many positive solutions for an elliptic problem with critical or
supercritical growth. J. Math. Pures Appl. 96, 307-333 (2011)

23. Willem, M.: Minimax Theorems. Progress in Nonlinear Diferential Equations and Their
Applications, vol. 24. Birkhéuser, Boston (1996)



Compactness and non-compactness
for Yamabe-type problems

Fernando Coda Marques

Dedicated to the 80th birthday of Prof. Djairo de Figueiredo

1 Introduction

Let (M", g) be a smooth compact Riemannian manifold of dimension n > 3. The
classical Yamabe Problem consists in finding metrics of constant scalar curvature
in the conformal class of g. The corresponding question in dimension two is known
as the Uniformization Theorem. The existence of a solution is one of the greatest
achievements of geometric analysis, and follows from the works of Yamabe [54],
Trudinger [50], Aubin [5], and Schoen [45]. We refer the reader to [31] for an
account of these results.

The Yamabe problem can be also formulated for other curvature quantities
leading to interesting fully nonlinear or higher-order elliptic equations. This is a very
active field. We refer the reader to the survey articles of A. Chang [11] and of Chang
and Yang [12] for a discussion of the partial differential equations of conformal
geometry. There are Yamabe-type problems also for manifolds with boundary and
for coupled systems of equations. We will discuss compactness results in these
different settings after reviewing what is known in the classical Yamabe problem.

The conformal class of g is defined to be

gl={g= uﬁg ‘u € C®M),u> 0}.

~ 4
If g = un—2g, u > 0, we can compute the scalar curvature as

R"'_

4n—1) _mk2 n—2
T T, ( & )
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Here R, and R; denote the scalar curvatures of g and g, respectively, and A, is
the Laplace-Beltrami operator associated with g. The linear operator L, = A, —
%Rg is usually called the conformal Laplacian of g.

It follows that in order to find a constant scalar curvature metric in [g] one needs
to prove the existence of a positive solution u to the partial differential equation

Ly(u) + c(m)Ku2 =0 ()

for some constant K, where c(n) = 4&__21).

A nice feature of the problem is that it is variational. The constant scalar curvature
metrics g € [g] are the critical points of the functional

called the normalized total scalar curvature functional, when restricted to the
conformal class [g]. Equivalently, the conformal factor u is a critical point of the
energy

Qlurtrg) = ety (Ve + ctoRe)
ur—2g) =c(n - )
(fM unZTHZdvg) !

The number
O(M,g) = inf O(g).
g€lgl

is called the Yamabe quotient of M and it is always achieved as the energy of a
minimizing metric. If the Yamabe quotient is negative, the Maximum Principle
applied to equation (1) implies that the solution (of negative constant scalar
curvature) is unique, while if it is zero, the solution (of zero scalar curvature)
is unique up to a constant factor. For manifolds of positive Yamabe quotient the
uniqueness fails in general, and a significant part of the research work after the
existence was settled is dedicated to understand the structure of the set of solutions.
When the Yamabe quotient is positive, the constant K in (1) must be positive also
and we normalize it to be n(n — 1).

2 Compactness and noncompactness

In his 1988 topics course at Stanford (see also [46] and [47]), R. Schoen proposed
the Compactness Conjecture:
The set

My =1{g € [g]l: Rz =n(n—1)}
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of solutions to the Yamabe Problem, in the positive Yamabe quotient case, is compact
(in any C* topology) unless the manifold is conformally equivalent to the standard
sphere.

By the Harnack inequality and standard elliptic estimates this is equivalent
to establishing a priori estimates for solutions of the equation (1). Note that for
the standard sphere the set of solutions must be noncompact, since the group of
conformal transformations of S” is noncompact itself.

The program Schoen outlined to prove this conjecture made essential use of the
Positive Mass Theorem of General Relativity. The Positive Mass Theorem is known
to hold in dimensions n < 7 (Schoen and Yau [48]), and in any dimension for
spin manifolds (Witten [53]). Despite recent attempts, the Positive Mass Conjecture
remains an open problem for nonspin high-dimensional manifolds.

Schoen proved the conjecture in the locally conformally flat case [46] and in the
three-dimensional case (the argument can be found in [49]). In dimensions 4 and 5,
the conjecture was proved by O. Druet (see [15]).

Basic blow-up analysis implies that a sequence of solutions that blows-up must
concentrate at some points of the manifold. These are the blow-up points. In
appropriate coordinates around these points the solution (up to a dimensional factor)
can be well approximated by a bubble:

n—2

w = (z55m)

for some small ¢ > 0. The term bubble comes from the fact that these functions
appear as conformal factors when we write the spherical metric (after a dilation) as
a conformal deformation of the Euclidean metric.

Schoen formulated the Weyl Vanishing Conjecture, that predicts the location of
possible blow-up points:

4
Ifx € M is a blow-up point of a sequence of solutions g, = u;~ g to the Yamabe

Problem, then the Weyl tensor of the metric g should satisfy
VW, (x) =0

forall 0 <i <[%°].

There have been many contributions to these problems (see [36, 37, 39]). For
arbitrary n, it follows from the works of the author [39] and Y. Y. Li and L. Zhang
[36] that compactness holds under the assumption that the Weyl tensor vanishes
nowhere to second order.

For general manifolds the story turned out to be very different. In a paper of
the author with Khuri and Schoen [30], the Compactness and the Weyl Vanishing
Conjectures are proved for spin manifolds of dimension n < 24 (the spin assumption
is here only to make sure that the Positive Mass Theorem is valid). The dimension
24 comes from the behavior of a quadratic form discovered in [30]. It is sharp
in light of the counterexamples constructed in higher dimensions: Brendle [7] for
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n > 52, Brendle and the author [9] for 25 < n < 52. The underlying manifold in
these examples is the sphere S”, that is spin in any dimension. Non-smooth blow-up
examples had been obtained before by A. Ambrosetti and A. Malchiodi in [4], and
by M. Berti and Malchiodi in [6]. In [16], O. Druet and E. Hebey have also obtained
blow-up examples for Yamabe-type equations. We refer the reader to [10] for an
account of these results.

For any p € [1, "*2] we define

> n—2

@, ={u>0,ueC®M):Lu+ K’ =0 on M}.

Although the geometric problem corresponds to the critical exponent p = %, the
consideration of the subcritical equations is useful for other purposes like computing
the total Leray-Schauder degree of the problem.

In [30], the following theorem is proved (again the spin assumption can be

dropped if the positive mass conjecture is valid in full generality):

Theorem 2.1. Suppose 3 < n < 24. If (M",g) is spin and is not conformally
diffeomorphic to (8", go), then for any ¢ > 0 there exists a constant C > 0 depending
only on g and ¢ such that

Cl'<su<C and |u|c<C,

forallu e U D, where 0 < o < 1.

+2
I+e<p<its

The basic tool in trying to rule out blow-up is a general Pohozaev identity that
can be written in geometric form as:

Proposition 2.2 (Pohozaev Identity). Let (£2",g) be a Riemannian domain,
n > 3. If X is a vector field on §2, then

n—2
7 /X(Rg)dvg—i—/(@gX,Tg)dvg:/ T,(X, ng) do.
n Je Q 2

. Ry . . ;
Here Ty = Ricg— -£g is the traceless Ricci tensor, (Z,X);; = Xiyj + Xj;i —.%dlng 8ij
is the conformal Killing operator, and n, is the outward unit normal to divs2.

The idea is to apply this identity with the radial vector field X = ra% to the
constant scalar curvature metrics in a neighborhood of the blow-up points. The left-
hand side gives information about the local geometry, in particular about the Weyl
tensor, while the right-hand side is linked to the mass of a certain asymptotically
flat manifold (obtained by multiplying the original metric by a Green’s function of
the conformal Laplacian). The proof is by contradiction and uses that this mass is
positive, but it only works when the leading order term coming from the left-hand
side has a definite sign.

It turns out that this is encoded in a canonical quadratic form &7, defined in some
vector space ¥, (a subspace of the space of symmetric matrices with polynomial
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entries), depending only on the dimension. This was discovered in [30], where it
is proved that the quadratic form is positive definite if and only if n < 24 thereby
explaining the dimensional phenomenon.

The main theorems of [7] and [9] put together give:

Theorem 2.3. Suppose n > 25. There exists a smooth Riemannian metric g on
S" and a sequence of positive functions u;, € C*°(S") (k € N) with the following
properties:

(i) g is not conformally flat,
(ii) uy is a solution of the Yamabe equation (1) for all k € N,

(iii) Qu~g) /" Q(S", go) as k — oo,

(iv) supg. ux — oo as k — oo.

Here gy denotes the standard metric on S”. The metric g can be chosen arbitrarily
close to gop.

The proof uses Lyapunov-Schmidt reduction to reduce the construction to solv-
ing a finite dimensional variational problem, and a glueing procedure to construct
the metric g. This can only work because the quadratic form &7, fails to have a sign
when n > 25.

3 Manifolds with boundary

Compactness questions can be studied in a variety of settings, for instance for
manifolds with boundary. In that setting one looks for conformal metrics with
constant scalar curvature and constant mean curvature at the boundary. The case of
zero scalar curvature is particularly interesting because it leads to a linear equation
in the interior with a critical Neumann-type nonlinear boundary condition:

Agu —c(n)Rou = 0inM,

au 2

dHu+Kun 2 =0 ondM,

where 7 is the inward pointing unit normal to dM, H, is the boundary mean
curvature with respect to g, d,, = % and K is a constant.

The study of this and of the analogous problem of constant scalar curvature and

zero mean curvature were initiated by Escobar in 1992 [21, 22]. He solved almost

all cases while the remaining ones were the subject of subsequent papers [1, 8, 14,

38, 40]. Similarly one defines a Yamabe quotient:

2y
Jua IVeul® + 3625 R dvg + 52 [, Hodo

M, oM inf
Q( ) u#OonaM Z(n 1) %
(Jong a1 =" dor)"
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The problem of compactness was studied by many people, including V. Felli and
M. Ould Ahmedou in [24, 25] and Han and Li in [27]. Under a generic condition it
was proved by Almaraz [3]. Almaraz showed that the trace-free part of the second
fundamental form must vanish at a boundary blow-up point if n > 7. Hence he is
able to prove compactness for the set of metrics such that this quantity is nonzero
everywhere:

Theorem 3.1 ([3]). Let (M", g) be a compact Riemannian manifold with boundary,
n > 7. Suppose Q(M, dM) > 0 and that the trace-free 2nd fundamental form of OM
is nonzero everywhere. Then, given a small yy > 0, there exists a constant C > 0
such that for any solution of

Agu —c(n)Rgu = 0 inM, 3)
S — d,Heu + Ku? = 0 on M,

withp € [1 + yo, ;23] satisfies
C_l <u=< C, ||u||c2Aa(M) < C.

The proof of this result is based on a local argument with a Pohozaev-type
identity and avoids the use of any positive mass assumption. The trace-free second
fundamental form plays the role of the Weyl tensor as the first nontrivial obstruction
to blow-up in high dimensions.

Inspired by the case of manifolds without boundary, we expect that there should
be a critical dimension n( such that compactness holds for problem (2) if n < ny
(at least under the spin assumption) and fails when n > ny.

In [2], Almaraz constructed blow-up examples when n > 25 (hence the critical
dimension must satisfy ny < 25):

Theorem 3.2 ([2]). Let n > 25. There exists a Riemannian metric on the unit ball
M = B" and a sequence of positive solutions uy of equations (2), with K > 0, and
with the following properties:

* g is not conformally flat,
* 0B" is umbilic with respect to g,
* SUpg. Uy — 00 as k — oo.

It should be an interesting problem to try to prove compactness for n < 24.
Another problem is to understand the compactness/noncompactness phenomenon
for the equivariant Yamabe problem of Hebey-Vaugon [28]. It should share some
similarities with the boundary case.
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4 Stability question and systems

There has been considerable interest in recent years in proving compactness
results for Yamabe-type systems [17, 18, 20]. For instance, a priori estimates for
electrostatic Klein-Gordon-Maxwell systems in three dimensions were obtained
in [18]. Recently, stability for the Einstein-Lichnerowicz constraints system with
respect to the physics data was proved on the three-sphere [19]. A general reference
is Hebey [29].

We discuss a result of Druet and Hebey [17], about systems of the form

P
Agti =Y Ag@)u; + U2 u; = 0 4)

j=1
on a compact Riemannian manifold (M",g). Here U = (ui,...,u,) and |U]* =

f=1 ulz More generally they consider the stability problem where one is allowed

to vary the matrix potential A. The system is called analytically stable if for every
sequence of C' symmetric matrix functions A, : M — Sym(RP, R”) converging in
C'toamapA : M — Sym(R?,R”), and for any sequence of associated nonnegative
nontrivial solutions U, bounded in W', there is a subsequence U s that converges
in C? to a solution U of the system (4). If C? convergence is replaced by weak
convergence in W'?2, then the system is called weakly stable.

The interesting feature that relates to the geometric Yamabe problem is that the
behavior is dictated by the difference A, = A — Af&__zl)) R,Id, where Id denotes the
identity matrix. This kind of perturbation goes back at least to the work of Aubin [5].
The theorem of Druet and Hebey applies to the case where the matrix A, is either
positive definite or negative definite everywhere. More generally, they make the
following assumption (H’): for any x € M and any k € {I1,...,p}, there does not
exist an orthonormal frame (ey, .. ., e;) of A, (x)-isotropic vectors ({4, (x) - ¢;, ¢;) =
0) in Vecty (R”) spanning a subspace V with A,,(x)-V C V. Here Vect, (R?) denotes
the space of vectors in R” with nonnegative coordinates.

Druet and Hebey prove the following result:

Theorem 4.1 ([17]). Assume n > 4, the assumption (H') and
Ker(A, — A) N L*(M, Vecty (R?)) = {0}.

The system (4) is analytically stable if n # 6 and weakly stable if n = 6. If n = 6,
there are examples that are analytically unstable.

The situation when one does not assume an energy bound for the sequence of
solutions and also the three-dimensional case were studied in [20] under the
assumption that A, is negative definite. The consideration of such strongly coupled
elliptic systems provides a natural background for the interplay between geometry
and asymptotic analysis.
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Even in the scalar case the issue of understanding the effect on compactness of
perturbing the geometric Yamabe equation is nontrivial [23, 41]. In [23], Esposito,
Pistoia, and Vétois prove that the a priori estimates fail for perturbations of the linear
potential —c(n)R, if n > 4. Sign-changing solutions that blow-up are constructed
in [43] and [44], while blow-up constructions for the prescribed scalar curvature
problem are done in [32, 33]. The constructions of blow-up examples are again
based on finite-dimensional Lyapunov-Schmidt reduction.

S Higher order Yamabe problems

There are other linear operators that satisfy conformal covariance besides the
conformal Laplacian. The literature is vast, and we refer the reader to the surveys of
A. Chang [11] and of Chang and Yang [12] for a discussion of conformally covariant
partial differential equations.

An example is the fourth-order Paneitz operator discovered in 1983 [42]:

—4
Py = A2 —divy(a,Ryg + biRic,)d + ”TQg,

where a,, = z((:f+))f:_j2)’ b, = —ﬁ and
0 1 AR +n3—4n2+16n—16 s 2 IRi |2
& 2n—1) %% 8n—12mn—-22% ¢ -2 ¢

is the Q-curvature.
The problem of finding conformal metrics with constant Q-curvature is equiva-
lent to finding positive solutions of the fourth-order equation:

n+4
Pou = cur=+. (@)

In [52], Wei and Zhao proved that compactness fails for this problem in
dimensions n > 25:

Theorem 5.1. Suppose n > 25. There exists a smooth Riemannian metric g on
S" and a sequence of positive functions u, € C*°(S") (k € N) with the following
properties:

(i) g is not conformally flat,
(ii) uy is a solution of the equation (5) with ¢ = %for allk € N,
(iii) supg. ux — 0o as k — oo.

Remarkably, the dimension is the same as in the classical Yamabe problem.
There are several important equations that lead to interesting Yamabe-type
problems. The equations are typically either fully nonlinear or of higher order,
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and their study is analytically challenging. Several compactness results for fully
nonlinear Yamabe problems have been obtained (for instance, [13, 26, 34, 35, 51]).
There have been many important advances but the general picture of compact-
ness/noncompactness is yet to be understood.
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2
(—AY'u = f Ix|*w”~'v? in B,
q
(—Ayv = L vt inB
p+aq ’ M)
u>0,v>0 in B,
u=v=0 in 0B,

where (—A)* stands for the fractional Laplacian. Recently, a great attention has
been focused on the study of nonlinear problems involving the fractional Laplacian,
in view of concrete real-world applications. For instance, this type of operators
arises in the thin obstacle problem, optimization, finance, phase transitions, stratified
materials, crystal dislocation, soft thin films, semipermeable membranes, flame
propagation, conservation laws, ultra-relativistic limits of quantum mechanics,
quasi-geostrophic flows, multiple scattering, minimal surfaces, materials science
and water waves, see, e.g., [1, 3, 11, 26, 28, 30]. See also [20] and the references
therein. In a smooth bounded domain B C R¥, the operator (—A)* can be defined
by using the eigenvalues {A;} and corresponding eigenfunctions {¢;} of the Laplace
operator —A in B with zero Dirichlet boundary values, normalized by [|¢ |25 = 1,
for all k € N, that is,

—A@p = Ay in B, ¢r = 0 on dB.

We define the space Hj(B) by
o0 o0
H(B) := {u - Zukgok in L*(B) : Zuiki < oo},
k=1 k=1

equipped with the norm

oo

24 1/2
el = (o uiag)
k=1

Thus, for all u € Hj(B), the fractional Laplacian (—A)* can be defined as

[e.o]

(A u@) ==Y uAjg(x). x€B.

k=1

We wish to point out that a different notion of fractional Laplacian, available in the
literature, is given by (—A)*u = .Z 1 (||*.% (u)(£)). where .% denotes the Fourier
transform. This is also called the integral fractional Laplacian. This definition,
in bounded domains, is really different from the spectral one. In the case of the
integral notion, due to the strong nonlocal character of the operator, the Dirichlet
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datum is given in RV \ B and not simply on dB. Recently, Caffarelli and Silvestre
[12] developed a local interpretation of the fractional Laplacian given in RV by
considering a Dirichlet to Neumann type operator in the domain {(x,7) € RV*! :
t > 0}. A similar extension, in a bounded domain with zero Dirichlet boundary
condition, was established, for instance, by Cabre and Tan in [10], Tan [32], Capella,
Davila, Dupaigne, and Sire [14], and by Brindle, Colorado, de Pablo, and Sanchez
[7]. For any u € H}(B), the solution w € Hé’L(CB) of

—div(y'""*Vw) = 0 in Cp := B x (0, c0),
w=0on d,Cp := 3B x (0, 00), 2)
w = uon B x {0},

is called the s-harmonic extension w = E(u) of u, and it belongs to the space

HL,(Cp) = {w € 12(Cg) :w=00n,Cs: / V72V 2drdy < oo}.

Cp

It is proved (see [7, Section 4.1-4.2]) that

ow
—k. i 1-2s "7 = (=A)° ;
s im oy (=4)u

where k; = 2'72I" (1 —5) /I (s). Here H(l). 1 (Cp) is a Hilbert space endowed with the
norm

_ 1/2
lullgy, cp = (ks/ ¥ 2S|Vw|zd)cdy) )
, .
In the local case, the so-called Hénon problem

—Au = |x|*w~" inB,
(HP) u>0 in B,
u=2~0 on 8B,

was first studied in [29] after being introduced by Hénon in [24] in connection
with the research of rotating stellar structures. This problem has been studied
by several authors, e.g. [4, 13, 31] and the references therein. For this class of
problems, moving plane methods [22] cannot be applied, and numerical calculations
[15] suggest that the existence of non-radial solutions is in fact possible. In [13]
the authors have shown that the maximum point x, of a ground state solution
for the Hénon equation (HP) approaches a point xo € 0B as p — 2*, where
2* = 2N/(N —2). This result was extended to local Hénon type variational systems
in [33], as well as for scalar nonlocal Hénon type equations in [18]. The main
goal of this paper is to get a similar result for the nonlocal Hénon system (1).
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We reformulate the nonlocal systems (1) into a local system, by using the local
reduction, that is, we set

—div(y!™>Vw;) =0 in Cz = B x (0, 00),
—div(y'"*Vw;) =0 in Cp = B x (0, 00),
wi =wy =0o0n d.Cpg = dB x (0, 00),

(LS) wi = u > 0 on B x {0},
wy = v >0 on B x {0},

ksy]_zs}% _ %|x|"‘u”_lv” on B x {0},

gy 2 — p%]|x|°‘u"’v"_l on B x {0}.

Here u(x) = wi(x,0), v(x) = wy(x,0), and the outward normal derivative should
be understood as

1-25 W — T yl72s w
v

im .
Y y—>0+ ady

Let us define the space H := Hé’L(CB) X Hé_L(CB) and the functional 7 : H — R,

kq 2
I(wi,wy) = —°/ y1_2S(|VW1|2+|sz|2)dxdy——/|x|°‘w1(x, 0)’wy(x, 0)7dx.
2 Jey p+aqls

A weak solution to system (LS) is a vector (wy, wy) € H verifying I’ (w1, wo) (h, k) =
0 for all (h, k) € H,

I'(wi,wa)(h, k) = ks / YB3 (Vwy - Vi + Vw, - V) dxdy
Cp

2 2
——p/|x|°‘w1(x,O)”_lwz(x,O)"hdx——q/|x|°‘w1(x, 0)’w» (x, 0)7 ' kdx.
Ptqls ptqls

For the nonlocal scalar problem

(=4)’u = x|« inB,

u>0 in B, 3)
u=20 in 0B,
we have
—div(y'™*Vw) = 0 in Cz = B x (0, 00),
(LE) w=0on d,Cp = 3B x (0, 00),

key' =22 = |x|*u”~! on B x {0}.
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For this problem consider the associated minimization problem

ks / Y75 | Vw|*dxdy
S (Cp) = inf Cs

2/
WEHOL(CB) /|x|°‘|w(x 0)|”dx) !

Then 5”02* (Cp), where 2% := 2N /(N — 2s), is never achieved [7] and 5” 2 (RT”)
is attained by the w Wthh are the s-harmonic extensions of

NIZA'
&
ug(.x) —NZr’ £ > 0, X € RN.

(e+ x> 2
LetU(x) = (1+ |x|2)¥ and let W be the extension of U, namely

U(z)
72 +y?) 2

+2v

Py =B = o [
BY (|x —
For the system (LS) consider the following minimization problem

K / PV 4+ Vs P)dxdy
Cp

qu(CB) inf

wi.w2€HJ 1 (Cp)

2 “)
(/ |x|% w1 (x, 0) |7 |wa(x, 0)|qu)p+q
B

Theorem 1.1. For any o > 0, /% (Cp) is achieved if2 < p + g < 27 .

qu

Proof. Since B is bounded and @ > 0 we have |x|*|u|” < C|u|". The trace operator
from H}, (Cg) to L"(B) is continuous if 1/r > 1/2 — s/N, and compact if strict
inequality holds, see [7, Theorem 4.4] see also [5, 10]. Then the trace operator ¢, :
H},(Cg) — L'(|x|* B) is compact for r < 2N/(N — 2s). Taking a minimizing
sequence (W10, Wa.n), there is (w1, wp) € H with w;, — w;, as n — oo. Then

Win —> Wi in Lp+q(|x|a7B)? pt+qg< 2:"

Wy, — wyin PY(x|%.B), p+gq< 2.

By Young inequality we conclude that
/ |x|* w1 (x, 0)]P|wa.n(x, 0)|7dx — / |x|* w1 (x, 0) [P [wa(x, 0)|9dx, as n — oo.
B B

This implies that .~ (Cp) is achieved if 2 < p + g < 2. O

qu
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Remark 1.2. If (w1 5, w2,,) is a minimizing sequence to S¢,  (Cg), then it is readily
seen that the sequence (|wy,|, [w2.,|) is minimizing too. Thus, we can assume
that the minimizer (wj, w;) is nonnegative, that is, wy ,, w2, > 0. By maximum
principle we have wy ,, w, , > 0. Finally, invoking the regularity theory we infer that
Wi, Wa, € CY(Cp), for some y € (0, 1). Notice that (w;, w;) is a weak solution for
(LS). Indeed, by Lagrange multiplier theorem, considering the constraint

M= {(wl,wz) €EH: / |x|*w1 (x, 0)Pwy (x, 0)9dx = 1},
B
there exists A € R such

F (w1, w2)(h. k) = AG/(wy, wo)(h.K), V(h.k) € H,

where

ks _
Fonw) = 2 / PV + [V Py,

Cp

Gy, wy) = / 1|y (x, 0)Pwa (x, 0)9elx — 1.
B
Then, for all (h, k) € H, we have

ks / Y7 (Vwy - Vi + Vw, - Vk)dxdy
Cp

= )Lp/ |x[% w1 (x, 0)P~ 1w (x, O)qhdx+)tq/ X% w1 (x, 0)Pws (x, 0)7 kdx.
B B

By choosing (4, k) = (wy, w;), we get

ks / YEAVw 4 [Vwe))dxdy = A(p + q) / x|“wi (x, 0Y’w) (x, 0)?hdx
Cp B
=Alp+9g).
1
Therefore A > 0 and (Wi, W) = (Bwy, Bw,) with § = (M)"‘*‘F2 is a weak
solution of (LS).

Now, we state the asymptotic behavior of ground states when p 4+ ¢ — 2.

Theorem 1.3. Leta > 0, p., g > 1 withp, +q < 2%, p. - pase — 0 and
p+q = 2F Let (Wiz, wae) € H be a solution to the minimization problem (4).
Then there exists xy € 0B such that

i) ky""B(Vwiel? + [Vwae?) — W8 (xy.0) In the sense of measure,
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ii) |u1lPeluae|? — ydy, in the sense of measure,
where i > 0,y > 0 satisfy 1 > Sy*'% and 8y, is the Dirac mass at x.

Let (w1 ¢, w2,¢) be a minimizer of /7, (Cg) which exists because 2 < p. +¢q < 2r.
By regularity results (see, e.g., [7 9, 14]), (W1 ¢, wa) is Holder continuous. We w111
show that there exists x,, y, € B with

M, = Wi,s(xm 0) = max Wi,s(x’ ).
(x,y)€Bx(0,00)

Let A, > 0 and A, >0besuchthat/\ Mlg—landl Mzs—l where

AeAe >0, asp.+q— 27

We state another description of the phenomenon exhibited in Theorem 1.3.
Theorem 1.4. There hold

i) My, = O:(1)M, . as ¢ — 0, hence, A, = ﬁg(l))_ts ase — 0.
dist(x, dB)

i) dist(xs, dB) — 0 and — T ooasp. +q— 2%
&
iii) lim_k / Y TRV IT1el + |V Ta.l*)dxdy = 0,
De q_>2* Cp
25s—N
where we have set 7 (x,y) 1= wi(x,y) = A; 7 #/ (3%, ), fori = 1,2.

2 Preliminaries

For any u; € H)(B), there is a unique extension w; = E¢(u;) € H0'7L(CB) of u;. The
extension operator is an isometry between H(B) and Héq . (Cp), thatis (see [5,7,18])

1Es@illgy, cqy = Nill g, 1= 1,2

Let us set

1
Xo = (1 ——,o,...,o) eRY, 7 := (x,0) € RN,
|Ing|

Let us denote B, := {x € RV : |x — xo| < p} and

RN+1 RN+1

Ay i={(xy € Hny) =20l < p)y By i=Axy) € |(x, y)| < p}.
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Let ¢ € C;°(Cp) be a cut-off function satisfying

Lif (x,y) € A

o) = { 0if (ry) A+

9
|Ingl

with 0 < ¢(x,y) < 1 and |Ve(x,y)| < Cllng|, for (x,y) € Cg. If # is the
extension of the function U previously introduced, we have (see [5]) [V# (x,y)| <
Cy™ ' (x,y), for (x,y) € RY*!. The extension of U,(x) = (e + |x|?)®>/2 has
the form

X—Xxo Y

\/E%) e>0.

Notice that 9%, € H(I)YL(CB) for & small enough. The following lemma is proved in
[18, Lemma 3.1]

Wiey) =" (

Lemma 2.1. There holds

/ Ky 2|V (@ #5) Pdxdy
Cp

37y = Zanr (Co) + 0:(1).
([ Wl 0t oppa)

B
asp — 27, and e — 0.

A minimizer of /7, (Cp) existsas2 < p+q < 2¥ and arguing as in [2, Theorem 5]
we have

SO = G 75y Gyi= (2T (B) ] )
where we have set

/ koy' ™ | Vw|*dxdy
Cp

2 o(Cp) = inf o

| / x| w(x, ) dx)
B

In particular

<yé.p,q(CB) =, 5.ps q(CB) sp+q (CB) Cp,q%+q(CB)~
Furthermore if wo realizes 7, +q(CB) then (ug,v9) = (Bwy, Cwg) realizes
oyq(CB), for

B,C>0, B=./p/qC.
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Setting it, = /p-@¥; and v, = ,/qe#; and applying identity (5), we have

/ ky " (Vite + V5, [2)dxdy
Cp

A ~ 2/(pe+q)
([ el 0 (. 07
B

/ koy 2|V (o #) Pdxdy
Cp —
)2/(pg+q) -

= CPS»‘I

Cpg.l{fg‘(’)z;k (CB) + 08(1)’
([ tot 06 0
B

as p, + g — 2¥ for ¢ — 0. Following [18, Lemma 3.2], we have

Lemma 2.2. Let (uc, v;) be a minimizer of 7, (Cp) and p. +q — 27 for e — 0.
Then we have '

/ k' "2 (Vae [ + Ve Pydxdy
lim B

(s 00 . 1)

— 0 _ #0 N+1
2/(petq) Cp,qys,zj (Cp) = Cpqq/}z;* Ry,

/ Koy "2 (Ve * + [ Ve [P)ddy
lim
e—>0

0 0 1
> orta = CraTsar (Cp) = Cpg o ®Y.
([ et 0 vscr. o))

Proof. We already know that .Y, (Cg) = .2, (R™"). Notice that, by (5), we get
by Lemma 2.1 ' '

/ ksyl_zx(|Vu5|2 + |va|2)dxdy / ksyl_zs(|Vug|2 + |Vv8|2)dxdy
CB CB

)2/(135""(/) - )2/(Ps+(])

([ .o o0 ([ bl 0o, 0
B B
[ 19w Paay
Cs

= CP2~‘1

)2/ peta) CPS*Q‘%;?ZA’!‘ (Cp) + o(e),

([ lot 0w 0 s
B
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as p, + g — 2¥, for ¢ — 0. On the other hand, we infer that

/ ko' ™2 (|Vue|* + |V, |*)dxdy
Cp 0
)2/(pg+q) = 5 pea(CB)

</|MS(X,0)|”€|vg(x, 0)|?dx
B

= Cps,qyo

-Y,pe+q(CB) z Cps.qus(,)z;k (Cs).

The last inequality is due to Holder inequality. This concludes the proof. O
Corollary 2.3. Let p + q = 27. Then the infimum .77, ,(Cg) cannot be achieved.

Proof. Observe that, for all « > 0, there holds X,‘f‘p.q(CB) = Cpq 75 (Cp).

Suppose, by contradiction, that /7, (Cp) is achieved by a function (wi, w») € H.
Without loss of generality, we may assume that w; > 0 and w, > 0. By Lemma 2.2,
we get

| K"V + 192 Py

C

Cp-,qufs(.)z;f (Cp) = 75 4(CB) = ;

([ w07 wae. oytas
B

)2/(17+q)

/ ksy' 2 (Vw2 + [Vwo |*)dxdy
C o o
] ot = 7 spa\C8) = Cpgs5x (Ch),

(/Wl(x, 0)’wo (x, O)qu)
B

so that %?2* (Cp) is achieved at (w1, w;) € H, being

/ ky' 72 (IVwi)? 4 |Vwa|?)dxdy
Cp
)2/(P+4) ’

Cp,qjs(.)zj (Cp) =
(/wl(x, 0)’w,(x, 0)9dx
B

By setting w;(x, 1) := w;(x, t) for (x,t) € B x (0, 00) and w;(x,t) := 0 for (x,¢) €
RM\ Bx (0, 00) we get the minimizer (i;, W,) € .72 (R ). A contradiction, since
w; > 0, by the maximum principle. O

Definition 2.4. A sequence (w;,,wz,) C H is said to be tight if, for all n > 0,
there is pgp > 0 with

neN

sup / / Ky =2 (Vw2 + [VwaalP)dxdy < 1.
{y>po} /B

The following concentration compactness principle [27] can be adapted from
[5, Theorem 5.1]
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Proposition 2.5. Let (wy ,, wy,) C H be tight and weakly convergent to (wy, wy)
in H. Let us denote u;,, = Tr(w;,) and u; = Tr(w;), p + q = 2. Let |, v be two
nonnegative measures such that

i) ky'""2(Vwia > + |[Vwa,l?) = i in the sense of measure,
i) |uyulPlugpl? — v inthe sense of measure.

Then there exist an at most countable set I and points {x;};c; C B such that
= kY (VP VD) 4 0. v =Pl ) wby.  (6)
kel kel

with (> 0, v > 0 and i > Cl’ﬂ'ys?z; vi/% .

Finally, we give an explicit form to the solutions of the problem

' 2 .
(—A)’u = P W e inRY,

p+q
2
(—AYv = —L 1!t inRY, )
p+q
u>0,v>0 inRY,

where p + ¢ = 2*. Letu, v € L (R") be solutions of the following problem

2p / W (y)vi(y)
u= dy,
p+q /ey x—yN=
2q W ()i~ () ®)
v = N o dy.
P+aqJry |x—)l

u>0,v>0 inR".

Denote by

~ 1 X - 1 x
W= e 0= )

the Kelvin transform of u and v, respectively. Hence, (i1, v) is also a solution of (8).
We may prove as in [16, Theorem 4.5] that problems (7) and (8) are equivalent, that
is if (u, v) with u, v € H*(R") is a weak solution of (7), then (u, v) is a solution of
(8), while if (u, v) with u, v € L% (RM) solves (8), then (u, v) is a solution of (7).
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Now we show that L¥-% (RM) solution (u, v) of the following problem is radially
symmetric.

u(x) = /R wOV0)

volx =y
_ [ o) ©)
W= J o

u>0 v>0 inR",

Let ¥y = {x = (x1,---,xy) 1 x1 > A}, x* = (24 —x1, %2, ,xy) and u (x) =
u(xt).
Lemma 2.6. Let (u, v) be a solution of (9). Then (u, v) is radially symmetric with

respect to some point.

Proof. The result is proved by the moving plane methods developed for integral
equations, see [17]. The argument is now standard, we sketch the proof. For details,
we refer to similar arguments in [35]. We have

up (x) —u(x) = /): ( : s _le_ZS)(uﬁ_l(y)v;{(y) —u”_](y)vq(y)) dy

e — y|V=
and
_ 1 1 o g—1 P q—1
w-ve) = [ (o ) (om0 on ) av

Next, we claim that there exist K > 0, such that if A < —K, there holds
u(x) > uy(x) and v(x) > vy (x).
Indeed, define
Ti=xeXiux) smu@}, X ={xe X v < v}

and X = X, \ (X4 U X}), we can deduce as [35] that

0= = [t 0 (00— )

v =y N
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By the Hardy-Littlewood-Sobolev inequality,

—1_ g—1
3 () = u@) | oz gy < Cllidy 0] (W2 = V)| _opn
&)
A LN—‘,—2A-2§k (2}':)

—2
+ Clldy™ v ur —wll orw
LN—‘,—2A-2§k (2}1:)

By Holder’s inequality,
_ N p—1 q—1 _ N
||u/\(x) u(x)”LA (Zlu) = C”ul”Lz?(Zf)”v)L”LZS*(E;)”(vA U)”le (Z‘)’L))
p—2 q _ N
o Cl o 10l o 10 = 05

Choose K > 0 large and for A < —K, we have

1 1
”u)k(x) - M(X)”Lz;k (=1 = Z ”M)»(x) - ”(x)”sz (=1 + Z”v/\(x) - ‘U()C)||L2§k (=)

Similarly,

1 1
02 = 0Oz ey = 71000 = W )+ 5 102D = VOt
The claim follows easily. Now, we may proceed as the proof of
[35, Theorem 1.1]. ad

It is known [16] that a positive solution U € L= (R") of the problem
(—AYu = uv> inRY, (10)

is given by

N—2s
t 2

U =C(— T
() R

for some constant C = C(N, s) > 0, some ¢ > 0 and x, € RV.

Lemma 2.7. Let (u,v) be a nontrivial weak solution of problem (7). There exist
A, B > 0 such that u = AU and v = BU.

Proof. We known that the solutions (u, v) of (7) are solutions of (8). By Lemma 2.6,
any solution (&, v) of (8) is radially symmetric and monotone decreasing about some
point. Let (&, U) be the Kelvin transform of («, v) with the pole p # 0
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< 1 xX—p o 1 xX—p )
i(x) = |x_p|N_2Xu<|x_p|2 +p), 0(x) = —ZYU(|x—p|2 +p).

We remark that (i1, 0) is a solution of (8) too, and then (&, v) is radially symmetric
with respect to some point g. Following the argument on page 280 in [23], we can
see that if p = ¢, then (u, v) is constant, which is not true in our case. Hence, p # q.
Now, using the Kelvin transform

1 X
K = — (—)
N® = ef (4
we deduce as in [6, proof of Lemma 7] that u = AU and v = BU. ad

3 Proof of Theorem 1.3

Choose py such that py + g — 27, as k — oo. Let (w; &, w2 1) € H be a nonnegative
solution to

k, / VB (Vwial? + [V Pdxdy
Cp

Zspea(CB) = an

—.
(/|x|°‘|w1,k(x,O)|p"|w2,k(x,0)|qu)pk+q
B

Up to the factor ((py + g)Ax/2)"/®+4=2 depending upon the Lagrange multiplier
Ak, W1k, Wag) solves

—div(yl_z“‘le_k) =0, —div(y]_ZSszyk) =0, in Cp,
ksyl_zsm = 2”—"|x|‘)‘w1,k(x, 0)*~'wy 1 (x,0)?,  on B x {0},

awns _ oy (12)
ky! TR S, = pgj_q IxX|%W1 & (x, 0wy 1 (x,0)771,  on B x {0},
wig =wy =0, on 0;Cp.

In particular, we get
/ Ky 2 (Vw2 + [V [Ddxdy = 2 / w4, 0w g (v 0. (13)
Cp B

One may now set, for every x € Band y > 0,

o
wik(x,y) = Cowix(x,y), Cp= (/Bwl,k(xa 0)kwo ke (x, O)qu) R = 1,2,
(14)
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We have
/Vvlik(x, 0)7* Wy (x,0)%dx = 1, forallk € N,
B
and by (11) and Lemma 2.2, we have
/c key' T2 (Vb ) + [Vivg ) dxdy = Cp,qfﬂfzr +or(1), ask — oo.
B

The sequence Cj, converges to some C > 0, whenever k — oo. This can be proved
by comparison with the term [, |x[*wy x(x, 0)” w5 i (x, 0)9dx, which converges to a
constant in view of formulas (11), (13) and Lemma 2.2. In fact, taking into account
the Sobolev trace inequality, we have

0<o < X|%wi 1 (x, 0V, wy 1 (x, 0)edx < C, P9 < Cllwy 1 |IP* wa k|9 <
< [ s 0 a5, 0)1ds = G < Clhwnalfe  Ivaslly ) <

The sequence (W x, W2 x) is bounded in H. Furthermore, it is tight. This fact can be
proved by arguing as in [5, Lemma 3.6]. By Proposition 2.5, there exist nonnegative
measures [, v, a pair of functions (wy,w;) € H, an at most countable set J and
points with {x;};,e; C B such that

1) 171/,'.]{ — W, i=1,2,
i) ky'""(|Vwixl? + [Viax|?) — p in the sense of measure,
iii) [Wy x(x, 0)|P|W2£(x,0)|? — v in the sense of measure,

and (6) holds with v > 0 and i > Cp -7+ v,f/z“ . It follows that
: 1-25 (g, |2 -2 _ 00 N+1
im | o AV + (V2 Pty = / 0l V0 €L N CRE

lim/ w1 & (x, 0)[P |2 4 (x, 0) |9 pdx :/ edv, Y eL®nCRY).
k JRN RN

In particular, we infer that
: 1=2s (1o, |2 ~ 2 _ N+1
iim | ok VR (Pl = (BT,

i [ 15105, )P [ 0 = v
RN

Claim: 1 # .
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Verification: 1f I = @, we would have [, [wi(x, 0)[”|w»(x, 0)]%dx = 1 and

Cp,qjv(,)zj = liin key' "2 (VW] + [ Vi k| *)dxdy
: s

> [ (ky'""(IVwi|* 4 [Vwa]?))dxdy,
Cp

yielding C, .77, = Ie, ky' "2 (|Vwi|? 4+ |Vws|?)dxdy, namely a contradiction to
Corollary 2.3. '

Claim: I contains only one point and w; = w, = 0.

Verification: We argue by contradiction and consider the following three cases:

i) wi # 0and w, # 0;
ii) wy; # 0 and w, = 0;
111) wp = 0 and wo # 0.

In the case 1), we have ZJEJ v; € (0, 1). Notice that

Crg oy =lim [ key' (| Viby i + (Vi) dxdy
Cp

2 (ksyl—ZS(|vwl |2 _|_ |VW2|2))dxdy + Cp.qjs(,)zj‘ Z vjz/zs ,

Cs jel

as well as
1= V(RN) = / |w1(x, O)|p|W2(X, 0)|qu + Z Vj.
B jel
These facts imply that

[ QO 4 1VaPhandy = Gy (1= 07
CB 'S

Jj€EI

2/2f
= Cp,qx(.)zs* (1 - Z Vj)

Jj€I

*

= 754( [ w1 O wa, 0)]7ax) "
B

which is a contradiction. In the case ii) or iii), we have Zje ;v; = 1. Notice that

CrgT e = | (ky' 2 (\Vwil? + [Vwa )y + Cpg s Y07/ .

Cs Jjel
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This implies, as above, that
1-2 2 2 2/2¢
/ k' T2 (Vw12 + [Vwa|Pdxdy < Cp g T se (1 -y v,-) =0,
Cs ! 5
JEI

which is a contradiction. Then w; = w, = 0. We claim that J is singleton. Notice
again

1> Zvjz/zj - (ZVJ)z/z?‘ _ 1

jel jel

so there is at most one j* € I such that vjx # 0, proving the claim. Hence there
exists xo € B with

key' T (VP Vo kl®) = wobrys W1, 0)P[W2(x, 0)|9 = 18y, (15)
in the sense of measure with o > Cp,qx(.)z* vé /% Taking into account the relation
(14) between w;; and w; ; the same conclusion follows for the w; .

Assume by contradiction that xo € B. Then it follows dist(xy,dB) = o, for
o € (0,1). Notice that |wy x(x, 0)|”* < |wy(x,0)|” 4+ 0x(1). By the concentration

behavior of the sequence |wy x(x, 0)|”|wa i (x,0)|¢ stated in (15), there exists ¢ €
L>® N C(RN) with ¢(xo) = 0 and

L B O 5,00 a2
= [ s 0PIz 0) gy = ou(1).
R

Since [, [wak(x,0)|?dx < C by the Sobolev inequality [5, formula (2.11)], then we
conclude

/ el e (. )P i e, )l = / x| e, O) P i Cx, 0) el
B B(x0,0/2)
b [t O (e O oy (1
R
< (1-0/2)" / [ e, )P [ (x. 0) el
B(x0,0/2)

+ /N Wik (x, 0) [ [wa i (x, 0)| X B\B(xg.0/2) (X)dx + 0k (1)
R

< 4@ ([ s OP bease O+ ox(). (10
B
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where A(0) := (1 — 0/2)®/% € (0,1). By formula (16), on account of by
Lemma 2.2, it follows that

/ Ky T (Vwial? + [VwaiP)dxdy
Cp

0 _ 1
CpgT 52y = lim - ' 2/t
([ B hore 0P pozs . 07as)

B

/ Ky 2 (V1 12+ [V x|2)dlxcy
im —Cz

k
([ riate o wagte oyt
B

0
> CpgTspx

= A(0) ! )2/(Pk+q)

which is a contradiction, since A~ (c) > 1. The proof of Theorem 1.3 is complete.

4 Proof of Theorem 1.4

Let (w; ., w2.) € H be a nonnegative solution to (11). Then, up to a multiplicative
constant depending upon the Lagrange multiplier, we may assume that (w ¢, wa )
solves the system (12). In particular, identity (13) follows. Hence, from Lemma 2.2,
we infer

N N
(3,4(CB))> _ (F0, RYF)

N—2s N—2s

2 2s ZT

lim [ ky'"" (| Vwie]* + [VwaeP)dxdy =
B

e—0 C
(17)
We know that (w; ., w; ) is a solution of the system

—diV(yl_stWLg) =0, —diV(yl_ZSVWQ’E) =0, X € CB,

ksyl_zs% = F%[|x|“w1.g(x, 0)7= " ws ¢ (x, 0)4, x € B,

£

—250 2 —
k' B0 = 2 (x, 0w o (1,007, x € B,
Wie =W = 0, X € 8LCB.

Then, we can assume w;, € C*(B), for some t € (0, 1). There exist xj ¢, X, € B
such that

M = wi(xi.,0) = sup Wie(x,y), i=12. (18)
(x,y)€Bx(0,00)

In fact, let x| ¢, x5 . € B be such that

Miyg .= sup Wi_g(x, 0) = Wi’g(xi_g,o), i = 1,2.

X€EB
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Then the second equality in (18) holds, since we have the following maximum
principle

Lemma 4.1. w;.(x,y) < M, fora.e. (x,y) € Bx (0,00), fori =1,2.

Proof. Define 7;(x,y) := (Wi c(x,y) — M;,)™ for (x,y) € B x (0, 00). Then, testing
in (LS), we obtain

) 2
ky / V|V (x, y) Pdxdy = —2E— / el w1 (e, 07wy o (x, 077 (x, 0)dx = O,
Cp Pe+4qJB

k /C 32|V ey (e, y) Py = / w1 (2. 0P w20 (5, 0) 1 (x, O)dlx = 0,
B B

q
Pe t4q
Then 7; = 0 for i = 1, 2, yielding he conclusion. O

Lemma 4.2. Foralli= 1,2, we have M;, — +o0 asp, + q — 2}.

Proof. Suppose by contradiction that there exist C > 0 and a sequence {¢,} C R
such that p,, + ¢ — 2¥ and M, ., < C, for all n € N. Since (w;,) is bounded in
H(%.L(CB), up to a subsequence, by the conclusions of Theorem 1.3 we get w;,, — 0
weakly in Hj, (Cp) and w;,, — 0 in L"(B), for every r < 2. Then, from identity
(13) and formula (17), there exists a positive constant ¢ independent of ¢, such that

0<o< / X 0 2, O)P* w2, (5, 0) el
B
< Iy 5 O) % I, (5, OV ) < Con1),

which yields a contradiction. O

Now we want to recall some general PohoZaev type identity. Consider the following
system

—div(y'"*Vw,) =0, in Cz = B x (0, 00),
—div(y!™Vw,) = 0, in Cz = B x (0, 00),
(LG) wi =wy =0, on d,Cp = 9B x (0, 00),
ksyl_zs% = Ciwi(x,0)""wy(x,0)?, on B x {0},

¢ dw _
key! zs% = Cow;(x,0)’w1(x,0)9"", on B x {0},
where % denotes the outward normal derivative, and v is exterior normal vector to
dB. For the scalar case, the next result was obtained in [7], while for the system we

refer to [19].

Theorem 4.3. Let p + g = 2. Then system (LG) does not admit any nontrivial
nonnegative solution.

The following nonexistence result is crucial for our argument. Consider the
following problem
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—div(y'™*Vwy) = 0, in RYE',

—div(y'"*Vw,) = 0, in RYE',
(LS) wi =w; =0, o0n {xy =0,y> 0},
kgy! =2 aawl = Cywi(x,0)" 'wy(x,0)7, on {xy > 0,y = 0},

koy! =% aa“l? = Cow;(x,0)’w1(x,0)!, on {xy > 0,y = 0},

where C;, C, > 0, = denotes the outward normal derivative, p + ¢ = 27 and
RYE = {(r1.x0. o oxy—r. . y) € RV iy > 0,y > 0},

Proposition 4.4. Let w;,w, € Hé L(RN 1Y be a bounded solution of (LS). Then
(w1, w2) = (0,0).
RN+

Proof. Since (x,y)-v = 0on dR]" ", one cannot apply directly PohoZaev identities.
Whence, we use the Kelvin transformation as in [19, 21] to study a new system set
in a ball. Let w; € H&L(RN *1) be a solution to system (LS). Then, the Kelvin
transformation of w; is defined by

~ _ z
wi(z) = |Z|2s NWi(W)’ Z€ RN+1

and from [21, Proposition 2.6] we infer that w; is also a solution to (LS). By [25,

Corollary 2.1, Proposition 2.4], there exists y € (0, 1) with w;(z) < Clz|?, for
z € B1(0). Then there exists C > 0 such that

N—2s+
W@ < C(+ 12>~ 2, forallze RV (19)

Arguing as in [18], denote by B 1 (%) C R the ball centered at < with radius %
Define

vi(2) 1= |z]*Mw i(— (en. 0) + E |2) forall z € CB%(%N) \ {0}.
By means of (19), for a positive constant C and for |z| small enough, we have
vi(z) < Clz]”, forallz e R\ {0}

Therefore, we may extend v; by 0 at 0. Then, as above, (v;, vy) is a weak solution
of the system
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—div(y'"*Vuv;) = 0, in CBI(%N),

2
_diV(yl_ZSVl)z) = O, in CB[ (%),

2
(LSB) V) = Uy = 0 on aLCB (ﬂ),

k'~ 2568? = Civ;1(x, 0" 'va(x,0)?, on Bl (eN) x {0},

key' 282 = Cyuy (x, 0P va(x, 0)7", on BE(ZN) x {0}.

Now, applying Theorem 4.3 to system (LSB) we infer that v; = 0,i = 1, 2, that is,
w; = O,l = 1, 2. O

We are now ready to complete the proof. By Lemma 4.2, we may assume

Mo =wie(x16,0) = sup  wielx,y) = +o0,
(x.y)EEX(O,oo)

We may assume M; . > M, .. Let A, > 0 be such that

N—2s N—2s

AE2M1,8=17 0<12M25<1

where A, — 0, as p, + g — 2¥. Define the scaled functions

Wie(x,y) _A Wls(Asx+x18a ¥
WZS(X y) = A WZE(A’S-X—F-xlSv sy)

B, = {x € R : Ax + x1. € Bi(0)} and C, := B, x (0,00). Then
(wl,a('xv y)’ 1:{)I,E(Xs y)) SatiSﬁeS

—div(y!"™ Vi) =0, —div(y!™>Viny,) =0, x € Cp,
0<V~V15§1 0<wy, <1, Vvl_s(O 0)—1 xECBS

k‘yl —25 0Wie — ﬂusx"‘xlsla/x 2 (Ps+(1)~ ()C O)pF 1w2 g(x 0) x € B,

T Pe +q
k'™ 2Y3’512)€ = ex + x1e|%A0 = (p,+q)~1€(x 0)P i, (x,0)7~", x € By,

Pe +q
leg =0, Wzys = O, X € 8Bg n 8LC3€.

Suppose x;, — xo for some xo € B;(0). We claim that x, € 0B;(0). By
contradiction, assume that x, € B;(0) and let d := %dist(xo, dB1(0)). Denote
#0,r) = {z € RVl 1 |z] < r}. For ¢ > 0 small, both w; . and W, are well
defined in 2(0,d/A,) NRY*!, and

sup Wie(x,y) = wi(0,0) = 1, sup Wae(x.y) € (0,1].
(x)€BO.£4)NRH @ »)eBO. £)NRYH
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Since M, — 400, we have 0 < A, < 1, for ¢ > 0 small. Let
N=252(pe+q) .
he) := Ay 2 and h(0) := lim h&(e).
Petq—>2f

Hence, 0 < h(e) < 1. Three possibilities may occur, namely

(1) h(0) =0,
(2) h(0) =B € (0,1,
3) h(0) = 1.

We show that any of these cases yields a contradiction. We observe that, for any R >
0, Br(0) C Bgy3,(0) for & > 0 small enough. By Schauder estimates [7, 12, 14, 25]
there are C > 0 and 0 < ¥ < 1 with

”f"l,e||c0-ﬂ(@(o,2R)mRi+‘) =C, ”fvlf”cw(ga(o,szRf’jl) =C
for & small enough. By Arzela-Ascoli’s Theorem, there exist subsequences {W; 4, }
such that w;,, — w; as k — oo, fori = 1,2, in Cﬁ;g(’ for some ¥ € (0, ¥). Then,
we derive that (w;, wy) satisfies

—div(y'"*Vw) =0, —div(y!"*Vw,) =0, inR}",
k' 2R = 2|kl h(O)W] T (r, 0)wd(x,0),  on RN x {0}, (20)

ksyl_zs% = ;Tf|xo|°‘h(0)w’f(x, O)WZ_l(x, 0), on R x {0},
and w1 (0,0) = 1, 0 < wy < 1. Moreover, w; € H} , (R{*"). If xo = 0 or h(0) = 0
or w, = 0, we have w; = 0, which is impossible since w;(0,0) = 1. Suppose

xo 7% 0, wy #£ 0and h(0) = B € (0, 1]. Then

—div(y!™>Vw;) =0, —div(y! ™>Vw,) =0, in ]R]f'l,

Ky "2 = 2 AW (. 0)w(x, 0). on R x {0}, 2D
k' 782 = 2 AW (e 0w (. 0), on RY x {0},

where A = |xo|*B € (0, 1). Setting

J 1
Wy = A% 2wy, Wy 1= AT 2wy,

1 1 1
we have 0 < w; < A¥2,0 < wy < A%¥2, w(0,0) = AZ—2 and (Wi, w»)
satisfies
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—div(y!"=Vin)) =0, —div(y!"*Vinp) =0, inRYT,

ksyl—%% = ;Tgw;’“(x, 0)wl(x,0), on RN x {0}, (22)
ksyl_zs% = %‘{WT(}C O)v‘vg_l(x, 0), on RY x {0},

Define .7 := .70 (R’_VF‘H) and observe that

$.p.q
/ - ky' "B (Vi )? + |Vws[H)dxdy = 2 / W] (x, 0)w (x, 0)dx.
]R+ RN

Then, by formula (17), we have

N—2s

s <25 [k AV + VP
R

N—2s N—2s

_ AN /N+lksy1*2S(|vwl|2+|VWZ|2)dxdy
R
+

< A" liminf2'5" / Ky TE(VIL + (Vi Py (23)
e—> Cg,

=A% limi(r)le%/ ky' T2 (Vi el? + [Vwo ) dxdy
e—> Cp

N—2s

N N
=A> 5 < L,

a contradiction. Then xy € dB;(0). We can straighten dB in a neighborhood of x
by a non-singular C' change of coordinates. Let xy = v (x’) be the equation of 9B,
where X' = (x1,x2,...,xy-1), ¥ € C I Define new coordinate system given by
z=xifori=1,...,N—1,zy = xy — ¥ (x') and zy+; = y. Let d. = dist(x, 9B).
For p, + g — 2} as ¢ — 0, w; . are well defined in B(0, N RIX‘H N{zy > —%}
for some § > 0 small enough. Moreover ’ ’

sup Wie(x,y) = w1(0,0) =1,
BO.H)NRY T nfey>— 4}
sup Wy (x,y) € (0,1].
BO.HNRY T nfey>—£&
We now have the following
Claim: d;/A; — +00 ase — 0.

Verification: Suppose by contradiction that d. /A, remains bounded and d. /A, — s
for some s > 0. By the previous argument, since |xo| = 1, we get w; . — W; in CIOO’Z,
w1(0,0) = 1 and
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div(y'"™Vwy) =0, in{(z1,....2v.2v+1) : Zv > —S,2v4+1 > 0},
div(y'™*Vw,) =0, in{(z1,....2v.2v+1) : Zv > =S, 2v+1 > 0},
e i 2 ~p—1 -
ksyl 2“)5% = A%Wlf (x, O)WZ(x, 0), on {(Z], Ce ,ZN+1) L IN > TS, AN+ = 0},
25 B3 2~ - g—1
kyy! 7282 = AW (x, 0005 (x,0), on {(z1.....2v41) © 2y > —s.2v+1 = O,
wi(z) = wa(z) =0, on{(z1,....2n.2n+1) : 2v = =S, Zn+1 > 0},
wi(2),wa2(z) € (0,1], in{(z1.....2v,2v41) ¢ 2v > —S,Zv41 > O}.
(24)
By a translation, (wy, w,) verifies
div(y! "2 Vivy) =0, div(y! Vi) = 0, in R,
o5 O —p—1 -
key' =28 ‘Jg‘v‘ = A%W’f (x,0)W(x,0), on{(z1.....2n.2n41) 1 v > 0,2v41 = O},
25 O - _g—1
ksy! 7280 = A%’wf(x, 0)ws (x,0), on {(z1, ..., N, ZN+1) ¢ N > 0,zv4+1 = 03,
Wwi(z) = wa(z) = 0, on{(z1,....2n.2n+1) © 2v = 0,2y+1 > 0},
W2(2) € (0. 1],%1(0,....5,0) = 1, inRY .
(25)
Since w; € H},(RY%"), by Proposition 4.4, (W, w2) = (0,0), which violates
wi(0,...,s,0) = 1. Then the claim follows and Cp, converges to the entire RT_’FL

ase¢ — 0.

Claim. A = |x)h(0) = h(0) = 1. We can assume (W, Wre) — (W, Ws),
as ¢ — 0, and (w;, wy) satisfies

div(y!">*Viw;) =0, div(y! Vi) =0, in RYE
ky' T2 EL = AT (x, 00 (x, 0), on RN x {0},
k' 82 = A (x, 0)wd " (x,0). on RN x {0}, (26)
Wwi(z) = wa(z) = 0, on {0} x (0, 00),
wi(z) € (0, 1],W;(0,0) = 1, in RV
Ifw, = 0or0 < A < 1, we reach the contradiction either as in (23) or by

Proposition 4.4. Hence, A = 1 and w, # 0. This implies M; ! :(A.x + x;) —
v(x) # 0,and then 1 > MM, — 0 > Oase — 0, thatis My, = O(1)My.
This is (i) of Theorem 1.4.

Let y, € B;1(0) be such that w; (y.) = maxg, ) w2,(y). We define W, .(x) =
o) N=29/2y, (Aox + v.), where 227240, . (v.) = 1. Suppose y, — yo. Again,
using a blow-up argument, we get yo € dB1(0). Then, in light of Lemma 2.7, we
have

wi(x,y) = a#i(x,y). w2 (x,y) = b#1(x,y)
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for some positive numbers a, b such that a/b = /p/q. Let v;, = Ww;. — w;. Then
U;e — 0 weakly in Hé,L(Cw) for any w C RIJ\;H and

div("2V5,.) = 0, div(y'"2Vi,,) = 0, in Cs,,
05 1. ) 1 _ —1
Kos)! Z‘Y% = pf‘iq wp (x, 0)Ws ,(x,0) — p(NN2s)W117 wi  on B, x {0}
05 80as — —1
Kogy! TR = p—f_{iq L (x, 0) g (x, 0) — L0290y g on B, x {0}
i}i,é? = —w;, on BLCBS,

(27
where we have set Q, := |A.x + x ¢|*h(e). Multiplying the first equation in (27) by
V1. and vy ¢, respectively, integrating by parts, and applying Brézis-Lieb Lemma, as
Pe +q — 27, we have

K / VBV + (Vs )drdy
Cp,

e

= [, G0 ot 0 - BECE 0t ) 5.0

0
_ kS / y1—25 8118
01.B¢ v

29 - N=25) , . _
+ /B 6 (pa—iqggw';;(x, 0t (x, o)_%wf;(x, 04! (¢, 0) ) e (x. 0)dlx

0
— kg / yli=% ;2 £ wodS
d7.B¢

_ p(N —2s)
= T

o (w’;fgl (x, 00, (x. 0) — W~ (x. ) (x, 0)) 910 (x, 0)dx

—kx/ ¥ 8 Dhe i as + B2 =0 PN = 25) (Q: — D~ (x, 0)i (x, 0)ddx
91.Be 8\) N B,

+ @ 0 (ﬁﬁ; (x, 0y (x, 0) — W (x, 0 ' (i, 0)) B0 (x, 0)dx
Be

00y, N —2 ~ e
_ kx/ yl—zsﬁwzdg + u/ (0 — )i (x, 0)vd Y(x, 0)dx + 0,(1),
91.B: 81) N B

since Q, — 1 as ¢ — 0. Recalling that %, decay at infinity, we obtain

K, / V(i1 + Vil [?)ddy
Cp,

€

- @ /BS 08 ((171,8 + W) (x, 0) (B2, + W2)!(x, 0)
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— 7 (6, 0)(x, 0) ) 1.0 x, 0)lx
+ —q(N]; 2) / O ((51,8 + 1) (x,0) (Da.e 4 )7 (x, 0)
BE
= 05, 00 (5, 0)) e, 0)dx + 0 (1),

Inserting w; . = v;, = W;, and using the following inequalities (cf. [8, 34])

la||bP~L if |a| > |b],
lla + blP — |alP — 6" — pab(lalP~* + [bIP72])| < C 4 |aP~"|b| if |a| < |b],
l<p<3,

lla+ b —lal’ — b’ — pab(lal’~> + [bP)| < C(lalP (b + |al*[blP~?), p =3,

we infer that

_ N N N —2s N N
b [ TR+ o Prasty = P2 08 0y 0y
Be B,
N —2s . . . -
Rl [ 0.0, 0cro.) =2 [ 0., (5,058, (5. Odi--o (1.
J Bg J Be
(28)

By definition of ., and recalling that 7, = % + 0.(1), we get

K, / VBV + [Via. [)dxdy
Cp,

e

2

> y( / 0. . (x, 054, (x, O)dx) P o1,
B

Assume by contradiction that

lm k, / VIV + [V Pdxdy = p > 0.

Cs,

Then, we have

K, / VBV + [Via. [P)dxdy
Cp,

e

N

o
= 2/ Q. (x,0)05 ,(x,0)dx + o(1) > —— + 0:(1).
By ’ ’ 225
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By using a Brézis-Lieb type Lemma and arguments similar to the ones above, we get

- . ks 1_os1o~ -
Lo, re) = / ST 5Py
B,

e

2
Ps+61 B

k
Q.1 .(x, 0)P D0 (x, 0)dx + / . Esyl—zf(a2 + )|V |Pdxdy
R
+

2 25 I
- la#1(x, 0) [P |b#1 (x, 0)|9dx + 0.(1) > — —= + 0.(1).
Pe +q JrY N 2 5~

On the other hand,

I SN N
1G5, = 5 [PV + (Vi Py
Cp

2

N
- - s S
ey /B O, (x, 0], (x,0)dx = ]TJZNE + 0.(1),

2s

a contradiction. Hence p = 0, proving also Theorem 1.4(ii).
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u® (@) = f(t,u(r),v(r)) for 0 <t<1,

v@ (1) = g(t,u(®),v(r)) for 0 <t <1,
u(0) =v(0) = u(l) = v(1) =0,
uW”(0) =0"(0) = "(1) = v'(1)=0

e))

where the nonlinearities f and g are continuous and may, in some sense, even be
singular in the first variable at + = O and/or at t+ = 1. By applying well-known
fixed point theorems in cones, we will establish the existence of positive solutions
of (1) under the following two basic hypotheses on the nonlinearities f, g : (0,1) x
[0, +00)> — [0, +00),

(h1) (behaviour at zero)

lim M = lim M =0 uniformly for s € (0, 1).
utv—>0t U+ utv—>0t U+
(h2) (super-linearity)  There exist constants 0 < of < B} < 1 and 0 < &) <
B5 < 1 such that

f(s,u,v)

= iformly f € (o, B
il +o0o uniformly for s € (g, B})

or

. g(s,u,v)
lim —=

= iformly f € (a), B5).
L s +o0o uniformly for s € (e3, B5)

Note that assumption (h;) is the classical super-linearity condition at zero and
the hypothesis (/,) is a type of local super-linearity at +oo.
Now we state the main result for (1).

Theorem 1.1. Suppose f and g satisfy (h) — (h2). Then system (1) possesses at
least one positive solution.

The main purpose of this paper is two-fold. Firstly, we will perform an
appropriated change of variables such that system (1) becomes a functional second
order elliptic system. A second purpose is that with the help of this approach in
combination with fixed point techniques we prove the existence of solution of
system (1). We stress that this approach can be also applied to study the existence
radial solutions for several classes of nonlocal elliptic systems defined on bounded
annular domains or exterior domains.

For a study of fourth-order elliptic problems, see, for example, [1, 2, 7-11] and
the references therein. We mention that scalar fourth-order boundary value problems
describe the equilibrium state of an elastic beam which is supported simply at both
ends.

We now give a brief description of the paper. In Section 2 we introduce the
associated functional differential equations. Section 3 deals with the superlinear
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problems. Section 4 contains a well-known theorem used in Sections 5 to prove
Theorem 1.1, which is our main result. In Section 6 we show the application to the
systems involving fourth-order ordinary differential equations.

2 The associate functional differential equations

Now we show how a system such as (1) can be transformed into a class of systems
of second-order ordinary functional differential equations. In fact, suppose (u, v)
is a positive solution of system (1), and let w = —u” and z = —v”. Using the
Green’s function

G(t,s):{s(l_t) for0<s<t<l1, @)

t(l—s) for 0<r<s<]1.

we can write

1 1
u(t) = —A G(t,s)u'(s)ds and v(r) = —A G(t,5) v"(s)ds,

and so, we may define the functional operators L; and L, given by

1 1
Li(w,2)(t) =f(t,/0 G(t, s)w(s)ds,/0 G(t, s)z(s)ds) and

1 1
Lyw,2)(t) = g (l/ G(t, s)w(s)ds,/ G(t, s)z(s)ds).
0 0
Thus (w, z) satisfies the following functional system:

—w"(t) = Li(w,z)(¢) in (0,1),
—7"(t) = Ly(w,2)(1) in (0,1), (S)
w(0) =z(0) = w(l) = z(1) =0

where the functionals Li, L, : (0,1) x €([0,1]) x €([0,1]) —> [0, +00) are
continuous and may, in some sense, even be singular at t+ = 0 and/or at ¢ = 1.
Thus, in the sections 3—6 we will concentrate studying systems like ().

3 Locally superlinear nonlinearities

Consider E := €(]0, 1]), the Banach space of continuous functions equipped with
the usual norm

[Wlleo = max [w(r)].
t€[0,1]
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Next we use the following notation

X :=EXE.
K :={we E : wisconcave and w(0) = w(l) = 0}.

C  =KxK

A = 1he €((0,1),]0, +00)) : /ls(l — $)h(s) ds < 400
0

Note that K and C are cones, and X equipped with the norm ||(W, 2)||co = [|Wllco +
lz]lco is a Banach space. In what follows we assume that (w, z) € C.

Suppose that the functionals L;, L, : (0, 1) x E x E — [0, +00) are continuous
and assume also that the following three hypotheses hold:

(Hy) Forall M > 0, there exist hyyy, hop € F, such that
Li(w,z)(s) < hip(s), forall (w,z) € C with |(w,2)]lcoc <M and s € (0, 1),

wherei = 1, 2.
(Hy) Fori = 1,2, we have

LD o gy {107l 0

ey (0.0 €C uniformly for s € (0, 1).
’ o0 ’

(H3) For some i € {1, 2}, there exist constants 0 < o; < B; < 1 such that

Li(w.2)(s)
[, 2)lloo

[, 2)[loo = +o00

b € uniformly for s € (a;, B;).
w,Z

— +00 as {

We now state a result for the existence of a solution of system (S) under
superlinear hypothesis at zero and a local superlinear hypothesis at +oo.

Theorem 3.1. Suppose L, and L, satisfy hypotheses (Hy) through (H3). Then there
exists a positive solution (w, z) € C of system (S).

4 A fixed-point technique

Our approach is based on the following fixed-point theorem of cone expan-
sion/compression type. We omit its proof. Readers who are interested in fixed-point
theory in cones may consult, e.g., [3-6].

Theorem A. Let X be a Banach space endowed with norm ||-||, andlet C C X be
a cone in X. For R > 0, define Cx = C N B[0, R], where B0, R] denotes the closed
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ball of radius R centered at the origin of X. Let r and R be real numbers satisfying
0 <r <R.Assumethat T : C — C is a completely continuous operator such that

| Tu|l < ||ull, for allu € oC, , and ||Tu| > ||u||, for all u € ICg, or
| Tu|l > ||ull, for allu € oC, , and ||Tu| < ||ul||, for allu € ICg

where 0Cg = {u € C : |u|| = R}. Then T has a fixed point u € C, with
r<|ull <R

Define the operator 7 : X — X by

Tw,2)(t) = (Aw,2)(®),B(w,2)(t)), for 0 <r<1

where

1
A(w, 2)(t) =/0 G(t,s)Li(w,2)(s) ds

and

1
B(w,2)(¢) :/o G(t,8)La(w,2)(s) ds.

Here G(t,s) denotes the associated Green’s function defined in (2). Observe that
this function satisfies

G(t,s) <s(1—s), forall ¢, s€]0,1]. 3)
It is not difficult to see that system (S) is equivalent to the fixed-point equation
Tw,z) = w,2).

Thus the fixed points of the operator T correspond to the positive solutions of
system (S). It follows from hypothesis (H;) and inequality (3) that 7 is well defined.

Lemma 4.1. T is completely continuous and T(C) C C.

Proof. First, we show that A is continuous. In fact, let (¢, ¥,,) C X be such that

”(d’ann)_(‘p’W)”OO_)O as n— oo. (4)

Define the function

én(f) =| L1(¢n’ 1//rt)(‘[) - L1(¢’ 1//)(":) | .
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For © € (0,1) and n sufficiently large, we have {,(r) — 0 and 0 < {,(v) <

2him(t) . where M = max{[|¢loo + ¥ lloo. maxu{[|@nlloc + [I¥nllo}}. By (4), M
is independent of n. Therefore,

1
4G v =A@ O] = [ w1 =080 dr. )
0
According to the Lebesgue dominated convergence theorem, we have

1A, ¥n) =A@, ¥)]c >0 as n— o0

which implies that A is continuous. The proof for the operator B is analogous.
We next show that T(C) C C. Observe that

t 1
Alp. ¥)(1) = (1 —t)/0 tLi(¢.¥)(v)dr + t/ (I-)Li(¢.¥)(r)dr.  (6)

Fort € (0, 1), we have

t t 1
(1-1) /0 T L. Y) (1) dr = /O (1—1)eLy (. ) (1) dr < /0 t(1 =Ty (7) d.

Here M depends on both ||@|leo and ||| oo-
Let {t,} be a sequence such that #, — 07. Foralln > 1, we have

ty 1
/0 (1= 1,)7 Li( ¥)(x) dt = /0 201 (1 = 1) Ly ¥)(2) d.

Define the function [,(z) = xjo, (1 — )t Li(¢,¥)(r). It is not difficult to see
that /,(r) — 0 a.e. for t € (0,1) and that 0 < [,(7) < t(1 — 7)h; (7). Again,
we have that M depends on both |¢]lec and || |c0. According to the Lebesgue
dominated convergence theorem, we have

lim /Ot”(l—t”)rLl(qb,l//)(t)dr —0.

n—-+00

Similarly,
1
lim t, (1 =1)Li(¢p,¥)(r)dr =0.
n—>+00 tn
Taking the right-hand limit in (6) we obtain A(¢,¥)(0) = 0. Similarly,

A(¢,¥)(1) =0 when ¢, - 17.
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A direct calculation shows that, for (¢, ) € C, the function A(¢, ¥)(s) is
twice differentiable in (0,1), with the second derivative negative. The same holds
for the function B(¢, ¥)(s) . Hence, T(C) C C.

It remains to show that 7" is a completely continuous operator. Let (¢,,, ¥,,) C X
be such that ||(¢,, ¥,)|| < M. It follows that

1
max {A (G, V) (1), B V) (0} 5@%{ [ 0= e} < 0.
=12 Jo

t€(0,1]
Then (T(¢,, ¥,)) is equibounded in X.

Let () C [0, 1] be a sequence such that ;, — t(;r (the case # — 1 is similar).
By definition,

/3

| Al Y) (1) — Al Y)(10) | < / GOy (1) dr

fo

where Gi(t) =| G(t,1) — G(tp, t)|. According to the Lebesgue dominated
convergence theorem, A(¢,, ¥,)(#) converges to A(¢,, ¥,)(tp) uniformly in n as
k tends to infinity. Therefore, (A(¢,, ¥,)) is equicontinuous in [0, 1]. Analogously,
(B(¢pn, W) is equicontinuous in [0, 1].

Finally, using Ascoli-Arzela theorem, we see that the operator 7 : X — X is
completely continuous. O

We next state an elementary property of concave functions that will be used in
Section 6.

Lemma 4.2. Suppose w € K. Then, forall 0 <a < < 1, we have

min w(t) > a(l = B) [|W]]eo -
1€[10.11]

Forany 0 <« < 8 < 1, we define the constant

cap = a(l=p)|

5 Proof of Theorem 3.1

Theorem 3.1 is an immediate consequence of Theorem A and the following two
lemmas.

Lemma 5.1. Suppose hypotheses (Hy) and (Hs) hold. Then there exists a ©® > 0
so that, for all (w,z) € 0Co = {(w,z) € C: ||(w,2)|| = O}, we have

HTW. 2Dloo > [[(W. 2)]]co -
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Proof. Without loss of generality, in (H3) we may suppose that there exist constants
0 <aj < B; <1 such that

Li(w,2)(s)

— 400 as ||(W,2)]leo = +00 with (w,v) € C,
(W, 2)[loo

uniformly for s € («y, B1). Thus for ||(w, 2)]|ecc = @, with O sufficiently large, we
may choose 7" > 0 so that 7 faﬂl' G(%,s)ds > 1 and L;(w,z)(s) > T . Then

B1 1
Aw,2)(1/2) > / G(L.$)Li(w,2)(s)

10w, 2)[loo ds
@ 1w, 2)lloo

o

B 1
= 10l [ 6(505)ds > om 2l
1
Therefore,

ITW. 2)lloo = A(w.2)(1/2) + B(w.2)(1/2) = A(w,2)(1/2) > [|(W. 2)]|co -

for ||(W, 2)|lco = © and the proof is complete. |

Lemma 5.2. Suppose that hypotheses (H,) and (H,) hold. Then there exists 0 <
0 < © so that, for all (w,z) € 0Cy, we have

T W, 2)lloo < [[(W.2)loo -

Proof. By hypothesis (H,), for (w,z) € C with ||(w, z)|| = 0 sufficiently small, we
may choose a y > 0 such that 2y fol s(1 —s)ds <1 and Li(w,z)(s) <y 6. Then

1
A(w,2)(t) :/ G(t,s)Li(w,2)(s) ds

L2 3 Lo
/ (1 =9 Tt ||(w,z>||oods_||<w,z)||ooy/0s(1 9)ds

which implies that A(w,z)(f) < % Analogously, B(w,z)(t) < ||(W’Z2)||°°-
Therefore,

ITWw.2)lloo = IA0W. 2)loo + BOW, D)oo < (W, 2)[leo  for [[(W,2)]lec = 0.

and the lemma follows. d
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6 Proof of Theorem 1.1

This will be an application of Theorem 3.1. For this purpose we will verify that
assumptions (/1) — (hy) imply that (H,) — (H3) of Theorem 3.1 hold. Indeed, let us
verify (Hz). We have

Li(w.2)() _
10v.2)les

! (t’ Jo Gt 9w(s)ds, [y GG, s)z(s)ds) [y G, s)w(s)ds + [ G(t, 5)z(s)ds .

Jy G.9w@ds + [} G(t.9)z(s)ds 1679 loo =
£ (1. Jo Gl sywis)ds, [, Gt s)2(s)ds) 5
g G(t, s)d.
[TGsw)ds + [} Groo)zds 7 / (5 $)ds

by Lemma 4.2. It follows from hypothesis (h;) that L, satisfies hypothesis (H3).
Analogously, L, satisfies hypothesis (H;). Finally, it is easy to check that (H;) is
satisfied. Hence, we have a solution of system (1).
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Remarks on the behavior of the best Sobolev
constants

Grey Ercole

1 Introduction

Let £2 be a bounded domain of RN, N > 2. It is well known that the Sobolev
immersion Wé’p(.Q) > L9(£2) is compact if 1 < g < p*, where p* = Np/(N — p)
if 1 <p <N andp* = ocoif p > N. As a consequence of this fact, the infimum

Ag(R2) = inf{/ \VulP dx - u € Wy"(£2) and / |u|? dx = 1} (1)
2 2

is achieved by at least one extremal function u, € W(;‘p (£2), which can be chosen
nonnegative in £2.

In the critical case, ¢ = p*, the immersion Wol”’ (2) — [’ (£) remains
continuous but no longer compact. Moreover, if 1 < p < N, then A,+(§2) coincides
with the Sobolev constant:

A (£2) =S, = inf{/ |[VulP dx : u € Wé'p(RN) and / |ul?” dx = 1} .
RV RN

(@)
It is also well known (see [6, 33]) that the Sobolev constant is explicitly given by

N—p)”‘1 (F(N/p)F(l +N—N/p))5

Sp = Nm2 (p—l r'(L+N/2)T(N)
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174 G. Ercole

(r@® = fooo s'"le™*ds is the Gamma Function) and it is achieved only at the
functions of the form

N—p

w(x):a(l+b|x—xo|P[T)‘)_ " xeRY 3)

forany a # 0, b > 0 and xo € R". This means that A, (§2) is not reached if £2 is a
proper subset of RV,
The Euler-Lagrange equation associated with the minimization problem (1) is

— Apu = 2y (2) |u] 4)

where Apu := div(|Vul’ ~2Vu). Thus, any extremal function of (1) must be a weak

solution of this equation in Wé 7 (£2). Consequently, standard results imply that an
extremal function of (1) does not change sign in £2 and also belongs to C'%(£2), for
some 0 < o < 1. From now on, u, denotes any positive extremal function. Thus,

u; € Wé’p(.@) N C'*(£2) and satisfies

—Apuy = )Lq(.Q)ug*l in 2
||uqu =1, A,(2) = Hquni and { u, >0 in ©Q (5)
ug =0 on 052,

where |||, stands for the standard norm of L°(§2), s > 1 (this notation is used
through the text).

The particular values A1(£2) and A,(£2) have received much attention in the
literature: A1($2) = ”qbp || :_p , where ¢, is the p-torsion function, that is, the solution
of the p-torsional creep problem (see [23])

—Ayu=11in £
u=>0 on 052,

whereas A,(£2) is the first eigenvalue of the Dirichlet p-Laplacian, that is, the least
A such that the following Dirichlet problem
—Apu=A|ufP?uin 2 ©
u=0 on 082
has a nontrivial weak solution.
It is interesting to notice that, as p is near to 1, they are closely related with the

Cheeger constant 4(£2) by

lim A,(2) = h(2) = lim A;(2). %
p—>1t p—>1t
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We recall that the Cheeger constant of §2 is h(£2) := ming5(|9E| / |E|), where
|0E| and |E| denote, respectively, the (N — 1)-dimensional Lebesgue perimeter of JE
in RY and the N-dimensional Lebesgue volume of E, the quotients being evaluated
among all smooth subsets E C £2. The first equality in (7) was proved in [25] and
the second in [9].

The first eigenvalue A,(£2) is well studied in the literature and its properties are
well known. Some of them are inherited by A,(£2) depending on whether 1 < g < p
or p < q < p*. For example, positive extremals functions of A,(£2) are unique if
1 < g < p (see [21]). This property is not generically valid if p < g < p* :itis
valid when £2 is a ball (see [2, 16, 24]), but not when §2 is an annulus (see [28]).

We find in the literature studies on the behavior of A,(§2) when ¢ = p and p
varies (see [20, 22, 25]) and also when p is fixed and g goes to p* (see [1, 7, 29-31])
or to p (see [3, 12, 17]).

In the case p = N > 1, so that p* = oo, the following asymptotic behavior, in
which wy denotes the volume of the unit ball in RV, was proved in [31]

NZN—le N1
WoDv1¢ ®)

lim ¢"'A,(2) =
q—00
generalizing the result previously obtained by the same authors in [30], for p =
N = 2. We note that (8) does not depend on 2 and also that it implies that
limy—00 A4(£2) = 0.
As regards to the case p > N > 1, we refer to [14] where the following result is
proved for a ball Bg of radius R > 0

. _ Noy (p—N\""'
qlggo Ag(Br) = N (pTl) : )

We could not find in the literature any other result on the asymptotic behavior of
Ay(82)asg — oo (andp > N > 1).

However, papers dealing with the behavior of the function g € [1,p*) = 4,(£2)
are quite rare. Let us refer to this function as the Best—Sobolev—Constant function,
or simply, BSC function. As far as we are aware, the first paper dealing with the BSC
function is [19], where the author proves that this function is continuous in the open
interval (1, p) and upper semi-continuous in the open interval (p, p*) and still reports
that it is decreasing provided that |£2| < 1. We remark that this monotonicity is a

particular case of the following fact: the function ¢ — |.Q|§ A4($2) is decreasing
in the interval [1,p*] if 1 < p < N, and in the interval [1,00) if p > N. This
can be proved as a simple application of the Holder inequality (see [12, Lemma
4.2]) and immediately implies that this function is of bounded variation in [1, p*],
if 1 < p < N, and in closed intervals contained in [1, 00), if p > N. Of course, the
same holds for the BSC function and

0 < lim A,(2) = lim [2[7¢ inf [2]71,(R2) < co.
q—>p* q—>p* 1=<g<p*
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We have started a study on the BSC function in [11]. In that paper we improved
the results of [19] in the case 1 < p < N, by arguing that the BSC function is of
bounded variation in [1, p*] and then proving that it is Lipschitz continuous in closed
intervals contained in [1, p*) and also that

Jim 24(82) =4 (2) (= 5)). (10)

Thus, by gathering these properties we concluded in [11] that the BSC function is
absolutely continuous in the whole interval [1, p*]. We emphasize that our proofs
given in that paper generalize easily for p > N, since in this case || Uy Hoo is bounded
from above by a uniform constant with respect to g (see Lemma 3.1 in the next
section). This fact does not occur if 1 < p < N and g approaches p*, what led us to
derive suitable estimates to H Uy || o in [11] in order to extend the absolute continuity
to the whole interval [1, p*].

In [4] the authors extended the BSC function to the interval (0, 1) and also proved
Lipschitz continuity in compacts of (0, p*] if 1 < p < N and of (0, p*) if p > N.

More recently, in [13], by assuming 1 < p < N, we have proved that the BSC
function is continuously differentiable in the interval [1, p] and, moreover, that it is
a-Holder continuous in [1, p*], for any @ € (0, 1), provided that

limsup(p* — q) ”uq”z;o < 00, forsomey > 0. (11)
q=p*

In the case where 2 is a ball the asymptotic behavior (11) was proved in [26],
with y = L=, extending for I < p # 2 a result already known forp = 2 < N
(see [5, 8] for balls and [18, 32] for a general bounded domain). The validity of an
asymptotic behavior as (11) for a general bounded domain and 1 < p # 2 appears
to be still an open problem.

Thus, if p = 2 and §2 is a general bounded domain orif 1 < p < N and §2 is ball,
our results in [13] guarantee that the BSC function belongs to C!([1, p]) NC%([1, p*])
for any o« € (0, 1). Moreover, as we will see, our results also imply that the BSC
function is continuously differentiable whenever uniqueness of positive extremal
function holds. In particular, when §2 is ball and p > 1 the BSC function belongs to
C'([1.p")).

In this paper we present and improve some of our results on the BSC function
obtained in [13], by considering p, N > 1.

In Section 2 we make some definitions and fix the notation to be used in the
sequel.

Then we prove, in Section 3, our main result: the BSC function satisfies
an ordinary differential equation of first order in the Carathéodory sense. As a
consequence we show that the derivative A; of the BSC function at point g € [1, p*)

exists if, and only if, a suitable functional /, : Wé P(£2) — R, defined in Section 2, is
constant on the set £, of the positive extremal functions associated with g. We also



Remarks on the behavior of the best Sobolev constants 177

show in Section 3 that the BSC function is semi-differentiable and that its one-sided
derivatives A/ and )t; . are given in terms of the extremal values of /;, on E,, so

that A’ | < A’_. This result is new.
q q

In Section 4 we use the results of the Section 3 to show that the BSC function is
globally Lipschitz continuous, if p > N > 1 (which is also a new observation) and
a-Holder continuous, for any o € (0, 1), if 1 < p < N. Some proofs given in [13]
are slightly simplified in this paper.

2 Preliminaries
We recall that the BSC function is defined by

g € [1.p*) = A,(82) = min {||vu||5 Lue WeP() and lull, = 1} (BSC)
and that it is differentiable almost everywhere. For the sake of simplicity we write
A4 instead of A,(£2) and denote by A/, the derivative of the BSC function at a point

q € [1, p*) where this function is differentiable.
We also define, for each g € [1, p*), the set

E, = {u e WeP(2):u>0in 2, |lull, = 1and | Vul’ = )L,,(.Q)}

and the functional /, : Wol'p(.Q) — Rby

1,(u) :=/ |u|? log |u| dx. (13)
2

We remark that E,, is precisely the set of positive extremal functions of (1). Thus,
E, is unitary if 1 < g < p, but in the case p < g < p* this set might have more
than one element. As we have mentioned in the Introduction, for some particular
bounded domains, as balls, the set E, remains unitary when p < g < p*.

3 Differentiability

The following lemma follows from known estimates on positive solutions of the
Lane-Emden problem

—Apu = Ay ul"uin 2

u=20 on 952 (14
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combined with estimates of /\q. We refer to [11, Lemma 5] for thecase | < p < N
and to [31, Theorem 1.1] to the case p = N. For the case p > N this lemma follows
immediately from Morrey’s inequality

lull oy = ClIVullpay

valid for all u € W'P(£2), where a := 1 — £ and the constant C depends only on
N, p and £2.

Lemma 3.1. There exists a positive constant C, depending only on N, p and §2,
such that

(a) ||u||’é;_q <C, forallge [1,p*)anduc E,, if1 <p <N;
(b) |lulloo < C, forallg e [l,00)andu € E,, ifp>N > 1.

Let us define the functions f : [1,p*) - R andf : [1,p*) — R, respectively, by

f(@) = inf I,(u) and F(g) = sup I,(w).

u€k,

Proposition 3.2. Let g € [1, p*). There exist u,. iy € Eg such that

f(@) = I,(u,) and f(q) = I,(a,). (15)
Moreover, f is lower semi-continuous and f is upper semi-continuous.

Proof. Let g € [1,p*). If E, has a finite number of elements, then (15) follows
trivially. If not, let {u,,} C E, be a sequence such that /,(u,) — f(g). It follows from
Lemma 3.1 that ||u,| ., < C forall n € N, where the positive constant C is uniform
with respect to n. By applying standard regularity results (see [27]) we conclude
that there exists a subsequence {u,, } and a nonnegative function e C'(2)n

= 1 and —A,,gq = Aqu_l

u,
L
in £2. These facts combined imply that u, € E, and that I,(u,) — I,(u,) = f(q).
Thus, we have proved the first equality in (15). The second equality in (15) follows
analogously.

In order to prove that f is lower semi-continuous, let us take g, — g € [1,p*)
and u, € E,, such that f(g.) = I;,(u,,) = mineg,, Iy, (u). Then —A,(u, ) =

Aqg, @q”)q”’l in £2. Since g, — ¢ and g € [1, p*), there exists a positive constant K

Wé’p (£2) such that: u,, converges in C! (2) to u,

such that ngn H < K for all n € N, according to Lemma 3.1. Thus, we can use
o0

again standard regularity results to conclude that, up to a subsequence, u, converges

in C'(£2) to a nonnegative function u € C'(2)NW, " (£2) satistying ||u|| , = 1. This

fact, combined with the continuity of the BSC function, also implies that —A,u =

Aqui™"in 2. It follows thatu € E, and f(gn) = Iy, (u,,) — I;(u) = f(q). Since {g,}

is an arbitrary sequence converging to g we conclude that f(¢g) < liminf,—,f(s).

Analogously, we can prove that limsup,_, f(s) < f(q). O

We remark that if ¢ € [1,p*) is such that f(q) = f(g), then both f and f are
continuous at ¢ and /, is constant on E,.
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Lemma 3.3. We have

lim sup :

S—>q+

< ——A o0y, forallq € [1,p*) (16)

and

Ay — As
lim inf —2 > —gkqlq(gq), forall g € (1,p*).

s—=>q— q — S

Proof. Letq € [1,p*). Foreachs € [1,p*), s # ¢, we have from (BSC) and (5) that

(/ |uq|sdx)3“ = / Vi | dx = A, (17)
2 2

where u, is an arbitrary function in E,. Hence, by choosing %, in (17) we obtain

) Ag— Ag ) —Aq
lim sup —— = limsup
so>gt 4S8 s—>qt S 4
P
1— ([, || dx)®
< limsupks (f.Q| ‘l| )
s—>qt S—q
d 4
_ s s P, _
()] -

§=q

where we have used the continuity of the BSC function, L’Hopital’s rule and the
fact that

%[(/Q \ﬁqrdx)} = ([ fanfas)’ exp( [Foe ([ ol o)) )

- Elq(ﬁq)

Analogously, if ¢ € (1, p*), we can choose u, in (17) in order to find

=q

s L
lim inf =2 ® > liminf A, !
s>q-  g—s s=q~ -5

[(/

vl

} = —Aq’éz,,@q).
s=q
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Theorem 3.4. Let g € (1,p*) be a point such that the derivative k; exists. The
functional 1, is constant on E; and

Ay + Ic—jlq(uq))kq = 0, for any choice of u, € E,. (ODE)

Proof. Letu, € E,. It follows from Lemma 3.3 and (15) that

. A _ks 14 — p p
A = limsup -2 < —ZA 0, (0,) < —ZA L, (uy) < —<1,(u)A
q s_)q+P g—s g g g

. )Lq - As
< liminf
s>q-  g—S§

=

ad

Remark 3.5. The BSC function is a solution of (ODE) in the Carathéodory sense,
that is, it is an absolutely continuous function that satisfies (ODE) almost every-
where.

Corollary 3.6. The BSC function is semi-differentiable with

As— A P. -
/ 1 s a _ _ *
)Lq+ = Sl_l)r; R qkqf(q), forall g € [1,p") (18)

and

Ag— A
M= dim 22— Py ), forallg e (1,p%). (19)
=0 s—q q

Proof. Let us fix g € [1,p*). It follows from the absolute continuity of the BSC
function that

A=Ay 1

§—4q §S—4q

/ Aydt, forall s € (q,p*).
q

Since A, exists for almost all # € [g, s] we have from Theorem 3.4, with Ug = Uy,

that
s , XA-[—
//\,dtz—p/ —f(t)dt.
q g !

Ay — A S A=
liminf =——% = liminf (— P / T’f(t)dz) > —pliminf
q

s—>q+ S—q s—>q+ §s—q s—>q §—q

It follows that

s At—
| S
q

p —
= - 2r7).

@

where the inequality comes from the upper semi-continuity of f.
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On the other hand, by (16) we have

. A _ks P — p T
limsup —L—— < —“A,1,(6,) = —=A,f(q),
S_)ﬁp q—s g 7 o

which concludes the proof of (18). The proof of (19) is completely analogous. O

An immediate consequence of this last result is that /\; + =< /Vq_. Another is stated
in the sequel.

Corollary 3.7. Suppose that 1, is constant on E, for some q € [1,p*). The
derivative of the BSC function exists at q and it is given by A; = —glq(uq)kq,
where u, is any function in E,.

Corollary 3.8. The BSC function belongs to C' ([1,p)) if 2 is a general bounded
domain and to C' ([1,p*)) if 2 is a ball.

Proof. Let Jp = {q €[l.p*) 1 E,is unitary} . It is well known (and pointed out
in the Introduction) that [1,p] C Jg in general, but when §2 is a ball we have that
Jo = [1,p*). Therefore, if ¢ € Jg, then I, is constant on E,. According to the
Corollary 3.7, we can conclude that )L; exists at each g € J; and also that

A= —Aqgf(q) = —kqgjj(q).

Since the functions f and f coincide in Jo, and are continuous in this set, we conclude
that the derivative of the BSC function is continuous in Jg. O

Remark 3.9. E, is also unitary if p = 2 and g € [2,2 + €], for some € > 0 (see
[10]). Therefore, the BSC function belongs to C'([1,2 + €]).

Remark 3.10. We can conclude from the results above that the differentiability of
the BSC function at g € [1, p*) is equivalent to the property of the functional 7, to be
constant on the set E,. It is interesting to notice that this property holds for almost

allg € [1,p*).
Now we prove a representation formula for the BSC function.

Corollary 3.11. Let 1 < g < p*. Then

"]
A = Apexp (—p/ ﬂds) forallt € [1,q], (20)
1 S

and, in the case 1 < p < N, this representation formula also holds true if ¢ = p*.

Proof. Since the BSC function is absolutely continuous in [1, g] and its image is a
closed interval [a, b] C (0, 00) the function s € [1,g] +> log A is also absolutely
continuous. Therefore,
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"L (uy)

t
log(A;/Ay) = / (log Ay) ds = —p/ ——ds forallt € [1,q] 2D
1 1S

where u; € E; for each s € [1,¢) and the latter equality follows from (ODE). Now,
(20) follows after exponentiation.

In the case 1 < p < N the first equality in (21) is also valid at + = p*, since
the function s € [1,p*] — logA, is absolutely continuous. Moreover, the second
equality in this case also occurs because (log ;) = AL/A; = —pl(us)/s almost
everywhere, according to (ODE). O

4 Holder regularity

According to what we have seen in the Introduction the BSC function is Lipschitz
continuous in any closed interval contained in [1,p*). In this section we use
the results of the Section 3 to show that the BSC function is globally Lipschitz
continuous, if p > N > 1, and «-Holder continuous, for any o € (0, 1), if
1 <p<N.

For a bounded domain £2 C R" we can check that

4
q

Ag(2) = A (£2)) |2]'7F~ 22)

where 2, := {x eRY :xl.Qﬁ € .Q} satisfies |§2;| = 1. This allows us to assume,

in this section, and without loss of generality for our study, that |£2| = 1. Under this
condition the BSC function is decreasing and, moreover, I,(1) > Oforall g € [1, p*)
and u € E,. This latter property comes from Jensen’s inequality applied to the
strictly convex and continuous function ¢ : [0, 00) — R given by ¢(§) = £ logé, if
& > 0and ¢(0) = 0. Indeed, we have

1$2] - ,
e(1217" lul?) = 0, if Jull, =1 and |2|= 1.
q

(23)

_! ’
1 = = [ putyas>

We also observe that if ¢ > 1 and u € E,, then

Iy(u) =/ |M|q10gluldx5/ |u|?log |ul dx < log ||M||oo/ |u|” dx = log ||l o -
2 u>1 2
(24)

Theorem 4.1. Suppose p > N > 1. The BSC function is globally Lipschitz
continuous.

Proof. 1t follows from (24) and Lemma 3.1 thatif t > 1 and u € E, then 0 < I,(u) <
log C, where C depends only on N, p and £2. Therefore, if 1 < g; < g2 < p* = o0,
then
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q2 , q2 /\t
’qu - A"11| = ’\411 - ’\412 = _/ Adt = p/ TIz(ut)dt
q q1

1

<Ci(q2—q1) = Cilg2 —qil,

where C; := A; log(C?). |

We do not know if the BSC function is globally Lipschitz continuous in case
1 < p < N. The great difficulty in obtaining such a result is to control I,(u,), as
q — p*, since Huq ||c>o becomes unbounded. However, we can prove the following
Holder regularity result.

Theorem 4.2. Suppose 1 < p < N and assume that

limsup(p* — q) ”u‘l”Zo < 00, forsomey > 0. (25)
q=p*

The BSC function is a-Hélder continuous, for any o € (0, 1).

Proof. Let o € (0, 1). By hypothesis there exist 0 € (1, p*) and a positive constant
C such that

lilloy < C* — )77, forallt € [o.p"].

Since the BSC function is Lipschitz continuous in the interval [1, o], we need
only to prove that this function is a-Ho6lder continuous in the interval [o, p*]. Let
0 < q1 < ¢ < p*and take B > 0 (to be chosen). Since log(y) < B~'y# for all
y > 1, we obtain from (24) that

|’\42 = Aq | =y — A
P 2 ) a@ A, (9
= —/ Adt = p/ ZL(u)de < phy / I (u)dt < u/ ||ut||go dr.
q a1 B Jq

1 1 q1 1

Therefore,

McP e o MCP e _B A CP
gy = Ag,| < 221 / (p* —1) rdr < 22 / (@2 -0 rdt =2 (go— 1),
B Ja B Ja po

where 6 := 1 — g By choosing 8 = (1 — )y we obtain = « and

pklc(l—vt)y

|Agr = Aq| < a(l—a)y

|612—611|a-
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82 p=1.5 —

30 -

28

26

24

16 Detail
22 p=15

20 156955

18

15.391,
16 -8 : i}
15.391
14
]

1.5 2 25 3

Fig. 1 Graph of the function g € [1,p*) — |B1|§ Ag(By) for N = 3 and p = 1.5. Note that
(1.5)* = 3 and that (477/3) 5 S3 &~ 15.391.

As mentioned in the Introduction, if p = 2 and £2 is an arbitrary bounded
domain or if 1 < p # 2 and £2 is ball, then (25) holds (with y = ppT1)- Thus,
in these situations the previous theorem implies that the BSC function 1s o-Hdolder
continuous, for any a € (0, 1). If £2 is a ball, Corollary 3.8 also guarantees that the
BSC function belongs to C!([1, p*)).

We end this paper by stressing that the exact behavior of )L; as g approaches p*,
in the case 1 < p < N, is not known by now. We present in Figure 1 the graph of a

numerical computation of the function g € [1,p*) — |B; |§ Ay(By), for N = 3 and
p = L.5, where B is the unit ball. The graph has been implemented by using the
method developed in [15] and appears to indicate that A;(Bl) might be unbounded.
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Bubbling solutions to an anisotropic
Hénon equation
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To Djairo de Figueiredo for his 80th birthday

1 Introduction

Hénon in 1973 in [10] introduced, as a model in the context of spherically symmetric
clusters of stars, the Dirichlet problem

—Au= |x|* in 2, u>0in 2, u=0on0ds2, (1)

where £2 is the unit ball in RY, with N > 3, the power « is positive and p > 1.

Hénon studied this equation numerically, for some definite values of @ and p, but
subsequent researches showed that the above problem exhibits very rich features
from the functional-analytic point of view. In particular, various questions that
arise quite naturally concerning existence, multiplicity and qualitative properties
of solutions, have given the Hénon equation the role of a very interesting item in
nonlinear analysis and critical point theory.

The first existence result is due to Ni, who in [12] introduced an Hénon critical
exponent p, 1= W and proved that for every p € (1, py), problem (1) admits at
least one radial solution. It is important to point out that p, actually plays the same
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role of the usual critical Sobolev exponent, since standard arguments based on the
Pohozaev identity yield that problem (1) has no solution if p > p,.

The existence of nonradial solutions was firstly obtained by Smets, Su, and
Willem, who studied the ground state solutions associated with (1). In [15] they
proved, among other results, that for p € (1, +2) no ground state is radial provided
« is large enough. Successively, Byeon and Wang in [2, 3] described the symmetry
breaking, asymptotics and single point concentration profile at the boundary of the
ground state as o goes to +00. In view of the above considerations, existence of
nonradial solutions could be expected also for larger values of p. When p is almost
critical, ie.p = ¥ +2 — &, Pistoia and Serra in [13] proved that problem (1) admits
an arbitrarily large number of nonradial solutions provided ¢ is positive and small
enough. On the other hand, when p is critical, i.e. p = N +2 Serra in [14] proved that
problem (1) has a nonradial solution for « large and Wel and Yan in [16] constructed
infinitely many solutions to (1) for any « positive.

The supercritical case, i.e. p > & +2 is much more delicate and only a few results
have been obtained. Ni in [12] proved that a radial solution to (1) exists for any
p € (1, py). Recently, Dos Santos and Pacella in [5] found a solution to (1) which
concentrate along spheres as « approaches +oo for some suitable 2m-dimensional
balls. When the ball is replaced by a more general domain £2, the only existence
result was obtained by Gladiali and Grossi in [6] and by Gladiali, Grossi, and Neves
in [7] when the exponent p 4 1 is close enough to the Hénon critical exponent p,,.
They found a solution to the problem

—Au = |x — E[%uPe"17¢ in 2,
u>0 in 2, (2)
u=20 on 052,

in a smooth bounded domain £2 C RY where £ € £2, provided ¢ is a positive small
parameter and « is different from an even integer. In particular, that solution blows
up at the point £ as € goes to zero. If 2 is the ball and £ is the center of £2, this is
nothing but the radial solution found by Ni.

It is interesting to ask what happens when the Laplace operator Au is replaced by
a more general elliptic operator Zu = div(a(x) Vu). Up to our knowledge there are
no results about this problem. In particular, in this paper we are interested in solving
the problem

—div(a(x)Vu) = cqa(x)|x — E[*uP=""%¢ in 2,
u>0 in £2, (3)
u=20 on 052,

Wher_e £2 is a smooth boundgl domain in RV, N > 3, £ € £, the function a €
C%(2) is strictly positive on £2 and ¢ is a positive and small parameter. Here ¢, :=
(N 4+ a)(N —2). Our existence result reads as follows.
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Theorem 1.1. Let N > 6. Assume that @ > 0 is a positive real number which is not
an even integer.
Assume & € 82 is a critical point of a such that Aa(§) # 0.

(i) If Aa(§) < 0, then, for e small enough, there exists a solution u, to problem

—div(a(x)Vu) = cpalx)|x — E|%uP*~¢ in £2,
u>0 in $2, 4
u=20 on 482,

which blows up at £ as € goes to zero.
(i) If Aa(€) > 0, then, for € small enough, there exists a solution u, to problem

—div(a(x)Vu) = cqa(x)|x — £|%uP=+¢ in 2,
u>0 in $2, )
u=20 on 052,

which blows up at £ as € goes to zero.

The proof of our result relies on a well-known Ljapunov—Schmidt procedure
which is completely carried out in Section 3. The necessary background is intro-
duced in Section 2.

2 Preliminaries

The main ingredients in building the solutions u, of Theorem 3 are the bubbles of
order o
P
Uy (x) := —. A>0,
(1 + A2+a |x _ §|2+0¢)2—Tx

which are all the solutions of the problem

—AU = cylx — E|*UP* in RV,
U>0 in RV,
U € D' (RV),

where N > 3,0 > 0,p, = Y282 ¢ = (N + a)(N —2), D'?(RY) = {u €

* . _ 2N
L (RY) : |Vu| € LX(RV)} and 2* = 2%
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We are looking for a solution of problem (3) of the form u,; = PU) + ¢..,.
Here Pu denotes the projection onto H|)(£2), namely if u € D'?(R") then Pu is the
unique solution to the problem

— A(Pu) = —Auin 2, Pu = 0on dS2. (©6)
The concentration parameter A is chosen so that
Ao :=de ! for some d > 0. 7

Finally, the function ¢, is a higher order term which satisfies the orthogonality
condition

/a(x)VqﬁE,,xVPZA (x)dx = 0.
2

Here PZ, is the projection of the function

— _ )2ty _ g2+«
W N=2yms 1A g

Z,(x) := —.
oA 2 (1 + A2+a|x_g|2+a)%

®)

Let us recall the following result proved in [6, 7].

Theorem 2.1. Let o be a positive real number which is not an even integer. Then,
the function Z, defined in (8) is the unique, up to a constant, solution of the problem

—AZ = copalx — E]*UT'Z in RV,

Z € D'2(RM). ©)

Remark 2.2. In the case when o = 2(k — 1) for some integer k, we have that the
space of solutions to problem (9) has dimension W and it is spanned
by functions of the form

Y

(1+ = g+ 3

where the functions Y; form a basis for the space of all homogeneous harmonic
polynomials of degree k in RY.

It is necessary to recall some useful estimates which involve the projection of the
bubble U, and its derivative d, U, whose proof is given in [6].

Proposition 2.3. Let 2 be a bounded smooth domain in RN, N > 3, and £ e 2.
Then

1. PULW) = Up = 2952 H (. §) + 0 (A5,
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2. PZ(x) = Zy(x) + D520y NH(x £) + oA~
3. VPZ(x) = VZA()C) + O(A~ 2) with
VZ,(x) = Ni2a (x—E)x— %.|a(N+2+2a) (N—2)A2He | — g\”a'
(1+)L2+ot|x 5‘2—&-(1) Zia +1

).

Here G(x,y) is Green’s function of the Laplace operator in §2 with zero Dirichlet
boundary condition and H(x, y) is its regular part, i.e.

1

N = Y

where wy is the area of the unit sphere in RN,
Moreover it is also useful to recall the following results.

Lemma 2.4. For any o > 0, it holds true that

_ 24
/|Z|a (I —1z7) & =0, (10)

(1 + mzwg%

z 1— z 24
Z Q

|Z|2+a(1 _ |Z|2+a)

N+
| (1 4 [ty T

dz < 0. (12)

Proof. See Lemma 3.7 in [6] for the proof of equations (10) and (11). To show (12)
note that

|Z|2+tx(1 _ |Z|2+a) 1 |p|2+a+N—1(l _ |p|2+a)
dZ wN d
I 0

N (1 + |Z|2+a) 2;1) (1 + |p|2+a)2(;%a)
N /oo |p|2+a+N—1(1 _ |p|2+a)
N 2(N+a)
L fppre

On the one hand, setting p = -, we obtain

/oo |p|2+ot+N—1(1 _ |p|2+a)
1 1+ |p|2+a)%+;)

1
B / (%)N+a+1[(%)2+a(t2+a _ 1)](—1‘_2) g /1 tN_S(l _ t2+ot)
[(%)2+o¢ (2 4 1)] z(y-:;a) 0 (1+ t2+a)%+f)

13)
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On the other hand, since N + 1 + « > N — 5, it is clear that
At NS forevery £ € (0, 1)
and, using that (1 — £*7®) > 0 for every ¢ € (0, 1), we obtain

1 tNJrlJroz(l _ l‘2+a) 1 tN*S(l _ t2+a)
/ —Z(N—m)dt </ Wdt
0 (1 + t2+a)W 0 (1 + t2+0!)2+7a
i.e.

1 N+lHe (] _ p2te 1 N=5(] _ pte
/ 461;—/ RN Ui IR (14)
0 0

(1 + t2+a)2(2NT+:) (1 + t2+ot)2(2NT+o7)

Therefore, using equations (13) and (14), we obtain

|Z|2+a(1 _ |Z|2+a) 1 |p|2+a+N—1(l _ |p|2+a)
s 2 = oy i AP
RN (1 + |Z|2+a) 2+a 0 (1 + |p|2+°‘)2+701
0 |p|2+a+N—1(1 _ |p|2+a)
+ oy 2(N+a)
Lo R

LN+t _ 2+ L N=5(1 — p2+a
= wN(/ ( ))dt / ¥dz) <0.
1+ t2+“) z+u 0 (1+ 2te) 2+zx

O
Lemma 2.5. Forany a > 0 and 6 > 0 we have
Iyl | e N Fa—02+a) >0,
c . ~
/]RN I — yV=2 (1 + |y2+e)P dy < wloglxl ifN +a—0Q2+a)=0,
A+ 2 ifN+a—-02+a)<0.
(15)
and
1 1 (It eFar— IfN—-602+a) >0,
c . B
/RN e — y[V2 (1 + [y]2te)? dy < 4 = loglxl if N —0(2 + ) =0,
(1+|xC|‘)N*2 ifN—-02+a) <0.
(16)

Proof. See Lemma 3.8 and Corollary 3.9 in [6]. O
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3 The finite-dimensional reduction

3.1 The linear theory

In order to perform the finite-dimensional reduction we have to study the following
linear auxiliary problem.
For any A > 0 large enough, given a function y € L*(£2) with [ Y PZydx = 0 let
Q

us find a function ¢, € H}(£2) and a real number ¢, solutions to the linear problem

div(a(x)Ve) + a(x)pe|x — E|*(PU)P="'¢p = ¥ — c;div(a(x)VPZ;) in £2,

(Ly) ¢ =0 on 052,
Ja(x)V¢VPZdx = 0.
2

In this section we will show that problem (L,) is uniquely solvable in certain
appropriate norms, provided that A is large enough. To do this, we consider the
following weighted L°°-norms. For functions ¢, ¢ defined on £2, we define the
norms

A -
” ¢ ”*: SUP N—2 |¢(.Y)|s (17)
yER (1 4+ \2ta |y _ é:|2+a)2(z+a)
and
24 -
| ¥ ll+x= sup iz vl
YER (1 + A2t |y _ §|2+0()2(2+a)

Proposition 3.1. There exist Ay > 0 and C > 0, not depending on A, such that, for
any A > Ao and for any ¢ € L*(2) with [y PZydx = 0, problem (Ly) admits a
2

unique solution ¢, := Ly () for some c) € R. In addition

LA (W) 15 < ClIY |- (18)

Proof. The proof follows using the same argument as in the proof of Proposition
4.1 in [4]. In particular it relies on the following result: Let (1,) be a sequence such
that A, — coasn — oo. Foranyn € N, let ¢, € R and ¢,, be a solution to problem
(La,) for Y. If || ¥u |lxx— O, then || ¢ ||«— 0. For the reader convenience, we
give here the proof which is similar to that of Lemma 4.1 in [6].
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Proceeding by contradiction, let us suppose that there exist sequences (4,), (c,),
(¢n) and (¢,,) with the following properties:

Ap = 00,
the function ¢, is a solution to problem (L,, ) for ¥,

| ¥u [lxx— O,
there exist ¢ > 0 such that || ¢, ||«+> ¢ > 0 for every n € N.

We may also assume that || ¢, ||»= 1. In the following C will denote some positive
constant independent of 7, not necessarily the same one.

Step 1: We will show that ¢, — 0. We multiply problem (L,,) by PZ,, and we

get
/ OV PZs, dx + / (el — E*(PUL Y~ $uPZ,

2

/ YuPZ), dx + ¢, / a(x)|VPZ,, |*dx
Now, by Proposition 2.3 we easily get

/ a@|VPZ,, P = 272 | a(é) / VZi Py + o(1) | .
RN

2

‘/I,//nPZ)L dx =

/ )V, VPZy, dx + / a(Opalx — E[* (PUL P~ $uPZs, dx

2 2

- / a(Dpalx — E[¢ [(PUs, Y« — (U, "] Zs, dudx
2

4 / Al — £, o (PZa, — Z3,) udlx
2

- / Va(x)VPZ), ¢adx = 0 (1) .
2

19)

(20)

1)

(22)
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Indeed

/ Va(x)VPZ,,$.dx
2

1
nlx — ED*F
)N%Wﬂ(%zm

= o/ .. / Va(@) A2
2 (14 Q=D

|y|a+1

(1+ |y|a+2)%+2€v27fm

=0 A;z/|Va(A;1x+§)|
]RN

since Va(§) = 0. Moreover

/ a(Opalx — E°(Us, =" (PZa, — 72,) pudx
2

)t2+oz+NTf2 N
< Clpulls / e sw( d == (A ® onH(x, p))dx
1+ AZ+a|x _ %—|2+a 2+a
2 n

o
< Cllgullad,™ / i o |
2 (1 4 [y[re) >

where

1
Qn:z{yeRN:A—y—}-&G.Q}.

Finally, if p, <2,ie. N —200—6 >0

/ a(@palx — E* [(PUL Y — (U, )] Zs, o

2

<c / [k — E[*(PU,, Y (PUS, — Us,)Za, b
2

N2 —N;J‘,—G;,—Zot
)LT
< ||¢n||*c/ x— " " x

J (1 + A2+a|y — g[2te)2Fa
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N—2
Anl wy(N —2) _ N+242a
|: ——HX)+0 (A, ° X

1+ e —gpreyera [y, 2
((N—2)AN24 1 — A2ty — g2t )}d
— n = x
2 (1+)L£+a|x_{:|2+a)g]ia

< CA_N—H |y|a(1 B |y|2+a)
— n N+10+6a
2 (14 AFelyhe) 20

andifp, > 2,i.e. N—20—6 <0

/ a@)palx — £ [(PUL Y — (U, )] Z2, udlx

2

<c / Ik — E[*(PU,, Y= (PUs, — Uy, )23, udlx
2

+C / |x — £|“(PU,, — Uy, )" Z;, ppdx
2

A_N—H @l — 24o
<o [ BUDIObEY
£,

(L4 Az

—Ota)+ =ty N2 1 — A2t — g|2te
+ Cligull« / P PO TS G2t O N
22+a)
2 (14 Qb =€)+
o Al = P
N+10+46a
2, (1 + k%+"‘|y|2+"‘) 202Fa)

=

dy

3IN—242a

(1+ Qube—gD=+?) =

< 1N+ [*(1 = y[P*)
— n N4+1046a
2, (] + l%+°‘|y|2+"‘) 202+a)

- Iyl* (1 = [y**)
+ Ckn (5+2a)/ 3N—2+2a
2, (1 + |y|a+2) 22+Fa)

e / ATErOHIEE e (1 — 2% |x — g+
2
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Here we used the crucial estimate that for any a > 0 and b € R

¢(g) min {|b|‘1,a‘1_1|b|} if0<qg <1,

c(g) (Jal"™"b] + |B]9) if g > 1. (23)

||a+b|‘1—aq|s{

Therefore by (19), (20), (21), and (22) we immediately get that ¢, = o(1) and
the claim is proved.
Step 2: We will show that there exist b > 0 and R > 0 such that

_N—2
0<b<|As 2 ¢l foralln € N. (24)

Lo°(B & (£))
An

Let us denote by G,(x,y) the Green function for the uniformly elliptic operator
M,(f) = —div(aVf) in £2 with zero Dirichlet boundary condition. It is known
(see, e.g., [9, Theorem 1.1 ]) that the function G,(x, y) satisfies

C
0 <Gu(x,y) < ————forall x,y € £2.

[x — y[V=2

Therefore, we have that

Ba(0)] = ‘ [ a9 (el = 6P,
,0) — iy @0)PZ, () ]
c , ) C
< [ =Stk PULP O+ | )y

C _
* / 5 a()ca|x — §|*pa (PUL Y"1 Z3, (v)|dy
o lx—yl

C
+ / — o IVa() V23, () dy.
2 |X—)’|

We will denote by

¥ )|
Ay = [
: @ lx—yIN?
ne - apyy (a1 1
Ay(0) = | paa(y)cely = E[*PU;T 7¢n(y)] v
Q2 lx =yl
- 1
ALx) = | paa(y)ealy — E[*PUY |2 dy,
5= [ puatlealy = €PUL 12, 0) sy

C
Alx) = /9 s Va0V 2., 0)ldy
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and, as before,
v 1
2,={zeR": —z+ &€ 2}.
An

Firstly, we have that

[¥a ()]

o lx—y[N=2

1 A(N+2)/2
S “Wn”** / N—2 . N+2 dy
2 lx—yl (1 +A%+a|y_€:|2+a)z(z+u)

(N=2)/2
< Iyl / : G d
= n Z
** Ja, |An(x— &) —z[N2 1+ |Z|2+a)2:\/27i2a)

Aj(x) =

A(N—Z)/2

= CllYnll - T
I+ A =8 2

the last inequality follows from (16) in Lemma 2.5. Therefore

-1
)LS,N_Z)/Z
Aj(x) )
(1 + )L%+oz|x _ ég-|2+a) 22Fa)

)Ll(lN—Z)/Z ALN—Z)/z =1
< C [l =
(14 A =8D 2 \ (1 + A2te|x — g[2He) 20T (25)

(L+ A3+l — g o5

1+ Ax—6)"T

< Cllnllx

< CliYnlln -

On the other hand, using again Lemma 2.5, we obtain

1
o—1
AL) = / Paa()ealy — E1°PUL ™, ()| ————dy
2 |X—Y|
% (Ptx_l)
1 An
< ol [ b= [ |
P W\ (1 1 aztagy gt iR
N—2
An’

X

(14 23Hely — g+e) 2550
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¢ gy g ! ;
— ||¢n||* n — uIN—2 N+6+4a y
2 |x =yl (1+ A%-i-ab, _ §-|2+a) 22+a)
a2 |z[* 1
< clglon [ _d:
: 2, A =) =272 (1 ey ToED
N2 1
< Clignllsrn® ————1.
< Cligpnll« (Ew W
where f = min{sza,N — 2}. This implies that
It B
A5 (x) - =
(14 Az e — g2y i
N2 -1
1 An? (26)

N—2
< Clignlls An*

(1 + Aulx — &P (14 A2+e|x — é§|2+a)%

1
< Cliulls —
(1 + Aglx — EPP="7"

Moreover, we have that

Al < C /Q Paa)caly — E7PUL 12, ) dy

[x —y|¥=2

N—4
AZ-"O! AT 1— )L2+a _ &2+t 1
EC/ y—€1°( . n L= A7 §|N+ | dy
2 ATy = EPF27 (1 4 p2ta)y — gptey o X =)V

A%+°‘|1_12+a|y_%-|2+a| 1
<c [ g : d
2

(14 A2+ely — $|2+a)NJ5f&3” lx —y[V—2
<c [ i |2]* (1 — |z]**) 1 J
= n NFatie 1 _ on—2%Y
2 (14 [g2re) e X

Yta
e Ay g
) (14 Ay — g 5 ="

Yo

/ P 2l ! dz < C—
= Jo, " (1 + |g+e) 5 [t = A =N 7 (L4 Ay lx—EPN2
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and so
N2 -1
AL SR
(1 + 2zt — gl
SO ( el )_1 @7)
T Al = 8DV \ (1 4 a2ay — gty ate

A—l
(14 A x—g)" T

<C

Finally, taking into account that Va(§) = 0 we have that

1 N—2 A’n _ a+1
AZ(x)fC/ —[VaO)|A,? Aaly = £D ——dy
o lx—yN2 w2\ 2He
(14 Culy - D)
N—8 1 |Z|a+2
< C/ An? dz
s 2= Anlx = EIN2 (g 4 |Z|a+2)IzVT+3

= 1

< CA,*?
B 1+ A =PV

and so

NZ2 —1
An
Aﬁ(x) ( o =) )
(1425 |x—g 2 He) 20+
C

- 1 :’TS Aslez)/z -1
- (1+/\n|x—$\)N_4 24« N2

(1425 x—§[2He) 20+
A3

<C——"—=.
(I+Anlx—8) 2

(28)
Thus, using equations (25), (26), (27), and (28), we obtain that
N2 —1
An?

(1 + A3+a|x _ é—|2+a)2(N27:—2a)

|n ()]

AN-2)/2 -1
= (AT(0) + A5 (x)+A5(x) + Aj(x)) =
(1 + A%+°‘|x _ §:|2+a) 22Fa)
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1
< C | lénll« = 1 Vnllx
( (1 + Aafx — )P 7"
)L_l )L_S
+ s + —= |- 29
(I +Aulx—£D > (1 +Aulx—§D >

Since ||¢, ||, = 1, we have that for every n € N there exists y, € £2 such that

N—2 -1

hn®
|¢n(yn)| N—2 =1
(1 + /1%+a|)’n _ S|2+Of)2(2+a)
and by (29) we deduce that that there exists R > 0 such that
Aulyn — & <R forevery ne N,
hence
v € Be(6).
This yields
Ne2 -1
An?
1 = sup = 1691
e \ (14 AZtely — g2+ o5
Ne2 -1
An?
< sup 0|

N—2
,VEBA%(E) 1+ A%+a|y — gPHe) 20T

) N—2 _N=2
< (14 RF)200 |4, 7 ||
LB R ()
An
which gives claim (24).
Step 3. We prove that a contradiction arises.
Let

~ _N=2 1 1
¢n(y) =A d’n(?y + E) and an(.))) = a(/\_y + S)» y € £2,.
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Then, we have that

N—=2

‘ _ Ne2 y Pa—1 —_ _Nt2 y
div(a, V) + anly|*pe (An 2 PUA”(/\_ + 5)) Gu(y) =An ? Wn(k_"‘%‘)
I, [va(—+s)<vm )(— +s>+a<—+s>(APZA )(—+S>] (30)

in £2,,. Note that, using that ||¢,| ., = 1, we get

~ _N=2 1
B0 =14 T 9 (%+s)|s ==l G
' (L |y = ) 267

On the other hand, since ||, ||, = o(1), we have that

Tt ( +s)|= oD,
(1 + |y — £ s

Moreover, straightforward computations show that

7N;|’ 1 |y|a+2
Ap 2 CnVa( + £)(VPZ,, )(— +&) = (ﬁ—m)
n (1 ypre) e
1
=0 (rs) =W
and
' a1 6 apz, NG+ E) = o+ bT*
An " An (1 + |y|2+a)%-ﬁ2+2

=0 (%ﬂ) = o(1).

This implies that the right side of the equation (30) converges uniformly at zero
on compact sets on RY. The elliptic theory implies that (¢,) has a subsequence,
which we still denote in the same way, such that ¢, — ¢ uniformly on every
compact set (for more details see, e.g., [11]). Therefore we can pass into the limit
into equation (30) to obtain

—a(£)Ap = aE)capaly* Uy '§ nRY,
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i.e, the function ¢ satisfies the equation
— Ap = capaly*Uy "¢ inRY, (32)
and, using equation (24), we have
0 < b = [l wrcon- (33)
which implies that ¢ # 0.

_ If we proceed exactly as in Lemma 4.1 in [6], then one can show that the function
¢ belongs to D'2(RV) and therefore it satisfies that

—Ad = capaly?U ¢ in RY,

¢ € D'2(RY). 9

On the other hand, since ¢, is orthogonal to PZ, , we have

0= /Qa(x)ngSn -VPZ), = — /9 a(x)p,APZ), — /Q ¢, Va(x) - VPZ,,

o o — a[])Ln
= [ e 61U S o)
2 n

N-2 _ " 1 — |y>*e
A 1/ b

= CoPoa—F 47y o (ﬁn(y)dy+0(1)
C2 (1 4 [y[2he) 54 +2

Here we used the fact that by scaling f_Q ¢nVa(x)-VPZ;, = o(1) since Va(§) = 0.

Since equation (31) guaranties that |¢,| < 1 in £2,, we can pass to the limit to show
that

— aypa—lr g — . 7
0= [ vty zboy = [ v20)- Vi

— |2t ~
where Z := % This implies that the function ¢ is not a multiple of Z.

(12> 2Fe
This is a contradiction, since Theorem 2.1 shows that Z is the unique, up to a

constant, solution to problem (34). This concludes the proof. O

3.2 The one-dimensional reduction

We will reduce problem (3) to a 1-dimensional one.

Proposition 3.2. There exist Ay and &, such that for every ¢ € (0, &) and for every
A > Ag there exists a unique function ¢, . € L>(2) N H((§2) which is a solution of
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—div (a(x) (PUy + ¢.2)) = a(X)cylx — §|*[(PUL + e ) F]PeEe
+c, div (a(x) (VPZy)) in $2,

Per =0 ondf2,
Joa(x)Vey . VPZ, = 0.
(35)
for some c) . € R. Moreover, it satisfies
1
prelle <cle+ ) (36)

for some positive constant c.

Proof. The proof is completely analogous to that of Proposition 4.3 of [6], we
outline the proof for reader’s convenience.
Let us consider the space

X" i={f € L(2) : |Ifll« < oo},

and the operator S : X* > X* defined by

Seal@) := —Ly" {calx — €|%a(x) [(PU + ¢) T )™ — UL — po PUP "' ¢]
—Va(x)- VPU,}.

We remark that a function ¢ satisfies that S; ) (¢) = ¢ if and only if ¢ is a solution
to problem (35). So we are led to show that the operator S, ; is a contraction on a
suitable ball. First we will show that, if ¢ is sufficiently small and A is large enough,
then

Ss,)& tBey — Bs,/\ (37
where Be, = {f € X* : |[fll« < p (e +A17%)}.

Using property (18), we obtain

1S4 (@)l < llcalx = §1%a() [(PUL + $)*)**=* = UL — po (PUL)" ' p] [l
+ | = Vax) - VPU, ||

<INy @) llsx + IN; (@) lsx + IN; cllwx + NG llax + IN7 llsne + N5 Il
where
N} () = colx — E]"a(x)(PU;, + @) T)=e — (PU, Y-

—(po £ &)(PU,)P=Ee"Dgp)
N3 (@) := calx — E]*a(@)((pa £ &) (PU)P**7 Vg — po (PU,) P~V )



Bubbling solutions to an anisotropic Hénon equation 205

N3, = colx — E[*a(x)(PUL) %2 — (PULY™)
Ni, = colx — E|*a(x) [(PUL)P* — U]
N3, := Va(x) - VPU,.

Arguing exactly as in [6], we obtain the following estimates

Cllgp||2e™* if py <2

1N} () lax < .
‘ Cllg 12 + Cllpl1Z  if po > 2.

and that

”N)Zt,g((p)”** =< C€||¢||*
”N;g”** =ce
- N+24 2«
||Ni"s||** < A7k, where k = —
We estimate ”N)S»,s || . First, using that

— A(PU)) = —AU, in 2, and PU) = 0on 052, (38)

we obtain that

VPU, (x) = /

2

1 o
Ve (wN(N—2)|x_y|N—2 —H(x’y)) coly — E[*UL (y)dy.

Moreover, we have

c
<
T = yMt

1
V,
(Ix—yIN‘Z)

and that (see, e.g., [1] or [8]).
C
V, (H(x, < —
Ve (G = s

This implies that

caly — §1UY ()
|x — y[V-1

|VPU, (x)| < C/ dy
2

¥ |z|* 1
< C,\ﬁ’/ dz
2 (1 + |g2e) 5 (A& = &) — 2"
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Arguing as in [16] we can show that

s 1 ¢
i dz < SNED)
/RN (1 + o) 5 (AG=—H — ") = A+ A=)
Therefore
N+2
(1 4 Az+°‘|x _ §|2+a) 2(2Fa) 1 |Va(x)|

|Va(x) - VPU, (x)| o < Cx ey

K2 (I+Alx—§D 2

1 |x — €| 1
< Cx N—4 =< Cﬁ;
I+ Ax—=§] 2

because Va(§) = 0 and N > 6. Finally, we get
||Nf,£||** <cA7%

Summing up all the above information, we obtain that

wt - -
I1Se2 (@) l1x < cUl@le™ + g3 + ellplls + &+ 275 +2172)
<p(e+17?)
provided p is large enough, ¢ is small enough, and A is large enough. This shows
(37).
Moreover, arguing in a standard way (see, for example, Proposition 4.3 of [6])

we show that, if p is large enough, ¢ is small enough, and A is large enough, then

[Se1(@1) = Ser(@2)llx =< £lldr — o]

for some constant £ < 1, namely S;  is a contraction map. This concludes the proof.
O
3.3 The one-dimensional problem

We will study the reduced one-dimensional problem.

Proposition 3.3. It holds true that in the sub-critical case
cds,g/ a(x)|VPZ,\€|2 = g? [—}—dga(é)A(a)—i—de(a)Aa(E) + 0(1)]
Q2

and in the super-critical case
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Cdoe / a(x)|VPZ,|* := & [—d.a(§)A(e)+d’B(e) Aa(§) + o(1)]
Q
Here A(a) and B(«) are positive constants.

Proof. The proof is analogous to that of Lemma 5.1 of [6]. We sketch it here for
reader’s convenience. We write

cds,g/ a(x)VPZ,, - VPZ, dx
2
:/a(x)V(PUAS+¢8.A5)'VPZAEdX
2
o PES
- / a(x)celx — €| [(PUs, + ¢en )] PZy dx
2
=/a(x)ca|x—§|°‘U§‘:PZAedx—/ (Va(x) - VPU,,) PZ, dx
2 2
o +Pete
_ / a(¥)calx — £ [(PUs, + ¢es )™ PZ dx
2
_ / a(x)cqlx — £° (U;’j - U;’jﬂ) PZ;, dx
o : :
a pate Do e
+ / a()cqlx — | (Ulg — PUL )szgdx
2
o o TE ==
+/ a(x)cq|x — €| (PUii —[PU, + ¢es )] E)szgdx
2

—/ (Va(x)-VPU, )PZy dx =1, + L, + I3 + 14,
2

I = / a(x)cq|x — €] (Uij - Uijis) PZ;, dx.
; ,

L= / a()eqls = £* (U7 = PUI) P2, dx
Q E &

L= / a(x)cqlx — §[* (PU]A)(:ﬂ —[PU,, + ¢8-*€)+]pai8) Py dx.
2
lii=~ [ (Vat - vPUL) P2, ax
2
We will set

1
i, :={xeRN:A—x+§eQ}.
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Step 1: We have that
I = eA] " (A(@) + o(1)), with A(er) > 0. (40)
First, we have
I =1+ 1 (41)

where
I = / a(x)cq|x — E|* (Uf{‘: — Ui‘:ig + sUﬁ"log(UAF)) PZ,_dx,
5 , . ; ;
Iy = / a(x)cy|x — §|"‘€U§‘:log(UAS)PZAde.
o ;

An application of the Mean Value Theorem shows that

2
o oc:i: o € a_GX
Ufe — U™ & eUStlog(Us,) = == (logUy ) UR ™

for some 6, € [0, 1]. Therefore

2
il = ¢ / calx — £l (logUs, 2U ™" P23, |dx
2

= CEZA?/—I-&-L){/ |x— §|QN+’+Z . 1 _
el At — ey TR AR (1 AT — g R

) 2
log(1 + )L?"'“ lx— §|2+°‘)) dx

N—2
log(A.) —
X( 5 loett) =5

_ |z|* 1
< Ce2A l/ - — =
© o (1 [efrre) T 0N (14 AT — gt IR

N-2 N-2 2
log(Xe) — log(1 2t =o(eA7)).
x( 3 og(Ae) Tt og(1+ |z )) dx = o(eA; ")

On the other hand, we have that

I, = / a(x)cq|x — $|°‘8U§‘: log(U,,)PZ,,dx
o .

N—2 Pa

Ae?

(1+ AZbel— g

=e/ﬂ a(@)calx — £
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N—2 —
(log (As 2 ) —tog (1 + AZFJx = g|2+“)¥+§)) les} dx

N+242¢ N — D _&|a
— SAE 2 2 log()ts) a('x)CUt|'x E|

N+2-+20 PZ) dx

2 (14 AFelx— )

N+242a N — D _ &l
—S)LS 2 / a(X)Ca |x El e log(l+A§+Q|X—E|Z+Q)PZ,\gdx

24o Jo (1+Ag+a|x_€|2+a) Fa
that is,
N+2+20 N — D a(x)cy|x —E¥
I, = e, 2 5 log(Ae) (W)caly — £ s Zr.dx
2 (1 + Azrefe— g H
Nt N — 2 _ g
e, 2 / Cl(x)coz |.X E| T log(l +A§+a |x_§-|2+0()ZAde
24a Jo (1+Ag+a|x_§|z+a)w
N+24+20 N — D a(x)cy|x — &%
+ed, 2 3 log(A,) “ o (P2, — 23] dx
2 (14 A2Ho|x — g2+e) 2Fa

a(x)ca|x — §|*

)LN+22+zaN_2/
— &
£ 2+aJo | +,\3+a|x_§|z+a)"’tf;2“

xlog(1 4+ A" [x = §17) [PZy, — Z), ]} dx = A1 + Ay + A3 + As.

First of all, we have

N -2\ olx — E|9(1 — A2t |x — g2
A = edV 1t 00(1,) a(x)ce|x — §1%( ;=& )dx
2 ¢ o

(14 22befe — ey 30
s alz + Ol (1 = |2*)

2 (1 |l

? a(z-z+ E)lzl* (1 — [z**)

caskg_llo (Ae)
g o a1+ |Z|2+a)2N-2|-ii-3a

2 1 a1 _ |2+
N (N—Z) oA log(h) a(3zz+ §)z*(1 — 2] )dz
A

EN\2:, (1 + |72) Wit

~ 1 Z o 1_ z 24«a
catAT og(Ae) / [a(—erS)—a(E)} 0] |2N+2La dz
RV L As (14]|z[2+e) 2+

2 a(Ez 4+ &)|z*(1 — |z>+
ctd— Tog(he) (2 +)zl*(0 = [z[7)

Z
BNR, (1 4 |gre) e
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because
Z|%(1 — 7>t
/ ¢ | |2N+2-|)—3ot dz = 0.
B (1 4 [opre)
Moreover
24 24a
5z 1—-|z _
|A11|§C/ A I |2J+2+3)adz <Al
RN (1 + |Z|2+04) Fa
because Va(§) = 0, and
1 24+«
a(y-z+8§)z[*(1 = [z[77)
Al = / : o dz| < A VT,
RN\ 2, (1 + |Z|2+oz) 2 Fa

In addition, we have that

N+2+20 N — D
Ay = Fed, ? /
2 + o Q

a(x)cq|x — £
(14 Az+ex — g 58
xlog(1 + A7y = §°7*)Z,, } dx
(N —2)? / a(x)celx — £1%(1 — A7 x — £]>F) y
224+ a) Jo (1 +Ag+a|x_§|2+a)w§r+#
x log(1 + X§+“|x — §|2+°‘)} dx
et W= [ aGez+ DR~ 2P
22+ a) Jg, 1+ |Z|2+a)w
L (N=2)? aGz + &)z = z*)
= Featl, - PIESEER
2@F ) Jav (1 g e TR

— N+a—1
= Fel,

log(1 + |z***)dz

log(1 + |z***)dz

4 i (N=2)? a(Fz+ )lz* (1 — o)
CO‘EAS 2N+2+3a
20+ ) Jema,, (1 4 |zpre) T 2t

N —2)2 a(®)|z)*(1 — |z|>*¢
(V=% [ a@EI Q=) v,
224 ) Jrw (1 + |g2te) 25
L (N=2)? a(£z+p)lzl*(1 — [z]*1%)
+ Caé‘/xs PO~ 2N+2+43e
2(2 + Ol) RN\ 2;, (1 4 |Z|2+a)4z+a

log(1 + |z]*T¥)dz

= Feged (1 4+ 0(1))

log(1 + |z*T¥)dz
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and since
N —2)? a(z+p)lel* (1 —[z*7*)
QSAE—IQ Ae e 10g(1 4 |Z|2-i-oc)dZ
2@+ a) Jama,, (1 4 |g2re) e
N—2 2 “] — 24«
S CO[SAE_I( ) O / |Z| ( |Z|2N+23_3a 10g(1 + |Z|2+a)dZ
2(2 + Ol) RN\ &2, (1 + |Z|2+a)2+7a
= o(s)&s_l)
we get
Ay = el (£a(§)A(@) + o(1)) (42)
where (see (11))
N —2)? *(1 — |z*T
A@) = —c, N =2 A= ™) (14 gz > 0. (43)

22+ @) Jry (1 4 [gfpe) BT

N[

On the other hand, using that |PZ;, — Z;.| < CA. ?, one can show that

_ |z
|A3| =< Cé‘)t:: Nlog(ks) N+2+2a
RY (1 4 [z]2He) =Fe (44)
=o(eA] )
and
o
|Ag] < CsA;‘N/ l 5 log(1 + [z*+*)dz
RY (1 4 [z[2He) =Fe (45)
= o(eA] ).

Finally, collecting all the previous estimates, the proof of Step 1 is completed.
Step 2: It holds true that

L = o(A]%).
We write

L =Dy + I,
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where

b= [ faWale €7
2
x (Ui’jﬂ — (U, + R  + (po + 8)U§‘:i€_1R18> les} dx
and
Iy = —/ a(x)cq|lx — E1%(pe £ 8)Uiji8_1RA€PZAde.
Q2
Following exactly the same argument in [6], a direct computation shows that

C [o Ix = §|“|Ry, [P |PZ;, | if po <2
C fo b=l (1Ra o + U R, ) P2, | i p > 2.

[I21] <
and that
121 = 0(/\8_2)
On the other hand, we have that

a(x)ca|x — |

(1 + A2 Fefe— g Proysm

N—2
122 = (pa :|: S)Ag-i_ais 2 /
2

_N=2 (N —2)? _N
x(—a)N(N -2, * H(x) —i—fkg(x))(ZAE + Tkag 2H(x) + ng(x))} dx
_N=6 — £l
= (4 o()e,V-Dpaais” " [ L —
@ (14 2ZFefx — g o)
N_22 _ (xl_k2+a _ 124
— (H—o(l))ca—( ) paa)N)&;“‘/ atlx— EI( e Nj' N+2 H(x)dx
2 2 (14 Aztefy — g oyEem o
N —2)2 a(z+Olz*(1 =22t 1
= (1to(ee T =2 oyl | =k )y
2 D (14 |gPprep=esmra

= o()kg_z).

The proof of Step 2 is complete.
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Step 3: We have that
I;(e) = 0(A7).
Following the same argument as in Lemma 5.1 of [6], we have that
ifpy <2

Ie) = § OO 19:1) + O(eA; ! log(@)lge )
O (e 2% + 16 ]12)) + O(eA= og(e)l|gells)  if pa > 2.

which proves the claim, since A, ~ ¢ and ||@e2, ||« = O(e).
Step 4: We have that

Ii(e) = A2 (—=Aa(§)B(a) + o(1)) with B(er) > 0.

We have
Iy := —/ (Va(x) - VPU,,) PZ) dx = —/ (Va(x) - VU,,) Z),dx

Q2 Q
— / (Va(x) - VU,,) (PZy, — Z;,) dx — / (Va(x) - V (PU,, — U,,)) PZ)_ dx.

Q Q

The leading term is

—/ (Va(x) - VU,y,) Z,,dx

2
e — €11 = ATy — EPF)

= —AISV_H“ / (Va(x) - (x—§)) Tz dx
2 (1 + )Lg"'“ |x _ E|2+a) 2Fa

o] — 2+«
— 2 va (X+S)-y IyI*( Iylw)a) dy
@ A (1 + [yf2+e) 25

+a)

N
_ yl*(1 =yl _
- _ASZ/Q Z al-ja(é)y,-yj( i )Z(Nﬂ) dy+ 0 ()La 3)
1 + |y[2te) oFe

re jj=1
B 1 24+a 1— 2+a B
= +3Aa®); (— / A |y2|(N+a))dy) +0(7)
BY (1 4 |y[>He) 2Fa
= A;?Aa(§)B(e) + O (A7)
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where (see (12))

o y[>Fe (1 = [yI**)
B(ot) = _]T] )
RN 1+ |y|2+a)2+7u

dy > 0. (46)

Collecting all the previous estimates, the proof of Proposition 3.3 is completed. O

Proof (Proof of Theorem 1.1). 1t is clear that we have to find a positive real number
d, such that the number c,, . in (35) is zero. By our construction, taking also into
account the maximum principle, it will immediately follow that the function u, =
PUj, + ¢.,, is a solution of problem (3). On the other hand, it is easy to check
that if Aa(§) < O there exists d, > 0 such that ¢, . = 0 in the sub-critical case
and so problem (4) has a solution and if Aa(§) > O there exists d, > 0 such that
¢4, = 0 in the super-critical case and so problem (5) has a solution. The proof of
Theorem 1.1 is completed. O
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1 Introduction

In this note we study the existence of solutions of a nonlinear Kirchhoff system
—M, ([lur 1) Aur = fi (x, ur, up) in £2,
—My([luz